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A B S T R A C T

Promoting reflective thinking is an important educational goal. A common educational

practice is to provide opportunities for learners to express their reflective thoughts in

writing. The analysis of such text with regard to reflection is mainly a manual task that

employs the principles of content analysis.

Considering the amount of text produced by online learning systems, tools that

automatically analyse text with regard to reflection would greatly benefit research and

practice.

Previous research has explored the potential of dictionary-based approaches that

automatically map keywords to categories associated with reflection. Other automated

methods use manually constructed rules to gauge insight from text. Machine learning

has shown potential for classifying text with regard to reflection-related constructs.

However, not much is known of whether machine learning can be used to reliably

analyse text with regard to the categories of reflective writing models.

This thesis investigates the reliability of machine learning algorithms to detect

reflective thinking in text. In particular, it studies whether text segments from student

writings can be analysed automatically to detect the presence (or absence) of reflective

writing model categories.

A synthesis of the models of reflective writing is performed to determine the

categories frequently used to analyse reflective writing. For each of these categories,

several machine learning algorithms are evaluated with regard to their ability to

reliably detect reflective writing categories.

The evaluation finds that many of the categories can be predicted reliably. The

automated method, however, does not achieve the same level of reliability as humans

do.
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1
I N T R O D U C T I O N

Online learning systems produce a staggering amount of text, such as essays,

assignments, forum posts, comments, and feedback notes. Extreme cases are learning

systems with massive participation, which pose challenges for current pedagogies

(Ferguson and Sharples, 2014). Much of the thinking of students is expressed in their

written contributions. The manual analysis of these writings is a laborious

undertaking. Researchers would benefit from tools that automatically gauge insight

from these textual contributions.

In recent years, the automated analysis of text has advanced significantly. Popular

was the question-answering system Watson (Ferrucci et al., 2010) that was able to

compete against human expert Jeopardy players by exploiting a large amount of

structured and unstructured text. In the educational area, an example is the research

on e-assessment (e.g., Kalz et al. (2014)) and research on automated essay assessments

(Shermis and Burstein, 2003; Wild et al., 2005; Attali and Burstein, 2006; Alden Rivers

et al., 2014; Jordan, 2014; Shermis, 2014) whose goal is to automatically grade student

essays and provide feedback to students. Another strand of research, which is

working on automated methods to derive meaning from text relevant for learning, is

the broader field of applied natural language processing (for an overview, see

McCarthy and Boonthum-Denecke (2012)) and discourse analysis (Dessus et al., 2009;

Ferguson and Shum, 2011; Dascalu, 2014)).

The grand challenge reports for technology enhanced learning (TEL) indicated that

’e-assessment and automated feedback’ is one of the highest ranked challenges (see

1



2 introduction

Sutherland et al. (2012, p. 21, 41 f.) and Fischer et al. (2014, p. 22ff.)). Sutherland et al.

(2012, p. 21) stated that ’the grand challenge can be addressed by wide-scale

development, evaluation and implementation of new formative assessment scenarios

including the development and evaluation of technologies that make for example intensive use

of text- and data mining or natural language processing approaches [emphasis added]’.

Noss et al. (2012, p. 22) saw, in their vision for the UK education system, e-assessment

as the opportunity for engaging students in activities by providing them and their

teachers with insights into their thinking. These two TEL vision statements suggest that

in order to tackle this grand challenge it is first necessary to develop the base

technologies that can automatically provide these insights into thinking. We first need

to develop reliable analysis technologies that then can be applied for assessment and

automated feedback.

This research on the automated analysis of text for education is promising; however,

insufficient research exists on automated methods analysing thinking skills expressed

in writings (for a comprehensive overview of thinking skills see Moseley et al. (2004,

2005a,b)). Researchers have investigated the potential of automated analysis of critical

thinking (McKlin 2004, p. 141; Corich 2011), a thinking type related to reflective

thinking (Sparks-Langer and Colto 1991, p. 37,43; King and Kitchener 1994, chapter

1).

However, even less research exists on the automated analysis of reflective thinking in

text. This is surprising because reflective thinking is core to educational practice. For

example, the OECD report of Rychen and Salganik (2005, p. 8) saw reflection at the

’heart of key competencies’ for ’a successful life and a well-functioning society’. The

Assessment and Analytical Framework for PISA 2012 (OECD, 2013, p. 68) emphasised

that reflection and evaluation are integral parts of reading literacy. The UK quality

code for higher education recommends all UK higher education providers to ensure

that all learning and teaching practices be informed by reflection, and recommends
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a structured and supported process for learners to reflect upon their own personal

development (QAA, 2012). The European commission funded two research projects

whose core research topic was reflection from 2010 to 2014
1. The meta-analysis of

evidence-based practices in online learning of Means et al. (2010, p. 48), prepared for

the U.S. Department of Education, highlighted the importance of providing online

learning opportunities that promote reflection.

Reflective thinking is an important skill. In our current world, much of what people

have to act on is unplanned and outside the usual routine. Practitioners can find

themselves in ill-structured situations, for which learned standard recipes may not be

immediately applicable. Such situations are full of uncertainty, they are unique, and

values can conflict.

It is this scenario where the training of reflective thinking poses its value proposition.

Reflective thinking can help find solutions to problems in situations that are highly

undetermined. As Thorpe (2004) noted, ’(...) educators seek to promote professional

practice that is reflective rather than routine’. The key for this type of education is seen

in helping students develop the ability to derive meaning from experience in order to

better understand the reasons for their behaviour by considering past experiences, the

present situation, and anticipated future results.

The absence of reflective thinking can lead to overconfidence and errors. Wald et al.

(2012) concluded, based on findings in the area of health care, that ’failure to reflect

on one’s own thinking process, including critical examination of one’s assumptions,

beliefs, and conclusion, was recently described as a cognitive component of "physician

overconfidence", a contributing cause of diagnostic error in medicine’.

The skills sought are the ability to inspect what occurred, critically analyse

experiences in order to make informed decisions, and test their validity, which might

refine or change one’s practice. This type of thinking – reflective thinking – is seen as

1 See the projects MIRROR http://mirror-project.eu/ and ImREAL http://www.imreal-project.eu.

http://mirror-project.eu/
http://www.imreal-project.eu


4 introduction

key for problem solving and professional practice (Schön, 1987) because it turns

experience into learning (Boud et al., 1985).

Reflective thinkers challenge their thinking and acting routines in order to constantly

improve practice. Given that reflection places emphasis on one’s experiences, learning

becomes a personal matter. Therefore, it is an act of active learning compared with the

passive absorption of subject matter outside personal relevance.

It is this value proposition of reflection that gives it prominent position in

educational research and educational practice.

An important educational practice to foster reflective thinking is reflective writing

(for example, see Moon (2006) or Thorpe (2004)). Reflective writing is used as an

educational tool in many disciplines that range from higher education, teachers’

pre-service training, early childhood education, nursing, business, physical therapy,

literature, psychology (Dyment and O’Connell, 2010, p. 234), and pharmacy (Wallman

et al., 2008). Reflective writing aims at helping an individual to describe, re-think, and

analyse their experience in order to reach a deeper understanding (Plack et al., 2005,

p. 200). In addition, because the reflective thought process is made explicit in writing,

it opens the possibility for learning through feedback and discussion on the reflective

writing process (Bain et al., 2002, p. 193).

Reflective writing is an important educational practice and with it the analysis of

reflective writing. Writing analysis is important for educators because it allows

systematic assessment of the quality of the reflective writing or writer, and it is

important for researchers because it allows to investigate the influence of specific

instructions on the improvement of the reflective writing skills.

The prevalent technique to assess reflective writing is the application of principles

of content analysis. Although it is important, several researchers indicated that

research on assessing reflection in writing is not fully developed. In their review of

content analysis procedures used to assess reflective writings, Poldner et al. (2012, p.
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32) concluded that ’researchers have only recently begun to develop quality

assessment criteria’. Wong et al. (1995, p. 49) noted a lack of empirical research on

assessing reflection. A similar sentiment was expressed by Plack et al. (2005, p. 199),

’(...) yet little is written about how to assess reflection in journals’.

There is a need to advance the methods used to analyse reflective writing. The aim

of this thesis is to explore the potential for automatizing this manual content coding

process using machine learning techniques. The automated detection of reflection

promises advancement in research and practice, especially because it would add

another method to the analytical repertoire of researchers, and it has the potential of

supporting educators with their assessment of reflective writing.

Considering the importance of reflective writing to foster one’s reflective thinking,

the automated analysis of such writing would be a promising technology to support

researchers, teachers, and learners. Advancement of automated text analysis suggests

the feasibility of automating the analysis of reflection in text. However, there is

insufficient research on analysing reflection automatically. This thesis sets out to

contribute in closing this gap by researching the potential of machine learning

algorithms to detect reflection in text.

1.1 research questions

The goal of this research is to evaluate the reliability of automated methods to analyse

reflection in student writings. In this thesis, the investigated automated method is

machine learning. Not much is known of whether machine learning can be used to

detect reflection. Detection in this context means that the automated method can

determine whether a given text segment is reflective. Parallels can be drawn between

the manual content analysis of reflective writing and the intended automated process.
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As with the manual coding process, which assigns labels to analysis units, the

automated reflection detector provides these labels automatically.

In detail, this thesis investigates whether text segments can be analysed

automatically using machine learning algorithms to detect the presence (or

absence) of reflection.

Content analysis is one of the main methods for assessing written reflection. Text

analysis is guided by a model that describes the coding categories. Several models of

reflective writing have been proposed. Although these models vary in their

description of model constituents, two characteristics reoccur frequently. The first is

that a writing can be categorised with regard to its level of reflection. Models that

describe reflection levels have in common that they order writing from

descriptive/non-reflective to reflective. The second characteristic describes categories

associated with reflection. Examples of such categories are the description of

experience, awareness of problems, evidence of critical analysis, etc.

This thesis investigates the automated detectability of both aspects of reflection.

These aspects are encapsulated two research questions.

The first research question is: Q1: Can machine learning algorithms be used to

distinguish between descriptive and reflective text segments?

This question addresses the level aspect of reflective writing. The common

denominator of all level models of reflective writing is the distinction of text as

descriptive/non-reflective or reflective. The aim here is to investigate whether

machine learning can be used to discern text segments regarded as reflective from

descriptive text segments.

In order to structure the argument for (or against) the first research question, three

lines of investigation are proposed. Once answered, they provide evidence in favour of

the main research question (or against it). The three lines of investigation are:
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• I1: Can tree-based machine learning algorithms detect the difference between

descriptive and reflective texts segments?

• I2: Can rule-based machine learning algorithms detect the difference between

descriptive and reflective text segments?

• I3: Can high performance machine learning algorithms detect the difference

between descriptive and reflective text segments?

Within each line of investigation, a set of machine learning algorithms is evaluated

on the problem of detecting reflection. Because there is no prior information available

on which machine learning algorithm would perform well on this specific problem,

several machine learning algorithms were chosen to evaluate their potential for the

automated detection of reflection. Each line of investigation contains a set of specific

machine learning algorithms selected with regard to their potential for detecting

reflection (see Section 4.5 ’Machine learning algorithms’).

Tree-based machine learning algorithms automatically generate decision trees from

sample data to classify text.

Rule-based machine learning algorithms construct rules from data. Rules follow

the common pattern of defining premises that, when satisfied, allow deriving

conclusions automatically.

Both tree-based and rule-based algorithms have the property of producing models

that can be inspected in the form of decision trees or rule sets.

The third line of investigation summarises the machine learning algorithms that

tend to perform well on many tasks and often outperform tree-based and rule-based

machine learning algorithms. The investigated machine learning algorithms are:

Support Vector Machines (SVM), Neural Networks, Naïve Bayes, and Random Forests.

Here, I refer to these different classes of machine learning algorithms as high

performance machine learning algorithms.
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All selected machine learning algorithms have shown potential for text classification

tasks. However, it is not known which performs well on the task of reflection detection.

The three lines of investigation provide a comparative overview of which candidate

machine learning algorithms has the highest performance for predicting reflection.

The second research question addresses the second aspect of the reflective writing

models. These are the categories associated with reflection. The reflective writing

models vary with regard to these categories. Notwithstanding their differences, some

of the categories occur frequently. They are: description of an experience, awareness

of feelings, awareness of one’s personal perspective, having a critical stance,

considering other perspectives, and the description of outcomes. In this thesis, they

are referred to as common categories of reflective writing (see Section 2.3 ’Model for

reflection detection’).

Therefore, the second research question is: Q2: Can machine learning algorithms

be used to detect common categories of reflective writing?

This question explores the reliability of the automated detection of concepts that

are common in reflective writing. As with the first research question, a set of machine

learning algorithms is used to assess the detectability of the common categories of

reflection.

Both research questions contribute to the wider goal of this thesis. The first

question addresses the detectability of reflective and descriptive text segments. The

second question explores the detectability of categories that are common in reflective

writing. If it can be shown that it is possible to automatically detect both aspects, a

strong case can be made for the applicability of machine learning methods to detect

reflection in text.
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1.2 thesis overview

This thesis consists of seven main building blocks.

Chapter 1 ’introduction’ provides the context of this research. It highlights the

importance of reflection for our society and sets out the goal of this thesis to research

machine learning methods in order to automate the detection of reflection in text. The

research questions set the specific aim of this investigation.

Chapter 2 ’the concept of reflection : theory and model’ introduces the

concept of reflection starting with its use in everyday language, highlights its several

meanings, and provides its central definitions. Then, the chapter provides a

comprehensive overview of the models of written reflection. These are the models

used to analyse reflection in writing with principles of the content analysis. A

synthesis derives those categories that are common for all models. The result of this

synthesis is a model of common categories of reflective writing. In the evaluation,

each category forms a test case with regard to its detectability with machine learning

algorithms.

Chapter 3 ’related methods and benchmarks’ provides an overview of the

main method for analysing reflective writing and automated methods that have been

applied to detect related thinking skills. The main method to assess written reflection

is content analysis. After outlining the core principle of the content analysis, two of

the content analysis-specific practices are described. The first strategy concerns the

relationship between the annotated analysis units and the assignment of a category to

the entire text, and the second strategy describes the practice of mapping descriptive

categories to levels of reflection. Subsequently, a comprehensive overview of rater

performance in analysing written reflection follows. The second part of this chapter

informs on the automated methods used to gauge insight from text on the reflection
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aspects. As with the part on the manual analysis of reflective writing, the part on

automated methods summarises performance measures that provide insight on what

can be expected from automated methods with regard to the reliable detection of

model categories.

Chapter 4 ’methodology and research design’ outlines the methodological

considerations that shaped the research design. This chapter provides the rationale

for the type of study, and gradually introduces evaluation criteria and relevant

measurements, as well as discusses analysis units and sampling techniques.

Subsequently, the chapter outlines the decisions that led to the selection of those

machine learning algorithms used in the evaluation. These considerations shaped the

research design. The research design section outlines the data generation process and

the design of the evaluation of the machine learning algorithms.

Chapter 5 ’dataset generation’ outlines the specifics of the data generation

process. It starts with a large collection of text and ends in several datasets suitable

for evaluating the machine learning algorithms on the problem of reflection detection.

Each section is a step of the transformation process outlined in the data generation

research design. The chapter describes how the text collection was identified, which

texts were selected, how the texts were divided into smaller text segments, and how

each of the text segments was annotated with regard to indicators of the reflection

categories.

Chapter 6 ’evaluation’ implements the steps outlined in the research design and

provides a detailed evaluation of the performance of machine learning algorithms on

the problem of reflection detection. The chapter is divided into two major parts aligned

to the two main research questions. The first part provides an evaluation of the machine

learning algorithms to detect reflection. It reports the performance of the machine

learning algorithms following the three lines of investigation. The second part reports

the findings on the performance of machine learning algorithms to detect each of the
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indicators of the common categories of reflection. The performance measures derived

in the evaluation part of this thesis are the basis for the argument in favour (or against)

the reliable detection of reflection with machine learning.

Finally, Chapter 7 ’conclusion and future research’ draws conclusions

regarding the research questions and describes future research.





2
T H E C O N C E P T O F R E F L E C T I O N : T H E O RY A N D M O D E L

For the automated analysis of reflection, it is important to clearly understand what

constitutes reflection. The following sections provide an overview of the meaning of

reflection, starting with its use in everyday language and ending in its specific use in

educational discourse.

Reflection is widely used in everyday language. We talk about reflection using

phrases like ’when I reflect back on my last year’, ’I never realised this about myself’,

or ’if only I had known then what I know now’. In everyday language, reflection has

many meanings. For example, it is sometimes used as a synonym for general

thoughts or a collection of ideas about something, sometimes it is used as a synonym

for critical thinking or thinking about a problem. And it is used in the sense of a long

and deep thought about an experience.

To start delving into the meaning of ’reflection’, a look at its origin can be of help. The

word ’reflection’ has its roots in the late Latin word reflexio – the act of bending back1,

which originates in the in the Latin verb reflectere. The word reflection has different

meanings, ranging from ’a calm, lengthy, intended consideration’, ’the phenomenon of

a propagating wave (...) being thrown back from a surface’, to ’the image of something

as reflected by a mirror’2. They all, however, share the meaning of its Latin root: the

act of bending back. In the case of the ’calm, lengthy, intended consideration’, the act

of bending back can be associated with directing attention towards a past experience

(bending one’s thought back towards something). A wave that is ’thrown back from a

1 http://www.merriam-webster.com/dictionary/reflection and http://www.oxforddictionaries.com/
definition/english/reflection

2 http://wordnetweb.princeton.edu/perl/webwn?s=reflection
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surface’ is bent at an angle. The same applies to mirror reflection: Light is ’bent’ at an

angle when being reflected by the mirror.

The act of bending one’s attention towards an important experience, the mirror

allowing us to see ourselves, and all the different angles from which a situation can

be interpreted are all important associations with the concept of reflection as it is used

in educational discourse (Ratkic, 2012).

2.1 definitions of reflection

The following definitions will help to determine what is reflection and what qualities

it has. The definitions are chosen from high impact research articles. The impact was

determined by a co-citation analysis (see Appendix A for the details of this analysis).

These are the definitions of Dewey (1933), Schön (1983, 1987), Boud et al. (1985, chapter

1), and Mezirow (1991).

Definitions aim to describe the essence of a concept, and thus may appear as being

overly simplified when presented without their original context. It is therefore

important to bear in mind that reflection is a complex construct and any description

of it will fall short of describing its richness (Jay and Johnson, 2002).

Frequently, Dewey is mentioned as the person who brought reflective thinking into

the educational discourse. Dewey (1933) defined reflection as an ’active, persistent, and

careful consideration of any belief or supposed form of knowledge in the light of the

grounds that support it, and the further conclusion to which it tends.’ Reflection in

Dewey’s sense means testing and challenging validity (Mezirow, 1991).

The work of Schön (1983, 1987) is often mentioned, because of the introduction of

the concept of reflective practice. He is often referred to when talking about the

distinction between reflection-in-action and reflection-on-action. Reflection-in-action

is exemplified by practitioners who, while facing a problem, often have to stop their
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routine, think about the problem, and solve it in situ. Reflection-on-action happens

after the event. Practitioners return or revisit their experience in order to shed light on

the problem from alternative perspectives. Several other distinctions have been

proposed. Less frequently cited distinctions can be found in Killion and Todnem

(1991) about ’reflection-for-action’, Greenwood (1993, p. 1186) about

’reflection-before-action’, and Chrzaszcz et al. (2008) about ’reflection-on-reflection’.

Eraut (1995) proposed a re-conceptualisation of ’reflection-in-action’ and

’reflection-on-action’.

Boud et al. (1985, chapter 1) saw reflection as: ’An important human activity in

which people recapture their experience, think about it, mull it over and evaluate it.’

Reflection involves both cognitive and affective engagement, which leads to new

insights and understanding of experience (Boud et al., 1985). Boud et al. saw

reflection not as a cognitive act alone. In this theory, emotions play a significant role

(Boud et al., 1985, p. 11).

Mezirow (1991, p. 101) emphasised the function of reflection in learning. Reflection

’(...) makes enlightened action and reinterpretation possible, and especially for the

crucial role that reflection plays in validating what has been learned.’ According to

Mezirow (1990a, p. xvi), reflection has three functions: to guide action, to give

coherence to the unfamiliar, and to reassess the justification for what is already

known. Mezirow (1991, chapter 4) distinguished three qualities of reflective thinking:

content, process, and premise. Content reflection addresses the question as to ’(...)

what we perceive, think, feel, or act upon’ (Mezirow, 1991, chapter 4). Process

reflection investigates ’how we perform these functions of perceiving, thinking,

feeling, or acting and an assessment of our efficacy in performing them’ (Mezirow,

1991, chapter 4). Premise reflection involves questioning ’(...) why we perceive, think,

feel, or act as we do and of the reasons for and consequences of our possible habits of
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hasty judgements, conceptual inadequacy, or error in the process of judging (...)’

(Mezirow, 1991, chapter 4).

The definitions of reflection should provide a guiding structure about what is

understood by reflective thinking. This section should help us to understand that

there is no such thing as the definition of reflection, but that there is an on-going

discourse about what constitutes reflection. Many of the reflective writing models are

based on the definitions of reflection. The next section provides an overview of

reflection models. The common constituents of these models will inform the model

for reflection detection.

2.2 models to analyse written reflection

Several models of reflection in the context of the analysis of writings have been

proposed. Models of reflection characterise the components of reflection and their

relations with each other. Conceptualisations of reflection are the first step towards

empirical research of reflection. Models provide an abstraction of the phenomenon of

reflection. They represent a simplified version of reflection. Yet, they are detailed

enough to study and test assumptions about reflection with empirical methods.

Researchers sometimes refer to these models as frameworks (Fund et al., 2002; Ward

and McCotter, 2004), rubrics (Ward and McCotter, 2004; Wald et al., 2012) or express

them in a concrete coding schema (Kember et al., 1999; Poldner et al., 2014). Here, we

will refer to them as models, as they characterise and operationalise qualities of

reflection found in writings (examples of such models can be found in Table 1).

Many models have been proposed. There exists a wide variety of theory-informed

models and models that have been derived by qualitative research. Examples thereof

can be found in the work of Ross (1989), Sparks-Langer and Colto (1991), Gore and

Zeichner (1991), Tsangaridou and O’Sullivan (1994), Hatton and Smith (1995),
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Richardson and Maltby (1995), Pultorak (1996), Hutchinson and Allen (1997), Scanlan

and Chernomas (1997), Taylor (1997), Valli (1997), Bain et al. (1999), Kim (1999), Duke

and Appleton (2000), Rogers (2001), Bain et al. (2002), Jay and Johnson (2002),

Spalding et al. (2002), MacLellan (2004), Tillema (2004), Thorpe (2004), Ward and

McCotter (2004), Lee (2005), Korthagen and Vasalos (2005), Kansanaho et al. (2005),

Kreber (2005), Wessel and Larin (2006), Mann et al. (2007), Chretien et al. (2008),

Kreber and Castleden (2008), Minott (2008), Wilson (2008), Gulwadi (2009), Friedman

and Schoen (2009), Le Cornu (2009), Badger (2010), Granberg (2010), Lambe (2011),

Cohen-Sayag and Fischl (2012), Crawford et al. (2012), Etscheidt et al. (2012), Leijen

et al. (2012), Corlett (2013), Medwell and Wray (2014), McDonald et al. (2014), Nguyen

et al. (2014), Chaumba (2015), Hill et al. (2015), and McKay and Dunn (2015).

The following literature review focusses on models that have been empirically

evaluated and are based in the area of the analysis of reflective writings (see Table 1).

Specifically, papers were selected only if they contained a statement about the

reliability of the coding process.

The rationale for this inclusion criterion is that the research on the empirically

evaluated analysis of reflective writing shows close parallels to this investigation. The

empirically evaluated analysis of reflective writing is driven by the method of content

analysis. Each text or text segment is assessed by a number of raters and labelled with

a category of the chosen reflection model. The quality of the coding process was

evaluated by estimating the reliability of the coding process. Similarly is the aim of

this thesis because its goal is to automatically label text segments with a category of

the model for reflection detection and estimate the reliability of the coding process.

Reliability measures inform on the quality of the coding process, and therefore, are

central for answering the research questions (see Section 1.1 ’Research questions’).

The evaluation criteria and measurements, including reliability, are discussed later in

Section 4.2 ’Evaluation criteria and metrics’. The reported reliabilities of the manual
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analysis of reflective writing can provide guidance on the reliability that can be

expected from the content analysis of reflective writing. This should allow discussing

the reliability of automated methods in the context of the reliability of the manual

coding process.

The studies outlined above do not provide this information, and therefore, do not

allow inferring information on the degree to which codes can be reliably assigned to

text.

The models that satisfied these inclusion criteria are listed in Table 1. This list was

the result of a thorough and repeated search of literature databases over several years,

including a systematic analysis of the literature cited by the retrieved papers. Some key

papers, which contained similar lists, but tailored to the aims of the authors of these

publications, can be found in Dyment and O’Connell (2011, p. 85 f.), Birney (2012, p.

90 f.), Poldner et al. (2012, p. 33 ff.), and Poldner et al. (2014, p. 351 ff.).

These empirically-grounded models used for the analysis of reflective writing are

often closely informed by the theory of reflection and thus cover a wide range of

well-established theoretical models (see the column ’based on’ in Table 1 and the

referenced literature). Most of the research on the analysis of reflection in writings can

be traced back to the theoretical ideas of Boud et al. (1985, chapter 1) (e.g. Wong et al.

(1995); Wald et al. (2012); Plack et al. (2005)) and Mezirow (1990a) (e.g. Wong et al.

(1995); Kember et al. (1999); Plack et al. (2005); Wald et al. (2012)), the ideas on

reflection of Manen (1977) (e.g. Sparks-Langer et al. (1990) and Poldner et al. (2014)3),

and the work of Schön (Schön, 1983, 1987) (e.g. Plack et al. (2005); Wald et al. (2012)).

While these models stem directly from the theoretical work on reflection, there are

also models using conceptualisations of learning outcomes based on the learning

taxonomy of Bloom (1954) (e.g. Plack et al. (2007); O’Connell and Dyment (2004)).

3 The model in Poldner et al. (2014) is based on Leijen et al. (2012), which in turn is based on Van Manen
(1977).
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This information about which authors and with it which theoretical ideas were

influential for the models is helpful to derive a clustering of the school of thought

underlying these models. Schools of thought (also called paradigms or perspectives),

such as constructivism, cognitivism, or behaviourism, summarise a set of beliefs

assumed to be true about the world (Schuh and Barab, 2008, p. 71). Making these

assumptions explicit can help to better understand these models. Here, we restrict the

discussion to these three mentioned perspectives (see for an extensive overview of

schools of thought Schuh and Barab (2008); Ertmer and Newby (2013); van

Merriënboer and de Bruin (2014)).

On the one hand, one can argue that the models from authors such as Boud et al.,

Mezirow, Manen, and Schön, have a constructivist influence as these authors oriented

their work on the ideas of Dewey about reflection4. Dewey’s positions are often

associated with one of the constructivist perspectives (see Garrison (1995, p. 717);

Bond (2003, p. 10); Anderson and Dron (2010, p. 84)). Fenwick (2001, p. 17ff.) also

attested these authors a constructivist perspective.

On the other hand, the work of Bloom is associated with the cognitivist paradigm

(Bates, 2015, p. 49). Therefore, models that are largely influenced by the learning

outcome taxonomy of Bloom (1954) can be said to be influenced by cognitivist

assumptions.

The third big perspective, behaviourism, is generally not associated with the

perspectives of above outlined authors on which the models are based on. This school

of thought focusses only on observable behaviour and not on inner thought processes

(Schuh and Barab (2008, p. 73); Ertmer and Newby (2013, p. 48 ff.); van Merriënboer

and de Bruin (2014, p. 24f.)) as reflective thinking expressed in writings.

4 Boud et al. (1985, p. 21) wrote that they ’(...) acknowledge a great debt to Dewey (...)’. Mezirow (1990a, p.
100ff.) built on Dewey’s view of reflection, similar Van Manen (1995). Schön wrote his PhD thesis about
Dewey (Schön, 1987, p. xi).
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The paradigm that explicitly focusses on internal cognitive processes is cognitivism.

Compared to the behaviouristic perspective learning is seen as ’(...) changes between

states of knowledge rather than with changes in the probablity of responses’ (Ertmer

and Newby, 2013, p. 51). Both, the behaviouristic and cognitivistic view originate in

objectivism; i.e. the assumption that the world exists/is real (Schuh and Barab (2008,

p. 73)). Instruction under behaviouristic and cognitivist perspective means ’(...) to map

the structure of the world onto the learner’ (Ertmer and Newby, 2013, p. 54).

The (cognitive) constructivist perspective acknowledges the existence of reality, but

reality is seen as an interpretation and that this interpretation is shaped by experience

of an individual (Schuh and Barab, 2008, p. 74). Meaning is individually constructed.

Another variant of constructivism, social constructivism, sees this meaning making

process as a social rather than an individual experience (Schuh and Barab, 2008, p. 74).

In summary, the models that have been considered as relevant for this thesis (see

Table 1), can be clustered according to the two schools of thought namely cognitivism

and constructivism. This result aligns with the observation of Birney (2012, p. 16),

which noted that some researchers determined reflective learning as a cognitivist

approach, while others were seeing it as a constructivist approach.

Table 1 lists the model descriptions, along with author information and the research

on which the model was based.

Author Based on Model

Sparks-
Langer et al.
(1990)

Gagne (1968)
hierarchy of
thinking and
Van Manen (1977)
idea of critical
reflection

Levels: 1. No descriptive language, 2. Simple, layperson’s terms, 3. Events
labelled with appropriate terms, 4. Explanation with tradition or
personal preferences given as rationale, 5. Explanation with principles or
theory given as the rationale, 6. Explanation with principles/theory and
consideration of contextual factors, 7. Explanation with consideration of
ethical, moral, political issues

Wong et al.
(1995)

Elements: Boud
et al. (1985, chapter
1). Levels: Mezirow
(1990a)

Elements: Attending to feelings, association, integration, validation,
appropriation, outcome of reflection. Levels: non-reflector, reflector,
critical reflector

Continued on next page
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Table 1 Continued from previous page

Author Based on Model

Sumsion and
Fleet (1996)

Surbeck et al. (1991)
and Boud et al.
(1985)

Final instrument was not shown. They refer to Surbeck et al. (1991) and
Boud et al. (1985). Model of Surbeck et al. (1991) had the three categories:
reaction, elaboration, and contemplation. Each category has several
subcategories. Boud et al. (1985, p. 27–35) used the following stages: 1.
Returning to experience; 2. Attending to feelings (utilizing positive
feelings, removing obstructive feelings); 3. Re-evaluation of experience
(association, integration, validation, appropriation). Outcome. Sumsion
and Fleet (1996) used the terms: Not reflective, moderately reflective,
highly reflective

McCollum
(1997)

Tsangaridou and
O’Sullivan (1994)

Levels: Description, description and justification, description and critique,
description, justification and critique. Focus: Technical, situational,
sensitizing

Kember et al.
(1999)

Mezirow (1991) Non-reflective: Lower level: 1. Habitual action, higher level: 2.
Introspection and 3. Thoughtful action. Reflective: Lower level: 4.
Content reflection, 5. Process reflection, 6. Content and process reflection,
higher level: 7. Premise reflection

Hawkes and
Romiszowski
(2001);
Hawkes (2001,
2006)

Sparks-Langer et al.
(1990)

Levels: 1. No description of event; 2. Events and experiences, described in
simple, layperson’s terms; 3. Description of events and experiences
employing pedagogical terms; 4. Explanation of events or experiences is
accompanied by rationale or tradition or personal preference; 5.
Explanation of an event or experience using cause/effect principle; 6.
Explanation provided that identifies cause and effect factors while also
considering contextual factors; 7. Explanation of events, experience, or
opinion that cites guiding principles and current context, while
referencing moral and ethical issues

Fund et al.
(2002)

Form of writing is
based on Hatton
and Smith (1995)

WRITT evaluative tool: 1st dimension (object or content of writing):
Subject-matter content; didactic content; personal content. 2nd dimension
(form of writing): Lower-level reflection: Description, personal opinion,
Higher-level reflection: Linking, critical bridging

Hamann
(2002)

LaBoskey 1994 Commonsense thinker (unreflective): a) Self-orientation, b) short-term
view, c) reliance on personal experience in learning to teach, d) metaphor
of teacher as transmitter, 3) lack of awareness of need to learn, f) overly
certain conclusions, g) broad generalizations, h) existing structures taken
as given, i) lack of commitment, j) views classroom in isolation. Alert
novice thinker (reflective): k) Student orientation, l) long-term view, m)
differentiation of roles of the teacher and learner, n) metaphor of teacher
as facilitator, o) openness to learning, p) acknowledgement of need for
conclusions to be tentative, q1) means–end thinking, q2) reasoning
grounded in knowledge of self, r) imaginative thinking, s) awareness of
teaching as a moral activity, awareness of the classroom and teaching as
part of a social and political context

Pee et al.
(2002)

Hatton and Smith
(1995)

Types of writing: 1. Descriptive; 2. Descriptive reflection; 3. Dialogic
reflection; 4. Critical reflection

Williams
(2000) cited in
Williams et al.
(2002)

Boud et al. (1985,
chapter 1)

Levels: 1. Describes learning. 2. Analyses learning. 3. Verifies learning. 4.
Gains new understanding. 5. Indicates future behaviour. Non-reflective
journals: Is descriptive in nature, reporting on what is happening rather
than analysing the learning event, issue, or situation

Boenink et al.
(2004)

Own invention Scores: 1–2 Oversimplified, intolerant opinion, only emotional reaction.
3–4 Limited/restricted, narrow-viewed, one-sided reaction, mostly just 1

perspective, no weighing up or balancing, no attention paid to context. 5

More than 1 perspective, but neither balancing nor attention paid to
context. 6–7 More perspectives, general as well as personal, some
balancing between perspectives. 8–9 Differentiated balancing, room for
dilemmas and or doubt, explicit attention paid to the patient. 10 A
subtle/balanced approach, considering all relevant perspectives,
weighing up of different interests, a keen eye for dilemmas and
uncertainties, paying attention to the patient’s viewpoint and an
evaluation of one’s own position and latitude

O’Connell
and Dyment
(2004)

Bloom (1956) Three categories: a) Type, b) Bloom’s Taxonomy of Cognitive Thinking, c)
creative entries. Type contained amongst others: Factual information,
personal reflection, transfer. Bloom’s Taxonomy: Knowledge,
comprehension, application, analysis, synthesis, evaluation

Plack et al.
(2005)

Boud et al. (1985,
chapter 1), Mezirow
(1990a), Schön
(1987)

Components of reflection: Reflection in action, reflection on action,
reflection for action, content reflection, process reflection, premise
reflection, returns to experience, attends to feelings, and evaluation of
experience. Levels: no evidence of reflection, evidence of reflection,
evidence of critical reflection

Ballard (2006) Mezirow (1991) Levels: Technical rationality, practical action, critical reflection

Continued on next page
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Table 1 Continued from previous page

Author Based on Model

Mansvelder-
Longayroux
(2006);
Mansvelder-
Longayroux
et al. (2007)

Vermunt and
Verloop (1999)

Activities: Recollection, evaluation, analysis, critical processing,
diagnosis, reflection

Abou Baker
El-Dib (2007)

Various
inspirations and
Kember et al. (1999)

Stages: Statement of problem, plan of action, acting, reviewing. Levels:
Low, low medium, high medium, high

Chirema
(2007)

Elements: Boud
et al. (1985, chapter
1). Levels: Mezirow
(1990a), 1991

Elements: Attending to feelings, association, integration, validation,
appropriation, outcome of reflection. Levels: non-reflector, reflector,
critical reflector

Plack et al.
(2007)

Bloom (1956) Levels: 1. Knowledge and comprehension (data gathering); 2. Analysis
(data analysis); 3. Synthesis and Evaluation (conclusion drawing)

Kember et al.
(2008)

Mezirow (1991) Categories: Non-reflection, understanding, reflection, critical reflection

Wallman et al.
(2008)

Kember et al. (1999)
and Mezirow (1991)

Non-reflective: 1. Habitual action; 2. Thoughful action; 3. Introspection.
Reflective: 4. Content reflection, 5. Process reflection; 6. Premise reflection

Chamoso and
Cáceres (2009)

Various
inspirations

Categories: Control, generality, description, argumentation, contribution

Findlay et al.
(2010)

Based on Boud
et al. (1985, chapter
1) and Wong et al.
(1995) (see Findlay
et al. (2009))

Deep analytic levels of the Newcastle Reflective Analysis Tool (NRAT):
No evidence of reflection; Level 1: Attending to feelings; Level 2:
Association; Level 3: Integration; Level 4: Validation; Level 5:
Appropriation; Level 6: Outcome of reflection. Broad classification NRAT:
No evidence of reflection -> non reflector; levels 1–3 -> reflector; levels
4–6: critical reflector

Lai and
Calandra
(2010)

Ward and McCotter
(2004); Levels
mirror Van Manen
(1977) stages

Rubric: Levels: Routine, technical, dialogic inquiry, transformative.
Dimension 2: Focus, inquiry, change

Bell et al.
(2011)

Kember et al. (1999) Categories: Non-reflective: Introspection, thoughtful action. Reflective:
Content reflection, process reflection - internal, process reflection - others,
process reflection - others/internal, content reflection/process reflection -
internal, content reflection/process reflection - others, premise reflection

Clarkeburn
and Kettula
(2011)

Kember (2008) Levels: Habitual action (non-reflection), understanding, transitional,
reflection, critical reflection

Findlay et al.
(2011)

Based on Boud
et al. (1985, chapter
1) and Wong et al.
(1995) (see Findlay
et al. (2009))

See Findlay et al. (2010)

Fischer et al.
(2011)

Levels: Mezirow
(1991)

Non-reflective, reflection on experience low level, reflection on
experience high level, reflection on awareness

Birney (2012) Results of a Delphi
study

Indicators: 1. Clear description of context, 2. Issues are identified, 3.
Analysis is evident, 4. Creative synthesis is evident, 5. Implications of
actions are considered, 6. Multiple perspectives are considered, 7. Links
are made to broader social structures, 8. Learning is evident, 9. Insightful
understanding is evident, 10. Changes in beliefs or understanding are
evident, 11. Revisions to future practice are discussed, 12. Self-awareness
is evident. Levels: Descriptive (indicator 1); low-level reflection (indicator
2–4); medium-level reflection (indicator 5–7); high-level reflection
(indicator 8–12)

Ip et al. (2012) Wong et al. (1995) Levels: Non-reflector, reflector, critical reflector

Wald et al.
(2012)

Schön (1983), Boud
et al. (1985, chapter
1), Moon (1999),
and Mezirow (1991)

Writing spectrum (descriptive to critique of beliefs), presence of the
author, description of conflict or disorienting dilemma, considering
emotions, analysis and meaning-making, attendance to assignment
(optionally). Levels: habitual action, thoughtful action, reflection, and
critical reflection. Plus transformative and confirmatory learning as
outcome at the level of critical reflection

Mena-Marcos
et al. (2013)

Levels based on
Hatton and Smith
(1995). Type of
reflection based on
Tillema (2004)

Levels: Simple or habitual reflection, descriptive reflection, dialogical
reflection, critical reflection. Types: Appraisal (either positive or negative),
rules (deliberate if–then statements or conceptual guidelines), artefacts
(as a potential solution to a problem)

Continued on next page
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Table 1 Continued from previous page

Author Based on Model

Poom-Valickis
and Mathews
(2013)

Hatton and Smith
(1995)

Types: 1. Unreflective, descriptive writing. 2. Descriptive reflection. 3.
Dialogic reflection. 4. Critical reflection

Poldner et al.
(2014)

Leijen et al. (2012) Categories: Description, evaluation, justification, dialogue, transfer. Each
category had several subcategories

Prilla and
Renner (2014)

Phases: Own
coding schema.
Levels: Based on
Fleck and
Fitzpatrick (2010)
and de Groot et al.
(2014)

Phases/codes: 1. Description of an experience. 2. Mentioning and
describing emotions. 3. Interpreting or explaining behavior in the
experience. 4. Linking an experience explicitly to other experiences. 5.
Linking an experience to knowledge. 6a. Responding to the explanation
of an experience by providing alternative perspectives. 6b. Responding to
the explanation of an experience by challenging or supporting
assumptions. 7a. Contributing to work on a solution by providing reason
for the issue. 7b. Contributing to work on a solution by providing
solution proposals. 8a. Showing insights or learning from reflection by
describing better individual understanding. 8b. Showing insights or
learning from reflection by generalising from reflection. 9. Describing or
implementing change. Stages: 1. Provision and description of experience
(codes 1, 2). 2. Reflection on experience (codes 3–7). Learning or change
(codes 8, 9)

Table 1: Models of reflection

From the model column in Table 1 it can be seen that authors characterise the

constituents of their model with words like level, element, dimension, type, score,

categories, components, activities, stages, indicators, spectrum, phase, or code.

Although those are differences, these models, by and large, exhibit two main qualities,

which can be described as the quality of depth and breadth (Moon, 2004, p. 95 ff.).

Many models involve the quality of depth. These are models that conceptualise the

quality of reflection as a hierarchy with levels that range from non-reflective up to

highly reflective. An example is the model of Ip et al. (2012), which ranges from

non-reflector to critical reflector. Another example is the model of Kember et al.

(1999), which spans from the non-reflective level of habitual action to the highest form

of reflection, called premise reflection. And a third example is the model of Lai and

Calandra (2010), which ranges from routine (non-reflective) up to transformative

(highly reflective). Other examples are the model of Sparks-Langer et al. (1990) ,

McCollum (1997), or Ballard (2006). Level models often refer to the work of Manen

(1977, p 226 f.), who spoke of levels of reflectivity, and Mezirow (1991, chapter 4), who

contrasted non-reflective action with reflective action. Mezirow distinguished three

types of non-reflective action: habitual action, thoughtful action, and introspection;
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and three types of reflective action: reflection about content, about process, and about

the premises (see Section 2.1 ’Definitions of reflection’). Mezirow (1991, chapter 4) saw

premise reflection as the highest form of reflection, as it can lead to a change of

perspective.

Most models contain the breadth (descriptive) dimension of reflection. This

dimension of reflection describes types of reflection emphasising the individual

usefulness of each category as a distinct characteristic of reflective writing, without

implying a hierarchical structure as does the level dimension. Wong et al. (1995), for

example, describes reflection using categories such as ’attending to feelings’,

’validation,’ and ’outcome of reflection’. Poldner et al. (2014) used the categories

’description’, ’evaluation’, justification’, ’dialogue’, and ’transfer’. Examples of this

type can be found in Wong et al. (1995), Wald et al. (2012), Birney (2012),

Mansvelder-Longayroux (2006) and Mansvelder-Longayroux et al. (2007).

In the context of the content analysis of reflective writings, these descriptive

categories are the coding categories usually applied to parts of the text, while the

depth dimension is usually used to categorise the whole text.

These two qualities are not the only two qualities for describing models of reflection.

They occur, however, very frequently in work analysing written reflection, as shown

in Table 1. To give an example of another quality, I resort to more theoretical work.

There, one can find models of reflection that describe the iterative, cyclic nature of

reflection (see also Mann et al. (2007, p. 598)). These are models which emphasise the

process of reflection by describing the prototypical flow of reflection. Examples are

the models of Scanlan and Chernomas (1997), Schön (1987, p. 27ff.), Moon (2004, p.

214 f.), and Korthagen and Vasalos (2005, p. 57 f.). This iterative or process nature of

reflection is, however, not the focus of the examined work analysing written reflection

as summarised in Table 1, nor is it the focus of this thesis, and thus will not be further

elaborated on.
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Many of the models listed in Table 1, which contain both the breadth and depth

qualities of reflection, describe a mapping mechanism between their categories and

levels of reflection. Often, this mechanism maps one or several categories of reflection

to a level of reflection. Once the categories of reflection are determined, the chosen

mapping approach assigns a level to the text. For example, Birney (2012, p. 214)

assigned texts to the high-level of reflection if the text showed evidence of the

categories ’learning’, ’insightful understanding’, ’changes in beliefs’, ’revision of

future practice’, and ’self-awareness’. These mapping mechanisms are outlined in

detail in Section 3.1.3 ’Relationship between the descriptive and level reflection

quality’. It is notable that it is necessary to first determine the descriptive (breadth)

categories of reflection in order to then map them to levels. The determination of the

level is solely based on the descriptive categories. This insight led this research to

focus especially at the descriptive categories of reflection. A close look at this breadth

dimension of reflection follows in Section 2.3 ’Model for reflection detection’.

Next, three models have been chosen to illustrate the character of models of reflective

writing. These three models have been frequently mentioned in other work (see column

’based on’). They will serve to highlight important features of reflective models. They

are the models of Wong et al. (1995), Hatton and Smith (1995), and Kember et al. (1999)

(see Table 1). The models cited in Table 1 will be discussed again in Section 2.3 ’Model

for reflection detection’.

The model of Wong et al. (1995, p. 57) consisted of six elements of reflection, which

were derived from the work of Boud et al. (1985). They are the seven elements

’attending to feelings’, ’association’, ’integration’, ’validation’, ’appropriation’, and

’outcome of reflection’. For each element, they described a set of coding criteria. For

example, a text segment was labelled as ’integration’ if it showed evidence that prior

knowledge was linked to new knowledge, but also if the text described that the writer

had a new insight. Text was labelled as ’attending to feelings’ if there was evidence
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that the writer described either the intention to overcome negative feelings or to make

use of positive feelings. For each element Wong et al. (1995, p. 52 ff.) provided text

snippets with an explanation for the coding decision. These categories were then

mapped to three levels: Non-reflector, reflector, and critical reflector. A non-reflector

did not show any evidence of any of the elements. Characteristic for a reflector were

the elements ’attending to feelings’, ’association’, and/or ’integration’. A critical

reflector had to show evidence of some or all of the elements of a reflector and in

addition a change of perspective. The elements of reflection can be found again in the

work of Findlay et al. (2010) together with a similar mapping strategy from the

elements to the three levels of reflection. They call the elements of reflection ’deep

analytic NRAT’ and the levels ’broad classification NRAT’. Ip et al. (2012) focussed

only on the three levels of reflection found in the model of Wong et al. (1995).

Hatton and Smith (1995, p. 48) distilled four types of writing, drawing on the theory

of Schön (1983). A writing can be either descriptive/technical, descriptive reflective,

dialogic reflective, or critical reflective. They argued that their data showed evidence

that these types are indeed different types of reflection, each with its own features, use,

and function. The first type is often seen as instrumental, as a starting point which

can serve to engage with one of the types of reflection (Hatton and Smith, 1995, p. 46).

The dialogic type is more ’exploratory’, while the critical type is ’demanding critical’

(Hatton and Smith, 1995, p. 46). In their study, they found that most of the coded units

were descriptive, followed by dialogic reflective, and only a very few were critical

reflective (Hatton and Smith, 1995, p. 41). They saw a potential reason for this in that

the descriptive reflective type might be easier to master than either the dialogic or the

reflective type of reflection (Hatton and Smith, 1995, p. 46).

The coding categories of Kember et al. (1999) are described as levels of reflection

and not as types of reflection as in the work of Hatton and Smith (1995). The

categories are ordered by their degree of reflectivity. Some of the categories are on the
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same level, indicating an equal degree of reflectivity. One example is ’content

reflection’ and ’process reflection’ (Kember et al., 1999, p 25), which are both on the

same level. In order to differentiate the highest level of reflection, which they saw in

’premise reflection,’ they introduced a second, lower level of reflection with the

categories ’content’, ’process,’ and ’content and process’ reflection. Other researchers

have proposed other ways of arranging these levels, for example Wallman et al. (2008,

p. 4) linearised the model of Kember et al. (1999) and put each category on its own

separate level. At the highest level is ’premise reflection,’ and at the lowest level is

’habitual action’. Later, Kember et al. (2008) remodelled the coding schema, giving up

the idea of having categories on the same level, and instead of seven categories, the

new model consists now of four categories: non-reflective, understanding, reflection,

and critical reflection. The categories are again ordered by their level of reflection:

from non-reflection to critical reflection.

As already mentioned, the breadth quality of reflection is foundational for the

analysis of reflective texts. The next section will especially focus on this quality of

reflection. Although the constituents of the models listed in Table 1 all seem very

different, they do share similarities. The next section will distil these common

categories. These categories will be later used for a coding schema with which a large

corpus of writings will be annotated.

2.3 model for reflection detection

Section 2.2 ’Models to analyse written reflection’ provided an overview with regard to

the models used in the research to analyse written reflection using principles of the

content analysis. The models outlined in Table 1 hint at the variety of possibilities to

conceptualise reflection. The most general observation is that reflection is seen as a

construct that comprises several categories. Each category represents a facet of
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reflection. The categories are used as the coding schema for the content analysis of the

text in order to analyse writing with regard to reflection.

Although these models vary, they share some commonalities. The following section

describes the process used to evidence a set of categories that shares frequently found

features of the outlined models of reflective writing. These categories are derived by

analysing the breadth (descriptive) quality of the models. In the evaluation, each

category serves as a test case for the automated detection of reflection.

The final set of categories are labelled with: ’Description of an experience’, ’feelings’,

’personal’, ’critical stance’, ’perspective’, and ’outcome’. They form the categories of the

theoretical model of reflection detection that guides this research process, and they are

used as coding schema for the datasets to train and test the machine learning models.

An earlier version of the categories was presented in Ullmann et al. (2012).

First, an outline of these six common categories of reflection is given (the full

description of these categories can be found in Section 2.3.2 ’Common reflection

categories’). Subsequently, I show that these six categories can be found in many of

the model constituents listed in Table 1. The derived common categories of reflection

are:

Description of an experience: This category captures the subject matter of the

reflective writing. It contains a description of what or how something occurred,

recaptures important parts of the experience, provides the context, and/or the reason

for the writing. For example, Schön (1987, p. 26) emphasised thinking about past

experiences with the concept of reflection-on-action. Boud et al. (1985, chapter 1) saw

reflection as thinking about past experiences.

Feelings: Reflection is not only seen as a cognitive process, but feelings are also

often recognised as an important part of reflection. Boud et al. (1985, chapter 1) wrote

about making use of helpful feelings and removing or containing obstructive ones.
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Dewey (1933, p. 9) noted that a trigger for reflection can be the sensation of perplexity,

hesitation, doubt, or surprise.

Personal: Reflection is often from a personal nature. This is about one’s assumptions,

beliefs, the development of a personal perspective, and the knowledge of self. Boyd and

Fales (1983, p. 101) defined reflection as ’(...) the process of creating and clarifying the

meaning of experience (...) in terms of self (self in relation to self and self in relation to

world)’.

Critical stance: Expressing an alert, critical mindset is an important part of

reflective writing. A critical stance involves being aware of problems and being able to

identify or diagnose such problems. This is about questioning opinions and

assumptions, analysing and evaluating problems, judging situations, testing validity,

drawing conclusions, and making decisions. Mezirow (1998, p. 186) wrote in the

context of reflecting about assumptions that ’critical self-reflection of an assumption

(...) involves critique of a premise upon which the learner has defined a problem’.

Perspective: The writer considers other perspectives. For example, the perspective of

someone else, a theory, or the social, historical, ethical, moral, or political context. Moon

(2004, p. 214) noted in her generic framework for reflective writing the importance of

considering external ideas and multiple perspectives.

Outcome: The reflective writing contains a description of the lessons learned, better

understanding of the situation or context, new insights, a change of perspective or

behaviour, and awareness about one’s way of thinking. It also contains statements of

intention and planning for the future. Boud et al. (1985, p. 20) saw as the outcomes of

reflection ’(...) a personal synthesis, integration and appropriation of knowledge, the

validation of personal knowledge, a new affective state, or the decision to engage in

some further activity’. Mezirow (1991, chapter 4) wrote with regard to the outcome

of the reflection that ’reflective learning can be either confirmative or transformative’.

This means that either meaning schema can be confirmed, or a new meaning schema is
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developed. Killion and Todnem (1991) emphasised reflection-for-action that comprises

planning for future action based on the analysis of previous action.

Section 2.3.1 ’Evidencing common categories of reflection’ provides evidence for

these six categories based on the literature of the analysis of reflective writings.

Section 2.3.2 ’Common reflection categories’ presents a synopsis for each of the

common categories of reflection, and Section 2.3.3 ’Model critique’ offers a critique of

the model categories for reflection detection.

2.3.1 Evidencing common categories of reflection

This section provides supporting evidence for the claim that the categories outlined

above are indeed frequently found in the investigated models of reflective writing.

The main source of evidence is the description of the models by their authors. They

are the models outlined in Table 1 of Section 2.2 ’Models to analyse written reflection’.

Each of the models has been investigated regarding the six categories of reflection.

The following paragraphs combine the supporting evidence for each of the

common reflection categories (description of an experience, feelings, personal, critical

stance, perspective, and outcome) found in the models. Each category contains a

description derived from the relevant parts of those models. In case the terminology

used in one of the models does not directly refer to the category, the link between the

model description and the category is outlined. In most cases, the relevant part of the

model is directly mappable to the model. In some cases, this link cannot be

established explicitly from the model, but it can be from the context described in its

accompanying research. For such cases, the explaining text marks them as implicit.

Cases where a model does not provide any evidence that justifies its categorisation

are also marked clearly. Table 2 summarises this analysis. For each paper, the table

indicates whether the model could be mapped to the common reflection categories.
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Some of the models listed in Table 1 are very similar. To prevent that a model gets

included in the synthesis several times, the following process was applied. If there are

two models which are similar, then the model that pre-dates the other is maintained,

whereas the model published later is not included in this synthesis.

The models that are similar, and thus not included in the following analysis, are the

models of Hawkes and Romiszowski (2001) and Hawkes (2001, 2006), which are very

similar to the model of Sparks-Langer et al. (1990). The models of Chirema (2007, p.

201) and Findlay et al. (2010, p. 86) (as well as the later paper of Findlay et al. (2011,

p. 5)), which are very similar to the model used in Wong et al. (1995). The models of

Bell et al. (2011, p. 801 f.) and Wallman et al. (2008, p. 9 f.) are very similar. Both are

based on the model described in Kember et al. (1999). The model of Clarkeburn and

Kettula (2011, p. 443) is based on the model of Kember et al. (2008, p. 379). The model

of Hatton and Smith (1995) was used in the work of Pee et al. (2002, p. 578), Mena-

Marcos et al. (2013, p. 151, 155), and Poom-Valickis and Mathews (2013). Mena-Marcos

et al. (2013, p. 151, 155) used two models: Hatton and Smith (1995) and Tillema (2004).

The first model is covered by the analysis of the model described by Pee et al. (2002,

p. 578). The description of the latter model is based on the work of Mena-Marcos et al.

(2013, p. 151,155).

Further, if a model in Table 1 does not show evidence of one of the categories because

it only describes the reflection levels, or does not outline the coding categories, it is not

listed. This concerns the following models: Sumsion and Fleet (1996, p. 125 f.), which

referred in their work to the models of Surbeck et al. (1991) and Boud (1994). However,

they do not provide information on their final coding schema. They only stated that

they used the levels highly reflective, moderately reflective, and not reflective, but did

not outline their model. Ip et al. (2012) referred to the level model of Wong et al.

(1995), but they did not provide further information on the criteria that led to the

categorisation of non-reflector, reflector, and critical reflector.
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Description of an experience: The levels of the model of Sparks-Langer et al. (1990,

p. 27) refer to the description of events and the description of explanations of the

events. Both is related to ’description of an experience’. Wong et al. (1995, p. 57)

referred in their marking schema to past experiences. They phrased it as relating to

the old (see element association and integration). Further, they addressed the

importance of ’prior knowledge or beliefs’ (see elements ’integration’ and

’validation’). The description of past experiences and prior knowledge relates to this

category. McCollum (1997, p. 125, 127 f.) based her work on Tsangaridou and

O’Sullivan (1994). This model explicitly mentioned the importance of the event

description, and generally of what occurred. Content and process reflection as used in

the model of Kember et al. (1999, p. 23) are both concerned with the description of the

’subject matter of the reflection’. The model of Fund et al. (2002, p. 492) contained the

category called description. With this category, they captured the issues of a lesson,

the way in which it was taught, and how the students described themselves. In the

model of Hamann (2002, p. 5), no explicit references to a coding category related to

description of an experience could be found. Pee et al. (2002, p. 578) based their

model on Hatton and Smith (1995). Their model foresaw the category descriptive

reflective, which relates to description of an experience as it contains the description

of events and the provision of a rational for events or action. Williams et al. (2002, p.

15) highlighted the importance of the description of ’the learning event, issue, or

situation’. The model of Boenink et al. (2004, p. 372) did not emphasise description of

an experience, and thus, was not coded. The model of O’Connell and Dyment (2004)

contained a schema based on the taxonomy of Bloom. A direct reference to

description of an experience was not found. The model of Plack et al. (2005, p. 206 f.)

had the element ’return to experience’, which was used to code the experience

descriptions. The first level of the model of Ballard (2006, p. 20 f., 29) - technical

rationality - was used to hold the concerns of teachers on student behaviour.
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Mansvelder-Longayroux (2006, p. 28, 58, 79 f.) and Mansvelder-Longayroux et al.

(2007, p. 53 f.) described the thinking activity of recollection, which comprised the

recall of past memories. The model of Plack et al. (2007, p. 287) dedicated a level to

evidence ’data gathering’ in the writings. Their explanation of this level contained

direct evidence for this category, given that they wrote ’students describe the

experience for the purpose of understanding’ (Plack et al., 2007, p. 287). The coding

reflection category for the model of Kember et al. (2008, p. 372 ff.) described the

importance of relating concepts to personal experiences, which means that the

writing should show evidence of an experience description, a concept, and the

relationship between both. Wallman et al. (2008, p. 9) saw the ’description of the

course of events’ as part of their category ’habitual action’. They highlighted the

importance of experience for reflection, given that they wrote that reflection is ’(...) a

situation identified in relation to actual experience’ (Wallman et al., 2008, p. 9). The

first category of the model of Chamoso and Cáceres (2009, p. 202, 205) is called

’description’. This entailed student descriptions with regard to their learning. The

’focus’ dimension of the model of Lai and Calandra (2010, p. 434) gathered the

descriptions of concerns regarding practice. The focus ranged from routine to

transformative, capturing facets of the reflection ’focus’. The model of Fischer et al.

(2011, p. 170) described that the non-reflective level is ’reporting only’, whereas the

level of ’reflection on experience’ had to contain descriptions on the writer becoming

aware of specific ways of seeing situations, or personal behaviour, feelings, and values.

The first indicator of the model of Birney (2012, Appendix D) referred to the

importance of describing the context to set the stage for writing. The category

’writing spectrum’ on the level of introspection of the model of Wald et al. (2012, p.

48) referred to the elaborated description of the writer’s impressions. The model used

by Mena-Marcos et al. (2013, p. 151, (1a)) did not contain a reference to this category.

The first category from Poldner et al. (2014, p. 358) is on the description of ’what,
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when, and how regarding action’, and of the context. The coding schema of Prilla and

Renner (2014, p. 186) contained a category called ’Description of an experience and

mentioning of an issue’.

Feelings: Sparks-Langer et al. (1990, p. 27) did not refer in their model to feelings,

thus the cell in Table 2 is marked as absent. Wong et al. (1995, p. 57) explicitly referred

to feelings. They emphasised the importance of making use of positive emotions and

discarding negative feelings (code 1). The model used by McCollum (1997, p. 125) did

not explicitly refer to feelings. However, (McCollum, 1997, p. 127) described reflection

as containing ’thoughts and feelings’ (McCollum, 1997, p. 127). In her analysis,

McCollum captured the pupils’ feelings (McCollum, 1997, p. 79). Kember et al. (1999,

p. 21) wrote that ’introspection’ concerns the ’feelings or thoughts about ourselves’. In

addition ’content’, ’process’, and ’premise reflection’ do recognise feelings as part of

reflection (Kember et al., 1999, p. 23). Feelings were addressed by the model of Fund

et al. (2002, p. 492). It captured the concerns that rely on feelings and intuition. The

model of Hamann (2002, p. 5) mentioned attention to emotional needs. Pee et al.

(2002, p. 578) did not explicitly mention feelings in their model. Feelings were

addressed in three of the five criteria developed by Williams et al. (2002, p. 15).

Boenink et al. (2004, p. 372) recognised doubt and uncertainty as important feelings

for reflection. Feelings were not part of the model of O’Connell and Dyment (2004, p.

163). ’Attending to feelings’ was one of the categories of the model of Plack et al.

(2005, p. 206 f.). Ballard (2006, p. 20 f., 29) noted the feeling of being concerned about

something. The model of Mansvelder-Longayroux (2006) and

Mansvelder-Longayroux et al. (2007) did not contain a reference to feelings. Plack

et al. (2007, p. 287) mentioned feelings on the levels of ’knowledge and

comprehension’ and ’analysis’. The model of Kember et al. (2008, p. 372 ff.) did not

mention feelings. Several references to feelings can be found in the model of Wallman

et al. (2008, p. 9). The level of introspection emphasised the relationship between
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personal feelings and tasks. Content reflection is a description of what was felt, and

process reflection is a description of how the function of feeling was performed. The

category of feelings did not play a role in the model of Chamoso and Cáceres (2009, p.

202, 205). Lai and Calandra (2010, p. 434) referred to the feeling of concern,

frustration, and excitement. Fischer et al. (2011, p. 170) addressed feelings on the low

level of ’reflection on experience’. (Birney, 2012, p. 188, Appendix D) coded feelings as

part of the indicator ’self-awareness’. The model of Wald et al. (2012, p. 48) dedicated

an entire category to feelings, which they called ’attending to emotions’. Poldner et al.

(2014, p. 358) did not refer to feelings in their model. The model of Prilla and Renner

(2014, p. 186) directly addressed ’emotions’.

Personal: Sparks-Langer et al. (1990, p. 27) mentioned ’personal preferences’ (level

4). Wong et al. (1995, p. 57) stressed in the description of the element ’appropriation’

the role of ’making knowledge one’s own’, the ’sense of identity’, and that ’New

knowledge, feelings or attitudes becoming a significant force in own life’. The model

used by McCollum (1997, p. 125) did not explicitly refer to something personal, but

the teachers were asked to write their account from a personal perspective

(McCollum, 1997, p. 127). The model of Kember et al. (1999, p. 23) referred to the

categories ’content’, ’process’, and ’premise reflection’, which concern one’s

perceptions, feelings, and actions. Their description of ’premise reflection’ aimed at

becoming aware of one’s assumptions, values, or beliefs. These thinking frames are

used to make sense of situations. They are specific perspectives that guide actions.

’Premise reflection’ is the process of making such unconsciously held beliefs accessible

to critical review. The personal perspective is important in the model of Fund et al.

(2002, p. 492), which dedicated an entire dimension to it. According to the model of

Hamann (2002, p. 5), a sign of a common-sense thinker is self-orientation, in addition

to reliance on personal experience. An alert thinker roots his or her line of reasoning

in the knowledge of self. Pee et al. (2002, p. 578) referred to a discourse with one’s self
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in the type called ’dialogic reflection’. The criteria mentioned in the model of

Williams et al. (2002, p. 15) were centred on the personal experiences of the writer,

their prior knowledge, feelings, or attitudes. Boenink et al. (2004, p. 372) referred to

the ’personal perspective’. Personal reflections were frequently detected as a distinct

type in the model of O’Connell and Dyment (2004, p. 163). Plack et al. (2005, p. 206 f.)

explicitly mentioned the personal dimension of reflection. They looked with the

category ’return to experience’ for evidence of students describing personal relevant

information. The writings assessed by Ballard (2006, p. 20 f., 29) were about the

personal experiences of participants. However, the model did not mention explicitly a

personal dimension. The model of Mansvelder-Longayroux (2006, p. 28, 58, 79 f.) and

Mansvelder-Longayroux et al. (2007, p. 53 f.) implicitly addressed this category, given

that many of the model subcategories refer explicitly to the writer perspective.

Examples are the subcategories ’description of what you did or plan to do (and why)’,

’description of how you approached something (...)’, ’examining what you have

learned’, ’evaluating your knowledge (...)’, etc. Plack et al. (2007, p. 287) emphasised

that accounts should reveal the writer perspective. They were searching for evidence

of explanations for ’(...) what happened from his/her perspective’ (Plack et al., 2007,

p. 287). The model of Kember et al. (2008, p. 372 ff.) acknowledged the importance of

personal experience for reflection. The level of introspection in the model of Wallman

et al. (2008, p. 9) clearly referred to thoughts and feelings with regard to oneself. The

examples that illustrate the categories of the model of Chamoso and Cáceres (2009, p.

202, 205) suggested the importance of personal involvement. The category

’argumentation’ was illustrated with the following examples: ’To me it seems very

important that (...)’, ’In my opinion these classes are good because (...)’, or ’I think it

would be interesting and fun as well to learn different games in which geometry is

present (...)’ (Chamoso and Cáceres, 2009, 205). These examples indicate that personal

statements were captured. Personal involvement is also important in the model of Lai
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and Calandra (2010, p. 434). The model of Fischer et al. (2011, p. 170) had many

references to the personal character of reflection. It referred to the ’specific perception,

meaning or behaviour of one’s own’ (Fischer et al., 2011, p. 170), and the awareness of

one’s feelings, value judgements, and underlying beliefs. Birney (2012, Appendix D)

identified self-awareness as one of the highest ranked reflection identifiers. Wald et al.

(2012, p. 48) saw indicators of ’presence’ as important for reflective writings. The

highest level is reached if the text shows evidence that the writer is fully present. The

examples provided by Mena-Marcos et al. (2013, p. 151, (1a)) to illustrate the model

categories are written from a first-person perspective, which suggest that personal

statements are important. Similarly, the examples for the categories evaluation,

justification, dialogue, and transfer given by Poldner et al. (2014, p. 358) are indicative

of the importance of personal messages. Several of the examples that describe the

model categories of Prilla and Renner (2014, p. 186) contained self-references that

indicate the importance of personal utterances in writings.

Critical stance: Through levels 4 to 7, Sparks-Langer et al. (1990, p. 27) emphasised

the importance of explanation and providing a rationale. This indicates ’critical

stance’. Wong et al. (1995, p. 57) used concepts such as re-assessment (element

association), finding relationships (integration), and testing consistency (validation).

This is indicative of having a ’critical stance’. The model used by McCollum (1997, p.

125) referred to evidence for justification and critique. Premise reflection is associated

with the ’assessment of efficacy’, and premise reflection requires a ’critical review of

presuppositions’ (Kember et al., 1999, p. 23). In the model of Fund et al. (2002, p. 492),

critical stance is related to what is called the ’critical bridge’. Indicators of critical

stance in the model of Hamann (2002, p. 5) were ’conclusions to be tentative’,

’Means-end thinking; strategic thinking’, and ’Reasoning grounded in knowledge of

self’. The model of Pee et al. (2002, p. 578) referred to reasoning in three of the types

of reflection. Analysis and verification are two criteria of the model of Williams et al.
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(2002, p. 15). For Boenink et al. (2004, p. 372), evidence of a balanced, weighted

approach that considers all perspectives is important, as well as the evaluation of

one’s position. The model for cognitive thinking used by O’Connell and Dyment

(2004, p. 164) contained the elements analysis, synthesis, and evaluation, which can be

linked to critical stance. The notion of critical stance is stated in several coding

categories of the model of Plack et al. (2005, p. 206 f.). They acknowledge it in the

description of strategies, critiquing, re-evaluation, and validation. Ballard (2006, p. 20

f., 29) recognised the importance of clarifying assumptions and addressing

consequences and personal biases. Four of the six categories of the model of

Mansvelder-Longayroux (2006) and Mansvelder-Longayroux et al. (2007) directly

addressed critical stance. They are the categories of ’evaluation’, ’analysis’, ’critical

processing’, and ’diagnosis’. The category ’diagnosis’, for example, contained

subcategories that explore different facets of having difficulties or finding reasons for

not achieving something. Showing evidence of critical stance is visible on all three

levels of the model of Plack et al. (2007, p. 287). On the level of ’knowledge and

comprehension’, the critical stance is described as being aware of gaps in knowledge.

The two other levels directly address analytical and evaluative stance. The model of

Kember et al. (2008, p. 372 ff.) contained the category ’critical reflection’. Whereas the

categories of ’habitual action’ and ’understanding’ are mostly uncritical, the category

of ’critical reflection’ asks for the evidence of a ’critical review of presuppositions’

(Kember et al., 2008, p. 372 ff.). Evidence of critical stance can be found in the model

of Wallman et al. (2008, p. 9). They stated that reflection is concerned with the analysis

of problems. Further, someone who shows evidence of content reflection questions

behaviour. Premise reflection contains the ’analysis of the whole situation/problem’

(Wallman et al., 2008, p. 10). The ’argumentation’ category of the model of Chamoso

and Cáceres (2009, p. 202, 205) is about argumentation, justification, and conclusion

drawing with regard to one’s learning. The model of Lai and Calandra (2010, p. 434)
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emphasised the importance of inquiry, which is that the text shows evidence of

writers critically questioning their actions, situational context, and beliefs. Questions

may arise from the awareness that something is not right, which may arise from the

feeling of frustration, or unexpected outcomes of a situation. The model of Fischer

et al. (2011, p. 170) highlighted the importance of assessment, judgement, questioning,

and awareness of underlying assumptions for reflection. Assessment is related to

efficacy assessment. Also important is awareness of the influence of values on

judgements, and that judgements might be uninformed. Being able to question the

adequacy of one’s understanding and underlying beliefs and awareness of

assumptions made while judging a situation are seen as ’reflection on awareness’. The

model of Birney (2012, Appendix D) contained several indicators related to critical

stance. These are the indicators of ’analysis’, ’synthesis’, correct identification of

issues, and the discussion of ’implications of actions’. Issue identification is important

because, first, one has to become aware that there is an issue and that it is important,

before it can be analysed. Acknowledging that there are issues requires critical stance.

The model of Wald et al. (2012, p. 48) contained an entire category for the description

of a conflict, dilemma, challenge, or issue of concern. The category foresaw four levels

that range from uncritical writings (the writer did not describe a problem or was not

aware of it) to a full account of the problem considering several perspectives, and the

exploration of alternative interpretations. Furthermore, the model contained a

category dedicated to ’analysis’. The model of (Mena-Marcos et al., 2013, p. 151, (1a))

referred to evidencing rule usage with premise and conclusion structure – an

analytical element. In addition, they mentioned positive or negative ’appraisal’ – an

evaluative element. The model of Poldner et al. (2014, p. 358) reviewed the category of

critical stance in two ways. Their model contained the categories ’evaluation’ and

’justification’. References to ’critical stance’ can be found in the model of Prilla and

Renner (2014, p. 186) in the categories of ’mentioning an issue’, which can be seen as
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an awareness of problems; in the category ’interpreting or explaining behavior’,

especially because they include evidences of giving a rationale for behaviour; in the

category ’responding to explanations of an experience by challenging or supporting

assumptions’; and in the category ’responding to the explanation of an experience by

providing reasons for the issue’.

Perspective: This category regards the consideration or integration of alternative

perspectives in one’s thinking. Several models mention perspective transformation, a

fundamental change of the belief system. This aspect of reflection is usually discussed

in the context of the aims of reflection, and it is seen as an outcome of reflection.

Therefore, it is discussed in the category outcome. The models often mention the

importance of the personal perspective (one’s beliefs and assumptions). A personal

perspective is seen as part of the category ’personal’.

Three types of perspectives are mentioned in the model of Sparks-Langer et al.

(1990, p. 27) – considering a theory (level 5), considering context factors (level 6), and

explaining something with respect to the ethical, moral, or political perspective (level

7). The explanations of the model of Wong et al. (1995, p. 57) were not sufficiently

conclusive to sort this model into this category, and thus the category perspective is

marked as absent in Table 2. The focus dimension of the model used by McCollum

(1997, p. 125) considered the perspective of the situational context and the

(sensitizing) perspectives of the ’(...) social, moral, political, or ethical issues (...)’

(McCollum, 1997, p. 128). The model of Kember et al. (1999, p. 23) does not address

this category explicitly. They mentioned ’premise reflection’ as the highest form of

reflection as it might lead to perspective transformation. Premise reflection is the

awareness about one’s beliefs or assumptions. Perspective transformation is seen as

part of the ’outcome’ category and the awareness of one’s assumptions as part of the

category ’personal’. Fund et al. (2002, p. 491) wrote with regard to the category

’critical bridging’ that it contained a ’discussion of possible alternative opinions’,
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which, in essence, is the act of considering another perspective. In addition, they

emphasised the consideration of the context of a lesson in order to analyse the

behaviour of a person (Fund et al., 2002, p. 492). Here, the perspective to be

considered is the context. Several perspectives are mentioned in the model of

Hamann (2002, p. 5). The model categories for ’alert thinker’ mentioned, for example,

attention to social, ethical, or political perspectives, awareness of its own position as a

role model, and the social and political context of a classroom. The ’critical’ type of

reflection in the model of Pee et al. (2002, p. 578) referred to the socio-political as an

important perspective to consider when making decisions. In addition, the

exploration of alternatives was mentioned. In the model of Williams et al. (2002, p.

15), no direct references could be found, and thus, it was not recorded. Considering

perspectives is an important factor in the model of Boenink et al. (2004, p. 372). The

more perspectives are considered and weighted against each other, the higher is the

scoring. The model of O’Connell and Dyment (2004, p. 164) had no reference to this

category. The importance of seeking multiple perspectives, and exploring experience

from several perspectives, is evident in the model of Plack et al. (2005, p. 206 f.). The

model of Ballard (2006, p. 20 f., 29) contained no direct reference to this category. The

category ’critical processing’ of the model of Mansvelder-Longayroux (2006) and

Mansvelder-Longayroux et al. (2007) is defined as the comparison between one’s

opinions and those of others in order to compare them according to credibility. This

category describes the comparison of perspectives in order to make informed

decisions. Plack et al. (2007, p. 287) recognised multiple perspectives as part of

reflection. They wrote that the ’more skilful reflector would analyse experience from

several different perspectives beyond the self’ (Plack et al., 2007, p. 287). Kember et al.

(2008, p. 372 ff.) provided two examples of perspectives that a writer could consider

when reflecting. First, a concept can be interpreted with perspective to a personal

experience. Second, situations can be interpreted against taught knowledge. Wallman
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et al. (2008, p. 10) wrote on the importance of considering alternative methods

because they may challenge prejudices. A reinterpretation of experience can be useful

for seeing problems differently, which may change actions. Chamoso and Cáceres

(2009, p. 199) emphasised in the theoretical part of the paper that, for reflection, it is

important to be aware of other perspectives. However, in their model, they did not

particularly emphasise the importance of considering other perspectives. Lai and

Calandra (2010, p. 434) indicated openness to the considerations of others and the

active search of the perspectives of others as important elements of their ’inquiry’

dimension. The model of Fischer et al. (2011, p. 170) addressed awareness of the

personal perspective of perceiving and judging situations. This is seen as part of the

category ’personal’, but not of this category that refers to perspectives beyond the self.

The model of Birney (2012, Appendix D) explicitly addressed the importance of the

examination of ’multiple perspectives’. Further, the indicator ’links are made to the

broader social structures’ considered the perspectives of the ’historical context’, ’social

context’, ’ethical context’, and ’legal context’. Discussing a topic through the lens of

specific contexts adds perspective to the narrative. The highest level of reflection for

the criterion ’description of conflict or disorienting dilemma’ of the model of Wald

et al. (2012, p. 48) contained references to perspectives. They wrote that for a full

description of the dilemma, the text has to show evidence of ’(...) multiple

perspectives, exploring alternative explanations (...)’ (Wald et al., 2012, p. 48). The

model of Mena-Marcos et al. (2013, p. 151, (1a)) did not address this category.

Perspectives were not mentioned in the model of Poldner et al. (2014, p. 358).

However, the ’dialogue’ category of the model of Poldner et al. (2014, p. 358) could

indicate this direction. It contained the subcategory ’dialogue with student theory’,

which could be seen using theory as the context or guiding perspective of an inner

dialogue on the classroom situation. The ’linking’ categories of the model of Prilla
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and Renner (2014, p. 186) can be seen as considering other perspectives. It considers

linking own experience with experiences of others.

Outcome: Sparks-Langer et al. (1990, p. 27) did not particularly mention outcome

as a category. The outcome category is not recorded for this model. Wong et al. (1995,

p. 57) explicitly labelled one of their model’s elements as outcome. The outcome of a

reflection can be a transformation of perspectives, a change in behaviour, a readiness

for something, and/or a commitment to action. The element of ’appropriation’ can

also be seen as an outcome. It describes the process of learning, where new

knowledge becomes part of the identity. An outcome of reflection was not explicitly

mentioned by McCollum (1997). The outcome of a ’premise reflection’ in the model of

Kember et al. (1999, p. 23 f.) was a ’significant change of perspective’. ’Process’ and

’premise reflection’ can help to become better aware of one’s beliefs, thinking, and

feelings, and how these influence action. Fund et al. (2002, p. 491) did not explicitly

mention an outcome category of reflection. Implicitly, they recorded ’personal

insights’, and the reaching of conclusions. All of these can be seen as outcome of

reflection. The models of Hamann (2002, p. 5) and Pee et al. (2002, p. 578) did not

address a distinct outcome category. An outcome of reflection can be a new

understanding, a clarification of the issue, learning of a skill, the resolution of a

problem, or a informed judgement on how something will influence future behaviour

(Williams et al., 2002, p. 15). The model of Boenink et al. (2004, p. 372) did not

highlight a specific outcome category. The model aimed at learning the importance of

multiple perspectives and managing situations of uncertainty. The thinking taxonomy

used by O’Connell and Dyment (2004, p. 164) can be understood as evidence of

learning in the categories of knowledge, comprehension, application, analysis,

synthesis, and evaluation. Outcomes in the model of Plack et al. (2005, p. 206 f.) are

better understanding, planning for the future, and the appropriation of new meaning

into the one’s way of being. An outcome dimension was not mentioned in the model



44 the concept of reflection : theory and model

of Ballard (2006, p. 20 f., 29). The model of Mansvelder-Longayroux (2006) (and

Mansvelder-Longayroux et al. (2007)) contained several references to an outcome of

reflection. An outcome can be an examination of the progress made thus far, what

was learned from the experience, and the consequences associated with actions taken.

On the level of ’synthesis and evaluation’ of the model of Plack et al. (2007, p. 287), an

outcome of reflection can either be that something is learned, certain conclusions are

drawn, or future strategies are planned. An outcome of a reflection according to

Kember et al. (2008, p. 372 ff.) can be awareness regarding one’s beliefs/assumptions,

or the change of a belief system. They wrote that evidence of critical reflection is ’(...)

a change in perspective over a fundamental belief’ (Kember et al., 2008, p. 375). The

awareness of, and ability to, question prejudices, and the ability to reinterpret and

better understand a situation in order to act differently next time a similar situation

occurs, are outcomes described in the model of Wallman et al. (2008, p. 10). The

’contribution’ category of the model of Chamoso and Cáceres (2009, p. 202, 205) listed

as evidence of an outcome that students are involved, provide suggestions, and

actively contribute improvements. The dimension of ’change’ of the model of Lai and

Calandra (2010, p. 434) listed several outcomes of reflection. Outcomes are the

development of new insights that improve practice, and a ’reframing of perspective

leading to fundamental change of practice’ (Lai and Calandra, 2010, p. 434).

Outcomes of reflection according to the model of Fischer et al. (2011, p. 170) was a

heightened awareness of the reasons for one’s way of perceiving and judging.

Outcomes of the model of Birney (2012, Appendix D) can be seen in the evidence of

’learning’, ’understanding’, ’changes in beliefs’, and intentions about ’future practices’.

According to Wald et al. (2012, p. 48), the outcome of a reflection can be either

confirmatory or transformative. The generation of an artefact to solve a problem can

be seen as an outcome in the model of Mena-Marcos et al. (2013, p. 151, (1a)). The

’transfer’ category of Poldner et al. (2014, p. 363) described an outcome dimension,



2.3 model for reflection detection 45

given that it categorises statements on what was learned and what to do in the future.

Categories of the model of Prilla and Renner (2014, p. 186) related to outcome are the

provision of ’solution proposals’, ’learning’, the intention to change, or the evidence

of ’implementing change’.

The following Table 1 provides a summary of the supporting evidence found in the

models of reflection for the common categories of reflection. The table lists all

discussed models along with a mapping of their model constituents onto the six

common reflection categories. Thus, the table provides evidence of the degree to

which each model can be mapped to the common reflection categories.

Table 1 is read as follows. Each row represents a reflection model. Each cell indicates

whether evidence was found in the description of the model that relates to one of

the common reflection categories. The meaning of the symbols used in each cell is

4 evidence of the presence of the category found in the model. 3 Evidence implicit

(see explanation on p. 30). 7 Evidence not present. The column headings represent the

common categories. The same table, but with verbal descriptions of the cell contents,

can be found in Appendix B ’mapping of models of reflection to common

categories of reflection’.

Author(s) Description
of an
experience

Feelings Personal Critical
stance

Perspective Outcome

Sparks-Langer et al. (1990) 4 7 4 4 4 7

Wong et al. (1995) 4 4 4 4 7 4

McCollum (1997) 4 3 3 4 4 7

Kember et al. (1999) 4 4 4 4 7 4

Fund et al. (2002) 4 4 4 4 4 3

Hamann (2002) 7 4 4 4 7 7

Pee et al. (2002) 4 7 4 4 4 7

Williams et al. (2002) 4 4 4 4 7 4

Boenink et al. (2004) 7 4 4 4 4 7

O’Connell and Dyment
(2004)

7 7 4 4 7 4

Plack et al. (2005) 4 4 4 4 4 4

Ballard (2006) 4 4 3 4 7 7

Mansvelder-Longayroux
(2006);
Mansvelder-Longayroux et al.
(2007)

4 7 3 4 4 4

Plack et al. (2007) 4 4 4 4 4 4

Continued on next page
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Table 2 Continued from previous page

Author(s) Description
of an
experience

Feelings Personal Critical
stance

Perspective Outcome

Kember et al. (2008) 4 7 4 4 4 4

Wallman et al. (2008) 4 4 4 4 4 4

Chamoso and Cáceres (2009) 4 7 3 4 7 4

Lai and Calandra (2010) 4 4 4 4 4 4

Fischer et al. (2011) 4 4 4 4 7 4

Birney (2012) 4 4 4 4 4 4

Wald et al. (2012) 4 4 4 4 4 4

Mena-Marcos et al. (2013) 7 7 3 4 7 4

Poldner et al. (2014) 4 7 3 4 7 4

Prilla and Renner (2014) 4 4 3 4 4 4

Table 2: Overview of the mapping of models to the common categories of reflection

Legend: 4 Present. 3 Implicit. 7 Not present

Table 2 shows that the six common reflection categories are helpful to subsume the

constituents of the models of reflective writings (Table 1). All models contain references

to several of the categories ’description of an experience’, ’feelings’, ’personal’, ’critical

stance’, ’perspective’, and ’outcome’. Approximately one third of the models showed

evidence of all common reflection categories.

All models mention elements that highlight the importance of critical stance or a

critical mindset expressed in reflective writing. This category also subsumes a variety

of critical thinking skills, e.g., the identification of problems, questioning,

analysis/reasoning, evaluation, judging, and decision-making.

Almost all models search for evidence of description of an experience in a writing.

The description of an experience can be seen as the introduction to reflective writing

that opens the discussion space for the reflection. Level models usually assert that if a

given writing is only descriptive (with no description of experience) – for example, it

only states course events, it is rated as non-reflective. If a given writing shows

evidence of a description of experiences only, it is usually classified on the lower

levels of reflection. Evidence of a description of experience along with other common

reflection categories leads, generally, to an assignment of the writings to higher levels
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of reflection (see Section 3.1.3 ’Relationship between the descriptive and level

reflection quality’).

Many models mention personal stance as important for a reflective writing. Many

models refer directly to this category, but also, a large proportion of models implicitly

consider this category when classifying reflective writings. Explicitly, they referred to

this category as, for example, awareness of one’s beliefs, values, assumptions, ’sense

of identity’, ’knowledge of self’, ’personal perspective’, ’self-awareness’, or ’presence’

of the writer. In addition to explicitly referring to the category ’personal’, many

models refer to this category in the way they phrased the model descriptions. For

example, Plack et al. (2005, p. 207) phrased all three ’stage dependent’ categories from

the perspective of the student. They explained the category ’return to experience’ with

’The student describes an experience replaying what he or she considers significant’,

and ’The student (...) begins to work with feelings (...)’ (category ATTEND), or ’The

student reappraises the current situation (...)’ (category RE-EVAL) (Plack et al., 2005,

p. 207). Mansvelder-Longayroux (2006, p. 28, 58, 79 f.) and Mansvelder-Longayroux

et al. (2007, p. 53 f.) used the following phrasing: ’description of what you did or plan

to do (and why)’, ’description of how you approached something (...)’, ’examining

what you have learned’, and ’evaluating your knowledge (...)’. Instead of having a

separate category for capturing the personal stance in a given writing, the person

perspective is encapsulated in the category description. In essence, this means that the

process of assigning a category to a text unit consists of two steps: one to determine

whether the unit is with regard to something personal, an another that involves

deciding whether the unit fits the category.

Outcome of a reflection is evident in many models, especially in more recent models.

Several types of outcome were of interest to the model authors. Some examples are

significant change of perspective or behaviour, intention to do something, plan for
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the future, learning, awareness of one’s way of decision-making, understanding of the

situation/context, insight, or the confirmation of the existing way of thinking.

The category of perspective is part of many models, which justifies its own category.

In particular, this is about the evidence of a writer being aware of, and considering,

alternative perspectives. The models mentioned, for example, the perspective of others,

context factors, interpretation through the lens of a theory, social, historical, ethical,

moral, or political perspectives, etc.

Feelings is addressed by 15 out of 24 models (63%). Many models recognise the

importance of emotions for reflection. The models address feelings in general, both

positive and negative, and particularly, feelings of concern, doubt, uncertainty,

frustration, and excitement.

From this extensive analysis of reflection models, it can be concluded that there

are, indeed, commonalities between such widely varying models. The six common

reflection categories are useful to capture frequently mentioned constituents of the

outlined models. These common categories serve in the following sections as the model

categories for the automated detection of reflection. The next section describes each of

these six categories.

2.3.2 Common reflection categories

Section 2.2 ’Models to analyse written reflection’ showed the variety of existing model

descriptions to analyse reflective texts. In Section 2.3.1 ’Evidencing common

categories of reflection’, the model constitutes were analysed with regard to their

common features. Six themes occur frequently in most models, which are the

description of an experience, addressing of feelings, awareness of one’s personal

perspective, being critical, considering other perspectives, and a description of
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outcomes. These are common categories of many reflective writing models, as shown

in Table 2.

Each of the common categories represents a test case for automated detection. In

addition to these test cases, machine learning is tested as to the degree to which it can

discern between reflective and descriptive text segments. This distinction is the

common denominator of the models that analyse the depth of reflection (see the

discussion on the quality of depth in Section 2.2 ’Models to analyse written

reflection’).

The following boxes describe each common category of reflective writing with a

short summary.

Description of an experience: This category captures the subject matter of the

reflective writing. It contains a description of what or how something occurred,

recaptures important parts of the experience, provides the context, and/or the

reason for the writing.

Feelings: Reflection is not only seen as a cognitive process, but feelings are

also often recognised as an important part of reflection. Often, the feeling of

being concerned, having doubts, feeling uncertain about something, or frustration

are reasons for a reflective thought process. However, feelings such as surprise

or excitement are also mentioned. Whereas feelings can be a starting point for

reflection, they can also be the subject of reflection. These are reflections on the

influence of feelings on thinking and action.

Personal: Reflection is often from a personal nature. This is about one’s

assumptions, beliefs, the development of a personal perspective, and the

knowledge of self.
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Critical stance: Expressing an alert, critical mindset is an important part of

reflective writing. A critical stance involves being aware of problems and being

able to identify or diagnose such problems. This is about questioning opinions

and assumptions, analysing and evaluating problems, judging situations, testing

validity, drawing conclusions, and making decisions.

Perspective: The writer considers other perspectives. For example, the

perspective of someone else, theory, the social, historical, ethical, moral, or political

context.

Outcome: Several types of outcomes have been described. Retrospective

outcomes were: Descriptions of the lessons learned, better understanding of the

situation or context, new insights, a change of perspective or behaviour, and

awareness about one’s way of thinking. Prospective outcomes were: An intention

to do something, and planning for the future.

The next section outlines several considerations, which are important for the

understanding of these six categories.

2.3.3 Model critique

These six common categories subsume a large array of model constituents of existing

models that are used to analyse reflective writing. They provide a common vocabulary

that allows the discussion of important aspects of reflective writings.

Such categories are more general than the specific constituents of the individual

models, while being sufficiently specific to capture important dimensions of reflective

writings. They are more general because they have been created by subsuming several
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similar aspects into one category. In addition, they are specific to the context of

reflective writing because the categories capture important dimensions of reflective

writing.

The model was created with the aim of inferring from the models of reflection a set

of categories that represent important facets of reflective writing. The benefit of this

approach is seen in that the machine learning algorithms are tested on several

important categories common to many models. In addition, this research is not

associated with a specific model, and therefore, testing the applicability of the

automated detection more generally is possible. The limitation is that the model does

not capture all the facets of individual models. The decision falls on the more general

approach in order to derive more general insight on automated reflection detection

instead of researching the characteristics of individual models.

As outlined in Section 2.2 ’Models to analyse written reflection’ the common

categories represent the breadth (descriptive) dimension of reflective writings. These

are categories that describe the writings without implying a hierarchy of reflection, as

the depth (level) models do. The reason for this focus on breadth dimensions is that

the descriptive categories found in texts have been used to infer the level of reflection

via a mapping mechanism (see Section 3.1.3 ’Relationship between the descriptive

and level reflection quality’). Once the descriptive categories are found inside the text

the mapping mechanism assigns a level of reflection to the entire text. This suggested

to focus the study of the automated detection of reflection on the descriptive

categories of reflection, as they first have to be determined before the level can be

inferred by the mapping strategy. Besides the mapping of descriptive categories to

levels of reflection, researchers also inferred the levels directly (see for example

Kember et al. (1999) described in Section 2.2 ’Models to analyse written reflection’ on

page 26). The depth dimension is captured in the model for reflection detection in the
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common denominator of all level models that is the distinction between

descriptive/non-reflective and reflective.

After this general critique of the model it follows clarifications regarding some of

the common categories.

With regard to the categories ’critical stance’ and ’perspective’. Considering other

perspectives can be seen as a critical stance, because alternatives are compared and

evaluated. In this context, the category perspective might belong to the category

’critical stance’. Here, the category critical stance is used to express analytical thinking

based on one’s reasoning. ’Perspective’ can be contrasted with ’critical stance’ insofar

as it emphasises awareness of other perspectives and the line of thought stemming

from outside the self. Further, several models mention perspective transformation.

The transformation of perspective is an aim of reflection and was therefore subsumed

into the category ’outcome’. The models also noted the importance of the personal

perspective. The description of a personal perspective is part of the category ’personal’

and not ’perspective’ as it is about the personal standpoint, one’s beliefs, assumptions

and not the consideration of other perspectives.

The category ’feelings’ can be seen as part of the category ’description of an

experience’ because a feeling can be an experience that triggers reflective writing. In

the older version of this model (see Ullmann et al. (2012, p. 103 f.)), ’feelings’ is part of

the category ’description of an experience’. Depending on the context and the

research aims, one might want to determine whether feelings belongs in its own

category, or should be part of other categories.

2.4 summary

This section provided an overview on reflection, particularly on models used to

analyse written reflections. Reflection definitions based on high impact papers were
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used to discern what is meant by reflection in daily language and what it means in

research. Section 2.2 ’Models to analyse written reflection’ illustrated the variety of

the existing ways of modelling reflection in the context of the analysis of reflective

writing. To structure this variety, two qualities of reflection, breadth and depth, were

introduced. The relationship between both was depicted, and it was concluded that in

many instances, reflection levels can be derived from its descriptive (breadth)

constituents. This led to the decision to focus on the descriptive reflection elements. In

Section 2.3.1 ’Evidencing common categories of reflection’, each of the descriptive

elements of the models listed in Table 1 were classified into the themes ’description of

an experience’, ’feelings’, ’personal’, ’critical stance’, ’perspective’, and ’outcome’. A

case was made for all models and common categories to be seen as useful to subsume

many of the varying categories used by the models. These six categories are sufficient

general to provide a general framework for reflection categories, and they are

sufficiently specific to capture the most important categories of reflective writing. A

summary of the six common categories and a critique concluded this chapter.

The outcome of this chapter is the synthesis of the six common reflection categories.

They are used as the model categories for reflection detection.





3
R E L AT E D M E T H O D S A N D B E N C H M A R K S

The previous chapter Chapter 2 ’the concept of reflection : theory and

model’ defined reflection and provided an overview on the models used to analyse

written reflection. The current chapter focusses on relevant methods.

It contains two major strands. The first strand investigates the manual methods to

analyse reflection in writings. The focus is particularly on methods that apply content

analysis in order to gain insight on reflection from writings. The method for manual

content analysis on reflection is close to what this thesis attempts to automate. The

parallel is that both the manual content analysis and machine learning classifiers label

text units according to reflection categories.

The second strand is on automated methods that have been applied to the concepts

related to reflection. These are methods that automatically derive insight from written

text on concepts such as critical thinking, argumentation, or epistemic activity. As

outlined in the motivation of this thesis (see Chapter 1 ’introduction’), insufficient

research exists on automated methods to analyse reflection in texts. Therefore, this

literature review on methods extends its scope to automated methods, which are used

to detect concepts related to reflection.

Both the theoretical part of this thesis and this chapter inform the methodology

and research design of this thesis (see Chapter 4 ’methodology and research

design’).

Section 3.1 ’Manual methods to detect reflection’ starts with an introduction to

content analysis, especially on the process for inferring information from text. This

55
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relates directly to Section 3.1.2 ’Relationship between analysis units and reflection

categories’, which reports on the techniques for evidencing reflection, and

Section 3.1.4 ’Manual reflection detection performance’, which reports on the metrics

that indicate the overall quality of this inference process. In Section 2.2 ’Models to

analyse written reflection’, the descriptive (breadth) reflection dimension and the level

or depth reflection quality have been introduced. There, the argument is made that

often the level of reflective writing can be inferred by its descriptive (breadth) quality.

This led to the decision of focusing this research on the descriptive elements of the

models of reflective writing. Section 3.1.3 ’Relationship between the descriptive and

level reflection quality’ delivers evidence of this connection. The most important part

of this strand is Section 3.1.4 ’Manual reflection detection performance’. In order to

determine performance indicators for the automated methods to detect reflection, this

section gathers evidence of the performance of raters that analyse reflective texts

using the content analysis method.

The sections on the second strand of related automated methods

(Section 3.2 ’Related automated methods’) start with dictionary-based (see

Section 3.2.1) and rule-based approaches (see Section 3.2.2), and ends in a section on

machine learning approaches (see Section 3.2.3). This order was chosen to contrast

machine learning with the first two approaches. The discussion on these three

approaches leads to an argument that motivates the choice of machine learning

methods to detect reflection (see Section 4.1 ’General methodological considerations’).

The core part of this strand is in Section 3.2.3 ’Machine learning approaches’. This

section presents research that uses machine learning to predict model categories that

are important for educational research. This section informs the selection of machine

learning algorithms and provides insight on the performance of these methods in

areas related to reflection.
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3.1 manual methods to detect reflection

Several approaches exist to measure reflection evidence. Such methods range from

qualitative to quantitative tools. The tools to identify evidence of reflection are

questionnaires (Kember et al., 2000; Sobral, 2000; Woerkom et al., 2002; Mamede and

Schmidt, 2004; Sobral, 2005; Peltier et al., 2005; Woerkom and Croon, 2008; Lethbridge

et al., 2011; Bogo et al., 2011; Andersen et al., 2014), interviews (Boyd and Fales, 1983;

King and Kitchener, 1994; Corlett, 2013), structured worksheets, vignettes or cue

questions (Pee et al., 2002; Boenink et al., 2004; Ip et al., 2012), tests (King and

Kitchener, 1994, p. 116ff.), linguistic analysis (Shaheed and Dong, 2006; Luk, 2008;

Reidsema and Mort, 2009; Forbes, 2011; Ryan, 2011; Birney, 2012; Ryan, 2012;

Wharton, 2012; Ryan, 2014), and manual content analysis of reflective writings.

From this variety of available methods, the method content analysis is chosen as

the most relevant method for this thesis. Questionnaires attempt to elicit qualities of

reflective thinking from participants. As such, they do not directly contribute to the

problem of analysing text. Interviews, structured worksheets, and vignettes or cue

questions are methods that aim to trigger reflective thinking in the participants based

on specific prompts. Analysis of the participant responses are subject to the method of

content analysis. An emerging area of researching reflective writing can be identified in

the field of linguistics. This is especially visible in the research of Birney (2012), which

mapped linguistic indicators to subcategories of a comprehensive model of reflection.

The focus of this thesis is on the more established method of content analysis to analyse

written reflection.

As outlined above, the reason for this focus is that manual content coding as

performed with the method of content analysis is close to the aim of this thesis

because it closely resembles the problem space of the automated analysis of reflection.
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Using this method, text units are annotated with labels. This is similar to the aim of

this thesis because it strives to automatically label text units.

3.1.1 Content analysis of reflective writings

Content analysis has a long tradition. It can be traced to the systematic analysis of

text during the 17th century (Krippendorff, 2012, p. 10). There are many forms (Hsieh

and Shannon, 2005) and definitions of content analysis. One of the more prominent

definitions is the following:

’Content analysis is a research technique for making replicable and valid inferences

from texts (or other meaningful matter) to the contexts of their use’ (Krippendorff,

2012, p. 24).

The notion of inference is one of importance. Krippendorff (2012, p. 42) indicates that

content analysis relies mostly on abductive reasoning – sometimes called the ’inference

to the Best Explanation’1 – and less on deductive or inductive reasoning. ’(...) the whole

enterprise of content analysis may well be regarded as an argument in support of an

analyst’s abductive claim’ (Krippendorff, 2012, p. 43).

Applying this to the problem of automated reflection detection means that the claim

drawn from the text has to be backed by a form of justification. For example, if a unit

of analysis is automatically annotated with a category of reflective writing (the claim),

a form of justification has to back this inference. In the case of manual content analysis,

a supporting argument for this claim can be that the majority of raters agree on the

classification of this unit. A common measurement that abstracts from the individual

case to the performance of the entire coding process is inter-rater reliability. In the

case of automated methods, the performance of the classifier can be compared with

the ground truth. Such ground truth can be a collection of units that are correctly

1 http://plato.stanford.edu/entries/abduction/

http://plato.stanford.edu/entries/abduction/
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classified with high certainty. A comparison of the results of the classifier and the

ground truth indicates the quality of the classifier. Section 4.2 ’Evaluation criteria and

metrics’ summarises several of these evaluation metrics.

The next sections are dedicated to important characteristics of the manual content

analysis of reflection.

3.1.2 Relationship between analysis units and reflection categories

As outlined in Section 2.2 ’Models to analyse written reflection’, the models for

assessing reflective writings consists of several categories. During the coding process,

text units are assigned to these categories. These text units are evidence for this

category. However, how much evidence is required to support the claim that the text

indeed exhibits this category? Is a single appearance already sufficient, or does it

require further corroboration (substantiation) in order to count as evidence?

Substantiation describes the extent to which an element of reflection has to be

elaborated until it is determined as a valid element. For example, a given text can

mention an emotion, which would fit the category of ’feelings’. Would mentioning be

a satisfying criterion for its classification as feelings?

To find answers to this question, the literature on the manual content analysis of

reflection was consulted (see Section 2.2 ’Models to analyse written reflection’).

In many cases, the units are used to calculate aggregated statistics, for example,

frequencies, percentages, or mean values (for examples, see Poldner et al. (2014); Mena-

Marcos et al. (2013); Clarkeburn and Kettula (2011)). This entails that categories are

assigned to all units of analysis and then aggregated either at the text or student level.

It also means that every unit counts as evidence for a category.

Plack et al. (2005, p. 203) reported that if a single piece of evidence for a category of

reflection is found, it is not required by the raters to search for any further evidence
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information. In this case, it is not necessary to find all pieces of evidence of a certain

category in the entire text. The consequence for the automated detection of reflection

is that once the classifier determines a single unit of analysis, its work can stop.

Plack et al. (2005, p. 204) then examined this strategy and noted that two of three

raters coded a category if it contained further substantiation, whereas one rater coded a

category if any textual indicator was given. Plack et al. (2005, p. 204) saw the approach

taken by the two raters as more adequate. This approach indicates that for the presence

of a category, at least two evidences have to be found.

Wong et al. (1995) stated that if an argument is made more than once, it is coded

only once. Coding is based on the criteria of substantiation (only if further evidence is

given, is it coded) and textual evidence (interpretation is not accepted). Quotes from

literature count as substantiation if they are not mere textbook knowledge. This hints

at a minimum of two evidences to justify a classification. Further, they noted certain

exceptions, such as cited literature or similar arguments.

Lai and Calandra (2010) recorded only the highest level of reflection. This means that

once the highest level is found, no other evidence has to be considered. It also means

that only one unit of analysis is necessary to determine the level of the entire text.

From the cases outlined above, it can be seen that there are many different

proposals. The common approach treats each labelled unit as evidence for the

presence of a category.

3.1.3 Relationship between the descriptive and level reflection quality

As outlined in the theoretical part of the thesis (see Section 2.2 ’Models to analyse

written reflection’), models can be characterised as breadth models that describe

reflection categories, and depth models as those that describe reflection levels.
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Research that records both the breadth and depth dimensions often describe a

mapping technique between both qualities.

Several articles described a two-stage system of coding. In the first stage, the

reflective texts are coded according to reflection breadth categories, and in a second

stage, they are mapped to reflection levels. The latter are often based on the

distinction between non-reflective, reflection, and critical reflection (Manen, 1977;

Mezirow, 1990a).

The six breadth reflection categories of Wong et al. (1995) were mapped to the

depth model of Mezirow (1990a). A non-reflector shows no evidence of any of the six

categories. A person indicated as a reflector provides evidence for the categories

’attending to feelings’ to ’appropriation’, whereas a critical reflector shows all features

of a reflector plus evidence of changes in perspective. This is a direct mapping of

reflection breadth categories to a reflection depth model.

Sumsion and Fleet (1996, p. 126) used one-to-one mapping from reflection categories

to reflection levels. The three categories reaction, elaboration, and contemplation, based

on the model of Surbeck et al. (1991), are mapped to the three levels of not reflective,

moderately reflective, and highly reflective.

Hamann (2002, p. 10 ff.) mapped several categories to four types of reflective

thinking. Ten categories defined non-reflective thinking (see Table 1 for the

description of the categories); reflective cognitive was defined with four categories;

reflective affective, social, psychomotor with eleven categories; and reflective inter and

intra-personal were defined with one category.

Abou Baker El-Dib (2007, p. 34) described a model were categories are mapped

to four levels of reflection. Mapping follows an additive schema. For example, the

category ’problem statement’ consists of the following rules: if a problem statement is

evident, but there is no reasoning, it belongs to the lowest level (level 0). A problem

statement plus evidence of a single reason signifies level 1. Level 2 shows evidence of
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a problem statement plus several reasons. Finally, level 3 shows all the characteristics

of level 2 plus evidence that considers the larger context.

Chirema (2007) used the following mapping schema. A non-reflector shows no

evidence of any category. A reflector shows evidence of one or more of the following

categories: attending to feelings, association, and integration. A critical reflector has to

satisfy the following categories: validation, appropriation, and/or outcome of

reflection.

Similarly, Findlay et al. (2010, 2011) showed mapping between the deep analytic

NRAT and the broad analytic NRAT. If none of the categories are present, the writer

is classified as a non-reflector. A reflector shows evidence of attending to feelings,

association, and integration. A critical reflection has to demonstrate validation,

appropriation, and outcome.

Bell et al. (2011) mapping schema was based on Kember et al. (1999) The model

contains the mapping listed here. Non-reflective: introspection and thoughtful action.

Reflective: content reflection, process reflection-internal, process reflection-others,

process reflection-others/internal, content reflection/process reflection-internal,

content reflection/process reflection-others. Critical reflective: premise reflection.

Birney (2012) mapped indicators to four levels of reflection. Descriptive (indicator

1; see Table 1 for the description of indicators); low (indicator 2-4), medium (indicator

5-7), and high (indicator 8-12).

Poldner et al. (2014, p. 373) wrote that ’The level of a reflective essay is based on the

presence of categories. For example an essay with categories description and evaluation

is coded as level 2, if a reflective essay consists of description, evaluation, justification,

it will be coded as level 3, etc.’.

Prilla and Renner (2014) mapped their categories to levels if at least one code of the

group of codings that belong to a level is present (see Table 1 for the groupings).
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The research above indicates that the descriptive categories of the models can be

mapped directly to levels using certain rules.

The notion of levels might introduce a certain valuation of high levels of reflection,

thus diminishing the value of lower levels of reflection. Further, because the levels

are assigned to the entire text, the nuances of reflection categories that stem from

the breadth dimension are summarised into only a few level categories. For example,

Kember et al. (2008, p. 372) recommended for the level assignment to be based on the

entire text, and not on individual parts of the text. Further, any evidence of the highest

level is characterising of the entire text (Kember et al., 2008, p. 372). This implies that

the highest level trumps all other levels, and thus any evidence of other levels within

the text are not relevant for further analysis. Their rationale for this might be that,

when considering the task of preparing aggregated statistics over a body of text in

order to analyse whether a certain instruction led to improvements regarding the levels

of reflective writing, a mechanism has to be established on how to assign a level to a

text. Their recommendations of only considering the highest level provides a clear

instruction for this case; nevertheless, it diminishes the value of the other reflection

levels.

This proposed mechanism also does not record whether a lower level is missing

entirely. Other conceptualisations re-frame this problem in assuming that the existence

of a higher level must also include all other levels. For example, Wallman et al. (2008,

p. 4) indicated that each level builds upon another. This implies that with the presence

of a higher-level category, all lower level categories can be assumed to be present as

well. There are several other models that share this view. For example, the model of

Tsangaridou and O’Sullivan (1994, p. 20), as used in the study of McCollum (1997),

starts with the description level. The next levels always assume that description is

present. Such levels are ’description and justification’, ’description and critique’, and

at the highest level, ’description, justification, and critique’.
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3.1.4 Manual reflection detection performance

Because the goal is to not only detect reflection in writings, but also performing this

reasonable well, realistic standards are important to know. This section gathers

evidence on how reliable humans detect reflection.

As outlined in Section 2.2 ’Models to analyse written reflection’ (page 16), many of

the research articles did not report any agreement/inter-rater reliability metrics. For

example, Hatton and Smith (1995) used a strategy to reach agreement by discussion

in order to resolve disagreements. Similarly, Williams et al. (2002, p. 8) reported that

grading was performed by two instructors who negotiated agreement on a grade in

case their judgement differed. Duke and Appleton (2000) stated that normal course

grading procedures were followed, including cross-marking and the use of an external

examiner.

However, the examined models described in Table 1 do provide this information.

Table 3 provides a summary of the reported inter-rater reliability values. Table 3 shows,

for each model, the number of texts analysed, chosen unit of analysis, number of

coders/raters, and information provided on reliability (for a detailed description of

these measures, see Section 4.2 ’Evaluation criteria and metrics’).

Mostly, two to three raters code the texts. The unit of analysis is either the entire

text (mostly to determine the level of reflection), or smaller units of analysis, such

as text segments, paragraphs, and sentences. The smaller units of analysis are mostly

employed to analyse the descriptive or breadth dimension of the reflection models.

The most frequently used measure is per cent agreement, followed by Cohen’s κ,

Cronbach’s α, and the intraclass correlation (ICC). The studies of Poldner et al. (2014)

and Prilla and Renner (2014) reported Krippendorff’s α values. Other statistics can be

found as well. In some cases, the metric used is not clearly reported. Most models
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reported inter-rater reliability values for the entire model. Some researchers provided

a detailed analysis for each category, and even for each sub-category (Plack et al.,

2005, 2007; Findlay et al., 2010; Poldner et al., 2014). Most papers reported only one

metric. Some papers included, along with the percentage agreement, other measures

(for example, Plack et al. (2005, 2007); Findlay et al. (2009, 2011); Wald et al. (2012);

Mena-Marcos et al. (2013); Poldner et al. (2014); Prilla and Renner (2014)).

Author Number of
texts

Unit of analysis Number of
coders

Reliability

Sparks-
Langer
et al. (1990)

24 interview
transcripts. 24

journals

Not clearly stated,
presumably entire
text

2

independent
raters for
the
transcripts
and two for
the journals

Interview transcripts: 0.88% (one level
difference allowed). Journals: less
satisfactory

Wong et al.
(1995)

45 journals.
Elements: 100

reflective
elements

Elements:
Paragraph. Levels:
student

3

independent
coders

Elements: 0.5 to 0.75%. Levels 0.88%

Sumsion
and Fleet
(1996)

73 texts Entire text 3

independent
coders

50.00%

McCollum
(1997)

202 writings on
events for four
journal writers

text containing
meaningful events

2

independent
raters

Focus dimension: 95%. Levels: not reported

Kember
et al. (1999)

Coding
exercise: three
journals.
Practical test:
nine reflective
papers

Coding exercise:
representative
sections of three
journals of
approximately one
page length
unitised by idea
(two to three
paragraphs).
Practical test: entire
paper (three to six
pages)

Coding
exercise:
eight
independent
raters.
Practical
test: four
independent
raters

Coding exercise: 0.65 Cronbach’s α.
Practical test: 0.74 Cronbach’s α

Hawkes
and
Romiszowski
(2001);
Hawkes
(2001, 2006)

Face-to-face
discourse: 222

chunks
(comparable to
a message);
Computer-
mediated
discourse: 179

e-mail
messages

Chunk (face-to-face
discourse was
chunked to be
comparable to the
messages), E-mail
message

3

independent
raters

Face-to-face: 0.87 Cronbach’s α;
Computer-medicated discourse: 0.80

Cronbach’s α (reverse in the 2006 paper)

Fund et al.
(2002)

Stage 1: three
reflections.
Stage 2: five
reflections.
Stage 3: 80

reflections

Sentences or part of
a sentence

Stage 1:
three
coders.
Stage 2: two
external
coders.
Stage 3: one
coder

Stage 1: Tool revision until a correlation of
98% was reached. Stage 2: Tool revision
until a correlation of 98% was reached.
Stage 3: Not reported

Hamann
(2002)

26 code
samples (out of
52 submissions)

Sentence 2 raters Until 100% agreement was reached

Pee et al.
(2002)

14 worksheets Entire worksheet 2 raters Per cent agreement 86%

Continued on next page
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Table 3 Continued from previous page

Author Number of
texts

Unit of analysis Number of
coders

Reliability

Williams
(2000) cited
in Williams
et al. (2002)

58 journals Journal 3 educators Reliability coefficient of 0.68

Boenink
et al. (2004)

Responses to
seven vignettes
(n between ten
and 15 per
vignette

Response to
vignette

2

independent
raters

Responses to four vignettes selected from
seven showed inter-rater reliability between
0.53 and 0.94 Pearson’s r

O’Connell
and
Dyment
(2004)

880 journal
entries

Entry 2 external
raters

Cronbach’s α of 0.85

Plack et al.
(2005)

43 journals out
of 48

Component: Words,
sentences, and
paragraphs. Level:
Entire journal

3 raters
from initial
four raters

Component: Per cent agreement (%) and Φ
coefficient for pairs of raters. ICC for all
raters. Levels: Per cent agreement and γ
statistics, ICC for all raters.
Components:
Reflection-in-action: 69.8-81.4%; 0.49-0.69

Φ; 0.55 ICC.
Reflection on action: 86%; 0.20-0.60 Φ; 0.41

ICC.
Reflection for action: 76.7-86.0%;
0.52-0.71Φ; 0.60 ICC.
Content: 83.7-90.7%; 0.55-0.75 Φ; 0.60 ICC.
Process: 81.4-93.0%; 0.10-0.69 Φ; 0.44 ICC.
Premise: 81.4-90.7%; 0.62-0.81 Φ; 0.72 ICC.
Return to experience: 79.1-90.7%; 0.08 Φ;
0.03 ICC.
Attends to Feelings: 79.1-86.0%; 0.62 Φ;
0.28 ICC.
Revaluates: 65.1-93.0%; 0.39-0.76 Φ; 0.43

ICC.
Levels: 67.4-85.7%; 0.88-0.98 Φ; 0.74 ICC

Ballard
(2006)

Assignments
and responses
to interview
questions

Entire text 2 coders Prior to the main study: First session: 90%.
Second session 93%.

Mansvelder-
Longayroux
(2006);
Mansvelder-
Longayroux
et al. (2007)

38 portfolios Fragment (new
learning activity)

Not
reported

Cohen’s κ of 0.77 for 14 out of 34 themes

Abou Baker
El-Dib
(2007)

20 research
reports out of
100

Reflective unit:
single idea or
thought on
particular topic or
event

2 coders
with
scoring
sheets

Cronbach’s α: Problem statement 0.93, plan
of action 0.81, acting 0.94, reviewing 0.83

Chirema
(2007)

42 reflective
journals

Elements:
paragraph. Levels:
student

Levels: two
raters.
Elements:
four raters

Levels: 0.95%. Elements: 0.5 to 0.75%

Plack et al.
(2007)

308 entries
from 21

journals

Each journal entry
(longer paragraph)

3

independent
raters

Agreement and κ statistics are reported for
rater pairs. ICC for all raters. Level 1: 100%;
1 κ; 1.0 ICC. Level 2: 82.8-87.6%; 0.61-0.73

κ; 0.67 ICC. Level 3: 78.2-83.4; 0.57-0.67 κ;
0.62 ICC

Kember
et al. (2008)

4 journals Entire journal 4

independent
raters

Agreement: Instead of reporting, an indices
table is presented and described as
showing very good agreement.

Wallman
et al. (2008)

56 and 126

short reflective
essay (one to
two pages)

Meaningful text
segment and entire
text

2

independent
raters

Cohen’s κ: 56 essays: 0.59. 126 essays: 0.65.
All essays: 0.63

Continued on next page
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Table 3 Continued from previous page

Author Number of
texts

Unit of analysis Number of
coders

Reliability

Chamoso
and
Cáceres
(2009)

2432 units in
reflection

Single idea that
ranges from single
sentence to several
hundred words

Independent
party who
mostly
agreed

93.00%

Findlay
et al. (2010)

97 Journals Not mentioned 4

independent
coders

Training: Deep Analytic NRAT: 0.49

Cohen’s κ (6 categories); Broad
Classification NRAT 0.67 Cohen’s κ (3
levels).
Actual study: Deep NRAT (six categories):
0.55 Cohen’s κ; Broad NRAT (three levels):
0.71 Cohen’s κ.
Deep Analytic NRAT (pairwise Cohen’s κ):
Level 1: 69.1%; 89.7 CA; 0.06-0.49 κ.
Level 2: 26.8%; 75.3 CA; 0.02-0.27 κ.
Level 3: 50.5%; 85.6 CA; 0.11-0.26 κ.
Level 4: 89.7%; 99.0 CA; -0.02-0.16 κ.
Level 5: 90.8%; 93.8 CA; -0.54-0.42 κ.
Level 6: 85.6%; 93.8 CA; 0.00-0.43 κ.
Broad Analytic NRAT (pairwise Cohen’s
κ):
NR: 79.4%; 89.7 CA; 0.08-1.0 κ.
Re: 75.3%; 90.7 CA; 0.08-1.0 κ.
CR: 81.4%; 92.8 CA; 0.12-0.40 κ.
Legend: %: Absolute agreement (all four
coders agreed); CA: Consent agreement
(three out four coders agreed); κ: Cohen’s κ

Lai and
Calandra
(2010)

65 reflection
writings
(109-1,003

words)

Entire text 2

independent
raters

88%

Bell et al.
(2011)

7 journals Line-by-line basis
with meaningful
text segments
(phrase, sentence,
number of lines,
paragraph)

3

independent
raters

Cronbach’s α of 0.802

Clarkeburn
and Kettula
(2011)

Sub-sample of
263 journals

Journal 2

independent
coders

84%

Findlay
et al. (2011)

30 inventories Not mentioned 2

independent
coders

Deep analytic NRAT: 75.0-83%; 0.47-0.59

Cohen’s κ. Broad analytic NRAT:
97.3-100%; 0.94-1.0 Cohen’s κ.

Fischer
et al. (2011)

110 blog posts,
45 essays

Entire writing 2 blinded
coders

80%

Birney
(2012)

Systematic
random
sampling of 27

reflective
journals

Text excerpts
(section of text that
represents an
example of one of
the 12 indicators)

2 coders Paired t-test for each of the 12 reflection
indicators. Mostly no significant difference
between the coders’ judgements at the 0.05

level of significance

Ip et al.
(2012)

6 random
selected diaries

Diary 2

independent
coders

95.00%

Wald et al.
(2012)

Pilot 1 to 4: ten
narratives each.
Pilot 5: 60

narratives

Assessment of the
entire narrative.
Steps: First,
determine criteria,
then level. Second,
determine overall
level by considering
step 1

Pilot 1 to 4:
three raters
each. Pilot
5: four
raters

Pilot 1: 0.748 ICC. 0.899 Cronbach’s α.
Pilot 2: 0.455 ICC. 0.715 Cronbach’s α.
Pilot 3: 0.376 ICC. 0.644 Cronbach’s α.
Pilot 4: 0.508 ICC. 0.756 Cronbach’s α.
Pilot 5: 0.632 ICC. 0.774 Cronbach’s α

Mena-
Marcos
et al. (2013)

1750

propositions
(104 reflective
reports)

Proposition (texts
are divided into
propositions. A
proposition is a
single meaningful
predicate)

2

independent
raters

Levels: 0.87 presumably Cohen’s κ. Types:
Not reported

Continued on next page
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Table 3 Continued from previous page

Author Number of
texts

Unit of analysis Number of
coders

Reliability

Poom-
Valickis
and
Mathews
(2013)

29 cases Text segments that
contain meaning
units. Identification
of statements,
including
reflection/analysis.
Reread case and
assignment to the
four types.

2 raters Agreement of 67% (after discussion, 93%)

Poldner
et al. (2014)

18 essays (9%
of the sample)

Sentence and
compound
sentences

2

independent
raters

Description: 85.7%, 0.71 Krippendorff’s α.
Evaluation: 87.3%, 0.61 Krippendorff’s α.
Justification: 92.4%, 0.59 Krippendorff’s α.
Dialogue 98.6%, 0.64 Krippendorff’s α.
Transfer 99.6%, 0.86 Krippendorff’s α.
Sub-categories: fair to good

Prilla and
Renner
(2014)

74

conversations
and 159

comments

Single
contributions to a
conversation

2

independent
raters

Phases/codes: Reported only for two codes:
Codes 4 and 5: Krippendorff’s α of 0.75

and slightly below Stage: Per cent
agreement: 1. 97%. 2. 96%. 3. 80%.

Table 3: Inter-rater reliability for reflection models

Table 3 shows a wide range of reported inter-rater reliability values. In order to

more easily compare the performance of the automated reflection detection with the

reported inter-rater reliability values achieved by manual coders, the inter-rater

reliability values are sorted into brackets or ranges. The aim is to obtain a better

understanding on how frequently each of the brackets is reached by human coders.

The derived ranges of inter-rater reliability values for each metrics serve as indicators

on the performance of manually coding reflective texts.

Each model of Table 3 is sorted into a bracket. If a model reported several values

for each of their model components, it is sorted into all those brackets that comprise

the values. For example, if a model reported an agreement of 75% for one category

and 83% for another, it is sorted once into the 70%-80% bracket and once into the

80%-90%bracket.

This level of aggregation seems suitable for such data. Ideally, we would like to

determine commonly reached inter-rater reliability values for each category or

reflective writing. However, the research results summarised in Table 3, suggest that

this fine-grained aggregation is currently not possible because only a few models
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reported inter-rater reliability values at the category level, and the reported metrics

differ, which makes their aggregation difficult.

These brackets have been defined for the per cent agreement, Cohen’s κ, Cronbach’s

α, and ICC. Additionally, the models reporting Krippendorff’s α are discussed.

Percentage agreement values ranged from 50% to 100%. Eight papers reported a

percentage agreement in the 0.5 to 0.8 bracket (Wong et al., 1995; Sumsion and Fleet,

1996; Plack et al., 2005; Chirema, 2007; Plack et al., 2007; Findlay et al., 2010, 2011;

Poom-Valickis and Mathews, 2013), 11 papers reported values in the 0.8 to 0.9 bracket

(Sparks-Langer et al., 1990; Wong et al., 1995; Pee et al., 2002; Plack et al., 2005, 2007;

Findlay et al., 2010; Lai and Calandra, 2010; Clarkeburn and Kettula, 2011; Findlay et al.,

2011; Fischer et al., 2011; Poldner et al., 2014). Eight paper reported agreement values

over 0.9 (Plack et al., 2005; Ballard, 2006; Chirema, 2007; Plack et al., 2007; Chamoso

and Cáceres, 2009; Findlay et al., 2010; Poldner et al., 2014; Prilla and Renner, 2014).

This analysis excludes the study of Hamann (2002) because it reported the agreement

value after the discussion of the raters.

Three papers reported Cohen’s κ values between 0.5 and 0.6 (Plack et al., 2007;

Wallman et al., 2008; Findlay et al., 2010). Two papers showed values between 0.6 and

0.7 (Plack et al., 2007; Wallman et al., 2008), and two papers noted Cohen’s κ values

between 0.7 and 0.8 (Mansvelder-Longayroux, 2006; Plack et al., 2007). Plack et al.

(2007) achieved a Cohen’s κ of 1.0 for the first level of their model.

Three papers stated Cronbach’s α values between 0.7 and 0.8 (Kember et al., 1999;

Abou Baker El-Dib, 2007; Wald et al., 2012), three papers values were between 0.8 and

0.9 (Hawkes, 2001; O’Connell and Dyment, 2004; Abou Baker El-Dib, 2007; Bell et al.,

2011), and one paper reported a value of over 0.9 (Abou Baker El-Dib, 2007).

Three papers used ICC. Most of the reported values fall in the 0.6 to 0.7 bracket.

Plack et al. (2005) reported values below 0.6 and above 0.7 for some of the categories.
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The two papers that use Krippendorff’s α achieved values between 0.59 (0.40 when

considering the subcategories of Poldner et al. (2014)) and 0.86 (Poldner et al., 2014;

Prilla and Renner, 2014).

It is notable that high percentage agreement values do not necessarily result in high

Krippendorff’s α or Cohen’s κ values. For example, Poldner et al. (2014, p. 360)

reported a percentage agreement of 99.4 and Krippendorff’s α value of 0.4 for the

subcategory ’Justification of Student’s Choice of Situation’, whereas a percentage

agreement of 97.0 for the subcategory ’Description Pupils’ Actions’ is associated with

a Krippendorff’s α value of 0.77. A similar case can be found in Findlay et al. (2010)

for the percentage agreement and Cohen’s κ values (see Section 4.2 ’Evaluation

criteria and metrics’ for this ’paradox’).

It is also notable that those models that contain both descriptive and depth

dimensions report higher inter-rater reliability values for the reflection levels than for

the descriptive reflection categories (see Wong et al. (1995); Plack et al. (2005);

Chirema (2007); Findlay et al. (2010, 2011)).

Several papers noted the importance of pilot testing and thorough training of the

raters in order to achieve high inter-rater reliability. To quote Clarkeburn and Kettula

(2011, p. 444) as an example, ’While the inter-rater reliability was satisfactory for

research purposes, we highlight the intensive and collaborative process required to

achieve it’.

3.1.5 Summary

Section 3.1 ’Manual methods to detect reflection’ provided an overview of the

approaches used to analyse reflection. Several techniques were identified in the

literature. A case was made that from these techniques, the content analysis of texts is
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closest to what this thesis attempts to automate: the labelling of text units according

to reflection categories.

Section 3.1.2 ’Relationship between analysis units and reflection categories’

investigated the question of how much textual evidence is necessary in order to

assign a unit of analysis to a category. The literature revealed that frequently, a single

evidence is satisfactory, but there are also other approaches that seek further

substantiation until a category is deemed as present. Further, commonly, all units of

analysis are coded, but other approaches exist as well.

Section 3.1.3 ’Relationship between the descriptive and level reflection quality’

described the mapping strategies found in those models that contained both the

breadth and depth reflection qualities. In general, the literature indicated that

reflection levels can be derived from the descriptive (breadth) reflection categories.

This insight suggests a focus on the automated detection of reflection on descriptive

reflection categories instead of level reflection models because the latter can be

derived from the former by applying explicit mapping rules.

The core part of this section was Section 3.1.4 ’Manual reflection detection

performance’. This section informed on the performance that trained coders can

achieve when classifying text units according to reflection categories. The literature

revealed several types of measurements and varying inter-coder reliability values that

ranged from chance agreement to perfect inter-rater reliability. The reported

inter-rater reliability values were summarised for each metric. A consequence of this

section is that in order to compare the performance of the automated methods to

detect reflection with a human benchmark, several metrics have to be considered.
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3.2 related automated methods

After outlining the manual method for analysing written texts with regard to

reflection categories, this section describes several automated methods that can detect

concepts related to reflection. Such related concepts are, for example, critical thinking,

cognitive states, volition, emotions, evaluation, epistemic beliefs, and

argumentation/discourse. As stated in the introduction for this chapter (see

Chapter 3 ’related methods and benchmarks’), insufficient research exists on

the automated analysis of writings with regard to reflection, which is the reason for

this extension towards automated methods for related reflection concepts. The

methods discussed have the common goal of automatically making inferences from

the text to the characteristics of their concepts. This thesis shares the same goal.

Although the concepts are different, the methods for related concepts can inform the

selection of automated methods for reflection detection. In addition, this section

informs on the performance of these automated methods. Similar to the reported

performance of the manual analysis of reflection (see Section 3.1.4 ’Manual reflection

detection performance’), the performance of automated methods can provide an

additional benchmark for the automated detection of reflection.

The discussion of automated methods is structured into three themes. First, the

discussion starts with Section 3.2.1 ’Dictionary-based approaches’, followed by

Section 3.2.2 ’Rule-based approaches’, and ends with machine learning approaches in

Section 3.2.3 ’Machine learning approaches’. After the discussion on each of the

approaches, Section 3.2.4 ’Automated methods performance’ summarises the

reported performance measures.

This order is selected to show first the two approaches based on manual vocabulary

and rule set construction, before describing the research that applies a machine
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learning approach that automatically derives from a set of samples, the important

’vocabulary’ and ’rules’ to classify text.

For each approach, work is presented that is related to the concept of reflection. The

presented research is used to explain each of the three approaches, which are seen as

prototypical instances of the automated methods for the classification of text.

3.2.1 Dictionary-based approaches

One of the earliest approaches in annotating texts was based on the use of manually

compiled lists of cue words, or linguistic markers. These word lists are usually called

dictionaries (concept dictionaries) or vocabulary. Each list represents a category for

which the words in the list are representative.

Stone and Hunt (1963) described a tool called the ’General Inquirer’, which is a

program developed for automated content analysis. The system used dictionaries,

each consisting of several categories (or tags) with a set of associated words. The tool

annotates each word with the corresponding tag. The dictionary consists of

’first-order’ and ’second-order’ tags. A ’first-order’ tag can only be given to one

dictionary entry word. However, one or more ’second-order’ tags can be assigned to a

word (Stone and Hunt, 1963, p. 242). The annotated text can then be queried in order

to explore the text. The queries can consist of tags and part-of-speech.

The length of the text influences word frequency, which, if used to distinguish text

types based on word frequency, might lead to misjudgements. Stone and Hunt (1963,

p. 249) described this problem and suggested to scale texts with a factor. Stone and

Hunt (1963, p. 249) reported on a discriminative function that, in essence, describes

a threshold that has to be met in order to classify text. The system also integrated a

rule-based learning algorithm that can automatically find rules to distinguish texts.



74 related methods and benchmarks

A widely cited example of this approach is the Linguistic Inquiry and Word

Counting Tool (LIWC) (Chung and Pennebaker, 2012), which is frequently used in

research projects (Chung and Pennebaker, 2012, p. 210 ff.). The aim of LIWC is to

draw an associative connection of cue words to acts of cognition. Feature words

thought to be associated with psychological states are defined2. Pennebaker and

Francis (1996) researched the link between the language used in writings and its

impact on physical health and academic performance using a bank of over 60

controlled vocabularies in order to detect emotion (which is related to the category

’feelings’; see Section 2.3.2 ’Common reflection categories’) and cognitive mechanisms

(which are related to the category ’critical stance’; see Section 2.3.2 ’Common

reflection categories’).

LIWC serves as a prototypical example for dictionary-based approaches to detect

meaning in text and is described in depth. The underlying assumption of this approach

is that there exists an associative connection between cue words and acts of cognition.

LIWC’s main technique is based on pattern matching the words in the text under

consideration to the word lists of the software. In addition to exact pattern matching,

it is possible to apply wildcards at the end of the word. For example, the word

’knowledg*’ with the wildcard symbol ’*’ matches any word that starts with

knowledg, for example, knowledge and knowledgeable . Other forms of language

processing, such as part-of-speech tagging, lemmatisation, stemming, and stop-word

removal are not foreseen. Chung and Pennebaker (2012, p. 216) believed it is

beneficial to work with function words, which according to them, are usually filtered

by the stopword removal of other natural language processing (NLP) applications.

Function words are, for example, pronouns and grammatical particles, of which

LIWC makes extensive use. Indeed, a popular stop-word list excludes personal

2 See http://www.liwc.net/comparedicts.php for an overview of the dictionaries

http://www.liwc.net/comparedicts.php
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pronouns such as ’he’, ’she’, ’myself’, and more, and the particles like, ’because’,

’since’, ’thus’, ’hence’, etc., from full-text search3.

LIWC vocabularies are not exclusive, and one word can belong to several categories.

For example, the word ’think’ belongs to the categories insight and present tense

words.

The LIWC dictionaries are compiled manually, and inclusion or exclusion is based

on the majority vote of three coders (Tausczik and Pennebaker, 2010). A word is

included, maintained, or deleted if two out of three judges agree on the word. A

second independent group of coders repeats the process.

The output of a LIWC analysis is frequency lists of the word occurrences of the

dictionaries.

Compared with machine learning algorithms, Chung and Pennebaker (2012, p. 216)

noted that ’NLP approaches will outperform LIWC on many classification tasks’.

It is notable that Chung and Pennebaker (2012, p. 209) stated that, ’a consistent

finding is that many of the word categories that are used to reliably classify

psychological states can be considered to be a part of language style as opposed to

language content’. How people say something is sometimes more revealing than what

people say.

Bruno et al. (2011) described an approach for analysing the reflective practice of

learning journals using a ’mental’ vocabulary. Their semi-automatic approach

focusses on the detection of cognitive, emotive, and volitive words (the cognitive

words are related to the category ’critical stance’, emotive words to ’feelings’, and

volitive words can be related to an intention to do something, which is part of the

’outcome’ category; see Section 2.3.2 ’Common reflection categories’), thus allowing

them to highlight changes in the use of these mental words over the course period.

3 http://dev.mysql.com/doc/refman/5.5/en/fulltext-stopwords.html
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Instead of compiling only word lists as dictionaries, such lists can also contain

phrases. Chang and Chou (2011) used a phrase detection system to study emotion,

memory, cognition, and evaluation in learners’ portfolios (emotions relate to the

category ’feelings’, cognition and evaluation to the category ’critical stance’; see

Section 2.3.2 ’Common reflection categories’). The system served as a pre-processor of

content, thereby highlighting specific parts-of-speech (in their case, stative verbs in

Mandarin because the study was conducted in Taiwan), which later helped experts to

assign the automatically annotated words to four categories. Their system contained

approximately 100,000 words and phrases, including word types and frequencies.

They applied a semi-automatic approach by allowing the system to annotate

part-of-speech, whereas researchers, teachers, and experts classified the annotated

words, focusing on ’stative verbs’ (i.e., intransitive verbs, causative verbs, transitive

verbs, and more) into types (Chang and Chou, 2011, p. 109) that formed a ’mental’

lexicon. The types of lexicon were emotion, memory, cognition, and evaluation as

determined by two linguistic experts. The tool was then used to categorise writings

based on word frequencies into one of three types: cognitive, evaluation, and

combined..

Ullmann (2011) and Ullmann et al. (2012) used word lists of reflective keywords,

question cues, and self-references, as well as premise and conclusion, learning outcome,

surprise, future tense, certainty, discrepancy, and insight indicators to analyse text with

regard to these categories associated with reflection.

These examples of dictionary-based approaches to analyse texts with regard to

reflection-related constructs conclude this section. The above listed dictionary-based

approaches were used to automatically analyse texts with regard to several aspects of

cognition (Bruno et al., 2011; Chang and Chou, 2011; Ullmann, 2011; Ullmann et al.,

2012; Chung and Pennebaker, 2012), emotion (Chung and Pennebaker, 2012; Chang

and Chou, 2011), volition (Bruno et al., 2011), evaluation (Chang and Chou, 2011;
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Ullmann et al., 2012), reflective keywords (Ullmann, 2011), premise and conclusion

indicators (Ullmann, 2011; Chung and Pennebaker, 2012), questioning indicators

(Ullmann, 2011), self-reference indicators, future tense indicators, certainty,

discrepancy, and insight indicators (Chung and Pennebaker, 2012), learning outcome

indicators (Ullmann et al., 2012), and surprise indicators (Ullmann et al., 2012).

The next section shows examples of rule-based approaches, which are frequently

built on dictionaries.

3.2.2 Rule-based approaches

The core of a rule-based system is a set of rules that have the form of IF - THEN

statements. Dictionary-based approaches can be seen as a mini rule-based system. If

a text contains the cue word from dictionary X, then it is labelled as category X. In a

rule-based system the rules are used together with an inference engine. This inference

engine infers information based on the rules.

An example of a system based on word lists and phrases stems from research

aimed at analysing discourse in texts. Discourse analysis is widely defined (Kent and

McCarthy, 2012, p. 33). Usually, its focus is on written or spoken argumentation.

One stream of research on discourse analysis is applied in the area of scientific paper

analysis (for example, see Teufel (1999) and Lisacek et al. (2005)).

For example, Sandor (2007) described a system that detects scientific discourse in

texts (see also Sandor (2005); Sándor (2006); Sandor (2007); Sándor and Vorndran (2009);

De Liddo et al. (2012)). Sandor (2007) proposed a mapping between the rhetorical

function (e.g., research background, author contribution) and meta-discourse.

’Metadiscourse is a cover term for self-reflective expressions used to negotiate

interactional meanings in a text, assisting the writer [or speaker] to express a

viewpoint and engage with readers as members’ (Hyland, 2005, p. 37).
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The concept-matching model for meta-discourse of Sandor (2007) consisted of

constituent concepts and markers. Markers are realisations of a constituent concept.

Several constituent concepts form a rhetorical function. The markers that reflect a

constituent concept have to be in a syntactically linked co-occurrence relationship.

The approach for constructing such a system consists of three steps (Sandor, 2007, p.

105) conducted by experts. First, large corpora are analysed to derive a small number

of words seen as related to constituent concepts. Second, the list of words is extended

in order to generate a representative list of words for the constituent concept. Third,

based on the constituent, concepts rules are generated and tested. The rules combine

those constituent concepts that realise a rhetorical function.

With regard to the performance of the approach, Sandor (2005) stated that it is

difficult to evaluate recall, whereas precision can be high (almost 100%). They noted

that the dictionaries have to be constructed manually because there is no automatic

way of constructing these.

Other examples of a rule-based system are derived from the research area of

dialogue analysis (for example, see Graesser et al. (2012); Dessus et al. (2009); Katz

et al. (2000)). Erkens and Janssen (2008) devised a system that aims to code dialogue

acts to ’determine the communicative function of messages in online discussions by

recognizing discourse markers and cue phrases in the utterances’ (Erkens and

Janssen, 2008, p. 487).

The system was first used for manual coding in the ’Verbal Observation System’

(Erkens and Janssen, 2008, p. 450), and later implemented into an automatic system

for the detection of dialogue acts, called ’Multiple Episode Protocol Analysis’ (Erkens

and Janssen, 2008, p. 453). The system distinguishes five elements of dialogue acts,

which in turn comprise 29 sub-elements in total. The elements are argumentative,

responsive, elicitative, informative, and imperative dialogue acts (argumentation
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relates to the category ’critical stance’; see Section 2.3.2 ’Common reflection

categories’).

Here, the underlying assumption is that discourse markers or clue phrases are

generally used by people to indicate to others the intended purpose of the utterance.

The amount of discourse markers is seen as limited, and therefore, in principle,

codifyable by computers.

The system applies a two-step approach. First, the utterances are segmented. Such

segmentation considers punctuation, connective words, discourse markers, and

certain exceptions (Erkens and Janssen, 2008, p. 453). Afterward, the segments are

annotated according to their dialogic acts. The system uses pattern matching with

if-then rules. An example is4: If ’so’ is in the protocol field, then code variable V6 as

the ’Conclusion’. This detects discourse marking words, phrases, idioms, or partial

phrases. In case a message cannot be coded, it is marked with a special annotation.

Approximately 10% of the messages are assigned to this annotation (Erkens and

Janssen, 2008, p. 454), which can then be manually annotated. Erkens and Janssen

described the use of exception rules in order to prevent one dialogue act indicator to

be assigned to more than one element (Erkens and Janssen, 2008, p. 454).

Erkens and Janssen (2008, p. 456; 460ff) compared manually coded texts with the

automatically coded texts of two random segments of 500 chat messages. They used

one human coder experienced in the dialogue act coding system. A total of 29

categories were coded. There was disagreement on 210 messages (21%), from which

106 messages belonged to the comprehensive ’remaining cases’ category. Agreement

over all elements was 79% (85.6% if omitting the comprehensive category) and

Cohen’s κ was 0.75 (0.84) (Erkens and Janssen, 2008, p. 461). The agreements varied

for each element from 0.04 to 0.84 on the lower end of each category, and 0.71 to 1.00

4 http://edugate.fss.uu.nl/mepa/prodrules.htm
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on the higher end. The individual values for each dialogue act annotation were not

presented.

Ullmann et al. (2012) proposed a rule-based system to annotate texts whether they

are reflective or not. The rule-based system chained together dictionary-derived facts

with a set of rules to infer the reflectiveness of texts. The system combined a dictionary-

based approach with a rule-based approach.

Both dictionary-based and rule-based approaches rely on the manual construction of

dictionaries or rules. Once these are modelled, the software can automatically analyse

texts.

The examples outlined above should provide sufficient introduction to rule-based

approaches. Both approaches have been explored in other works of the author of this

thesis (Ullmann, 2011; Ullmann et al., 2012). The next section discusses approaches

based on machine learning. This approach generates these models automatically from

data.

3.2.3 Machine learning approaches

The approaches outlined above rely more or less on pattern extraction methods,

mapping predefined words collected in dictionaries to categories, and rule-based

systems, which often extend dictionary-based approaches. The next type relies on

machine learning algorithms (Sebastiani, 2002), especially text mining algorithms

(Gupta and Lehal, 2009), to classify content. The approaches are not mutually

exclusive. Machine learning approaches also utilise dictionaries, for example, to

reduce feature space. The main advantage of machine learning is seen in its ability to

automatically detect classification rules, compared with human-generated rules, as

demonstrated in the above outlined approaches of Ullmann et al. (2012), Erkens and

Janssen (2008), and Sandor (2007, p. 100), for example.
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Research that applies machine learning algorithms in order to gain insight on

learning grows continuously. Several reviews that discuss machine learning in the

area of educational science have been published (Romero and Ventura, 2006, 2007,

2013; Baker and Yacef, 2009; Baker, 2010; Ferguson and Shum, 2012; Clow, 2013;

Bienkowski et al., 2012; Baker and Inventado, 2014; Papamitsiou and Economides,

2014).

On a conceptual level, machine learning methods can be distinguished into

supervised or unsupervised methods, methods that work on quantitative and

qualitative data, or both. In this section, the focus is on supervised methods

successfully applied to qualitative, unstructured data, such as text. The main

difference between supervised and unsupervised machine learning is that in the

former case, the data are labelled and the goal is to predict labels for new, unseen text

units. Unsupervised methods work without labels. Their main goal is to detect

structure in data for exploratory purposes (see also the discussion in

Section 4.5 ’Machine learning algorithms’).

Regarding the application of machine learning for education on qualitative,

unstructured textual data, a large body of research exists in the area of e-assessment

(e.g., Kalz et al. (2014)), and especially, in the area of automatic essay assessment

(Page and Paulus, 1968; Page, 1968; Hearst, 2000; Landauer, 2003; Shermis and

Burstein, 2003; Wild et al., 2005; Attali and Burstein, 2006; Dikli, 2006; Alden Rivers

et al., 2014; Jordan, 2014; Shermis, 2014). Other strands of research are described as

applied natural language processing, which has many connections to the field of

education (for an overview, see McCarthy and Boonthum-Denecke (2012)).

Furthermore, machine learning is applied in the research area of discourse analysis

(for an overview, see Dessus et al. (2009); Ferguson and Shum (2011); Dascalu (2014)).

Similarly to the previous section, the discussion in this section focusses mainly on the

techniques applied to problems related to the automated detection of reflection. The
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section is divided into two subsections, the first reports on research based on the use

of single machine learning algorithms (see Section 3.2.3.1 ’Single classifiers’), and the

second describes research that used multiple machine learning algorithms to classify

text (see Section 3.2.3.2 ’Multiple classifier’).

3.2.3.1 Single classifiers

This section presents research that applied a single machine learning algorithm to their

classification problem. The machine learning algorithms are artificial Neural Networks,

Naïve Bayes classifier, and Support Vector Machines (SVMs).

McKlin (2004) employed artificial Neural Networks to build classifiers for the

automated classification of discussion posts according to the four categories of

cognitive presence, namely ’triggering events’, ’exploration’, ’integration’, and

’resolution’. According to Garrison et al. (2001, p. 11), cognitive presence comprised

’(...) higher-order knowledge acquisition and application and is most associated with

the literature and research related to critical thinking’. Critical thinking relates to the

category ’critical stance’ of the common reflection categories described in

Section 2.3.2 ’Common reflection categories’.

McKlin (2004, p. 45) outlined that the application of Neural Networks requires a

large number of training data in order to achieve reasonable results. Six coders coded

1,200 messages to build the training corpus for the artificial neural network algorithm.

The coders received training for this coding. Training continued until a pairwise

Cohen’s κ of 0.7 was reached. Most raters had 90 messages for training (McKlin, 2004,

p. 129 ff.). After training, each coder rated 300 messages that were selected by course

(200 messages) and from all courses (100 messages). The latter set of 100 messages

had to be rated by all coders, and served to calculate inter-coder agreement. The

mean Cohen’s κ was 0.6 (percentage agreement, 74%), ranging from 0.49 to 0.74

(McKlin, 2004, p. 86 ff.).
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McKlin (2004) described that the Neural Network algorithm expected numeric

input. The numeric input was based on the frequencies derived with a

dictionary-based approach. These dictionaries were compiled from the 182 categories

of the ’The General Inquirer’ (Stone and Hunt, 1963) and 37 manual categories

(McKlin, 2004, p. 58).

McKlin (2004, p. 58) described an example on the sentence ’YES, I had to look UP to

see the icon’. The words ’yes’ and ’up’ belong to the dictionary ’positive’ words. This

message is then coded as ’2’ on the dictionary category ’positive’.

A total of 1,100 messages were used as the training set, and 100 messages were

used for testing. For the first experiment, the best 102 predictors were used as input

parameters. The Neural Network used two hidden layers and five outputs for the five

elements of the model used in the first experiment (McKlin, 2004, p. 194). The second

experiment used a three-layer network with 40 inputs and four outputs (McKlin, 2004,

p. 195).

McKlin (2004) described two evaluation cycles. The results of the first cycle with the

best machine learning model showed a percentage agreement of 71% and a κ of 0.52

with human judgements (McKlin, 2004, p. 89).

Because of the low agreement, a second cycle was started that refined the training

data set. The reasoning behind this is that it was assumed that the accuracy of the

Neural Network model would increase if the agreement between human coders were

higher (McKlin, 2004, p. 90). This cycle increased the coder agreement. The mean

pairwise Cohen’s κ for the 100 messages coded by all four raters was 0.85 (mean

percentage agreement 90%), ranging from 0.79 to 0.91 (McKlin, 2004, p. 95).

Based on the refined training data, Neural Network models were trained. From the

1,600 coded messages, 125 were removed because they were difficult to code. A total

of 1,180 messages were used for training the Neural Network, whereas 295 messages

formed the test set. Again, several Neural Network models were created. The models
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were used to code the 100 messages for comparison with the human coders. The

model with the best overall reliability was maintained (McKlin, 2004, p. 97). The

highest Cohen’s κ was 0.70 (81% percentage agreement).

The best model had 40 inputs. The three most discriminative features were word

count, questions, and the name of the person from the class (McKlin, 2004, p. 97 f., p.

196).

Corich et al. (2006) described a system (the Automated Content Analysis Tool, or

ACAT) that classifies texts according to the cognitive presence model (Garrison et al.,

2001) and the model of Perkins and Murphy (2006). A Naïve Bayes classifier was used

to distinguish content according to categories of critical thinking.

Corich (2011) reported two research cycles for the first model. The data used in the

first research cycle consisted of 74 posts, which in turn resulted in 484 sentences (the

unit of analysis were sentences). A total of 50 sentences served as training for the two

coders. For the cognitive presence model with four elements, a Holsti’s CR of 0.82 and

a Cohen’s κ of 0.76 was reported (Corich, 2011, p. 126).

These data, labelled by the coders, were then used to train the model. Best results in

comparison with human judgements were a Cohen’s κ of 0.68 and Holsti’s CR of 0.71

(Corich, 2011, p. 151).

For a second study, 80 posts with a total of 310 sentences were analysed. Corich

(2011, p. 162) described that from a total of 462 sentences 152 sentences that were of

a social nature or that did not contribute to the discussion topic were removed. The

agreement between coders was 80% (Holsti’s CR) and 0.76 (Cohen’s κ).

The automated analysis of the new data was based on the training corpus of the

previous study. Corich (2011, p. 165) reported that the agreement between the

automated system and the coders were lower, with the best results being 0.43

(Holsti’s CR) and 0.41 (Cohen’s κ). A re-training of the data set resulted in 0.67

Holsti’s CR and 0.65 Cohen’s κ (Corich, 2011, p. 167).
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The theoretical model of Perkins and Murphy (2006) was used for another

experiment. This model is especially designed to measure critical thinking at an

individual level (Corich, 2011, p. 180f.). The 800 units of the previous forum posts

were re-coded. A total of 400 units were coded with two coders. Disagreements were

removed in mutual understanding. This data served as the training data for the next

experiment.

The 142 students posts contained 436 sentences. A total of 148 sentences were

removed because they were either of a social nature or off-topic. Therefore, 288

sentences formed the test data. The reliability between the automatically coded

results and the human coders reached 0.67 (Holsti’s CR) and a Cohen’s κ of 0.65

(Corich, 2011, p. 187).

Kovanovic et al. (2014) used an SVM algorithm to detect the four elements of

cognitive presence of the model of Garrison et al. (2001). Their data set consisted of

1,747 messages. Two coders rated each message according to the four categories of

cognitive presence. They achieved very high inter-rater reliability (per cent agreement

of 98.1% and a Cohen’s κ of 0.974), which is much higher that the studies reported

above. Their data set consisted of 308 messages classified as ’triggering events’, 684

’exploration’, 508 ’integration’, 107 ’resolution’, and 140 messages labelled as ’other’

(messages in the ’other’ category were not included in the machine learning training

phase).

As resampling strategy, Kovanovic et al. (2014) chose ten-fold cross-validation. The

tuning parameters of the linear SVM algorithms were set at a constant value, which

may have limited the performance of the classifier. It is notable that they tested the

influence of feature engineering on the performance of the classifier. In total, 14

different feature sets were tested. These included, for example, unigrams, n-gram

variants, part-of-speech n-grams, and dependency triples. They excluded those

features that occurred in the entire data set fewer than ten times. The model based on
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unigrams reached a Cohen’s κ of 0.364, whereas the model based on back-off trigrams

achieved a Cohen’s κ of 0.410 (the data with this feature set had the most additional

features).

3.2.3.2 Multiple classifier

Dönmez et al. (2005) used the Minorthird text-learning toolkit (Cohen, 2004) to

classify text segments according to seven dimensions of argumentative knowledge

construction (Weinberger and Fischer, 2006). Such dimensions are: epistemic activity,

micro-level argumentation, macro-level argumentation, social modes of interaction,

reaction, treatment check dimension, and quoted dimension (quoted means whether

the text was quoted as a reply).

1,255 pre-coded text were used as training data for the classification algorithm. A

first test applied K-Nearest Neighbour as classifier with ten-fold cross-validation. The

κ values ranged from 0.35 to 0.81. The categories closest to this research were the

dimension epistemic with a κ of 0.51 and micro-level and macro-level argumentation,

which both had a κ of 0.54. The second experiment was based on voted perceptron

learning algorithm. The reported κ values ranged between 0.49 and 0.98, with 0.49

for the dimension epistemic, 0.76 for the micro-level argumentation, and 0.67 for the

macro-level argumentation.

Rosé et al. (2008, p. 255) reported results that applied several classification algorithms

(Naïve Bayes, SVMs, and Decision Trees) to the same coding schema of Weinberger

and Fischer (2006) reported in Dönmez et al. (2005). Cohen’s κ ranged from 0.49 to

0.91 (epistemic dimension was 0.49, micro-level argumentation was 0.6, and macro-

level argumentation was 0.7). They used two programs, TagHelper (Rosé et al., 2008;

Dönmez et al., 2005) and SIDE (Mayfield and Penstein-Rosé, 2010; Kang et al., 2008),

which are mainly built around the machine learning algorithms of the WEKA toolkit

(Hall et al., 2009). The tools provide the means to reduce the feature space, thus offering
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features such as length, punctuation, unigrams, bigrams, part-of-speech, pre-defined

dictionaries, and an interface to define queries.

Dönmez et al. (2005) and Rosé et al. (2008) did not describe the inter-rater reliability

of the dataset. Weinberger and Fischer (2006) reported the inter-rater reliability of the

framework to analyse argumentative knowledge construction. The Cohen’s κ for the

epistemic dimension was 0.9, for the argument dimension it was 0.78, and for the social

modes of co-construction dimension it was 0.81.

Whereas the previously mentioned approaches did not research reflective thinking

per se, the following work aimed at identifying reflection with machine learning

algorithms. Modupeoluwa (2011) compiled a corpus of blog posts on the reflection of

work received from a medical school, web blog posts (posts about students’ interest in

university courses), and reports of past students’ computing projects (especially

considering the section on student project reflection).

Four classifiers were applied using the WEKA toolkit (Hall et al., 2009). It was

concluded that the Naïve Bayes Classifier and SVM classifier yield the best results

(compared with the Zero-R classifier and the J-48 Pruned Classifier). Cohen’s κ was

not reported.

The texts were classified as reflective based on the label of the text section. The project

report did not contain information as to whether the texts were actually reflective. A

manual content analysis of the chosen texts was missing. This would have helped to

assess the validity of this work because it would have ensured that the texts were

actually reflective or non-reflective.

3.2.4 Automated methods performance

Several of the machine learning approaches focussed on the model of Garrison et al.

(2001). Corich (2011) reached a Cohen’s κ of 0.68 with a Naïve Bayes classifier. McKlin
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(2004) reached a Cohen’s κ of 0.70 using Neural Networks. The work of Kovanovic

et al. (2014) reported a Cohen’s κ of 0.41.

The work of Dönmez et al. (2005) and Rosé et al. (2008) applied several machine

learning algorithms in order to automatically analyse collaborative learning processes.

They reached Cohen’s κ values ranging from 0.53 to 0.76 on related concepts of

reflection. It is notable that these two papers showed that, by experimenting with

different classification algorithms, improvements for certain categories could be

achieved. For example, the cascaded binary classification algorithm had a κ of 0.76 for

the category micro-level of argumentation (Dönmez et al., 2005, p. 132), whereas the

SVM algorithm only achieved a κ of 0.60 (Rosé et al., 2008, p. 255). SVM achieved

slightly higher κ values on the macro-level argumentation. These results tend to

support the approach taken in this thesis, which is to test several classification

algorithms in order to evaluate their differences with regard to performance.

3.2.5 Summary

The high Cohen’s κ scores seem encouraging for further research in this area,

especially given that some of the categories used in such research were related to the

reflection categories (see Section 2.3.2 ’Common reflection categories’).

Argumentation can be seen as part of the category ’critical stance’ because being

critical about something might be expressed in the form of a line of argumentation.

The epistemic dimension contained categories such as the ’construction of the

problem space’ or ’conceptual space’, and the linking of both. This is related to the

category ’description of an experience’, which is a recollection of what occurred.

Describing a past experience can be the problem space on which a person starts to

reflect. The work of McKlin (2004) and Corich (2011) was based on the critical
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thinking model of Garrison et al. (2001). The category ’critical stance’ of the model of

reflection is related to critical thinking.

Machine learning approaches are based on pre-annotated data sets used to train the

classifier. From the outlined research, it seems beneficial for the generation of robust

predictive models for the training set to be of a representative size with many instances

for each category.

The intended use case for these predictive models was to help researchers with

the annotations of texts and text segments for content analysis. For example, ACAT

contains a quantitative content analysis (QCA) training module with which users can

train a model for their content analysis. This model has to be created in advance with

a model management tool (Corich et al., 2006).

The research on machine learning algorithm also outlined the importance of

dictionary-based approaches. For example, McKlin (2004) used a dictionary-based

approach to control the feature space for the Neural Network algorithm. Machine

learning algorithms, dictionary-based approaches, and rule-based approaches can

support each other.

The benefit of dictionary-based and rule-based approaches is that the generated

word lists and rules are manually constructed by experts, and thus, they are well

understood. In essence, it is a codification of the patterns derived from the experience

of domain experts. As such, they can be used to explain why the system arrived at a

certain conclusion. In addition, these systems can achieve high predictive power. For

example, the rule-based system of Erkens and Janssen (2008) reached a Cohen’s κ of

0.75.





4
M E T H O D O L O G Y A N D R E S E A R C H D E S I G N

This chapter discusses the methodological considerations that influenced the choice

of the selected methods and design decisions of the research design. This chapter is

divided into six major parts.

Section 4.1 ’General methodological considerations’ provides the rationale for

choosing a quantitative research approach using machine learning as its main

component. Consequently, Section 4.2 ’Evaluation criteria and metrics’ outlines the

evaluation criteria of the study and provides an overview and discussion of relevant

measurements in the context of this research. Thereafter, two other general design

decisions are motivated. First, Section 4.3 ’Unit of analysis’ provides guidelines on the

choice of the analysis unit and justifies the chosen unit. The choice of the analysis unit

is important because it determines the basic unit for each observation. This is

followed by a discussion on sampling strategies. The choice of sampling strategy

influences the generalisability of the research results. Section 4.4 ’Sampling’

introduces several sampling plans and discusses their benefits and limitations.

Subsequently, Section 4.5 ’Machine learning algorithms’ follows the discussion on

which of the many machine learning algorithms are good candidates for the detection

of reflection in writings. Along with the discussion on the choice of machine learning

methods, this section outlines their concrete implementation.

These sections provide all the information necessary for the description of research

design. The research design outlined in Section 4.6 ’Overview of research design’

contains two major parts. First, Section 4.6.1 ’Dataset generation process’ describes the

91
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process used to generate the dataset on which the machine learning algorithms are

trained and tested. Second, Section 4.6.2 ’Research design’ outlines the research

design and its methods used to answer the research questions.

4.1 general methodological considerations

Before outlining the research design, the following paragraphs summarise the general

considerations with regard to the methodology. The discourse starts with the question

whether a qualitative or quantitative study suits the aim of this thesis.

Many research studies that analysed written reflection used an interpretative

qualitative approach. Examples for this type of research are listed in the cited

literature in Section 2.2 ’Models to analyse written reflection’ (on page 16). Many of

the models for reflective writings were derived by an interpretative, close reading of

the original literature on reflection. This type of research is useful for applying more

precisely the theory of reflection to the context of the analysis of written reflection. In

this thesis, the aim is different: it is to compare the performance of automated

methods to detect reflection with a human baseline. A quantitative approach is most

suitable for this research because it quantifies the difference between generally

expected human performance and the performance of automated methods. This is

also the reason that the literature review on the models of reflection is tailored to

research studies that apply quantitative content analysis. This type of research

produced statistics that serve as the measurement for comparison.

In addition to quantitative content analysis, reflection is assessed with various other

quantitative methods (see Section 3.1 ’Manual methods to detect reflection’ on page

57). Most prominent are questionnaires, but also tests that assess reflective judgement.

Once the data are captured, the results can be generated automatically. However, these
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quantitative methods are used to gather structured data in order to evaluate reflective

thinking skills. They do not allow directly inferring reflection qualities based on text.

Although this research is based on textual data often associated with qualitative

methods of inquiry, the type of study used to answer the research question is

quantitative. The predicted values of the machine learning model are compared with

the actual, true value of the dataset. Both the predicted and actual values are

categorical data that serve to infer several measurements that indicate the

performance of the machine learning algorithms on the problem of reflection

detection. This qualifies this research as a quantitative study.

After de-emphasising qualitative studies and other quantitative methods as

candidate methods for this thesis, the question is why this thesis assumes that

automated methods can be used to detect reflection. Automated methods only work if

there are regularities, patterns, or structure that can be codified. Thus, with the thesis

that automated methods can be used to detect reflection comes the claim that there

are regularities of expressing reflection. The proposal of using automated methods to

detect reflection is built on the hypothesis that there are regularities of how reflection

is expressed in texts.

The assumption that such regularities exist is not unwarranted. Supporting

evidence can be found in the literature of the analysis of reflective writings. The

research outlined in Section 3.1.4 ’Manual reflection detection performance’ indicates

that trained humans can reliably classify text with regard to model categories;

however, a stronger argument for this assumption is the evidence of regularities at the

textual level, and there are indicators for this. Early on Hatton and Smith (1995, p. 42),

based on their experience with coding reflective texts, the authors remarked that they

found language patterns that helped them code dialogic reflection. Further, Fund et al.

(2002, p 491) described patterns related to the reflection categories and the

coordination of idea units. Poom-Valickis and Mathews (2013, p. 423) recorded
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keywords for each reflection category that helped them find categories with similar

connotations. Hawkes and Romiszowski (2001), Hawkes (2001), and Hawkes (2006)

indicated a link between discourse markers and the reflection model of Sparks-Langer

et al. (1990). Further, evidence of linguistic patterns originated from the research on

reflection analysing text with systemic functional linguistics (Shaheed and Dong, 2006;

Luk, 2008; Reidsema and Mort, 2009; Forbes, 2011; Ryan, 2011; Birney, 2012; Ryan,

2012; Wharton, 2012; Ryan, 2014), and from our research using a dictionary-based

approach (Ullmann, 2011) and a rule-based approach (Ullmann et al., 2012).

The next question is why machine learning methods? The research on automated

methods that investigated the detection of related thinking skills (see

Section 3.2 ’Related automated methods’) shows two other types of methods, in

addition to machine learning approaches, called dictionary-based and rule-based

approaches. These are good candidate techniques, especially when combined, for the

automated detection of reflection and were explored in Ullmann (2011) and Ullmann

et al. (2012).

Dictionary-based approaches have advantages in quickly producing frequency tables

for each category, classified with the help of dedicated dictionaries. The dictionaries

can be inspected, which aids the understanding of the assignment of categories to texts.

Rule-based approaches have been applied successfully for classifying text chunks,

such as sentences or paragraphs. They are especially successful in areas where the

variability of expressing the searched concept is limited or extremely well understood.

Both techniques allow manually developing proxies for reflection in texts. However,

the development of these proxies is mostly manual work. This thesis improves the

automation of detection by evaluating algorithms that can build models for these

proxies on their own. Machine learning algorithms have shown great potential for the

classification of text. The research outlined in Section 3.2.3 showed promising results

on related concepts of reflection.
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After outlining the reasons for choosing a quantitative study type, and for choosing

machine learning algorithms to detect reflection, the next section outlines several

other general considerations before describing the research design, its processes, and

methods. The next section describes the three evaluation criteria of reliability, validity,

and objectivity. It follows a summary of measurements derived from the literature

review of related methods, an overview of benchmarks, and the selection of

measurements suitable for this research.

4.2 evaluation criteria and metrics

This section outlines several criteria that are used to evaluate the quality of the research

method. They are the quality criteria of reliability, validity, and objectivity.

Further, this section discusses the measurements used to evaluate the performance

of the methods related to this research (see Chapter 3 ’related methods and

benchmarks’).

One of the three classic quality criteria is reliability, which expresses the extend to

which measurements produced by one measurement instrument can be reproduced by

other measurement instruments (Gwet, 2012, p. 9). Reliability ensures that the results

can be replicated under similar conditions.

Section 3.1.4 ’Manual reflection detection performance’ shows research that

reported the measurements of inter-rater reliability. This measure is important

because high inter-rater reliability expresses a certain confidence that the method for

classifying the proposed model components for reflective writing can be replicated by

other researchers.

This confidence is often encapsulated in a common approach for measuring

reliability on a random subset of the original data. If the reliability is high, the

remaining data can be evaluated by a single coder only. High reliability between
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coders is seen as an indicator that the ratings of one coder are the same as the ratings

of another coder. They both provide the same information. This implies that not all

data have to be evaluated by several coders (Stemler and Tsai, 2008, p. 37f.).

The measures outlined in Section 3.1.4 ’Manual reflection detection performance’

and Section 3.2.4 ’Automated methods performance’, and summarised in this section,

are important when determining the quality of the machine learning models. There, the

classification results of the machine learning model are compared with cases known

to be correct. In a sense, inter-rater reliability is calculated between two coders: the

first coder provides the gold standard for true labels, and the second coder is the

classification model that predicts these labels for each analysis unit of the test dataset.

Validity is a measure to ensure that what is measured is actually that which was

intended to be measured (Gwet, 2012, p. 10). For example, does the automated

method to detect reflection actually measure reflection? Content analysis, compared

with psychological testing (Association et al., 1954, 1993), has its unique challenges to

provide evidence on the validity of the sought construct. The measurement of validity

is an iterative process that attempts to find evidence from imperfect and indirect

methods to build stronger arguments on validity (Krippendorff, 2012, p. 333).

Reliability is a necessary, but not sufficient, criterion for validity. The connection is

that ’unreliability limits the chance of validity’ (Krippendorff, 2012, p. 268), and

’reliability does not guarantee validity’ (Krippendorff, 2012, p. 269). Krippendorff

(2012, p. 270) warned that a common experience among content analysts is that ’in the

pursuit of high reliability, validity tends to get lost’. Poldner et al. (2012, p. 31 f.)

highlighted in their review of quantitative content analysis of reflective writings that

none of the studied articles contained information on the empirical validity of their

category schema.

Objectivity is usually interpreted as how independent or unbiased the results are

from external conditions. It is an important criterion to achieve replicable results by
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other researchers. Researchers can ask the question (Kassarjian, 1977, p. 9): ’Can other

analysts, following identical procedures with the same set of data, arrive at similar

conclusions?’ In order to achieve this, several considerations can be taken into account.

Researchers can ensure the results to be independent from the person(s) conducting

the research. For example, researchers should not take part in the course to be

evaluated because they might provide instructions that influence the writing style of

the participants towards the researchers’ expectations (avoiding experimenter’s bias).

Using independent raters, i.e., those who did not take part in the research

preparation and experiment, fosters replicability. A coding book can be used to

explicate all rating decisions. In addition, if the coders do not know the participants,

only the text might be evaluated, thus making it less likely for their coding decisions

to be biased by the knowledge of the text’s writer.

Another point to consider is that the coders should rate texts independently,

against the practice of discussing difficult coding decisions in order to achieve mutual

agreement.

The criterion of objectivity is important for the data generation step. Attention

should be paid for the raters to code the data independently, based on explicit coding

instructions. In addition, coder training has to be described in detail in order for other

researchers to replicate the results. The research described in Section 3.1.4 ’Manual

reflection detection performance’ only provided detailed information on this step for

some cases. This resonates with the finding of Poldner et al. (2012, p. 32), which was

that none of the 18 reviewed papers included information on the necessary amount of

training.

There is no risk of compromising objectivity when using machine learning models

to predict the label for new text units because these models deterministically predict

the same outcome for the same input.
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Reliability and validity can be determined empirically. Several measures of reliability

and validity exist. The following sections highlight the important metrics used in the

research work of the following related methods sections, as well as the metrics used

later to assess the quality of the automated detection of reflection.

In particular, in the context of the research on the manual analysis of reflection

agreement, reliability, and correlation metrics are used to evaluate the quality of the

manual content coding. As outlined in Section 3.1.4 ’Manual reflection detection

performance’, the most frequent measures are the per cent agreement, Cohen’s κ,

Cronbach’s α, Intraclass Correlation Coefficient (ICC), Krippendorff’s α, and

Pearson’s r (Pearson product-moment correlation coefficient).

The reported measures to compare human and machine coding outlined in

Section 3.2.3 ’Machine learning approaches are per cent agreement, Cohen’s κ, and

Holsti’s coefficient of reliability (CR).

The following paragraphs discuss all these metrics. In addition, this section

explains those metrics that are important for describing the performance of the

machine learning algorithms.

Per cent agreement is one of the simplest and most common measures of agreement.

Per cent agreement =
Number of agreements

Number of all cases
∗ 100 (1)

The average pairwise per cent agreement can be used for the case of three or more

coders. A variation is the calculation of agreement with tolerance. For example,

tolerance by one means that two raters still agree if their coding differs by one.

There is a debate on reporting only the per cent agreement when describing the

reliability of a study. The argument is that it does not consider chance agreement and

can lead to an overestimation of the agreement, especially when there is an imbalance
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in the category frequency (Lombard et al., 2002, p. 590) (see an example of this in the

discussion on per cent agreement in the context of other reliability indices in

Section 3.1.4 ’Manual reflection detection performance’ on page 70). However, there

are cases where the raters are extremely consistent with their rating (high agreement),

but the probability of the reliability indices is low (e.g., low Cohen’s κ). This is also

often the case where the data are imbalanced. A reliability index proposed for such

situations is Gwet’s AC1, which is discussed in the context of other reliability

measures below.

The benefit of the per cent agreement is that it can be interpreted intuitively and it

is easy to calculate. When using per cent agreement, it is recommended to also report

a metric that accounts for chance agreement (Lombard et al., 2002, p. 600).

Holsti’s CR is a modified version of the per cent agreement, and as such, it does not

consider chance agreement (Rourke et al., 2001). Holsti’s CR was described ten years

earlier, and it is referred as Osgood’s coefficient (Krippendorff, 2004b, p. 417).

Cronbach’s α (Cronbach, 1951; Cronbach and Shavelson, 2004) is a measurement of

internal consistency frequently used in the item analysis of questionnaires to create

summary scales. Pearson’s r ranges from -1 to 1. A correlation of 1 indicates a strong

positive correlation, whereas a correlation of -1 indicates a strong negative correlation.

A correlation of 0 indicates no correlation. This is related to Pearson’s Φ coefficient

(aka rφ coefficient), which calculates the strength of the association between two

binary variables. The correlation coefficients are often used to empirically assess the

validity of a measurement tool. Cronbach’s α was reported as a reliability measure in

the research about the manual content analysis of reflective writing (see

Section 3.1.4 ’Manual reflection detection performance’). However, Krippendorff

(2012, p. 307), Krippendorff (2004b, p. 428f.), and Müller and Büttner (2006) noted that

Cronbach’s α and Pearson’s r are measures of association and not of reliability.
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After the description of the per cent agreement and several association measures,

the focus now shifts to indices of inter-rater reliability (for an introduction to reliability

measures, see Krippendorff (2012, p. 267-328) and Gwet (2012)).

Frequently cited in the related methods section of this thesis (see

Section 3.1.4 ’Manual reflection detection performance’ and Section 3.2.4 ’Automated

methods performance’) is Cohen’s κ, a chance-corrected agreement measure (Cohen,

1960) that aims to overcome the limitations of the per cent agreement by removing the

proportion of agreements that can be expected by chance. Cohen’s κ can only be used

for two raters, but several extensions have been proposed for multiple raters (see

Fleiss et al. (2003, p. 610 ff.)).

There is not one ICC, but many different forms of them. Shrout and Fleiss (1979)

outlined six models. Several considerations have to be made when choosing the right

model for the given study. The guidelines are provided by Shrout and Fleiss (1979).

Müller and Büttner (2006) provided a decision tree to select the appropriate ICC

model. ICC(1,1) is proposed for the situation where each unit is rated by multiple

raters. ICC(2,1) can be used when all units are rated by the same set of raters. Both

raters and units are selected randomly. The conditions for ICC(3,1) are similar to the

conditions for ICC(2,1), with the exception that the raters are not selected randomly

(Gwet, 2012, p. 151 ff.). The number ’1’ that follows the model number signifies that

this is a model that considers the ratings of the individual raters. In addition, all three

models exist for case where the averages of the raters are used instead of the

individual ratings, and they are denoted as ICC(1,k), to ICC(3,k). The ’k’ indicates

that it is the average and not the individual model of k raters. They are useful for

situations where the ratings of the individual raters can be seen as unreliable (Gwet,

2012, p. 151 ff.).

Krippendorff’s α is a statistic for reliability, and it usually spans between zero and

one. A value of zero represents coding that would be expected by chance, whereas a
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value of one represents perfect reliability. A value smaller than zero indicates a

structural error in the data (for example, if coders systematically code differently, it

might be because of a misunderstanding in the coding process).

Krippendorff’s α is described as a statistic that considers chance agreement, it is

applicable to different sample sizes, it scales, it is robust in the case of missing data,

and multiple coders are allowed (see Krippendorff (2004a, p. 787) and Krippendorff

(2012, p. 278)).

Another interesting property is that the rater is generalised out of the equation.

Krippendorff (2012, p. 282) outlined that the individuality of the raters is not

necessary for a reliability index to be considered, because only the aggregated

evaluation for each unit counts. This is important for the context of the process that

generates the dataset. There, the ratings are originated by different individuals, unlike

the traditional case where the same person rates all items once. This property of

Krippendorff’s α does not require coders to complete all questions. They can stop at

any time.

Another metric with similar beneficial characteristics as Krippendorff’s α is the

AC1 coefficient proposed by Gwet (2008, 2012). AC stands for Agreement Coefficient.

The subscript 1 is used to differentiate the AC1 from the AC2. The AC1 considers

first-level agreement (total agreement) and the AC2 considers second-level agreement

(partial agreement) (Gwet, 2012, p. 78 f.). In the case of nominal data, κ and α

statistics sometimes produce extremely low reliability values, although high

agreement is present. Gwet (2008) positions his AC1 coefficient in this context to

resolve this ’paradox’ of low reliability values, although the data indicate high

agreement (Gwet, 2012, p. 36ff).

In addition to deciding the statistics to measure reliability, it is also important to

discuss the level of reliability that is acceptable. Although there cannot be a definite
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answer because the level relies on the particularities of the specific research, some

benchmarks for reliability measures have been proposed.

Krippendorff (2012, p. 325) recommends the following levels for Krippendorff’s α

based on research in social science:

• α values between 0.667 and 0.800 for tentative conclusions

• α values over 0.800 are reliable

However, these values have to be seen from the perspective of the possible research

consequences. For example, more strict guidelines should be enforced for research with

high cost for wrong conclusions, and less strict for the case of exploratory research.

Landis and Koch (1977, p. 166) proposed several labels to describe the relative

strength of the agreement derived by κ statistics. The strength of the agreement

ranges from poor (< 0.0), slight (0.00-0.20), fair (0.21-0.40), moderate (0.41-0.60),

substantial (0.61-0.80), to almost perfect (0.81-1.00). They noted that their

categorisation is arbitrary to a degree, and has to be evaluated carefully for specific

research context.

Fleiss et al. (2003, p. 604) also provided recommendations for acceptable levels of

reliability for the κ statistics based on Landis and Koch, ranging from poor (below 0.4),

fair to good (0.40-0.75), to excellent agreement (above 0.75). These recommendations

are based on the experience of these researchers stemming from their research on

reliability.

Stemler and Tsai (2008, p. 48) provided guidelines for acceptable inter-coder

reliability values for exploratory research studies. Acceptable values are 70% per cent

agreement, Cohen’s κ of 0.5, Pearson’s r of 0.7, and Cronbach’s α of 0.7, and an ICC of

0.6.

After outlining the measures used to describe the quality of content coding, the focus

is now on the metrics frequently used to describe the performance of machine learning

algorithms, which is important when evaluating the performance of the automated

reflection detectors.
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The following table combines several terminologies from content analysis, machine

learning, and statistics in general.

Relevant/ Irrelevant/

Actual positive/ Actual negative/

H0 is false (in

reality H1 is true)

H0 is true

Retrieved Correct

inclusions

Commissions

Predicted/test positive True positive

(TP)

False positive

(FP)

Reject H0 (decision to

accept H1)

Right decision Type I error

(α-error)

Not retrieved Omissions Correct

exclusions

Predicted/test

negative

False negative

(FN)

True negative

(TN)

Fail to reject H0

(decision to accept H0)

Type II error

(β-error)

Right decision

Table 4: Combined confusion matrix

Based on Table 4, important metrics such as the accuracy, sensitivity, and specificity

are briefly described. These are measures cited frequently in the literature to evaluate

machine learning algorithms (for example, see Witten et al. (2011, p. 147-187)).
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Accuracy is the sum of all true positives and negatives divided by the sum of all cell

values of the confusion matrix:

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Here, accuracy is the same as the per cent agreement outlined above because it

calculates the ratio between the sum of all positive and negative ’agreed’ cases and all

other cell values.

Two other measures that are important for describing the performance of predictive

models are sensitivity and specificity. Sensitivity, also referred to as the true positive

rate, or recall, is defined as:

Sensitivity =
TP

TP + FN
(3)

Specificity, or the true negative rate, is defined as:

Specificity =
TN

TN + FP
(4)

The receiver operating characteristics (ROC) curve is a tool for inspecting the trade-

off between sensitivity and specificity. ROC visualises the sensitivity (true positive rate)

against the false positive rate (1-specificity/true negative rate) (see also Bradley (1997)

for a discussion on ROC curves). ROC can be summarised in a metric known as the

area under the ROC curve (AUC). AUC of 0.5 indicates random performance without

predictive value, whereas a value of 1.0 indicates a perfect classifier.

Several other measures for evaluating the quality of machine learning algorithms

exist (e.g., Powers (2011)). Among them is the positive predicted value (also referred to

as precision) defined as TP
TP+FP , negative predicted value ( TN

FN+TN ), and F1 value defined

as 2× precision×recall
precision+recall ).
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From the discussion on these metrics, it can be inferred that there is not a single

best performance measure. This suggests that it is best to report several measures to

evaluate the performance of the machine learning algorithms. In order to cover most

of the measurements reported in Section 3.1.4 ’Manual reflection detection

performance’ and Section 3.2.4 ’Automated methods performance’, the following

measures are used in the evaluation chapter: per cent agreement/accuracy because it

is the most frequently reported metric in Section 3.1.4 ’Manual reflection detection

performance’; Cohen’s κ because it is mentioned both in the related manual methods

and automated methods sections; ICC and Krippendorff’s α in order to cover most of

the measures stated in Section 3.1.4 ’Manual reflection detection performance’; and

Gwet’s AC1, although it has not been cited in Section 3.1 ’Manual methods to detect

reflection’ or Section 3.2 ’Related automated methods’, but it might be useful to

include in case other researchers want to compare their results. Cohen’s κ,

Krippendorff’s α, Gwet’s AC1, and ICC are all measures of inter-rater reliability.

Although Cronbach’s α is mentioned in Section 3.1.4 ’Manual reflection detection

performance’, it is not included because it is a measure of internal item consistency,

and not of inter-rater reliability (see above).

In addition to these main measures, in order to answer the research question, the

following measures are added to the discourse: specificity (true negative rate),

sensitivity (true positive rate or recall), and AUC.

All measurements are calculated with the R environment for statistical computing

and graphics (R Core Team, 2014). Gamer et al. (2012) provided the implementation

for Cohen’s κ and Krippendorff’s α, and Revelle (2013) the implementation for ICCs.

The implementation of Gwet’s AC1 (Gwet, 2012) can be found online1. AUC and the

ROC curves are generated with the pROC2 package developed by Robin et al. (2011).

1 http://www.agreestat.com/r_functions.html
2 R package pROC: Display and analysis of ROC curves. Version 1.7.3. http://cran.r-project.org/web/
packages/pROC/index.html.

http://www.agreestat.com/r_functions.html
http://cran.r-project.org/web/packages/pROC/index.html
http://cran.r-project.org/web/packages/pROC/index.html
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4.3 unit of analysis

The analysis unit results from the research goal, and it is determined by the researcher.

A unit is everything that has a distinct meaning to an analyst (Krippendorff, 2012, p.

98-111,277). Common units in text analysis are words, clauses, sentences, paragraphs,

and the entire document.

There are two general guidelines to remember when defining the analysis unit

(Krippendorff, 2012, p. 102). First, they have to be sufficiently large to capture the

meaning of the unit. If the text segment is too small, any meaning that could be

derived from the context of the segment might be lost. If the segment is sufficiently

large, the meaning is less likely to be missed, adding to the validity of the study.

Second, smaller units tend to be more reliable because fewer contexts have to be

considered, which might lead to more unanimous interpretation. More contexts might

lead to more and different interpretations.

The automated methods outlined in Section 3.2.3 ’Machine learning approaches’

mentioned as unit of analysis either sentences, text segments, or the entire text

(messages, blog post, etc.). Table 3 of Section 3.1.4 ’Manual reflection detection

performance’ listed the units used by the coders of the reflective writings. The

analysis unit ranges from the entire text to sentence parts. Usually, the entire text is

used as an analysis unit when determining the reflection levels, and smaller units for

the descriptive reflection elements. Overall, this suggests that the analysis unit

depends on the aim of the study. A more coarse-grained analysis unit is used if the

goal is to make statements for each single text, and a more fine-grained analysis unit

is used if the aim is to analyse the occurrences of reflection breadth categories in texts.

This research on the manual content analysis of reflective writing suggests that
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smaller units (paragraph, sentence, etc.) are more suitable for descriptive reflection

models.

4.4 sampling

Sampling is an important technique that helps make informed decisions on the

generalisability of research findings. The focus of this section is on statistical

generalisation.

The general question is to what extent does a smaller sample size represent a larger

one with the aim of representing the entire population/universe of texts (Krippendorff,

2012, p. 112). This is about choosing a representative subset for a given universe. The

assumption is that by finding a representative subsample, the conclusions drawn are

the same for the entire population. Sampling plans can help determine appropriate

sample sizes and choices.

Ideally, a sample is drawn randomly from the entire population. However, in order

to do this, the population of all these texts must be known. If the sample is sufficiently

large, the results allow representative and valid inferences on the entire universe.

Rather than considering the entire universe of texts, a sample frame ample for a

particular research question can be chosen that consists of texts available to the

researcher. From this sample frame, the actual sample is chosen. The sample frame

should ideally represent the universe.

However, the method of drawing samples can introduce bias that can negatively

affect the representativeness. Several sampling techniques relevant for the automated

reflection analysis are presented and discussed according to their representativeness.

Drawing subsets from the universe can be performed with either probability or non-

probability methods (Riffe et al., 2005, p. 97ff.).
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Some examples of sampling methods that consider probability are simple,

systematic, and stratified random (Krippendorff, 2012, p. 114 ff.). The requirement for

probability samplings is a complete list of units of the sample frame. For simple

random sampling, several units are selected randomly. Systematic random sampling

means that from a randomly chosen unit, every other xth unit is chosen. However, if

the sample is ordered in a way that conflicts with the decision of the xth unit, it can

introduce bias. For example, this applies to events that are time-dependent. Let us

assume that a researcher attempts to estimate course participation in an online forum,

and only considers every 7th day (e.g., Sunday); this might not reflect general course

participation. Stratified sampling means to group the universe into several strata.

From every stratum, the sample is determined either by simple random or systematic

random sampling. For example, a text corpus consists of texts. Each text belongs to a

genre. The frequency of texts that belong to a genre might vary. For each genre or

stratum, a sub-sample can be drawn randomly based on the frequency of texts

available in each stratum.

Methods not based on probability are multistage, convenience, snowball, and

relevance sampling (Krippendorff, 2012, p. 114 ff.). Convenience sampling is a

method through which the researcher includes or excludes units based on their

convenience. There is no effort made to sample a population. Snowball sampling is a

technique that systematically includes or excludes texts based on an initial set of units.

The extension of the sample is based on a sampling criterion. Relevance sampling or

purposive sampling is a technique that retrieves units relevant for answering the

research question. The goal is to systematically reduce documents to a manageable

amount based on the relevance criteria.

With the assumption that reflections are relatively rare (see Ullmann et al. (2013) for

empirical evidence that supports this assumption), there are fewer texts that contain

reflections than texts that do not express a reflective stance. This introduces certain
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trade-offs to be considered when sampling texts with respect to the generalisability

of the sample. Random sampling from large text corpora (for example, the British

national corpus3) results in a text collection, which only contains a small proportion of

texts that contain reflections.

A small set of texts that contain the sought characteristic traits of reflection is

diametrical to the requirements of automated machine learning methods that usually

require a larger set of training data. With this outlined, the trade-off is between

reaching high generalisability using a large representative sample with the cost of

many texts with few reflections, and custom samples with lower generalisability, but

with higher amount of reflections.

After the discourse on evaluation criteria, measurements, choice of analysis unit,

and sampling strategies, the next important decision to discuss is the selection of the

machine learning algorithms.

4.5 machine learning algorithms

There is a large variety of machine learning algorithms from which to choose. For

example, Fernández-Delgado et al. (2014) listed 179 machine learning algorithms for

only one area of machine learning, namely, classification problems. Whereas some

perform well on many different datasets, the question is, do machine learning

algorithms perform well in the context of the detection of reflection?

When faced with the problem of choosing good candidate machine learning

algorithms, several considerations can be made.

In general, machine learning can be distinguished as either a supervised or

unsupervised learning problem (James et al., 2013, p. 26 ff.). Supervised methods are

based on a defined variable that the machine learning algorithms seek to predict

3 http://www.natcorp.ox.ac.uk/

http://www.natcorp.ox.ac.uk/
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based on several predictor variables. For example, an analysis unit is labelled as

reflective or descriptive. The unit text serves as label predictor. Unsupervised

methods work without this response variable, and their aim is to detect structure in

the existing data without the supervision of a response variable. Some examples are

clustering or the discovery of topics.

The immediate problem is a supervised problem because the aim of this thesis is to

predict labels from text inputs relevant for reflection.

Another distinction can be made based on the type of obtainable variables. The

data can be either quantitative (numerical) or qualitative (categorical) (James et al.,

2013, p. 28 f.). An example of quantitative data is stock market prediction based on

historical stock market prices. In this context, qualitative variables are, for example,

the categories of the common reflection categories, or reflective vs. descriptive. This

distinction can help determine the type of model to use: a model more suitable for

regression problems (quantitative), or a model more suitable for classification problems

(qualitative). However, it is not strictly an either/or decision because some machine

learning algorithms can work on both problem spaces (James et al., 2013, p. 28).

For the context of this thesis, the variable to predict is qualitative/categorical, and

not quantitative. Therefore, the problem space is one of classification. In addition, the

variables that predict the outcome variable (e.g., reflective or descriptive) are also

qualitative. For example, they might be all words of an analysis unit.

With these decisions, the choice of algorithms is reduced to machine learning

algorithms for classification problems. There is a wide variety of machine learning

classifiers available (for recent reviews, see Caruana and Niculescu-Mizil (2006);

Kotsiantis et al. (2007); Kotsiantis (2007); Khan et al. (2010); Aggarwal and Zhai (2012);

Fernández-Delgado et al. (2014); and Aphinyanaphongs et al. (2014)). The following

paragraphs provide the rationale for the selection process of classifiers that are good

candidates for reflection detection.
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According to Aggarwal and Zhai (2012, p. 165 f.), some of the key methods used for

text classification are decision trees, rule-based, Support Vector Machine (SVM),

Neural Network, and Naïve Bayes classifiers. All, with the exception of the rule-based

algorithms, were applied to the research outlined in Section 3.2.3 ’Machine learning

approaches’. These are good candidates because they were successfully applied to

related concepts of reflection.

The first two, decision trees and rule-base classifiers, have the benefit that their

models can be interpreted intuitively because they either build a tree structure – a

decision tree, or they generate rules that follow the common premise and conclusion

pattern. They do not belong to the highest performing classifiers (Fernández-Delgado

et al., 2014), but they do have the potential of fostering the understanding of reflective

writing because they exhibit patterns in a more easily interpretable way.

In addition to the classifiers outlined in the related automated methods section,

Random Forests is included to the set of classifiers for the final evaluation because it

shows constantly good results on an array of different datasets in the study of

Fernández-Delgado et al. (2014).

The candidate classifiers for this thesis are tree-based, rule-based, SVM, Neural

Network, Naïve Bayes, and Random Forests. These are used to test the research

question of the thesis.

In order to structure the argument used to answer the research question, the

candidate classifiers are summarised into the three categories listed below. Each of

these three categories are related to one of the three lines of investigations described

in Section 1.1 ’Research questions’.

Tree-based models: tree-based models form a decision tree of the data. The tree can

then be used to determine whether a particular sentence is reflective. As a simplified

example, let us consider a tree that consists of three nodes (one root and two terminal

nodes). The root node checks whether a sentence contains the token ’I’. If so, the
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sentence is classified as yes (terminal node ’yes’); otherwise, it is classified as ’no’. The

benefit of tree-based models is that they can be highly interpretable. One of the

limitations is that they may not produce the best performance. Tree-based models are

used to investigate the first line of investigation, ’I1: Can tree-based machine learning

algorithms detect the difference between descriptive and reflective texts segments?’

Rule-based models: with rule based models, the classification decision is defined in

one or more rules that follow the form of if-then statements. Only if the condition is

true, is the conclusion true. For example, if the sentence contains the term ’I’, it is a

reflective sentence. As with the tree-based models, rule-based models are highly

interpretable, but they may be lacking in predictive performance. Rule-based models

are used to investigate the second line of investigation, ’I2: Can rule-based machine

learning algorithms detect the difference between descriptive and reflective text

segments?’

High performance models can be discerned from tree-based and rule-based

models because of their complexity in prediction capability. They usually have a

higher predictive capability than the other two types, but their models may not be

easy to interpret. The following classifiers are selected as candidates to investigate the

third line of investigation ’I3: Can high performance machine learning algorithms

detect the difference between descriptive and reflective text segments?’: SVM, Neural

Network, Naïve Bayes, and Random Forests.

The first two types of models are interesting because of their ability to generate

decision trees and rules that can be seen as frequently co-occurring word tokens. Such

models find patterns in the data that can be helpful in obtaining a better understanding

on the nature of reflection expressed in texts.

The third type uses more complex mechanisms to automatically classify sentences.

They produce models that usually perform very well, but are generally not easy to

interpret. The research focus with this third type is less on what constitutes reflection,



4.5 machine learning algorithms 113

and more on the exploration of the predictive capabilities of these algorithms in the

context of automated analysis of reflection.

Investigations of all three types of machine learning algorithms help obtain an

understanding on the quality of the algorithms for automated analysis of reflection.

After the discourse on the selection of good candidate machine learning classifiers

for the problem of reflection detection, the following sections list the specific

classifiers used in the evaluation part of this thesis. In addition, these sections provide

information on the software that implemented each of the classifiers.

4.5.1 Tree-based models

Several tree-based models are explored, all of which build a tree structure of the data.

The models can be differentiated in the way they find the optimal division of a node

into sub-nodes, and in how the trees are pruned to achieve better fit for unseen data.

The following algorithms for constructing tree structures suitable for classifying text

are considered:

CART trees (Classification and regression trees). Trees are built in two stages: the

first builds the tree, and the second prunes the tree to avoid overly complex trees

that do not generalise well. The tree building stage starts by finding the variable that

best separates the tree into two subsets. Then, for each of the two subsets, the best

division is determined. This process continues until a stop criterion stops the growth

of the tree. In the second stage, the full-grown tree is pruned to the right size using

cross-validation to alleviate over-fitting. An over-fitted model predicts every instance

of one dataset very well, but does not predict instances of another datasets very well.

It has learned the noise of one dataset that reduces its performance for other datasets.

The right choice of model parameters helps to avoid over-fitting. Here, two variants

for finding the right size of the tree are available. The first parameter is based on a



114 methodology and research design

complexity parameter (cp). Trees tend to be smaller with bigger complexity parameter

values. The second parameter controls the maximum depth of a tree.

The implementation used here is from the R-package rpart4 (Recursive Partitioning

and Regression Trees) created by Therneau et al. (2014). The authors of the package

implemented functions based on the book by Breiman et al. (1984).

Conditional inference trees. This algorithm uses a conditional inference framework

(Hothorn et al., 2006) for splitting the tree. The data are evaluated with the ctree

algorithm of the R-package party5. The ctree algorithm is tuned once for minicriterion

(this is the value of the test statistic that regulates a separation), and once for

maxdepth (maximum tree depth).

C5.0 Decision Trees. This algorithms was proposed by Quinlan (1993). The

implementation used here can be found in the C50
6 package by Kuhn et al. (2014a).

C4.5-like trees. This algorithm is an older version of the C5.0 algorithm by Quinlan

(1993) (see above). The implementation used here is the J48 algorithm described by

Witten and Frank (2005). J48 is a C4.5-like implementation, and it can be found in the

R package RWeka7 provided by Hornik et al. (2009). The algorithm has the confidence

threshold C as the tuning parameter.

4.5.2 Rule-based models

Rules have the benefit of forming if-then statements that are highly interpretable.

Rule-based systems can be either built by experts who manually generate rules for a

knowledge-based system, or the rules can be derived from the data.

For example, Ullmann et al. (2012) explored the potential of manual reflection

detection rules. A set of rules was developed aimed at detecting those sentences

4 Version 4.1-8. http://cran.r-project.org/web/packages/rpart/index.html.
5 Version 1.0-15. http://cran.r-project.org/web/packages/party/index.html
6 Version 0.1.0-19. http://cran.r-project.org/web/packages/C50/index.html.
7 Version 0.4-23. http://cran.r-project.org/web/packages/RWeka/index.html.

http://cran.r-project.org/web/packages/rpart/index.html
http://cran.r-project.org/web/packages/party/index.html
http://cran.r-project.org/web/packages/C50/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
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relevant for reflection. The rules built on each other and on the last level of

aggregation are indicative of whether a text is reflective.

Here, the rules are not created manually. Instead, the following algorithms are

chosen to form rules based on the underlying data. The following rule-based models

were chosen in order to test their suitability for the detection of reflection.

C5.0 Rule-Based Models. The C5.0 group of algorithms has a version for decision

trees (see Section 4.5.1), but also a rule-based version. The R-package C50
8 by Kuhn

et al. (2014a) is used to test the model performance.

PART generates rules from partial decision trees (Frank and Witten, 1998). This

algorithm can be tuned over a threshold parameter.

OneR generates one rule based on the variable with the lowest error rate (Witten

and Frank, 2005). This is an extremely simple model because it only produces a single

rule. This algorithm is included in order to find a baseline of the performance of the

machine learning algorithms.

JRip is a Ripper algorithm (repeated incremental pruning to produce error

reduction) for finding rules (Witten and Frank, 2005). The numopt tuning parameter

is the number of optimisations.

The implementations used for PART, OneR, and JRip can be found in the R package

RWeka9 developed by Hornik et al. (2009).

All the algorithms Section 4.5.1, Section 4.5.2, and Section 4.5.3 can be executed

with the R-package caret10 created by Kuhn et al. (2014b). This is a classification and

regression training framework that unifies and standardises the execution of machine

learning algorithms.

8 Version 0.1.0-19. http://cran.r-project.org/web/packages/C50/index.html.
9 Version 0.4-23. http://cran.r-project.org/web/packages/RWeka/index.html.

10 Version 6.0-30. http://cran.r-project.org/web/packages/caret/index.html.

http://cran.r-project.org/web/packages/C50/index.html
http://cran.r-project.org/web/packages/RWeka/index.html
http://cran.r-project.org/web/packages/caret/index.html
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4.5.3 High performance models

SVM. This is a class of models aimed at finding the optimal hyperplane to separate

classes. By adjusting their kernel function, SVMs can be extended to capture patterns

that are not linear. The implementation used here is from the R package kernlab – the

Kernel-based Machine Learning Lab11 developed by Karatzoglou et al. (2004).

Three kernel functions are explored: the linear kernel tuned over several cost

candidates; the radial kernel tuned over sigma and cost; and the polynomial kernel

tuned over degree, scale, and cost. All three kernels have been successfully applied to

text classifications tasks (Joachims, 1998; Hornik et al., 2006).

The cost parameter controls the smoothness of the function (higher cost generates

less smooth functions). Sigma controls the kernel width and it can be estimated

automatically by the package. Degree and scale are the parameters of the polynomial

kernel function.

Neural Networks are techniques inspired by the mechanisms of the brain. A Neural

Network is a network that starts at the input nodes (neurons) of the predictor variables,

and ends in an outcome node with the prediction. In the middle, there is a network

of hidden nodes. This layer is where the network learns the function to map the input

nodes to the output nodes.

The chosen implementation is the R package nnet-Feed-forward Neural Networks

and Multinomial Log-Linear Models12 developed by Venables and Ripley (2002). The

nnet algorithm can be tuned over several candidate parameters, namely, size and decay.

Random Forests are algorithms similar to the decision tree models used in

Section 4.5.1. In fact, it is an ensemble of decision trees. The algorithm generates from

selecting randomly a subset of predictors decision trees over several iterations. The

11 Version 0.9-19. http://cran.r-project.org/web/packages/kernlab/index.html.
12 Version 7.3-8. http://cran.r-project.org/web/packages/nnet/index.html.

http://cran.r-project.org/web/packages/kernlab/index.html
http://cran.r-project.org/web/packages/nnet/index.html
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result of this is many different trees - a forest of trees. To classify an input, the

algorithm runs through all decision trees. The results from all these decisions are

aggregated and reported as the classification output.

The implementation used is the R package randomForest – Breiman and Cutler’s

Random Forests for classification and regression13 developed by Liaw and Wiener

(2002) based on the code from Breiman (2001). The Random Forests implementation

can be tuned over several mtry candidates, which is the amount of randomly selected

input features.

Naïve Bayes is an algorithm based on Bayes’ rule. It is naïve because it assumes that

all predictors are independent from each other. This has the benefit of quick processing

while producing good performance in many cases.

The implementation used is one from the R package klaR - Classification and

visualisation14 - developed by Weihs et al. (2005) by extending the code from Meyer

et al. (2014). The tuning parameters are fL that control the Laplace correction, and

usekernel, which is Boolean. If set to true, a kernel density estimate is used for

density estimation; if set to false, the normal density is estimated.

This concludes the discussion on the selection of promising machine learning

algorithms for the detection of reflection in texts. Based on several decision criteria, a

list of candidate classifiers was compiled. These are seen as strong candidates for the

problem of reflection detection because they have been applied successfully to related

concepts of reflection as outlined in Section 3.2.3 ’Machine learning approaches’, and

further, these candidate classifiers show generally good performance when applied to

a variety of datasets. In addition, high performing classifiers and classifiers that can

generate interpretable results were chosen. The latter can potentially help understand

better the structure of reflective writings.

13 Version 4.6-7. http://cran.r-project.org/web/packages/randomForest/index.html.
14 Version 0.6-11. http://cran.r-project.org/web/packages/klaR/index.html.

http://cran.r-project.org/web/packages/randomForest/index.html
http://cran.r-project.org/web/packages/klaR/index.html
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After outlining general methodological considerations in Section 4.1 ’General

methodological considerations’; the importance of the evaluation criteria on reliability,

validity, and objectivity; several measurements (see Section 4.2 ’Evaluation criteria

and metrics’); the discourse on the choice of the analysis unit (see Section 4.3 ’Unit of

analysis’); sampling strategies (see Section 4.4 ’Sampling’); and the discussion on the

selection of suitable machine learning algorithms (see Section 4.5 ’Machine learning

algorithms’), the next section describes the research design used to answer the

research question.

4.6 overview of research design

This section explains the research design used to answer the research question. The

research design is based on the previously outlined methodological considerations.

There are two parts to discuss: first, the process applied to generate the dataset on

which the machine learning algorithms are trained and tested, and second, the design

used to evaluate the performance of the machine learning algorithms.

Figure 1 shows a high-level overview of the research design with the data generation

process at the top and the evaluation at the bottom.

The data generation step (upper half) describes the process to generate the dataset

used in the evaluation step. It starts with a text collection. The text collection is then

annotated according to indicators (also called operationalisations or proxies) of the

common reflection categories. The result of the annotation task is a collection of

annotated units that serve as input to the evaluation step. The evaluation step (lower

half) uses the dataset of text units as input. This dataset is divided into two parts: the

training data used to generate the machine learning models, and the test data used to

assess the models generated in the training step. The assessment of the models is the
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Figure 1: Overview of research design

final step, and it provides the performance estimates necessary to answer the research

question.

The next two sections describe the details of this high-level overview of the research

design. It starts with the description of the process applied to generate the dataset.

4.6.1 Dataset generation process

The review of the automated methods in Section 3.2.3 ’Machine learning approaches’

suggested that large datasets are necessary to apply machine learning to related

constructs of reflection. McKlin (2004) reported 1,180 messages for training and 295

for testing. Kovanovic et al. (2014) based their study on 1,747 messages, and Dönmez

et al. (2005) on 1,255 text segments. Considering that reflection occurs relatively rarely
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in texts (Ullmann et al., 2013), intensified the requirements for a large dataset for a

sufficient amount of reflective training instances. This insight is one of the main

driving forces behind the process for the generation of the datasets.

A dataset had to be generated, because to our best knowledge, there is no public

dataset available that contains labelled units according to the categories of reflective

writing.

The start of the dataset generation process is a collection of texts, and the output is a

dataset that contains annotated text units. Each step is now described. Figure 2 shows

the schematic representation of the data generation process.

The process starts with the identification of suitable text collections that should

first contain reflective writings. Second, such collection should be of a reasonable size,

and third, it should be from a context similar to the research on the manual content

analysis of reflective writing.

The size of the text collection is important. If the text collection is too small, there

is not sufficient data to train the machine learning models. In addition, it should be

considered that texts do not contain an abundance of reflection (Ullmann et al., 2013).

On the assumption that 10% of the units of a suitable reflective text collection are

reflective, and considering the aim of reaching approximately 500 reflective units (the

primary concern is reflective units because descriptive or non-reflective units are more

frequent), approximately 5,000 units are necessary, thus underlying the necessity of a

large text collection.

Further, the research on the manual analysis of written reflection is mostly

conducted in an academic context. Mostly student writings of the participants of

courses or trainings were analysed. It would be beneficial for the text collection to

stem from students writings to strengthen the comparison of the automated method

with the manual method.
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Figure 2: Overview of data generation process

Sampling of the text collection: Several sampling techniques have been described

Section 4.4 ’Sampling’. Instead of annotating the whole text collection a representative

sample suitable for the research project can be drawn from the text collection. The
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chosen text collection consists of approximately 2,800 student assignments. Close

inspection of this corpus reveals that only a subset of the corpus contains the students’

personal accounts. Most assignments are written in a factual style, which is common

for academic assignments. In order to maximise the probability of texts that contain

reflection, a form of sampling has to be chosen. Considering the generalisability of the

results, the first choice is a probability-based strategy similar to the random sampling

technique. Here, however, a random sample technique would have included many

texts not relevant for the aims of this research, because they do not contain reflection.

This excludes random sampling as a strategy. From the non-probabilistic sampling

strategies discussed in Section 4.4 ’Sampling’, the relevance sampling technique is

chosen. It is a purposive technique that requires the text collection to be sampled

according to explicit relevance criteria. It is a technique that retrieves units relevant

for answering the research question. Most of the texts are included based on criteria

that can be repeated by other researchers, because they make use of text features that

can be implemented in a simple algorithm. The implementation details of this

triangulation are discussed in Section 5.2 ’Sampling text collection’. The outcome of

this step is a collection of texts.

Unitising: after determining the final collection of texts, the next decision is the

analysis unit. As outlined in Section 4.3 ’Unit of analysis’, text-segments, compared

with entire texts, are more suitable for the analysis of the descriptive (breadth)

categories of reflective writing. The choice for the analysis unit is sentences. Single

sentences as units were already successfully applied in the research on the manual

analysis of reflective writings (see Table 3). In addition, texts can be divided

automatically into sentences. A program has been written to divide each text into

sentences. This process has the benefit that the analysis units can be determined in an

objective way (see the evaluation criterion of objectivity in Section 4.2 ’Evaluation

criteria and metrics’). The result of this process is a dataset of unlabelled sentences.
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Several pilots preceded the actual annotation task in order to determine a suitable

coding process. Considering the large amount of annotated sentences necessary for

machine learning, the decision was made to use crowdsourcing to annotate the

analysis units (see Section 5.5 ’Background on crowdsourced text annotation’).

Research on crowdsourcing text annotations tasks indicated promising results with

regard to the reliability of large scale text annotation tasks (see Section 5.5.1 ’Research

on crowdsourced annotation quality’). Crowdsourcing is a suitable method for large

annotation tasks. The text collection used in here is large in size. The final text

collection contains more than 5,000 sentences, which is equivalent to approximately

130,000 words (the text collection has a higher word count than this thesis). As

outlined in Section 5.5 ’Background on crowdsourced text annotation’, the

crowdsourcing provider distributes small tasks to many people who work in parallel

on the task. With this process, each sentence is rated by many coders, rather than

relying on a small number of coders as is predominant in the traditional content

coding setting (Section 3.1.4 ’Manual reflection detection performance’). Several pilots

with smaller datasets were conducted in order to develop a process that yielded

sufficiently high quality labels for each sentence (see Section 5.6 ’Summary of pilots’).

The experiences observed during the pilots informed the task design used for the

annotation task.

Annotation task: in the annotation task, the sentences in the text collection are

rated. Based on the ratings, the sentences are annotated with regard to the categories

for reflection detection. A task design is created that ensures that the entire rating

process is conducted under the same conditions. The task design specifies the coding

instructions, coder training with test questions, and the coding schema for the

sentences. The rating schema is based on the common reflection categories

(Section 2.3.2 ’Common reflection categories’). The task design is based on the

experiences observed during the pilots (see Section 5.6 ’Summary of pilots’). The task
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design is described in Section 5.7.2 ’Task design’. The task was then administered to

the coders. All coder ratings were collected, and the result is a collection of rated

units. Based on the ratings of all sentences, the reliability of the coding process is

determined (see Section 5.7.4 ’Reliability’), and the validity of the indicators is

evaluated (see Section 5.7.5 ’Validity’).

Quality standard: the next step controls the quality of the annotations for the final

dataset by applying a standard. The quality of the dataset is important because the

machine learning algorithms build their models from these examples; therefore, the

dataset should only contain units that represent the construct. Consequently, a unit

should only be associated with an annotation when there is sufficient evidence that

the sentence indeed expresses this annotation. A strict standard is set based on the

criterion of how much support each sentence receives from all coders. The standard is

set to 80%, which means that at least 80% of the raters (a four-fifth majority) have to

agree on a particular sentence in order to label it. For example, a sentence is labelled as

reflective if at least eight out of ten coders rate the sentence as reflective. A more lenient

approach is to use simple majority voting (>50%). A four-fifth majority, compared with

a simple majority, is a stricter standard for labelling a sentence because it demands

more evidence for a label. This ensures that the labelled sentences entered into the

dataset are of higher quality compared with a simple majority vote approach. It also

strengthens the validity of the dataset because only sentences that received substantial

support of being reflective enter it. The result of this process is a collection of annotated

units. The annotated units are organised in datasets.

Dataset: the outcome of the data generation process is a dataset of annotated

sentences. The labels are based on the chosen indicators of the common reflection

categories (see Section 2.3.2 ’Common reflection categories’). The outlined data

generation process is the blueprint for Chapter 5 ’dataset generation’ that
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applies this process. The outcome of the data generation process is the datasets that

serve as input for the research design.

4.6.2 Research design

The research design for the evaluation of the machine learning algorithms on the

problem of reflection starts with the dataset of labelled sentences, and ends with the

calculated performance measures in the model assessment step. Figure 3 illustrates all

the steps of the research design.

The research design consists of data preparation and machine learning steps. The

overarching aim of this research design is to develop a setup that is the same for all

the machine learning algorithms described in Section 4.5 ’Machine learning

algorithms’. This strategy ensures that the conditions are the same for all machine

learning algorithms, and thus their differences can be attributed to their functioning

and not to context factors.

In the data pre-processing step, the dataset is transformed into a format that can be

used by the machine learning algorithms. The following paragraphs discuss the two

steps: feature construction and selection 15.

Feature construction: A feature construction choice is to transform text into single

words (unigrams) (Sebastiani, 2002, p. 10). The text is transformed into a multiset. In

this model, the ordering of words does not play any role. For example, the multiset

representation of the sentence ’rose is a rose’ is {rose,rose,is,a}, where the word ’rose’

occurs twice, and ’is’ and ’a’ occur only one time. This can be represented as vector

[2,1,1], where the three types of words (’rose’, ’is’, and ’a’) are mapped to their

frequency.

15 Feature selection can also be part of the machine learning phase (see Mladenic (2011)).
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Figure 3: Overview of research design

The approach taken here is to covert the sentences to unigrams, and instead of a

multiset representation, a set representation is used. This means that if a word such

as ’rose’ occurs twice in a sentence, it is counted only once (in our example, the count

vector is [1,1,1], instead of [2,1,1]). Unigrams are derived based on word boundaries.

This is a more simple representation than the multiset representation. It de-emphasises

the importance of repeated words.
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In addition, all unigrams are converted to lower case and stemmed using the

stemming algorithm from Porter.

There are several other methods for constructing features from text (see Brank et al.

(2011); Blake (2011)). In the context of this thesis, Rosé et al. (2008) and Kovanovic

et al. (2014) tested a variety of feature types on the performance of the classifier (see

Section 3.2.3 ’Machine learning approaches’). Their research indicated slightly better

performance with other types of features than unigrams.

Feature selection: The transformation of texts into features usually produces a large

feature space. Feature selection is used to reduce such feature space. The aim is to

remove all those features that do not provide information for the classification, or to

remove those features that introduced noise to the model (Manning et al., 2008, p. 271).

There are many methods for selecting features (Forman, 2003; Mladenic, 2011). For

example, McKlin (2004), used a dictionary to reduce the feature space. Only those

words that were part of the dictionary were conserved (see Section 3.2.3 ’Machine

learning approaches’).

Here, the removed features were punctuations, numbers, and white space. In

addition, all the features that occurred only ten times or less in the entire dataset were

removed. The last step had the greatest impact on the feature space: it ensured that

the feature space was not filled with rare unigrams.

These pre-processing steps are applied to all individual datasets, each representing a

single operationalisation of the common reflection category. These two pre-processing

steps are conducted with the R Text Mining Package tm16 (Feinerer et al., 2008; Feinerer

and Hornik, 2014).

Each dataset now contains feature vectors instead of sentences, along with their

labels that represent the absence or presence of a common reflection category. These

datasets are the datasets for the machine learning task.

16 Version 6.0. http://cran.r-project.org/web/packages/tm/index.html.

http://cran.r-project.org/web/packages/tm/index.html
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Training and test set: Each dataset is then randomly divided into training and test

datasets. The training dataset is used to train the machine learning models. The test

dataset is used to evaluate the performance of the model generated in the training

phase. All machine learning algorithms outlined in Section 4.5 ’Machine learning

algorithms’ are trained with the same training set, and the model performance is

evaluated with the same test set. The training set consists of 80% of the dataset, and

the test set of the remaining 20%. Considering the available data, this ratio is found to

be a good compromise for all datasets.

Class imbalance: As outlined in Section 4.4 ’Sampling’, reflection occurs relatively

rarely in texts (see Ullmann et al. (2013)), which can influence the performance of the

classifier models. Imbalanced datasets have been identified as a problem of machine

learning (Chawla et al., 2004). As we can see later, there is an imbalance in the

amount of sentences that are reflective compared with non-reflective/descriptive.

Such imbalance is not drastic (see Chawla et al. (2004)); however, it can still influence

classifier performance (see also the problem of imbalanced categories in the context of

the per cent agreement in Section 4.2 ’Evaluation criteria and metrics’). Several

remedies for class imbalance were researched at the algorithmic (Chawla et al., 2004)

and data levels (Chawla, 2005; Menardi and Torelli, 2012). In order to investigate the

potential problems of class imbalance, a data-driven strategies is tested: random

oversampling (also referred to as upsampling). Random oversampling generally can

improve the results (Japkowicz and Stephen, 2002; Batista et al., 2004). Here,

oversampling means that the minority class instances of the training data are repeated

randomly to match the amount of the majority class. Undersampling means that the

instances are removed randomly from the majority class until both classes are of equal

size. The models built with these data are then evaluated on the original imbalanced

test set. All models were also trained with the undersampled training dataset. Overall

the performed was worse than the original dataset or the oversampled dataset.
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Model selection: The aim of the model selection phase is to find good candidate

models likely to perform well on the unseen test data. The training data are used to

tune the parameters of the models, and to determine the best candidate model using a

resampling strategy.

Resampling: Resampling is related to the sampling strategies outlined in

Section 4.4 ’Sampling’. In machine learning, resampling strategies are used to

estimate the performance of a model.

All models are trained with the same resampling strategy. The choice of the

resampling technique is repeated k-fold cross-validation (similar to Rosé et al. (2008)).

Molinaro et al. (2005) and Kim (2009) indicated that repeated k-fold cross-validation

has slight advantages over k-fold cross-validation. Here, the training set is divided

randomly into ten folds of approximately the same size. The training model is

generated on nine folds, and the tenth fold (the validation set) is used to test the

performance. This process continues iteratively for all remaining nine folds. The

entire process is repeated five times with a different randomly sampled separation of

the data into the ten folds. The performance measure for the 50 validation sets is

averaged.

Model tuning: Most models described in Section 4.5 ’Machine learning algorithms’

have tuning parameters. These are algorithm parameters that cannot be estimated

directly from the data. A poor choice of these parameters leads to poor model

performance. In order to select good parameter candidates, here, a set of parameters

is defined, and for each parameter, a model is generated and evaluated. For each

parameter candidate, the average performance over all hold-out samples of the

training data (see the point resampling above) is calculated. The model with the

highest performance (measured with Cohen’s κ) is determined. The parameters of

this model are used to generate the final model with all training data. This is the final

model used to assess the performance on the test data.



130 methodology and research design

Model assessment: The final model is used to classify all the sentences of the test

set. The performance measures outlined in Section 4.2 ’Evaluation criteria and metrics’

(on page 104) are calculated based on the model predictions and the actual, true values

(see Table 4). The ground truth is based on the annotations of the dataset.

The model assessment step concludes the research design. As outlined above, the

aim of this research design is to find a standardised approach that can be used over

all datasets to assess model performance for reflection and the common categories of

reflective writing. The described research design achieves this, thus allowing the

comparison of results because all context factors are the same, whereas only the

machine learning algorithms vary. This standardisation is at the price of not applying

individual strategies that might have yielded better performance. However, the ability

to concisely report and compare the results is considered more useful for the aims of

this thesis, and outweighs the benefits of maximised strategies for individual machine

learning algorithms.

The research design outlined thus far is used on each of the datasets generated with

the process described in Section 4.6.1 ’Dataset generation process’. The datasets serve

as input to the research design. The research design is applied, and the results of the

machine learning assessment phase are retrieved. These evaluation results inform the

answer of the research questions outlined in Section 1.1 ’Research questions’.

Figure 4 shows the concrete instantiation of the research design for both research

questions.

As outlined, the overall aim of this thesis is to investigate whether text segments

can be analysed automatically using machine learning algorithms to detect the

presence (and absence) of key elements of reflection. The first of the two research

questions is: ’Q1: Can machine learning algorithms be used to distinguish between

descriptive and reflective text segments?’ Three lines of investigations are used to

answer this research question: ’I1: Can tree-based machine learning algorithms detect
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Figure 4: Instantiation of research design

the difference between descriptive and reflective texts segments?’, ’I2: Can rule-based

machine learning algorithms detect the difference between descriptive and reflective

text segments?’, and ’I3: Can high performance machine learning algorithms detect

the difference between descriptive and reflective text segments?’. As can be seen in

Figure 4, each line of investigation has a set of corresponding machine learning
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algorithms. Based on the same dataset that consists of reflective and non-reflective

sentences, the research design is applied to machine learning classifiers that belong to

one of the three groups of tree-base, rule-based, and high performance algorithms

(see Section 4.5 ’Machine learning algorithms’). The selected tree-based models are

listed in Section 4.5.1 Tree-based models’, the rule-based models in

Section 4.5.2 Rule-based models’, and the high performance models in

Section 4.5.3 High performance models’. Based on the test set, the performance

measures outlined in Section 4.2 ’Evaluation criteria and metrics’ (on page 104) are

calculated for each algorithm. For each line of investigation, a performance profile of

the machine learning algorithms is generated to discuss the research question.

In order to answer research question 2, ’Q2: Can machine learning algorithms be

used to detect common categories of reflective writing?’, several datasets serve as

input to the research design. For each common reflection category (see

Section 2.3.2 ’Common reflection categories’), a dataset is prepared and generated

following the dataset generation process outlined in Section 4.6.1 ’Dataset generation

process’. Each dataset is one concrete indicator (aka operationalisation) of the

common reflection categories, which are abbreviated as Exp. (Description of an

experience), Feel. (Feelings), Pers. (Personal), Crit. (Critical stance), Persp.

(Perspective), and Out. (Outcome). Based on the experiences observed to answer

research question 1, a selection of high performing algorithms is chosen. For each

dataset, the same models are trained and tested according to the research design

process. For each dataset, a performance profile is created that contains the

measurements outlined in Section 4.2 ’Evaluation criteria and metrics’ (on page 104).

This profile serves as the evidence to answer research question 2, first for each

reflection category, and then in a synopsis for all evaluated operationalisations of the

common reflection categories.
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The chosen setup of the research design allows testing the performance of several

types of machine learning under the same conditions because all operate on the same

set of data. This allows the comparison of the different types of machine learning

algorithm to detect reflection. This also allows comparing the performance of the

machine learning algorithms over a variety of datasets important for reflective

writing. In the first case, the machine learning algorithms vary, but not the data set; in

the second case, the machine learning algorithms are the same, but the datasets vary.

The answers to these two research questions provide empirical evidence for, or

against, the automated detection of reflection in texts. The results of this research

design are outlined in Chapter 6 ’evaluation’.

4.7 summary

This Chapter 4 ’methodology and research design’ described the

methodological considerations made for determining the methods used and the

research design for the automated detection of reflection.

The chapter started by outlining the general methodological considerations in

Section 4.1 ’General methodological considerations’. There, the case was made that,

for the aim of this thesis, a quantitative study type that uses machine learning is

appropriate. Section 4.2 ’Evaluation criteria and metrics’ described the criteria for the

evaluation of the research question, which are reliability, validity, and objectivity. The

criteria and their empirical measurements were described and discussed. The metrics

important for the evaluation section of the thesis were determined. Section 4.3 ’Unit

of analysis’ provided guidelines for the proper choice of the analysis unit, and a

rationale for the choice of the unit used in this thesis. Sampling techniques were

discussed in Section 4.4 ’Sampling’. Section 4.5 ’Machine learning algorithms’

provided the rationale behind the selection of machine learning algorithms in order to
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determine good candidates for the automated detection of reflection. Three groups of

machine learning models were considered closely: tree-based, rule-based, and several

high performing algorithms. For each of these groups, several implementations exist.

The concrete choice of implementation was described in Section 4.5.1 ’Tree-based

models’, Section 4.5.2 ’Rule-based models’, and Section 4.5.3 ’High performance

models’.

All these considerations were the necessary groundwork that shaped the decisions

made for the research design of this thesis. Section 4.6 ’Overview of research design’

provided an overview of the research design. Section 4.6.1 ’Dataset generation process’

outlined the process for generating the dataset necessary for machine learning. Finally,

Section 4.6.2 ’Research design’ described the research design and all the decisions

that led to it. This section also showed how the research questions are mapped to the

research design.

This chapter provided the methodological blueprint for the following two chapters.

The implementation of the data generation process is described in

Chapter 5 ’dataset generation’ and the research design for the evaluation is

implemented in Chapter 6 ’evaluation’.



5
D ATA S E T G E N E R AT I O N

This chapter describes the concrete implementation of the dataset generation process

outlined in Section 4.6.1 ’Dataset generation process’. A graphical representation of

this process can be found in Figure 2.

The data generation process starts with a text collection and ends in datasets of

sentences annotated according to the categories for reflection detection.

In Section 5.1 ’Identification of text collection’, several text collections were

weighted against each other in order to identify the primary source of texts.

Thereafter, Section 5.2 ’Sampling text collection’ outlined the strategy used to sample

the text collection to retrieve a suitable subset of texts. These subsets were then

divided into units with the approach explained in Section 5.3 ’Unitising text

collection’. This process resulted in a set of sentences that had to be labelled. These

labels supervise the chosen machine learning algorithms (see Section 4.5 ’Machine

learning algorithms’). The specific approach selected to annotate the collection of

sentences is described in Section 5.4 ’Overview of annotation task’.

5.1 identification of text collection

The requirements for text collection outlined in Section 4.6.1 ’Dataset generation

process’ were that such collection should be of a reasonable size, and that it should be

close to the context of the research on the assessment of written reflection.

135
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Previous work of the author made use of a blog corpus (Ullmann et al., 2012) and

data extracted from the forum posts of a virtual learning environment (Ullmann et al.,

2013). The blog corpus was dismissed as a choice for this research because the

collected blog posts are not related to an academic context. The forum post dataset

was also excluded. It contained a wide variety of contributions, which made it

difficult to retrieve a suitable collection of texts.

Three corpora of student writings were identified: British Academic Written

English (BAWE) (Nesi and Gardner, 2012; Gardner and Nesi, 2013), Uppsala Student

English (USE) (Axelsson, 2000), and Michigan Corpus of Upper-Level Student Papers

(MICUSP) (Römer and O’Donnell, 2011). They are all good candidate text collections

for the aim of this thesis because of their size and relatedness to the academic context

in which most of the research on the analysis of written reflection was conducted. The

author decided that the BAWE corpus should be one of the main sources of the text

collection.

BAWE1 is a text corpus of 2,761 assessed undergraduate and postgraduate university

student text files from 35 disciplines in the four general areas of Social Science, Arts

and Humanity, Life Science, and Physical Science (Nesi and Gardner, 2012; Gardner

and Nesi, 2013). The corpus is freely available, and its license permits its usage for

research2.

According to the creators of the BAWE corpus, one of the aims was to assemble a

balanced dataset with a broad disciplinary scope to capture student writings (Gardner

and Nesi, 2013, p. 32).

1 The BAWE corpus was developed at the Universities of Warwick, Reading, and Oxford Brookes under
the directorship of Hilary Nesi and Sheena Gardner (formerly from the Centre for Applied Linguistics
[previously called CELTE], Warwick), Paul Thompson (Department of Applied Linguistics, Reading) and
Paul Wickens (Westminster Institute of Education, Oxford Brookes), with funding from ESRC (RES-000-
23-0800).

2 The corpus is available from the University of Oxford text archive: http://ota.ahds.ac.uk/headers/
2539.xml.

http://ota.ahds.ac.uk/headers/2539.xml
http://ota.ahds.ac.uk/headers/2539.xml
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It is notable that the texts of the corpus are annotated with a rich set of metadata,

which allows the inspection of various aspects of the dataset, as well as

cross-comparisons. Examples of these metadata are:

• Student information, e.g., unique identifier, gender, year of birth, first language,
and education.

• Study level (first year, second year, third year undergraduate, postgraduate).

• Grade: distinction (grade 70% or higher) and merit (60% to 70%).

• Discipline (with sub-disciplines and modules).

• Genre (e.g., essay, critique, narrative recount, etc.).

The next step of the data generation process is to sample the text collection (see

Section 4.6.1 ’Dataset generation process’).

5.2 sampling text collection

As indicated in Section 4.6.1 ’Dataset generation process’, manual inspection of the

BAWE corpus shows that it contains reflective texts, but also that most of the text is

classic student academic writing, written in a factual style without any reflection. In

order to find a suitable sub-sample of the entire corpus, relevance sampling mostly

based on several objective criteria is chosen. These criteria are used to triangulate a list

of texts relevant for this thesis.

With regard to the generalisability of the results, a random selection of texts would

have been the ideal sampling technique in order to retrieve a sample of texts (see

Section 4.4 ’Sampling’). In a previous work of the author (Ullmann et al., 2013), a

randomised sub-sample was obtained from a large text collection of forum posts from a

virtual learning environment. In this case, the sampling technique was suitable because

the preliminary analysis of the text collection indicated that the sentences, which were

of a personal nature, were sufficiently equally distributed over the entire text collection,

which made it suitable for random selection.
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However, such is not the case for the BAWE corpus. Preliminary analysis of this

corpus indicates that it contains many factual student writings as assignments are

mostly on discipline-related topics than reflections of personal experiences. Thus, a

random selection of texts would have led to many texts unrelated to reflection. As

described in Section 4.6.1 ’Dataset generation process’, the chosen sampling technique

is relevance sampling. This is a technique based on explicit relevance criteria to retrieve

texts that are relevant for answering the research question. For this research, the texts

of relevance are reflective writings. The criteria that led to the inclusion of certain texts

into the final collection of texts are described here.

Nesi and Edwardes, one of the creators of the BAWE corpus, indicated that the

corpus contains writings of several reflective writing tasks (Nesi and Edwardes, 2007).

The paper of Nesi and Edwardes (2007) highlighted eight text snippets as examples

of such tasks. The inspection of the metadata of the corpus showed that some of the

texts are marked as texts that contain reflective recounts3. For example, a text can be

a compound of creative writing and reflection, or an essay and reflection (see also

Heuboeck et al. (2007, p. 21) for a detailed overview of the corpus metadata). Texts

that contain a reflection task according to the corpus metadata form the first set of

reflective writing candidates for the sampled text collection. However, the list was

relatively small and other heuristics were employed to extend the list of candidate

writings.

An indicator of reflective writing can be the title of the text, for example, if it

contains references to reflection or experience. Regular expressions are used to find

titles that refer to reflection and experience. From the 2,761 titles of the BAWE corpus,

43 titles contain ’reflect*’ (i.e., the root word ’reflect’ and other forms of the word,

such as reflection, reflected, reflecting, reflective, and more). Among them are titles

3 This is only visible in the XML version of the corpus, more specifically, in the ’note’ section of such version.
A regular expression was used to search all XML files with regard to the text ’reflect*’ in the ’note’ section
of the XML. An example of this annotation is: ’evaluated as candidate compound assignment. Assigned
to A4: text + major reflection [task]: compound’.
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that indicate a reflective writing, such as ’Individual Reflective Assignment’,

’Individual Reflective Piece’, ’Reflect on a challenging experience in relation to the

practice...’, or ’A reflective account on the process of teamwork’. However, there are

also titles that are not indicative of reflective writing, for example ’How are the

functions of Roman towns reflected in the Archaeological record?’, ’Examine

diplomatic methods used by Russian Fed in the conduct of its FP. In what ways, if at

all, does it reflect dom interests?’, or ’With particular reference to the work of

Jacques-Louis David, how were the principles of the French Revolution anticipated,

reflected and promoted in French painting, 1784-1794?’.

A total of 24 titles contain references to experience (e.g., experience, experiences,

experiencing, etc.). Among them are candidates for reflective writing, for example, the

titles ’Describe and analyse an ethical dilemma you have encountered in your own

professional experience’, ’Professional management experience - Year-out work

experience’, or ’Motivation, Input and output in my Persian Learning Experience’.

However, there are also titles not related to reflective writing, such as ’In what sense

does our experience of the sublime demonstrate the supremacy of our rational nature,

according to Kant?’, ’How are poor household’s experiences of food shaped by their

social, economic, or personal experience?’, or ’Nicaraguan experience of agricultural

and rural development strategy in the period from 1979 to 1990’.

When considering indicators at the text level, we can argue that an indicator for

reflective writing might be text written from a personal perspective. Indicator words for

this can be ’I’, ’me’, or ’myself’. The following two figures show relative frequencies for

all texts: Figure 5 shows the relative frequencies of the character ’I’, and Figure 6 shows

the relative frequencies of sentences that contain a first-person singular pronoun.

The first heuristic uses a regular expression to search for occurrences of the character

’I’ in the text. The ’I’-count divided by the character count of the text is equal to the
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relative frequency. The ’I’ character mostly designates the first person pronoun, but

there are also exceptions, for example, in abbreviations such as ’A. I. Thompson’.

The second heuristic uses a rule to infer whether a sentence contains at least one first

person singular pronoun (such as ’I’, ’me’, ’myself’). The following listing describes

the rule in natural language. This rule was developed as part of an extension to the

author’s reflection detection architecture (Ullmann, 2011; Ullmann et al., 2012).

Listing 1: Personal sentence rule

Rule 'personal_sentence'

FOR ALL sentences in document
IF

Exists a personal pronoun OR a possessive pronoun
AND
this pronoun belongs to the dictionary of self-referential pronouns

THEN
Mark sentence as relevant �

Similar to the first heuristic, the relative frequency is calculated by the count of

relevant sentences divided by all sentences in a text.

We can see from both figures that more than half of all BAWE corpus texts do not

contain any of the two indicators for personal texts. Further, the number of texts with

proportionally more signals that indicate personal text decreases rapidly. However, this

also shows that personal texts do exist.

The top text in both figures starts with: ’I have now completed a year’s work

experience at Cowley Manor hotel, and feel I have developed as a person. Moving

into the world of full time work after my first year at university was quite a shock.

The first few weeks were busy with me settling into a new job and new town. I soon

discovered that I enjoyed the set routine that comes with a full time job and knowing

that time outside work was my own. I have always thought of myself as an

independent person, but feel that my time in Cheltenham made me more

independent. I looked after myself, and in work, I made a point of being eager to

learn, and not be "spoon fed." I feel that I swiftly settled into work. This is reflected in

my first appraisal, when Jake mentioned that I had adapted well to the areas I had
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Figure 5: Relative frequencies of ’I’ for all BAWE corpus texts

worked in. When reflecting upon my first appraisal, I felt that my efforts to integrate

myself and settle in had been recognised (...)’.

Let us compare this top text with the text on position 100 with regard to the relative

frequency of ’I’. The text starts with: ’"Pan Recipe" is a Caribbean poem written as an

extended metaphor, which uses the vehicle of the steel pan to convey a sense of new

life born out of the past, and is suggestive of the oppression of black slaves. When I

began writing "How we have walked, How we have journeyed", I aimed to re-centre

Agard’s text and focus more primarily on the Caribbean music itself, as a celebration of

freedom, but still express ideas about the oppression of black slaves through metaphor.

(...)’.
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Figure 6: Relative frequencies of ’personal’ sentences for all BAWE corpus texts

The following is an example of text that contains no reference to the character ’I’:

’The history of English law is long standing and well established. As stated in Keeton’s

(1984:7) book, "the doctrine of precedent inherently brings legal history to bear upon

current judicial decisions." Due to the distinctive nature of precedents, the specificity

of cases had been coloured by its uniqueness and independence. (...)’.

In the top text, nearly every sentence has a reference to the first-person singular

pronoun, and the character ’I’ occurs frequently. It is an account written throughout

from the perspective of the writer. The other two examples are more descriptive, less

pronounced with regard to the recount of a personal experience. The manual

inspection of the top texts derived with the first and second method indicate that after

100 texts, mostly descriptive, factual text can be found.
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Hitherto, we have discussed four indicators of reflective writings: the title

information, relative frequency of first-person singular pronouns in texts, texts

mentioned by Nesi and Edwardes (2007), and references to reflection in the markup

of the BAWE corpus. All these indicators were taken to generate a list of candidate

texts that might contain reflection. The list contains all texts with ’reflection’ and

’experience’ in the title, the top 100 texts identified with the first heuristic, the top 100

texts identified with the second heuristic, the texts mentioned by Nesi and Edwardes

(2007), and the texts that contain markup that indicates a reflection. The process

described hitherto resulted in a set of 141 unique texts (out of the original 2,761 texts).

These texts were then inspected manually, and such inspection revealed, first, that

not all texts were good candidates because they were largely written in a factual style

(see the third example above as an illustration of such style). For the most part, these

texts originated from the automated sampling method. Second, some texts contain only

a small proportion of an experience description. Often, only one of several tasks in a

writing assignment asks for personal reflections (compound assignments). Third, while

these designated sections aim at reflective writing, this does not necessarily mean that

the students responded with personal reflections. These insights led to the decision

of reducing the amount of texts and prune those texts that contain long passages of

factual writings. Therefore, texts were maintained, deleted, or pruned. Appendix C

contains a list of all texts and the decision made for each text. Those that were deleted

were largely descriptive. For example, one person wrote a step-by-step description of

the development of a computer program. Another text was a linguistic study of the

word ’I’. Another text mostly contained a fictional story narrated in the first person.

Some texts only contained small sections on personal experience; these were pruned.

In total, this process led to a text sample of 67 texts.

In addition to these 67 texts, ten other texts were included that were selected from

the literature on reflective writing. These texts are distinguished reflective writings,
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and they were added in order to have, in addition to the texts of the BAWE corpus,

texts directly stemming from the literature on reflective writing. Not many such texts

are available publicly, and thus only ten are included. These texts are ’The park

account 4’, ’the Presentation account 3’, ’A dance lesson account 3’, ’Placement on

business management programme account Barry’, ’Reflection on study habits account

Kerry’, ’A GPs story account 4’, ’the worrying tutorial account 3’, ’the surprise at

home account 3’ from the resource sections of Moon (2006) and Moon (2004), the

logbook excerpt from Korthagen and Vasalos (2005), and the reflective account

described in the supplementary material of the paper for Wald et al. (2012). These are

reflective texts that were thoroughly analysed with regard to their reflectiveness, and

such analysis can be found in the cited literature.

The described relevance sampling approach identified 77 texts that are seen as

relevant texts for the aim of this thesis. The final collection of texts is based on the

triangulation of four objective criteria that identify the texts automatically, the

perspective of other researchers working with the corpus, and the author’s experience

to select the final text collection. The list of candidate texts can be replicated by other

researchers with the information provided above. All decisions with regard to the

selection of the final text collection based on the candidate lists are made explicit in

Appendix C ’sampled text collection of the bawe corpus’.

These texts are mostly those that contain a personal narrative. The chosen criteria

for the relevance sampling are aimed at raising the likelihood that the selected texts

contain reflection. This is especially important considering that only few texts from

this large corpus are relevant to this research. A random sampling strategy would

have significantly increased the annotation effort in order to find evidence of reflection.

Here, a relevance sample is more suitable.

The 67 texts selected from the BAWE corpus were written by 47 students: 12 texts

were written by first year students, 21 by second year students, 23 by third year
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students, and four by postgraduate students. For one text, the student level was

unknown4. Most texts were graded with merits (N = 40), followed by distinction (N =

24). The grade is unknown for three texts. Most texts are from the disciplines of

Health, followed by Business, and Engineering (see Table 5). It is notable that the

discipline Health contained many more texts than the other disciplines. Mann et al.

(2007) noted that reflective practice is an increasingly important part of the medical

education curriculum.

Discipline Frequency

Health 20

Business 9

Engineering 9

Hospitality, Leisure, and Tourism Management 6

Linguistics 6

Sociology 3

Computer Science 2

Cybernetics and Electronic Engineering 2

English 2

Other 2

Philosophy 2

Archaeology 1

Law 1

Medicine 1

Politics 1

Table 5: Distribution of disciplines

Dividing the texts into analysis units is the next step of the data generation process,

as outlined in Section 4.6.1 ’Dataset generation process’.

5.3 unitising text collection

The choice as unit of analysis felt on sentences (see the rational for this in

Section 4.6.1 ’Dataset generation process’).

4 This information is obtained from the metadata spreadsheet that accompanies the BAWE corpus.
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Text can be divided automatically into sentences. There are many ways of doing so.

A simple strategy is to divide texts at full stops or question and exclamation marks

with regular expressions. However, this is prone to errors, for example, the sentence

’Mr. Thomas D. Ullmann presents reflection detection.’ might be divided into the parts

’Mr’, ’Thomas D’, ’Ullmann presents reflection detection’.

A better method for extracting sentences from texts is to use a machine learning

model trained to detect sentences. A well-trained model can detect the sample sentence

above in its entirety. The model used5 has high accuracy for detecting sentences. A

program was written that splits the texts into sentences.

The result of this process to generate units from the 77 texts is a total of 5,131 analysis

units. Such units are yet to be labelled. The next section describes the annotation task.

5.4 overview of annotation task

The annotation task step of the data generation process, as outlined in

Section 4.6.1 ’Dataset generation process’, consists of pilot and annotation phases.

Pilots were arranged in order to determine the final task design of the annotation task.

As outlined in the data generation process, an approach had to be found to scale to

the size of the text collection. The chosen approach is to ’crowdsource’ the annotation

task. Before outlining the pilots that led to the final task design, the next section

outlines relevant background information on large-scale crowdsourced text

annotation tasks.

Section 5.5 ’Background on crowdsourced text annotation provides an overview of

the research that used crowdsourcing to annotate textual data. Most importantly was

the question of whether a crowdsourced approach can produce high quality

annotations of textual data. The research outlined in Section 5.5.1 ’Research on

5 Based on the Java library Apache OpenNLP (https://opennlp.apache.org).

https://opennlp.apache.org
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crowdsourced annotation quality’ suggested that crowdsourcing is a good candidate

for large-scale text annotations. This also highlighted the importance of a carefully

designed task design (see Section 5.5.2 ’Research on crowdsourcing task design’), and

further, that the best results can be achieved if multiple ratings are aggregated (see

Section 5.5.3 ’Aggregating crowdsourcing results’). Because the research on

crowdsourcing is only on related problems, and not on the problem of annotating text

with regard to reflection, a series of pilots were conducted in order to evaluate the

potential of crowdsourcing for annotation with regard to the common categories of

reflection. The pilot results are summarised in Section 5.6 ’Summary of pilots’. The

experiences made during the pilots significantly influenced the task design used to

annotate the text collection. The annotation task is described in

Section 5.7 ’Annotation task’. The reliability of the raters to annotate sentences with

regard to indicators of the common categories of reflection is outlined in

Section 5.7.4 ’Reliability’. In addition, the validity of the indicators is confirmed

empirically in Section 5.7.5 ’Validity’. The outcome of the data generation process is,

for each common reflection category, a dataset of highly agreed sentences. The

applied quality standard and the descriptive dataset statistics can be found in

Section 5.7.6 ’Quality standard and datasets statistics’.

5.5 background on crowdsourced text annotation

As outlined in Section 3.1 ’Manual methods to detect reflection’, one of the

fundamental tasks in assessing reflective writings is to analyse texts using a coding

schema that assigns several reflection categories to text-segments. This task is usually

performed by a small group of trained coders (usually two to three coders) that

analyse a small number of texts.
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Using a crowdsourcing approach is a promising method for scaling the task to

thousands of coders who label text. Crowdsourced annotation tasks are seen by many

researchers as a suitable way for gathering large annotated datasets for further

research.

There are many forms of crowdsourcing and motivations to participate in

crowdsourcing (Wang et al., 2013; Yuen et al., 2009; Quinn and Bederson, 2009, 2010).

Some prominent examples are paid crowdsourcing platforms, games with a purpose,

and the Wikipedia platform.

For this research, the focus is on crowd-worker platforms6. These are crowdsourcing

platforms that help distribute tasks to a large amount of workers paid for their services.

Usually, these tasks are rather simple and can be completed in a short time.

There is already a growing body of research in the area of crowdsourcing and its

challenges (Kittur et al., 2012). This thesis focusses on a specific domain of

crowdsourcing, the annotation of texts. The manual rating of texts related to reflection

categories can be described as a task that involves a subjective rating of text segments.

The following sections present research that describe the results from crowdsourcing

experiments on text ratings according to subjective criteria. This is in contrast to tasks

where the results can be objectively verified. Examples for the latter case are counting

pictures on web pages, or determining whether the pictures show a person.

5.5.1 Research on crowdsourced annotation quality

Kittur et al. (2012) stated that quality control is one of the main research issues of

crowdsourcing. There are mixed reports on the quality of crowdsourcing that vary

from research that attested crowdsourcing to have the same quality as expert ratings if

6 Examples are CrowdFlower http://www.crowdflower.com/ or Amazon’s Mechanical Turk https://www.
mturk.com/mturk/welcome.

http://www.crowdflower.com/
https://www.mturk.com/mturk/welcome
https://www.mturk.com/mturk/welcome
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the results are aggregated (Li et al., 2013, p. 1), to articles that report a high amount of

low quality work (Bernstein et al., 2010, p. 316).

This section reports on research that investigates the quality of crowdsourced work

on tasks, where the workers had to rate text according to several characteristics. This

type of task is related to the task of annotating text segments according to reflection

elements. All the work described below compares the work of the crowd with experts.

The aim is to gain an understanding on the quality of crowdsourced data gathering

compared with domain experts.

Snow et al. (2008)7 presented research in the area of natural language understanding.

Snow et al. (2008) ran several tasks on Mechanical Turk, and compared the results of

the crowdsourced workers with expert ratings of the same data.

The first task was to rate short headlines with respect to the dimensions of anger,

disgust, fear, joy, sadness, surprise, and valence. Snow et al. (2008) compared the

quality of expert and non-expert labels in two different ways. First, Snow et al. (2008)

compared individual expert coders with individual crowdsourced coders. Snow et al.

(2008) found that the agreement between experts is higher than the agreement

between non-experts and experts. Subsequently, the authors aggregated the results of

the non-experts in order to assess how many non-expert coders are necessary to

achieve the results of the expert. As an aggregation strategy, they used the average of

all raters. Snow et al. (2008, p. 257) stated that on average, four non-experts are

necessary to reach equal or better agreement than the expert annotators.

The next task was a similarity task where pairs of words were evaluated according

to their relatedness. The aggregated results of ten workers – again, using the average of

the ratings – reached a Pearson’s r correlation of 0.952, which is close to the correlation

scores of previous lab research (Snow et al., 2008, p. 257 f.).

7 Data available at https://sites.google.com/site/nlpannotations/

https://sites.google.com/site/nlpannotations/
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The third task was on recognising textual entailment. The workers had to evaluate

two sentences, and determine whether the second sentence could be inferred from the

first. Snow et al. (2008, p. 258) aggregated the results of ten workers with the simple

majority vote (’tiebreakers’ were used randomly for equal ratings). For 100 sentence

pairs, they found an agreement of 89.7%, which is close to the expert agreement

reported in the literature (Snow et al., 2008, p. 258).

The fourth task consisted in determining whether an event occurred before or after

another. The aggregation of ten annotators with simple majority vote reached an

agreement of 0.94 with the gold standard annotations (Snow et al., 2008, p. 258f.).

The last task on word sense disambiguation also found high agreement (0.99)

between the aggregated non-expert and the gold standard (Snow et al., 2008, p. 259).

The results from Snow et al. (2008) suggest that for many different tasks, the

aggregated ratings of many non-experts are comparable to expert ratings.

Kittur et al. (2008, p. 454-456) described two experiments with Mechanical Turk8 in

the context of quality ratings of Wikipedia articles. The task for the workers consisted

in reading preselected Wikipedia9 articles, and then rating them according to their

quality. The worker ratings were compared with the ratings of Wikipedia

administrators (experienced Wikipedia users). The authors stated that the questions

for the ratings were oriented on the criteria for featured articles10. The authors asked

the workers to rate how well the article was written, how accurate, whether it was

neutral and well structured, and the overall quality of the article on a seven-point

Likert scale. In addition to rating the articles, the workers were asked to complete a

text-field with suggestions for improvements for the article. A total of 15 workers

rated each article. A marginally significant correlation coefficient of r = 0.5 (p = 0.07)

between the worker ratings and the Wikipedia experts was reported. The authors

8 https://www.mturk.com
9 http://en.wikipedia.org

10 http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria

https://www.mturk.com
http://en.wikipedia.org
http://en.wikipedia.org/wiki/Wikipedia:Featured_article_criteria
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found that, from 210 free-text responses, 102 were outside the task, and 64 ratings

were completed in an extremely short time (under 1 minute). The authors outlined

that a small group of workers was responsible for a large amount of invalid ratings.

The second experiment used a set of test questions (questions with known answers)

before the workers actually saw the Wikipedia article. The questions were on how

many references, images, and sections the article had. With this test only seven out of

277 responses were outside the task. The rating question was on the overall quality of

the article measured on a seven-point Likert scale. The significant correlation between

the workers and Wikipedia administrators was r = 0.66 (p = 0.01).

The Kittur et al. (2008) task seems more difficult than the task reported by Snow

et al. (2008) because the former asked how well an article was written, which can be

seen as a rather subjective task. In addition, the workers had to assess an entire text,

compared with small text-segments. Although working with full text, the authors

found a relatively strong correlation between the workers and Wikipedia

administrators after introducing the test questions.

Alonso and Mizzaro (2012) used crowdsourcing for relevance assessment of TREC

data. TREC is the text retrieval conference that hosts competitions related to

information retrieval. In many cases, the competitions are based on a gold standard

dataset generated manually by human coders. Data generation is expensive, and

therefore, other ways of annotating data are explored, including crowdsourcing. In

their paper, the authors examined the degree to which TREC assessors can be

replaced by crowdsourcing. They concluded that crowdsourcing is a reliable

alternative for relevance assessment (Alonso and Mizzaro, 2012, p. 1053). The task for

the worker consisted on rating documents according to their relevance to a topic

description. The task used a binary rating system (relevant vs. not relevant). Five

workers rated each document-topic pair. The task contained test questions. The

crowdsourcing results were then compared with expert assessor ratings.
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For the task, the authors reported individual and aggregated agreement metrics.

Individual agreement is the agreement between each worker and TREC assessor. In

68% of the cases, the workers agreed with the TREC assessor, which the authors

determined as fair, but not great, agreement (Alonso and Mizzaro, 2012, p. 1057).

The authors then aggregated the worker results using majority vote (three out of

five) in order to compare with the assessor. This led to 77% of cases agreeing with the

assessor.

The authors also compared the agreement values with the values reported in other

research on relevant assessment. They stated that the group agreement of 77% of the

crowd workers is comparable to the 78% agreement of expert coders reported in other

literature on a binary task.

In their conclusion, the authors stated that their results need further confirmation,

but ’they support the idea of using a group of workers to gather redundant

judgments, and they are a good indication that MTurk can be a reliable, quick, and

cheap alternative for relevance assessment in TREC-like initiatives’ (Alonso and

Mizzaro, 2012, p. 1064-5).

The research of Alonso and Mizzaro again emphasised the importance of

aggregating the ratings of many raters.

Schnoebelen and Kuperman (2010) compared the quality of crowd workers with

the quality of traditional lab experiments in the area of linguistic research. They

concluded that ’Mechanical Turk is a reliable source of data for complex linguistic

tasks (...)’ (Schnoebelen and Kuperman, 2010, p. 441).

Their first experiment was the Cloze sentence completion task. Workers were given

part of a sentence, and asked to write the word they believed would follow next. Each

task consisted of 12 stimuli, and was completed by 50 workers. For this task, the

authors reported a strong correlation (Spearman’s rho = 0.823) between lab

participants and crowd workers.



5.5 background on crowdsourced text annotation 153

The second set of experiments compared the performance of workers with students.

The task was to rate the similarity between verbs and verbs in phrases (phrasal verbs)

on a seven-point scale (Schnoebelen and Kuperman, 2010, p. 451 ff.). A total of 18 and

27 ratings per item were collected for both student experiments, and approximately

29, 25, and 19 ratings per item for the three crowdsourcing experiments. The

correlation between the workers and students was high in the context experiment

(rho = 0.9) (Schnoebelen and Kuperman, 2010, p. 453) with a high Cohen’s κ of 0.823

(Schnoebelen and Kuperman, 2010, p. 457). The correlation between the three

crowdsourcing experiments was high (rho > 0.7) (Schnoebelen and Kuperman, 2010,

p. 453), and the correlation between the student experiments was relatively low (rho =

0.44) (Schnoebelen and Kuperman, 2010, p. 453). The authors stated that the worker

data were more consistent than the student data (Schnoebelen and Kuperman, 2010,

p. 457).

As with the other studies, Schnoebelen and Kuperman (2010) reported a high

correlation between crowd coders and traditional coders. However, they did note that

lab participants performed better on the word completion task than crowd workers.

In the second set of experiments, which used a rating scale, the authors reported high

correlations between workers and student participants, and the results of the workers

were more consistent than those of the students.

Benoit et al. (2012) reported results from a crowdsourcing study in the area of

political texts. They compared results of expert coders with the results of workers,

and concluded that if the task is designed carefully, crowdsourcing can replicate the

results of expert coders (Benoit et al., 2012, p. 24). The task was on coding sentences

from the political manifestos of three British parties with regard to economic policy

(left vs. right) and social policy (liberal vs. conservative) on five-point scales (Benoit

et al., 2012, p. 7 f.). The goal of their research was to detect party shifts over points in

time. The shifts in question were already described in other studies, and are thought
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to be replicable with expert and crowd coders. The results were that six expert coders

(three were authors of the study) could replicate the results of previous studies, as

could the crowd workers. The authors stated that there is a strong and significant

relationship between the workers and experts (Benoit et al., 2012, p. 23) and that ’(...)

non-expert coders scattered around the world are generating essentially the same

estimates of party policy positions as ’expert’ political science professors and

graduate students’ (Benoit et al., 2012, p. 22). Although the data were noisy at the

individual level, the aggregated worker results were useful.

The paper from Benoit et al. (2012) stated a similar conclusion to the research

outlined above, where crowdsourced work can be of good quality if the worker

results are aggregated.

Overall, this synthesis of the literature on the research of paid crowdsourcing

suggests that the aggregated results of tasks are positively related to the performance

of experts, and can come close to expert ratings. Although the research outlines that

crowdsourced work contains noise that negatively impacts the quality of the work,

there are sufficient signals to achieve results that are comparable to expert ratings.

Although the results above are encouraging, coder expertise is not unimportant.

Results from the area of relevance assessment for information retrieval indicate that

different levels of expertise indeed influence measures in a small, but consistent, way

(Bailey et al., 2008).

The next section highlights important design decisions found in the research of

crowdsourcing text annotations.

5.5.2 Research on crowdsourcing task design

The careful design of crowdsourcing tasks seems to be the key for generating data of

high quality.
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Several researchers mentioned embedding test questions into the task. Test questions

can be seen as a way of training workers on the task, and as a test to check whether

workers understood the task sufficiently well. For example, Benoit et al. (2012, p. 12)

reported that their task contained several test questions (gold questions with known

answers) to ensure a minimum qualification level of the workers for this task. Each

target sentence was rated by at least five workers. The observed patterns were more

visual if the dataset was filtered for trusted raters. Trust values were provided by the

crowdsourcing platform of their choice. The authors defined a threshold value of 0.70.

Workers with higher trust values than the threshold were defined as trusted workers.

These test questions are seen as the key to reliable data (Benoit et al., 2012, p. 12). In

addition to the test questions, the authors deployed ’screener’ sentences that served as

indicator of the workers paying attention to the task (Benoit et al., 2012, p. 13). Screener

sentences prompted workers to generate a specific response in the rating scales. If this

response was not made, this was an indication that the worker did not pay attention to

the task. In addition, Kittur et al. (2008) indicated the importance of the test questions,

and that the task should be designed in such a way that arbitrary answering is more

difficult than answering in good faith.

Schnoebelen and Kuperman (2010, p. 462 ff.) provided several recommendations for

designing a crowdsourcing task and cleaning data. The following is summary of some

of the recommendations that are relevant for this research: start testing the task with

small pilots and keep the task short. Define exclusion criteria for filtering the results.

Avoid ’cherry-picking’. For tasks in English, choose workers from English speaking

countries. If an answer has to be provided in a specific format (for example, write only

one word), the responses that do not fulfil this format can help exclude workers. The

time spent on a task is an indicator to remove workers. Schnoebelen and Kuperman

removed those workers with more than two standard deviations from the mean. On

average, the authors cleaned 25% of the workers (37% of the data points).
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5.5.3 Aggregating crowdsourcing results

Wang et al. (2013, p. 10) saw crowdsourcing as an alternative to achieving high quality

annotations because many redundant annotations would help filter noise. A common

way of aggregating data is by majority voting, which is not perceived as being perfect,

but can generate satisfying results (Li et al., 2013, p. 2).

Hovy et al. (2013, p. 1120) argued that majority voting is deficient when many

coders always choose the same category dimension (for example, in the case where

the workers always rate all categories as yes). The authors used an item-response

model to find latent true labels of items from messy data. Their model outperforms

several other models (Hovy et al., 2013, p. 1124) with regard to accuracy, including

majority vote, if applied to the natural dataset of Snow et al. (2008). However, these

differences are small. The model achieves better accuracy with an increasing number

of annotators (Hovy et al., 2013, p. 1126). On a synthetic dataset that simulates two

gamer strategies (a random rater and a rater who always rates the same category) and

different gamer percentages (from 50% to 100% of gamers), their model performed

better than applying majority vote as aggregation strategy (in the range of 50% to 70%

of gamers).

Gao and Zhou (2013, p. 8 f.) remarked that, when comparing majority vote with

the Dawid-Skene estimator for aggregating rater results, the Dawid-Skene estimator is

better than majority vote in the case of having mostly results from gamers.

5.5.4 Summary

The research on crowdsourcing annotation tasks is a relatively new development that

bears the potential of annotating large amounts of data in a reasonable time.
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From the research on the quality of crowdsourcing in related areas outlined above, it

seems that crowdsourcing is a viable method that, when carefully designed and if the

results are cleaned and aggregated, may be close to expert evaluation, or to the quality

of traditional lab experiments.

Furthermore, the description of crowdsourcing tasks contains all the information

required to replicate the task. Such description contains coding instructions and the test

questions required to qualify the task annotators. This strengthens the reproducibility

of the data generation process because all the information is made explicit (see the

evaluation criteria of objectivity in Section 4.2 ’Evaluation criteria and metrics’). The

manual content analysis of reflective writing often relies on coder training. Explicit

description of coder training and the process for developing the mutual understanding

of how to code text is often not available. Poldner et al. (2012, p. 31) found in their

review that only one out of 17 articles described the coding protocol.

5.6 summary of pilots

Several pilots were conducted before the actual annotation task. As described in

Section 5.5.2 ’Research on crowdsourcing task design’, the task design is crucial in

order to achieve high quality annotations. This section summarises several

observations made with experiments that explored the potential of using paid

crowdsourced workers to annotate texts and text-segments according to important

elements of reflection. These observations influenced the final task design used to

create datasets for the evaluation part of this thesis.

The task design building blocks are discussed here. We start with the observation

that, although most crowdsourced coders work diligently, a certain amount of

crowdsourced coders do not consider the task important. Section 5.6.1 ’Gaming

behaviour’ raises awareness on this issue because neglectful gamers is detrimental to
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the quality of the annotations. A novel approach to significantly reduce the amount of

gamers is presented in Section 5.6.2 ’Custom validators’. Section 5.6.3 ’Amount of

ratings’ discussed the amount of coders necessary to rate one unit.

Section 5.6.4 ’Multiple-choice vs. rating scale’ discussed issues regarding the scale

most suitable to the task. A summary of all recommendations closes the discussion on

the decisions made to design the task for the data generation annotation.

5.6.1 Gaming behaviour

Early experiments of the author that used crowdsourcing to annotate texts emphasised

that a certain amount of workers (people who perform the tasks on crowdsourcing

platforms) attempt to game the task in order to be paid with minimal effort. A worker

is paid immediately after completing a task. This means that one could click through

a task as quickly as possible to fulfil the task, without reading the task description, the

task, or the item of the task. In this thesis, we refer to these workers as ’gamers’ because

they attempt to ’game’ (manipulate) the task. This follows the term used by Kittur et al.

(2008). Other people refer to such workers as spammers, for example, (Li et al., 2013,

p. 2), (Hovy et al., 2013, p. 1120), and Gao and Zhou (2013, p. 1). Detecting gaming

behaviour is important because gaming negatively affects the reliability and validity

of the annotation task. If gaming can be detected, these workers can be filtered, which

in turn improves the quality of the task results. However, gaming is a complex subject.

Therefore, several thinking points are outlined and discussed later in this paper.

The time required by a worker to complete a task can be indicative of gaming. A

task requires a minimum amount of time to be processed by a worker. The worker has

to read the instructions and the text of the task, and then requires time to answer the

task questions. Therefore, if the worker completes a task in an extremely short time,
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shorter than possible to read the text, this information can be used as an indicator of

gaming behaviour.

The following example illustrates this type of gaming behaviour. The task consists

of several task pages (for a concrete example of a task set-up, see Section 5.7.1 ’Task

setup’). After the worker completes and submits the page, he or she receives payment.

A task page consists of five sections. Each section contains blog text and several rating

questions on the text. There is no limit to the number of pages on which a coder can

work. Each item receives at least three ratings. The task does not use any test questions

and no free-text fields.

The amount of sections within a page can be specified in the task set-up of the

crowdsourcing platform. In general, this is a fixed number of sections. Sometimes,

however, the crowdsourcing platform varies the amount of sections in order to gather

any outstanding ratings.

To inspect the time a worker dedicated on a task, we can plot the time per page for

each worker. The following Figure 7 shows these data ordered from workers who spent

the least amount of time on the tasks (for better visibility, 2/3 of the data are shown).

For each worker the data are ordered from the first page they visited to the last page.

We can see that the coders on the left side of the graph dedicated only seconds to a

page, which can indicate that these coders did not read the text thoroughly and rated

the items randomly.

The figure reads as follows. The y-axis depicts the time difference between the start

time and submission time of each page. The x-axis groups unique raters and pages.

For example, r001-p01 represents a rater with the unique ID 1 completing items on

page 1. r001-p02 is the same rater for page 2. r002-p01 signifies rater 2 and page 1. For

example, rater 1 dedicated most of the time to page 1, and then completed all other

pages much more rapidly.
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Figure 7: Time dedicated to crowdsourcing task

The numbers above each dot in Figure 7 represent the number of sections a rater

submitted at the same time. Mostly, they are multiples of five that reflect the page

set-up for the five sections of a page. This number varies sometimes depending on the

number of sections allocated by the crowdsourcing platform.

We can see that there are some raters who completed the pages in a very short time.

This is an indicator that these workers were gaming the task because it is unlikely that

the workers studied and carefully rated five blog posts in such a short time.

Next, we describe how the removal of these gamers influences the overall quality of

the task in terms of the per cent agreement of raters. As outlined above, these values
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are derived from a task that does not contain test questions to qualify the coders, nor

any other measures to improve coding quality.

Before filtering workers based on their time dedicated to the task, we determined

that the item ’the text is reflective’ has a percentage agreement of 61%. The percentage

agreement for the item ’the text contains a description of what was happening’ is

62%, and the percentage agreement of the item ’the text shows evidence of a personal

experience’ is 63%.

When all those coders who dedicated less than 150 seconds to the task are removed

(see the gap within the time band in Figure 7 between 100 to 150 seconds), the

agreement percentages are higher. Two cases are considered. For the case where all

items are removed, which were rated less than three times, the value for the reflective

item is 69%; for the description of what is happening, it is 81%; and for the personal

experience item, it is 75%.

For the case where all items are maintained (which means that some items received

only two ratings, or even one), the value for the reflective item is 67%; for the

description of what is happening, it is 71%; and for the personal experience item, it is

68%. Again, the agreement values are higher if those people who dedicated an

extremely short time to the task are excluded.

In the following paragraphs, we propose another method for detecting gamers that

is used for the task design of the corpus of reflective and non-reflective sentences.

Whereas short time dedicated to a task might be indicative of gaming behaviour, one

has to consider that there are also workers who are extremely specialised in the tasks

and can rapidly perform the tasks well. Such quick workers, while not as fast as the

gamers described above, might be sufficiently quick as to fall within the threshold of

two standard deviations from the mean, as described in Schnoebelen and Kuperman

(2010, p. 464). This would exclude perfectly good workers, if only task duration is

considered for gaming detection.
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Such high performance contributors should not be dismissed from the results set, or

be banned from the task (banning is one mechanism to exclude workers from following

tasks). Another indicator for gaming behaviour can be the free-text answer field. For

example, workers are asked not only to provide a rating for an item, but also a short

explanation as to why they rated the item in such way. Therefore, the free-text answers

can provide qualitative insight on how coders understand the task, and it can serve as

proxy to assess the quality of the coding work.

The following experiment results are based on a task that contains several free-text

fields. The specific task is insightful with regard to gaming detection using free-text

fields. The task does not produce any trusted results (which are based on worker

performance in the test questions). Therefore, the following presentation of the

free-text replies are based on the untrusted results usually discarded by the platform,

but available for inspection. In addition, any type of worker was allowed to work on

the task (the crowdsourcing platform also offers to select skilled workers from a pool

of workers who performed consistently well in previous tasks, i.e., high-performing

workers).

The task is to assess texts as to whether they contain reflection categories. Each text is

approximately 500 words long. The coders were asked to copy sentences from a given

text and paste them into a free-text field as evidence of a specific reflection category.

For example, the coders were asked to find evidence of the item ’The writer

recognises that something is not as it should be’ in the following text:

’I want to reflect on the dance lesson with year 8, and in particular on the

situation that arose with Ben, though I think that there are wider issues to

be considered than just Ben. The situation left me feeling guilty and

inadequate as a teacher. I see myself as having failed to prevent this

situation and I suspect that none of us gained from it’.
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The original text was obtained from Moon (2004), and shortened for the sake of

illustration.

As an example, the workers could have copied the following sentences as evidence

of the item and pasted them into the text field: ’The situation left me feeling guilty and

inadequate as a teacher’ and ’I see myself as having failed to prevent this situation and

I suspect that none of us gained from it’.

In total, 1,569 results from 272 coders were gathered. Based on the text field replies

of the coders, their answers were assigned to one of the following categories:

• On-task replies: Coder worked on the task as formulated in the task instruction

(35 coders).

• Copy: Coder either repeated the same text chunk for all text fields, or copied the

instructions, or copied segments of text without taking care of sentence

beginnings or endings (101 coders).

• Random text sequence: Coder randomly pressed keys on the keyboard (46

coders). Some examples are: ’ghjghjghjgjghj’, ’fadfda’, or

’aaaaaaaaaaaaaaaaaaaasssssssssssssssssffffffffffffff’.

• Unrelated: Coder wrote text replies not based on the text of the task (31 coders).

Some examples are: ’youtube marketminder forbes’, ’yes i guess its ok’, or

’Www.yahoo.com’.

• Empty: Coder did not copy-and-paste any sentences into the text field (17 coders).

• Nonsense: Coder provided nonsense answers using, for example, the ’lorem

ipsum’ filler text (21 coders). Some examples are non-English words such as

’lacrima lacrima lacrima’, ’lorem ipsum dolor sit amet’, or ’bloomys131082’.

• Absent: Coder rated everything as absent, i.e., no evidence of one of the reflection

elements in the texts (12 coders).
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• Numbers: Coder filled text field with numbers and not text (nine coders). Some

examples are: ’123 213’, ’12/12/1234’, and ’312321123’.

Table 6 summarises the average time in seconds dedicated to each page for each

category.

There is a large difference in the time dedicated to each page between the coders

who were on-task and those who were off-task. On-task coders required, on average,

348 seconds (SD = 527), whereas off-task coders required, on average, 53 seconds (SD

= 81).

Category Mean SD Pages

On-task 348 527 126

Copy 78 88 594

Absent 67 109 113

Unrelated 48 105 195

Numbers 34 22 53

Random 26 27 298

Empty 20 41 83

Nonsense 17 25 107

Table 6: Average time required per category

Completing the task according to the instructions required significantly more time

than any of the gaming strategies.

The different gaming strategies result in an overall lower amount of time dedicated

to each task, thus maximising the financial reward of the coding work.

The free-text answers can be used as proxy to determine which coders worked on

the task, and which attempted to game the task. The text replies can serve as a

mechanism to help understand coder motivation. Obvious off-task behaviour can be

spotted efficiently by hand. In here, the text answer replies have been used to detect

gamers. The completion time was not used as an indicator for gaming behaviour.

Similar to the test questions serving as quality measure, the open text responses

can be used to automatically determine those coders attempting to game the task. The
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results of the experiment show several repeating gaming strategies, for which an array

of methods was developed to obstruct. These automated methods are described next.

5.6.2 Custom validators

The chosen crowdsourcing platform11 provides several simple validators. A validator

checks the entry of the coder according to several patterns. For example, text field

validators check the minimum and maximum length of characters in an entry, whether

the entry contains only text and not numbers, and whether the entry is a currency,

email address, URL, or other regular expression-related validators. If the text reply

from a coder does not match one of the patterns, a feedback message is displayed. The

coder can only submit a task if all text replies conform to the validators.

These validators can help ensure that at least the free-text response is of a certain

length, or that it is a text response. However, they have limitations for making a task

robust against the observed gaming behaviour outlined in Section 5.6.1 ’Gaming

behaviour’.

The crowdsourcing platform allows the overwriting of existing validators with one’s

code. The client-side validator code is written in JavaScript, and it can be adjusted. In

rare cases, the coders disable the JavaScript validation. For this case, the platform relies

on server-side validation. For the latter scenario, custom validators can fail because it

is not possible to modify the server-side validation.

A common gaming behaviour is to repeatedly copy the same text, usually text found

on the web page that displays the task, into the free answer text fields. An algorithm

that determines text similarity can help detect duplicated text and provide feedback to

the coder that the answers are too similar to the web page text.

11 http://crowdflower.com

http://crowdflower.com
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Several custom algorithms have been developed to alleviate the problem of

repeatedly copying the same text into all text fields. These algorithms assume that on

each page, several free-text fields are present, and that valid text responses are

sufficiently different from each other. These prerequisites have to be considered

during the task design process.

The implementation uses n-grams of word tokens from all open answer replies of a

page in order to measure repeated occurrences of word sequences of a specific length.

In addition to checking the text of the free-text field, another algorithm checks

whether any text on the task page was copied and then pasted into the free answer

text field.

An algorithm based on a collection of common random keyboard patterns is used

to combat random text sequences. In addition, a regular expression detects whether a

character is repeated frequently (for example, ’aaaaa’).

To ease the problem of nonsense answers, an algorithm that checks whether each

reply contains at least one word of the most frequent English words is used. This helps

minimise text replies in languages other than English, and texts full of nonsense words.

All custom validators provided a dialogue box that indicated to coders the problems

with their text reply. These hints were also explained in the task instruction. In order

to ensure the coder reads the instructions, another algorithm can be used to check

whether all text replies start with a special symbol. If this symbol is not present, the

dialogue refers the coder to the instructions.

These validators aim to make the task robust against some of the outlined gaming

strategies. They make it more difficult to successfully game the system, and thus lower

the reward for gaming. The assumption is that, if it is more difficult to game the system

when actually performing a given task, the gamers will either stop the task, or focus

on solving the task as instructed.
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The automated detection of gaming strategies in texts using these validators has to

maintain balance between making it difficult for gamers and not frustrating workers.

These custom validators have been used for several smaller experiments, and based on

the experience, they indeed make the task robust against gaming because they reduce

the amount of off-task text replies. For example, in an experiment that made use of

these custom validators, the manual inspection of the text field responses revealed that

only eight out of 259 coders had to be removed because they provided off-task text

responses. This is a considerable reduction compared to the 25% of workers that had

to be removed by Schnoebelen and Kuperman (2010).

5.6.3 Amount of ratings

The manual method to assess reflection in writings is usually based on two to three

trained coders (see Section 3.1.4 ’Manual reflection detection performance’). Under

the traditional premise of having at least three ratings per item, this practice is not

recommended for crowdsourcing, especially when controlling the task for gamers.

This is especially true for experiments with a smaller amount of assessed units. For

example, in one experiment, a total of 32 sentences were rated. There was one coder

who dedicated an extremely short amount of time to the task and was identified as a

gamer. This one gamer was responsible for coding 16 sentences, which means that

half the sentences received only two ratings. A higher amount of coders for each unit

helps reduce the risk of not having sufficient ratings for each item.

There is no definitive answer to the question of what is the best amount of ratings

requested from the platform for each unit. The research outlined in

Section 5.5.1 ’Research on crowdsourced annotation quality’ reported five to 50

ratings per unit. The amount of coders necessary depends on the task, and should be

determined with small pilot studies. The pilots that led to the task design for the
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corpus generation process were based on approximately five ratings; after filtering for

gamers, this resulted, in most cases, in at least three ratings per item. To determine

the reliability of the process, more ratings are necessary, especially if reliability is

determined with the split-half approach outlined in Section 5.7.4 ’Reliability’. There, a

sentence rating is determined through rating aggregation. The final vote to label

sentences is based on the majority of approximately four to five ratings. Aggregating

several ratings into one is an approach commonly used in crowdsourcing (see

Section 5.5.3 ’Aggregating crowdsourcing results’). This also means that in order to

determine the reliability between two majority vote raters, at least twice as much

ratings per item are necessary. Section 5.7.4 ’Reliability’ outlines this scenario (see p.

182). For example, in order to determine the reliability of two majority vote raters that

based their vote on five ratings, ten ratings are necessary (five for each majority vote

rater). However, it is not necessary to annotate all sentences in a dataset with ten

ratings per sentence in order to determine reliability because such reliability can be

determined on a subset of all units (see Section 4.2 ’Evaluation criteria and metrics’).

Once reliability is found to be sufficiently high, at least five ratings suffice to annotate

the remaining units. The reason is that, once the process with the majority vote rater

of five ratings is found reliable, this majority vote rater will likely produce the same

reliable results in the future. Thus, for the actual task, five ratings suffice.

Here, approximately seven ratings are requested for each unit. The majority vote to

assign a label to a unit is then based on seven, and not five, ratings. The additional two

ratings were added in order to aid in the decision-making process as to exclude the

unit from the dataset.
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5.6.4 Multiple-choice vs. rating scale

Another experiment tested the use of multiple-choice questions. The intention is to

reduce effort for the coders because the coder only has to choose one option, instead

of coding several Likert scaled items. The design setup uses several test questions,

a free-text field to gather coder responses, and custom validators to block obvious

nonsense answers. Each page of the task contains four blocks of sentences. A coder

could rate a maximum of 30 sentences. The qualification test consists of four questions

randomly chosen from a large pool of test questions, and on every other page, another

test question is mixed among the actual questions.

The coders were asked to select the best fitting category for the given sentence

according to the following multiple-choice questions:

2 Something should have been done differently

2 Reasoning

2 Takes another perspective into account

2 Something was successfully achieved

2 Something is interpreted in a new way

2 None of these

The limitation of using multiple-choice questions over several rating scales is evident

when filtering sentences with low overall agreement. These are sentences where the

coder ratings indicated that they could not clearly place the sentence in one or another

category. This might be the case for sentences that express two or more categories. Such

sentences do not clearly indicate in which category they belong, and thus filtering them

leaves sentences clearly identifiable as belonging to a category. Such are the sentences

we wanted for building the corpus for the automated detection of reflection.
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In total, 1,000 sentences received five ratings. Filtering reduced the amount of

sentences drastically. For example, if only those sentences were maintained where

three or more raters (out of five) agreed, the remaining sentences were 29 for the

category something should have been done differently, 80 for reasoning, 19 for

perspective, 80 for intention, 67 for achievement, 16 for interpreted in a new way, and

332 for none of these. From 1,000 sentences, 632 remained, out of which 291 express

reflection categories.

If only those sentences were maintained where four or five raters agreed, the

remaining sentences were 12 for something should have been done differently, 22 for

reasoning, 4 for perspective, 42 for intention, 26 for achievement, 4 for interpreted in a

new way, and 191 for none of these. From 1,000 sentences, 301 remained, out of which

110 express reflection categories.

Filtering resulted in only a small percentage of sentences remaining from the

original 1,000, and those that remained were highly agreed. Using multiple-choice

questions might be quicker when coding; however, the risk is that many sentences

cannot be labelled with confidence. The difficulty is seen in the nature of the

multiple-choice format in combination with the nature of the coding schema and the

unit of analysis. Sentences can contain phrases, which can belong to several

categories, and thus determining the best option might be difficult. Querying each

question individually with Likert scales allows coders to rate sentences with multiple

options allowing them to rate sentences regarding several categories of reflection.

The pilots with Likert scales did not lead to such drastic reduction of items after

filtering. For example, in another experiment with 1,000 sentences where filtering was

applied if less than eight out of ten people agreed on sentences, for the perspective

category, 94 items were highly agreed as perspective sentences. In addition, Likert

scales allow the consideration of highly agreed sentences from another dimension of
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the scale. In this case, 414 sentences were highly agreed as not expressing a new

perspective.

5.6.5 General recommendations

From the experiences observed during the pilots, several recommendations can be

derived. The most important is to conduct several smaller pilots with crowdsourcing

in order to gain an understanding of the design decisions that influence the quality

of the results. Test questions are important because they help the workers to better

understand the task, and it is a first barrier for filtering gamers. Test questions should

be monitored closely and adjusted during pilots. Worker feedback is a valuable source

of information for their understanding of the test questions.

Instead of administering a batch with many units, it is recommended to work with

smaller batches. This allows assessment of the quality of each batch, reaction to

worker comments, and the ban of obvious gamers from the next batch. For example,

the experiments conducted with 1,000 sentences were divided into ten batches of 100

sentences each.

Gaming is a problem, especially if no restrictions with regard to the worker skill level

are set. No restrictions means having access to the largest pool of workers, but also that

effective mechanisms have to be in place for detecting gaming behaviour. In addition

to time as an indicator of workers who complete each task page in an extremely short

time (shorter than possible to work on the task diligently), free-text answer questions

can be helpful to detect gamers. Time should not be considered as the sole basis for

determining gaming behaviour because it might punish high performing workers. The

custom validators outlined in Section 5.6.2 ’Custom validators’ considerably reduced

the amount of gamers.
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The amount of requested ratings per unit should be determined in pilots that help

assess the amount of gaming, and with it, the number of annotations that have to be

discarded after each task. Therefore, two to three ratings per unit, as in the traditional

content analysis setting, is seen as too small. Here, five ratings were used to test

different task designs, ten were requested to test the reliability of the task design, and

seven to retrieve the annotations.

The use of multiple-choice items compared with separate rating scales runs the risk

of having an extremely reduced set of results after filtering for highly agreed units.

Therefore, the use of rating scales is recommended for the coding schema outlined in

Section 5.7.2 ’Task design’.

The experiences outlined from using the crowdsourcing platform were instructive

for the task design used to generate the datasets for reflection detection.

5.7 annotation task

This section describes the annotation task used to generate the labelled datasets for the

automated detection of reflection.

Section 5.7.1 ’Task setup’ describes the setup configuration of the crowdsourcing

platform that has been used for all tasks. Section 5.7.2 ’Task design’ outlines the task

design used to retrieve the ratings according to the model categories stated in

Section 2.3.2 ’Common reflection categories’. The experiences outlined in

Section 5.6 ’Summary of pilots’ were implemented into the task design.

Section 5.7.3 ’Participants’ provides descriptive statistics of the participants of the

task. The reliability of the coders is estimated in Section 5.7.4 ’Reliability’ and the

validity of the model for reflection detection is measured in Section 5.7.5 ’Validity’.

The result of the annotation task are datasets of annotated sentences with common

reflection categories. Section 5.7.6 ’Quality standard and datasets statistics’ reports
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descriptive statistics for each dataset after the application of the quality standard

outlined in Section 4.6.1 ’Dataset generation process’. These datasets are used in the

evaluation part of this thesis.

5.7.1 Task setup

The general setup is the same for all tasks. The setup configuration considers the

experiences observed during the pilots (see Section 5.6 ’Summary of pilots’). A task

on a crowdsourcing platform is a piece of the work distributed to the workers of the

crowdsourcing platform. A task is comprised of an instruction and units. The

instruction explains the task and provides an example of what is expected from the

raters. Each unit contains a sentence and several items with which the workers had to

rate each sentence. The items are operationalisations of the common reflection

categories (see Section 2.3.2 ’Common reflection categories’). Each item has to be

rated on a six-point Likert scale, ranging from disagree to agree, and for the level of

reflection item from descriptive to reflective. A free-text field is placed below the

items, and it asks the raters to justify their choice of why they think the sentences are

descriptive or reflective. The task description and unit design are fully described in

Appendix E ’task design’.

The crowdsourcing platform12 advertises the task to the workers, and those who

decide to work on the task see it in the form of a web page. Each page contains the

instruction and four units. The platform automatically assigns a sentence to a unit

from a pool of sentences. The same sentence is never assigned twice to the same

worker. After the worker completes all items and the text-field of a page, they can

move to the next page, or leave the job. Every new worker undergoes a qualification

test composed of four test questions that are units with known answers to the system.

12 CrowdFlower http://crowdflower.com

http://crowdflower.com
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Such test questions are manually defined by the task requester, and they appear as

every other unit, but in the case where the worker makes a mistake, the wrong

answers are marked and the worker receives feedback with an explanation for the

correct answer. The test questions serve two purposes. First, the feedback helps the

worker better understand the task, and second, those workers who answer too many

questions wrongly do not receive another page. If the worker performs well during

the initial test, they are admitted to the next page, which contains the actual units to

rate. Each of these successive pages has one unit out of four that is also a test

question. The crowdsourcing platform keeps track of the performance of all workers

of a task. If the performance falls below a threshold, the worker does not receive

another page. The test questions are from a pool of 50 designed and tested by the

researcher in initial pilots. The test questions are balanced, which means that every

item has approximately the same amount of test questions for both the absence and

presence of an item. On average, two items of a test unit are test questions. For each

test item, a feedback answer is stored in the system explaining why the sentence

expresses either the presence or absence of a category. In addition to the test

questions, each task is equipped with the custom validators outlined in

Section 5.6.2 ’Custom validators’. Custom feedback is generated by the validator for

the case where gaming behaviour is detected.

The platform provides another method for controlling worker quality: it offers the

option of allowing into the task only those workers known for accurate work in

previous tasks. Several levels can be set; the higher levels restrict the pool of workers,

which also means that the task takes longer. For the data annotation tasks, we chose

unrestricted access because previous pilots found that the test questions and

validators are effective methods for controlling the annotation quality.
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The platform allows the geographical distribution of the tasks. Because the task is in

English, the choice fell on countries with English as the native language, for example,

the United Kingdom, the United States, Australia, and Canada.

The entire dataset of sentences is first shuffled randomly. This ensures that during

the annotation task, every rater receives a random set of sentences, thus avoiding a

potential sequencing effect that can influence the rating decision. Because the

crowdsourcing platform distributes these sentences to available workers, there can be

a case where one worker sees all the sentences in their original order, whereas another

worker receives not in their original order. The random shuffle of the sentences avoids

this scenario. Subsequently, the dataset is divided into batches of 100 sentences, and

each batch has the same task setup and task design. Each batch is assessed

individually with regard to the quality of the annotations, the difficulty of the test

questions, the response to gamers, and the question answers of the workers. Although

the overall setup for the tasks does not change significantly, smaller adjustments are

made to the platform settings during some of the tasks. For example, allocation of

funds, adding or removing worker channels13, or adjusting the test questions.

Batching the tasks has the benefit that the experiences made in one batch can inform

the next batch.

5.7.2 Task design

The same setup described in Section 5.7.1 ’Task setup’ is used for all batches of the

entire task. The task setup describes the settings of the crowdsourcing platform. This

section describes the choice of items with which the workers are asked to rate each

13 The crowdsourcing platform advertises the task to many crowdsourcing channels, each with its own
workforce.
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sentence. These items are indicators (operationalisations or proxies) of the common

reflection categories (see Section 2.3.2 ’Common reflection categories’).

As outlined in the theory part of this thesis, Section 2.3 ’Model for reflection

detection’ reflective writing has many facets that have been classified, and the result

of this process is the common categories of reflective writing (see

Section 2.3.2 ’Common reflection categories’). They form the components of the

theoretical model that guides this thesis. This section presents the chosen indicators

for these common reflection categories. Each indicator represents the item used to

code each sentence. Because the indicators are derived from the common reflection

categories, they are proxies for these categories, and represent specific

operationalisations of the common categories of reflective writing. Furthermore, these

indicators can be understood as facets of a common category. This also means that

they do not cover all imaginable facets of reflective writing, but they cover important

facets.

This narrowing to specific indicators is similar to the approach taken by the research

described in Section 2.2 ’Models to analyse written reflection’. There, indicators were

developed based on their soundness with regard to the chosen theoretical reflection

framework. Section 2.2 ’Models to analyse written reflection’ provided an overview of

all these indicators, and showed the variety of indicators used to measure reflection.

Here, the guiding frame to develop reflection indicators are the common reflection

categories derived from the models described in Section 2.2 ’Models to analyse written

reflection’.

Table 7 shows all indicators and their mapping to the common reflection categories.

These indicators were tested in the smaller pilots that led to this task design (see the

summary of these pilots in Section 5.6 ’Summary of pilots’). The author reported on

older versions of these indicators in Ullmann et al. (2012) and Ullmann et al. (2013).
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Category Indicator

Description of an
experience

The writer describes an experience he or she had in
the past

Feelings The writer describes his or her feelings
Personal The writer describes his or her beliefs
Critical stance The writer recognises difficulties/problems
Perspective The writer takes into account another perspective
Outcome The writer intends to do something

The writer has learned something

Reflection The sentence is descriptive ... reflective

Table 7: Indicators of the common categories of reflective writing

The first two indicators for ’Description of an experience’, and ’Feelings’ are direct

mappings from the category to their indicators. For the category ’Personal’, an

indicator is chosen that asked whether the sentence expresses a belief of the writer. As

outlined in Section 2.3.2 ’Common reflection categories’, awareness of personal beliefs

is an important part of reflection because these beliefs govern one’s actions. The

indicator for the category ’Critical stance’ focusses especially on the awareness of

problems. The identification of problems is the first step in a critical analysis: it is seen

as the most important step because, without such awareness, the problem cannot be

analysed. The indicator ’Perspective’ asks for evidence of the consideration of other

perspectives. The type of perspective is left open deliberately and not narrowed to

specific perspectives, such as social context, historical context, theory, or other (see

Section 2.3.2 ’Common reflection categories’). Two operationalisations are chosen for

the category ’Outcome’ to cover the retrospective dimension of the ’Outcome’

category by asking whether something was learned, and the prospective dimension

that captures action intentions.

These indicators cover a wide range of aspects of written reflection. As such, they

are good candidate indicators to test their potential with regard to their automated

detection.
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Furthermore, these indicators formed the unit of the task setup described in

Section 5.7.1 ’Task setup’. Each indicator formed one item. The following list shows

the items for the task and their short names, which are used henceforth for easier

referencing. The short names are written in bold font face next to each item.

• Experience: The writer describes an experience he or she had in the past.

• Feelings: The writer describes his or her feelings.

• Beliefs: The writer describes his or her beliefs.

• Difficulties: The writer recognises difficulties/problems.

• Perspective: The writer takes into account another perspective.

• Intention: The writer intends to do something.

• Learning: The writer has learned something.

• Reflection: The sentence is descriptive ... reflective

Each item is rated on a six-point Likert scale ranging from disagree (1) to agree (6),

with the exception of the last item Reflection, where the item ranges from descriptive

(1) to reflective (6). This is conform with the models of reflection that asses the depth

of reflection, where the depth ranges from descriptive/non-reflective to reflective (see

Section 2.2 ’Models to analyse written reflection’). The reasons for choosing rating

scales is outlined in Section 5.6.4 ’Multiple-choice vs. rating scale’. The entire task

design can be found in Appendix E ’task design’.

The task design is used for all 51 batches advertised to the raters over the

crowdsourcing platform. From the 5,131 sentences from the sampled text collection

(see Section 5.2 ’Sampling text collection’), 50 sentences are used as the test questions,

thus leaving 5,081 sentences for the annotation task.

5.7.3 Participants

In total, 3,133 people participated in the task, mostly from the United States and the

United Kingdom. A total of 181 were identified as gamers. They were manually
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detected based on their free-text responses (see also Section 5.6.1 ’Gaming behaviour’).

Ten ratings per sentence were requested for 1,300 sentences from the crowdsourcing

platform. After initial inspection for reliability, which was found as sufficiently high,

seven ratings per unit were ordered for the remaining 3,781 sentences (see

Section 5.6.3 ’Amount of ratings’). After removing all the gamers, an average of 7.92

ratings were retrieved for each sentence.

5.7.4 Reliability

Reliability is one of the main evaluation criteria, as outlined in Section 4.2 ’Evaluation

criteria and metrics’. This section outlines the considerations made to calculate

reliability before presenting the results.

There are different ways for determining reliability. Here, the decisions made to

calculate reliability are aligned to the requirements of the dataset for machine learning

and the aggregation of ratings to determine labels.

The machine learning dataset should contain labelled sentences that indicate

whether the reflection category is present or absent. This means that the coder ratings

should be in a similar format that indicates presence or absence. Reliability could

have been determined with all six levels of the Likert scale; however, in anticipation of

the dataset format, the scale ratings are dichotomised. The first three levels (1, 2, and

3) are aggregated to indicate absence, and the last three levels (4, 5, and 6) to indicate

presence. There are many ways for grouping these levels, and they can influence

reliability (see Alonso and Mizzaro (2012, p. 1061)), but here, the simple divide in

halves is chosen instead of optimising the reliability for specific division

combinations.

As described in Section 5.5.1 ’Research on crowdsourced annotation quality’, the

annotations of the crowdsourced workers achieve high reliability when aggregated
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(see especially Section 5.5.3 ’Aggregating crowdsourcing results’). This is a different

approach compared with the manual content analysis of reflective writing (see

Section 3.1.4 ’Manual reflection detection performance’). There, the rationale is that, if

the reliability determined on a sub-sample of the dataset is sufficiently high, a single

coder can continue the coding process alone (examples can be found also in the

literature cited in Section 3.1.4 ’Manual reflection detection performance’, for example

Fischer et al. (2011, p. 168), or Poldner et al. (2014, p. 359). See also the discourse on

reliability in Section 4.2 ’Evaluation criteria and metrics’). In our case, the reliability

for individual coders is, for most indicators, rather low, thus continuing the

annotation task with only one coder is not justified (see Appendix D for the reliability

values).

On the other hand, the crowdsourced coding process is based on the idea that the

final determination on the label is derived from the collective decision of the crowd of

raters. This is also the approach followed here. Therefore, it is important to determine

reliability for this aggregated method and not for the individual level, as reported in

the content analysis section. Section 5.5.3 ’Aggregating crowdsourcing results’ outlined

several approaches to aggregate the crowdsourced results. A simple and commonly

used strategy is to base the decision according to majority vote. Each rater votes as

either presence or absence, and the one with the most votes is selected. Another way

of aggregating the results would be to use all six levels of the rating scale in order

to compare the average (or median) of the ratings of one group of coders with the

average rating of another group of coders. However, the majority vote approach is

more suitable because it casts voting in a binary format as needed for the dataset.

When using majority vote as the aggregation strategy, one has to consider how to

manage ’ties’. A tie exists when the same amount of ratings indicate presence and

absence for a reflection indicator. One way to manage this situation is to randomly

assign a label to these cases. This strategy of tiebreaking at random has the benefit that
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the reliability can be calculated over all cases because each case is assigned randomly

with a label (see Snow et al. (2008, p. 258) described in Section 5.5.1 ’Research on

crowdsourced annotation quality’). However, this strategy is not deemed useful for the

context of this study because the interest lies in a dataset where we are confident that

the labels are assigned based on the majority of judgements, and not influenced by

a random label generator. Therefore, the approach taken here is to treat ties as cases

where the raters could not determine whether the sentence expresses the absence or

presence of an indicator. Because no decisions could be made, they are removed from

the dataset so that only those sentences where a decision is possible remain. This

is similar to the approach used in the method of content analysis where the units

that could not be assigned to a category are marked as ’unknown’, or ’unrelated’ (for

example, see Chamoso and Cáceres (2009, p. 205) and Kovanovic et al. (2014)). The

chosen approach has the benefit that all the labels in the final dataset are based on a

majority vote, and not on randomly assigned labels.

In particular, in the context of crowdsourcing, it is common that not all units receive

the same amount of ratings, for example, gamer ratings have to be removed. An

extreme and rare case is when none or only one rating remains for a unit. However, a

single rating would contradict the purpose of majority voting. Thus, a decision can be

made as to when to discard a data point because of a lack of ratings. For the

calculation of reliability in this chapter, a minimum of four ratings is considered as

the minimum.

After this outline of the considerations for calculating reliability, the focus shifts to

the presentation of the results. Two cases are considered.

The first case is based on simple majority voting, where the majority vote is

determined for each sentence. For example, if six out of ten ratings agreed that a

sentence is reflective, it is labelled as reflective. This approach that uses a simple
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majority vote is common in the context of crowdsourcing (see

Section 5.5.3 ’Aggregating crowdsourcing results’).

The second case takes the strength of majority voting further. As outlined in

Section 4.6.1 ’Dataset generation process’, a more strict quality standard than simple

majority vote can be applied to label the sentences. Stated simply, we trust a

judgement more when more people agree on a unit. For example, if a sentence is

rated by eight out of ten people as reflective, we are more certain about the sentence

being reflective compared with a sentence where six out of ten people agree. A

four-fifth majority is a more strict quality standard than simple majority. Because it is

the aim to generate a high quality dataset in which all sentences receive substantial

support to justify their labels, this more strict quality standard is used later to select

the sentences for the final dataset. It ensures the validity of the dataset because only

sentences that received substantial support of being reflective enter it. Here, we

present the results of both cases. The reason for presenting the first case is that it is

more common to use the simple majority vote, and thus it can be used to compare

our results with the results of other researchers.

Agreement and reliability are determined by following the idea of randomly

dividing the ratings for each sentence into two groups. Within each group, the label is

determined by majority vote. Reliability is then calculated based on these two ratings,

which measure the reliability of the two majority vote raters. The parallel to the

classic form of determining reliability with two coders is that instead of having two

coders, coding is determined here by two coding devices. The coding device is the

majority voting system. The first coding device gathers five ratings from five different

people and determines the final vote. The second device does the same with another

set of five people. As in the traditional case, if the two coders differ in their ratings,

the reliability is low. If they rate similarly, the reliability is high. Here, we check how

similar the two majority vote raters vote.
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For example, if four out of five ratings of group A agreed that a sentence is

reflective, it is labelled as reflective. If four out of four ratings of group B agree that

the same sentence is also reflective, there is an agreement of both groups of raters on

this sentence. This is essentially a comparison of two (aggregated) raters, in which the

rating of each rater is based on the majority vote of many ratings.

Before describing the results, it is worth explaining the two ICCs (see

Section 4.2 ’Evaluation criteria and metrics’ for the description of all models). ICC(1,1)

is the ICC value calculated from the majority votes of each group of raters. The first ’1’

in ICC(1,1) denotes the first ICC model, and the second ’1’ is the ICC for individual

raters. The k in ICC(1,k) indicates that it is the average rater model. ICC(1,k) considers

the averaged values of all k ratings (every sentence is rated a maximum of ten times;

thus, this is ICC(1,10)), whereas ICC(1,1) calculates the individual reliability of our

two aggregated raters. The k versions of ICC are commonly used to retrieve reliability

values for averaged raters, and therefore, it is included in order to compare it with the

majority vote approach. As outlined above, there are several ways of measuring the

reliability of aggregated values. Here, the majority vote approach is more suitable

because this is the mechanism that later determines the final dataset. Therefore, we

report ICC at the individual level with ICC(1,1). ICC(1,k) allows the comparison of

the reliability of the averaged approach with the chosen majority vote approach.

Further, ICC(1,k) can serve to validate the majority vote approach. We would expect

that, although their values are different, the larger values for one measure also result

in larger values in another measure; similarly for smaller values. The assumption is

that the majority vote approach correlates positively with the established ICC(1,k).

Here, the validity of the new method is tested against the established ICC(1,k)

measure for reliability. A suitable measure of correlation to test this assumption is

Pearson’s product moment correlation. Both ICC(1,1) and ICC(1,k) are normality

distributed according to the Shapiro-Wilk test. In addition, inspection of the dot plot
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of both indicates that their relation is linear. This suggests the suitability of Pearson’s

product moment correlation. The correlation between ICCs in Table 8 is statistically

highly significant (r = 0.99, p < 0.001). This strong correlation between both measures

is an indicator of the validity of the majority vote rater approach.

Table 8 shows the agreement and reliability values of the majority vote raters for all

chosen indicators of the common categories of reflective writing. N denotes the

number of sentences after removing ties and sentences with insufficient ratings. The

sentences are mostly from the 1,300 sentences that were rated up to ten times (see

Section 5.7.3 ’Participants’). The %-sign signifies per cent agreement. The measures

reported here are described in Section 4.2 ’Evaluation criteria and metrics’. Cohen’s κ

assumes that all data are rated by the same two raters. Arguably, they are rated by the

same meta-rater, which is the majority vote meta-rater. On the other hand,

Krippendorff’s α, Gwet’s AC1, and ICC1 do not require fixed raters, and thus are a

better fit for this scenario.
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Experience 1239 0.92 0.83 0.83 0.83 0.83 0.89

Feelings 1060 0.88 0.72 0.72 0.78 0.72 0.82

Beliefs 1026 0.82 0.65 0.65 0.65 0.65 0.78

Difficulties 1140 0.86 0.71 0.71 0.71 0.71 0.84

Perspective 994 0.80 0.47 0.47 0.67 0.47 0.65

Intention 1224 0.93 0.71 0.71 0.92 0.71 0.83

Learning 984 0.80 0.55 0.55 0.64 0.55 0.70

Reflection 1015 0.84 0.62 0.62 0.72 0.62 0.75

Table 8: Reliability of two simple majority vote raters over all indicators

The two majority vote raters agree on all indicators at over 80%. Agreement on

the indicator Experience is in the top bracket of the reported per cent agreement in

Section 3.1.4 ’Manual reflection detection performance’. The per cent agreement of all
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other indicators is the middle bracket between 80% and 89%. The per cent agreement

of all indicators is in the range of the per cent agreement reported in the research on

manual content analysis of reflective writing.

All indicators, but one, rate above the 0.5 Cohen’s κ benchmark for exploratory

research outlined in Section 4.2 ’Evaluation criteria and metrics’). Most are substantial,

and the indicator Experience is almost perfect. Two have moderate reliability

(Learning and Perspective). The rating reliability of the indicators Experience,

Feelings, Difficulties, and Intention is in the top range of the reported Cohen’s κ

values in Section 3.1.4 ’Manual reflection detection performance’. They did, however,

not reach perfect reliability as was reported in two of the papers. Beliefs and

Reflection are in the middle range, Learning is in the lower range of reliability. All

these indicators are in the range of what can be expected according to the reported

reliability values of the manual content coding process of reflective writings. The

indicator Perspective had the lowest κ and was below the reported values of the

research of the manual analysis of reflective writing.

The indicators of the three papers that reported ICCs in Section 3.1.4 ’Manual

reflection detection performance’ are in the 0.6 to 0.7 bracket, some below, and some

above. The raters of the indicators Experience, Feelings, Difficulties, and Intention

exceed that bracket (see the column ICC(1,1). Beliefs and Reflection are in this

reported range. The proxy Learning is rated within the bracket from 0.5 to 0.6.

Perspective is below 0.5. It is notable that the group-based ICC(1,1) values are

consistently lower than the ICC(1,k) reliability for average ratings. The split-half

approach produces smaller reliability values compared with the ICC(1,k) model that

considers all ratings.

According to Gwet’s AC1, the rater reliability for the indicators Experience and

Intention are almost perfect. All others are substantial.
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Thus far, we have discussed the reliability of the raters using the simple majority

vote approach. Table 9 shows the reliability for the two four-fifth majority vote raters.

The reliability of all, but one, indicators are almost perfect. The exception is the

indicator Perspective, where the raters achieve substantial reliability. The four-fifth

majority vote rater produced highly reliable results. The agreement and the reliability

is in the highest bracket reported by the research of the manual content analysis of

reflective writings (see Section 3.1.4 ’Manual reflection detection performance’).
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Experience 742 0.98 0.96 0.96 0.96 0.96

Feelings 514 0.98 0.94 0.94 0.96 0.94

Beliefs 376 0.97 0.93 0.93 0.94 0.93

Difficulties 540 0.97 0.94 0.94 0.94 0.94

Perspective 364 0.95 0.78 0.78 0.93 0.78

Intention 785 0.99 0.93 0.93 0.99 0.93

Learning 347 0.96 0.91 0.91 0.93 0.91

Reflection 413 0.97 0.92 0.92 0.96 0.92

Table 9: Reliability of four-fifth majority vote raters over all indicators

This concludes the part on the reliability of the reflection indicators. Two strategies

were followed. The first explored the reliability of the simple majority vote raters in

order to retrieve reliability values comparable with the reported reliability values

from research on the analysis of reflective writings (see Section 3.1.4 ’Manual

reflection detection performance’). Similarly to the process described there, the

majority vote raters rated the sentences according to the reflection categories. Overall,

the reliability is in the range of the reliability values outlined there. In order to

achieve these results, the ratings of approximately five raters were aggregated with

the simple majority vote that determined the final label.
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The second strategy determines the reliability of the four-fifth majority raters. This is

important because the four-fifth majority vote will be applied to all sentences in order

to determine a high quality final datasets. Naturally, the two four-fifth majority raters

achieve higher reliability. Mostly, reliability is almost perfect.

After discussing the reliability of the data generation process, the focus now shifts to

the second evaluation criteria outlined in Section 4.2 ’Evaluation criteria and metrics’,

namely validity.

5.7.5 Validity

The chosen indicators are derived from the common reflection categories (see

Section 5.7.2 ’Task design’). Thus far, their validity (see Section 4.2 ’Evaluation criteria

and metrics’) is based on the fact that they are sound derivations from the common

categories on reflective writing. It is plausible to believe that they capture important

facets of the common categories. This type of validity is called face validity

(Krippendorff, 2012, p. 329). Most of the research outlined in Section 2.2 ’Models to

analyse written reflection’ based their choice of indicators to assess the writings on

their soundness in the context of the theory of reflection. With this approach, the

indicators have face validity. Another way to determine the validity of the indicators

is to collect empirical evidence with regard to their validity. However, the research

examined in Section 2.2 ’Models to analyse written reflection’ only contained few

reports on empirical evidence of validity. This observation resonates with the findings

of Poldner et al. (2014, p. 31 f.). They noted that ’None of the 18 articles used methods

like correlation analysis, group differences, or experimental or instructional

interventions to gather evidence of for validity.’ (Poldner et al., 2012, p. 31 f.). An

exception to this is, for example, the study of Poldner et al. (2014, p. 363). They
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correlated reflection levels to external criteria that was an assessment test. Using

correlations is a common way for determining empirical validity.

The chosen task design (see Section 5.7.2 ’Task design’) makes it possible to

empirically investigate the relationship between the indicators of the common

reflection categories and the indicator that measures the two reflection levels, namely,

descriptive and reflective. The assumption is that the breadth indicators of reflective

writing are related to the level indicator Reflection (see Section 2.2 ’Models to analyse

written reflection’ and Section 3.1.3 ’Relationship between the descriptive and level

reflection quality’). This section reports the results of the association between the

reflection indicator and all indicators of the common categories of reflective writing.

The expectation is that all common categories indicators correlate positively with

reflection. We would expect that, for example, sentences that express beliefs are more

likely to also express reflection. It would speak against the validity of the indicator if

the sentences that express beliefs were mostly rated as descriptive/non-reflective.

There are several correlation coefficients. Frequently, Pearson’s product moment

correlation is used to measure the correlation between two variables. However, this

measure relies on several test assumptions, for example, the variables should be

normally distributed and the relationship should be linear. A test of normality shows

that a nonparametric correlation coefficient is more suitable. Spearman’s rank

correlation (ρ) is a nonparametric measure (Siegel, 1957; Brown and Hayden, 1985).

Although binary data could have been used similar to Section 5.7.4 ’Reliability’, here,

the Likert scale ratings are averaged in order to better approximate the rank

correlation compared with binary ranks. In order to maintain this analysis similar to

the process that determined reliability, the simple majority vote approach is used to

include only those sentences on which a majority could agree14. The ranks are

calculated based on their averages. For example, a sentence rated on average as 1.3

14 The differences of the rank correlations between this approach and an approach that uses all sentences
were small (maximum 0.03 difference).
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(descriptive) receives a lower rank than a sentence rated as reflective with an average

of 5.3.

Spearman’s ρ ranges between -1 and +1. A value of -1 indicates a negative rank

correlation. This is the case when, for example, rising values of Beliefs appear with

decreasing values of Reflection. A positive rank correlation indicates the expected

relationship between the indicators of the common categories and the reflection

indicator.

N signifies the amount of rated sentences (excluding sentences without a majority

vote (i.e., 50:50) and sentences that received fewer than four ratings). The letter p

represents the p-value.

Table 10 shows Spearman’s ρ between Reflection and all indicators of the common

reflection categories.

Indicator N Spearman’s ρ p

Experience 4659 0.50 0.00

Feelings 4628 0.76 0.00

Beliefs 4576 0.68 0.00

Difficulties 4570 0.48 0.00

Perspective 4505 0.32 0.00

Intention 4698 0.28 0.00

Learning 4526 0.54 0.00

Table 10: Correlation between reflection indicator and indicators for common categories of
reflective writing

All rank correlations are statistically highly significant, but this is not surprising

considering the large sample size. The direction of the rank correlation is as expected.

This means that all indicators of the common categories positively associate with

reflection. Feelings correlates strongly with Reflection. Experience, Beliefs,

Difficulties, and Learning correlate moderately, and both Perspective and Intention

are weakly associated with the indicator Reflection.

It is notable that the associations between Reflection and both Intention and

Perspective are weak. The first indicator is a forward-looking concept that asks what
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to do next. This is not a concept of looking back at past experiences or lessons

learned, which is more commonly associated with reflection (see the Latin root of

reflection outlined in Chapter 1 ’introduction’) and can be seen in the moderate

correlation with Experience and Learning. The second (Perspective) shifts the focus

away from the thought sphere of oneself to other perspectives. It seems that

Reflection is more associated with one’s perspective than with the consideration of

other perspectives. This can be seen in the moderate association with Beliefs, which

summarises expressions of one’s beliefs and perspective on the world.

The empirical evidence for validity in Table 10 corroborates the face validity of the

indicators. The theoretically derived relationships between reflection and the common

categories of reflective writings are also found in their rank correlations.

5.7.6 Quality standard and datasets statistics

The process described thus far enriched the dataset of 5,081 sentences with ratings

for all indicators of the reflection categories. Each sentence was rated on average 7.92

times. This section outlines the standard that was applied to all datasets to ensure their

quality and presents descriptive statistics of the final datasets. Section 5.7.4 ’Reliability’

shows that the strategy for determining the final label for each sentence by majority

vote is reliable. Still, the majority vote approach can err, especially if the majority is thin.

As outlined in Section 4.6.1 ’Dataset generation process’, one of the requirements for a

suitable dataset for machine learning is that it contains a sizeable dataset of examples

that represent the construct. The four-fifth majority vote is applied in order to generate

these high quality datasets for machine learning.

A four-fifth majority vote requires that most ratings reflect the annotation. The more

ratings agree on a label, the higher is the confidence that the sentence actually expresses

that label. The higher the effort that has to be made to justify an annotation is at the
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cost of fewer sentences available in the dataset, but these sentences are highly likely to

represent their indicators. Other standards can be applied, but the four-fifth majority

vote allows, for all indicators, sufficient data to train and test the machine learning

models. The sample size is similar to the sample sizes of the related machine learning

approaches (see Section 3.2.3 ’Machine learning approaches’). The reliability of the

four-fifth majority rater was estimated in Section 5.7.4 ’Reliability’ (see Table 9) and

found sufficiently high. The per-cent agreement and Cohen’s κ values are in the top

bracket of the reliability reported in the research about the manual analysis of reflective

writing (see Section 3.1.4 ’Manual reflection detection performance’).

The following Table 11 shows the amount of sentences that remain in the dataset

when applying the four-fifth majority standard, and the average word count of all

sentences15. Both are divided into two categories: absent and present. Present means

that the sentences are highly agreed to express the indicator. Absent means that the

sentences are highly agreed to not express the indicator. For example, 588 sentences are

highly agreed to be reflective, and 1,695 are highly agreed as being descriptive/non-

reflective.

Number of sentences Average of unigrams
Indicator absent present absent present

Experience 1768 1505 20.77 24.46

Feelings 1820 786 20.31 25.81

Beliefs 1095 1159 18.78 25.45

Difficulties 1291 1340 17.26 27.00

Perspective 1678 307 17.45 29.32

Intention 3295 341 21.67 24.90

Learning 1153 679 18.13 26.70

Reflection 1695 588 20.47 25.46

Table 11: Statistics for annotated dataset

15 The number of sentences is higher than the number of sentences reported in the reliability Table 9 on
page 186. The reason is that there at least 8 ratings were necessary to determine the reliability of the
two four-fifth majority vote raters. This reduced the amount of sentences to the ones that had more than
eight ratings. Here, the minimum of required sentences was four, which means that more sentences are
available.
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It is notable that most indicator datasets have more absent sentences compared with

sentences that indicate their presence. The exception are the indicators Beliefs and

Difficulties. Some indicator datasets are more equally balanced, such as Experience,

Beliefs, and Difficulties, whereas other indicator datasets are more imbalanced. Such

dataset imbalance is discussed again in the following evaluation part. As described in

Section 4.6.2 ’Research design’, imbalanced datasets might influence the performance

of the classifier. As outlined there, an oversampling strategy is used to evaluate the

degree to which the imbalance of datasets is problematic for the selected machine

learning algorithms.

The average count of unigrams shows that those sentences that are examples of

the indicator have more unigrams than those sentences that do not show the indicator

characteristics. Overall reflective sentences are longer than non-reflective sentences. For

comparison, a blog has on average 13.2 words per sentence (Herring et al., 2004, p. 9).

Several sample sentences for all the indicators can be found in Appendix F ’examples

of the datasets’.

5.7.7 Summary

The data generation process outlined in Section 4.6.1 ’Dataset generation process’ was

implemented in this chapter. The process started in Section 5.1 ’Identification of text

collection’ with a large text collection of academic writings, and ended in

Section 5.7.6 ’Quality standard and datasets statistics’ with eight datasets annotated

with regard to operationalisations of the common reflection categories (see

Section 2.3.2 ’Common reflection categories’).

As described in Section 5.1 ’Identification of text collection, the choice for text

collection fell on the BAWE corpus. This corpus contains a large text collection of

academic writings, which made it suitable as a data source candidate. Corpus
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inspection showed that it indeed contains reflective writings, but also that such

writings are less frequent. A sampling approach was devised to help determine a

sub-sample of the corpus of personal academic writings (see Section 5.2 ’Sampling

text collection’). The outcome of this process was a collection of texts that were then

automatically divided into sentences (Section 5.3 ’Unitising text collection’). Several

types of the analysis unit were considered. Sentences, as the unit, were used in the

research of the analysis of written reflection, and were found useful for this data

generation process. The dataset of sentences was then annotated in order to generate

a labelled dataset necessary for supervised machine learning. Crowdsourcing was

identified as the potential method for annotating this large text dataset of unlabelled

sentences. The research outlined in Section 5.5.1 ’Research on crowdsourced

annotation quality’ suggested that crowdsourcing is a viable option if the task design

is properly specified (Section 5.5.2 ’Research on crowdsourcing task design’), and if

the ratings of several raters are aggregated (Section 5.5.3 ’Aggregating crowdsourcing

results’). Several pilots preceded the actual annotation task in order to specify the task

design applicable to the context of the annotation of written text with regard to the

reflection categories. Section 5.6 ’Summary of pilots’ summarised the pilot

experiences. Especially important was the analysis of gaming behaviour in

Section 5.6.1 ’Gaming behaviour’ that led to the development of custom text

validators in order to reduce the amount of workers gaming the system (see

Section 5.6.2 ’Custom validators’). The pilots also helped approximate the amount of

ratings necessary for inferring the label of the sentences (see Section 5.6.3 ’Amount of

ratings’) and the choice of rating scale (see Section 5.6.4 ’Multiple-choice vs. rating

scale’). The experience of the pilots were summarised in the form of

recommendations in Section 5.6.5 ’General recommendations’. The experiences

observed during the pilots informed the annotation task (see Section 5.7 ’Annotation

task’). The configuration of the task was described in Section 5.7.1 ’Task setup’. The
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task design outlined the choice of indicators used to rate the sentences according to

the common reflection categories (see Section 5.7.2 ’Task design’). The participants of

the annotation task (Section 5.7.3 ’Participants’) rated all the sentences. The reliability

of the rating process was confirmed in Section 5.7.4 ’Reliability’. There, it was shown

that the aggregation of several ratings in order to derive the underlying annotation

has comparable reliability to the values reported in Section 3.1.4 ’Manual reflection

detection performance’. The validity of the indicators was empirically supported in

Section 5.7.5 ’Validity’. These results suggested that the data generation process is

reliable, and the indicators of the descriptive common reflection categories are

positively correlated with the level of reflection indicator. In addition to reliability and

validity, the task design was the same for all workers and was administered with the

same task setup, which aids with the objectivity of this process (see

Section 4.2 ’Evaluation criteria and metrics’). Section 5.7.6 ’Quality standard and

datasets statistics’ outlined descriptive statistics of the final datasets, and explained

the process taken to ensure that the only sentences entered in the datasets are highly

agreed. This quality standard ensures the high quality of the datasets.

The datasets generated in this chapter serve as training and test data for

Chapter 6 ’evaluation’.
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E VA L U AT I O N

This chapter presents the evaluation results of the machine learning algorithms on the

problem of reflection detection, and it is structured according to the two main research

questions (see Section 1.1 ’Research questions’). Section 6.1 ’Reflection’ presents the

results that answer the first research question, and Section 6.2 ’Common categories of

reflective writing’ the results for the second research question. The research design for

the evaluation can be found in Section 4.6.2 ’Research design’ (for a schematic overview

see Figure 3 and Figure 4).

The first research question is: Q1: Can machine learning algorithms be used to

distinguish between descriptive and reflective text segments? In order to answer this

research question, three lines of investigation are proposed. Each of these lines focusses

on a specific type of machine learning algorithm.

The first line of investigation is: I1: Can tree-based machine learning algorithms

detect the difference between descriptive and reflective texts segments?

Section 4.5.1 ’Tree-based models’ outlines the concrete implementation of the machine

learning algorithms used to evaluate the dataset generated from the indicator

Reflection.

The second line of investigation is I2: Can rule-based machine learning algorithms

detect the difference between descriptive and reflective text segments? The

algorithms used to evaluate their performance on a dataset of reflective and

non-reflective/descriptive sentences can be found in Section 4.5.2 ’Rule-based

models’.

195
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The third and last line of investigation is: I3: Can high performance machine

learning algorithms detect the difference between descriptive and reflective text

segments? Section 4.5.3 ’High performance models’ provides the details of the

selected machine learning algorithms for this line of investigation.

The rationale for the three lines of investigation are described in

Section 4.5 ’Machine learning algorithms’. The discourse on choosing machine

learning over other automated methods outlined in Section 3.2 ’Related automated

methods’ can be found in Section 4.1 ’General methodological considerations’.

All the machine learning algorithms for the three lines of investigation are trained on

the same set of reflective and descriptive sentences and evaluated on separate sets of

test data. The process outlined in Section 4.6.2 ’Research design’ was enforced in order

to maintain the conditions equal for all classifiers and evaluate their differences. This

concerns the aspects of data pre-processing, feature selection, and feature construction,

as well as the resampling strategy, model tuning, and model selection tested in the

model assessment step.

The second research question is: Q2: Can machine learning algorithms be used to

detect common categories of reflective writing? Here, the high performance classifiers

outlined in Section 4.5.3 ’High performance models’, and already tested on the dataset

of reflective sentences for the third line of investigation, are used to evaluate their

performance on the datasets generated from each indicator of the common categories

of reflection. These datasets were generated by applying the same quality standard

to all (see Section 5.7.6 ’Quality standard and datasets statistics’). The reliability of all

datasets is estimated in Section 5.7.4 ’Reliability’ (see Table 9). As with the first research

question, all algorithms are trained and tested with the same set-up.

The following sections present the results. The discussion of the findings for the first

research question can be found in Section 6.1.4 ’Discussion of the results of the three
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lines of investigation’, and for the second research question, in Section 6.2.7 ’Discussion

of the results of the common categories of reflection’.

6.1 reflection

This section reports the results of the machine learning algorithms on the problem of

detecting sentences that are reflective and those that are descriptive/non-reflective. A

summary of the performance of the machine learning algorithms for all three lines of

investigation can be found in Section 6.1.4 ’Discussion of the results of the three lines

of investigation’.

Table 12 presents statistics for the training and test dataset derived from the ratings

of the indicator Reflection. Some examples of the sentences from this dataset can be

found in Table 47 in Appendix F ’examples of the datasets’. As outlined in

Section 4.6.2 ’Research design’, the sentences are pre-processed and their features

extracted. The features space consists of 769 stemmed unigrams.

In total, 2,283 instances1 form the dataset. These are divided into two parts: one

used for model training, and the other reserved for testing (see Section 4.6.2 ’Research

design’). Each instance represents one of two classes, positive or negative, where

positive means that the instance is reflective, and negative that it is descriptive. More

instances are negative than positive. The oversampled dataset is generated by

randomly selecting instances of the minority class until both instances have the same

amount of instances. The oversampled dataset consists of 1,356 positive and 1,356

negative instances. The test set is not oversampled in order to assess the performance

of the classifiers on the original distribution of instances. In total, 456 instances form

the test set.

1 The word ’instance’ is commonly used in machine learning to refer to an example or record; here, it
corresponds to a sentence.
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Statistics Count

Number of features 769

Number of instances 2283

Number of training instances 1827

Number of positive training instances 471

Number of negative training instances 1356

Number of test instances 456

Number of positive test instances 117

Number of negative test instances 339

Table 12: Statistics about the training and test set

The training and test sets are the same for all the machine learning algorithms used

in the following three lines of investigation.

6.1.1 Results of the tree-based models

In this section, the performance measures of the tree-based models are reported. As

outlined in Section 4.6.2 ’Research design’, the models are trained on the training

dataset. In order to find the best model candidate for each algorithm, the k-fold

cross-validation resampling strategy is used and the model with the highest Cohen’s

κ is selected as the final model of the training phase. The test dataset is used to

determine model performance.

Table 13 shows the results of the tree-based models. Five models perform equally

high with a Cohen’s κ of 0.64. These are the Classification and Regression Trees

(CART) tuned over the cost and the maxdepth parameters, Conditional Inference Tree

tuned over the mincriterion, and C5.0 Decision Tree trained on the oversampled

training dataset. In most cases, oversampling leads to a reduction in reliability, with

the exception of the C5.0 model. The highest achieved accuracy (per cent agreement)

is 87%, which means that these models err on this test dataset for 13% of the cases.

Krippendorff’s α and ICC(1,1) are extremely similar to Cohen’s κ. Gwet’s AC1 is
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generally higher than the other reliability measures. As outlined in

Section 4.2 ’Evaluation criteria and metrics’, the AC1 is a reliability measure

developed to better reflect reliability in imbalanced datasets. Here, the higher AC1

values indicate that there is substantial reliability between the predictions of the

tree-based models and the highly agreed sentences of the human raters. The next

table demonstrates the agreement and disagreement details by inspecting the

sensitivity and specificity of the models.

Method N % C
oh

en
’s
κ

K
ri

pp
en

do
rf

f’
s
α

G
w

et
’s
A
C
1

IC
C

(1
,1

)

CART Tree cost 456 0.87 0.64 0.64 0.79 0.64

CART Tree cost oversampled 456 0.84 0.59 0.59 0.73 0.59

CART Tree max depth 456 0.87 0.64 0.64 0.79 0.64

CART Tree max depth
oversampled

456 0.80 0.55 0.54 0.65 0.55

Conditional Inference Tree
mincriterion

456 0.87 0.64 0.64 0.79 0.64

Conditional Inference Tree
mincriterion oversampled

456 0.85 0.62 0.62 0.75 0.62

Conditional Inference Tree
maxdepth

456 0.86 0.61 0.61 0.78 0.61

Conditional Inference Tree
maxdepth oversampled

456 0.81 0.56 0.56 0.67 0.56

C5.0 Decision Tree 456 0.85 0.61 0.61 0.76 0.61

C5.0 Decision Tree oversampled 456 0.86 0.64 0.64 0.78 0.64

C4.5-like Tree 456 0.85 0.60 0.61 0.77 0.61

C4.5-like Tree oversampled 456 0.84 0.57 0.57 0.74 0.57

Table 13: Reliability of tree-based models

Table 14 shows the additional performance measures often used to describe the

performance of machine learning models (see Section 4.2 ’Evaluation criteria and

metrics’). These are the Area Under the ROC curve, sensitivity (Sens.), and specificity

(Spec.).
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Method N AUC Sens. Spec.

CART Tree cost 456 0.87 0.72 0.92

CART Tree cost oversampled 456 0.89 0.74 0.87

CART Tree maxdepth 456 0.87 0.72 0.92

CART Tree maxdepth
oversampled

456 0.81 0.85 0.79

Conditional Inference Tree
mincriterion

456 0.87 0.72 0.92

Conditional Inference Tree
mincriterion oversampled

456 0.86 0.75 0.88

Conditional Inference Tree
maxdepth

456 0.86 0.63 0.94

Conditional Inference Tree
maxdepth oversampled

456 0.86 0.84 0.80

C5.0 Decision Tree 456 0.87 0.70 0.91

C5.0 Decision Tree oversampled 456 0.90 0.74 0.91

C4.5-like Tree 456 0.85 0.68 0.91

C4.5-like Tree oversampled 456 0.79 0.66 0.90

Table 14: Performance measures of tree-based models

All models have lower sensitivity than specificity. This is not unusual for models

trained on datasets that contain more negative than positive instances. The algorithms

had more examples of descriptive sentences, and thus were able to better predict them.

The oversampled CART tree tuned over the maxdepth parameter achieves a

sensitivity of 0.85. This means that 15% of the reflective sentences are incorrectly

predicted as descriptive. The model with the highest specificity at 0.94 is the

Conditional Inference Tree tuned over the maxdepth parameter. A total of 6% of the

descriptive sentences are incorrectly predicted as reflective.

Sensitivity can be exchanged for specificity, and vice versa, by defining different

probability cut-off points. The default threshold to classify a sentence as reflective is a

predicted probability of more than 50%. If the probability is lower, the sentence is

classified as descriptive. A threshold different from 0.5 can be selected to raise

specificity on the costs of sensitivity, or vice versa. A tool for visualising this

relationship is the ROC curve. Figure 8 shows the ROC curve for three selected
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models with a high AUC. These are the oversampled C5.0 Decision Tree, oversampled

CART Tree (cost), and Conditional Inference Tree (mincriterion).
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Figure 8: ROC-curves of tree models

As explained in Section 4.2 ’Evaluation criteria and metrics’, the diagonal line

indicates the performance of a random model. The more area the ROC curve covers

towards the left-upper area, the better is the performance of the model. A perfect

model has a sensitivity of 1.0 and a specificity of 1.0.

Figure 8 marks the cut-off points that represent the highest sum of sensitivity and

specificity. For example, the sensitivity and specificity of the oversampled C5.0 model

for a 0.5 cut-off point is 0.74 and 0.91, respectively (see Table 14). If a cut-off of 0.88
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were chosen instead of the default 0.5 threshold, the sensitivity would be higher (0.85)

at the cost of specificity (0.80) (see Figure 8). Higher sensitivity is at the cost of lower

specificity, and vice versa. The ROC curve shows that sensitivity can be increased

without overly decreasing specificity to the point where the curve bends sharply to

the right. Cut-off points in this area severely decrease specificity without much gain

in sensitivity. All three models show this sharp bend, thus indicating limits in trading

specificity for sensitivity.

One of the benefits of tree models is that they are highly interpretative because they

form decision trees. Figure 9 shows the decision tree for the conditional inference tree

model tuned over the mincriterion.

At the top is the root node with the most important feature. Here, this is the unigram

’i’. At the bottom, the leaf nodes are displayed as boxes that show the amount of

sentences that satisfy all the decisions made on the path from the root node to the

final decision node. The box’s black bar shows the percentage of sentences that are

negative (descriptive), and the grey bar shows the amount of sentences that are positive

(reflective).

For example, a sentence that contains the unigram ’i’ and ’that’ are sorted into leaf

node 17. From the training dataset, 239 sentences are sorted into this node. From these,

fewer than 20% are labelled as descriptive (neg), and more than 80% are labelled as

reflective (pos). A sentence without ’i’ or ’me’ are sorted into node number 3, which

contains mostly descriptive sentences.
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Ideally, the leaf node would only contain instances that are either positive or

negative, but not both. However, the current tree nodes represent the best

configuration for classifying unseen data as determined by the resampling strategy.

More nodes would separate the sentences more clearly, but the nodes would then be

more specific to the training dataset, and therefore, would not perform well on other

datasets.

The discussion of these results continues in Section 6.1.4 ’Discussion of the results of

the three lines of investigation’. The next section presents the results of the rule-based

models.

6.1.2 Results of the rule-based models

The rule-based models are trained and tested with the same data outlined in

Section 6.1 ’Reflection’. The following Table 15 shows the reliability of the rule-based

models. A description for all rule-based machine learning algorithms can be found in

Section 4.5.2 ’Rule-based models’.

The C5.0 Rule implementation trained on the oversampled dataset achieves the

highest Cohen’s κ of 0.65, followed by the JRip algorithms with a reliability of 0.63.

The simplest of the algorithm, OneR, can reach a per cent agreement of 79% and a

Cohen’s κ of 0.51 with only a single rule. The chance corrected AC1 shows that 24%

of difference is between the OneR and the C5.0 Rule trained on the oversampled data.

The results of the OneR model can be seen as the baseline for this dataset. Any other

algorithm should have higher reliability than 0.51.

The training of the models on the oversampled dataset is only beneficial for the

C5.0 Rule algorithm. Reliability of the PART algorithm remains unaffected from

oversampling, whereas the JRip algorithm suffers from oversampling.
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Method N % C
oh

en
’s
κ

K
ri

pp
en

do
rf

f’
s
α

G
w

et
’s
A
C
1

IC
C

(1
,1

)

C5.0 Rules 456 0.84 0.59 0.59 0.74 0.59

C5.0 Rules oversampled 456 0.87 0.65 0.65 0.78 0.65

PART Rules 456 0.85 0.58 0.58 0.76 0.58

PART Rules oversampled 456 0.84 0.58 0.58 0.75 0.58

JRip 456 0.86 0.63 0.63 0.78 0.63

JRip oversampled 456 0.83 0.58 0.58 0.71 0.58

OneR 456 0.79 0.51 0.51 0.64 0.51

Table 15: Reliability of rule-based models

Table 16 shows the AUC, sensitivity, and specificity of the models. Here,

oversampling has a positive effect on sensitivity. The oversampled JRip algorithm has

the highest sensitivity, but also one of the lowest specificity. The PART rule algorithm

has the highest specificity, but also the lowest sensitivity.

Method N AUC Sens. Spec.

C5.0 Rules 456 0.85 0.70 0.89

C5.0 Rules oversampled 456 0.85 0.74 0.91

PART Rules 456 0.83 0.62 0.93

PART Rules oversampled 456 0.79 0.66 0.91

JRip 456 0.81 0.68 0.92

JRip oversampled 456 0.85 0.79 0.84

OneR 456 0.79 0.78 0.80

Table 16: Performance measures of rule-based models

In order to investigate the relationship between the sensitivity and specificity of these

rule-based algorithms, the ROC curves of the oversampled C5.0 Rule algorithm, PART

model, and oversampled JRip algorithm are shown in Figure 10.

Compared with Figure 8, the dots on the ROC curve represent the standard 50%

probability threshold. The ROC curve of the PART algorithm indicates that with a

different probability threshold, sensitivity can be increased to the point where such

increase would cause a steep specificity decrease. This is also true for the other two
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Figure 10: ROC-curves of tree models

models. Furthermore, none of the models can reach perfect sensitivity without zero

specificity.

As with the tree-based models, the rule-based models can be inspected. Instead of a

tree representation, the rule-based models follow the common notion of premise and

conclusion.

As mentioned above, the simple OneR rule can achieve a Cohen’s κ of 0.51 with a

single rule. This rule is shown in the following listing, and it is based on the single

unigram ’i’ used to form the rule. If a particular sentence contains an ’i’, it is reflective;

otherwise, it is descriptive/non-reflective.
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The marker-based approaches, outlined in the method

Section 3.2.1 ’Dictionary-based approaches’, are essentially ’handcrafted’ single rules

(i.e., rules created manually). They work according to the rule: IF a word token of the

word list occurs, THEN add one to the frequency count of the category represented

by the word list.

Listing 2: OneR

IF i: < 0.5 THEN descriptive
IF i: >= 0.5 THEN reflective �

The rule-based algorithms with higher reliability produced more complex rules than

the OneR algorithm. For example, the oversampled C5.0 Rule model with the highest

Cohens’ κ created 44 rules. The listing below shows all the rules of this model. It

contains several rules that determine whether a class is reflective (pos), but also rules

that infer sentences as descriptive (see from rule 38 onwards). The default assumption

for this rule set is that if none of the rules apply, the sentence is descriptive (neg).

The rules are enumerated. The number in brackets indicates the number of instances

covered by the rule. If the number of instances is followed by another number, the

latter is the number of erroneously predicted instances by this rule.

For example, rule 2 covers 190 sentences of the training dataset. Of those, 189

sentences are reflective and one is descriptive. The rule reads as follows. If the

unigram ’feel’ is present, ’found’ is absent, ’i’ is present, ’includ’ (includ is a stemmed

unigram for the word include) is absent, and ’will’ is absent, this sentence is reflective

(pos).

Listing 3: C5.0 rules oversampled

Rule 1: (146)
felt > 0 AND i > 0 AND will <= 0 -> pos
Rule 2: (190/1)
feel > 0 AND found <= 0 AND i > 0 AND includ <= 0 AND will <= 0 -> pos
Rule 3: (82)
about > 0 AND explain <= 0 AND i > 0 AND it <= 0 AND see <= 0 AND think <= 0 AND

will <= 0 -> pos
Rule 4: (77)
howev > 0 AND i > 0 AND question <= 0 AND will <= 0 -> pos
Rule 5: (60)
also <= 0 AND but <= 0 AND i > 0 AND team > 0 -> pos
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Rule 6: (57)
i > 0 AND much > 0 -> pos
Rule 7: (34)
has > 0 AND my > 0 -> pos
Rule 8: (134/3)
me > 0 AND that > 0 -> pos
Rule 9: (32)
although > 0 AND i > 0 AND that <= 0 AND will <= 0 -> pos
Rule 10: (31)
and <= 0 AND i > 0 AND way > 0 -> pos
Rule 11: (64/1)
found > 0 AND i > 0 AND will <= 0 -> pos
Rule 12: (31)
i > 0 AND sure > 0 AND that <= 0 -> pos
Rule 13: (93/2)
i > 0 AND situat > 0 AND will <= 0 -> pos
Rule 14: (154/5)
i > 0 AND more > 0 AND will <= 0 -> pos
Rule 15: (50/1)
i > 0 AND peopl > 0 AND will <= 0 -> pos
Rule 16: (91/3)
i > 0 AND think > 0 AND will <= 0 -> pos
Rule 17: (88/3)
about <= 0 AND could > 0 AND i > 0 AND in <= 0 -> pos
Rule 18: (284/12)
i > 0 AND it > 0 AND more <= 0 AND think <= 0 AND which <= 0 AND will <= 0 -> pos
Rule 19: (129/5)
a <= 0 AND my > 0 AND that > 0 -> pos
Rule 20: (609/29)
i > 0 AND that > 0 AND will <= 0 -> pos
Rule 21: (570/28)
at <= 0 AND discuss <= 0 AND i > 0 AND that > 0 -> pos
Rule 22: (17)
but <= 0 AND never > 0 -> pos
Rule 23: (16)
after > 0 AND and <= 0 AND my > 0 -> pos
Rule 24: (16)
feel <= 0 AND i > 0 AND of > 0 AND practic > 0 -> pos
Rule 25: (15)
been > 0 AND may > 0 AND my <= 0 -> pos
Rule 26: (14)
been > 0 AND greater > 0 -> pos
Rule 27: (13)
and <= 0 AND i > 0 AND one > 0 AND that <= 0 AND was > 0 -> pos
Rule 28: (12)
been > 0 AND experi > 0 -> pos
Rule 29: (196/15)
me > 0 AND more <= 0 AND they <= 0 -> pos
Rule 30: (33/2)
been > 0 AND befor <= 0 AND i > 0 AND the <= 0 AND will <= 0 -> pos
Rule 31: (9)
i <= 0 AND like > 0 AND us > 0 -> pos
Rule 32: (19/1)
i > 0 AND idea > 0 AND that <= 0 AND think <= 0 -> pos
Rule 33: (42/4)
find > 0 AND i > 0 -> pos
Rule 34: (13/1)
fail > 0 AND my > 0 -> pos
Rule 35: (5)
avoid > 0 AND been > 0 -> pos
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Rule 36: (5)
approach > 0 AND compani > 0 -> pos
Rule 37: (184/60)
but > 0 -> pos
Rule 38: (101/2)
a > 0 AND i <= 0 AND me <= 0 AND that > 0 AND us <= 0 -> neg
Rule 39: (22)
felt <= 0 AND found <= 0 AND take > 0 AND that <= 0 AND will <= 0 -> neg
Rule 40: (1015/46)
amount <= 0 AND approach <= 0 AND been <= 0 AND convers <= 0 AND i <= 0 AND me <=

0 AND my <= 0 AND opinion <= 0 AND us <= 0 -> neg
Rule 41: (36/1)
avoid <= 0 AND been > 0 AND experi <= 0 AND greater <= 0 AND group <= 0 AND i <= 0

AND may <= 0 -> neg
Rule 42: (9)
discuss > 0 AND i > 0 AND will > 0 -> neg
Rule 43: (30/2)
feel <= 0 AND felt <= 0 AND idea <= 0 AND more <= 0 AND question > 0 -> neg
Rule 44: (11/1)
at > 0 AND will > 0 -> neg
Rule 45: (1684/634)
that <= 0 AND think <= 0 -> neg �

6.1.3 Results of the high performance models

As with the models previously described, the high performing models are trained

and tested with the dataset described in Section 6.1, and according to the process

outlined in Section 4.6.2 ’Research design’. The description of the models can be

found in Section 4.5.3 ’High performance models’, and the metrics are described in

Section 4.2 ’Evaluation criteria and metrics’.

Table 17 shows the reliability achieved for these models. Three of the models have

a Cohen’s κ of 0.7. They are the SVM with polynomial kernel, and both Random

Forest models. The four models SVM linear, SVM radial, oversampled SVM radial,

and oversampled Naïve Bayes have a Cohen’s κ of 0.69. All models have a Gwet’s AC1

from 0.8 to 0.84. The per cent agreement ranges from 87% to 89%, which means that

the models disagree with the labels of the test dataset in 11% to 13% of the cases.
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SVM linear 456 0.89 0.69 0.69 0.82 0.69

SVM linear oversampled 456 0.87 0.64 0.64 0.80 0.64

SVM radial 456 0.89 0.69 0.69 0.82 0.69

SVM radial oversampled 456 0.89 0.69 0.68 0.82 0.69

SVM polynomial 456 0.89 0.70 0.70 0.83 0.70

SVM polynomial oversampled 456 0.88 0.63 0.63 0.81 0.63

NNET 456 0.89 0.68 0.67 0.82 0.67

NNET oversampled 456 0.88 0.67 0.67 0.80 0.67

Random Forest 456 0.89 0.70 0.70 0.84 0.70

Random Forest oversampled 456 0.89 0.70 0.70 0.81 0.70

Naïve Bayes 456 0.88 0.66 0.66 0.80 0.66

Naïve Bayes oversampled 456 0.88 0.69 0.69 0.81 0.69

Table 17: Reliability of high performance models

Table 18 shows the performance measures AUC, sensitivity (Sens.) and specificity

(Spec.). All models but one have a higher AUC than 0.9. The oversampled Random

Forest has the highest sensitivity, whereas SVM with polynomial kernel function on

the oversample dataset achieves the highest specificity. The Random Forest

(oversampled) has approximately the same sensitivity and specificity as the Naïve

Bayes (oversampled).
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Method N AUC Sens. Spec.

SVM linear 456 0.93 0.71 0.95

SVM linear oversampled 456 0.89 0.66 0.94

SVM radial 456 0.93 0.71 0.95

SVM radial oversampled 456 0.91 0.70 0.95

SVM polynomial 456 0.93 0.73 0.95

SVM polynomial oversampled 456 0.93 0.60 0.97

NNET 456 0.93 0.66 0.96

NNET oversampled 456 0.91 0.73 0.93

Random Forest 456 0.94 0.69 0.96

Random Forest oversampled 456 0.94 0.79 0.92

Naïve Bayes 456 0.93 0.72 0.93

Naïve Bayes oversampled 456 0.92 0.78 0.92

Table 18: Performance measures of high performance models

Figure 11 shows the ROC curves for the SVM polynomial, Random Forest, and Naïve

Bayes.

AUC is high for all three models. Their ROC curves are extremely similar. Again,

the trade-off between sensitivity and specificity can be observed. The dots on the ROC

curve represent the probability cut-off that would likely yield the highest sum of

sensitivity and specificity if trained and tested on new data. We can see that, by

changing the probability threshold of the models, specificity can be reduced in order

to gain higher sensitivity, which is over 0.85 for these thresholds. Furthermore, the

curves reach nearly the top of the 1.0 sensitivity threshold, indicating that extremely

high sensitivity would be within reach by reducing specificity.

6.1.4 Discussion of the results of the three lines of investigation

Section 6.1 ’Reflection’ reported the results of three lines of investigation into the

problem of detecting sentences that are reflective and those that are descriptive. In

each line of investigation, several machine learning algorithms are trained and tested

on the same dataset of reflective and descriptive sentences.
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Figure 11: ROC-curves of high performance models

For each line of investigation, the models are assessed with regard to their reliability

and performance. In addition, the ROC curve for the three models of each line is

inspected, and alternative probability cut-off points are discussed.

Section 6.1.1 ’Results of the tree-based models’ describes the results of the first line

of investigation. In total, 12 models from four different machine learning algorithms

are assessed. In addition, the tree of one model is visualised and inspected.

Section 6.1.2 ’Results of the rule-based models’ presents the results of the second

line of investigation. The models of the four rule-based algorithms are evaluated. In

addition, the rule sets of two models are listed.
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Section 6.1.3 ’Results of the high performance models’ outline the reliability and

models’ performance measures generated by the machine learning algorithms SVM,

Neural Network, Random Forest, and Naïve Bayes.

In the last three sections, the tree-based, rule-based, and several high performance

machine learning algorithms are evaluated with regard to their potential for detecting

reflection. All models are evaluated under the same conditions outlined in

Section 4.6.2 ’Research design’. This allows comparing the models of the three lines of

investigation with regard to their potential for detecting reflection.

Table 19 shows the top three models of each line of investigation. They are ranked

by Cohen’s κ. In addition to Cohen’s κ, the table shows the corresponding per cent

agreement, sensitivity, and specificity.

Line of investigation Method C
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’s
κ
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High performance

models

Random Forest 0.70 0.89 0.69 0.96

Random Forest oversampled 0.70 0.89 0.79 0.92

SVM polynomial 0.70 0.89 0.73 0.95

Rule-based models C5.0 Rules oversampled 0.65 0.87 0.74 0.91

JRip 0.63 0.86 0.68 0.92

C5.0 Rules 0.59 0.84 0.70 0.89

Tree-based models CART Tree cost 0.64 0.87 0.72 0.92

CART Tree maxdepth 0.64 0.87 0.72 0.92

Conditional Inference Tree

mincriterion

0.64 0.87 0.72 0.92

Table 19: Top models of each line of investigation for the indicator reflection
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The top performers of the high performance models have all higher Cohen’s κ

compared to the rule-based and tree-based top performers. The rule-based and

tree-based models are on a similar level.

From all investigated rule-based models, the C5.0 Rules algorithm trained on the

oversampled data has the highest Cohen’s κ at 0.65, followed by JRip with 0.63, and

the C5.0 Rules model trained on the training data with the original distribution. The

top C5.0 Rules model also has the highest sensitivity and the second highest specificity

compared with the other two models.

The findings show that most models have lower sensitivity than specificity.

Proportionally more sentences that are reflective are marked as descriptive. Inspection

of the ROC curves indicates that, to a degree, sensitivity can be improved with an

acceptable loss in specificity. The ROC curve of the tree-based and rule-based models

degraded more quickly when defining alternative probability cut-off thresholds in

order to trade specificity for higher sensitivity. The curves of the high performing

models indicate that, to a degree, higher sensitivity can be achieved without a

disproportional large decrease in specificity.

According to the benchmarks reported in Section 4.2 ’Evaluation criteria and

metrics’, the Cohen’s κ reliability values of the tree-based, rule-based, and high

performance models are all substantial (Landis and Koch, 1977). Most high

performing models have a Krippendorff’s α that allows for tentative conclusions

(Krippendorff, 2012). The tree-based and rule-based models do not reach this

threshold. However, none of the models has almost perfect κ values. According to the

reliability values condensed from the research on the content analysis of reflective

writing (see Section 3.1.4 ’Manual reflection detection performance’), the per cent

agreement of most models for the three lines of investigation are in the middle

bracket, which is between 80% and 90%. The top performing high performance

models came close to the top bracket starting at 90%. All models are above the 0.5
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Cohen’s κ threshold for exploratory research (Stemler and Tsai, 2008), and the

benchmark of Fleiss et al. (2003) places all models in the range from fair to good.

Overall, the benchmarks indicate that reflection can be detected reliably. In particular,

the Random Forest and SVM polynomial achieve high reliability benchmark values,

which is already suitable for many scenarios. However, they do not achieve the

highest benchmark values, which excludes their applicability for situations with strict

requirements on reliability.

The dataset has an estimated per cent agreement of 97% and a Cohen’s κ of 0.92 (see

Table 9 in Section 5.7.4 ’Reliability’). Compared with the standard set by raters, the best

high performing machine learning algorithm has 8% lower agreement and 0.22 points

lower Cohen’s κ. According to the benchmark of Landis and Koch (1977), the almost

perfect reliability of the raters drops to substantial for the models. This lower reliability

of the machine learning models compared with the human standard is in line with the

research outlined in Section 3.2.3 ’Machine learning approaches’. As outlined there,

McKlin (2004) reported for the dataset a Cohen’s κ of 0.85 and a κ of 0.7 for the model

with the highest performance. The model of Corich (2011) achieved a κ of 0.68 based

on a dataset with a κ of 0.82. The decrease in reliability reported there is smaller than

for the best model reported here. Both papers described several optimisation strategies

in order to maximise model performance.

The tree-based and rule-based models have a similar range of κ values. However,

the rule-based models range slightly higher than the tree-based models. The Cohen’s

κ values for the tree-based models range from 0.56 to 0.64, whereas the rule-based

models range from 0.58 to 0.65
2. Such slightly better performance of the rule-based

models is in line with expectations for the performance of these models. The rule-

based approach is more flexible when modelling the data because it does not rely

on a single root node to make all subsequent classification decisions. All the high

2 OneR is excluded because it serves only for demonstrating purposes (see the description for OneR in
Section 4.5.2 ’Rule-based models’).
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performance models use different strategies to build their models from the data. For

example, the Random Forest algorithm, which produced a model in the top range of

this line of investigation, generates many tree models based on a random subset of the

data. Each of the generated trees models the data in slightly different ways. The final

decision on the label is based on an aggregation of the tree classifications. This strategy

is more flexible than modelling the data with only one tree, and it does improve model

performance.

One of the benefits of the tree-based and rule-based models is that these models are

more accessible to interpretation because they follow either the notion of decision

trees or rule sets. An observation that can be made from the inspection of the

tree-based and two rule-based models is that simple models already achieve

reasonable results, but in order to reach higher reliabilities, model complexity

increases quickly. For example, inspection of the model for the OneR algorithm,

which creates an extremely simple model that classifies sentences based only on the

presence or absence of the unigram ’i’, has a Cohen’s κ of 0.51. This is in line with the

research of (Birney, 2012, p. 269) that found a strong relationship between use of the

first person voice and reflection with a linguistic study. The tree-based model of the

Conditional Inference Tree considers more decisions in order to achieve a Cohen’s κ

of 0.64. The rule-based model of the C5.0 Rule algorithm creates 44 rules in order to

achieve a κ of 0.65. The strong performing machine learning algorithms reaches a κ of

0.7, which is 0.05 points higher than the C5.0 Rule model. This suggests that simple

strategies can already achieve moderate classification results. The entry level to

automatically detect reflection is relatively low. However, higher levels of reliability

are achieved only with the high performing algorithms.

The inspected tree-based and rule-based models show that their set of model features

is relatively small. The tree-based model bases the decision to classify sentences on

seven features, whereas the rule-based model uses 60 features. This relatively small
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set of information bearing features achieves already usable classifications. This is in

line with the research outlined in Section 3.2.1 ’Dictionary-based approaches’. The

approach described there is based on dictionaries with manually constructed word

lists that represent a category. This research shows that dictionaries with carefully

selected words can be used to detect patterns from text.

Unlike the dictionary-based approaches, the tree-based and rule-based models form

decision trees or rules with these features. Their working is similar to the research

outlined in Section 3.2.2 ’Section 3.2.2’ that used handcrafted rules in order to detect

meaningful patterns in text. Compared with the dictionary-based approach, rule-based

approaches allow associating words with rules, which has the benefit of modelling

the data more precisely. For example, Ullmann et al. (2012) constructed several rules

that approximated reflection. Similarly to the inspected rule set, each rule had several

conditions. However, these rules were handcrafted by the researcher according to the

theoretical considerations of what constitutes reflection, and not automatically learned

from data.

It is notable that the rule set contains not only many self-references, such as ’I’, ’me’,

and ’my’, but also references to feelings and thinking. There are also links to words

that contrast a statement indicating a critical stance, for example, ’but’, ’however’, and

’although’. Included are also words that de-emphasise absolute statements, such as

’could’ and ’may’, and words that refer to the writer experience and context, for

example, ’situation’, ’experience’, ’practice’, ’approach’, and ’fail’. Although these

rules are generated automatically from data, they entail some of the essence of

written reflection.
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6.2 common categories of reflective writing

This section presents the evaluation results of the machine learning algorithms that

answer the second research question, Q2: Can machine learning algorithms be used

to detect common categories of reflective writing? Similarly to

Section 6.1 ’Reflection’, evaluation of the machine learning algorithms is performed

under the standardised conditions described in the research design (see

Section 4.6.2 ’Research design’, Figure 3, and Figure 4). In the previous section, all

machine learning models are trained and tested on the same dataset. In this section,

each indicator of the common categories of reflection has its own set of data. The

datasets are the result of the data generation process described in

Section 4.6.1 ’Dataset generation process’. Their implementation is described in

Chapter 5 ’dataset generation’, and an overview of all datasets can be found in

Section 5.7.6 ’Quality standard and datasets statistics’. Examples of all the indicators

of the common categories of reflective writing are prepared in

Appendix F ’examples of the datasets’. These datasets are used to train the

models and evaluate their reliability on a test dataset. The machine learning

algorithms chosen in order to evaluate their performance on the task for detecting

common categories of reflection are described in Section 4.5.3 ’High performance

models’. These algorithms are used for the third line of investigation outlined in

Section 6.1.3 ’Results of the high performance models’. The results there suggest that

the high performance models are good candidate models for the problem to detect

reflection (see Section 6.1.4 ’Discussion of the results of the three lines of

investigation’). The focus results described here shifts from evaluation of the

differences in the types of machine learning algorithms (tree-based, rule-based, and
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high performing models) to a comparison of the differences in the same machine

learning algorithms on different datasets.

The structure of the following sections follows the order of the common categories

described in Section 2.3.2 ’Common reflection categories’. Most categories are

measured with one indicator. The results of the two indicators for the category

Outcome are reported in the same section (see the mapping of indicators to categories

in Section 5.7.2 ’Task design’). Discussion on the findings can be found in

Section 6.2.7 ’Discussion of the results of the common categories of reflection’.

6.2.1 Description of an experience

Table 20 shows the details of the training dataset. The amount of positive instances

(presence of Experience) is close to the amount of negative instances (absence of

Experience). The dataset is more balanced than for the indicator Reflection. The

oversampled dataset is generated by randomly duplicating positive instances until the

amount of positive instances matches the amount of negative instances (see

Section 4.6.2 ’Research design’). Some examples of the dataset for the indicator

Experience can be found in Table 40 in Appendix F ’examples of the datasets’.

Statistics Count

Number of features 950

Number of instances 3272

Number of training instances 2618

Number of positive training instances 1204

Number of negative training instances 1414

Number of test instances 654

Number of positive test instances 301

Number of negative test instances 353

Table 20: Statistics about the training and test set of the indicator Experience
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Table 21 shows the reliability of the machine learning models. Reliability is

determined from the test dataset. The SVM linear model, SVM radial model (both

with the original instance distribution and oversampled instance distribution), and

SVM with polynomial kernel function have the highest κ at 0.83. The lowest Cohen’s

κ is 0.79 for both SVM with linear kernel trained on the oversampled data and the

Naïve Bayes classifier. For all models, the agreement is over 90%. All other reliability

measures are extremely close to the value of Cohen’s κ. It is notable that reliability

values for Gwet’s AC1 are close to the other reliability measures compared with the

results reported in Section 6.1.3 ’Results of the high performance models’. This can be

expected because Gwet (2008) reported that, for balanced data, the AC1 values are

similar to the other reliability measures.
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SVM linear 654 0.92 0.83 0.83 0.83 0.83

SVM linear upsampled 654 0.89 0.79 0.79 0.79 0.79

SVM radial 654 0.91 0.83 0.83 0.83 0.83

SVM radial upsampled 654 0.92 0.83 0.83 0.84 0.83

SVM polynominal 654 0.91 0.83 0.83 0.83 0.83

SVM polynominal upsampled 654 0.90 0.80 0.80 0.81 0.80

NNET 654 0.91 0.82 0.82 0.82 0.82

NNET upsampled 654 0.90 0.81 0.81 0.81 0.81

Random Forest 654 0.91 0.82 0.82 0.83 0.82

Random Forest upsampled 654 0.90 0.81 0.81 0.81 0.81

Naïve Bayes 654 0.90 0.79 0.79 0.79 0.79

Naïve Bayes upsampled 654 0.90 0.80 0.80 0.80 0.80

Table 21: Reliability of indicator Experience
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6.2.2 Feelings

Table 22 shows descriptive statistics for the dataset of the indicator Feelings. From the

distribution of the positive and negative instances, it can be seen that the dataset is

imbalanced. There are more instances that indicate absence (negative instances) than

presence of Feelings (positive instances). Table 41 in Appendix F ’examples of the

datasets’ lists examples for both classes.

Statistics Count

Number of features 811

Number of instances 2606

Number of training instances 2085

Number of positive training instances 629

Number of negative training instances 1456

Number of test instances 521

Number of positive test instances 157

Number of negative test instances 364

Table 22: Statistics about the training and test set of the indicator Feelings

Table 23 reports the reliability measures of the machine learning algorithms. The

oversampled Random Forest has a Cohen’s κ of 0.73 followed by the Random Forest

trained on training data with the original class distribution (κ = 0.72). The linear SVM

on the oversampled data has the lowest κ at 0.64. Agreement is generally high, and

ranges from 85% to 89%.
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SVM linear 521 0.87 0.69 0.69 0.78 0.69

SVM linear oversampled 521 0.85 0.64 0.64 0.74 0.64

SVM radial 521 0.87 0.69 0.69 0.78 0.69

SVM radial oversampled 521 0.87 0.70 0.70 0.78 0.70

SVM polynominal 521 0.87 0.68 0.68 0.78 0.68

SVM polynominal oversampled 521 0.86 0.65 0.65 0.77 0.65

Continued ...
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NNET 521 0.87 0.69 0.69 0.78 0.69

NNET oversampled 521 0.85 0.65 0.65 0.74 0.65

Random Forest 521 0.89 0.72 0.72 0.81 0.72

Random Forest oversampled 521 0.88 0.73 0.73 0.80 0.73

Naïve Bayes 521 0.86 0.67 0.67 0.76 0.67

Naïve Bayes oversampled 521 0.87 0.69 0.69 0.77 0.69

Table 23: Reliability of indicator Feelings

6.2.3 Personal

For the common category Personal, the indicator Beliefs is developed (see

Section 5.7.2 ’Task design’). In the datasets discussed thus far, the instances of interest

are in the minority. For this dataset, more instances are positive than negative.

Therefore, the oversampled dataset randomly duplicates negative instances in order

to balance the class distribution. Table 42 in Appendix F ’examples of the

datasets’ shows examples of these instances.

Statistics Count

Number of features 709

Number of instances 2253

Number of training instances 1804

Number of positive training instances 928

Number of negative training instances 876

Number of test instances 449

Number of positive test instances 231

Number of negative test instances 218

Table 24: Statistics about the training and test set of the indicator Beliefs
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Table 25 shows the reliability for the machine learning algorithms. SVM linear

achieves the highest Cohen’s κ at 0.66, followed by SVM radial trained on the

oversampled data and NNET, both with a κ of 0.65. All reported Cohen’s κ values are

in the range of 0.61 to 0.66. Their difference in the per cent agreement is relatively

small: it ranges from 81% to 83%.
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SVM linear 449 0.83 0.66 0.66 0.66 0.66

SVM linear oversampled 449 0.81 0.61 0.61 0.61 0.61

SVM radial 449 0.82 0.64 0.64 0.64 0.64

SVM radial oversampled 449 0.82 0.65 0.65 0.65 0.65

SVM polynominal 449 0.82 0.64 0.64 0.64 0.64

SVM polynominal oversampled 449 0.82 0.63 0.63 0.63 0.63

NNET 449 0.82 0.65 0.65 0.65 0.65

NNET oversampled 449 0.82 0.64 0.64 0.64 0.64

Random Forest 449 0.82 0.63 0.63 0.64 0.63

Random Forest oversampled 449 0.82 0.64 0.64 0.64 0.64

Naïve Bayes 449 0.81 0.63 0.63 0.63 0.63

Naïve Bayes oversampled 449 0.81 0.62 0.62 0.62 0.62

Table 25: Reliability of indicator Beliefs

6.2.4 Critical stance

One indicator is developed for this common category of reflective writing, namely the

indicator Difficulties (see Section 5.7.2 ’Task design’). Table 43 in

Appendix F ’examples of the datasets’ lists several examples of this dataset.

Table 26 shows statistics that describe the dataset for the indicator Difficulties. From

the distribution of positive and negative, it can be seen that the dataset has a balanced

class distribution.
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Statistics Count

Number of features 808

Number of instances 2630

Number of training instances 2104

Number of positive training instances 1072

Number of negative training instances 1032

Number of test instances 526

Number of positive test instances 268

Number of negative test instances 258

Table 26: Statistics about the training and test set of the indicator Difficulties

Table 27 reports the reliability of all machine learning models. Both SVM with radial

kernel function and polynomial SVM have the highest Cohen’s κ at 0.60. All machine

learning algorithms are in the range of 0.55 to 0.60. The per cent agreement is between

77% and 80%.
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SVM linear 526 0.77 0.55 0.55 0.55 0.55

SVM linear oversampled 526 0.79 0.59 0.59 0.59 0.59

SVM radial 526 0.80 0.60 0.60 0.60 0.60

SVM radial oversampled 526 0.78 0.56 0.56 0.56 0.56

SVM polynominal 526 0.80 0.60 0.60 0.60 0.60

SVM polynominal oversampled 526 0.80 0.59 0.59 0.59 0.59

NNET 526 0.79 0.58 0.58 0.58 0.58

NNET oversampled 526 0.79 0.58 0.58 0.58 0.58

Random Forest 526 0.79 0.58 0.58 0.58 0.58

Random Forest oversampled 526 0.79 0.57 0.57 0.57 0.57

Naïve Bayes 526 0.79 0.59 0.59 0.59 0.59

Naïve Bayes oversampled 526 0.79 0.57 0.57 0.57 0.58

Table 27: Reliability of indicator Difficulties
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6.2.5 Perspective

For this common category of reflection, one indicator is tested. Table 28 shows the

amount of instances for training and testing produced by the data generation process.

From the table, we can see that class distribution is unbalanced. Examples for the

dataset of indicator Perspective can be found in Table 44 in Appendix F ’examples

of the datasets’.

Statistics Count

Number of features 591

Number of instances 1983

Number of training instances 1587

Number of positive training instances 246

Number of negative training instances 1341

Number of test instances 396

Number of positive test instances 61

Number of negative test instances 335

Table 28: Statistics about the training and test set of the indicator Perspective

Table 29 shows reliability for all the models. The highest Cohen’s κ of 0.55 was

achieved by the Naïve Bayes model, followed with a κ of 0.52 by the SVM polynomial.

All other κ values are below 0.5, with the lowest κ at 0.3. Whereas the κ values are

relatively low, the agreement is relatively high. All models agree in 83% of the cases

or more. The highest per cent agreement of 89% is achieved by the SVM polynomial

model. The AC1 values range from 0.77 to 0.84.
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SVM linear 396 0.88 0.46 0.45 0.84 0.46

SVM linear oversampled 396 0.83 0.32 0.32 0.77 0.32

SVM radial 396 0.88 0.46 0.45 0.84 0.46

SVM radial oversampled 396 0.84 0.37 0.37 0.79 0.37

Continued ...
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SVM polynominal 396 0.89 0.52 0.52 0.85 0.52

SVM polynominal oversampled 396 0.87 0.29 0.26 0.84 0.29

NNET 396 0.87 0.44 0.43 0.83 0.44

NNET oversampled 396 0.85 0.40 0.40 0.81 0.40

Random Forest 396 0.87 0.30 0.28 0.84 0.30

Random Forest oversampled 396 0.86 0.30 0.28 0.82 0.30

Naïve Bayes 396 0.88 0.55 0.55 0.84 0.55

Naïve Bayes oversampled 396 0.85 0.48 0.47 0.78 0.48

Table 29: Reliability of indicator Perspective

6.2.6 Outcome

To inspect the Outcome common category of reflective writing, two indicators are

developed, namely the indicators Intention and Learning. First, we discuss the results

for the indicator Intention, and then the results for the indicator Learning.

Table 30 shows the descriptive statistics of the dataset for the indicator Intention.

The class distribution is unbalanced. A total of 2,639 training instances that do not

express Intention are compared with 273 instances that express Intention.

Table 45 in Appendix F ’examples of the datasets’ shows several examples of

the dataset.
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Statistics Count

Number of features 1028

Number of instances 3636

Number of training instances 2909

Number of positive training instances 273

Number of negative training instances 2636

Number of test instances 727

Number of positive test instances 68

Number of negative test instances 659

Table 30: Statistics about the training and test set of the indicator Intention

Table 31 reports reliabilities. Cohen’s κ ranges from 0.49 to 0.71. Both the Naïve Bayes

and the Random Forest model have the highest κ of 0.71, followed by the Random

Forest trained on the oversampled data with a κ of 0.70. The per cent agreement ranges

from 93% to 95%.
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SVM linear 727 0.95 0.69 0.69 0.94 0.69

SVM linear oversampled 727 0.93 0.55 0.55 0.92 0.55

SVM radial 727 0.95 0.66 0.66 0.94 0.66

SVM radial oversampled 727 0.94 0.62 0.62 0.93 0.62

SVM polynominal 727 0.95 0.66 0.66 0.94 0.66

SVM polynominal oversampled 727 0.94 0.49 0.48 0.93 0.49

NNET 727 0.95 0.64 0.64 0.94 0.64

NNET oversampled 727 0.94 0.65 0.65 0.92 0.65

Random Forest 727 0.95 0.71 0.71 0.94 0.71

Random Forest oversampled 727 0.95 0.70 0.70 0.94 0.71

Naïve Bayes 727 0.95 0.71 0.71 0.95 0.71

Naïve Bayes oversampled 727 0.93 0.65 0.65 0.92 0.66

Table 31: Reliability of indicator Intention

The dataset for the indicator Learning is compared with the dataset for the

indicator Learning less unbalanced. Table 32 shows that, altogether, 544 positive
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training instances and 920 negative training instances are available. Examples of these

instances can be found in Table 46 in Appendix F ’examples of the datasets’.

Statistics Count

Number of features 595

Number of instances 1828

Number of training instances 1464

Number of positive training instances 544

Number of negative training instances 920

Number of test instances 364

Number of positive test instances 135

Number of negative test instances 229

Table 32: Statistics about the training and test set of the indicator Learning

Table 33 shows the reliabilities of the machine learning algorithms on the test dataset

for the indicator Learning. Both SVM linear and SVM polynomial have the highest

Cohen’s κ at 0.63, followed by the SVM radial model (0.62). The SVM linear trained

on the oversampled data has the lowest κ at 0.49. The per cent agreement ranges from

77% to 83%.
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SVM linear 364 0.83 0.63 0.63 0.69 0.63

SVM linear oversampled 364 0.77 0.49 0.49 0.57 0.49

SVM radial 364 0.83 0.62 0.62 0.68 0.62

SVM radial oversampled 364 0.80 0.56 0.56 0.62 0.56

SVM polynominal 364 0.83 0.63 0.63 0.69 0.63

SVM polynominal oversampled 364 0.79 0.55 0.55 0.62 0.55

NNET 364 0.80 0.57 0.58 0.64 0.58

NNET oversampled 364 0.77 0.50 0.50 0.58 0.50

Random Forest 364 0.82 0.60 0.60 0.68 0.60

Random Forest oversampled 364 0.82 0.60 0.60 0.66 0.60

Naïve Bayes 364 0.82 0.61 0.61 0.66 0.61

Naïve Bayes oversampled 364 0.80 0.58 0.58 0.64 0.58

Table 33: Reliability of indicator Learning
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6.2.7 Discussion of the results of the common categories of reflection

Section 6.2 ’Common categories of reflective writing’ presents the assessment results

of the models on the seven indicators for the six common categories of reflection.

Compared with the previous section, where one dataset is evaluated with many

different machine learning algorithms, here, many different datasets are evaluated

with the same set of machine learning algorithms. For each indicator, the models for

the SVM, Neural Network, Random Forest, and Naïve Bayes algorithms are trained

and tested. For each dataset and model, several reliability indices are reported based

on the test dataset.

Similarly to Section 6.1.4 ’Discussion of the results of the three lines of investigation’,

this section compares the machine learning algorithms across all common reflection

categories.

For all investigated indicators, Table 34 shows the top three models ranked by

Cohen’s κ. Several general observations can be made.

First, it can be seen that within each indicator group, the Cohen’s κ values of the top

models are close to each other. This suggests that the reliabilities are relatively stable

for most indicators. Their κ values vary by 0.03 at the most, with one exception: the

models for the indicator Perspective. There, the maximum difference is 0.07 between

the third model and the first two models. Overall, the κ values of the top three models

for each indicator dataset are stable.

Second, Table 34 also shows that there is not a single best performing machine

learning algorithm across all indicators. More frequently, all three versions of the

SVM and Random Forest are in the top position. Less frequent, but important, is the

Naïve Bayes because its models reach the top position for the indicators Intention

and Perspective.



230 evaluation

Third, the chosen data-driven strategy to counter the class imbalance problem with

random oversampling does improve the reliability of the machine learning algorithms

in many cases. In all cases but one, at least one model trained with oversampled data

is present in the top three lists.
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Experience SVM radial oversampled 0.83 0.83 0.84 0.83 0.92

SVM linear 0.83 0.83 0.83 0.83 0.92

SVM polynominal 0.83 0.83 0.83 0.83 0.91

Feelings Random Forest oversampled 0.73 0.73 0.80 0.73 0.88

Random Forest 0.72 0.72 0.81 0.72 0.89

SVM radial oversampled 0.70 0.70 0.78 0.70 0.87

Beliefs SVM linear 0.66 0.66 0.66 0.66 0.83

SVM radial oversampled 0.65 0.65 0.65 0.65 0.82

NNET 0.65 0.65 0.65 0.65 0.82

Difficulties SVM radial 0.60 0.60 0.60 0.60 0.80

SVM polynominal 0.60 0.60 0.60 0.60 0.80

SVM polynominal
oversampled

0.59 0.59 0.59 0.59 0.80

Perspective Naïve Bayes 0.55 0.55 0.84 0.55 0.88

SVM polynominal 0.52 0.52 0.85 0.52 0.89

Naïve Bayes oversampled 0.48 0.47 0.78 0.47 0.85

Intention Naïve Bayes 0.71 0.71 0.95 0.71 0.95

Random Forest 0.71 0.71 0.94 0.71 0.95

Random Forest oversampled 0.70 0.70 0.94 0.70 0.95

Learning SVM linear 0.63 0.63 0.69 0.63 0.83

SVM polynominal 0.63 0.63 0.69 0.63 0.83

SVM radial 0.62 0.62 0.68 0.62 0.83

Reflection Random Forest 0.70 0.70 0.84 0.70 0.89

Random Forest oversampled 0.70 0.70 0.81 0.70 0.89

SVM polynomial 0.70 0.70 0.83 0.70 0.89

Table 34: Top models of all indicators of reflection

Section 4.2 ’Evaluation criteria and metrics’ outlines several benchmarks for

acceptable reliability thresholds. In addition to these generic benchmarks,

Section 3.1.4 ’Manual reflection detection performance’ distils the reliability ranges
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found in the research for the analysis of reflective writing (see page 69). For all top

models, Table 35 shows their respective levels with regard to the benchmarks. The

table shows the number of test instances (N), Cohen’s κ, Krippendorff’s α (both have

the same values on the second digit), per cent agreement, model level according to

the benchmark of Landis and Koch (1977), Krippendorff (2012) (tent. means ’allows

tentative conclusions’ and not rel. means ’not reliable’), and per cent agreement

bracket (top: >= 90%, middle: 80-90%, low: 50-80%) derived from the research on the

analysis of reflective writing.
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Experience 654 0.83 0.92 almost

perfect

reliable top

Feelings 521 0.73 0.88 substantial tent. middle

Beliefs 449 0.66 0.83 substantial not rel. middle

Difficulties 526 0.60 0.80 moderate not rel. middle

Perspective 396 0.55 0.88 moderate not rel. middle

Intention 727 0.71 0.95 substantial tent. top

Learning 364 0.63 0.83 substantial not rel. middle

Reflection 456 0.70 0.89 substantial tent. middle

Table 35: Benchmarks of top models of all indicators

The indicator Experience has the highest benchmark level for all benchmarks. Four

of the indicators are benchmarked as substantial, and two as moderate, on the

benchmark of Landis and Koch (1977).
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According to the benchmark of Krippendorff (2012), Experience is reliable, and both

Feelings and Intention allow for tentative conclusions. Four of the indicators are not

reliable.

Compared with the per cent agreements of the raters reported in

Section 3.1.4 ’Manual reflection detection performance’, five of the indicator models

are in the middle, and two are in the top bracket. None are in the low bracket,

although the model for the indicator Difficulties is close to this threshold.

All indicator models are in the ’fair-to-good’ range reported by Fleiss et al. (2003),

with the exception of Experience, which is excellent.

The Cohen’s κ values are all above the 0.5 threshold for exploratory research

described by Stemler and Tsai (2008).

However, compared with the reliability of the datasets, model reliability is lower.

Rater reliability for the dataset is estimated in Section 5.7.4 ’Reliability’ on a sample of

the datasets, and summarised in Table 9.

Table 36 shows the Cohen’s κ values of the top model for each indicator (Model),

along with the κ of the datasets (Dataset) and the difference between both (Difference).

The agreements for this model and the dataset are shown next to the values.

Reliability Agreement
Indicator Model Dataset Difference Model Dataset Difference

Experience 0.83 0.96 0.13 0.92 0.98 0.06

Feelings 0.73 0.94 0.21 0.88 0.98 0.10

Beliefs 0.66 0.93 0.27 0.83 0.97 0.14

Difficulties 0.60 0.94 0.34 0.80 0.97 0.17

Perspective 0.55 0.78 0.23 0.88 0.95 0.07

Intention 0.71 0.93 0.22 0.95 0.99 0.04

Learning 0.63 0.91 0.28 0.83 0.96 0.13

Reflection 0.70 0.92 0.22 0.89 0.97 0.08

Table 36: Reliability of models and datasets

From Table 36, we can see that dataset reliability for all indicators but one is above

0.90. Model reliability is generally lower than dataset reliability. On average, the



6.2 common categories of reflective writing 233

difference is 0.24. The indicator Difficulties shows the largest decrease in reliability,

whereas the indicator Experience has the smallest drop.

On average, model agreement is 10% lower than that of the raters. The smallest

difference is for the indicator Intention, and the largest for Difficulties.

In general, Table 36 shows that the machine learning algorithms have lower

reliability values than the datasets rated by the four-fifth majority vote rater. As

described in Section 6.1.4 Discussion of the results of the three lines of investigation,

this general lower model reliability compared with the dataset is also found in the

literature described in Section 3.2.3 ’Machine learning approaches’.

This drop in the reliability measures can be expected, and has consequences for the

general applicability of machine learning for the models of reflective writing outlined

in Section 2.2 ’Models to analyse written reflection’. The indicator datasets have

reliability and agreement in the top brackets of the measures summarised in

Section 3.1.4 ’Manual reflection detection performance’. Several of the papers

reported there have an agreement in the top bracket, from 90% and above. The

machine learning models created on the categories reported there would have a lower

agreement. The extent of the decrease will vary, but can be expected.

The extent to which the reliability of the machine learning models is lower

compared with the dataset also depends on algorithm optimisation. As outlined in

Section 4.6.2 ’Research design’, the approach taken here is to train and test the

machine learning methods under standardised conditions in order to inspect their

differences. This also means that the models were not individually optimised. For

example, McKlin (2004) and Corich (2011) reported Cohen’s κ values that were 0.15

and 0.14 points below dataset reliability. McKlin (2004) described several cycles of

inspecting the models and the use of a dictionary in order to achieve these

reliabilities.
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6.3 summary

This chapter implemented the research design outlined in Section 4.6.2 ’Research

design’. It reported the evaluation results, and discussed its findings. The sections

were structured according to the two research questions posed in

Section 1.1 ’Research questions’. Section 6.1 ’Reflection’ reported and discussed the

results for each of the three lines of investigations used to structure the argument for

the first research question, and Section 6.2 ’Common categories of reflective writing’

presented and discussed the results relevant to the second research question.

The results of both sections were based on the datasets generated for each reflection

indicator. Each dataset was generated with the same data generation process outlined

in Section 4.6.1 ’Dataset generation process’. Whereas for the Section 6.1 ’Reflection’,

all three types of machine learning algorithms were evaluated on the same dataset,

Section 6.2 ’Common categories of reflective writing’ assessed the models of the high

performing line of investigation on seven different datasets. Each dataset contained

instances of the reflection indicators. The model training and assessment for all

machine learning algorithms was conducted under the same conditions outlined in

Section 4.6.2 ’Research design’.

The main findings were discussed in Section 6.1.4 ’Discussion of the results of the

three lines of investigation’ and Section 6.2.7 ’Discussion of the results of the common

categories of reflection’, and are summarised here and brought into the context of the

data generation process findings.

Overall, most models were able to reliably detect reflection. According to the

benchmark of Landis and Koch (1977), most models had a substantial or higher

reliability. Compared with the reported per cent agreement from the research of the
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analysis of reflective writing, all models were in the middle range and some in the top

range.

The category ’reflection’ with the indicator question ’The sentence is descriptive ...

reflective’ can be detected with substantial reliability. This category is the common

denominator of the level models that distinguish between descriptive and reflective

texts. The estimate of the reliability of the simple majority vote rater was substantial

(see Table 8). All common categories of reflective writing correlated positively with

’reflection’ (see Table 10).

Most reliably, the category ’experience’ can be detected. The indicator question was

’The writer describes an experience he or she had in the past’. This category was

frequently mentioned in the investigated models of reflection (see Table 2). It was also

the indicator rated most reliably by the human coders with the simple majority vote

approach (see Table 8). It had the highest reliability of the dataset, and a moderately

positive correlation with reflection (see Table 10).

The indicator question ’The writer describes his or her feelings’ from the category

’feelings’ was detected with substantial reliability. It was part of more than half of the

investigated models. The reliability of the dataset was almost perfect. The reliability

estimate of the simple majority vote raters was substantial (see Table 8), and had a

strong positive correlation with reflection.

The category ’personal’ was captured with the indicator question ’The writer

describes his or her beliefs’. This indicator was detected with substantial reliability,

and it was mentioned in most models of reflective writing. The dataset reliability was

almost perfect; it had substantial rater reliability and was moderately correlated with

reflection.

The indicator question ’The writer recognises difficulties/problems’ from the

category ’critical stance’ was detected with moderate reliability. The reliability of the

dataset was again almost perfect. All models of reflective writing contained categories
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related to ’critical stance’. The indicator question was rated with substantial reliability

by the raters, and had a moderate rank correlation with reflection.

’The writer takes into account another perspective’ was the indicator question for

the category ’perspective’. The reliability of the detection model was moderate, and

its dataset reliability was substantial. This was part of many of the models of written

reflection. The indicator question had the lowest rater and dataset reliability, and its

correlation with reflection was weak.

The ’outcome’ category was part of most models of reflection. Two indicators were

developed: the first was ’The writer intends to do something’, and its detectability

was substantial. The dataset had an almost perfect reliability; it had substantial rater

reliability and a weak correlation with reflection. The second indicator was ’The

writer has learned something’, which was predicted with substantial reliability. The

dataset had almost perfect reliability, whereas the rater reliability and correlation with

reflection was moderate.

The top performing algorithms varied from dataset to dataset, which indicates that

there is not a single best algorithm to detect reflection. Both the SVM and Random

Forest showed a good overall performance over many datasets. The tree-based and rule-

based algorithms did not reach the reliability of the top-performing machine learning

algorithms, but they still had substantial reliability.
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C O N C L U S I O N A N D F U T U R E R E S E A R C H

This chapter summarises the intention of this research and discusses the research

questions in the context of this investigation in Section 7.1 ’Research questions’. This

body of work made several contributions to research, which are summarised in

Section 7.2 ’Contributions’. Section 7.3 ’Limitations’ discusses the limitations of the

conducted research, and Section 7.5 ’Concluding remarks’ shows several areas of

future investigation that became possible with the findings of this thesis.

7.1 research questions

Chapter 1 ’introduction’ outlined the importance of reflection for education. The

significance of reflection is well established and recognised at the highest level of

educational policy, for example by the QAA, the OECD, the European commission,

and the U.S. Department of Education.

An important educational practice is reflective writing. Despite its importance, the

automated detection of reflection in texts has not been widely researched. Research

has explored dictionary-based approaches that map key words to categories associated

with reflective thinking. It has employed systems that allow to manually construct rules

that detect text segments related to discourse, and machine learning algorithms have

been explored to classify text according to several thinking skills, for example, the

cognitive presence model of Garrison et al. (2001) or the framework of argumentative

237
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knowledge construction of Weinberger and Fischer (2006) (see Section 3.2 ’Related

automated methods’).

The main aim of this thesis has been to investigate the potential of automating the

detection of reflection in text. It specifically investigated whether machine learning can

be used to automatically detect reflection in text segments.

Two research questions have been investigated. The first research question was Q1:

Can machine learning algorithms be used to distinguish between descriptive and

reflective text segments? The second research question was Q2: Can machine learning

algorithms be used to detect common categories of reflective writing?

Both research questions stem directly from the research of the manual content

analysis of reflective writing. They investigate key features of the analysis of reflective

writing. Section 2.2 ’Models to analyse written reflection’ brought together an

extensive list of models used to analyse reflective writing. The point was made that

these models exhibit two qualities, which were described as the quality of depth and

the quality of breadth. This research addressed both qualities of reflective writing

models.

The first research question investigated the depth or level dimension of reflection

models. As described there, models analysed reflective writing regarding several

levels of reflection. Their common denominator was that a reflective writing can be

characterised as reflective or descriptive/non reflective. This distinction was captured

in the first research question.

The second research question investigated the breadth quality of reflective writing.

These are the categories that are associated with reflection and are frequently

analysed in reflective writings. Section 2.3.1 ’Evidencing common categories of

reflection’ showed that there are six categories that are frequently part of the analysis

of reflective writing. These were the test candidate categories for the evaluation of the

second research question. Furthermore, Section 5.7.4 ’Reliability’ showed that these
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common categories of reflection can be reliably annotated. Section 5.7.5 ’Validity’

showed that these common categories not only have face validity, but also correlated

positively with reflection. This corroborates their validity with empirical evidence.

The datasets that were used to evaluate both research questions were vetted with

a strict quality standard. This additional step was taken in order to strengthen the

validity of the datasets. They are only formed by sentences that received substantial

support to belong to one of the classes of the categories.

Based on the guiding evaluation criteria of reliability and validity, this research

took several measures to ensure the objectivity of the research design (see

Section 4.2 ’Evaluation criteria and metrics’). Section 4.6.2 ’Research design’ outlined

in detail the steps that were taken to evaluate the machine learning algorithms on the

problem of reflection detection. This was continued in the description of the concrete

implementation of the data generation process (see Chapter 5 ’dataset

generation’). The researcher did not take part in the data generation process and

the raters of the sentences did not know the writers of the texts. The raters coded the

data independently from each other based on explicit coding instructions. The raters

received as training the same test questions from a pool of test questions. Although

this seems a matter of course, Poldner et al. (2012, p. 32) remarked that only one of

the reviewed 18 papers about the content analysis of reflective writing provided

detailed information about the coding instrument.

In addition to these measures, the evaluation was conducted under standardised

conditions. This concerned the dataset generation, data preprocessing, with feature

selection and construction steps, division of datasets into training and test data,

training dataset preparation with the original class distribution and random

oversampled training dataset, model selection, based on the same resampling strategy

and model tuning, and the model assessment step. The machine learning algorithms
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were not individually optimised. This ensured that their differences can be attributed

to the algorithms and not to individual optimisation strategies.

Compared to the research about automated methods on related constructs of

reflection (see Section 3.2.3 ’Machine learning approaches’), this research extended

the amount of investigated machine learning algorithms. Compared to the research of

the manual content analysis of reflective writing (see Section 3.1 Manual methods to

detect reflection) and the automated methods, this research reported the reliability of

the automated methods with several reliability measures, all of them found in the

related research and an additional reliability measurement.

This is the context in which both research questions have been investigated.

The first research question was Q1: Can machine learning algorithms be used to

distinguish between descriptive and reflective text segments?

The findings of this thesis strongly suggest that machine learning algorithms can be

used to distinguish between descriptive and reflective sentences.

The top performing machine learning algorithms had a Cohen’s κ of 0.7 and a per

cent agreement of 0.89. They came close to the top bracket of the per cent agreement

reported by the research of manual content analysis of reflective writing and were

reliable according to several benchmarks. In addition, these reliability values are

comparable to the Cohen’s κ values reported in the research on automated methods

of related concepts of reflection (see Section 3.2.4 Automated methods performance).

Furthermore, this result was founded on the investigation of three types of machine

learning algorithms. They were: ’I1: Can tree-based machine learning algorithms detect

the difference between descriptive and reflective texts segments?’, ’I2: Can rule-based

machine learning algorithms detect the difference between descriptive and reflective

text segments?’, and ’I3: Can high performance machine learning algorithms detect the

difference between descriptive and reflective text segments?’
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This approach provided a comparative overview of different types of machine

learning algorithms. It was shown that the third line of investigation achieved the best

reliability, followed by the rule-based and the tree-based machine learning algorithms.

While the latter two had about the same performance, the high performing algorithms

showed better overall performance regarding the reliability measures, and the AUC.

The second research question was Q2: Can machine learning algorithms be used

to detect common categories of reflective writing?

The findings of this thesis strongly suggest that machine learning algorithms can be

used to detect common categories of reflection.

Compared with the previous research question that evaluated three types of machine

learning algorithms on the same dataset, this research question was evaluated with the

same set of high performing machine learning algorithms on different datasets.

All categories have a per cent agreement that is in the top or middle bracket of the

agreement values reported in research about the manual content analysis of reflective

writing. None of the categories is lower than the middle bracket.

The most reliable category is ’description of an experience’ with a Cohen’s κ of 0.83.

Its reliability is in the top bracket of the per cent agreement of the reported agreement

values of the content analysis of reflection. It is also in the top of all reported

benchmarks. Compared to the reliability values reported by the machine learning

algorithms of related research, this category outperforms all of them.

The category ’feelings’ has a Cohen’s κ of 0.73. Its per cent agreement is in the

middle bracket of the content analysis benchmark. It is reliable according to all

reliability benchmarks. Its κ is close to the top value reported in the research of

automated methods.

The indicator ’intention’ and ’learning’ of the category ’outcome’ has a Cohen’s κ

of 0.71 and 0.63 respectively. ’Intention’ is in the top bracket of the human benchmark

and also reliable according to all other reported benchmarks. ’Learning’ has a per cent
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agreement of 0.83, which is in the middle bracket of the reported agreement values of

the manual analysis of reflective writing. It is reliable according to most benchmarks

and the κ values of ’intention’ are in the top area of κ values reported by the automated

methods or related research.

The category ’beliefs’ shows a Cohen’s κ of 0.66 and a per cent agreement of 0.83.

It is reliable according to most benchmarks and in the middle bracket of the human

coders analysing reflective writings. It is in the area of the reported machine learning

algorithms that detect related constructs.

The category ’critical stance’ with the indicator ’difficulties’ achieved a Cohen’s κ

of 0.6 and a per cent agreement of 0.80. It has a moderate reliability, but is close to

substantial reliability.

The category ’perspective’ has a Cohen’s κ of 0.55, but a per cent agreement of 0.88,

which brings it close to the top bracket of the human benchmark.

Overall, these findings strongly suggest that machine learning can be used to detect

both, reflection and its common categories.

Substantial effort went into the generation of the annotations in order to produce

datasets of reasonable size necessary for machine learning (see Chapter 5 ’dataset

generation’). As it is often with supervised machine learning for text classification,

most of the time is spent designing and conducting the annotation task. This thesis

provided a full account of both the data generation process and the evaluation of the

machine learning algorithms with regard to their reliability in detecting reflection.

7.2 contributions

This thesis presented work that investigated the potential of automating the detection

of reflection in text using machine learning. The main contribution of this thesis was

the standardised evaluation of several machine learning algorithms on the problem of
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the automated assignment of reflection-relevant labels to text segments. In detail, the

thesis contributed with a standardised evaluation of tree-based, rule-based, and high

performing machine learning algorithms to the problem of reflection detection.

Furthermore, it contributed with an evaluation of machine learning algorithms in

order to detect common categories of reflective writing. Several state-of-the-art

machine learning models were trained and assessed. The evaluation provided a

comparative overview of the potential of machine learning algorithms to

automatically detect reflection.

Section 2.2 ’Models to analyse written reflection’ provided an extensive overview of

the models used to assess reflective writings. There, we showed that research on

reflective writing proposed many different models to assess such writing (see Table 1).

The models were analysed with regard to their commonalities. The results of the

synthesis of the models of reflective writing were a set of common categories of

reflective writing, where each common category represents frequently found

constituents of the models of reflective writing. The categories are summarised in

Section 2.3.2 ’Common reflection categories’. Evaluation of the categories showed that

they can be used to reliably annotate datasets (see Section 5.7.4 ’Reliability’), and

furthermore, all indicators of the common categories of reflection are positively

correlated with the indicator reflection (see Section 5.7.5 ’Validity’).

Furthermore, the literature on the analysis of reflective writing was prepared with

regard to reliability measures. Section 3.1.4 ’Manual reflection detection performance’

provided an extensive overview on the reliability of raters to analyse written reflection.

This overview provided detailed information on the inter-rater reliability of analysing

reflective writing.

This thesis also contributed to the research on crowdsourced text annotation.

Supervised machine learning requires large annotated datasets. Crowdsourcing the

annotation task allowed to divide the coding work over many participants, and thus
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scaled well for this large dataset. The contribution made here was to show that

crowdsourcing can be used to annotate sentences with regard to reflection indicators.

Furthermore, we showed that by aggregating the ratings, the coding process can

reach suitable inter-rater reliability (see Section 5.7.4 ’Reliability’). Machine learning is

widely used in areas of education where sufficient annotated datasets are available.

The research on e-assessment, for example, makes use of large text collections of

graded essays. In many areas of research, these large annotated text collections are

not readily available. The crowdsourced annotation approach shown here can help

lower this barrier of using machine learning in order to analyse learning expressed in

text.

This research also contributed to practice. Automated methods for analysing

reflection and learning in general are important for providers of large online learning

environments. The description of the requirements for sample size and the annotation

process allows assessing the effort required to generate one’s datasets for the

development of machine learning models to detect reflection. A detailed description

of the performance of the machine learning models allows evaluating their suitability

for specific applications.

7.3 limitations

The main focus of this thesis was to investigate whether text segments can be analysed

automatically using machine learning algorithms to detect the presence (or absence) of

key reflection elements (see Section 1.1 ’Research questions’). Research on the manual

content analysis of reflection indicated that shorter text segments are used frequently

as analysis units (see Section 3.1.4 ’Manual reflection detection performance’). This

was one of the reasons for choosing sentences as analysis units Section 4.6.1 ’Dataset

generation process’. The entire text as an analysis unit was also mentioned frequently
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in the literature. The applicability of machine learning algorithms to detect reflection

at the text level was not investigated, and this was expressed in the research question.

The study investigated only text written in English; other languages were not

explored. The hope is that this research can inspire further research to evaluate the

potential of automated detection of reflection across languages.

7.4 future research

The automated detection of reflection opens several lines of investigation. Four of

them are outlined next. They are the extension of this research to the reflection

detection of other languages, the extension to spoken language, the application of

reflection detection in research, and the long term ambition – the automated

assessment of written reflection.

One topic was already mentioned in the limitations of this chapter. It is the

question: to which degree can reflection be captured in other languages with machine

learning? This research showed that the singular first person pronoun was an

important feature to distinguish reflective from descriptive sentences. In written

German the use of the singular first person pronoun is relatively rare as school

teaches an objective, not subjective writing style. Other language specific features

would open interesting perspectives for the automated detection of reflection.

Another research challenge are languages that do not have word boundaries. For

example, written Chinese is a continuous stream of characters. But also the scriptio

continua writing style of old Greek or Latin does not use word boundaries. Word

boundaries were important for this research as they were used to convert sentences

into features. These features were necessary to train the machine learning models.

Detection of reflection in spoken language: For this thesis, the main text source

were writings. Written language is one form of expressing reflection. Another form is
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the spoken language. The research design developed in this thesis is seen as

applicable not only to the written language, but also to spoken language that has

been transcribed. The reflection detection model synthesised from the research of

written reflection is sufficiently general to be adapted to the context of the spoken

language. The main reason for this is that most models of reflective writing, from

which the model for this thesis was synthesised, are based on the reflective literature

of authors of great acceptance (see Section 2.1 Definitions of reflection and

Section 2.2 ’Models to analyse written reflection’). They are bound to reflective

thinking, but not the medium. The investigation of spoken language with automated

methods comes a step closer to researching reflection-in-action (Schön, 1983, 1987).

Reflection-in-action is mostly an inner thinking process. The person is stepping back

from a problem and reflects on the situation in situ. These reflections can be captured

in writings, but this happens after the event and thus it is part of the

reflection-on-action dimension. Researching spoken language opens the potential to

capture the utterances of a person that reflects in action. Considering the amount of

utterances made during a day, the automated detection of reflection can help to

identify moments of reflection-in-action. Further, reflective writing is mostly an

activity of an individual. The research on spoken language allows to study the

utterances of groups and thus allows to determine reflective utterances in the context

of the group interactions. The automated detection of reflection can help to detect the

moment when a reflection is triggered.

Application of reflection detection in research: The immediate application of the

detection of reflection is seen as a research tool to analyse text for reflection on a

large scale. The effort that has to be put into the manual analysis of reflective writing

limits its scope to relatively small sample sizes (see the column ’number of texts’ in

Table 3 of Section 3.1.4 ’Manual reflection detection performance’). The effort to assess

reflective writing often restricted research to single group investigations measured at a
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single point in time. Automated detection allows repeatedly analysing the writings of

massive text collections. In addition to analysing the frequencies of reflection categories

for each text, the strategies used by the researchers to analyse written reflection can

be used to assign categories to entire texts. (see Section 3.1.2 ’Relationship between

analysis units and reflection categories’). This opens the potential to research many

of the questions investigated by the researchers of the manual analysis of reflective

writing on large scale. In addition, it allows to investigate in online learning systems

which of the learning activities lead to reflective writing. Reflection detection can then

be used to inform learning design.

Automated assessment of reflection: One long-term ambition leading from this

research is the automated assessment of reflection. Although the automated detection

of categories of reflection is a big part of the assessment of reflective writings,

assessment, however, is more than the detection of reflection: it includes other

dimensions, for example, feedback mechanisms and educational assessment quality

standards. This is a wider theme that needs to be researched.

Automated methods for detecting reflection can have a unique benefit over manual

methods. Reflection can be an extremely personal matter, and therefore, people might

prefer not to share their reflection with others. An automated system could provide

meaningful feedback while removing the fear of being personally judged.

The manual assessment of writings is a time-consuming task. In courses with many

students, it might not be possible to provide feedback on all the writings precisely

because, assessment is time-consuming and expensive. One way of overcoming this

workload is to assess an aggregated report based on several reflective writings (called

a reflective account). However, by emphasising that frequent writing helps learning,

automated systems can deliver feedback instantly on each reflective writing. The

automated assessment can provide additional and on-time feedback along with the

feedback provided later by an expert.
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Furthermore, the information gathered by an automated system can serve teachers

as a second opinion on their assessment of reflection. The pre-annotated text of the

reflection detector can be used as the first iteration that can then be refined through

teacher comments. The automated system can serve as another perspective on the

matter, which may improve assessment accuracy (Winkler and Clemen, 2004).

A concrete application scenario of this technology for education is, for example, to

support learners with automated formative assessment about their reflective writing.

A teacher introduces the learners to reflective writing outlining the value proposition

of reflective thinking and writing (see Chapter 1 ’introduction’) as well as

providing information about common constituents of reflective writing (see

Section 2.3.2 ’Common reflection categories’). These categories represent concrete

learning goals. The teacher outlines that a good reflective writing should contain

evidence of these constituents. Then, the learner engages in the reflective writing

activity using a system that automatically detects text segments that belong to the

common categories of reflection. The learner can check the current draft of the

reflective writing with the automated reflective writing assessment program, for

example, whether or not all categories of a reflective writing have been covered or

whether crucial parts of a reflective writing, for example, the description of the

problem was missing. Based on the assistance of the automated system, the learner

can modify the current draft and request feedback again at a later stage. The benefit

of using such a system is that the learner receives this feedback instantly and

continuously and not delayed and less frequent from the teacher as it was the case

without this technology.
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7.5 concluding remarks

Empirical research at the convergence of educational science and computer science

made it possible to investigate this research question. The guiding discipline was

educational science, which provided the model for reflection detection, and computer

science provided the automated method to detect reflection. Only the synergy

between both allowed to study the automated detection of reflection.





A
C O - C I TAT I O N A N A LY S I S O F R E S E A R C H O N R E F L E C T I V E

W R I T I N G

The literature on reflection is constantly growing. A co-citation analysis (White, 2011,

p. 277) was conducted to identify high impact research papers in the area of reflective

writing.

A search in the citation database of Thomson Reuter’s ’Web of Knowledge’1 for the

words reflection and writing in the title of papers returned 358 results (February 2012).

Research areas like optics, geography, surgery, chemistry, religion, or literature were

excluded from the search result. From these articles the references were extracted. The

following figure (Figure 12) shows a condensed view of the analysis showing only

papers which got cited more than 3 times within the used data set.

The most cited research articles according to this co-citation analysis are listed below.

It includes the seminal work of Dewey (1933), as well as the influential work of Schön

(1983, 1987); Mezirow (1981, 1990b, 1991); Boyd and Fales (1983); Boud et al. (1985). An

early review on the topic of reflection was written by Atkins and Murphy (1993).

Two papers focus on reflective writings using journals (Hahnemann, 1986; Paterson,

1995). Both describe reflective practice in the nursing area, which has a long tradition

in reflective practice. The other well researched area is teacher education, which is also

reflected in the co-citation analysis with the papers of Zeichner and Liston (1987) and

Hatton and Smith (1995).

1 http://apps.webofknowledge.com
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Figure 12: Co-citation analysis of the topic reflective writings

For this thesis the area of assessment of written reflection is especially important,

as it researches the method of identifying reflection in texts. The two papers of Wong

et al. (1995) and Kember et al. (2000) deal especially with the topic of the assessment of

written accounts. The book of Miles and Huberman (1984) gives a general introduction

to qualitative methods.



B
M A P P I N G O F M O D E L S O F R E F L E C T I O N T O C O M M O N

C AT E G O R I E S O F R E F L E C T I O N

The following Table 37 shows the mapping of the models of reflection (Table 1) to

the common categories of reflection. This is the long version of Table 2. Each cell

contains the evidence found in each model that supports its classification into one

of the common categories of reflection. See Section 2.3 ’Model for reflection detection’

for the detailed description of the common categories of reflection, the models, and

the mapping process. See Section 2.2 ’Models to analyse written reflection’ for the

description of the models (especially Table 1).
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C
S A M P L E D T E X T C O L L E C T I O N O F T H E B AW E C O R P U S

The following Table 38 contains all texts from the BAWE corpus text selection process

(see Section 5.2). The table describes for each text the taken decision to keep it, delete

it, or to prune it, as well as a comment section describing the reason for these decisions.

Some of the texts did not come with a description of the title. These are left empty.

Identifier Title Decision Comment

0003b An urban ethnography of two
bookshops in Leamington Spa,
November 2004

delete descriptive

0050c CDA assignment 2 delete descriptive
0055b What does Descartes mean by a

’real distinction’ between mind
and body? How does his
argument for the real
distinction work?

delete descriptive

0056a Experiences at King Henry V111

School, Spring 2005

keep

0057a Must a subject/object-oriented
conception of logic admit to the
revisability of logic?

delete descriptive

0065g A medical student faced with
the 3 suicide bombings of Cairo
in April 2005

keep

0077f A Cross-sectional Analysis of
Economic Growth Theory

delete descriptive

0114g A medical elective at McMaster
University, March 8th-April
26th 2004

delete descriptive

0116d The Impact of Drama on High
School Students’ English
Learning and Self-Confidence

delete descriptive

0152c Governance Frameworks and a
Review of a Firm’s Social
Responsibilities

delete descriptive

0165d CILM Reflective Piece 1 keep
0169i Assignment Term One -

Learning Diary
keep

0172c ESSAY PROJECT: ACTIVE
DESKTOP IMPLIMENTATION
AT ASTON MARTIN

keep

259
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0193d CFS Insurance - Restructuring
Project

pruned

0202k 1. Why is quality important to
EHL? (20% of the marks) 2.
What are the underlying causes
of the quality problems at EHL?
(40% of the marks) 3.What steps
would you advise Paul Stone to
take to improve quality
performance at EHL? (40% of
the marks)

keep

0206e Strategy Learning Review keep
0206l Question 1 delete descriptive
0212d Assignment 1 delete descriptive
0234a CFS Insurance pruned
0234j What, if anything, has

membership of a political
community in common with
membership of a family? Can
this tell us anything about our
obligations?

keep

0235c If experience is the source of
our grasp of the concept of a
physical object, then how do we
make intelligible to ourselves
the idea that such objects may
exist unperceived?

delete descriptive

0237a Introduction delete descriptive
0253c Reflection on Hofstede’s

Cultural Dimension
keep

0253d Reflection on the Shell’s
Stakeholder Approach

keep

0311k Is the Simplicity of a Theory
any Guide to its Truth?

delete descriptive

0316c How Do the Media Contribute
to Changes in Time and Space?

keep

0325b Countable and Uncountable
Sets

delete descriptive

0342b Design Project Circuits delete descriptive
0342c Reflective piece keep
0347g Reflective Piece - Business

Project
keep

0348c Individual Reflective Piece keep
0354a Individual Reflective Piece keep
0354f Writing Exercise: What Makes a

Professional Engineer?
keep

0358h Reflection: Entrepreneurial
Activities are always quite
interesting and demanding.

keep

0362b First Reflective Piece keep
0362c Second Reflective Piece keep
0393a A critical assessment of Derek

Parfit’s fission example in his
1971 article "Personal Identity".

delete descriptive
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0399a A discussion regarding the
statement that: "The extent to
which a monopoly induces
economic efficiency depends,
among other things, upon
factors such as: (i) Vertical
integration in the market, (ii)
Horizontal market
contestability, (iii) Technology,
(iv) The role of advertising and
(v) Market demand elasticity."

delete descriptive

0401b How far is the normalisation of
drugs relevant within youth
culture?

pruned

0405c Participant Observation keep
0411c The right to silence; myth or

reality? Discuss
pruned

0415g Searching the Chemical
Literature

delete descriptive

0424c Reflective Piece for Starting and
Running a Business

keep

3006h delete descriptive
3006i Analysis of the Intended Market

and Marketing Campaign
delete descriptive

3011b Learning Portfolio keep
3012a pruned
3012d pruned
3013f Managerial Features and

Approaches to Learning
keep

3013g Personal Development Portfolio
for an Entrepeneurial Career

pruned

3019a Is There A Good Alternative To
The Tripartite Theory Of
Knowledge

keep

3019b Why Does Anscombe Think We
Ought to Abandon the Concepts
of Moral Obligation and Duty?

delete descriptive

3019g To What Extent Would You
Agree with the Claim that
God’s Existence can be Proved?
Use One of the Arguments for
the Existence of God to
Illustrate your Answer.

delete descriptive

3026c Assignment 1 - Cover Letter +
CV

delete descriptive

3027a Anthropology- Library exercise delete descriptive
3032g Mental Health nursing

developments in care
keep

3034e Individual reflective report on
the process of teams work and
team work skills

keep

3034f Health promotion in midwifery keep
3045a Marketing Comment delete descriptive
3047c Ethnographic journal entries - A

cross culture experience
keep
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3052c Coursework 4 -Project Title:
DirSync

delete descriptive

3052d Coursework 1 delete descriptive
3057b ASSIGNMENT 1 : Analysis of

single text, Construction of
another in response, Critical
comparison

delete descriptive

3059a Responding to Others keep
3063a Behavioural observation report :

activity of an adolescent female
chimpanzee

delete descriptive

3063c Research proposal delete descriptive
3064a 2.1: Reflective Statement 2 keep
3064c 2.1: Reflective Statement 1 keep
3064d Professional skills: A

multi-professional approach
pruned

3064e Health People and Society -
Essay Assignment

delete descriptive

3064g Individual Reflection on Team
Work and Team Working skills

keep

3069a Viva Case Study - Deirdre delete descriptive
3069b The responding to others

interview write-up
keep

3076b Stage 2: Critical analysis of my
key personal characteristic -
Anxiety

keep

3076c A reflective account of a
decision made in practice
incorporating critical analysis of
the evidence that was/could
have been used to inform the
decision.

keep

3082b Reservations Manager of Ed delete descriptive
3089d A book proposal for the crime

fiction market
delete descriptive

3092d A reflective account on the
process of teamwork

keep

3092e pruned
3092f Reflect on a challenging

experience in relation to the
practice....

keep

3092g Stage 1: reflective journal entry
and critical analysis of a
personal
characteristic/behaviour
identified from the reflective
journal entry.

pruned pruned
literature

3092h A reflective account of a
decision made in practice
incorporating critical analysis of
the evidence that was/could
have been used to inform the
decision.

pruned took out
literature
review

3094f pruned
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3099d Essay Question 2 keep
3101b Self-evaluation report keep
3101d Self-development essay keep
3110c The First Men on Mercury delete descriptive
3110d Post-modern American Poetry:

the New York Poets
delete descriptive

3113a Professional management
experience - Year-out work
experience

delete descriptive

3114a keep
3114b Reflective case study of a family

under stress
keep

3118b Bridging the gap: A case study
describing the experiences of a
Chinese student studying on an
EAP pre-Masters course at
Brookes University

delete descriptive

3119b How are social inequalities
reflected in what people eat?
What positive measures can be
taken by health and social care
professionals to reduce
inequalities in the diets of
patients and service users?

pruned

3125a Assignment 2 Critical review
task

delete descriptive

3125f Psycholinguistic reflective
review

keep

3126d Gender identities assessment delete descriptive
3127a Should ESOL teachers be

trusted to create their own
approaches to learning?

pruned

3141a Reflective paper focusing on the
first session interview

keep

3145b The realisty of evil makes it
impossible for the God of
classical theism to exist. Discuss.

delete descriptive

3147d To what extent would you agree
with the claim that God’s
existence can be proved? ....

delete descriptive

3147g Analysis of the intended market
and marketing campaign

delete descriptive

3150a Portfolio 2 : Grammar teaching
and learning

keep

3150b Portfolio 4 : Skills teaching delete descriptive
3150c Portfolio 5 : Language games

and activities
delete descriptive

3150d To what extent are students
interested in history?

pruned

3157b Digitising using Geographical
Information Systems

delete descriptive

6002c Experiment E: Viscosity
Measurement

delete descriptive

6002d Experiment F: Surface Tension delete descriptive
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6005g STAR REPORT delete descriptive
6009a Discuss how theories of second

language learning and teaching
can explain certain features of
your learning Persian.

delete descriptive

6018a Assignment 2 [maels1ia] delete descriptive
6020c LS2ASD Assignment delete descriptive
6024a Motivation, Imput and output

in my Persian Learning
Experience

pruned deleted
the mostly
descriptive
input
hypothesis
section

6028a Towards an understanding of
Second Language Acquisition

pruned deleted
introduction,
section 3-
3.3, 4.4.3
as they
are mostly
descriptive

6028c Towards an Understanding of
Syllable and Syllable Structure

pruned

6048b Do the frequencies of singular
and plural first person
pronouns within politicians’
speeches reflect the frequencies
found in the BNC spoken
corpus?

delete descriptive

6062a How does Tony Blair’s use of
the ’I’ and ’we’ pronouns in his
political speeches demonstrate
his own and his audiences
membership to a particular
social group or groups.

delete descriptive

6062c How do broadsheet newspapers
and online based news sites
differ in their use of adjectives
in reporting the English nation
football team’s victories and
defeats?

delete descriptive

6100c Individual Write-up keep
6101a Computer Vision Assignment:

Image Compression
delete descriptive

6101b [Linear Algebra for Computer
Vision and Robotics I, Robot 2]

delete descriptive

6101c The Social, Legal and Ethical
Aspects of Computer Science

pruned

6101f Compiler delete descriptive
6101j CS3Q2 - Computer Science

Interim Report. Package for
Electronic Mapping - PDA
Version

delete descriptive

6101k Practical 1 delete descriptive
6101l Assessed Assignment 2 - Lists pruned
6102d [Report for assignment of

Virtual reality]
delete descriptive
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6108a Introductory Programming 1 -
Practical 8 Writeup

delete descriptive

6108b Internet and Web Technology
Integration Report for fictional
retailer FilmReel UK Ltd. - Part
II: The Systems Response to the
Business Requirement

delete descriptive

6114e Stokes Drift: the strange effect
of waves on water transport

delete descriptive

6145c Using your hypothetical case
study EITHER explain the
relevance of different
motivational theories to OR
explore the role of
communication in the situation
described.

delete descriptive

6153b Management Case Study: Farm
Manager

delete descriptive

6167e Valerie Bash is 30 years old and
pregnant with her first child. ...

delete descriptive

6168b Valerie Bash is 30 years old and
pregnant with her first child. ...

delete descriptive

6169f Robot football delete descriptive
6173c Second Language Teaching and

Learning
delete descriptive

6174a ’What is the effect of the social
variables of class and gender on
the way we speak? Is there a
link between them?’

delete descriptive

6174b Word Association Experiment delete descriptive
6189a Report - multimodality of

advert and interview
analysis/techniques

delete descriptive

6203a REPORT ON THE HUMAN
SKELETAL REMAINS

pruned

6203h Powder flask delete descriptive

Table 38: Relevance sampling of texts





D
R E L I A B I L I T Y O N I N D I V I D U A L L E V E L

This appendix reports the inter-rater reliability and agreement values for a subset of

1000 sentences of the annotation task. They were calculated on individual coder level

and not on the aggregated ratings of several coders (see Section 5.7.4 ’Reliability’).

The inter-rater reliability between the annotators was measured using

Krippendorff’s α for nominal data, as well as Gwet’s AC1. Additionally, the per cent

agreement is reported. These are the values for the whole data set (without any

filtering or removal of gamers). The six-point Likert scale was dichotomised.

Indicator Kripp. α AC1 %-agree

The writer describes an experience
he or she had in the past

0.45 0.45 0.62

The writer describes his or her
feelings

0.33 0.4 0.68

The writer describes his or her
beliefs

0.29 0.29 0.64

The writer recognises
difficulties/problems

0.38 0.38 0.69

The writer takes into account
another perspective

0.21 0.34 0.64

The writer has learned something 0.23 0.27 0.62

The writer intends to do
something

0.32 0.63 0.76

The sentence is descriptive ...
reflective

0.23 0.28 0.63

Table 39: Reliability and agreement values on individual level
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Title of the task: Categorise sentences into 8 categories and write an explanation

Instructions: The task is about categorising sentences. You will have to rate each

sentence according to eight questions. Afterwards, write a short explanation to justify

your choice of the last question (min. 20 characters).

One example should guide you through the task:

Text: "I need to do some thinking about how to act next time to prevent this

interruption from happening or to deal with the situation when she starts".

First you will rate the sentence according to eight criteria ( six-point scale). The first

six questions ask how much you agree or disagree with the question. The last

question asks, if the sentence is descriptive or reflective.

It is important to keep in mind that the sentence has to speak for itself. Do not

interpret too much into the sentence.

Afterwards write a short text to explain your choice for the last question. For example:

#The interruption should not have happened. He intends to put more thought into

dealing with such situations. It is a personal sentence referring to an important

experience of the writer. The writer intends to find a solution.

Be aware that your explanation has to start with "#" (see example). If your explanation

does not start with a #, it will not be accepted. This is to ensure, that you have read

the instructions.

Make sure that your explanation is unique, as every text is unique. I cannot accept
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copy-and-paste explanations. Your explanation has to be in English. Use full

sentences. In case your explanations are too similar or too dissimilar to the content of

the page, you will receive a message. If this happens, please change your answer. Do

the same if you receive the feedback that your answer does not look right.

Several test cases are embedded in the task.

Categorise the following text:

<Each individual sentence was inserted here>

The writer describes an experience he or she had in the past (required)

disagree 222222 agree

<Each individual sentence was inserted here>

The writer describes his or her feelings (required)

disagree 222222 agree

<Each individual sentence was inserted here>

The writer recognises difficulties/problems (required)

disagree 222222 agree

<Each individual sentence was inserted here>

The writer describes his or her beliefs (required)

disagree 222222 agree

<Each individual sentence was inserted here>

The writer takes into account a different perspective (required)

disagree 222222 agree
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<Each individual sentence was inserted here>

The writer has learned something (required)

disagree 222222 agree

<Each individual sentence was inserted here>

The writer intends to do something (required)

disagree 222222 agree

<Each individual sentence was inserted here>

The sentence is (required)

descriptive 222222 reflective

<Each individual sentence was inserted here>

Give a short explanation to justify your choice of why you think the sentence is

descriptive or reflective:

<text field>

Instruction: Your explanation has to be at least 20 characters long. As every text is

unique your answer should be unique as well. Do not provide the same reason for

every text.





F
E X A M P L E S O F T H E D ATA S E T S

The following tables lists sentences that were randomly selected from the datasets

of the indicators Experience, Feelings, Beliefs, Difficulties, Perspective, Intention,

Learning, and Reflection. Each table shows for each sentence the number of ratings

indicating the presence (Pres.) or absence (Abs.) of the indicator. As an example, the

first sentence of the following table was rated seven times that experience is present,

and one time that the sentence does not express experience. The last column shows

the document information (Doc.). Sentences from the BAWE are referenced by their

unique identifier and text that were taken from the exemplary samples of reflective

texts are marked with the family name of the author. The first five sentences of each

table are instances expressing the indicator and were labelled as the positive class, and

the last five sentences are instances that do not express the indicator according to their

ratings and were labelled as the negative class. The labels were used to supervise the

training of the machine learning algorithms.

More information about the process that generated the datasets from which these

sentences are taken can be found in Chapter 5 ’dataset generation’.

Examples of the dataset Experience ’The writer describes an experience he or she

had in the past’:

Sentence Pres. Abs. Doc.

With hindsight I believe that if we had focussed more on
promoting the niche market -especially after identifying a
virtually identical competitor!

7 1 0342c

Continued ...
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Sentence Pres. Abs. Doc.

Because I felt uncomfortable that other nurses regarded Mary’s
attendance as inappropriate it made me think about my attitude
to those patients I had regarded in this way and it helped me
understand the effects that this could have on the care I give.

7 1 3092e

For me this stage was about getting to know what the others
expected of me and what I expected of the group.

7 1 3092d

One customer was really nice when this happened because she
had seen me being taught what to do.

7 0 Moon

This proved not to be enough and I collected phone numbers to
call and see why they did not attend.

8 1 0342c

Simmons argues that what he calls "positional duties" are
distinct from "the moral requirement to fulfil positional duties".

1 5 0234j

I felt that could be in the form of a midwife, breastfeeding
councilor, or breastfeeding manuals that had been tried and
tested by women.

1 6 3034f

In fact, according to McKinsey and Company -1989-, "the
feasible improvement in gross margin on sales through
improved quality performance was rated at an average of 17%"
-Dale 2001:15-.

1 7 0202k

To aid this, I might ask them to confidentially write a list of
their preferred partners.

1 8 3127a

Receiving positive feedback should be used as an opportunity
to improve self-esteem while negative feedback should not be
allowed to reduce esteem as negatives can always be turned
into positives -Ward.

1 8 3092g

Table 40: Example sentences of the dataset Experience

Examples of the dataset Feelings ’The writer describes his or her feelings’:

Sentence Pres. Abs. Doc.

My choice of research topic is influenced by my values and
interests and I chose to study the normalisation of drugs as I
find the subject fascinating.

5 1 0401b

Although, the final business plan covered and explained
everything in detail I was not satisfied with it as I always found
something missing and I tried to discuss with my group but
they didn’t want to think in so much detail.

8 0 0362c

If I were to take part in another team assignment or have the
opportunity in practice I will be more willing to voice my
opinions and be more confident about my ability to delegate
tasks and take more responsibility.

6 1 3034e

I feel really privileged about that though, because in this small
way, I am able to almost have an experience of what real
entrepreneurs go through.

6 0 0424c

When I started work at Cowley Manor, I was expecting there to
be high expectations of me.

8 0 3101d

Continued ...
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Sentence Pres. Abs. Doc.

- Flawless Delivery- Development and deployment by January 5

th- Design and development within budget of 15k.
1 6 0172c

My mentor and I often asked Elle how she was feeling, keeping
in mind that she had a tendency to hide her pain from us so
that we could keep on top of her pain management.

1 8 3114b

This model explains the process of listening to each other,
interpreting what is being said and asked, and then taking
action and doing what needs to be done.

0 8 3114b

Becky and I then sat with Joseph and explained calmly that it
wouldn’t be possible to see a plastic surgeon but that we would
do everything we could to insure a minimal scar and that we
would be able to treat him shortly.

0 8 3092f

When Susie was in pain and crying, she would get a great deal
of attention and close cuddling with her mother.

1 9 3114a

Table 41: Example sentences of the dataset Feelings

Examples of the dataset Beliefs ’The writer describes his or her beliefs’:

Sentence Pres. Abs. Doc.

Personally I consider output as a useful tool for retention,
motivation and mastery of L2.

6 0 6028a

I believe it would be improved if we can concentrate a question
arisen from the topic area and discuss it in the discussion.

7 0 3125f

Because I tried, and failed, to assert myself this placement left
me feeling wholly inadequate and unvalued, resulting in a
complete lack of confidence in myself and my abilities.

8 0 3092g

Starting the day about 3-4 hours earlier than I was used to, was
probably the best plan I had for long time.

6 0 3011b

I think the reality of peer assessments -offering either a harsh
rebuttal or encouragement to continue- gave us all incentive to
work hard during the break.

10 0 0348c

She responded very positively to all health promotion that was
offered as well as researching information by herself, health
promotion was easier to carry out on this occasion as it is often
dependent on public participation -Ashton and Seymour 1998-.

1 6 3034f

Levin -2005- adds to this say that completer/finishers try to
prevent mistakes and omissions, search out aspects of the task
that need a lot of attention, maintain urgency and finalise tasks
with attention to detail.

1 7 3092d

Group X16 of module ES2A6 comprised three men and two
women, all British except for one of the women who was from
China.

1 6 0354a

The course is building on the skill set that I have been
developing over the past two years; more specifically
presentation and teamwork.

1 5 0169i

Next day it was reported in the paper that the child had been
taken to hospital seriously ill - very seriously ill.

0 9 Moon

Continued ...
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Sentence Pres. Abs. Doc.

Table 42: Example sentences of the dataset Beliefs

Examples of the dataset Difficulties ’The writer recognises difficulties/problems’:

Sentence Pres. Abs. Doc.

I assumed that I could just re-engage - but I did not realize that
the game had changed.

7 1 Moon

I found the business plan to be very challenging on the first site
but I had many learning outcomes and various practical
experiences of setting up and running a business.

7 1 0362c

Perhaps I spent a bit too long researching their experience and
making sure it was all feasible and factually exacting, but
forging backgrounds for these two high flyers made me
consider that I need to be doing more in pursuit of personal
excellence.

5 0 0348c

Jane was also unaware that she could write her specific wants
and needs in a birth plan which should have been formulated
with her midwife -DOH, 1993- this would have made her
intention to breastfeed clear.

7 1 3034f

I managed to provide some good comments but at the same
time realized that I missed out some key points.

9 0 3011b

The motivation was basically to make phone calls absolutely
free after one time investment.

1 7 0362b

Further, truly "world class" firms are based on having sufficient
concepts, competence and connections.

1 5 0169i

Independence and creativity are both highly emphasized in
appendix 8 and also represent entrepreneurial traits.

0 9 3013g

In the modern rewriting, she wears the clothes of a supervisor
of a holiday camp with her orange cap, her shirt and her banner
bearer.

0 10 3012d

3 In Images of Strategy -pp.356-382- edited by Cummings, S. &
Wilson, D. I was also a little surprised to see Smith talk
excitedly about EVA/SHV as if they were recently discovered
magical formulae for success.

1 9 0206e

Table 43: Example sentences of the dataset Difficulties

Examples of the dataset Perspective ’The writer takes into account another

perspective’:

Sentence Pres. Abs. Doc.

I perceived Mrs Stacy as appreciating this and found it helpful
as she said thank you when I told her the next thing that will be
done and at what time, her expression gave me the impression
that giving this information over was a positive thing, therefore
I continued to do so.

7 1 3114b

Continued ...
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Sentence Pres. Abs. Doc.

She goes on to explain that patients labelled in this way often
feel they are ’told off’ by almost every member of staff and
punished by the negative attitudes shown towards them and by
being made to wait excessively -Walsh, 2000-.

7 1 3092e

Until that time I probably have ignored or overseen many
issues, which might have disappointed some of the students I
lived with or made them uncomfortable.

6 1 3011b

For this reason, I will try and be aware of all the issues that
might affect an individual and how they behave, for example,
whether they are male/ female, old/ young, disabled, elderly,
from an ethnic minority or gay.

8 0 3119b

Within our group, we had to be understanding of each others
ideas and attitudes, and recognise that we may have different
ways of going about things or communicating.

9 0 3064g

After week 4 in the restaurant, we were split into teams to look
after tables.

0 8 3101b

She agreed to come back - but came back to see Geoff, the
senior partner, still complaining about the shoulder.

1 5 Moon

Luckily we were all dedicated within our group and had similar
styles of working which enabled us to consistently be organised
throughout.

1 8 3069b

However, one can easily tell the weaknesses of certain types of
input such as the one provided in Grammar Translation
method.

1 7 6028a

It would not be practical to have a person in the 50’s applying
for this position, because the potential career is seen as too
short and costs for the training too high.

1 5 3011b

Table 44: Example sentences of the dataset Perspective

Examples of the dataset Intention ’The writer intends to do something’:

Sentence Pres. Abs. Doc.

I will continue my good teamwork, as I feel I am good at it. 8 0 3101b
For the future, I will try to engage with the cultures I am
meeting in group work situations or at work beforehand, in
order to be better prepared.

9 1 3011b

I discussed my assignment with Jane and received consent that
she was happy to be followed up outside of her next antenatal
visit -which would be with her GP at 36 weeks-.

6 1 3034f

Furthermore I have decided to narrow the scope of my activities
so I can dedicate more time and commitment to each activity.

10 0 0348c

The topics are very well chosen and the activities and language
games will be very useful for my later teacher practice in
Germany.

6 1 3150a

The second task was to work on the descriptions of the streets
of Saffron Hill.

2 12 3012d

Continued ...
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Sentence Pres. Abs. Doc.

The lower individualism in Hong Kong means people in the
society are born into extended families and collectives where
everyone takes responsibility for fellow members of their group
-Hofstede, 2003-.

0 6 3047c

Mentors need to create a relationship that encourages these
beliefs for students to feel confident enough to be assertive.

0 7 3092g

Kaizen charges everyone in the organization with improving
everything in the company, not just quality.

1 9 0202k

For example, it has been advised that talking behind the
computer -or similar- disconnects the speaker with the audience
as it creates some what of a barrier between them and therefore
dilutes the attention to the speaker.

1 9 0165d

Table 45: Example sentences of the dataset Intention

Examples of the dataset Learning ’The writer has learned something’:

Sentence Pres. Abs. Doc.

Thus, through a brief analysis of the learning strategies that I
employed in order to approach this daunting task, the errors
that I made and the theories behind them I will present how the
lack of these three factors affected my progress in the learning
process.

8 0 6024a

I can now see how this is far better when you have an
inexperienced -and largely unmotivated- team, and will
certainly go straight for a structured methodology next time I
am in control of a team.

9 0 6100c

Although I felt I could call on and use this training and
experience as much of it would apply to face to face situations
the prospect of dealing with aggression in person made me
nervous as I thought of it as more personally threatening.

6 1 3092f

To conclude, the amount of interaction with native speakers of
the language and with other students was too inadequate to
practise and check if my performance was correct.

6 1 6024a

Several of my colleagues told me afterwards that Mrs Shaw
always steps in to answer questions like that and they
commented that I handled her intrusion well.

6 1 Moon

However, it is my opinion that Shell’s decision to adopt a
stakeholder management strategy is a knee-jerk reaction which
arose out of the Brent Spar and Nigeria controversies,
respectively.

0 6 0253d

Facts that are used should be correct and avoid making
statements that go beyond the facts and might therefore be
challenged Empathy - try to be courteous and friendly, however
angry we may feel, try to control the emotions and at least
remain calm.

1 6 3059a

Continued ...
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Sentence Pres. Abs. Doc.

They should also make sure they include all the relevant
information and don’t try to break the news gently by not
making it sound exactly how it is just to ensure their own
emotions are satisfied.

1 7 3059a

The media provide an alternative, easier path for accessing a
huge amount of information and options that were previously
remote, as noted by McLuhan -1967- in his description of the
"global village."

1 6 0316c

I started by e-mailing each member of the group to remind
them of the meeting.

0 10 0342c

Table 46: Example sentences of the dataset Learning

Examples of the dataset Reflection. The indicator question was: ’The sentence is

descriptive ... reflective’:

Sentence Pres. Abs. Doc.

On the other hand, I found myself as a stranger in my
hometown, this was really true when I have gone to university
life while I needed to take the university bus to campus
everyday.

10 0 3047c

I need to tell her honestly about the tutorial, the feedback and
my disappointment in myself.

6 1 Moon

I was immediately embarrassed by my callous attitude
especially when so many people had died and were injured.

6 0 0065g

From a nursing point of view it felt like there was not a great
deal that we could do to minimize the stress of having two
children in separate places, as explained when describing this
possible stressor I attempted to talk with Mrs Stacy about this,
however, I feel that a family member or someone who would
understand how she felt more would have been a more
appropriate person to talk to her about this.

5 1 3114b

Finally I believe that throughout these weeks I have learned
some interesting issues about interactive skills and
cross-cultural communications.

8 1 3011b

The report goes further by saying that "agitation, delirium,
confusion, pain, uncontrolled body movement, hypoxia, faecal
impaction and acute urinary retention .

1 6 3076c

This week we are performing some mock appraisal interviews
in class, where I will participate as an interviewee and an
observer.

0 9 3011b

I will begin by giving some background information on the
family, I will then go on to identify the various stressors and
explain how the framework can be applied.

1 9 3114b

Hughes states that bed-rails should be avoided due to the risk
of injury caused when the patient climbs over them and falls to
the floor.

1 5 3076c

Continued ...
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Sentence Pres. Abs. Doc.

Dickens mentions it because it was a "local landamark",
however, today, it is only the building of a cooperative bank.

1 9 3012d

Table 47: Example sentences of the dataset Reflection
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