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ABSTRACT 
 
A new method for automatically fitting the Liljencrants-Fant 
(LF) model to the time domain waveform of the glottal flow 
derivative is presented in this paper. By applying an 
extended Kalman filter (EKF) to track the LF-model shape-
controlling parameters and dynamically searching for a 
globally minimal fitting error, the algorithm can accurately 
fit the LF-model to the inverse filtered glottal flow 
derivative. Experimental results show that the method has 
better performance for both synthetic and real speech signals 
compared to a standard time-domain LF-model fitting 
algorithm. By offering a new method to estimate the glottal 
source LF-model parameters, the proposed algorithm can be 
utilised in many applications. 
 

Index Terms— LF-model, glottal source, extended 
Kalman filter 
 

1. INTRODUCTION 
 
The voice source is an important hidden property of human 
speech signals. Accurate parameterisation of the voice 
source can be used for many practical applications, such as 
improving the naturalness of HMM-based speech synthesis 
[1], speaker identification [2] and voice transformation [3]. 

Automatic voice source parameterisation generally 
includes two steps. Firstly, a source and vocal tract 
separation algorithm [4] is applied to the speech signal to 
remove the effect of the vocal tract, and the glottal source 
waveform is obtained. Subsequently, a parametric model, 
for instance the Liljencrants-Fant (LF) model [5], which is 
widely used to represent the glottal pulse for voiced speech, 
is fitted to the extracted glottal source waveform to estimate 
the glottal source model parameters.  

A typical time-domain LF-model fitting algorithm is 
given in [6]. Once an initial estimate of LF-model 
parameters has been obtained, a multi-parameter non-linear 
optimisation procedure is used to minimise the fitting error 
between the LF-model pulse and the extracted glottal flow 
derivative to achieve an optimal estimate. However, an 
inaccurate initial estimate of the glottal opening instant can 
result in performance degradation of the fitting algorithm: 

the extracted glottal source parameters can be sub-optimal, 
because the optimisation procedure may become stuck in a 
local minimum [7].   

This study is an extension of our previous work [8], 
which showed that the extended Kalman filter [9] can be 
used to track the LF-model shape-controlling parameters for 
both the open phase and return phase. In this paper a new 
dynamic programming procedure is applied to search for the 
optimal glottal opening instant location for each pitch 
period. In addition further evaluation has been carried out 
and is presented here. To demonstrate the validity of the 
proposed algorithm, it is compared to a standard time-
domain LF-model fitting method. Comparisons are made 
not only for synthetic speech of different voice qualities, but 
also for real speech segments. Results show our approach 
performs better than the traditional approach yielding a 
more accurate fit to the inverse filtered glottal flow 
derivative. 
 

2. BACKGROUND 
 
2.1. LF-model representation 
 
The LF-model [5] is a four-parameter model of the 
differentiated glottal flow. If the number of samples of a 
pitch period is N, and k is the kth sample, a discrete form of 
the LF-model is given by:  
௢ሺ݇ሻݎ  ൌ െ ா೐௘ഀ೅೐ ୱ୧୬൬ ഏ೅೛∙ ೐்൰ ݁ഀೖಿ sin ൬ గ்೛ ∙ ௞ே൰ ൌ ݄௢ሺߙ, ݇ሻ, 0 ൑ ݇ ൑ ௘ܶܰ 

௥ሺ݇ሻݎ ൌ െ ா೐ఌ்ೌ ൤݁ିఌቀೖಿି ೐்ቁ െ ݁ିఌሺଵି ೐்ሻ൨ ൌ ݄௥ሺߝ, ݇ሻ, ௘ܶܰ ൏ ݇ ൑ ܰ 

(1) 
where ܧ௘  is the amplitude parameter, ௣ܶ , ௘ܶ  and ௔ܶ  are the 
three timing parameters (normalised by pitch period N), ௘ܶ 
is the open quotient, ௣ܶ and α affect the asymmetry property 
of the open phase component ݎ௢ , and ௔ܶ  and ε control the 
shape of return phase component ݎ௥. 
 
2.2. Shape-controlling parameter tracking by EKF 
 
For a given pitch period of the glottal flow derivative signal, 
the LF-model parameters are constant. Accordingly, the 
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state-space process model and measurement model for the 
shape controlling parameters α and ε can be written as: ݔ௞ ൌ ௞ݎ ,௞ିଵݔ ൌ ݄ሺݔ௞, ݇ሻ ൅  ௞,                           (2)ݒ

where k is the kth speech sample, x is the constant state 
parameter standing for α or ε, r is the measurement given by ݎ௢ or ݎ௥, h is the related non-linear function ݄௢ or ݄௥ defined 
in (1), and v is the observation noise with Gaussian 
distribution ݌ሺݒሻ ൌ ܰሺ0, ܴሻ . Accordingly, the EKF time 
update equations are as follows: ݔො௞ି ൌ ො௞ିଵ, ௞ܲିݔ ൌ ௞ܲିଵ,                                   (3) 

where ݔොି and ݔො are a priori and a posteriori estimates of x, 
and ܲି and P are the corresponding error covariances. The 
EKF measurement update equations are given by: ܭ௞ ൌ ௞ܲି ො௞ିݔሺܪ ሻሺܪሺݔො௞ି ሻ ௞ܲି ො௞ିݔሺܪ ሻ ൅ ܴሻିଵ, ݔො௞ ൌ ො௞ିݔ ൅ ௞ݎ௞ሺܭ െ ݄ሺݔො௞ି , ݇ሻሻ, ௞ܲ ൌ ሺ1 െ ො௞ିݔሺܪ௞ܭ ሻሻ ௞ܲି ,                       (4) 

where K is the Kalman gain and ܪሺݔො௞ି ሻ ൌ డ௛డ௫ ሺݔො௞ି , ݇ሻ. It can 

be seen that once an initial set of parameters [ݔ଴, ଴ܲ, R] is 
given, the extended Kalman filter runs recursively to track 
the true values of α and ε respectively across a single pitch 
period by using samples of the two phases. 
 

3. ALGORITHM 
 
Firstly an iterative closed phase inverse filtering approach 
[4] is applied to extract the glottal flow derivative (GFD) 
signal. Afterwards, the initial glottal opening instants ݐ଴ are 
obtained from a threshold based procedure [7]. The GFD 
waveform is divided into individual pitch periods. The new 
fitting algorithm is applied to each period as shown in Table 
 .௘ are relative sample numbersݐ ௣ andݐ ,଴ݐ .1

Step 1: the negative peak point ݐ௘  and its absolute 
amplitude ܧ௘ are found by searching the waveform, and the 
GFD signal is separated into the open phase and return 
phase.  

Step 2: The initial ݐ௣ position is obtained by identifying 
the first zero-crossing point before ݐ௘ [6].  

Step 3: The optimal fitting of the open phase mainly 
depends on the values of ௣ܶ and ௘ܶ, which are calculated by ௣ܶ ൌ ሺݐ௣ െ ଴ሻ/ܰ, ௘ܶݐ ൌ ሺݐ௘ െ  ଴ሻ/ܰ. We set the dynamicݐ
range of ݐ଴ from 1 to the point which is 0.15ܰ samples (a 
reasonably small open quotient value) before ݐ௘. To locate 
the optimal ݐ଴, a rectangular window across ݐ଴ to ݐ௘ is used 
to extract the glottal open phase. Subsequently the 
windowed GFD open phase is used by the EKF to track the 
open phase shape-controlling parameter α and calculate the 
mean squared fitting error. Unlike the linear Kalman filter 

Table 1. Proposed new time-domain LF-model fitting algorithm 

For each pitch period of GFD signal r[k] (k=1:N)  do 

1.  Find negative peak ݐ௘ and its amplitude ܧ௘  

2.  Find ݐ௣଴ which is the first zero-crossing point before ݐ௘ 

3.  For  ݐ଴ ൌ 1: ௘ݐ െ 15%ܰ  do 

        GFD open phase ݎ௢= r[k] (k=ݐ଴:	ݐ௘) 

        ௣ܶ଴ ൌ ሺݐ௣଴ െ  ܰ/଴ሻݐ

       ௘ܶ ൌ ሺݐ௘ െ ܰ/଴ሻݐ
        EKF for α with multiple initial values ߙ଴ ൌ 0: 1: 100 

        Find and store minimal squared fitting error ܧܵܯܯ௙ 

     Find optimal ݐ଴௢௣௧ which has a global ܧܵܯܯ௙ 

     Calculate ௣ܶ଴, ௘ܶ by ݐ଴௢௣௧, set ݎ௢= r[k] (k=ݐ଴௢௣௧:  (௘ݐ

4.  For  ௣ܶ ൌ ௣ܶ଴ െ 5%: ௣ܶ଴ ൅ 5%  do 

        EKF for α as in Step 3 

     Find optimal ௣ܶ which has a global ܧܵܯܯ௙ 

     Output ௣ܶ 

5.  GFD return phase ݎ௥= r[k] (k=ݐ௘: ܰ) 

     EKF for ߝ with multiple initial values ߝ଴ ൌ 1: 1: 200 

     Find optimal ߝ଴௢௣௧ which has a ܧܵܯܯ௙ 

     Calculate and output ௔ܶ by ߝ଴௢௣௧ 
 

algorithm, the EKF has to be accurately initialised to ensure 
the obtained linearised models are valid. Therefore we 
choose to use multiple initial values of α for the EKF (100 ߙ଴ used in this work, experiments shown that using a larger 
number will not significantly improve the accuracy but 
increase the computational load), and the one giving the 
minimal mean squared fitting error (ܧܵܯܯ௙) is taken as the 
optimal selection. Each time ݐ଴  changes, the ܧܵܯܯ௙ 
obtained from the corresponding EKF operation is stored, 
and a global ܧܵܯܯ௙  is found after all iterations. 
Subsequently, an optimal ݐ଴ instant is located and ௘ܶ and an 
initial ௣ܶ is calculated as the output.  

Step 4: A similar procedure to Step 3 is used to refine 
the estimate of ௣ܶ: a reasonable range ௣ܶ଴ േ 5% is applied 
to the EKF to find the optimal ௣ܶ.  

Step 5: To fit the return phase, ݐ଴-1 zeros (associated 
with the closed phase of the previous pitch cycle and not 
used in the open phase fitting procedure) are appended to 
the current pitch period of the GFD signal to ensure there is 
a sufficient number of samples for the EKF. Subsequently 
an optimal estimate of the return phase controlling 
parameter ε is obtained by using multiple initial values of ߝ 
(a number of 200 ߝ଴ used in this work) for initialising the EKF 
tracking procedure and searching for the global MMSE. The 
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return phase timing parameter ௔ܶ is calculated from the LF-

model constraint [5] ௔ܶ ൌ 1 െ ݁ሺିఌොሺଵି ೐்ሻሻ ൗ̂ߝ . 

 
4. EVALUATION 

 
To evaluate the newly proposed time-domain LF-model 
fitting method (NTDF), it was compared with a standard 
time-domain LF-model fitting algorithm (STDF). The latter 
and our new method were applied to both synthetic and real 
speech data. The evaluation results are presented below. 
 
4.1. Synthetic Speech 
 
Three sets of LF-model parameters of different voice 
qualities [10] were used to generate the glottal source 
signals, and the corresponding glottal pulse trains were 
obtained by concatenating ten identical pitch periods. 
Afterwards the three sets of LF-model pulse trains were 
passed through three all-pole vocal tract filters modeling 
three vowel sounds (formant frequencies and bandwidths 
were taken from [11]), and a total of nine sustained 
synthetic speech segments were created. In addition, for 
breathy voice, simulated noise of 30dB SNR was added to 
mimic real breathy speech quality. All vowel segments were 
inverse filtered by iterative closed phase inverse filtering [4] 
to extract the glottal flow derivatives. The GFD signals were 
divided into individual pitch periods by the initial estimation 
of glottal opening points. Subsequently, the proposed fitting 
approach (NTDF) and the standard time-domain LF-model 
fitting algorithm (STDF) were applied respectively to all 
pitch cycles of the GFD signals. The Root-Mean-Square 
errors (RMSE) for the estimated LF-model timing 
parameters for both algorithms with respect to the true 
values were calculated, and the results are presented in Fig. 
1. It is observed that for modal and vocal fry voice qualities 
the RMSE scores are consistently lower for the proposed 
fitting algorithm compared to STDF. For breathy voice the 
results are less clear. The estimated ௣ܶ  and ௘ܶ  for breathy 
vowels /IH/, /UH/ by NTDF are more accurate, however for ௔ܶ the standard fitting method performs better. This may be 
explained by imperfect inverse filtering caused by short 
duration of the closed phase for breathy voices, but requires 
further investigation. In addition, the running time for 
NTDF is about 1/3 faster than STDF for the current 
algorithm configuration and further improvement of the 
computational complexity can be obtained by choosing 
more appropriate  initial values. 

Overall these experimental results demonstrate the 
validity of the proposed LF-model fitting algorithm to 
estimate glottal LF-model parameters for a wide range of 
synthetic speech signals, and it is superior to the standard 
time-domain fitting method in most cases. 
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Figure 1. RMSE scores of estimated LF-model parameters for  
a) modal voice, b) vocal fry voice and c) breathy voice 

 
4.2. Real Speech 
 
Two segments of real speech were extracted from the CMU-
ARCTIC database [12] for speakers bdl (a male voice) and 
slt (a female voice). Both segments were inverse filtered to 
extract the glottal flow derivative signals. Afterwards the 
two LF-model fitting algorithms were applied. The original 
speech waveforms, the GFD waveforms and the fitted LF-
model pulses are presented in Figs. 2 and 3. A single pitch 
period of GFD and fitted LF-model waveforms are shown in 
Fig. 4. In the absence of a priori knowledge of the glottal 
source component for real speech, it is difficult to measure 
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Figure 2. Top: male speech waveform, Bottom: GFD signals and fitted LF-model pulses (LFP) from the two algorithms 
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Figure 3. Top: female speech waveform, Bottom: GFD signals and fitted LF-model pulses (LFP) from the two algorithms 

the accuracy of the estimated source parameters. Instead we 
compare the goodness of fit to the estimated GFD signals of 
the two algorithms. Therefore the mean squared error 
ܧܵܯ) ൌ ݎሾሺܧ െ  ௅ிሻଶሿ ) between the estimated GFD signalsݎ
r and the reconstructed LF-model pulses ݎ௅ி across the full 
speech segments were calculated and the results are 
presented in Table 2. It can be observed from the waveforms 
and the MSE scores that for both male and female speech 
segments, the proposed algorithm outperforms standard 
time-domain fitting approach by generating smaller MSE 
scores. For NTDF, the male subject has a larger MSE than 
female is because of the ripples appearing in closed phases. 
  

Table 2. MSE scores for real speech segments from two automatic time-
domain LF model fitting algorithms 

 
 BDL SLT 

NTDF 0.1851 0.0670 

STDF 0.3448 0.4732 
 

 
5. CONCLUSION 

 
A new automatic time-domain method to fit the LF-model 
to the inverse filtered glottal flow derivative signal for voice 
source parameterisation is presented in this paper. An 
extended Kalman filter is used to track the two shape- 
controlling parameters with dynamic searching procedures 
to find a globally optimal fit of the LF-model pulse to the 
differentiated glottal flow signal, such that the 
corresponding LF-model timing parameters can be 
accurately extracted. Comparisons were made between the 
proposed method and a standard time-domain algorithm by 
applying them to both synthetic speech and real speech 
signals. Results demonstrate the effectiveness of the new 
fitting algorithm. For synthetic speech the estimated LF-
model parameters are more accurate in most cases, and for 
real speech the reconstructed LF-model pulses are better 
fitted to the glottal flow derivative signals. 
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Figure 4. Single pitch period of GFD and fitted LF-model 
waveforms for top: male and bottom: female 
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