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Abstract — A new algorithm for glottal source parameter estimation of voiced speech based on the 

Liljencrants-Fant (LF) model is presented in this work. Each pitch period of the inverse filtered glottal 

flow derivative is divided into two phases according to the glottal closing instant and an extended 

Kalman filter is iteratively applied to estimate the shape controlling parameters for both phases.  By 

searching the minimal mean square error between the reconstructed LF pulse and the original signal, 

an optimal set of estimates can be obtained. Preliminary experimental results show that the proposed 

algorithm is effective for a wide range of LF parameters for different voice qualities with different noise 

levels, and accuracy especially for estimation of return phase parameters compares better than 

standard time-domain fitting methods while requiring a significantly lower computational load. 
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I   INTRODUCTION 

Glottal source modelling is an important topic in the 

area of speech signal processing and has been 

investigated over several decades [1, 2, and 3].  An 

accurate glottal source model can improve the 

naturalness of synthetic speech [4, 5] and the model 

parameters can be modified to implement speech 

transformation. One widely used glottal source 

model is the Lijencrants-Fant (LF) model [1], which 

is a four-parameter model suitable for voiced speech 

source modelling.  

Much research has been done to fit the LF model 

to the inverse filtered glottal flow derivative 

waveforms to extract the model parameters. The 

algorithms proposed in [6, 7] are time-domain based 

methods. In such algorithms, generally one set of 

initial values of the model parameters is at first 

obtained, afterwards these parameters are re-

estimated by minimising the non-linear least square 

error between the constructed LF model pulses and 

the inverse filtered residual signals. In [8], two 

transformed LF model parameters are calculated 

from the inverse filtered glottal flow, and the last 

parameter is estimated by choosing the value from a 

reasonable range to find the closest match between 

the spectra of the LF pulses to the source signal. In 

[9], the author proposed a purely frequency-domain 

based method. A code-book is built for the H1-H2 

(first harmonic minus second harmonic) value and a 

large number of LF model parameter variations, and 

the initial estimates can be obtained by searching the 

code-book to find the closest match to the target 

signal spectrum. Subsequently an optimisation 

procedure is applied to refine the estimates. A final 

parameter is adjusted to minimise the error between 

the two spectra in higher frequencies. It is said to be 

robust to phase distortions. 

In the work presented here, a new time-domain 

based LF model fitting algorithm is introduced. 

Instead of trying to extract the four typical 

parameters of the LF-model, two shape controlling 

parameters in the model equations are estimated 

directly by extended Kalman filtering (EKF). 

Subsequently the two parameters can be used for re-

constructing the LF model. Compared to standard 

time-domain fitting methods which are based on the 

non-linear least square error criterion [10], the 

proposed algorithm offers a more flexible way to re-

generate the LF pulses, also because of the fast 

convergence property of the Kalman Filtering 

technique, the computational load is lower without 

losing accuracy.  

This paper is structured as follows: In Section II 

the background for the LF-model and extended 

Kalman filter is presented. Section III describes the 

implementation of the new algorithm. Experimental 

results are presented in Section IV to demonstrate the 

validity of the algorithm while conclusions are made 

in Section V.  

 

II   BACKGROUND 

a)  The LF-model 

The LF model is a four-parameter model used for 

representing the glottal flow derivative (GFD) [1]. 

Typically the four parameters are three time points 
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  ,   ,    and one amplitude parameter   . If the start 

point of the cycle    is set to 0, and the end of the 

cycle is   , the time domain LF model can be 

constructed by the equation (1): 

 ( )  {

    
     (   )                                  

 
  

   
[   (    )     (     )]           

 

              

(1) 

where    is the glottal closing instant,    is related to 

the return phase of the model,    is the positive peak 

of the glottal flow and generally it is the first zero-

crossing point before    in the glottal flow derivative. 

   and    are the positive and negative peak values 

of the derivative function,  ,   , and   are the 

parameters controlling the shape of the model. A 

typical example can be seen in Fig. 1. 

 
Fig. 1: A typical LF model pulse 

   as the negative peak of the pitch period can be 

identified relatively easily, so it is generally the first 

parameter for estimation, subsequently the timing 

point    can be found. For the other parameters, they 

are correlated as: 
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Based on these correlations, the commonly used time 

domain LF model fitting approach is to first estimate 

  ,   ,    and   , next calculate the amplitude 

parameter    and the shape controlling parameters  , 

  ,  . The LF pulse can be generated eventually by 

equation (1). 

A more convenient approach is to directly estimate 

the shape controlling parameters. It can be observed 

in (1) that the two parameters   and   are 

independent,   controls the open phase while   is 

responsible for the return phase of the model (see 

Fig. 1, the „return phase‟ used here including the 

generally defined return phase and closed phase). In 

terms of the state-space theory of Kalman filtering, if 

  and   are the process state vectors to be estimated, 

the inverse filtered glottal derivative signal can be 

used as the measurement of non-linear functions 

related to track these parameters.  

b)  The Extended Kalman Filter (EKF) 

The Extended Kalman Filter [11] is applicable when 

the relationship between the process to be estimated 

and the measurement is non-linear. As with the basic 

KF, EKF makes use of past measurements to 

produce an a priori estimate, subsequently current 

measurement is used to update and generate the 

posteriori estimate.  

    The process model and the measurement model 

are given by: 

    (      )    , 

    (    )    ,                                                (3) 

where    is the state vector of the process model at 

step  .    is the measurement,    and    are random 

variables representing the process and measurement 

noise with Gaussian distribution  ( )   (   ) 

and  ( )   (   ). At last   and   are non-linear 

functions controlling the process. 

The EKF time update equations can be expressed 

by the following two equations: 
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where  ̂ 
  is the a priori estimate at step  ,  ̂    is 

the posteriori estimate at step    ,   
  and      are 

the related error variances.    is the partial derivative 

function of   with respect to   which is    
  

  
( ̂     ).  

Subsequently the EKF measurement update 

equations are: 
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where    is the Kalman gain,    is the partial 

derivative function of   with respect to   which is 

   
  

  
( ̂     ). 

It can be seen that once a set of initial parameters 

  ̂ ,   ,   and    are given, the EKF runs iteratively, 

and eventually the optimal estimates for the state 

vector of the process model can be obtained, 

although sufficient data is necessary for the 

convergence of the estimation process.  

 

III   IMPLEMENTATION 

    This work is mainly focused on the estimation of 

glottal source shape controlling parameters, so it is 

assumed that the glottal opening instants (GOIs) and 

glottal closing instants (GCIs) are already known, 

(e.g. [12] introduced an automatic algorithm for 

identifying GOIs and GCIs), subsequently the 

inverse filtered glottal flow derivative can be divided 
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into single pitch periods by GOIs and each of them 

will be analysed individually. 

a)  The LF-model Equation Re-written 

It is convenient to convert the LF-model timing 

parameters to a ratio format for discrete time series. 

For a single cycle, if the pitch period is   , the start 

point    is set to 0, the three LF timing parameters 

can be converted to:         ,         , 

        , and because    is the end of this cycle, 

   is set to 1. If there are   samples in this cycle, 

together with equation (2), equation (1) can be re-

written as:   
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(6) 

where   is the     sample of the sequence. 

b)  Estimating   by EKF 

According to (6), one glottal cycle is separated into 

an open phase, where     (     ), and a return 

phase, where     (     ). One EKF is applied 

to the open phase to estimate  , the other EKF is 

used for estimating   in return phase.  

    Considering   is the single constant to be 

estimated, the process model and the measurement 

model can be expressed by: 

       ,                                                  

     (    )    ,                                              (7) 

where    is the     sample of   ,    is the 

measurement noise with Gaussian distributions 

 ( )   (    ) , and    is a non-linear function 

defined in the upper equation of (6).  

    Based on (4) the related EKF time update 

equations are as follows: 

 ̂ 
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      ,                                                                     (8) 

and the measurement update equations are:    
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where   ( ̂ 
 )  

   

  
( ̂ 

   ).   

For the running of EKF, the next step is to set the 

initial values. Experiments show that        , 

     is a reasonable choice. However because of 

the limited number of samples, the initial estimate of 

   is more important. Instead of making use of an 

additional procedure such as the EM algorithm [13] 

to iteratively re-estimate   , a reasonable range (0-

100, increased by 1 for each iteration) of the values 

for    is used currently. Subsequently the estimated 

  for each    is used to re-construct the open phase 

of the LF-model and the mean square error (MSE) to 

the original signal is calculated. The best estimate of 

  is the one having the minimal mean square error. 

Fig. 2 shows an example of reconstructed LF-model 

open phase according to different    values. It can be 

observed that when      , the estimate of   by 

EKF is the closest match and provides the initial 

estimate. 

 
Fig. 2: Reconstructed LF-model open phase according to 

different    values. 

    It can be observed in equation (6) that for 

estimating  ,    should be known, which means the 

timing parameter    must be extracted. The initial 

estimate of    is to find the first zero-crossing point 

before the glottal closing instant    [6]. A reasonable 

range               (increased by 1% each 

time) is used to refine the estimate with EKF 

iteratively. Eventually the two parameters    and    

which give the minimal MSE between the 

reconstructed and the original signal for all iterations 

are the optimal estimates.  

c)  Estimating   by EKF 

Estimation of the return phase shape controlling 

parameter   is relatively simple because there is no 

need to find additional timing parameters. The 

process model and measurement model are given by: 

       ,                                                  

     (    )    ,                                            (10) 

   is the     sample of   ,    is the measurement 

noise with Gaussian distribution  ( )   (    ) , 

and    is the non-linear function defined by the 

lower equation in (6).  

    The EKF time update equations are: 

  ̂
    ̂  ,  

  
      ,                                                                   (11) 
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and the three measurement update equations can be 

written as: 
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with the definition of   ( ̂ 
 )  
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   ).                                              

    As mentioned earlier for the initial values of EKF, 

       ,      is a good choice. Also because 

      , and generally    changes from 1% to 20% 

[8], the range of values for    could be (1-200, 

increased by 1 for each iteration) for the purpose of 

handling most situations. The optimal estimate of   

is obtained by fitting the re-built LF return phase 

signal to the original signal iteratively to find the one 

which gives the minimal mean square error (MSE).  

Fig. 3 shows a flow chart which describes the 

complete estimation procedure. 

 

IV  EVALUATION 

There are two parts to the evaluation and preliminary 

results are presented. Firstly several sets of synthetic 

LF model pulses for different voice qualities and 

noise levels are generated for testing the accuracy of 

the proposed algorithm. Subsequently, the proposed 

algorithm is integrated into a speech analysis toolbox 

called aparat [10] and compared to its original LF 

fitting algorithm. Three sets of synthetic vowels are 

used for this experiment. 

a) Accuracy Test for Synthetic LF pulses 

Three sets of LF model parameters including modal, 

vocal fry and breathy voice quality shown in [14] 

were used to generate the LF pulses. Table 1 shows 

these sets and the related true values for   and   

calculated by equations (1) and (2). Afterwards three 

sets of 10 pitch period signals were obtained by 

concatenating identical pulses. To each signal was 

added Gaussian white noise with SNR 45 dB 

(moderate noise level) and 30 dB (high noise level) 

giving 6 sets of synthetic glottal flow derivative 

signals for testing. The proposed algorithm was 

applied and the mean error rates of the estimated 

results are shown in Table 2. Fig. 4 shows an 

example of the reconstructed LF pulses fitted to 

original ones of Modal voices with 30 dB SNR, for 

clarity only the first two pitch cycles are shown. 

Table 1: LF model parameters for three voices 

Voice   (%)   (%)   (%)     

Modal 45.66 57.50 0.91 6.0240 109.8901 

Vocal 
fry 

18.99 25.14 0.83 9.1815 120.4819 

Breathy 52.89 75.75 8.19 1.0490 11.4500 

    It can be observed that the error rates of the 

estimated shape controlling parameters are 

reasonably low even for high noise level. For small 

  , the estimate of   is more accurate. This might be 

because the GFD signal goes abruptly from the 

negative peak to zero and lasts till the opening of the 

next pitch cycle, therefore better estimates can be 

obtained by EKF. It can be seen from Fig. 4 that the 

reconstructed LF pulses by the estimated shape 

controlling parameters are fitted well to the original 

ones. These results demonstrate the validity of the 

novel LF fitting algorithm for synthetic LF pulses. 
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Table 2: Mean error rates for estimated   and   

Voice Error Rate ( ) Error Rate ( ) 

Modal(45dB) 6.53% 0.09% 

Modal(30dB) 6.69% 0.10% 

Vocal fry (45dB) 2.42% 0.39% 

Vocal fry (30dB) 2.57% 0.79% 

Breathy(45dB) 4.52% 3.51% 

Breathy(30dB) 6.37% 4.22% 

b) Algorithm Comparison 

Aparat [10] is a speech analysis tool which by 

default uses IAIF [15] for extracting glottal flow 

signals. The proposed algorithm was integrated into 

aparat: the new LF fitting method is called the 

extended Kalman filtering method (EKFM) and the 

original one which is called the standard time-

domain method (SDTDM). LF parameters, formant 

frequencies and bandwidths were taken from [16, 17] 

to generate three vowel sounds /aa/, /ih/, /uh/ by 

putting 5 pitch periods of the constructed LF pulses 

through a formant synthesizer. LF parameters for the 

three vowels are shown in Table 3.  

Table 3: LF parameters used for the three vowels 

Vowel              

/aa/ 0.50 0.65 0.050 3.1230 19.9816 

/ih/ 0.45 0.60 0.075 2.1870 13.2672 

/uh/ 0.45 0.60 0.005 4.3035 200 

    The output speech signals were inverse filtered 

(the IAIF settings were manually adjusted), and the 

LF model parameters were estimated using both 

SDTDM and EKFM. Tables 4 and 5 show the mean 

values of the estimates and the running time for the 

analysis of the two algorithms. 

Table 4: Means of estimates and running time of SDTDM 

Vowel                                                   R-time 

/aa/ 0.5068  0.6633  0.0204  3.7820  49.0196   0.96 sec 

/ih/ 0.5005  0.6569  0.0213  3.7170  46.9484   0.95 sec 

/uh/ 0.4466  0.5903  0.0198  3.9360  50.5051   0.97 sec 

 
Table 5: Means of estimates and running time of EKFM 

Vowel                                                   R-time 

/aa/ 0.5062  0.6543  0.0455  3.3460  21.9670   0.45sec 

/ih/ 0.5000  0.6500  0.0623  2.8345  15.9918   0.42 sec 

/uh/ 0.4430  0.5949  0.0054  4.1545  185.185   0.46 sec 

  

  
Fig. 4: Pulses fitted to original LF model of Modal Voice 

(30dB) 

    It can be observed for the open phase parameters 

   and   , the estimates from SDTDM and EKFM 

are close. Compared to the true values,    and    for 

/ih/ by both methods have a shift of about 0.5%, 

which is because of the inaccurate identification of 

the glottal opening instants. Compared to SDTDM, 

EKFM gives more accurate estimates for  . For the 

return phase parameters    and   of all the three 

vowels, SDTDM gives similar values of estimates, 

this might be because    is a parameter which 

changes a lot across different speech signals and 

cannot be accurately tracked by the non-linear least 

square error criterion without a proper initial value 

(initial    is set to 0.02 in aparat), sufficient number 

of iterations and so forth; while estimates for these 

two parameters by EKFM are more accurate 

compared to true values, which is because the fast 

convergence property of EKF and a reasonable range 

of initial values are used. In addition, by observation 

the running time of EKFM is more than 50% less 

compared to SDTDM based on current settings for 

the initial value ranges and iterations of   ,    and   . 

This is a significant improvement of the 

computational load, although further promotion can 

be obtained when a more effective procedure to 

estimate the initial values of EKF is available. In 

summary, these preliminary experimental results 

demonstrate that the novel LF model based glottal 

source parameter estimation algorithm outperforms 

standard time-domain glottal source parameterisation 

method for accuracy especially of the return phase 

parameters, while with an significant improvement in 

computational load.  

 

V  CONCLUSION AND FUTURE WORK 

A new algorithm to estimate the LF model based 

time-domain shape controlling parameters of the 

inverse filtered glottal flow derivative by extended 

Kalman filtering is described. Each pitch period of 

GFD is divided into an open phase and a return 

phase from the glottal closing instant, subsequently 

EKF is iteratively applied to track the shape 

controlling parameters for both phases to obtain an 
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optimal fit. Preliminary experimental results 

demonstrate that the proposed algorithm is effective 

for synthetic LF model pulses of different voices and 

noise levels. In addition, comparison shows that its 

accuracy, especially for return phase parameters, is 

better than standard time-domain LF-model fitting 

algorithm but with a much lower computational load. 

Therefore, it is believed that this method could be 

used in applications which require a fast glottal 

source parameterisation.  

Clearly better inverse filtering algorithms will 

provide more accurate glottal flow signals. 

Therefore, in future work different source-vocal tract 

separation techniques will be used to estimate the 

glottal source for both synthetic and real speech. 

Subsequently the novel LF fitting algorithm can be 

applied and the statistical significance of 

improvements can be tested.   

 

REFFERENCES 

[1] G. Fant, J. Liljencrants, and Q. Lin, “A four- 

parameter model of glottal flow”, STL-QPSR, 

vol. 4, no. 1985, pp. 1–13, 1985. 

[2] A. E. Rosenberg, “Effect of glottal pulse shape 

on the quality of natural vowels”, J. Acoust. 

Soc. Am, vol. 49, no. 2, pp. 583–590, 1971. 

[3] D. H. Klatt and L. C. Klatt, “Analysis, 

synthesis, and perception of voice quality 

variations among female and male talkers”, the 

Journal of the Acoustical Society of America, 

vol. 87, pp. 820, 1990. 

[4] J. P. Cabral, S. Renals, K. Richmond, and J. 

Yamagishi, “Towards an improved modeling of 

the glottal source in statistical parametric 

speech synthesis”, in Proc. Of the 6
th

 ISCA 

Workshop on Speech Synthesis, Germany, 

2007. 

[5] J. P. Cabral, S. Renals, K. Richmond, and J. 

Yamagishi, “Glottal spectral separation for 

parametric speech synthesis”, in 9th Annual 

Conference of the International Speech 

Communication Association, 2008. 

[6] H. Strik, B. Cranen, and L. Boves, “Fitting a LF

-model to inverse filter signals”, in ESCA 3rd  

European Conference on Speech Communicati-

on and Technology: EUROSPEECH ‟93, Berlin

, pp. 103–106, 1993. 

[7] H. Strik and L. Boves, “Automatic estimation 

of voice source parameters”, in Proceedings 

International Conference on Spoken Language 

Processing (ICSLP)‟94, pp. 155–158, 1994. 

[8] J. C. Kane and C. Gobl, “Automatic parameteri-

sation of the glottal waveform combining time  

and frequency domain measures”, in Proceedin-

gs of 6th Maveba International Workshop, 2009
. 

[9] J. Kane, M. Kane, and C. Gobl, “A spectral LF  

model based approach to voice source paramet-

erisation”, in Eleventh Annual Conference of    

the International Speech Communication         

Association,  2010. 

[10] M. Airas, “TKK Aparat: An environment for   

voice inverse filtering and parameterization, 

volume 33”, Logopedics Phoniatrics Vocology, 

pp. 49–64, 2008. 

[11] G. Welch and G. Bishop, “An  introduction  to  

the Kalman filter”, University of North            

Carolina at Chapel Hill, Chapel Hill, NC, vol. 

7, no. 1, 1995. 

[12] T. Drugman and T. Dutoit, “Glottal closure and 

opening instant detection from speech signals”, 

Proceedings of Interspeech 2009. 

[13] R. H. Shumway and D. S. Stoffer, “An 

approach to time series smoothing and 

forecasting using the EM algorithm”, Journal of 

time series analysis, vol. 3, no. 4, pp. 253–264, 

1982. 

[14] Q. Fu and P. Murphy, “Robust glottal source 

estimation based on joint source-filter model 

optimization”, IEEE Trans. on Audio, Speech, 

and Language Processing, vol. 14, no. 2, pp. 

492–501, 2006. 

[15] P. Alku, “Glottal wave analysis with pitch sync-

hronous  iterative  adaptive inverse filtering”,   

Speech Communication, vol. 11, no. 2-3, pp. 10

9–118, 1992. 

[16] B. Bozkurt, B. Doval, C. D‟Alessandro, and T. 

Dutoit, “Zeros of z-transform (ZZT) decompos-

ition  of  speech for source-tract separation”,  in

Proc. International Conf. Speech, Language Pr-

ocessing, 2004. 

[17] O. O. Akande and P. J. Murphy, “Estimation of 

the vocal tract transfer function with application

to glottal wave analysis”, Speech Communicati-

on, vol. 46, no. 1, pp. 15-36, May, 2005. 

 

 

 


