-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Repository of the University of Namur

Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

A context and feature visualisation tool for a feature-based context-oriented
programming language

Duhoux, Benoit; Dumas, Bruno; Mens, Kim; Leung, Hoo Sing

Published in:
Proceedings of the Seminar Series on Advanced Techniques & Tools for Software Evolution (SATTOSE
2019)

Publication date:
2019

Document Version _
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Duhoux, B, Dumas, B, Mens, K & Leung, HS 2019, A context and feature visualisation tool for a feature-based
context-oriented programming language. in A Etien (ed.), Proceedings of the Seminar Series on Advanced
Techniques & Tools for Software Evolution (SATTOSE 2019). CEUR Workshop Proceedings, CEUR-WS, 2019
Seminar Series on Advanced Techniques and Tools for Software Evolution, SATTOSE 2019, Bolzano, Italy,
8/07/19. <http://ceur-ws.org/Vol-2510/sattose2019 paper_7.pdf>

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://core.ac.uk/display/425331181?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://researchportal.unamur.be/en/publications/a-context-and-feature-visualisation-tool-for-a-featurebased-contextoriented-programming-language(119f6550-cfca-49bb-9776-1e0846b6487e).html
http://ceur-ws.org/Vol-2510/sattose2019_paper_7.pdf

CEUR-WS.org/Vol-2510/sattose2019_paper_7.pdf

A Context and Feature Visualisation Tool for a

Feature-Based Context-Oriented Programming Language

Benoit Duhoux, UCLouvain, Belgium

benoit.duhoux@uclouvain.be

Bruno Dumas, UNamur, Belgium
bruno.dumas@unamur.be

Abstract

In this paper we present a visualisation
tool that is intricately related to a feature-
based context-oriented programming lan-
guage. Context-oriented programming lan-
guages allow programmers to develop software
systems of which the behaviour evolves dy-
namically upon changing contexts. In our lan-
guage, the software behaviour as well as the
contexts to which the behaviour adapts, are
encoded in terms of separate feature models.
Due to the highly dynamic nature of such soft-
ware systems and the many possible combina-
tions of contexts to which they may adapt,
developing such systems is hard. To help pro-
grammers manage the complexity of develop-
ing such software systems, we created a tool
to help them visualise the contexts and fea-
tures, even at runtime. The visualisation tool
confronts two hierarchical models: the context
model and the feature model, and highlights
the dependencies between them. We conduct
an initial user study of the visualisation tool
to assess its usefulness and usability.

Keywords: Software visualisation tool, context-
oriented programming language, dynamic adaptation,
feature and context models, user study.

Copyright (© 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: Anne Etien (eds.): Proceedings of the 12th Seminar on Ad-
vanced Techniques Tools for Software Evolution, Bolzano, Italy,
July 8-10 2019, published at http://ceur-ws.org

Kim Mens, UCLouvain, Belgium
kim.mens@Quclouvain.be

Hoo Sing Leung, UCLouvain
Belgium

1 Introduction

Context-aware systems [1] use information about the
surrounding environment and conditions in which
a software system operates, to adapt dynamically
their behaviour to such contexts. This informa-
tion can take the form of user preferences (a user’s
age, habits, (dis)abilities), information from exter-
nal services (weather conditions), or internal data
about the device on which the system runs (remain-
ing battery level or other sensor information). Due
to the exponential combination of contexts, their pos-
sible behavioural variations, and the high dynamic-
ity of such systems, developing such systems is hard.
Context-oriented programming languages [19, 35] pro-
pose dedicated programming abstractions to imple-
ment context-aware behavioural adaptations that can
temporarily adapt existing system functionality upon
the (de)activation of certain contexts.

The notion of context has also been explored in the
field of feature modelling [9, 17, 21, 5, 4, 29]. Hart-
mann et al. [17] model multiple software product lines,
where the absence or presence of some features depend
on the chosen contexts, in terms of a separate feature
model and context model, connected through explic-
itly declared dependencies between the contexts and
features. For example, when modelling a car naviga-
tion system, the selection of a context “Europe” would
imply the selection of a feature for European maps.

Inspired by this idea, we proposed a context-
oriented software architecture [30] where contexts and
features are handled by separate architectural layers,
with explicit dependencies from one layer to the next.
The selection and activation of contexts in earlier lay-
ers can trigger the selection and activation of their
corresponding features.

Building upon this context-oriented software archi-
tecture, and taking the analogy with Hartmann et al.’s
modelling approach a step further, we extended the

proposed architecture by explicitly representing con-
texts and features in terms of two separate feature
models that are used at runtime to guide the selection
and activation of both contexts and features. Nev-
ertheless, keeping track of all possible contexts, fea-
tures and their intra- and inter-dependencies remains
a daunting task for developers of context-oriented sys-
tems. It is not easy for a developer to know what
contexts or features are available, are currently active,
what the impact of activating or deactivating them is,
or whether the system exhibits the intended behaviour
in a particular situation.

We therefore developed a visualisation tool that can
help developers keep an overview of all existing con-
texts and features, by displaying the context and fea-
ture models and their dependencies. The tool offers
more than a mere static visualisation of the context
and feature models. It can also depict dynamically
what context and features are active or get activated,
and what program code this affects.

To assess whether the tool’s visual metaphor helps
understanding the programming paradigm and pro-
grams written in it, we conducted an initial user study
with master students in software engineering. We con-
clude that our tool helps understanding the underlying
approach, despite its complexity for programmers de-
velopping context-oriented applications.

The remainder of this paper is structured as fol-
lows. Section 2 introduces the case study of a context-
oriented system used as running example throughout
the paper. Section 3 then introduces our context-
oriented software architecture and programming lan-
guage, as well as corresponding background material.
Our visualisation tool is presented in Section 4. Sec-
tion 5 discusses the initial user study and discusses its
results. Related work is exposed in Section 6. Section
7 concludes the paper and presents some future work.

2 Case study

Before introducing our visualisation tool and the un-
derlying context-oriented software architecture upon
which it relies, in this section we briefly describe the
case study that will serve as running example through-
out the paper: a ‘risk information system’ [11].

The system provides instructions to citizens on
what to do in case of certain emergency situations
or risks, like earthquakes or floods. The actual in-
structions given to a citizen may depend on a variety
of contexts, such as the user’s age, location or vicin-
ity, weather conditions, or the status of an emergency
(the emergency has been announced but has not yet
affected the user, the emergency is actually occurring,
or being in the aftermath of an emergency situation).

The instructions issued by the context-aware risk

information system can be either static or dynamic.
Static instructions are just instructions that a user can
consult about what to do in case of certain risks.

The system can also display information and char-
acteristics about actual emergencies as they occur. For
example, when an earthquake is detected, its sever-
ity would be computed on the Richter scale and its
location shown to citizens as a circular impact zone
determined by its epicentre and its radius.

When an actually emergency is observed, the au-
thorities will actively issue instructions specific to the
emergency at hand, and specific to the current situa-
tion and user profile. For instance, if an earthquake
warning has been issued, and a citizen is stuck at
home, an adult may get a specific instruction to “Hide
under a table, desk, bed or any other sturdy piece of
furniture”, while a child may just see a pictogram rep-
resenting this specific instruction instead.

3 A feature-based context-oriented ap-
proach

Context-oriented programming languages and frame-
works help programmers build context-oriented sys-
tems. We proposed one such framework [30] that,
based on contextual information sensed from the sur-
rounding environment, selects and activates so-called
contexts in the system. Appropriate features corre-
sponding to these activated contexts are then selected,
activated and deployed in the system, to adapt the sys-
tem’s behaviour to the actual context of use. We build
upon this work by explicitly representing contexts and
features as run-time feature models. At the end of this
section we explain this feature-oriented context-aware
programming approach in more detail, after having
reviewed preliminary work on feature modelling, con-
text modelling and context-oriented programming that
lead to this. In the next section we then present a visu-
alisation tool we built to help programmers visualise
the underlying context and feature models and how
these affect the system at runtime.

3.1 Feature modelling

Fig. 1 shows a simplified feature model depicting a
subset of the functionalities of the case study.! A user
of the risk information system can edit his or her pro-
file (age and location) and the system can display the
characteristics of an emergency such as its severity or
impact zone.

A feature model highlights the commonalities and
variabilities of a system [22]. Such diagrams are often
used in software product lines to define a family of
similar systems with some variations. In our current

LA more complete version is shown later in Fig. 6.

Risk Legend
Information
System Mandatory

A
A

Profile
edition

Emergency

information

Display Show
severity impact zone

Standard Richter Polygon Circle
impact zone || impact zone

Figure 1: An excerpt of a feature model for a risk
information system.

Xor

example, the commonalities are the features Profile
Edition, Age and Location, which will be active in
any instantiation of the risk information system. The
other features are variabilities, i.e. features that will
be deployed only in some versions of the system, or
rather, at particular moments in time (e.g., when a
particular emergency is active).

A feature model is represented as a tree, where the
nodes represent features and the hierarchical edges
represent constraints between these features. When-
ever a child feature is selected, all of its ancestor fea-
tures must be selected. A mandatory constraint, de-
picted with a black circle, means that if the parent
feature is selected, the subfeature must be present in
the system as well. An optional constraint, depicted
with a white circle, states that the subfeature may or
may not be present. As such, the Profile edition
feature must always be present in a risk information
system, whereas the emergency information is optional
(it is only needed when there is an actual emergency).

An or (resp. zor) constraint, depicted by a black
(resp. white) triangle, means that at least one (resp.
exactly one) of the child nodes participating in this
constraint should be selected in the system. In our
example, the features Display severity and Show
impact zone can coexist (and often do) in a same ver-
sion of the system, as well as their subfeatures (this can
happen if two emergencies, for example a flood and an
earthquake, happen at the same time).

A particular instantiation of the system is cor-
rect only if the selection of features that adapt the
system, respects the constraints imposed by the fea-
ture model. It is not allowed to activate or deac-
tivate features if that would violate the constraints
of the feature model. In Fig. 1, a valid configura-
tion could be Risk Information System, Emergency
information, Display severity, Richter, Profile
edition, Age, Location, and would correspond to a
configuration where the system can display the sever-
ity of an earthquake emergency (using the Richter
scale) and where the user can edit his age and decide
if the system can use his current location or not.

3.2 Contexts versus Features

Not only features, but also contexts, are key notions
in feature-based context-oriented systems. While con-
texts are characteristics of the surrounding environ-
ment in which a system runs [1], features can be
defined as “any prominent or distinctive user-visible
aspect, quality, or characteristic of a software sys-
tem” [22]. Contexts and features are complementary
notions that go hand in hand when building context-
oriented systems that can adapt their behaviour (de-
scribed in terms of features) dynamically whenever
changes (reified as contexts) are detected in the sur-
rounding environment. In other words, the activation
or deactivation of certain contexts triggers the activa-
tion or deactivation of certain features to adapt the
runtime system behaviour.

Notwithstanding their complementarity and differ-
ences, it has been observed that the feature modelling
notation can also be used to model contexts [9, 17, 21,
5, 4, 29]. For example, Desmet et al. [9] use a notation
very similar to Kang et al.’s feature modelling nota-
tion [22] to design context models of context-oriented
applications. Hartmann and Trew [17] present a
Multiple-Product-Line-Feature Model to model sev-
eral variants of a same product depending on some
contexts. In their approach, schematically depicted in
Fig. 2, they split the overall model in two separate
submodels: a context variability model (representing
the contexts and their intra-dependencies) and a tra-
ditional feature model. This allows them to model not
only what the common and variable features are, but
also how contexts affect what features should (not)
become part of a product, by declaring explicit depen-
dencies from the context model to the feature model.
Murguzur et al. [31] state this strategy increases the
number of dependencies between contexts and features
but provides a better reusability of context properties.

MPL-Feature Model

Context
Variability
Model

Feature
Model

/\J

Figure 2: Illustration of the Multiple-Product-Line-
Feature Model, adapted from Hartmann and Trew [17]

3.3 Context-oriented programming

Now that we have discussed how to model contexts
and features, we still need to discuss how to program

context-oriented systems that can adapt to changes in
their surrounding environment.

Context-oriented programming (COP) is a
paradigm that provides dedicated programming
language abstractions to adapt the behaviour of a
software system dynamically upon changing contexts.
The paradigm was introduced about a decade ago by
Hirschfeld et al [19]. In COP, contexts and behavioural
adaptations (modelled as features in this paper) are
first-class language entities. The behavioural adapta-
tions get (de)activated in the code whenever their cor-
responding contexts become (de)activated. Nowadays
many different implementations of COP languages
exist [3, 15, 18, 12, 2, 13, 26, 34, 36, 35, 32, 14, 24].
Most of them are extensions of existing programming
languages, often object-oriented. =~ However, many
of these implementations do not clearly distinguish
contexts from features. To address this issue, we
propose a context-oriented software architecture [30]
in which we separate contexts and features in different
architectural layers. Fig. 3 provides a high-level
overview of this architecture.

Sensors Context Feature Code
Handling Handling Adaptation

Figure 3: Our Context-Oriented Software Architecture

This architecture senses the surrounding environ-
ment in which the system executes. Whenever changes
in the environment are detected, the Context Handling
layer interprets and reasons about the raw data repre-
senting these changes, in order to reify them into con-
texts and (de)activate them. After the contexts are
(de)activated, the Feature Handling layer (un)selects
and (de)activates the features corresponding to the
(de)activated contexts. Finally, the Code Adaptation
layer (un)installs the code corresponding to these fea-
tures to adapt dynamically the system behaviour.

3.4 Feature visualiser

In earlier work, we proposed a first visualisation
tool [11] for the context-oriented software architecture
described in the previous section. An excerpt of this
visualisation tool, applied to the Risk Information Sys-
tem case, is shown in Fig. 4.

Object

AN [Instruct| actvates Risk
Age inhefits inhegits * Earthquake_before_adult
User| Risk activates,
p 4 A |SeverityRichter|
'Location b wa—
o inneres p
P «
", Earthquake (EEEETTED
A e A
actwates g A
49/ CirclelmpactZone
Location Age. actvates e E—
activates ‘e a—
Earthquake InstructEarthquakeBeforeAdult

Figure 4: Tllustration of our Feature Visualiser [11]

This tool depicts the currently active dependencies
between the contexts, features and (object-oriented)

classes of the system. For example, when an earth-
quake emergency is detected, the Earthquake con-
text gets activated, and appears in the visualisa-
tion as a yellow rounded rectangle. This context
activation then causes the selection and activation
of the corresponding features SeverityRichter and
CircleImpactZone, which contain specific functional-
ity to display information about an earthquake emer-
gency. When these features are activated, they get
displayed as green rounded rectangles. Finally, these
features adapt the code of some classes in the system,
depicted as blue rounded rectangles (in this case, it is
the Earthquake class that gets altered).

However, as can be seen from Fig. 4, this visuali-
sation does not represent the contexts and features as
separate hierarchical feature models, but rather as a
single large graph of active contexts, features, classes
and their dynamic intra- and inter-dependencies.

3.5 Context and feature models

One of the contributions of our current work is to
model the possible contexts, features they trigger, and
classes they adapt, as separate but interconnected hi-
erarchical models, as depicted schematically in Fig. 5.
This approach combines our context-oriented software
architecture with the multiple-product-line-feature
modelling approach of Hartmann and Trew [17]. We
explore our dedicated visualisation tool support for
this combined approach in the next section.

Context Model Feature Model Class Diagram

Sensors Context Feature
Handling Handling

Figure 5: Overview of our feature-based context-
oriented programming approach

Code
Adaptation

4 Tool

Now that we have introduced our feature-based
context-oriented programming approach, in this sec-
tion we present the tool we built to help program-
mers visualise and animate the underlying hierarchical
context and feature models and their interdependen-
cies, allowing them to better understand and handle
the complexity and dynamicity of systems built using
that approach. We will describe the visualisation tool
through different usage scenarios from a programmer’s
perspective. Before doing so, we briefly revisit and ex-
pand upon the case study.

Display
ity
Emergency
Polygon information [
impact
zone Show
impacted
Circle zone
o impact
zone
Child
=
Saner sensitive
friendly
[Nevgaior]o
Features
7{ Warn } Notify
Age
n Profile
. cion
Risk
concerns
Earthquake . Risk
instructions

Instructions
in case of

Figure 6: A context model (left) and feature model (right) for the risk information system and their inter-

dependencies (dotted arrows).

Fig. 6 depicts both a context model (on the left)
and a more complete feature model (on the right) of
the risk information system introduced in Section 2.
The functionalities (features) of this version of the sys-
tem include the ability for a citizen to edit his profile,
receive different kinds of notifications about emergen-
cies depending on their severity, consult instructions
for different kinds of risks, see the characteristics and
instructions of ongoing emergencies, and be guided by
the system to reach a safe point. Contexts that in-
fluence what features get activated at runtime include
the user profile or the status, severity or type of an
emergency. These dependencies are depicted as dotted
arrows from the context model to the feature model.

To keep the image readable we omitted some infor-
mation, such as certain dependencies from contexts to
features, or the child features for Flood instructions.
Despite these omissions, the models already become
quite large and one can easily understand the need for
a tool to visualise and explore such diagrams. On top
of that, it would be useful to visualise what contexts
and features are currently active, and how the diagram
changes dynamically as contexts get (de)activated at
runtime and trigger the (un)selection of features and
their (un)installation in the code.

Our visualisation tool, depicted in Fig. 7, allows
to inspect the context and feature models with their

intra- and inter-dependencies, as well as the classes of
the system that get affected by the selected features.
The visualisation is partitioned in different parts, cor-
responding to the different layers of the underlying im-
plementation architecture of Fig. 5. In the tool snap-
shot shown in Fig. 7, an earthquake emergency is cur-
rently occurring, so the system must inform citizens
about the characteristics of the ongoing earthquake
and the actions they need to take to protect them-
selves during this emergency.

Below, we focus on different aspects of the visualisa-
tion tool, according to different usage scenarios corre-
sponding to a programmer building a context-oriented
system using this approach.

4.1 Static visualisation of the context and fea-
ture models

A first important usage scenario for a programmer is
to get a global overview of the system, in terms of
the different contexts, features and classes of which it
is composed. The Context and feature model pane of
Fig. 7 shows what such a visualisation looks like in
our tool. Such a static overview can show all contexts,
features and classes of interest, regardless of whether
they are currently active or not: the context model
shown in Fig. 7 contains both active contexts (colored
in green) and inactive ones (colored in red). The idea

Context and feature model visualisation

Context and feature model

0] 3
Active During Earthquake
T

Filters

‘ ‘ Configuration

© Predefined views c ized views

Complete mode Feat
| Active mode
Inactive mode
| Active contexts mode
| Active features mode
Active classes mode

Features

[vJactive dependencies (v labels (v active dependencies (v/labels
Jlinactive dependencies [jinactive dependencies
[vllabels [vllabels

Features-Code
[vJActivated contexts (v/active dependencies [v/Activated features (v dependencies with active features vjimpacted dlasses
i ntexts |_inacti les [Jinactivated features | dependencies with inactive features | |non-impacted classes

Color Skins (S
Black-and-white
Code
‘Time between each refresh (sec.) 10

Figure 7: Snapshot of our visualisation tool applied to the risk information system. Three panes compose this
tool: Context and feature model, Filters and Configuration. Red (resp. green) rectangles represent inactive (resp.
active) contexts, features or classes in the Contert and feature model pane. To keep the picture readable, we
deliberately hid some information such as all child contexts of the UserProfile context, all inactive features

and all non-impacted classes.

of including classes in the visualisation as well is in-
spired from our Feature Visualiser [11]. Furthermore,
our visualisation tool allows a programmer to inspect
in more detail the actual behaviour of features and
classes. For example, Fig. 7 shows yellow boxes inside
some of the features and classes, listing the methods
they implement.

4.2 Exploring the dynamics of a context-
oriented system

In addition to providing a static overview of a context-
oriented system, the tool should support programmers
in understanding and exploring the dynamic aspects of
such a system. The tool should help them inspect what
contexts and features are currently active and how that
affects the behaviour, in terms of what classes are cur-
rently being adapted. For example, suppose that dur-
ing testing and simulation of the system a programmer
discovers that, when an earthquake warning is issued,
the system starts displaying instructions related to a
flood instead of an earthquake. To understand such
undesired behaviour he needs to explore what contexts
are currently active, what feature were triggered in re-
sponse to that, and how the classes were then adapted
by those features. A possible cause of this bug may be
for example a wrong dependency between the earth-
quake context and its corresponding features.

The visualisation tool provides several ways of ex-
ploring the system dynamics. A first one, which was

already mentioned above, is the use of colouring to
show active contexts, features and classes in green. A
second one, which will be explained in the next sub-
section, is to use particular filters to show only acti-
vated contexts, features, dependencies, and currently
adapted classes. The final and probably most powerful
functionality provided by the tool is to show changes to
the diagrams as they occur. To explore these dynamic
changes, the tool provides the ability to replay the
changes step by step (by activating the Step-by-step
mode and using the Nezt step button in the Configu-
ration pane, as showed in the bottom right of Fig. 7),
so that a programmer can inspect the state of the di-
agrams after each change.

4.3 Filtering and predefined views

To help programmers manage the complexity of un-
derstanding big systems consisting of many different
context and features, the tool comes with a set of fil-
ters and predefined views that a programmer can se-
lect to focus on particular concerns, as depicted in the
bottom left of Fig. 7.

These filters (called ‘Customized views’) allow a
programmer to indicate whether he is more interested
in the contexts, the features, the code, or the depen-
dencies between them, and whether he is currently
more interested in exploring the active or inactive en-
tities or dependencies. The filters can be combined in
many different ways. In addition to that some ‘Prede-

fined views’ are provided, which are predefined combi-
nations of filters, often selected together. For example
the “Active mode” shows all entities and dependencies
that are currently ‘active’; as depicted in Fig. 8.

Figure 8: Visualisation of contexts and features using
the “Active mode” predefined view.

4.4 Highlighting specific elements of interest

As the number of possible contexts, features, classes
and dependencies can become quite large, in addi-
tion to filtering the diagrams to only show certain el-
ements of interest, highlighting is another interesting
way to help programmers navigate through the dia-
grams. Suppose for example that a programmer is
trying to understand why a particular feature, say the
Active During Earthquake feature, does not seem to
exhibit the expected behaviour. By simply clicking on
that feature, it will be highlighted in yellow, together
with the contexts that triggered its selection (by fol-
lowing the dependencies that have this feature as tar-
get) and the classes it adapts (by following the depen-
dencies that have this feature as source). In this exam-
ple, the contexts During and EarthquakeEmergency
will be highlighted, as well as the Farthquake class.
This highlighting is illustrated by the yellow borders
and yellow arrows in Fig 7.

4.5 Hiding and collapsing information

Finally, a programmer can customise his visualisation
at an even more fine-grained level. For example, Fig. 9
shows a reduced feature model obtained by hiding and
collapsing particular features, using the correspond-
ing buttons to hide an element, collapse all elements
above, or all elements below.

5 Validation

In this section, we describe and analyse the user study
we conducted to assess the usability and usefulness of
our visualisation tool and underlying approach. The
subjects of our study were 34 master-level students in
computer science or engineering following a software
engineering course. They were aged 20 to 27 years old
and 4 of them were female. To evaluate the tool, we
asked them to play the role of programmers working
on a context-oriented system. To initiate them to the

:Features

Display Severity

Show Impacted Zone Earthquake Disaster

v ¥ ALl v¥)

Figure 9: Simplified feature model obtained by hiding
and collapsing some features.

different technologies used in the project, they partic-
ipated in two preparatory sessions before the actual
user study. Since the study was carried out during
a course, in order not to bias the results we made it
clear to the students that this user study would not
be related to the course evaluation and would be en-
tirely dedicated to our research and performed anony-
mously. In the remainder of this section, we first de-
scribe the preparatory sessions preceding the study,
then describe the user study itself, present the results
we gathered from the study, and finally briefly discuss
some threats to validity.

5.1 Preparation

Before conducting the user study, we initiated our
master-level students with two sessions of two hours
each. The first session was an introduction to the Ruby
programming language, the language used to develop
our feature-based context-aware approach. The sec-
ond session was to explain our approach in which we
exemplified it with an earthquake-specific risk infor-
mation system.

5.2 User study

After these preparatory sessions, during a third two-
hour session we performed the actual user study, where
our students were asked to assess the usability and use-
fulness of our visualisation tool. To help them in their
evaluation task, they had to perform two tasks. These
tasks aimed to extend the earthquake-specific variant
of the risk information system with a new kind of risk
and emergency: floods. Task 1 concerned the charac-
teristics of a flood. In this task, they had to implement
the fine-grained features to manage and display the
‘standard severity’ feature and the ‘polygon impacted
zone’ feature needed to represent a flood emergency.
Task 2 was about implementing the flood-specific in-
structions (either static or dynamic) that citizens must
follow before, during or after a flood. We conducted

the user study as follows: Students were first asked
to provide some information about themselves (age,
knowledge of object-oriented programming, context-
oriented programming and so on). They had to evalu-
ate their knowledge on a five-level Likert scale, where
a value of 1 meant they had no expertise in the field up
to a value of 5 meaning they considered themselves as
an expert in the field. Then we split the students/pro-
grammers in two separate groups (A and B) to per-
form their assigned task during a 25-minute time slot.
Group A had to start implementing Task ! whereas
group B had to develop Task 2. During this first task,
they were not allowed to use the visualisation tool.
Next, they received a quick introduction to the visu-
alisation tool as a preparation for their second task.
For this second task, we switched the tasks. Group A
now had to develop Task 2 while group B had to im-
plement Task 1. Again, both groups received at most
25 minutes to finish their assigned task. Finally, all
subjects were asked to answer some questions regard-
ing how they perceived the usability and usefulness of
our visualisation tool. We also asked them to provide
some open feedback on how we could improve the vi-
sualisation tool.

5.3 Results and discussion

Despite the complexity of our feature-based context-
oriented programming approach, the participants in
our study seemed to agree that our visualisation tool is
interesting for developers when learning our approach
or during debugging.

Fig. 10 illustrates the background knowledge of our
participants at the beginning of our user study. We can
observe that our students have quite a good knowl-
edge of programming and object-oriented program-
ming in particular. But they did not feel as com-
fortable with more dynamic programming technologies
such as the context-oriented programming paradigm
or our feature-based context-oriented approach. Their
weak knowledge of the Ruby programming language
can be justified by the fact that only a few of the stu-
dents had prior experience (beyond what they saw in
the two-hour preparatory session) in Ruby.

Nevertheless, despite the difficulty of our approach,
our participants do seem to be interested by the visual-
isation tool when they must develop a context-oriented
system using our approach. Fig. 11 depicts their opin-
ions about the tool. The first two questions concern
whether they believed the static or dynamic represen-
tation of the models and their dependencies to be easy
to understand. The five values ranged from hard to
understand to easy to understand. For each repre-
sentation, more or less 58% (taking into account only
the positive values) of our participants considered the

representations as understandable. For the question
about which aspect (static or dynamic) is most inter-
esting in this tool, 50% (considering only the positive
values) of our participants consider the dynamic view
as more interesting than the static view, as opposed
to only 20% (computing only the negative values) who
believed the static view to be more interesting. 30%
liked the dynamic aspect as much as the static one. In
addition, almost 56% of our participants agreed that
our visualisation tool is helpful to learn the approach.
The ease to use our tool is more mitigated however.
Whereas almost 40% of the participants believed our
tool to be easy to use, more or less 26% of them did
not. This result could be explained by the complex-
ity of our approach. Indeed, assessing the usability of
a visualisation tool such as the one described in this
paper is intrinsically linked to the understandability
of the underlying programming approach. Finally, in
our open question about which functionality is most
useful, several participants answer that the ability to
replay changes dynamically using the Next step but-
ton is really useful. In the received feedback, two main
requests may be noted: the addition of a previous step
button to step back in the process and better support
for visualising larger context and feature models.

5.4 Threats to validity

The case study performed in this paper should not be
considered as a full-fledged in-depth user study but
rather as an initial exploratory study to help us iden-
tify the main strengths and weaknesses of the pro-
posed approach and visualisation before developing it
further. In particular we wanted to find out if the
proposed visualisation tool could help programmers in
coping with the inherent difficulty of building context-
oriented programs of which the behaviour can change
dynamically upon changing contexts. Although our
initial findings were promising they are still prema-
ture and a more rigorous validation study of the form
of a controlled experiment with proper task completion
metrics would be needed to avoid biased conclusions.
In particular, the study should be set up in such a way
that the opinions of the subjects are not influenced by
possible bias implanted by the context or preparation
of the user study.

6 Related work

In Section 3 we already presented some background
work on feature and context modelling, in order to in-
troduce our feature-oriented context-aware approach.
In this section we will explore some further related
work, in particular on context-oriented and feature-
oriented programming approaches, as well as on other
visualisation tools related to these approaches.

Programming in general

Object-oriented programming

Feature Modelling

Questions

Ruby programming language

Context-oriented programming

Feature-oriented context-aware p...

r T
-20

Modes in percentage

0

T T
20 40 60 80
Modes

Figure 10: On the left, a divergent stacked bar diagram summarising the results of the background knowledge
of our participants. On the right, a bar chart shows the frequencies of each answer for each of the questions.

Static representation

Dynamic representation

Static vs. Dynamic

Questions

Better understanding

Easy to use

r T T

- LV
12
I 7 i1

T T
-100 -80 -60 -40 -20 0

20 40 60 80
Modes in percentage

T T T T 1

100 1 2 3 4 5
Modes

Figure 11: On the left, a divergent stacked bar presenting the results of the usability and the usefulness of
our visualisation tool. On the right, a bar chart showing the frequencies of each answer for each corresponding

question.

6.1 Context- and feature-oriented program-
ming

Whereas feature-oriented programming [33] was de-
signed with software product lines in mind, context-
oriented programming [19] was designed with the pur-
pose of creating dynamically adaptive software sys-
tems. After a closer comparison of these paradigms,
Cardozo et al. [6] concluded that both approaches are
quite similar, their main difference being that context-
oriented programming is typically more dynamic (fo-
cussing on runtime adaptations) than feature-oriented
programming (typically focussing on compile-time
adaptation), even though more dynamic approaches
to feature-oriented programming exist as well [16].

To create dynamic software systems sensitive to
their environment, several approaches exist. One ap-
proach is to extend feature models with contextual in-
formation, so that the system can be reconfigured by
selecting features at runtime depending on sensed con-
text information [27]. A second approach is to make
use of context-oriented programming languages. Some
researchers have started to explore introducing the no-
tion of features into that paradigm. For example, on
top of an existing context-oriented programming lan-

guage, Cardozo et al. [7] proposed a way of building
applications that are composed dynamically from a set
of available fine-grained features, according to contex-
tual information. Costanza and D’Hondt [8] also pro-
posed an extension of context-oriented programming
with explicit feature descriptions that is quite similar
to the feature-based context-oriented approach upon
which we rely in this paper.

However none of these approaches separate clearly
the features from the contexts, which is why we pro-
posed a novel feature-based context-oriented approach
based on top of our earlier context-oriented software
architecture [30].

6.2 Visualisation tools

Several visualisation tools have been created for visu-
alising different aspects of the context- and feature-
oriented modelling or programming approaches that
have been mentioned either above or earlier in Sec-
tion 3. Many of these works state that visual support
is essential especially when trying to understand and
manage large and complex feature (or context) mod-
els.

To visualise feature models, programmers can use

a tool like FeatureIDE [23], which is an open-source
visualisation framework integrated in the Eclipse de-
velopment environment. For dealing with larger
feature models, programmers may prefer to use
S.P.L.O.T. [28], a web-based system that represents
feature models in a much more compact tree-like struc-
ture. Illescas et al. [20] propose four different visual-
isations that focus on features and their interactions
at source code level, and evaluate them with four case
studies. Urli et al. [37] present a visual and interactive
blueprint that enables software engineers to decom-
pose a large feature model in many smaller ones while
visualising the dependencies among them.

Nieke et al. created a tool suite for integrating
modelling in context-aware software product lines [27].
This tool helps developers to model the three dimen-
sions (spatial, contextual and temporal) of the vari-
abilities of such approaches.

In Section 3, we showed our Feature Visualiser [11]
tool on top of our context-oriented software architec-
ture [30]. In addition to that tool, we also developed a
COP simulator [10] to simulate context-oriented sys-
tems implemented with this architecture. Both of
these tools can be seen as complementary to the vi-
sualisation tool introduced in Section 4.

7 Conclusion

To create context-oriented software systems, in this
paper we presented a feature-based context-oriented
approach, where both the contexts and features are
modelled in terms of feature diagrams. Managing
these different models and their dependencies is a
daunting task, due to the potentially high number of
contexts and features, as well as the high dynamicity of
such systems. To address this issue, we created a dedi-
cated visualisation tool for this feature-based context-
oriented approach, which confronts two hierarchical
models (the context model and feature model) and
highlights the dependencies between them. In addi-
tion, it shows the dependencies from the feature model
to the code (i.e., the classes of the system). This visu-
alisation tool not only allows programmers to inspect
the models and their dependencies statically, but also
to explore what happens dynamically as contexts and
features are being (de)activated during system execu-
tion. For understanding and manipulating larger mod-
els, the tool also comes with filters, predefined views,
and functionality to highlight, collapse or hide specific
elements, allowing programmers to focus the visuali-
sation only on specific parts of interest.

To assess the usefulness and usability of our visu-
alisation tool, we conducted an initial user study with
34 master-level students in the context of a software
engineering course. The participants of this study con-

10

sidered that our tool was easy to understand in terms
of the different representations it provides. They felt in
particular that the dynamic representation of the mod-
els helped them understand how the system adapted
over time. However, the participants were less con-
vinced when it came to usability of the tool. However,
this can be explained by the fact that the complexity
tool is strongly linked to the complexity of the under-
lying approach.

As future work we will first integrate the useful com-
ments and feedback received from the participants in
our study. To deal with the scalability problem of
large models, we will address this issue by relying on
other visualisations such as for example a more com-
pact tree-like view & la S.P.L.O.T. [28] or alternatively
using hyperbolic trees [25] or a 3D representation such
as GEF3D [38]. We will also conduct more rigorous
user studies in order to get more conclusive results.

Acknowledgements

We are grateful to Jean Vanderdonckt for the many
fruitful discussions on this topic.

References

[1] G.D. Abowd, A. K. Dey, P. J. Brown, N. Davies,
M. Smith, and P. Steggles. Towards a better un-
derstanding of context and context-awareness. In
Proc. HUC' 99, pages 304-307. Springer, 1999.

T. Aotani, T. Kamina, and H. Masuhara. Feath-
erweight eventcj: A core calculus for a context-
oriented language with event-based per-instance
layer transition. In Proc. COP 11, pages 1:1-1:7.
ACM, 2011.

M. Appeltauer, R. Hirschfeld, and T. Rho. Ded-
icated programming support for context-aware
ubiquitous applications. In Proc. UBICOMM 08,
pages 38-43. IEEE, Sept 2008.

R. Capilla, M. Hinchey, and F. J. Diaz. Collab-
orative context features for critical systems. In
Proc. VaMoS 15, pages 43:43-43:50. ACM, 2015.

R. Capilla, O. Ortiz, and M. Hinchey. Context
variability for context-aware systems. Computer,
47(2):85-87, Feb. 2014.

N. Cardozo, S. Giinther, T. D’Hondt, and
K. Mens. Feature-oriented programming and
context-oriented programming: Comparing
paradigm characteristics by example implemen-
tations. In Proc. ICSEA 11, pages 130-135.
TARIA, 2011.

[7]

[12]

[13]

[15]

[16]

[17]

[18]

N. Cardozo, K. Mens, P.-Y. Orban, S. Gonzélez,
and W. De Meuter. Features on demand. In Proc.
VaMoS 14, pages 18:1-18:8. ACM, 2014.

P. Costanza and T. D "Hondt. Feature descrip-
tions for context-oriented programming. In Lero
Int. Science Centre, pages 9-14, 2008.

B. Desmet, J. Vallejos, P. Costanza,
W. De Meuter, and T. D’Hondt. Context-
oriented domain analysis. In Modeling and Using
Context, pages 178-191. Springer, 2007.

B. Duhoux. L’intégration des adaptations
interfaces utilisateur dans une approche de
développement logiciel orientée contexte. Mas-
ter’s thesis, UCLouvain, Belgium, 2016.

B. Duhoux, K. Mens, and B. Dumas. Feature vi-
sualiser: An inspection tool for context-oriented
programmers. In Proc. COP 18, pages 15-22.
ACM, 2018.

C. Ghezzi, M. Pradella, and G. Salvaneschi.
Programming language support to context-aware
adaptation: A case-study with erlang. In Proc.
SEAMS 10, pages 59-68. ACM, 2010.

S. Gonzélez, N. Cardozo, K. Mens, A. Cadiz, J.-C.
Libbrecht, and J. Goffaux. Subjective-c: Bring-
ing context to mobile platform programming. In
Proc. SLE 10, pages 246-265. Springer, 2011.

S. Gonzalez, K. Mens, M. Colacioiu, and W. Caz-
zola. Context traits: Dynamic behaviour adap-
tation through run-time trait recomposition. In
Proc. AOSD 13, pages 209-220. ACM, 2013.

S. Gonzélez, K. Mens, and A. Cadiz. Context-
oriented programming with the ambient object
system. J.UCS, 14(20):3307-3332, nov 2008.

S. Giinther and S. Sunkle. Dynamically adaptable
software product lines using ruby metaprogram-
ming. In Proc. FOSD 10, pages 80-87. ACM,
2010.

H. Hartmann and T. Trew. Using feature dia-
grams with context variability to model multiple
product lines for software supply chains. In Proc.
SPLC 08, pages 12-21. IEEE, 2008.

R. Hirschfeld, P. Costanza, and M. Haupt. Gen-
erative and transformational techniques in soft-
ware engineering ii. chapter An Introduction to
Context-Oriented Programming with ContextS,
pages 396—407. Springer-Verlag, 2008.

11

[19]

[20]

[21]

[23]

28]

[29]

R. Hirschfeld, P. Costanza, and O. Nierstrasz.
Context-oriented programming. JOT, 7(3):125—
151, 2008.

S. Illescas, R. E. Lopez-Herrejon, and A. Egyed.
Towards visualization of feature interactions in
software product lines. In Proc. VISSOFT 16,
pages 46-50. IEEE, Oct 2016.

Z. Jaroucheh, X. Liu, and S. Smith. Mapping
features to context information: Supporting con-
text variability for context-aware pervasive appli-
cations. In Proc. WITAT 10, volume 1, pages 611—
614, Aug 2010.

K. C. Kang, S. G. Cohen, J. A. Hess, W. E. No-
vak, and A. S. Peterson. Feature-oriented domain
analysis (foda) feasibility study. Technical report,
CMU, November 1990.

C. Kastner, T. Thum, G. Saake, J. Feigenspan,
T. Leich, F. Wielgorz, and S. Apel. Featureide:
A tool framework for feature-oriented software de-
velopment. In Proc. ICSE 09, pages 611-614.
IEEE, 2009.

A. Kiithn. Reconciling context-oriented program-
ming and feature modeling. Master’s thesis,
UCLouvain, Belgium, 2017.

J. Lamping, R. Rao, and P. Pirolli. A fo-
cus+context technique based on hyperbolic geom-
etry for visualizing large hierarchies. In Proc. CHI
95, pages 401-408. ACM, 1995.

J. Lincke, M. Appeltauer, B. Steinert, and
R. Hirschfeld. An open implementation for
context-oriented layer composition in contextjs.

SCP, 76(12):1194-1209, Dec. 2011.

J. Mauro, M. Nieke, C. Seidl, and I. C. Yu. Con-
text aware reconfiguration in software product

lines. In Proc. VaMoS 16, pages 41-48. ACM,
2016.
M. Mendonca, M. Branco, and D. Cowan.

S.p.l.o.t.: Software product lines online tools. In
Proc. OOPSLA 09, pages 761-762. ACM, 2009.

K. Mens, R. Capilla, H. Hartmann, and T. Kropf.
Modeling and managing context-aware systems’
variability. IEEE Software, 34(6):58-63, Nov.
2017.

K. Mens, N. Cardozo, and B. Duhoux. A context-
oriented software architecture. In Proc. COP 16,
pages 7-12. ACM, 2016.

[31]

[32]

[33]

[34]

[36]

[38]

A. Murguzur, R. Capilla, S. Trujillo, O. Ortiz,
and R. E. Lopez-Herrejon. Context variability
modeling for runtime configuration of service-

based dynamic software product lines. In Proc.
SPLC 14, pages 2-9. ACM, 2014.

T. Poncelet and L. Vigneron. The phenomenal
gem: Putting features as a service on rails. Mas-
ter’s thesis, UCLouvain, Belgium, 2012.

C. Prehofer. Feature-oriented programming: A
new way of object composition. CC-PE, 13:465—
501, 2001.

G. Salvaneschi, C. Ghezzi, and M. Pradella.
Javactx: Seamless toolchain integration for
context-oriented programming. In Proc. COP 11,
pages 4:1-4:6. ACM, 2011.

G. Salvaneschi, C. Ghezzi, and M. Pradella.
Context-oriented programming: A software engi-
neering perspective. JSS, 85(8):1801 — 1817, Aug.
2012.

G. Salvaneschi, C. Ghezzi, and M. Pradella.
Contexterlang: Introducing context-oriented pro-
gramming in the actor model. In Proc. AOSD 12,
pages 191-202. ACM, 2012.

S. Urli, A. Bergel, M. Blay-Fornarino, P. Collet,
and S. Mosser. A visual support for decomposing
complex feature models. In Proc. VISSOFT 15,
pages 76-85. IEEE, Sept 2015.

J. von Pilgrim and K. Duske. Gef3d: A framework
for two-, two-and-a-half-, and three-dimensional
graphical editors. In Proc. SoftVis 08, pages 95—
104. ACM, 2008.

12

