-

View metadata, citation and similar papers at core.ac.uk brought to you byj‘: CORE

provided by Repository of the University of Namur

Institutional Repository - Research Portal

Dépébt Institutionnel - Portail de la Recherche

UNIVERSITE researchportal.unamur.be
DE NAMUK

RESEARCH OUTPUTS / RESULTATS DE RECHERCHE

Approach to Develop a Concept Inventory Informing Teachers of Novice Programmers'
Mental Models

Henry, Julie; Dumas, Bruno

Published in:
2020 IEEE Frontiers in Education Conference, FIE 2020 - Proceedings

DOI:
10.1109/fie44824.2020.9274045

Publication date:
2020

Document Version _
Early version, also known as pre-print

Link to publication

Citation for pulished version (HARVARD):

Henry, J & Dumas, B 2020, Approach to Develop a Concept Inventory Informing Teachers of Novice
Programmers' Mental Models. in 2020 IEEE Frontiers in Education Conference, FIE 2020 - Proceedings.,
9274045, Proceedings - Frontiers in Education Conference, FIE, vol. 2020-October, Institute of Electrical and
Electronics Engineers Inc., IEEE Frontiers in Education Conference - FIE2020, Uppsala, Sweden, 21/10/20.
https://doi.org/10.1109/fie44824.2020.9274045

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. May. 2021

https://core.ac.uk/display/425295071?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/fie44824.2020.9274045
https://researchportal.unamur.be/en/publications/approach-to-develop-a-concept-inventory-informing-teachers-of-novice-programmers-mental-models(d525ce09-303e-491e-9e6e-98effa8eee71).html
https://doi.org/10.1109/fie44824.2020.9274045

Approach to Develop a Concept Inventory
Informing Teachers of
Novice Programmers’ Mental Models

Henry Julie
Namur Digital Institute
University of Namur, Belgium
julie.henry @unamur.be

Abstract—This Research Full Paper proposes an approach for
developing and administering a concept inventory (CI). Based
on misconceptions, the CI should allow the identification of
mental models, but more importantly, the visualization of the
evolution of these mental models - from intuitive to correct mental
models - over a given period of teaching time. This approach
is illustrated by the development of three questionnaires, each
focusing on a basic programming concept: Variables, conditional
statements, and functions. Its main steps are: Identifying topics
and students’ misconceptions, creating questions that reflect
these misconceptions, administering questions to students, and
selecting most relevant questions to become part of the CI. The
research was conducted over four years with four groups of
students, as part of an introductory programming course. During
the first year, an ethnographic approach was applied to define
the problematic topics and identify the misconceptions of the
students. From the second to the fourth year, each year and for
one semester, students were assessed longitudinally, according to
a specific schedule. The developed questionnaires were iterated
three times and administered to more than 250 students.

Index Terms—Methodology, Questionnaire, Misconceptions,
Misunderstanding, Perceptions, Assessment, CS1

I. INTRODUCTION

Introductory programming courses result in rather high
failure and dropout rates. Amongst other factors, it appears that
novice programmers often hold misconceptions of program-
ming constructs that hinder their progress and may discourage
them from continuing their learning. Students use miscon-
ceptions, inter alia, to build their incorrect mental models.
Identifying misconceptions and mental models should help
teachers to provide appropriate intervention in the future.
Moreover, misconceptions are a prime source of material to
build assessment instruments, as concept inventories.

A concept inventory (CI) is a multiple-choice questionnaire
that seeks to measure a student’s knowledge of a set of
concepts and helps reveal their thinking patterns. In general,
a CI is administered before and after a period of teaching.
This is not the approach chosen in computer science edu-
cation, as students supposedly have no preconception of the
field. Teachers have to help students to build viable mental
models at an early stage. If they don’t, students may build
inappropriate mental models based on the misuse of their prior

Dumas Bruno
Namur Digital Institute
University of Namur, Belgium
bruno.dumas @unamur.be

knowledge and intuitive mental models. So, the understanding
of students’ intuitive mental models is crucial for preparing
suitable learning materials.

The research presented here proposes an approach for
developing and administering a CI based on misconceptions,
allowing the identification of mental models, but more im-
portantly, allowing the visualization of the evolution of these
mental models - from intuitive to correct mental models - over
a given period of teaching time. This approach is illustrated by
the development of three questionnaires, each focusing on a
basic programming concept: Variables, conditional statements,
and functions.

II. RELATED WORK

A. Effective Mental Models

According to Johnson-Laird [1], mental models are in-
complete, dynamic, and working models that humans use
to understand the world. In an educational context, they are
models that students create from a physical phenomenon, the
purpose of which is to be useful in enabling them to understand
these phenomenons [2]. They are built from the students’
perception of the world, or the comprehension of discourse.

Ben-Ari reveals that “a (beginning) computer science stu-
dent has no effective (mental) model of a computer” [3].
“Since computer science deals with artifacts—programming
languages and software, the creator of the artifact employed
a very detailed model and the learner must construct a similar,
though not necessarily identical, model” [3]. Norman [4]
suggests that a user constructs the mental models of computer
systems (target system) through interacting with them and
constantly refines the models throughout these interactions.
According to Ben-Ari [3], the models of computer artifacts
have to be explicitly taught. Students often take a program-
ming course without the effective mental models they need to
develop an appropriate understanding of the learning material.
Students are not able to build mental models just by listening
to lectures or reading textbooks. If they do, they may build
inappropriate mental models based on the misuse of their prior
knowledge and intuitive models.

Gentner [5] explained that the understanding of students’
intuitive mental models is crucial for preparing suitable learn-
ing materials: “If typical incorrect models are understood, then
instructors and designers can create materials that minimize
the chances of triggering errors”. Teachers should explicitly
help students to build viable mental models at an early stage so
that students themselves do not build incorrect mental models.

In the context of computer science education, some studies
have been conducted to investigate students’ mental models of
sequence and assignment [6], [7], object, variable and rule [8],
1/0 and control flow [9], and recursion [10], [11]. Each of these
studies identified students’ mental models from closed-ended
questionnaires or interviews. Some authors [12]-[15] elicited,
with closed-ended questionnaires as well as interviews, the
mental models that novice programmers have of fundamental
programming concepts.

However, the existing work is generally limited to a one-
time measurement of mental models at the end of learning.
Therefore, the research presented here also focuses on intuitive
mental models. If students have to build viable mental models
at an early stage, the teacher has to help them during the first
courses, especially because these courses are often the most
attended.

B. Existing Conceptions and Misconceptions

It is not easy for students to discard their existing con-
ceptions and adopt new ones [16]. Students often cannot
realize that their existing conceptions are in conflict with
the taught conceptions [17]. It is important, therefore, that
teaching is able to help students to become aware of this
issue and then to help them to construct coherent conceptions.
Existing conceptions are sometimes misconceptions. In the
context of programming education, Sorva [18] defined miscon-
ceptions as “understandings that are deficient or inadequate
for many practical programming contexts”, including among
others, misunderstanding of concepts. Quian [19] identified
misconceptions as errors in conceptual understanding, mis-
understanding of programming constructs such as variables
and assignment statements, conditional expressions or loops.
These misconceptions have to be identified to allow teachers to
provide appropriate intervention in the future [20]. In addition
to assessing students’ understanding of the core concepts in
introductory programming, it is recommended to explore the
evolution of misconceptions in relation to strategies and tools
used in courses, but also to individual differences [19]. Factors
usually linked with misconceptions include incomplete or non-
viable mental models [19].

According to Maier [21], the way to resolve or prevent
misconceptions is to directly confront the learner with an
experience that causes an imbalance. Challenging students’
existing ideas encourages them to detect problems in their
understanding and to motivate them to build appropriate
understandings [22]. Generally, a cognitive conflict teaching
strategy involves three steps: Investigating students’ prior
knowledge and existing conceptions; challenging students with

contradictory information; evaluating the conceptual change
between students’ prior ideas and current ones [23].

However, the existing work that focuses on misconceptions
generally does not refer to mental models. Yet the two notions
are related: Students use misconceptions, inter alia, to build
their incorrect mental models. Because students have to be
confronted with their misconceptions, these are a prime source
of material for teachers to build, in a first step, assessment
instruments. These instruments allow, in a second step, to
identify students’ mental models.

C. Concept Inventory

“«

According to Wittie et al., a concept inventory (CI) is “a
research-based multiple-choice test that seeks to measure a
student’s knowledge of a set of concepts while also capturing
conceptions and misconceptions they may have about the
topic under consideration” [24]. Developing a CI assessing
students’ understanding of the core concepts in introductory
programming allows teachers to identify students’ miscon-
ceptions and then to provide appropriate intervention in the
future [20]. This assessment instrument can be used as a
diagnostic test, to identify appropriate teaching and learning
activities, to assess the impact of changing instruction methods
on students’ understanding, to give feedback to students, to
compare instructional methods, or to evaluate overall learning
and instructional effects.

In computer science education, CIs have been pro-
posed [20], among others, for binary search trees [25], [26],
digital logic [27], hash tables [26], operating systems [28],
sequence and assignment [6], and CS1 programming funda-
mentals [29], [30].

Adams and Wieman describe an established procedure for
developing and validating a CI, the last three steps of which
are iterative [31].

1) Establish topics by reading domain programming ed-
ucation literature, self-reflection, and discussion with
experienced teachers or subject experts.

2) Identify how students’ thinking deviates from expert
thinking by observing and interviewing them, consulting
experienced teachers and domain misconception litera-
ture.

3) Create open-ended questions and administer them to
students to further examine issues raised in the previous
step.

4) Create closed-ended questions and establish distractors
based on the above steps.

5) Validate questions by reaching consensus among experts
that all responses are correct, ensuring that students
interpret the questions consistently, and that maladjusted
student thinking results in incorrect responses.

6) Administer the CI to large populations, applying statis-
tics to account for reliability and validity.

In contexts other than computer science education, a CI is

administered before (pre-test) and after (post-test) a period of
teaching. However, it has been argued that computer science

v

Administrer
questions to
large
populations

Create open-
ended
questions

=N

X

Validate
questions
and answers

}—l

Establish
topics

Identify
misconceptions

X

Enhance an |

Administrer
questions to
large
populations

Select
relevant
questions

Administer the
Clto large
populaticns

P |

existing Cl

Fig. 1: CI development approach

students do not have a preconception of the field and, there-
fore, that administering a CI as a pre-test may not be useful:
“It is likely that a majority of student misconceptions are a
result of instruction in computer science rather than based
upon a set of common, naive understandings [that students]
bring to the topic from their experience in the world” [30].
Currently, computer science topics are increasingly part of the
K-12 curriculum. Because students will more and more have
discovered basic programming concepts before the university,
the CI as a pre-test is becoming more and more relevant.

The research presented here proposes an approach for
developing and administering a CI based on misconceptions,
allowing the identification of mental models, but more im-
portantly, allowing the visualization of the evolution of these
mental models - from intuitive to correct mental models - over
a given period of teaching time.

[II. METHODOLOGY

An introductory programming course organized in the first
year of a bachelor’s degree at the University of Namur is the
measurement ground for the research described in this article.
This is a mandatory course for both students with a Computer
Science major and those with a Business Engineering one.
More than 120 students enrol each year and attend four 60-
minute lectures (theoretical classes) and three 60-minute labs
(practical classes) every week over a 13-week semester. Each
week, a new core programming concept (variable, conditional
statement, function, loop, among others) is covered. These
concepts are exemplified in Python.

A CI is developed for the course following an approach
similar to Adams and Wieman [31] which is depicted in
Figure 1. This development takes place over 4 years. The
main steps are: Identify topics and students’ misconceptions,
create questions that reflect these misconceptions, administer
questions to students, and select most relevant questions to
become part of the CIL.

A. Identify Topics and Related Misconceptions

During one semester in year 1, an ethnographic approach
was applied to define problem topics and to identify mis-
conceptions of students taking the introductory programming
course. This approach was repeated in the second semester of
the same year, with the same students, as part of a large-scale

programming project (+/- 10,000 lines of code) that students
have to undertake by applying what they have learned in the
introductory programming course.

To identify misconceptions, students were observed individ-
ually and in groups while programming. Informal discussions
were held regularly with them. Reading domain misconception
literature has helped to improve the observations. To define
problem topics, discussions were held each week over the
semester with the four teachers in charge. The results of the
exams were reviewed with these teachers. Informal discussions
were also held with experts in the field, teachers in other
contexts.

On the basis of the results obtained, it was decided that
the CI would focus on the first three concepts covered in
the course, namely the variable, the if statement, and the
function. These concepts correspond to the concepts learned
at the time of the dropout peak among students following the
introductory programming course.

B. Create Questions Reflecting Misconceptions

The question creation step varies depending on the pro-
gramming concept under consideration. One approach is based
on existing work, another is based on the observations made
during the ethnographic study.

Because the identification of mental models is crucial in
this research, a published questionnaire measuring the mental
models used by the students to solve variable assignment
problems [6] forms the basis for the questionnaire on vari-
ables. The questions that it contains are also inspiration
for the creation of questions in the two questionnaires on
if statements and on functions. Ethnographic observations
highlighted the major difficulties that students encounter with
the if statement and function programming concept. On
the basis of these results, open-ended questions (inspired by
the questionnaire on variables) were created to collect data to
define the mental models used by students to solve if statement
and function problems.

For all three questionnaires, three iterations were conducted
(starting from year 2) with each time a different group of
students from the two populations described, i.e. computer
science and business engineering students.

Questionnaire
on variables (3}

Questionnaire
on if statements
(3}

Questionnaire
on variables (1)

Questionnaire

if stat t
on variables (2} on i staements

Questionnaire
(1)

Questionnaire
on if statements

)

Questionnaire
on functions (1}

=

Questionnaire Questionnaire
on functions (2} on functions (3)

Theoretical class
on if statements

Practical class
on variables

Theoretical class
on variables

Practical class
on functions

Theoretical class
on functions

Practical class
on in statements

Semester
start

Fig. 2: Organization, on a timeline, of questionnaires administration during one semester

C. Administer Questions to Students

Each questionnaire was administered three times each year
from year 2 to year 4. Data were collected at specific times
throughout a semester (Figure 2), inspired by pretest-post-
test design [32]. For each concept, the questionnaire was
administered before the pertaining theoretical class, between
the theoretical class and the pertaining practical class, and after
the practical class. The questionnaires were presented to the
students as a formative assessment [33]. It was not specified
to the students that the questionnaires were the same for all
three administrations. If some students were still giving wrong
answers after a third questionnaire on the same topic, they
were contacted individually and offered help.

D. Select Relevant Questions

This step is, according to the approach presented here, the
last hurdle to develop the CI. At the time of writing, analyses
of the results allowing for a justified selection of questions
are underway. However, some selection criteria can already
be put forward. Three concepts will be tested in the CI.
The number of questions per concept will have to be defined
according to the number of different mental models used by
the students, and the number of misconceptions identified for
each concept. It will be necessary to measure the weight to be
given to the different types of questions in a questionnaire (e.g.
single, double, and triple assignments in the questionnaire on
variables). Finally, it will also be necessary to measure how
useful the repetition of certain types of questions is.

IV. QUESTIONNAIRE ON VARIABLES
A. Development

Dehnadi’s questionnaire! focuses on the variable program-
ming concept and on associated mental models [6]. It was
the subject of several scientific papers [34]-[37] and has been
selected as it allows for comparisons with other works.

Dehnadi’s questionnaire contains 12 elements and presents
three types of assignment problems to solve, exemplified in
Figure 3: Single (3 questions), double (3) and triple two-
variable assignments (6). The problems are presented in the

'Bornat proposed in 2016 an online version of this questionnaire -
http://www.eis.mdx.ac.uk/staffpages/r_bornat/tests/distribution.html

form of multiple-choice variable assignment problems, where
respondents have to choose the correct values contained in the
variables from a set of proposed answers (Figure 4).

The problems are proposed in the Java language. Students
learn programming concepts in a theoretical way. The lan-
guage used in the introductory programming course, Python,
is only one way to implement them. It is expected that the
students will be able to transfer their knowledge to another
language, especially Java. The differences in syntax between
an assignment in Python and an assignment in Java are minor:
Typing at variable declaration and semicolons. The students
did not even raise these differences during the administration
of the questionnaire.

inta =5;
intb = 3;
inta=10; intc=7;
inta=10; int b =20;
int b = 20; b=a;
b=a; c=b;
a=b; a=b; a=c
(a) Single (b) Double (c) Triple

Fig. 3: Examples of assignment problems

Dehnadi identified eleven different mental models (Table I)
used by the students to solve the proposed assignments. Each
multiple-choice question includes a unique correct answer and
distractors (Figure 4) that are carefully constructed to address
all Dehnadi’s mental models. A last open choice (“other”)
is always present if the student wishes to propose a new
solution. Dehnadi’s questions can be related to the major
misconceptions of variables identified by Sorva [18] (Table II,
Figure 4).

In year 3, an enhanced version of the Dehnadi’s question-
naire was created. Three questions were added, increasing the
number of questions to 15. These are duplicates, formatted in a
block programming language, of existing questions (Figure 5):
A single, a double, and a triple assignment problems. These
questions have been added to identify whether the answers
are dependent on the language. They have been strategically
placed in the questionnaire so that they are not placed directly
after their Java counterpart.

a=20,b=0 M1 MIS11
a=20,b=20 M2 or M11 | MIS9a
a=0,b=10 M3 MIS11

1. a=10,b=10 M4 or M11 | MIS9a, MIS11

inta=10; a=30,b=0 M5 MIS9b

intb =20; a=30,b=20 M6 MIS9b

a=b; a=0,b=30 M7 MIS9b, MIS11
a=10,b=30 M8 MIS9b, MIS11
a=20,b=10 M9 MIS12
a=10,b=20 M10 MIS9b

Fig. 4: A sample question from the original Dehnadi’s ques-

tionnaire

a=20,b=0 M1 MIS11
a=20,b=20 M2 or M11 | MIS9a
a=0,b=10 M3 MIS11
a=10,b=10 M4 or M11 | MIS9a, MIS11
a=30,b=0 M5 MIS9b
a=30,b=20 Mé MIS9b
a=0,b=30 M7 MIS9b, MIS11
a=10,b=30 M3 MIS9b, MIS11
a=20,b=10 M9 MIS12
a=10,b=20 M10 MIS9b

Fig. 5: An assignment problem in block programming lan-
guage

In year 4, the questionnaire was composed of 16 questions.
One question was duplicated and enriched with a metaphorical
representation of variables: The box metaphor. The idea was
to measure the impact of a visual aid to diminish the abstract
character of the variables.

Fig. 6: An assignment problem enriched with the box
metaphor

B. Administration

In year 2, Dehnadi’s questionnaire, in its original version,
was administered to 107 students [38]. This questionnaire
was expanded by 3 questions (15-elements questionnaire) and
was administered to 112 students in year 3 [39]. Finally, in
year 4, 104 students completed the 16-elements questionnaire.
Over three years of research, data was collected from 323
students through nine questionnaires (three years, with three
administrations yearly).

C. Concluding Comments

Inspired by Dehnadi’s questionnaire [6] and enhanced to
measure intuitive mental models, the 16-element questionnaire
on variables has proven its effectiveness. No mental model

has been added to the list defined by Dehnadi (Table I)
. The results obtained during the three-year administration
period make it possible to envisage, as future work, the
phase of selection of the relevant questions by measuring
the impact of question redundancy and attempts to diversify
the way problems are written (blocks programming language,
logigram, metaphors, etc.).

V. QUESTIONNAIRE ON IF STATEMENTS
A. Development

Based on the results of the ethnographic approach conducted
in the first year, the if statement seems to be the most easily un-
derstandable programming concept for students. Consequently,
a limited number of questions were asked in the first version
of the questionnaire devoted to this concept. These questions
are small if statement problems, comparable to the Dehnadi’s
questionnaire. Students have to resolve which values are stored

n “a” and “b” variables after code execution.

In year 2, the questionnaire on if statements presents only
three problems to solve, exemplified in Figure 7: If statement
consisting of a “then” clause and a condition that is true (a),
if statement consisting of “then” and “else” clauses and a
condition that is false (b), and nested if statements and two
conditions that are false (c). The problems were presented in
the form of open-ended questions. Because of the minor differ-
ences in syntax between an if statement in the Python language
and a if statement in the Java language, the problems are
proposed in Java, as in the questionnaire on variables. Based
on the results of the administration and informal discussions
with students about the questionnaire, seven mental models
were identified (Table III).

inta=5;
intb=23;
if(a<b)
a=a+b;
b=2;
inta=5; 1
intb=3; else |
if (a==b) if(a==b){
a=a+bh, a=a-b;
b=2; b=3;
) ! '
inta=5; else | else {
intb=23; a=a-b; b=a+b;
iffa=b){ b=3; a="7;
a=a+b; | }
] .
b=a; b= L=a;
(a) If statement, (b) If statement, (c) Nested

“then” clause “then-else” clauses if statements

Fig. 7: If statement problems included into the first version of
the questionnaire

In year 3, one question in the Java language was added:
An if statement consisting of a “then” clause and a condition
that is false. Two questions (one if-then and one if-then-
else statements) were duplicated and formatted in a block
programming language. The questionnaire was then composed
of 6 questions. Each question is a multiple-choice question

TABLE I: Dehnadi’s mental models for the assignment of variables [6]. Please note that the numbering does not correspond to the

one proposed by Dehnadi.

Mental Model ~ Description

Ml The value of the variable on the right is assigned to the variable on the left; the variable on the right is initialized to 0

M2 The value of the variable on the right is assigned to the variable on the left; the variable on the right retains its original value

M3 The value of the variable on the left is assigned to the variable on the right; the variable on the left is initialized to 0

M4 The value of the variable on the left is assigned to the variable on the right; the variable on the left retains its original value

M5 The value of the variable on the right is added to the value of the variable on the left; the variable on the right is initialized to 0

M6 The value of the variable on the right is added to the value of the variable on the left; the variable on the right retains its original value
M7 The value of the variable on the left is added to the value of the variable on the right; the variable on the left is initialized to 0

M8 The value of the variable on the left is added to the value of the variable on the right; the variable on the left retains its original value
M9 The values assigned to the two variables are exchanged

M10 Variables retain their original values

M1l Mathematical equality is applied

TABLE II: Sorva’s misconceptions related to the variable programming concept [18]

ID Description

MIS8

MIS9a A variable can hold multiple values at a time

MIS9b A variable “remembers” old values

MIS10 Variables always receive a particular default value upon creation
MIS11 Primitive assignment works in opposite direction

MIS12 Primitive assignment works both directions (swaps)

including a unique correct answer and distractors (Figure 8)
that are carefully constructed to address all identified mental
models. A last open choice (“other”) is always present if the
student wishes to propose a new solution. Some questions
can be related to the major misconceptions of if statements
identified by Sorva [18] (Table IV, Figure 8). However it
appears that, on the one hand, some misconceptions remain
difficult to measure through a question, and on the other hand,
that some answers provided by students reveal misconceptions
not identified by Sorva.

a=5b=5| Ml MIS523

1 a=8,b=8| M2or M6 | / or MIS26, MIS28, MIS36
inta<5: a=8b=5| M3
. ; a=8,b=3| Md4or M7 | MIS24, MIS26
intb=3; AC5b=3 MG
if (a>b) { E

a=a+b;
}
b=a;

Fig. 8: A sample question from the questionnaire on if
statements

In year 4, two problems were duplicated and proposed in
the form of a logigram (Figure 9). The idea was to measure
the impact of a visual aid to diminish the abstract character of
the if statement. The number of questions was thus increased
to 8.

B. Administration

In year 2, the questionnaire on if statements, in its first
version, was administered to 112 students. This questionnaire
was expanded by 3 questions (6-elements questionnaire) and
was administered to 101 students in year 3. Finally, in year

Magical parallelism: Several lines of a (simple non-concurrent) program can be simultaneously active or known

(1]
w o

o

Fig. 9: If statement problem in the form of a logigram

4, 108 students completed the 8-elements questionnaire. Over
three years of research, data was collected from 321 students
through nine questionnaires (three years, with three question-
naires yearly).

C. Concluding Comments

The different questionnaires on if statements highlighted
seven mental models (Table III). Because this concept is more
easily acquired by students, the list of mental models seems to
be exhaustive. The next step is to select the relevant questions.
Even if the number of questions (8) currently being tested is
small, taking them all is not necessarily useful.

VI. QUESTIONNAIRE ON FUNCTIONS

A. Development

The results presented in this section are based on the
same number of iterations as the previous questionnaires, i.e.

Mental Model

TABLE III: Mental models for the if statements

Description

Ml If statement is not executed, nor “then” (even if the condition is true) nor “else” clause (if it exists). Code before and after if statement
is correctly executed.
M2 Code before and after, and if statement (“then” OR “else” - if it exists - clause according the condition) are correctly executed.
M3 Code executed in if statement has an effect only on the variables that are changed in it. Code after if statement is executed but is not
affected by the changes made in if statement.
M4 Code before and if statement (“then” OR “else” - if it exists - clause according the condition) are correctly executed. Code after if
statement is not executed.
M5 If statement is not executed, nor “then” (even if the condition is true) nor “else” clause (if it exists). Code after is considered as part
of if statement and then is not executed.
M6 Code before and after, and if statement (“then” AND “else” - if it exists - clauses regardless of condition) are executed.
M7 Code before and if statement (“then” AND “else” - if it exists - clauses regardless of condition) are executed. Code after if statement
is not executed.
TABLE IV: Sorva’s misconceptions related to the conditional statement programming concept [18]
ID Description
MIS23 Difficulties in understanding the sequentiality of statements
MIS24 Code after if statement is not executed if the then clause is
MIS25 If statement gets executed as soon as its condition becomes true
MIS26 A false condition ends program if no else branch
MIS27 Both then and else branches are executed
MIS28 The then branch is always executed
MIS29 Using else is optional (the next statement is always the else branch)
MIS36 All statements of a program get executed at least once

three iterations. It appears that this number of iterations is 3;;”(”
not sufficient to identify all the mental models used by the . returna + 1 ;:f?(a):
students. The situation proves to be much more complex than def f(a) : defg(a): return a + 1
. . return a + 1 return a * 10 defg(a):
for the other concepts. Moreover, according to the observations def g(a) defh(a) retarn a % 10
made during ethnographic approach, students have difficulty det)‘““”“a* 10 ?m:u:f(zahg(a) defh(a): 2
. . . . lef h(a) : =ax
to express their misconceptions about the function. From a a=ax?2 E(a) return f(a) + g(a)
. . . . =a —
literature perspective, the misconceptions defined by Sorva Yo, i@ e . 2=
cover more than the paradigm discussed in the introductory (b) Call with no)
a O Ca storage C alls with storage
(a) No call ¢ (c) Calls with st

programming course which is the specific context of this
research. Thus it was decided, as a first approach, to focus
on the most prevalent misconceptions to build questions.

In its first version (year 2), the questionnaire on functions
presents only four problems to solve, exemplified in Figure 10:
Code with defined functions but no function is called (a)
- two questions -, code with defined functions, a function

Fig. 10: Function problems included in the first version of the
questionnaire

ter (b), and calls of functions with two parameters (c).

is called but return value is not stored (b), and code with e z:f fl(x)l
defined functions, functions are called, and return value is def f(a): R a=3
stored (c). The problems were presented in the form of open- return 3*a return a def f(x,y):
ended questions. b =f(a) a=1(1) return X +y
. . . c=f(b) b = f(a) b =1f(a,3)
Because of the differences in syntax between a function ¢ =f(b,0)

declaration in the Python language and a function declaration
in the Java language, the problems are proposed in Python.
Indeed, given the difficulties encountered by the students
with the concept of function, the change of language would
have added problems related more to syntax than to the
understanding of the concept.

In year 3, three additional questions expanded the question-
naire (Figure 11). These questions focus on misconceptions
about function parameters: Two calls of a same function, but
with different parameters (a), a call with numeric parame-

(a) A same function, (b) A numeric

different parameters parameter (c) Two parameters

Fig. 11: Function problems added in year 3

Given the wide variety of responses provided in years 2
and 3, it was difficult to define the distractors of the multiple-
choice questions. The most frequent answers were proposed as
distractors in year 4. An attempt was made to define the mental
models associated with these responses, but these definitions
still need to be improved and the list of mental models is

TABLE V: Mental models for the functions (question 4)

Mental Model ~ Description
Ml Function code is perhaps executed but no value is returned. “What happens in the function stays in the function”. Code before and
after the call is executed.
M2 Code before the call, called functions codes and code after the call are correctly executed.
M3 Function code is partially executed. Function calls within a function are not taken into account. The “return” keyword causes by default
the return of the variable passed in parameter. Code before and after the call is executed.
M4 Code before the call, called functions codes and code after the call are executed, but the value of the variable passed in parameter
remains constant despite the function codes.
M5 All Code is executed according to the order in which the functions are defined
M6 Function code is partially executed: Only the “return” instructions are executed. Code before and after the call is executed.
TABLE VI: Selected Sorva’s misconceptions related to the function programming concept [18]
ID Description
MIS37 Subprogram code is executed according to the order in which the subprograms are defined
MIS38 A return values does not need to be stored (even if one needs it later)
MIS39 A method can be invoked only once
MIS40 Numbers or numeric constants are the only appropriate actual parameters corresponding to integer formal parameters
MIS42 Difficulties understanding the invocation of a method from another method
MIS43 Confusion over where return values go
MIS46 Parameter passing requires different variable names in call and signature
MIS47 Subprograms can (routinely) use the variables of calling subprograms
MIS50 A function (always) changes its input variable to become the output
MIS53 Upon return, the value of a variable changes to match a previously given parameter

4. b=3 M1 MIS49
a=3 b=67 M2 /
def f(a): b=6 M3 MIS38, MIS42, MIS53
returna +1 b=40 M4 MIS47
def g(a): b =280 M5 MIS37
return a * 10 b=34 M6 /
def h(a):
a=a*2
return f(a) + g(a)
a=f(a)
b=a

Fig. 12: A sample question from the questionnaire on functions

incomplete. Identification work shall also be continued with
respect to misconceptions related to each question (Table VI,
Figure 12).

B. Administration

In year 2, the questionnaire on functions, in its first version,
was administered to 111 students. This questionnaire was
expanded by 3 questions and was administered to 94 students
in year 3, and to 57 students in year 4. Over three years of
research, data were collected from 262 students through nine
questionnaires (three years, with three administrations yearly).

C. Concluding Comments

The questionnaire on functions is still under development
at the time of writing this article. It appears that this number
of iterations is not sufficient to identify all the mental models
used by the students. The situation for the function program-
ming concept proves to be much more complex than for the
other concepts. The step of selecting the relevant questions to
create the CI is, therefore, not yet possible for the function
concept.

VII. CONCLUSION AND FUTURE WORK

This research proposes an approach for developing and
administering a concept inventory (CI). Based on misconcep-
tions, the CI should allow the identification of mental models,
but more importantly, the visualization of the evolution of
these mental models - from intuitive to correct mental models
- over a given period of teaching time. The approach is
illustrated by the development of three questionnaires, each fo-
cusing on a basic programming concept: Variables, conditional
statements, and functions. Its main steps are: Identifying topics
and students’ misconceptions, creating questions that reflect
these misconceptions, administering questions to students, and
selecting most relevant questions to become part of the CI. The
research was conducted over four years with four groups of
students (one different per year), as part of an introductory
programming course. During the first year, an ethnographic
approach was applied to define the problematic topics and
identify the misconceptions of the students (group 1) taking the
course. From the second to the fourth year, each year and for
one semester, students (from group 2 to group 4) were assessed
longitudinally, according to a specific schedule. The developed
questionnaires were iterated three times and administered to
more than 250 students.

All questionnaires appear to be effective in identifying
mental models. Therefore, the CI composed of a selection
of questions from each of these questionnaires should also
be effective in this task. Although the results were not pro-
cessed for all questionnaires, the studies conducted on the
questionnaire on variable concerning the evolution of mental
models show that the administration methodology is effective.

It will then be interesting to implement the CI in different
contexts (by adapting the administration methodology) and to
measure its interest and impact as a pedagogical tool (helping
to detect difficulties among novices, assessing the knowledge
of novices, etc.).

[1]

[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

P. N. Johnson-Laird, Mental Models: Towards a Cognitive Science of

Language, Inference, and Consciousness.
1983, no. 6.

I. M. Greca and M. A. Moreira, “Mental models, conceptual models, and
modelling,” International journal of science education, vol. 22, no. 1,
pp. 1-11, 2000.

M. Ben-Ari, “Constructivism in computer science education,” Journal
of Computers in Mathematics and Science Teaching, vol. 20, no. 1, pp.
45-73, 2001.

D. A. Norman, “Some observations on mental models.” Lawrence
Erlbaum:, p. 99, 1983.

D. Gentner and A. L. Stevens, Mental Models. Psychology Press, 2014.
S. Dehnadi, “A cognitive study of learning to program in introductory
programming courses.” Ph.D. dissertation, Middlesex University, 2009.
R. Bornat, S. Dehnadi et al., “Mental models, consistency and program-
ming aptitude,” in Proceedings of the tenth conference on Australasian
computing education-Volume 78. Australian Computer Society, Inc.,
2008, pp. 53-61.

M. A. Sasse, “Eliciting and describing users’ models of computer
systems,” Ph.D. dissertation, University of Birmingham, 1997.

P. Bayman and R. E. Mayer, “A diagnosis of beginning programmers’

Harvard University Press,

misconceptions of basic programming statements,” Communications of

the ACM, vol. 26, no. 9, pp. 677-679, 1983.

H. Kahney, “What do novice programmers know about recursion,” in
Proceedings of the SIGCHI conference on Human Factors in Computing
Systems. ACM, 1983, pp. 235-239.

D. M. Kurland and R. D. Pea, “Children’s mental models of recursive
logo programs,” Journal of Educational Computing Research, vol. 1,
no. 2, pp. 235-243, 1985.

V. Vainio and J. Sajaniemi, “Factors in novice programmers’ poor tracing
skills,” in ACM SIGCSE Bulletin, vol. 39, no. 3. ACM, 2007, pp. 236—
240.

L. Ma, J. Ferguson, M. Roper, and M. Wood, “Investigating and improv-
ing the models of programming concepts held by novice programmers,”
Computer Science Education, vol. 21, no. 1, pp. 57-80, 2011.

L. Ma, “Investigating and improving novice programmers’ mental
models of programming concepts,” Ph.D. dissertation, University of
Strathclyde, 2007.

J. Sajaniemi, M. Kuittinen, and T. Tikansalo, “A study of the develop-
ment of students’ visualizations of program state during an elementary
object-oriented programming course,” Journal on Educational Resources
in Computing (JERIC), vol. 7, no. 4, p. 3, 2008.

J. Davis, “Conceptual change,” Emerging perspectives on learning,
teaching, and technology, vol. 19, 2001.

P. W. Hewson and M. G. Hewson, “The role of conceptual conflict in
conceptual change and the design of science instruction,” Instructional
Science, vol. 13, no. 1, pp. 1-13, 1984.

J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” ACM
Transactions on Computing Education (TOCE), vol. 13, no. 4, p. 15,
2013.

Y. Qian and J. Lehman, “Students’ misconceptions and other difficulties
in introductory programming: A literature review,” ACM Trans. Comput.
Educ., vol. 18, no. 1, pp. 1:1-1:24, Oct. 2017.

C. Taylor, D. Zingaro, L. Porter, K. C. Webb, C. B. Lee, and M. Clancy,
“Computer science concept inventories: past and future,” Computer
Science Education, vol. 24, no. 4, pp. 253-276, 2014.

S. Maier, “Misconception research and piagetian models of intelligence,”
in Proc. 2004 Oklahoma Higher Education Teaching and Learning
Conference, 2004.

P. Scott, H. Asoko, and R. Driver, “Teaching for conceptual change: A
review of strategies,” Research in physics learning: Theoretical issues
and empirical studies, pp. 310-329, 1992.

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

M. Limén, “On the cognitive conflict as an instructional strategy for
conceptual change: A critical appraisal,” Learning and instruction,
vol. 11, no. 4-5, pp. 357-380, 2001.

L. Wittie, A. Kurdia, and M. Huggard, “Developing a concept inventory
for computer science 2,” in Frontiers in Education Conference (FIE).
IEEE, 2017, pp. 1-4.

H. Danielsiek, W. Paul, and J. Vahrenhold, “Detecting and understanding
students’ misconceptions related to algorithms and data structures,” in
Proceedings of the 43rd ACM technical symposium on Computer Science
Education. ACM, 2012, pp. 21-26.

K. Karpierz and S. A. Wolfman, “Misconceptions and concept inventory
questions for binary search trees and hash tables,” in Proceedings of the
45th ACM technical symposium on Computer science education. ACM,
2014, pp. 109-114.

G. L. Herman, M. C. Loui, and C. Zilles, “Creating the digital logic
concept inventory,” in Proceedings of the 41st ACM technical symposium
on Computer science education. ACM, 2010, pp. 102-106.

K. C. Webb and C. Taylor, “Developing a pre-and post-course concept
inventory to gauge operating systems learning,” in Proceedings of the
45th ACM technical symposium on Computer science education. ACM,
2014, pp. 103-108.

A. Luxton-Reilly, B. A. Becker, Y. Cao, R. McDermott, C. Mirolo,
A. Miihling, A. Petersen, K. Sanders, J. Whalley et al., “Developing
assessments to determine mastery of programming fundamentals,” in
Proceedings of the 2017 ITiCSE Conference on Working Group Reports.
ACM, 2018, pp. 47-69.

A. E. Tew, “Assessing fundamental introductory computing concept
knowledge in a language independent manner,” Ph.D. dissertation,
Georgia Institute of Technology, 2010.

W. K. Adams and C. E. Wieman, “Development and validation of
instruments to measure learning of expert-like thinking,” International
Journal of Science Education, vol. 33, no. 9, pp. 1289-1312, 2011.

M. Shuttleworth, “Pretest-posttest designs,”
https://explorable.com/pretest-posttest-designs, retrieved Jun 18,
2019.

D. Fisher and N. Frey, Checking for Understanding: Formative Assess-
ment Techniques for Your Classroom. ASCD, 2014.

A. Ahadi, R. Lister, and D. Teague, “Falling behind early and staying
behind when learning to program,” in Proceedings of the 25th Psychol-
ogy of Programming Conference, PPIG, vol. 14, 2014.

R. Bornat, S. Dehnadi, and D. Barton, “Observing mental models in
novice programmers,” in 24th Annual Workshop of the Psychology of
Programming Interest Group, London., year=2012.

M. Ford and S. Venema, “Assessing the success of an introductory
programming course,” Journal of Information Technology Education:
Research, vol. 9, pp. 133-145, 2010.

M. E. Caspersen, K. D. Larsen, and J. Bennedsen, “Mental models and
programming aptitude,” in ACM SIGCSE Bulletin, vol. 39, no. 3. ACM,
2007, pp. 206-210.

J. Henry and B. Dumas, “Towards the identification of profiles based on
the understanding of programming concepts: the case of the variable,”
in 2019 IEEE Frontiers in Education Conference (FIE). 1EEE, 2019,
pp. 1-8.

——, “Developing an assessment to profile students based on their
understanding of the variable programming concept,” in Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer
Science Education, 2020, pp. 33-39.

