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Abstract
Malaria burden is increasing in sub-Saharan cities because of rapid and uncontrolled urbanization.
Yet very few studies have studied the interactions between urban environments and malaria.
Additionally, no standardized urban land-use/land-cover has been defined for urban malaria
studies. Here, we demonstrate the potential of local climate zones (LCZs) for modeling malaria
prevalence rate (Pf PR2−10) and studying malaria prevalence in urban settings across nine
sub-Saharan African cities. Using a random forest classification algorithm over a set of 365 malaria
surveys we: (i) identify a suitable set of covariates derived from open-source earth observations;
and (ii) depict the best buffer size at which to aggregate them for modeling Pf PR2−10.

Our results demonstrate that geographical models can learn from LCZ over a set of cities and be
transferred over a city of choice that has few or no malaria surveys. In particular, we find that
urban areas systematically have lower Pf PR2−10 (5%–30%) than rural areas (15%–40%). The
Pf PR2−10 urban-to-rural gradient is dependent on the climatic environment in which the city is
located. Further, LCZs show that more open urban environments located close to wetlands have
higher Pf PR2−10. Informal settlements—represented by the LCZ 7 (lightweight lowrise)—have
higher malaria prevalence than other densely built-up residential areas with a mean prevalence of
11.11%. Overall, we suggest the applicability of LCZs for more exploratory modeling in urban
malaria studies.

1. Introduction

In sub-Saharan Africa, malaria transmission is main-
tained by mosquito vectors that are predominantly
found in rural environment (Hay et al 2005,Machault
et al 2010). But rapid and uncontrolled urbaniza-
tion in sub-Saharan Africa (Union 2017, Wolff et al
2020) increased the amount of exposed urban inhab-
itants. The inherent appearance of informal and
planned residential neighborhoods with their social
inequalities (Eloundou-Enyegue and Giroux 2012,
Obeng-Odoom 2015, Korah et al 2019), and the

increasing areas allocated to urban agriculture and
neighboring wetlands have led to spatial disparit-
ies in urban malaria risks (Klinkenberg et al 2005,
Baragatti et al 2009, Dongus et al 2009, Kienberger
and Hagenlocher 2014, Kabaria et al 2016). Under-
standing the interactions between the heterogeneous
urban environments and malaria have thus become
urgent and essential for tackling malaria burden in
Africa (Georganos et al 2020).

Because of the complex nature of risk factors in
urban environments most of urban malaria research
has been constrained to the level of case studies and
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major review papers (e.g. Robert et al (2003), Hay
et al (2005), De Silva and Marshall (2012)). Fur-
thermore, few spatial modeling efforts of malaria—
or its vectors—prevalence in urban environments
have been done (e.g. Machault et al (2012), Borderon
(2013), Kabaria et al (2016), Georganos et al (2020)).
Additionally, malaria risk mapping initiatives at the
global, continental or national level (Guerra et al
(2006, Tatem et al 2008, Raso et al 2012, Noor et al
2014, Bhatt et al 2015) simplified urban settlements as
a binary covariate, without considering their hetero-
geneities in forms and functions (Bennett et al 2013,
Giardina et al 2015). As a consequence, there are to
date no standardized approaches for classifying the
urban environment for malaria studies. The devel-
opment of such approaches is further hampered by
scarce documentation on cities’ forms and functions
in tropical Africa. To address this scarcity, novel and
open source tools have been developed, offering an
universal and simple representation of urban land-
scapes based on local climate zones (LCZs; Stewart
and Oke (2012)). Currently, the World Urban Data-
base and Access Portal Tool (WUDAPT; Bechtel et al
(2015), Ching et al (2018)) is leading the way for
acquiring a city- to continental-wide land-use/land-
cover (LULC) classification based on LCZs, thereby
offering a detailed representation of the urban het-
erogeneities (Bechtel et al 2019, Demuzere et al 2019a,
2019b). LCZs describe an urban LULCusing 10 urban
classes and 7 natural ones. Each class is explanatory
of a peculiar urban typology and its inherent climate.
They are therefore defined in terms of impervious
andpervious coverage, building densities and heights,
anthropogenic heat fluxes and heat storage capacities
(Stewart and Oke 2012). While the latter two are of
less direct importance for malaria studies, they affect
the vector’s survival capacity via their influence on
urban climates (Gething et al 2010, 2011, Dalrymple
et al 2015). Consequently, Brousse et al (2019) pro-
posed the use of LCZs to relate urban climates to
urban malaria risk and added a natural LCZ for that
purpose: LCZ wetlands (LCZ W). With LCZs gain-
ing in popularity for urban design and health stud-
ies (Middel et al 2014, Geletic et al 2018, Aminipouri
et al 2019, Vandamme et al 2019), we hypothesize that
they could be used as an universal and standard LULC
classification for urban malaria studies in tropical
Africa.

In this study we: (i) define a set of predictive vari-
ables obtained from LCZs and freely-accessible satel-
lite remote sensing data to study malaria prevalence
across tropical African cities; (ii) identify the spatial
scale that is most suitable for an exploratory model-
ing of the heterogeneous urban environments’ influ-
ences on malaria prevalence; (iii) evaluate whether
the information obtained from the set of predictive
variables, and more specifically from LCZs, is trans-
ferable across African cities to study malaria preval-
ence; and finally (iv) predict malaria prevalence in

multiple tropical African cities to analyze its system-
atic spatial patterns. We analyze the results to show
the added value of LCZs for urbanmalaria studies and
discuss its potential use for future research.

2. Data andmethodology

2.1. Malaria surveys: data type and filtering
Data on malaria prevalence has been assembled
over several years for multiple cities to provide
a comprehensive overview of malaria infec-
tion risk across African cities (Snow et al
(2017); http://doi:10.7910/DVN/Z29FR0). Malaria
prevalence—or the Plasmodium falciparum parasite
rate—is here defined as the fraction of examined indi-
viduals tested positive during a single cross-sectional
survey for malaria. Plasmodium falciparum parasite
rate is usually standardized for children aged 2–10
(hereafter referred to as Pf PR2−10; Smith et al (2007))
to enable comparison among surveys that have dif-
ferent age ranges’ targets. The Pull & Grab-based
algorithm (Pull and Grab 1974) was considered the
best by Smith et al (2007) for calculating Pf PR2−10.
As our goal is to study the impact of urban environ-
ments on Pf PR2−10, the work solely focuses on accur-
ately geolocated (with GPS coordinates or with the
location validated in Google Earth; Georganos et al
(2020)) survey estimates of Pf PR2−10 with coher-
ent metadata recorded with at least 20 individu-
als sampled between 2005 and 2015 and who were
aged below 18 years. In this way, we make sure that
the standardization proposed by Smith et al (2007)
includes enough examined people, while concentrat-
ing on children and adolescents with reduced mobil-
ity. This also avoids the inclusion of positive adults
in the standardization, who tend to be confronted
to a variety of urban environments because of their
daily migrations (Andreasen et al 2017). This results
in a sub-selection of 385 surveys covering nine cit-
ies (see figure 1 and table S1) and with a rounded
average amount of 69 examined people. These sur-
veys are composed of random selection of schools
and communities across the urban environment.
The final selection consists of (see figure S1): Abid-
jan (Ivory Coast), Accra (Ghana), Dakar (Senegal),
Dar Es Salaam (Tanzania), Freetown (Sierra Leone),
Kampala (Uganda), Kinshasa (Democratic Republic
of Congo), Lagos (Nigeria) and Mombasa (Kenya).
The rounded averaged amount of examined people
per city is of 59, 104, 46, 79, 27, 71, 65, 94 and 85,
respectively. All nine cities are: (i) endemic for mal-
aria, (ii) metropolises of more than 1 M inhabitants,
(iii) built at latitudes between 10.0◦S and 20.0◦N, and
(iv) subject to the seasonal shifts of the inter-tropical
convergence zone.

2.2. Mapping LCZs
We mapped the nine cities in the form of LCZs since
they were not publicly available on the WUDAPT
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Figure 1. Accurately geolocalized malaria surveys and their respective Pf PR2−10 values in % plotted over the LCZ map of each
selected city.

portal (Ching et al 2018). Our mapping method
is based on Demuzere et al (2019a), Demuzere
et al (2019b), applying Google’s Earth Engine (GEE,
Gorelick et al (2017)) random forest (RF) classifica-
tion algorithm (Breiman 2001) on a variety of earth
observation datasets. The model is trained using a set
of training areas (polygons) that are digitized over
Google Earth images for each city. These training
areas have been gathered during a mapathon held
at the Université Libre de Bruxelles on the 15th of
November 2019. To evaluate the model we bootstrap
the RFmodel 25 times using 70%of the data for train-
ing and evaluating against the remaining 30%. We
perform this evaluation in an iterative way where the
original sets of training areas are reworked after each
iteration until we obtain a satisfactory overall accur-
acy (OA) measure of at least 50%, as proposed by
Bechtel et al (2019). Othermeasures are employed for
assessing the mapping quality: the OA for the urban
LCZ classes only (OAu), the OA of the built versus
natural LCZ classes only (OAbu), and the weighted
accuracy (OAw) (see Bechtel et al (2017), Bechtel et al
(2020)). Optimal F1 accuracies per LCZ—‘which rep-
resents the arithmetic mean of the class-wise F1 values,
which are calculated as the weighted harmonic mean

of the user’s (UA) and producer’s accuracy (PA)’; in
Verdonck et al (2019), pp. 6—are also desirable but
can be highly influenced by their respective number
of training areas.

The predictive variables used in Demuzere et al
(2019a) are expanded with Sentinel 1 Gray Level Co-
occurrence Matrix textures with a 11 by 11 window
size to better capture the heterogeneities of built up
surfaces (Forget et al 2018) as well as Sentinel 2 red
edge bands to improve the mapping of LCZ wetlands
(Forkuor et al 2018, Kaplan and Avdan 2018) (for a
complete list of the variables used in the LCZmapping
see table S2)).

Once all OAs are above the recommended value
of 0.5 (figure 2), all training areas are used to map
each city in the form of LCZ at 100 m resolution.
Reaching this value for all nine cities took about 10
working days at full time by an expert (see Brousse
et al (2020a) for more information on the challenges
for mapping LCZ in sub-Saharan Africa). As single
pixels do not constitute an LCZ class, and granular-
ity is often present in the raw LCZ maps, the raw
LCZ maps are post-processed using a Gaussian fil-
ter (Demuzere et al 2020). Compared to the default
majority post-classification filter with a radius of

3
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Figure 2. Boxplots of different accuracy indicators’ values for each city. In purple are, from left to right, the overall accuracy OA,
the overall accuracy of urban LCZ OAu, the overall accuracy of the built up against the natural environment OAbu and the
weighted accuracy OAw. F1 accuracies per LCZ are given following the same LCZ color scale than in figure 1. Zoomed in boxplots
per city are provided in supplements (figures S2(a)–(h)).

300 m, this Gaussian approach takes into account
typical patch sizes for each LCZ class (e.g. rivers
are often more narrow than residential neighbor-
hoods). This way, informal settlements, river chan-
nels, and wetlands, for example, are retained after fil-
tering (figure 1).

2.3. Acquiring remotely sensed predictive variables
As previous studies demonstrated, rainfall, near-
surface and surface temperatures, LULC, surface
moisture, distance to breeding sites, vegetation
indices and elevation variables are commonly used for
mapping malaria prevalence (see Weiss et al (2015),
Parselia et al (2019)). Here, we define open access-
ibility to the data, exhaustive coverage, and hori-
zontal and temporal resolutions as major criteria
for choosing our data sources. This means that we
derive our covariates from freely-available remotely
sensed earth observation products without using

in-situ information. We decide to exclude both near-
surface and surface temperature from the covariates
as (i) spatially explicit urban near-surface temper-
atures are difficult to obtain from remotely sensed
data only (Zhou et al 2019, Venter et al 2020) and
(ii) urban land surface temperatures cannot suffice as
they are known to be subject to high uncertainties—
the latter being mostly related to the complex three-
dimensional landscape of cities (Voogt andOke 1998,
Voogt and Oke 2003). Moreover, our cities are all loc-
ated in a tropical climate—defined by a monthly
mean temperature that does not decrease below
18 ◦C—that makes their climate environments all
suitable for transmission of malaria across the year
(also see figure 3(b) from Gething et al (2011)).

Hence, we gather: (i) LCZ maps at a native res-
olution of 100 m for each city representative of
years 2017–2019—assuming that the urbanization
rate over the past 14 years was not sufficient to

4
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Figure 3. Schematic representation of the workflow followed in this study for modeling Pf PR2−10 across nine African cities.

impact malaria prevalence in the studied cities—to
capture the generic influence of common LULC fea-
tures across cities on Pf PR2−10 (e.g. distance to LCZ
wetlands introduced in Brousse et al (2019) or pro-
portions of densely built LCZs); (ii) averaged normal-
ized difference vegetation and wetness indices (NDVI
and NDWI, respectively) and their temporal stand-
ard deviations (σ) over the period 2005–2019 from
the Landsat 5 and 8 libraries (at a native resolution
of 30 m) to capture the local effect of vegetation and
soil moisture on Pf PR2−10; (iii) averaged elevation of
30 m pixels in 100 m pixels for the year 2000 from

the Shuttle Radar Topography Mission digital to cap-
ture the differences of Pf PR2−10 across cities based on
their elevation and also within cities (e.g. low-lying
and elevated areas); and (iv) yearly averaged max-
imum, minimum and mean monthly precipitation at
0.1◦ resolution over the period 2005–2017 from the
multi-source weighted-ensemble precipitation data-
set (MSWEPv2; Beck et al (2017), Beck et al (2019))
to capture the influence of the seasonal amplitude of
precipitation onPf PR2−10 across cities. All data, apart
from theMSWEP product, are pre-processed on GEE
and extracted at the LCZ resolution of 100 m.

5
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Figure 4. RMSE, MAE and R2 scores for the 25 bootstraps of each buffer size (250 m, 500 m, 1 km and 2 km) using the four
different sets of variables (ALL, PROP, DIST and VSURF). Averaged scores are in thick points, median are represented by the
down triangle, and the inter-quartile range is given by the summits of the left and right carets.

2.4. Selection of predictive variables and buffer
sizes
Four buffer radii centered over the surveys’ loca-
tions are tested for predicting malaria prevalence
using the above-mentioned variables (figure 3(A)):
250 m, 500 m, 1 km and 2 km. This step permits
the definition of an optimal scale at which relations
between the heterogeneity of urban environments
and Pf PR2−10 in cities can be studied. This step is
necessary as both the examined people and the vector
can move throughout the urban environment. Yet, as
our sample is filtered to keep only schools and com-
munity surveys focusing on children with lowered
mobility, and since mosquitoes tend to migrate only
over a few hundreds of meter to few kilometers in
urban areas for feasting (Byrne 2007, Machault et al
2010, Verdonschot and Besse-Lototskaya 2014), we
do not define a buffer larger than 2 km. We chose
to use an RF model because it (i) efficiently handles
noisy and/or multisource data, (ii) focuses on aver-
age relationships between the covariates and the pre-
dicted variable and (iii) manages data that are coming
from temporally and spatially heterogeneous surveys
(Georganos et al 2019).

For the normalized difference indices and the
elevation variables we extract the mean of the buf-
fer. For the precipitation data, we assign the under-
lying value to the centroid of the buffer because the
horizontal resolution of 0.1◦ is greater than the max-
imum buffer radius of 2 km. For the LCZ inform-
ation, we derive the proportions of LCZ contained

within the buffer, and the averaged minimum dis-
tance of points within the buffer to other LCZ
classes outside of the buffer. Because of the sim-
ilarities between some LCZ—as demonstrated by
Bechtel et al (2017), Bechtel et al (2020)—in terms
of densities and land cover types, we chose to merge
some of them. Additionally, the amount of sur-
veys comprised in high- and mid-rises LCZ classes
was small (see table S1, which is available online at
https://stacks.iop.org/ERL/15/124051/mmedia), sup-
porting the merging of similar classes to ease the
interpretation. The same rationale was applied for
natural classes. LCZ were thus merged as follows:
LCZ compact (compact high-, mid- and low-rise:
LCZ1, 2 and 3), LCZopen (openhigh-,mid- and low-
rise: LCZ 4, 5 and 6), LCZ industrial (large lowrise
and heavy industry: LCZ 8 and 10)), LCZ trees (dense
trees and open trees: LCZ A and B)), LCZ lowland
(bush—scrubs and lowland: LCZC andD)). Remain-
ing LCZ classes (LCZ 7: lightweight lowrise—also
considered as informal settlements, LCZ 9: sparsely
built; LCZ G: water—same as in the LCZ classifica-
tion but constrained to open and running waters, and
LCZW:wetlands—introduced in Brousse et al (2019)
as an important variable for malaria epidemiological
studies) are retained as standalone variables for the
Pf PR2−10 model. LCZs E and F (bare rock or paved,
and bare soil or sand, respectively) are excluded as
predictive variables because they are constrained to
beaches and airports and are thus not representative
of major features in the urban environment.
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Figure 5. RMSE, MAE and R2 scores for each city using All Other Cities strategy (in red), All Cities strategy (in purple) and Single
City strategy (in green) using buffers of 1 km. Scores for each bootstrap are in light colors while thick points are the averaged
scores, median are represented by the down triangle, and the inter-quartile range is given by the summits of the left and right
carets.

Additionally, the sensitivity of the Pf PR2−10

model is tested with respect to its input features. We
used four different sets of input features (figure 3(A)):
(i) all predictive variables (ALL), (ii) all the variables
excluding the distances to LCZs (PROP), (iii) all the
variables excluding the LCZ proportions (DIST) and
(iv) the most important variables for each buffer size
given by the interpretation step of theVSURFpackage
in R (VSURF; Genuer et al (2015)).

All the surveys from each city aremerged together
to test the most predictive set of variables, for all cit-
ies and per buffer size. We then run the RF regres-
sion model (Breiman 2001) 25 times by following a
bootstrapping procedure that randomly selects 80%
for training themodel and 20%of the data for testing.
In addition, the random selection is stratified accord-
ing to cities’ amount of surveys ensuring that all cit-
ies are always used for training and testing the model
in a coherent manner across each bootstrap. Based
on root-mean squared error (RMSE), mean abso-
lute error (MAE) and the coefficient of determination
(R2)—which are calculated on the 20% remaining for
testing—an optimal set of variables at a determined
buffer size is used for training the RFmodel andmod-
eling Pf PR2−10 for each city.

2.5. Are RFmodels using LCZ transferable across
different cities for modeling PfPR2−10 ?
Once the optimal set is defined, we test if models that
are built on multiple cities using LCZs can be trans-
ferred over single cities under consideration to model
and study their Pf PR2−10.

We first compare the model performances from
the best set of variables with and without a dummy
variable that refers to each city—numbers from 1 to
9 in our case. If model performances are significantly
better by integrating these dummies, local features

that are not considered in this study—for example
socio-economical or temperature parameters—
would play a more important role than how and
where cities are built for modeling Pf PR2−10. Trans-
ferring the urban environmental information from
one city to another might thus not be possible.
Second, we evaluate how the RF model is capable of
accurately transferring cities’ information for model-
ing Pf PR2−10 in a single city (figure 3(B)) by compar-
ing RMSE, MAE and R2 from three different mod-
eling strategies where we: (i) use all the other cities’
data and test over the held-out city. This strategy is
called ‘All Other Cities’; (ii) bootstrap 25 times using
only the data available for the specific city under con-
sideration with a random selection at each bootstrap
of 20% of the data for testing and 80% for training.
This strategy is called ‘Single City’; and (iii) test the
added value of complementary information from
other cities for more accurate predictions in a single
city. For this, we bootstrap 25 times using all the
data from the other cities, in addition to a random
selection at each bootstrap step of 80% of the data
from the city to be mapped for training. The remain-
ing 20% of the data from the city to be mapped is
kept at each step for testing. This strategy is called
‘All Cities’.

2.6. Mapping PfPR2−10 per LCZ
After defining the most optimal training set and buf-
fer size for modeling Pf PR2−10 across all cities, we
map Pf PR2−10 at a horizontal resolution of 100 m
for each city. Afterwards, we compare the outcomes
between cities (e.g. cities that have a higher prevalence
than others) and subsequently quantify the Pf PR2−10

per LCZ class across all cities to show which LULC
classes could systematically at higher risks of preval-
ence in tropical Africa (figure 3(C)).

7
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Figure 6.Modeled Pf PR2−10 in percentage (%) per city using single city data and all other cities’ data in addition (All Cities, right
panel). The left panel shows the LCZ map for visually relating Pf PR2−10 maps to the LULC of each city. Open water and rivers
(LCZ (G) are masked out in the Pf PR2−10 maps.

3. Results

The mean Pf PR2−10 over the whole data set is of
10.45% with a σ of 14.96%. We find that our mod-
els depict averaged statistical scores ranging from
10.64 [% PfPR2−10] to 11.39 [% PfPR2−10], 7.10 [%
PfPR2−10] to 7.76 [% PfPR2−10], and 0.41 to 0.5
for RMSE, MAE, and R2, respectively (figure 4).
With maximum differences of 0.75 [% PfPR2−10]

for RMSE, 0.66 [% PfPR2−10] for MAE, and 0.09
for R2, the sensitivity to buffer sizes and predictors
appears to be rather low. The distribution of the pre-
dictions seems to follow a quasi-normal distribution,
with median RMSE, MAE and R2 always close to the
mean. Also, differences between σ are not significant,
according to a Wilcoxon rank-sum test.

We therefore opt for a buffer size of 1 km for
an exploratory modeling of Pf PR2−10 across all cities

8
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Figure 7.Modeled Pf PR2−10 in percentage (%) per urban LCZ across all cities using single city data and all other cities’ data in
addition (All Cities). The distribution is represented in the form of boxplots where boxes are the interquartile range, whiskers the
5 to 95th percentile, black horizontal lines the median, and white points the mean.

using all predictive variables (ALL; figure 4). This
buffer size and variables set gives the 2nd, the 5th
and the 2nd best mean RMSE, MAE and R2 respect-
ively, while still offering a full set of variables that can
explain Pf PR2−10. According to the variable import-
ance, we find that the ten most important variables
are precipitation, normalized difference indices and
their standard deviation, elevation and distances to
LCZ compact, LCZ informal, and LCZ industrial. All
the other variables derived from LCZ, apart from the
proportion of LCZ industrial, are of relative import-
ance and contribute to an increase in model’s per-
formance (figure S3).

The inclusion of dummies referring to each city
leads to a slight deterioration of model performance
when using all variables (ALL) obtained within a
1 km buffer. In particular, this leads to a reduction
of mean R2 by 3.84% and an increase of mean MAE
and mean RMSE by 5.04% and 5.53%, respectively.
Extending the single city data with information from
other cities (All Cities) results in similar performances

compared to using single city data only (Single City).
In addition, the All Cities tends to reduce the uncer-
tainty between each bootstrapping step (figure 5). In
comparison to the two other strategies, using the All
Other Cities strategy results in an absolute deteriora-
tion of the model performance by 4.18 [% PfPR2−10]
for RMSE, 3.16 [% Pf PR2−10] for MAE and 0.16 for
R2, in average. But, when comparing model perform-
ances per city (e.g. Freetown’s statistical indicators
against Kampala’s) relative orders are respected.
These results overall confirm that the information
obtained by the model over other cities can be trans-
ferred for modeling Pf PR2−10 in the city under
consideration.

Considering all the above-mentioned results, we
are able to map Pf PR2−10 in each city at a hori-
zontal resolution of 100 m using all predictive vari-
ables (ALL) gathered in a 1 km buffer size around
each pixel. We train the RF model over all 365
surveys (All Cities). Results highlight that urban
areas have Pf PR2−10 values between 5% and 30%,
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Figure 8. Averaged partial dependence plots (thick lines) over 25 model runs (light lines) for all variables used in the study.
Variables are grouped by type: proportions of Local Climate Zones (LCZs; (A), distances to LCZs (B), normalized difference
indices (NDI; (C), standard deviation of NDI (D), precipitation (E) and elevation (F).

while this is between approximately 15% to 40%
for rural areas (figure 6). The gradient from the
urban center to the rural areas is different between
each city suggesting that the endemicity of each local
environment is well captured by the model. The big-
ger differences between urban and rural areas are loc-
ated inKinshasa, while cities likeDakar andMombasa
have small urban to rural gradients of Pf PR2− 10.

When separating back the merged LCZ classes
and looking at the modeled Pf PR2−10 per LCZ
(figure 7), we can see that dense LCZs (LCZ 1–3)
have the lowest Pf PR2−10 values withmean Pf PR2−10

values of 7.14%, 7.47% and 9.24%, respectively.
Higher mean Pf PR2−10 are observed in open low-
rise (LCZ 6) and sparsely built (LCZ 9) environ-
ments with values of 15.44% and 23.0%, respectively.
In addition, very densely built informal settlements
(LCZ 7—lightweight lowrise) have a higher mean
Pf PR2−10 than other densely built classes with a value
of 11.11%. Industrial areas (LCZ 8—large lowrise,

and LCZ 10—heavy industry) have Pf PR2−10 values
below 10%.

4. Discussion and conclusions

In this study, we demonstrate that the universal LCZs
LULC classification can be used for modeling and
studying malaria prevalence (Pf PR2−10) across trop-
ical African cities. In particular, we show that LCZ can
efficiently help to understand the influence of urban
environments on Pf PR2−10 and that this informa-
tion can be transferred to other cities to study urban
Pf PR2−10 in distinct urban areas in tropical Africa.
Our results therefore suggest that geographical mod-
els could be trained on other cities tomodel Pf PR2−10

in a selected city that has no malaria survey—yet
acknowledging a probable deterioration of the model
performance. Because LCZs are designed to repres-
ent urban forms and functions across the world in a
generic way (Stewart and Oke 2012), they allow for a
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standardization of the urban LULC information that
enables modeling of Pf PR2−10’s spatial heterogeneit-
ies in urban and peri-urban environments. Indeed,
our modeling performances are in line with pre-
vious spatial modeling of Pf PR2−10 that modeled
the spatial distribution of Pf PR2−10 in the cities of
Dar Es Salaam and Kampala (Kabaria et al 2016,
Georganos et al 2020). In these studies, RMSEs are
ranging between 6.02 [% Pf PR2−10] and 16.02 [%
Pf PR2−10] for the city of Dar Es Salaam, depending
on the covariates that were used, while the only map-
ping over Kampala—that used very-high resolution
satellite imagery—had a median RMSE of 5.45 [%
Pf PR2−10]. In our study, the mean RMSE is 6.86 [%
Pf PR2−10] and 9.43 [% Pf PR2−10], respectively, for
the two latter cities. This shows that a RF regression
model can be trained to predict Pf PR2−10 at a hori-
zontal resolution of 100m by including the variability
of the urban environment in buffers of 1 km radius
around each malaria survey. These model outputs
at high resolution should however be constrained to
exploratory purposes and not be considered as finite
maps of Pf PR2−10.

To illustrate the latter, partial dependence
plots (figure 8)—that characterize the response of
Pf PR2−10 to a given explanatory variable—show that
an increase in proportion of open LCZ (e.g. LCZ
open or LCZ sparse) is positively correlated to an
increase in Pf PR2−10 while more dense urban areas
(LCZ compact) leads to lower Pf PR2−10. In addi-
tion, a slight increase of wetlands coverage from
0% to approximately 20% in the buffer zone leads
to an increase in Pf PR2−10 from 10.5% to 12%
(figure 8(A)). Finally, when looking at the partial
dependence plots of normalized difference indices,
precipitation and elevation, we can see that cities
that are embedded in greener and wetter environ-
ments, far from the oceans, tend to have higher mal-
aria prevalence (figures 8(C)–(F)). This is however
only true for peri-urban and rural environments as
our maps highlight similar Pf PR2−10 in densely built
urban environments. The latter could explain why
distances to densely built urban neighborhoods and
greenness indicators like NDVI are covariates of high
importance.

It is indeed commonly accepted that dense urban
areas have lower malaria prevalence than surround-
ing rural environments and that peri-urban areas
are also at higher risk (Robert et al 2003, Hay et al
2005, Kabaria et al 2017). Previous case studies also
concluded that informal settlements have a higher
prevalence than planned residential neighborhoods
(De Castro et al 2004, Mukasa et al 2014, Georganos
et al 2020). One potential explanation could be that
informal settlements are forced to be built around
unsanitary places, like wetlands, which can be used
for urban agriculture (Kabumbuli and Kiwazi 2009,
Vermeiren et al 2013). However, wetlands and urban

agricultural fields are known to increase vectorial
capacities (Afrane et al 2004, Dale and Knight 2008,
Verdonschot and Besse-Lototskaya 2014). This is also
depicted in our study, with urban settlements that are
built close to wetlands—and this independent of their
neighborhood typology—having higher Pf PR2−10.
The results sustain the introduction of LCZ wetlands
(LCZW) proposed by Brousse et al (2019) for vector-
borne disease studies.

Albeit the similarity of our conclusions to the
already existing body of literature, none of these stud-
ies introduced a standardized LULC classification to
study the relations between urban form and functions
and malaria prevalence across tropical Africa. Our
study suggests that LCZs a suitable tool for such pur-
poses. Certainly, information on the urban environ-
ments alone does not suffice to explore the factors that
explain the heterogeneous dispersal of malaria in cit-
ies. Part of the error depicted above may be related to
the fact that although LCZs are similar in their build-
ing typologies across cities, they can still withhold
disparate socio-economic dimensions that influence
individuals’ vulnerabilities, for example. Moreover,
our study does not integrate temperature variations
as a limiting factor for malaria prevalence and should
therefore only be considered representative of places
where malaria is endemic throughout the year. For
instance, additional information on urban meteoro-
logical variables at high resolution (e.g. Brousse et al
(2020b), Van de Walle et al (2020)) could allow for
a deepened understanding of the influence of urban
heat, dry and wind islands on the vectorial capacity.
Improved model performances and greater insights
on the drivers of malaria risk in urban environ-
ments could also be obtained from additional data on
health infrastructure, diurnal migrations and other
socio-economic factors that are not included in this
study (see Boyce et al (2019)). In addition, there
are inherent limitations to the malaria data that we
use in our study because our product is temporally
aggregated to analyze spatial patterns of malaria. This
means that national interventions that happened dur-
ing our 11-year period (2005–2015) are not taken
into account, and nor are infections imported from
recent rural-to-urban migrations. Finally, our LCZ
LULC maps are only representative of recent years
(2017–2019), hence hampering the quantification of
the effect of recent urbanization on malaria preval-
ence in tropical African cities.

Yet, it appears that at least part of the spatial
distribution of Pf PR2−10 in African cities is related
to how they are built. Such conclusion could not
have been depicted without the details provided by
the LCZ LULC classification. For instance, other
products, like the MODIS Land Cover Type Product
(MCD12Q1; Sulla-Menashe and Friedl (2018)) or
the Global Human Settlement Layer derived from
Landsat satellites (Pesaresi et al 2013), only offer a
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single urban class without information on the vari-
ety of the urban environments. Typically, informal
settlements, that constitute a neighborhood typo-
logy with its inherent socio-economical dimensions,
are captured by the LCZ mapping and are linked
to higher Pf PR2−10. Nevertheless, higher Pf PR2−10

are found in more open urban environments (open
low-rise; LCZ 6) and in rural environments (sparsely
built; LCZ 9). Using LCZ as a standard LULC classi-
fication thus eases the comparison of common fea-
tures in urban Pf PR2−10 between cities and could
help decision makers to learn from other strategies
for lowering Pf PR2−10 performed in other cities.
Noteworthy, our study does not integrate popula-
tion densities per urban classes because of their com-
plex obtainment at high resolutions (Georganos et al
2020). This may further increase the disparities in
malaria transmission risks between different urban
environments. For instance, number of people infec-
ted in densely populated informal settlements may be
higher than in sub-urban areas. In the end, we suggest
that LCZs should further be studied for potentially
helping mapping intervention strategies in Africa.
Future work could also try to define a standardized
urban LULC classification specific to the study of
urban malaria prevalence; Local Malaria Zones, for
example.
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