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Abstract—While significant progress have been made in the
field of Natural Language Processing (NLP), leading the com-
mercially available products, Sign Language Recognition (SLR)
is still in its infancy. The lack of large-scale sign language
datasets makes it hard to leverage new Deep Learning methods.
In this paper, we introduce LSFB-CONT, a large scale dataset
suited for continuous SLR along with LSFB-ISOL, a subset of
LSFB-CONT for isolated SLR. Baseline SLR experiments are
conducted on LSFB-ISOL and the reached accuracy measures
are compared with those obtained on previous datasets. The
results suggest that state-of-the-art models for action recognition
still lack sufficient internal representation power to capture the
high level of variations of a sign language.

Index Terms—Deep Learning, Dataset, Sign Language Recog-
nition

I. INTRODUCTION

In the last decade, significant progress has occurred in
speech recognition, leading to the creation of commercially
available products relying solely on speech to interact with
their users. As a matter of fact, automatic Sign Language
Recognition (SLR) has not followed the same trend. However,
building robust methods for SLR would not only benefit the
deaf community, but would also allow developing more natural
ways to interact with software systems through gestures.

SLR is one of the most studied gesture recognition [1]
problems and is considered as a challenging task, since sign
languages (SLs) do not only rely on hands and arms configura-
tions. Eye gaze, facial expressions and upper body movements
also convey additional information to the interlocutor.

Early successes in gesture recognition were obtained in the
90’s. They mostly relied on Hidden Markov Models (HMMs)
to achieve sign classification [2] [3]. More recently, deep
learning architectures, initially applied to image recognition,
have been leveraged to dramatically improve the performance
of both isolated and continuous SLR.

The first SLR datasets typically depicted a single signer
in a strictly controlled video recording environment. These
strict constrains are being relaxed, first by including more
signers and, more recently, by introducing variations on the
background and lightening conditions.

This research is supported by the Fonds InBev-Baillet Latour.

Some datasets try to provide additional information captured
thanks to specialized devices, such as wristbands to track hand
positions, or 3D cameras to capture depth information. As such
advanced devices are not widely available, their use restricts
the scope of applicability of SLR systems. Furthermore, videos
gathered in the wild (e.g., online dictionaries and video shared
on social media) will generally not provide such additional
data. This might explain why most works in gesture or sign
recognition prefer to focus on recognition based on raw videos
without additional data sources or apparatus [1].

Despite the need of datasets and the encouraging progress
already achieved in SLR, the number of large SL datasets
still remains limited. Training a deep learning model typically
requires hours of annotated SL video recordings. The training
data are hard to acquire due to the time-consuming and costly
annotation process, which consists in manually labeling each
single sign occurrence in the recorded videos. Furthermore,
in contrast with image recognition, only a few people are
qualified to perform SL annotation tasks.

This paper introduces two new public datasets for contin-
uous and isolated SLR, consisting of French Belgian Sign
Language (LSFB) conversation videos. The new datasets pro-
vide conversations between both native and non-native signers,
filmed with an RGB camera at 50 FPS. Signers were asked to
speak freely without preset scripts nor vocabulary limitation.
This resulted in a dataset depicting natural conversations,
close to what could be expected in real life. Also, this SL
dataset constitutes the largest available dataset for continuous
SLR, both in terms of length and vocabulary size. The main
contributions of this paper are:

• two new publicly available SL datasets: LSFB-CONT, a
dataset for continuous SLR; and LSFB-ISOL, a dataset
for isolated SLR extracted from LSFB-CONT;

• a benchmarking of LSFB-ISOL on three state-of-the art
action recognition models;

• a comparison of the SLR results obtained on LSFB-ISOL
with those obtained on two other SL datasets.

The remainder of this paper is structured as follows. Sec-
tion II identifies the main SLR challenges and presents popular
SL datasets. Section III introduces our two new SL datasets.



Section IV presents the experimental setup and our results. A
qualitative analysis of them is presented in Section V before
proposing future research perspectives in Section VII.

II. RELATED WORK

This section presents the challenges of Sign Language
Recognition (SLR), why this task is considered difficult and
how SLR datasets should be designed to support the devel-
opment of more robust algorithms. It also presents popular
datasets for SLR.

A. Challenges of SLR

Sign Languages (SLs) are natural languages that emerged
and are used within deaf communities around the world. Each
sign, be it realized by one or two hands, can be described by
a set of four manual components: handshape (or hand con-
figuration), location, orientation and movement. Non-manual
components such as facial expression, gaze direction, head
and body position complete the manual parameters and convey
grammatical and semantic information. In contrast with spoken
languages, SLs allow one to transmit multiple information
simultaneously, using several articulators in parallel [4].

In their survey on hand gesture recognition, Al-Shamayleh
et al. [1] propose a classification of the issues that an SLR
system should overcome to be useful in practice. Table I
summarizes their taxonomy. The system challenges category
contains all functional requirements that could be expected
by the user, such as a short response time and a low cost of
the system. Those challenges are not discussed in this paper
as our goal is not the creation of a production-ready system
for SLR. The two other categories are the environment and
the gesture challenges, corresponding to problems raised by
changes in the recording environment and problems related to
the structure of a gesture and its variations, respectively.

Categories Challenge

System Challenges Response Time
Cost Factor

Environment Challenges

Background
Illumination
Invariance
Ethnic Groups

Gesture Challenges

Translation
Scaling
Rotation
Segmentation
Feature Selection
Dynamic Gesture
Size of Dataset

TABLE I: Taxonomy of challenges for vision-based SLR
systems introduced by Al-Shamayleh et al. [1].

The environment and gesture challenges must be kept in
mind when choosing or building a dataset to train and test
an SLR system. Indeed, the quality of the dataset may have
a significant impact on the system’s ability to tackle those
issues. A good dataset should contain videos involving a lot
of signers, and include background and lightning variability to
stress the robustness of a system. This need for variability is

impossible to fulfill by small datasets. Therefore, a good SLR
dataset should contain a (very) large number of videos.

Gesture challenges motivate the need of datasets depicting
a large vocabulary of dynamic gestures. A dynamic gesture is
a gesture whose semantics do not only rely on the hand and
arm configurations, but also in the movements performed by
the signers. In the context of sign languages, most common
signs are dynamic gestures. The gesture challenges category
also covers the robustness of a system in recognizing signs
with different scales and rotations. However, this category
does not highlight several other critical aspects of the SL
gestures. One of these aspects is the transition between signs
in a sentence. At the end of a sign, there is a moment where
the signer repositions her hands to get ready for the next
sign. This transition period is called a movement epenthesis.
Those movements have no meaning but could be mistakenly
interpreted as a gesture. The automatic detection of movement
epenthesis constitutes a primordial step for sign language
speech segmentation [5]. Despite those hand repositioning
movements, signs are not executed from a clean deterministic
starting position to a clean deterministic ending position. The
final position of a sign has a huge influence on the starting
position of the following sign. Furthermore, signers naturally
vary the ending position of the current sign to anticipate the
execution of the next sign. The influence of signs on the
execution of their surrounding signs is called co-articulation.

In order to build SLR systems robust to movement epenthe-
sis and co-articulation, it is helpful to rely on a dataset
including a lot of variability in the way signs are chained.
Datasets depicting several signers, but who perform the very
same sentences may lack such kind of variability.

The majority of state-of-the-art SLR solutions primarily
focus on the identification of lexical signs (LS). In modern
SL corpus, each LS is associated to a unique fixed label
called a gloss [6]. However, each manual component of a
lexical sign can still vary and cause morphological changes
(e.g., number, agreement and aspect variations). For instance,
signers would rather execute the sign walk quickly instead of
using sequentially the signs walk and fast [7].

In addition, signers often use less standardized signs called
depicting signs (DS) to describe a situation instead of using
standard lexical signs. These signs cannot be associated to a
fixed label. They are highly dependent on the context of the
sentences and on the cultural background of the signers. In
French sign language conversations, about 75% of the signs
are LS and 25% are DS [8]. An SLR system able to only
recognize and translate lexical signs would never be able to
fully address the sign language translation problem. How-
ever, isolated sign datasets (see Section II-B2) are typically
restricted to lexical signs.

Continuous SL datasets (see Section II-B1) are more likely
to depict DS, yet the way to annotate them is still discussed as
they cannot be associated to a single word but rather represent
a situation or a concept. Different annotation methods were
proposed. The low level ones advice to annotate each hand
configuration composing a sign and each facial expression [9].



The highest level ones consist of a timed translation of the
signed utterance into a written language. However, the most
commonly used approach in modern corpus is to use glosses
for each LS and to discard or to mark with a single label all
the signs that do not fall into the LS category [6].

B. Sign Language Datasets

The need for better SLR performance motivated the de-
velopment of large sign language datasets. In this section,
we consider datasets for both continuous and isolated sign
language recognition. We restrict ourselves to RGB videos,
without any equipment such as gloves or tracking points. Table
II provides a comparison of the state-of-the-art datasets and
of the two new datasets we introduce in Section III.

1) Continuous Signs Datasets : The Phoenix Weather
dataset [10] is an early example of large-scale continuous
sign language datasets for the German sign language. It is
made of videos of signers translating the German weather
forecast. The vocabulary contains 1080 glosses and 9 different
signers are recorded. It constitutes one of the largest datasets
for continuous SLR to date. One of its drawbacks is that SL
speech in a translation context tends to not be representative of
how signers would have structured their sentences in natural
conversations. Signers use less DS than in a natural speech.

The Greek Sign Language (GSL) dataset [11] is a continu-
ous sign language dataset containing 7 different signers. They
perform 5 scripted scenarios representing classical interactions
with public service employees (police officers, train station
agents, etc.). Depth information is provided and the videos
are recorded at 30FPS. As all the signers are performing
the same speech, the dataset lacks variability in terms of
sign co-articulation. In addition, the signers tend to perform
the signs more slowly, as they follow a script. However, the
dedicated vocabulary depicted in the dataset is interesting
in order to develop a system assisting impaired people to
communicate with public services. An isolated version of this
dataset depicting isolated signs, extracted from the continuous
dataset version, is also available.

2) Isolated Signs Datasets: The American Sign Language
Lexicon Video Dataset (ASLLVD) is one of the first large
datasets for isolated sign language recognition. It was initiated
in 2008 [12] and then deeply refactored in 2012. It depicts
6 signers performing isolated signs starting from a neutral
position. Each sign is performed only once by each signer. The
videos are captured by 4 different cameras positioned around
the signer. The main weakness of the ASLLVD dataset is that
it provides few occurrences of each gloss.

The DEVISIGN-L dataset created in 2016 [13] contains
isolated signs of the chinese sign language. The videos were
captured by means of a Kinect in order to provide depth
information for each video. The dataset involves 8 different
signers and contains a vocabulary of 2000 glosses with 12
examples for each gloss. It suffers from the same general
weakness as the ASLLVD.

The Microsft American Sign Language (MS-ASL) dataset
was created in 2019 [14]. It has been built by scrapping

ASL educational videos on YouTube. Hence, it depict signers
performing isolated signs in various environments. The dataset
contains a vocabulary of 1000 glosses and depicts 222 signers.
The authors also propose four different split : MS-ASL-100,
MS-ASL-200, MS-ASL-500 and MS-ASL-1000 class showing
respectively 100, 200, 500 and 1000 different classes. This
is the dataset containing videos with the most variety of
different background, signers and lightning, making it an
interesting candidate for training robust isolated SLR systems.
Unfortunately, the authors only provide the YouTube url and
the timestamps of each sign. As some videos have meanwhile
been removed from YouTube or set as private, the MS-ASL
dataset is slowly decreasing in size and quality.

III. PROPOSED DATASETS

This section introduces the LSFB Corpus which provides
the essential materials to build our two datasets. We present
the content of each of our datasets, and we compare them with
the pre-existing SLR datasets listed in Section II.

A. LSFB Corpus

Since 2012, researchers at the University of Namur [15]
have been collecting and annotating LSFB (French Belgian
Sign Language) conversations, with the aim to better under-
stand this sign language. A high diversity of people is needed
to document the language grammar and usage, taking into
account the variations across various age ranges and regions
of the country. Therefore, the videos gathered depict signers of
diverse ages and genders from different locations in Belgium.
This corpus also includes a mix of native and non-native
speakers, that were asked to perform 19 tasks, encouraging
them to engage into various types of discourse genres (e.g.,
narration, argumentation and explanations). All videos were
recorded in a studio with a controlled setup and environment.
Therefore, a limitation of the LSFB Corpus is that it lacks
background and lightning variation. However, all large SL
corpora currently under construction are being recorded in
similar conditions. Thus, SLR models performing well on the
LSFB Corpus could support the annotation of other corpora.

In total, 100 signers participated to the recording sessions
(see Figure 1 for statistics). The corpus involves a lot of people
with different styles and clothes. Meta-information about the
signers are available such as their age, gender, handedness,
and linguistic profile. This information could help to diagnose
SLR systems and spot their weaknesses.

More than 90 hours of videos have been recorded using
two 50-FPS cameras, placed in front of each signer (one
camera per signer). Each camera has a resolution of 720x576
pixels. The annotation and translation of those videos are
ongoing processes, which already required thousands of hours
of work. At the time of writing, 25 hours of videos are
fully annotated, among which 5 hours are also translated into
French. Each annotation file contains one channel for each
hand, and a unique gloss is assigned for each occurrence of
lexical sign (LS). DS signs are annotated with a special label.
For translated videos, an annotation channel has been used to



Continuous Sign Language Datasets
Class Signers Videos FPS Background and lights Camera Position

Phoenix Weather 1080 9 6841 30 Controlled Controlled
GSL 310 7 40826 30 Controlled Small variations
LSFB-CONT 6883 100 85132 50 Controlled Controlled

Isolated Sign Language Datasets
Class Signers Videos FPS Background and lights Camera Position

ASLLVD 3300 6 9800 30 Controlled Controlled
DEVISIGN-L 2000 8 24000 30 Controlled Controlled
MS-ASL 1000 222 25513 Varying Varying Large variations
LSFB-ISOL 395 85 47551 50 Controlled Controlled

TABLE II: Comparison of the datasets for isolated and continuous sign language recognition discussed in this work.

(a) Age distribution (b) Gender distribution

(c) Linguistic level (d) Handedness distribution

Fig. 1: Properties of recorded signers for the LSFB dataset.
Age (a) shows a predominance of signers aged between 26 and
45 years old. The gender (b) and linguistic level (c) proportions
are balanced. There is a majority of right-handed signers (d).

align each French translation sentence with its corresponding
segment in the video. During the annotation process, special
care was taken to annotate each sign and its variants with
different labels. Figure 2 shows three variants of a LS extracted
from the LSFB Corpus. When a LS is used as a proper noun,
its annotation is prefixed with NS (Name Sign), meaning the
sign refers to a person or a place. For instance, Belgian signers
use the LS star to refer to the city of Bastogne due to a famous
star-shaped monument, while foreigners will rather spell the
city name. This precision in the annotations may be useful
when building a continuous SLR system.

B. LSFB Continuous Dataset

The LSFB Corpus is available online1 in a form convenient
for linguistic research but hard to exploit programmatically.
This motivates the creation of a curated dataset that would be
easier to process automatically. This curated dataset contains
all the videos from the LSFB Corpus, along with (1) their
original XML annotation files cleaned up (2) a preprocessed
version of those annotations stored in CSV format.

1www.corpus-lsfb.be

The whole LSFB Continuous Dataset (LSFB-CONT) cur-
rently depicts 6883 different lexical signs, making it the
biggest public dataset for continuous SLR, both in terms of
video length and vocabulary size.

C. LSFB Isolated Dataset

The LSFB-CONT dataset contains a large vocabulary com-
pared with the other sign language datasets, as shown in
Table II. However, the LSFB Corpus is heavily unbalanced,
as the majority of signs are executed only a few times, and
most common signs are executed hundreds of times. For this
reason, we also built an isolated SLR dataset, called LSFB-
ISOL, obtained from a subset of the LSFB-CONT dataset.
LSFB-ISOL was produced by isolating all signs occurring
40 times or more in LSFB-CONT. Indeed, Joze et al. [16]
have showed that below 40 examples, the performance of deep
learning algorithms for video recognition drops significantly.
This resulted in a new dataset, with a vocabulary of 395
glosses, and at least 40 occurrences per gloss.

D. Comparison With Other Datasets

Figure 3 compares the respective sign length distributions
of the GSL, MS-ASL, Phoenix Weather, ASLLVD and LSFB-
ISOL datasets. We can observe that signs extracted from
continuous sign language datasets are made faster, and that
LSFB signers are performing their signs faster than the signers
of the other datasets. This difference could be a result of the
recording setting of the signs, since speakers talking freely
tend to perform signs faster than signers reading a script
or translating a spoken language speech. The sign lengths
standard deviation of the MS-ASL videos is larger than for
other datasets. MS-ASL is made of educational videos, and
some of the signers perform their signs either multiple times
in a row or very slowly to help language learners. These
repetitions are not isolated thus, a video of MS-ASL can
contains multiple examples of a same sign.

IV. BASELINE METHODS

This section report results obtained on LSFB with classic
models for action or gesture recognition. We describe the
models retained and the preprocessing applied to our data for
the experiments. Our results are reported along with results
obtained on two other SL datasets to provide an order of
magnitude of what is possible to achieve today for SLs.



Fig. 2: Three series of successive frames extracted from videos in the LSFB Corpus. The first row shows a lexical sign
meaning wait; the two other rows depict variants of the same sign meaning stop. A typical example is the two-hand version
of a one-hand sign indicated by the -2h suffix in the sign label (third row).

Fig. 3: Distribution of sign lengths in the SLR datasets.

A. Retained Methods

Many Deep Learning architecture were created for action
recognition. Some of them also led to great results on simple
gesture recognition. As SLR is a subfield of gesture recogni-
tion, we reuse those successful model to establish our baseline
on our new datasets. The retained methods are the following:

CNN + RNN [17]: This method leverages successful models
for image recognition by combining them with a sequence
model. Each frame of the video is sent to a convolutional
network to obtain an embedding. The sequence of embeddings
is passed to a Recurrent Neural Network (RNN). The output
of the RNN is then used to predict the correct label. In
our implementation, the CNN embedding is provided by a
VGG-16 network [18] pre-trained on ImageNet [19]. We
removed the classification layer and the gradient information
is computed only for the six last layers of the network. The
RNN part of the model consists of a LSTM layer.

C3D net [20]: Introduced by Tran et al. [20] to test their 3D
Convolution layer, this model aims to extend the capability of
an image recognition architecture based on 2D convolutions,
by allowing the convolution layers to process sequential data.
Our implementation reproduces the architecture presented by

Tran et al. and has been trained from scratch.
Inflated 3D Convolution Networks (I3D) [21]: This archi-

tecture aims to benefit from large pre-trained 2D convolution
networks (e.g., Inception-V2 and VGG) by transforming their
2D convolution layers into 3D Convolutions. Training C3D
networks is much faster as the model benefits from the pre-
training on large image datasets, such as ImageNet. They
are currently the state-of-the-art for various action recognition
tasks such as the Charades Challenge [22]. We use Inception-
V1 I3D introduced by Carreira et al. [21], pre-trained on the
ImageNet [19] and Kinetics-600 datasets [23].

The above models are all implemented with PyTorch [24].
The source code for our baseline is publicly available2.

B. Experimental Setup

The purpose of the experiment is to provide an idea of
how popular video recognition methods perform on the LSFB
dataset, but we replicate these experiments on two other SL
datasets to compare the obtained results. We retained the MS-
ASL-100 datasets and the GSL datasets. As the MS-ASL
100 dataset is an isolated SL dataset, the models are trained
for isolated SLR. Thus, only the LSFB-ISOL is used for
comparison purpose and we also use an isolated version of
the GSL dataset made of signs isolated from their continuous
videos.

Each dataset is made of videos showing only one sign. The
preprocessing applied to each video is illustrated in Figure 4.
First, each video is resized to 270 pixels, while keeping its
aspect ratio. Then, the video is trimmed to 50 frames. Too short
videos (< 50 frames) are looped, while too long videos (>
50 frames) are transformed in multiple videos with randomly
selected first frame. Finally, patches of 224 × 224 pixels are
randomly cut from the video and submitted to the networks.

The preprocessing is the same for each dataset and each
model except for CNN + RNN models. As RNNs accept inputs
of different lengths, too short videos did not have to be looped.

2https://github.com/Jefidev/Gesture-Recognition-Experiments



Fig. 4: Preprocessing of a video frame from the MS-ASL (top)
and LSFB (bottom) datasets. Two random crops are shown.

C. Experimental Results

Table III reports the results obtained for each dataset. The
CNN + RNN model is not able to learn useful features for
SL classification. C3D also fails to perform well especially
for MS-ASL. The I3D model is, by far, the best model
for every SL dataset. The performance obtained on MS-
ASL are close to the one of the other continuous datasets.
The varying background and recording conditions makes it
a challenging isolated SL dataset. Better results are achieved
on LSFB compared to GSL despite the fact that they share
common properties. This might be a consequence of the size
of the LSFB dataset which is 15% bigger than GSL, but also
because the preprocessing was calibrated for the LSFB dataset.
Sometimes, The 224×224 crops cut important parts of the
video for the GSL dataset.

VGG + LSTM C3D I3D
MS-ASL 100 0.8% 1.3% 53%
GSL isol 6.1% 8.6% 36.5 %
LSFB-ISOL 3.6% 6.4% 51.5%

TABLE III: Percentage of Top-1 accuracy for isolated SLR.

V. QUALITATIVE DISCUSSION

This section provides a qualitative analysis of the best
performing model on LSFB-ISOL dataset. The precise annota-
tions of the LSFB datasets allows us to focus on special cases
such as signs variants. A saliency map is computed for these
special cases and our findings are presented.

A. Error Analysis in Sign Recognition

The I3D model provides the best performances for each SL
datasets. Despite that, we identified a lot of recurrent mistakes
occurring especially for predicting the less represented signs,
discriminating sign variants and signs sharing common hand
configurations. To better understand the root cause of the
model mistakes, it is useful to look at the saliency maps [25]
of the model. In our case, we computed a vanilla gradient
saliency map for videos from each class of the LSFB-ISOL
dataset. This allows us to highlight the region of the video
playing the most important role in the prediction. Figure 5

shows examples of saliency map for LSFB videos. It also
shows examples of common mistakes. For instance, signs
sharing hand configurations like signs LIEN (link) and RELA-
TION are often confused. Their difference lay in the sequential
execution of the sign rather than in their hands configuration.
In order to better distinguish those signs, the model should
look at the first frames of the video. The sign RELATION starts
with the hands apart joining to a final configuration, while the
sign LIEN starts directly with the hands joined. The fact that
they are confused with each other seems to indicate that I3D
bases its prediction primarily on the hands configuration or it
has troubles to capture the evolution of a sign over time.

Another frequent misclassification was identified by looking
at the signs annotated as a variant of a common signs in
the LSFB datasets. When faced with the two-hand variant
of a single-hand sign I3D tends to always predict the label
for the one-hand version. Figure 5 gives an example of such
a confusion, with the signs MAIS (but) and MAIS-2H (its
variant). When looking at the saliency map extracted for the
video, we observe that the saliency is systematically higher on
the right hand than on the left hand, indicating that the right
hand plays a more important role in the prediction than the
left hand. The signers tend to use their dominant hand to sign,
and a majority of LSFB signers are right-handed. Hence, it
is not surprising to see that the model learns to focus on the
right hand as it plays an important role in nearly all videos it
encountered during the training phase.

Other recurrent errors indicate that the model has troubles to
distinguish small variations of fingers position or to determine
if the hand palm faces up or down, leading to confusion
between several signs. Also, we could not find any evidence
supporting the fact that the model looks at facial expressions
for its predictions. Yet, facial expression and eye gaze are
often used in SL conversations to convey information. This
means that either the representation capacity of the model is
not strong enough to consider the facial expression, or that the
facial expression does not provide any useful information in
our isolated SLR setting. The resolution of the videos provided
to the model could also be too low, thereby making details
such as gaze direction impossible to exploit.

Despite those weaknesses, the model is able to perform well
on several sign language datasets and it has correctly learned
to track the hands of the signers even when occlusion occurs.
We can then conclude that the Inflated Inception-V1 model is a
good candidate for gesture recognition applications, although
it still lacks representation capacity to completely solve the
isolated SLR problem. Designing better preprocessing for SL
could, also, help to improve the model accuracy.

B. Sign Representation Learned by the Model

Another way to diagnose the model behavior is to look at
the feature map (or embedding) learned by the model. We
decided to plot the embedding learned by the I3D model just
before the prediction layer. By plotting the embedding of each
video of the test set, we are able to visualize the representation
of the signs used internally by the I3D models. Figure 6 shows



Fig. 5: Saliency maps computed on LSFB videos. LIEN and RELATION are instances of signs sharing common had
configuration. MAIS and its variant MAIS-2H are also compared. I3D seems to have learn to focus its attention on the hands.

a UMap projection of the gathered I3D embedding. Video
representations are grouped in distinct clusters. When looking
in detail at those clusters, signs depicting similar concepts are
close to each other in terms of embedding (e.g., the video
recordings for Think and Understanding). This is due to the
fact that signs representing close concepts tend to use the same
kind of hands configuration and movements. This comfort us
in the idea that the model uses relevant information in order
to classify the various signs of the dataset.

VI. THREATS TO VALIDITY

This section aims to identify all decisions that we made that
could affect the quality of the results presented in this paper.

During the various experiments we conducted, the same
preprocessing steps were applied to each dataset and for each
SLR method considered. However, better performance could
probably be reached if the preprocessing was fine-tuned for
each method and each dataset. In addition, the way we handled
short videos could be criticized. In our experiments we decided
to loop such videos to make them reach the length expected by
the SLR models. As we expect the model to take into account
the relative movements of the signers hands, providing videos
that, at some point, jump from the last frame to the first one
could negatively impact the learning process.

Models are trained on datasets depicting solely Caucasian
individuals. Systems built upon such models may potentially
perform poorly when processing videos of showing signers
belonging to other ethnic groups.

Fig. 6: UMap visualization of the embedding outputed by
the I3D model. A larger resolution images is available at
https://figshare.com/s/ba0485a95e74b63b750c



Finally, the results obtained on the MS-ASL dataset contain
20% less signs than what was initially reported by its authors,
since some of the videos composing MS-ASL were removed
from YouTube in the meantime.

VII. CONCLUSION AND FUTURE WORK

This paper introduces two new datasets for sign language
recognition. LSFB-CONT3, for continuous Sign Language
Recognition (SLR), depicts conversations between 100 sign-
ers. This new dataset includes more natural sentence con-
structions than previous datasets. Therefore, a model able to
perform well on the LSFB Corpus is more likely to generalize
better to real life sign language conversations. It is currently
the largest dataset for continuous sign language recognition
in terms of number of signers, vocabulary size and videos
length. LSFB-ISOL, a subset of LSFB-CONT containing the
most frequent signs is also introduced for isolated SLR. It
contains a vocabulary of 395 classes with at least 40 examples
for each class. LSFB-ISOL is the largest dataset for isolated
SLR in terms of number of video clips. These two new
datasets lack variability in terms of background, camera angle
and lightning conditions. Yet, they are representative of the
recording environment of other SL corpora in construction.
We presented a review of the popular datasets for SLR. LSFB-
ISOL is compared to other state-of-the-art SLR datasets. We
then provide firsts results obtained on our datasets and a
qualitative analysis of the best performing model was con-
ducted. This analysis showed that the model was able to learn
hand tracking of the signers even when occlusion occurs.
We also observed that the model has trouble to focus on
small hands configurations details, such as variations in fingers
position. The model focuses primarily on the right hand to
make predictions, and does not seem to exploit eye gaze
or facial expression information to distinguish similar signs.
In our future work, we plan to improve results obtained in
this paper, by exploring other pre-processing methods and by
developing new architectures more suited for the particular
SLR problem. We also intend to integrate several models in
a widely available system and to exploit user feedback to
incrementally improve our results. We also aim to contribute
to the challenging problem of continuous SLR.

ACKNOWLEDGMENTS

The authors thank Adrien Bibal, Arnaud Bougaham and
Paul Temple for their comments and discussions on this paper.

REFERENCES

[1] A. S. Al-Shamayleh, R. Ahmad, M. A. M. Abushariah, K. A. Alam,
and N. Jomhari, “A systematic literature review on vision based gesture
recognition techniques,” Multimedia Tools and Applications, vol. 77,
no. 21, pp. 28 121–28 184, 2018.

[2] C. Vogler and D. Metaxas, “Parallel hidden markov models for amer-
ican sign language recognition,” in Proceedings of the Seventh IEEE
International Conference on Computer Vision, 1999.

[3] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part C (Applications and
Reviews), vol. 37, no. 3, pp. 311–324, 2007.

3lsfb.info.unamur.be

[4] W. C. Stokoe, “Sign language structure: An outline of the visual
communication systems of the american deaf,” Journal of Deaf Studies
and Deaf Education, vol. 10, no. 1, pp. 3–37, Jan. 2005.

[5] R. Yang, S. Sarkar, and B. Loeding, “Handling movement epenthesis and
hand segmentation ambiguities in continuous sign language recognition
using nested dynamic programming,” IEEE transactions on pattern
analysis and machine intelligence, vol. 32, no. 3, pp. 462–477, 2009.

[6] T. Johnston, “Corpus linguistics and signed languages: no lemmata, no
corpus,” in Proceedings of the Sixth International Language Represen-
tation and Evaluation Conference, 2008, pp. 82–87.

[7] H. Cooper, B. Holt, and R. Bowden, “Sign language recognition,” in
Visual Analysis of Humans. Springer London, 2011, pp. 539–562.

[8] M.-A. Sallandre, A. Balvet, G. Besnard, and B. Garcia, “Étude ex-
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