
 

1 
 

Stochastic epigenetic mutations are associated with risk of breast cancer, lung cancer and 1 

mature B-cell neoplasms 2 

Amedeo Gagliardi1,2+ Pierre-Antoine Dugué3,4,5,+, Therese H Nøst7+, Melissa C. Southey3,5,6 ,Daniel 3 

D Buchanan4,8,9, Daniel F Schmidt4,10, Enes Makalic4, Allison M Hodge3,4, Dallas R English3,4, 4 

Nicole W Doo3,11,12 ,John L Hopper4, Gianluca Severi13, Laura Baglietto13,14,Alessio G Naccarati1,2, 5 

Sonia Tarallo1,2, Luigia Pace1, Vittorio Krogh15, Domenico Palli16, Salvatore Panico17, Carlotta 6 

Sacerdote18, Rosario Tumino19, Eiliv Lund7, Graham G Giles3,4,5, Barbara Pardini1,2, Torkjel M 7 

Sandanger7,*, Roger L Milne3,4,5*, Paolo Vineis1,20*, Silvia Polidoro1,20*, Giovanni Fiorito20,21* 8 

1Italian Institute for Genomic Medicine (IIGM, former HuGeF), c/o IRCCS Candiolo, SP142, km 3,95 – 9 

10060 Candiolo. 10 
2Candiolo Cancer Institute, FPO – IRCCS, Candiolo (IT) 11 
3Cancer Epidemiology Division, Cancer Council of Victoria, 615 St Kilda Road, Melbourne, Victoria, 3004, 12 

Australia. 13 
4Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of 14 

Melbourne, Parkville Victoria 3010, Australia.  15 
5Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, 16 

Australia. 17 
6Department of Clinical Pathology, The University of Melbourne, Parkville Victoria 3010, Australia. 18 
7Department of Community Medicine, Faculty of Health Sciences, UiT-The Arctic University of Norway, 19 

NO-9037 Tromsø, Norway8Genetic Epidemiology Laboratory, Department of Pathology, The University of 20 

Melbourne, Parkville, Victoria, Australia. 21 
8Colorectal Oncogenomics Group, Department of Clinic Pathology, The University of Melbourne, Victorian 22 

Comprehensive Cancer Centre, Melbourne, Victoria, Australia. 23 
9Genomic medicine and Family Cancer Clinic, Royal Melbourne Hospital, Melbourne, Victoria, Australia. 24 
10Faculty of Information Technology, Monash University, Victoria, Australia. 25 
11Concord Repatriation General Hospital, Sydney Medical School, University of Sydney, NSW 2139, 26 

Australia. 27 
12Concord Clinical School, University of Sydney, Concord, NSW 2139, Australia 28 
13Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Université Paris-29 

Saclay, UPS, USQ, Gustave Roussy, Villejuif, France. 30 
14Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy. 31 
15Fondazione IRCCS - Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy. 32 
16Institute for Cancer Research, Prevention and Clinical Network  - ISPRO,   Villa delle Rose,  Via Cosimo il 33 

Vecchio, 2 -50139  Florence, Italy. 34 
17Department of Clinical Medicine and Surgery, University of Naples Federico II, Corso Umberto I, 40, 35 

80138, Naples, Italy. 36 
18Piedmont Reference Centre for Epidemiology and Cancer Prevention (CPO Piemonte), Via Santena 7, 37 

10126, Turin, Italy. 38 
19Cancer Registry and Histopathology Department, 'Civic - M. P. Arezzo' Hospital, ASP Ragusa, Piazza 39 

Igea, 1, 97100, Ragusa, Italy. 40 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/425293059?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

2 
 

20MRC-PHE Centre for Environment and Health, Imperial College London, St. Mary’s Campus Paddington, 41 

W2 1PG London, United Kingdom. 42 
21 Laboratory of Biostatistics, Department of Biomedical Sciences, University of Sassari  43 
+,* equal contribution 44 

 45 

Keywords: DNA methylation, Stochastic epigenetic mutations, Cancer epigenetics 46 

 47 

Financial support: 48 

This research was supported by the ‘Lifepath’ grant awarded to Imperial College, London, and the 49 

Italian Institute for Genomic Medicine (IIGM) in Turin, Italy and AIRC grant (Progetto IG 2013 50 

N.14410) to Carlotta Sacerdote for part of the DNA methylation experiments. The Melbourne 51 

Collaborative Cohort Study cohort recruitment was funded by VicHealth and Cancer Council 52 

Victoria. The MCCS component of the work was funded by the Australian National Health and 53 

Medical Research Council, including grants 1106016, 1011618, 1026892, 1027505, 1050198, 54 

1087683, 1088405, 1043616, 209057, 396414 and 1074383. Cases and their vital status were 55 

ascertained through the Victorian Cancer Registry and the Australian Institute of Health and 56 

Welfare, including the National Death Index and the Australian Cancer Database. The NOWAC 57 

component of the work was supported by the European Research Council (ERC) Advanced 58 

Researcher Grant, 2008: Transcriptomics in cancer research (TICE). 59 

 60 

Corresponding author:  61 

Amedeo Gagliardi, gagliardi.borsisti@iigm.it 62 

 63 

Conflict of interest 64 

The authors declare no conflict of interest. 65 

  66 

mailto:gagliardi.borsisti@iigm.it


 

3 
 

Manuscript additional info 67 

Words count: 3225 68 

Figures count: 2  69 

Tables count: 3  70 

Abbreviations 71 

EPIC: The European Prospective Investigation into Cancer and nutrition, 72 

MCCS: The Melbourne Collaborative Cohorts Study, 73 
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Abstract 93 

Background: Age-related epigenetic dysregulations were associated with several diseases, 94 

including cancer. The individual number of stochastic epigenetic mutations (SEMs) has been 95 

suggested as a biomarker of life-course accumulation of exposure-related DNA damage; however, 96 

the predictive role of SEMs in cancer has seldom been investigated. 97 

Methods: A SEM, at a given CpG site, was defined as an extreme outlier of blood DNA 98 

methylation value distribution across individuals. We investigated the association of the total 99 

number of SEMs with the risk of eight cancers in 4,497 case-control pairs nested in three 100 

prospective cohorts. Further, we investigated whether SEMs were randomly distributed across the 101 

genome or enriched in functional genomic regions. 102 

Results: In the three-study meta-analysis the estimated odds ratios (ORs) per one-unit increase in 103 

log(SEM) from logistic regression models adjusted for age and cancer risk factors were 1.25; 95% 104 

CI 1.11-1.41 for breast cancer, and 1.23; 95% CI 1.07-1.42 for lung cancer. In MCCS, the OR for 105 

mature B-cell neoplasm was 1.46; 95% CI 1.25-1.71. Enrichment analyses indicated that SEMs 106 

more likely occur in silenced genomic regions and in transcription factor binding sites regulated by 107 

EZH2 and SUZ12 (p<0.0001 and p=0.0005 respectively): two components of the Polycomb-108 

Repressive-Complex-2 (PCR2). Finally, using longitudinal DNA methylation data, we showed that 109 

PCR2-specific SEMs are generally more stable in time compared with SEMs occurring in the 110 

whole-genome. 111 

Conclusions: The number of SEMs is associated with a higher risk of different cancers in pre-112 

diagnostic blood samples. Enrichment analyses indicate key enzymatic pathways possibly involved 113 

in carcinogenesis mechanisms. 114 

Impact: We provide the first evidence of the prospective association between epimutations and a 115 

higher risk of different cancers. We hypothesized a possible mechanism of carcinogenesis involving 116 

PCR2 complex proteins worthy of further investigation.  117 



 

5 
 

Introduction 118 

The concept of ‘life-course accumulation of exposures’ and related damage has been 119 

proposed to explain the decline of physiological functioning and the consequent increased disease 120 

morbidity and mortality during aging(1). The accumulation of environmental, socioeconomic and 121 

behavioural exposures may cause long-term damage, which may be amplified by a decreased ability 122 

to repair damage as the body ages(1). Age is, in fact, an important risk factor for most diseases, 123 

including cancer, and the incidence of most cancers increases exponentially with age(2). 124 

Basic research, combined with the increasing capacity of large-scale technologies including 125 

‘omics’ measurements, has led to the formulation of exposure-driven models of carcinogenesis(3), 126 

in which functional changes in gene regulation and genomic mutations reflect the life-course 127 

accumulation of exposure-related DNA damage. It has long been postulated that the accumulation 128 

over time of somatic mutations in specific genes may lead to cancer development, but recent studies 129 

demonstrated that this molecular mechanism alone is not sufficient(4,5).  130 

Epigenetic landscapes, in particular, change considerably across the individual lifespan, 131 

suggesting that epigenetic variability is a fundamental component of the aging process(4,6), 132 

constituting a link between genetic and environmental factors via the regulation of gene 133 

transcription processes. DNA methylation (DNAm) is the most studied epigenetic mechanism, and 134 

changes in DNA methylation over time are thought to play a role in several age-related diseases, 135 

including cancer(6),(7). 136 

Two mechanisms contribute to age-related DNA methylation changes: the ‘epigenetic 137 

drift’(6) and the ‘epigenetic clock’(8). Although both are related to aging, the ‘epigenetic clock’ 138 

refers to specific CpG sites at which DNA methylation levels steadily increase or decrease with age 139 

and thus can be used to predict chronological age with high accuracy(8). The concept of epigenetic 140 

age acceleration has been introduced as the difference between predicted DNA methylation age and 141 

the chronological age(8,9). Epigenetic age acceleration may be a good biomarker of biological 142 

aging as it has been associated with longevity(10-13), several pathological conditions(14,15), and 143 
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non-communicable disease risk factors like obesity(16), poor physical activity(17), and low 144 

socioeconomic status(18). Previous work found a consistent association between measures of 145 

epigenetic aging and increased cancer risk and shorter cancer survival (11). Recent literature 146 

discerns Horvath (8) and Hannum (9) ‘first-generation clocks’ from DNAmPhenoAge (19) and 147 

DNAmGrimAge (20), called the ‘next-generation clocks’, the latest being trained not only on age 148 

instead, on a complex set of biomarkers which in turn are associated with individual health status 149 

and mortality. Early findings seem to indicate that the next-generation clocks may be capturing 150 

important aspects of accelerated biological aging. In a recent critique of the epigenetic clocks, 151 

Dugue et al. cautioned that early studies generally report stronger associations than later studies and 152 

are more likely to be affected by publication bias (21). 153 

In contrast, ‘epigenetic drift’ is a mechanism that involves the whole-genome, suggesting a 154 

global dysregulation of DNA methylation patterns with age(22). Two critical aspects of the 155 

epigenetic drift are genomic instability and chromatin deterioration during aging, which lead to an 156 

accumulation of epigenetic mutations (also known as ‘epimutations’, i.e. changes in gene activity 157 

not involving DNA mutations but rather gain or loss of DNA methyl groups, which are conserved 158 

in cells during mitosis(23)). A higher number of stochastic epigenetic mutations (SEMs) across the 159 

genome has been associated with risk factors such as cigarette smoking, alcohol intake(23) and 160 

exposure to toxicants(24). We recently reported several associations between lifestyle-related 161 

variables and the number of SEMs (25). Moreover, more SEMs may be associated with skewed X 162 

chromosome inactivation in women and with hepatocellular carcinoma tumour stage(26) suggesting 163 

a possible role of SEMs in other age-related diseases. 164 

In this study, we investigated the associations between the number of SEMs across the 165 

genome and the risk of eight malignancies (breast, colorectal, lung, gastric, prostate, and kidney 166 

cancer, as well as urothelial cell carcinoma (UCC), and mature B-cell neoplasms (MBCN)) in 4,497 167 

case-controls pairs, matched on age and other relevant variables, nested within three large cohorts 168 

from Italy (the Italian part of the European Prospective Investigation into Cancer and Nutrition 169 
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Study (EPIC)), Australia (the Melbourne Collaborative Cohort Study (MCCS)), and Norway (the 170 

Norwegian Women and Cancer Study (NOWAC)). This is the first prospective study to assess the 171 

association between the number of SEMs and cancer risk in DNA derived from blood samples.  172 

Before this study, only Teschendorff et al. (27) investigated such relationship in cancer cells. We 173 

also investigated the biomolecular mechanisms linking aging, DNA methylation patterns, and the 174 

risk of different cancers analyzing the genome-wide distribution of epimutations, to identify 175 

functional genomic regions enriched in SEMs, and to describe the biomolecular mechanism of 176 

carcinogenesis possibly. 177 

Methods 178 

Study sample 179 

Details of participant recruitment and relevant covariate acquisition are reported in the 180 

supplementary text. Briefly, EPIC Italy, MCCS and NOWAC are prospective cohort studies with 181 

demographic and lifestyle variables and blood samples collected from participants at recruitment. 182 

For each cohort, subsets of blood samples were previously selected for DNA methylation analyses, 183 

using nested case-control study designs, using the incidence density sampling method for case-184 

control matching (11,28-30). In EPIC Italy, three sub-study samples were case-control studies on 185 

breast, lung and colorectal cancer (556 cases and controls, 45% breast cancer, 30% lung cancer, 186 

25% colorectal cancer). The median time to disease (TTD) were: 7.01 years (interquartile range 187 

(IQR) = 7.09), 7.44 years (IQR = 5.65), and 6.28 years (IQR = 5.04) for breast, lung, and colorectal 188 

cancer studies respectively. Case-control pairs were matched by age (±2.5 years), sex, season of 189 

blood collection, centre of recruitment, and length of follow-up. The average age difference in 190 

absolute value between cases and matched controls was 0.25 (standard deviation 0.26). In 191 

NOWAC, two sub-study samples were case-control studies on breast and lung cancer (316 cases 192 

and controls, 59% breast cancer, 41% lung cancer). For each case, one control with adequate blood 193 

samples was selected matched on time since blood sampling and year of birth (that is cases and 194 

matched controls had the same age at recruitment) in order to control for effects of storage time and 195 
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age. The median TTD were: 2.10 years (IQR = 2.14) and 4.10 years (IQR = 3.21) for breast and 196 

lung cancer study, respectively. The average age difference in absolute value between cases and 197 

matched controls was 0.13 (standard deviation 0.33). Finally, in MCCS eight sub-studies were on 198 

breast, lung, colorectal, gastric, kidney and prostate cancer, UCC and MBCN (3,625 cases and 199 

controls, 11% breast cancer, 9% lung cancer, 23% colorectal cancer, 5% gastric cancer, 4% kidney 200 

cancer, 24% prostate cancer, 12% UCC, 12% MBCN). For each nested case-control study, controls 201 

were individually matched to incident cases on age (±2.5 years), sex, country of birth, blood DNA 202 

source and collection period. The average case-control age difference in absolute value was XX (sd 203 

= XX). The median TTD were 7.7 years (IQR = 6.07), 9.3 years (IQR = 7.9), 11.4 years (IQR = 204 

10.3), 11.2 years (IQR = 8.5),  10.1 years (IQR = 7.5), 10.5 years (IQR = 8.1), 10.5 years (IQR = 205 

7.9), 6.3 years (IQR = 6.8) for  breast, colorectal, gastric, kidney, lung, MBCN, prostate and UCC 206 

study respectively. 207 

A total of 4,497 case-control matched pairs were analyzed (Table 1). 208 

This study was conducted following the principles of the Declaration of Helsinki and its 209 

subsequent revisions, and all study participants signed informed consent. EPIC was reviewed and 210 

approved by the HuGeF (currently IIGM) Ethics Committee. The MCCS protocol was approved by 211 

the Cancer Council Victoria's Human Research Ethics Committee. NOWAC was approved by the 212 

Regional Committee for Medical and Health Research Ethics in North Norway. 213 

DNA methylation analyses 214 

Whole-genome DNA methylation was quantified using the Illumina Infinium 215 

HumanMethylation450 BeadChip. Detailed methods and data pre-processing procedures can be 216 

found in the supplementary text. To account for the possible bias introduced by the inter-individual 217 

variability in the proportion of white blood cells (WBC) in peripheral blood, we estimated the 218 

percentage of WBC fractions according to the Houseman algorithm(31), which performs inference 219 

using a quadratic programming technique known as linear constrained projection, where non-220 

negativity and normalization constraints on cellular proportions are imposed during inference(32). 221 
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We excluded from the analysis bimodal and trimodal CpGs using the function findpeaks in the R 222 

package pracma, thus focusing on rare, stochastic events. Missing methylation values were imputed 223 

using the k-nearest neighbours algorithm using the R function impute.knn(33).  224 

Statistical analyses 225 

Identification of stochastic epigenetic mutations.  226 

We computed the total number of SEMs as the sum of extreme DNA methylation values 227 

(outliers) per individual. This approach, based on a modified version of the procedure described by 228 

Gentilini et al.,(34) take into account differential WBC proportions among individuals. Specifically, 229 

for each CpG, we computed the residuals from the regression of DNA methylation beta values on 230 

estimated WBC fractions and then, considering the distribution of DNA methylation beta values 231 

across all samples, we computed the interquartile range (IQR) – the difference between the 3rd 232 

quartile (Q3) and the 1st quartile (Q1) for the residuals - and defined a SEM as a methylation value 233 

lower than Q1-(3×IQR) or greater than Q3+(3×IQR). Finally, for each individual, we computed the 234 

total number of SEMs across the assay. The described procedure leads to an estimation of the total 235 

number of SEMs per individual independent on individual differential WBC proportion by 236 

definition. In Figure S1, we show the Spearman correlation coefficients of the total number of 237 

SEMs with estimated WBC percentages. Since the number of SEMs increased exponentially with 238 

age, we used a logarithmic transformation of the total number of SEMs (referred to hereafter as 239 

log(SEM)) for all association analyses. 240 

Computation of epigenetic clock measures.  241 

We computed two measures of epigenetic age acceleration (AA) based on Horvath 242 

DNAmAge(8) and DNAmGrimAge(20) according to the algorithm described by Horvath and 243 

colleagues. Briefly, DNAmAge was calculated as a weighted average of 353 age-related CpGs 244 

(Horvath DNA methylation age). Weights are defined using a penalized regression model (Elastic-245 

net regularisation) (8). Age acceleration (AA) was defined as the difference between epigenetic and 246 

chronological age. Since AA may be correlated with chronological age and WBC proportions, we 247 
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also computed the ‘intrinsic epigenetic age acceleration’ (IEAA), defined as the residuals from the 248 

linear regression of AA on chronological age and WBC percentages (13). Positive values of IEAA 249 

(which by definition is independent of age and WBC) indicate accelerated aging and vice versa. The 250 

DNAmGrimAge also known as the ‘next-generation clock’, is a composite biomarker based on 251 

DNAm surrogate measures of seven plasma proteins associated with overall mortality in addition to 252 

DNAm surrogate of smoking pack-years, trained to be strongly predictive of overall mortality. The 253 

methods for enrichment analyses of the identified epimutated CpGs are described in the 254 

Supplementary Material. 255 

Association of SEMs with cancer risk.  256 

We investigated the association between SEMs and the risk of eight types of cancer separately 257 

using log(SEM) as the predictor and case-control status as the outcome. Odds ratios (ORs) and 258 

confidence intervals (CIs) were calculated using conditional logistic regression models for a one-259 

unit increase in log(SEM). For each cancer and each cohort, we ran four regression models: Model 260 

1 included age, sex, and study-specific covariates (centre of recruitment in EPIC, ethnicity and 261 

tissue type in MCCS); Model 2 included additional adjustment for cancer risk factors: smoking, 262 

body mass index (BMI), physical activity, alcohol intake, dietary quality and education (as a proxy 263 

for socioeconomic status); Model 3 included additional adjustment for Horvath epigenetic AA; 264 

finally, Model 4 included additional adjustment for DNAmGrimAge epigenetic age acceleration. 265 

All covariates were treated as categorical variables with three categories to harmonize sources of 266 

information across the three studies (see Supplementary Material for more details on harmonization 267 

of covariates). 268 

For associations with breast, lung and colorectal cancer, which were investigated in more than 269 

one study, the overall OR estimates for the association between log(SEM) and cancer risk were 270 

calculated using random-effect maximum likelihood (REML)(35) meta-analysis using the R 271 

package metafor(36). Heterogeneity in the associations among studies was evaluated using the I2 272 

statistic. Further sensitivity analyses were performed stratifying case-control pairs based on the case 273 
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time between blood collection and cancer diagnosis (time to disease (TTD)); ORs and confidence 274 

intervals were computed on subsample having TTD > 10 years, TTD between 5 and 10 years, and 275 

TTD <= 5 years. Cochran-Armitage test for trend was used to evaluate ORs increase with 276 

decreasing TTD. 277 

SEMs stability over time.  278 

To evaluate the stability of SEMs over time, we analyzed DNAm data from the Italian part of 279 

the Personal Exposure Monitoring (PEM-Turin) study, which in turn is part of the EXPOsOMICS 280 

project(37). The PEM-Turin study included 42 healthy volunteers, whose whole-genome DNAm 281 

was measured twice in 2015 as part of a study aimed at investigating the effect of air pollution 282 

exposure on ‘omic’ biomarkers(38). Thirty-three out of 42 volunteers were already enrolled in the 283 

EPIC Italy study in the ‘90s and are part of this study sample as healthy controls. That is, we were 284 

able to compare epimutation patterns at the time of recruitment in EPIC Italy, with epimutation 285 

patterns around 19 years later (mean = 18.75 years, range = 16.45 - 20.26 years) using longitudinal 286 

data. 287 

SEMs in cancer tissues.  288 

We evaluated the consistency of epimutation patterns identified in blood pre-diagnostic 289 

samples with tissue-specific (both normal and cancerous) epimutation profiles. Data from The 290 

Cancer Genome Atlas (TCGA) project were downloaded from the Genomic Data Commons Data 291 

Portal (https://portal.gdc.cancer.gov); specifically, we investigated epimutation profiles on tumoral-292 

normal adjacent tissue pairs from 32 lung cancer patients (TCGA-LUAD project), 91 breast cancer 293 

patients (TCGA-BRCA project), and 45 colorectal cancer patients (TCGA-COAD and TCGA-294 

READ project). 295 

Data availability 296 

The data generated and/or analyzed in the current study could be accessed upon reasonable 297 

request to the originating cohorts. Access will be conditional to adherence to local ethical and 298 
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security policy. R codes used for the analyses presented in the paper are available upon request. 299 

EPIC DNAm partial data can be accessed through GEO accession number GSE51057.  300 
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Results 301 

Association of cancer risk factors with SEMs 302 

Analyzing the number of SEMs in the 3 cohorts, we observed an exponential increase in the 303 

number of SEMs with age both in the whole study sample (Figure 1; Pearson R=0.17, p=5x10-9; 304 

R=0.04, p=6x10-5; R=0.23, p=2x10-9 in EPIC, MCCS and NOWAC, respectively) and in controls 305 

only (Figure 1; Pearson R=0.15, p=2x10-5; R=0.04, p=0.01; R=0.23, p=1x10-8 in EPIC, MCCS and 306 

NOWAC, respectively).  In Table 2 are reported the cross-sectional associations of cancer risk 307 

factors with log(SEM) in both the whole study sample and in controls only. In EPIC Italy, 308 

log(SEM) was associated with smoking status, BMI and education in the whole study sample, and 309 

with BMI only in controls sample. In MCCS log(SEM) was associated with BMI, physical activity 310 

and education in the whole sample and with … in controls only. No association was observed in 311 

NOWAC. In both MCCS and EPIC, log(SEM) was greater in obese individuals; in EPIC, log(SEM) 312 

was greater in current smokers and the low education group. In the MCCS, log(SEM) was lower in 313 

the low education group and among individuals with low physical activity. 314 

Association of SEMs with the risk of cancers 315 

In the regression Model 2, adjusting for major cancer risk factors, the presence of more 316 

SEMs was associated with an increased risk of breast cancer (meta-analysis: OR per one-unit 317 

increase in log(SEM)=1.25; 95% CI 1.11-1.41; p=0.0003; I2=0%; Figure 2a), and lung cancer 318 

(meta-analysis: OR=1.23; 95% CI 1.07-1.42; p=0.004; I2=0%; Figure 2b). No association was 319 

found in the meta-analysis of colorectal cancer in EPIC and MCCS (OR=1.02; 95% CI 0.91-1.14; 320 

p=0.74; I2=0%; Figure 2c). In MCCS only, log(SEM) was associated with MBCN (OR=1.43; 95% 321 

CI 1.22-1.67; p=5x10-06, Table 3). ORs greater than one per log(SEM) were also observed for 322 

kidney and prostate cancers, although the associations were not statistically significant (Table 3). 323 

Interestingly, the ORs from Model 1 did not deviate significantly from those estimated in 324 

Model 2 (Table 3), and evidence of association with risk of breast and lung cancers and MBCN was 325 

observed, after adjustment for smoking, BMI, alcohol intake, diet and education as covariates in the 326 
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logistic regression models, suggesting limited confounding by these variables. Similarly, additional 327 

adjustments for the epigenetic clock measures in Model 3 and Model 4 did not change the estimated 328 

ORs significantly (Table 3). In the analysis stratified by TTD, we found a significant increase in 329 

ORs as the TDD decrease for breast, colorectal (p for trend < 0.001), MBCN, and prostate cancer (p 330 

for trend < 0.05, Figure S2).  331 

Association of number of SEMs with epigenetic clocks. 332 

As shown in Figures S3 and S4, the number of SEMs was positively correlated with 333 

Horvath DNAmAge epigenetic clock in all three studies (R = 0.25, p < 0.0001; R = 0.03, p = 0.001; 334 

R = 0.20, p = 0.04 in EPIC, MCCS and NOWAC, respectively), and with GrimDNAmAge (R = 335 

0.25, p=0.0005; R = 0.07, p<0.0001; R =0.24, p=0.04 in EPIC, MCCS and NOWAC, respectively). 336 

Consistent results were obtained from the analyses of control sample only. 337 

Enrichment analyses 338 

We investigated enrichment of SEMs in specific genomic regions based on the Illumina 339 

annotation about CpG site location. We found enrichment of epimutations in genomic regions 340 

characterized by open chromatin states, CpG islands and shores (p=0.02, p=0.05 and p=0.0003 341 

respectively, Table S1). Considering the functional categories defined by the ENCODE project 342 

with Chromatin Immuno Precipitation Sequencing (ChIP-Seq) experiments on human embryonic 343 

stem cells (hESC), we found enrichment of SEMs in ‘inactive/poised promoters’ (p<0.0001), 344 

‘heterochromatin/low signal/CNV’ (p<0.0001), and ‘Polycomb-repressed’ regions (p=0.02) (Table 345 

S2). Furthermore, considering transcription factor binding sites (TFBSs) in hESC from ENCODE 346 

project, we also found significant an enrichment of SEMs in TFBSs targeted by two members of the 347 

Polycomb-Repressive-Complex-2 (PRC2): EZH2 and SUZ12 (p<0.0001 and p=0.0005, 348 

respectively, Table S3) and by the transcriptional corepressor ctBP2 (p=0.001, Table S3). 349 

Association of EZH2-specific SEMs with the risk of cancer 350 

Given the enrichment analysis results, we further investigated SEMs in EZH2 targets (in 351 

which the evidence for enrichment was the strongest). The number of SEMs in regions targeted by 352 
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EZH2 was strongly correlated with the total number of SEMs across all the genome (Pearson R 353 

>0.80, Figure S5). We repeated the tests for the associations with cancer, considering the EZH2-354 

specific SEMs and obtained results consistent with those presented in Table 3; EZH2-specific 355 

SEMs were strongly associated with breast cancer, lung cancer and MBCN (Table S4). Adjustment 356 

for batch effects did not substantially influence the association observed (‘Supplementary results’, 357 

Supplementary Material). It is worth observing that the majority of the CpG sites targeted by EZH2 358 

were on average hypo-methylated (more than 80% of the CpGs have average DNAm beta value 359 

lower than 20%, Figure S6); consequently, more than 95% of EZH2-specific SEMs occur as 360 

abnormal hyper-methylation of a locus that is hypo-methylated in the overall sample. 361 

SEMs stability over time 362 

In the longitudinal regression model on PEM-Turin dataset, the total number of SEMs per 363 

individual significantly increased in time (log(SEM) increase per year = 0.168 ± 0.007; p < 0.0001, 364 

Figure S7. Among the epimutations identified at baseline, the majority were still present at the time 365 

of PEM-Turin study (18.75 years later, on average, range = 16.45 - 20.26 years). The average 366 

percentage of conserved SEMs was 71% (range 55% - 93%). Based on the results of the enrichment 367 

analyses, we focused on EZH2-specific epimutations. The proportion of conserved EZH2-specific 368 

epimutations was significantly higher compared with what observed at genome-wide level (mean = 369 

87%; range = 62% - 100%; Chi-Squared test for proportion p < 0.0001). 370 

SEMs in tumour compared with normal adjacent tissues 371 

To verify the consistency among the results obtained in pre-diagnostic blood samples with 372 

epimutation patterns in cancer tissues, we analyzed data from the TCGA project on lung, breast and 373 

colorectal cancers. The differences in log(SEM) between cancer and normal adjacent tissues were 374 

4.11 (95% CI 3.70 – 4.52; paired Student T-test p < 0.0001) for lung cancer; 3.29 (95% CI 2.98 – 375 

3.62; p < 0.0001) for breast cancer; 3.94 (95% CI 3.54 – 4.33; p < 0.0001) for colorectal cancer 376 

(Figure S8 a, b, c). The observed differences were even higher looking at EZH2-specific SEMs: 377 

5.37 (95% CI 4.77 - 5.94; p < 0.0001) for lung cancer; 4.02 (95% CI 3.62 – 4.42; p < 0.0001) for 378 
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breast cancer; 4.86 (95% CI 4.43 – 5.30; p < 0.0001) for colorectal cancer (Figure S8 d, e, f). The 379 

average proportion of SEMs conserved in tumour from normal-adjacent tissue was 72% (range 54% 380 

- 98%); whereas the proportion of conserved EZH2-specific SEMs was significantly higher: 87% 381 

(range 61% – 97%, Chi-Squared test for proportion p < 0.0001). Finally, enrichment analyses 382 

confirmed SEMs more likely occur in silenced genomic regions like inactive and poised promoters, 383 

Polycomb repressed regions, and in TFBS of EZH2 and SUZ12. 384 

Discussion 385 

In the present study, we have analyzed DNAm data from blood samples of ~4,500 cancer 386 

cases and one-to-one matched controls, nested within three large cohorts: EPIC Italy, MCCS and 387 

NOWAC. The main aim of this study was to investigate the association of the total number of 388 

SEMs with cancers using a prospective study design. In addition, we investigated SEMs stability 389 

over time and genomic regions in which SEMs more likely appear. 390 

SEMs increasing with aging and stability over time 391 

The number of estimated SEMs per sample varied by cohort; however, we observed an 392 

exponential increase of SEMs with age in all cohorts (Figure 1) confirming the results of previous 393 

studies(34,39). Differences in the number of SEMs between studies were mainly driven by batch 394 

effect, different normalization and DNAm data pre-processing procedure, and different study 395 

sample size which affect CpGs DNAm values distribution, making the comparison of SEMs 396 

between different batches challenging. Consequently, the magnitude of the association of logSEM 397 

with age (Figure 1) and epigenetic clocks (Figures S3 and S4) varied by cohort also. Nevertheless, 398 

in this study, we aimed to investigate the association of SEMs with cancer, and our study design 399 

using matched case-control pairs analyzed in the same batch overcome batch effect issues. The ORs 400 

for breast, lung, and colorectal cancer (investigated in more than one cohort) were estimated trough 401 

a random effect meta-analysis. 402 

The results observed in our cross-sectional study and reported in the literature about the 403 

exponential increase of SEMs with age were further confirmed using longitudinal data, available for 404 
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a subset of the EPIC Italy study included in the EXPOsOMICS study also. We observed high 405 

interindividual variability of the total number the grow rate of SEMs among individual of the same 406 

age (Figure S7), strengthening our hypothesis of SEMs as candidate biomarkers of accumulation of 407 

exposure-related DNA damage during aging, and as a possible biomarker for age-related diseases. 408 

Accordingly, in this study sample we observed cross-sectional association of SEMs with lifestyle-409 

related factors like smoking and obesity, and in our previous study with higher sample size with 410 

alcohol intake, and socioeconomic status(25). Also, logSEM positively correlates with the widely 411 

studied biological aging measures based on the epigenetic clock developed by Horvath and 412 

colleagues (Figure S3 and S4). The association between the two age-related biomarkers is not 413 

driven by their association with chronological age, because the Intrinsic Epigenetic Age 414 

Acceleration (IEAA) is independent of chronological age by definition (13). 415 

We were not able to investigate whether changes in lifestyle may slow down aging-related 416 

SEMs rise using longitudinal data due to the lack of statistical power. A recent study analyzing 417 

longitudinal data on SEMs in twins concluded that a small percentage of the differences in SEMs 418 

growth rate within individuals might be driven by underlying genetic background. These results 419 

suggest other exposures may play a significant role, worthy of further investigation (39). Finally, 420 

we showed using longitudinal data that once epimutations are established, most of them remain 421 

stable in time. Previous findings suggested that methylation patterns are transmittable during cell 422 

divisions(40). Given the above, we can speculate that SEMs could also be inherited through mitosis. 423 

SEMs association with cancer risk 424 

The main finding of the present study is the association of the number of SEMs with a 425 

higher risk of breast and lung cancers and MBCN. The estimated ORs were not confounded by age 426 

because we used age-matched case-control study design, and we further included age as adjustment 427 

in logistic regression models. Further, the observed associations remained significant after 428 

adjustment for smoking, BMI, physical activity, diet, alcohol consumption, and epigenetic clock 429 

measures. Although in our study there is an association of the total number of SEMs with cancer 430 
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risk factors like smoking, obesity and epigenetic clocks, the results obtained in model 1 (minimally 431 

adjusted),  model 2 (adjusted for various cancer risk factors), model 3 and model 4 (additionally 432 

adjusted for epigenetic clocks measures) did not differ significantly. The results above suggest that 433 

the increased number of SEMs consequence of unhealthy lifestyle explains a small part of the 434 

association of log(SEM) with cancer, meaning that other biological mechanisms are the main 435 

drivers of this associations. For example, endogenous exposures like inflammation or reduced DNA 436 

repair capacity (41) and other unmeasured environmental and lifestyle exposures (e.g. exposure to 437 

toxicants). In a manuscript currently under review from the MCCS group, they show that the 438 

DNAmGrimAge outperforms first-generation clocks in predicting different cancers, being the 439 

strongest association with lung cancer even after proper adjustment for smoking intensities and 440 

time. In this study the association of logSEM with breast and lung cancer and with MBCN remain 441 

significant after adjustment for DNAmGrimAge, suggesting SEMs and the new epigenetic clock as 442 

independent DNAm-based biomarkers, likely involving distinct biomolecular alterations. Further 443 

studies are needed to clarify better the underlying biological mechanisms linking SEMs and 444 

DNAmGrimAge to cancer. 445 

Our results indicate that alterations of DNA methylation profiles could be detected in the 446 

blood years before cancer diagnosis, and together with previous studies, suggest that an increasing 447 

number of SEMs in blood could be predictive of risk of future cancers. The differences between 448 

cases and matched controls increased as the time from blood collection and cancer diagnosis 449 

decrease (Figure S2) in all but two types of cancer investigated, with a significant trend of 450 

increasing OR as the TTD decrease in breast, colorectal, prostate cancer and MBCN, further 451 

supporting the potential predictive utility of logSEM biomarker. 452 

SEMs occur more likely in specific genomic regions 453 

It is important to specify the meaning of the term ‘epimutation’: although some authors used this 454 

term in a broader sense (42), including epigenetic changes driven by DNA mutations, we are 455 
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referring to ‘epimutation’ as a switch of the ‘epigenetic state’ not due to underlying DNA sequence 456 

variations but to gain or loss of DNA methylation. 457 

Our study suggests that regions and sites affected by epimutations are not entirely ‘stochastic’; 458 

instead, they are enriched in specific genomic regions, and randomly distributed inside them (34). 459 

This behaviour could be defined as ‘local, but non-global, stochasticity’. Our findings confirmed 460 

that epimutations preferentially occur in DNA sequences associated with open chromatin as 461 

previously observed by Ong et al.(43). Furthermore, SEMs were enriched in transcriptionally 462 

silenced genomic regions such as ‘inactive promoters’, ‘heterochromatin/low signal/CNV’, and 463 

‘Polycomb-repressed’ regions. Additionally, epimutations more likely appear in TFBSs targeted by 464 

two members of PRC2: EZH2 and SUZ12, and the transcriptional corepressor ctBP2.  465 

Consistently, smoking intensity was associated with enrichment of DNA methylation alterations in 466 

EZH2 and SUZ12 targets in buccal cells.(44). Similar patterns of DNAm alterations were described 467 

in normal breast tissue adjacent to cancerous breast tissue, compared with normal breast tissue in 468 

cancer-free women(45), and in our study comparing tumour with normal adjacent tissue using data 469 

from the TCGA project on breast, lung and colorectal cancer. Interestingly, EZH2-specific SEMs 470 

are significantly more stable in time (and conserved in tumour comparing with normal-adjacent 471 

tissue) compared with epimutations appearing in the rest of the genome. 472 

SEMs in cancer tissue compared with adjacent normal tissue 473 

To understand whether epimutation patterns in blood samples could be informative about 474 

epimutation patterns in the target tissue is crucial. Although DNAm from blood and tissue samples 475 

from the same individual are not available neither in our study nor in the databases available online, 476 

recent evidence suggests a strong correlation between DNAm profiles in blood and specific tissues 477 

(46,47). We analyzed epimutation profiles in DNAm data from tumours and normal adjacent tissue 478 

pairs from the TCGA project showing that the number of epimutations increased exponentially in 479 

tumour compared with normal adjacent tissue, as reported in previous studies using a slightly 480 

different analytical approach (45). In addition to previous studies, we showed that genomic regions 481 
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enriched of epimutations in both normal and tumour tissue are consistent with what observed in 482 

blood sample. Specifically, the enrichment of epimutations in TFBS of PRC2 complex is of 483 

particular interest, especially for its biological interpretation.  484 

A possible mechanism of carcinogenesis 485 

Being CpG sites targeted by EZH2 protein hypo-methylated in normal conditions (Figure S5), the 486 

vast majority of EZH2-specific SEMs appears as hypermethylation of a CpG site, suggesting crucial 487 

biomolecular mechanisms involved. The transcriptional regulation by DNA methylation and by 488 

PRC2 proteins are related: in vitro studies have demonstrated that they rarely act simultaneously on 489 

CpG islands(48), and removal of the epigenetic mark provokes a redistribution of the PRC2-490 

distinctive H3K27me3 mark in mammalian cells. At a functional level, the link between aging, 491 

PRC2 and global DNA methylation dysregulation involves the loss of self-renewal capacity of adult 492 

stem cells(49). Multipotent stem cell senescence in vitro is characterized by downregulation of 493 

PRC2 genes, including EZH2 and SUZ12.(49) Downregulation of EZH2 and SUZ12 may induce 494 

dysregulation of PRC2 targets, which include several tumour suppressor genes(50). For example, 495 

aberrant expression of EZH2 was associated with alterations of p53, a known tumour suppressor 496 

gene(51). 497 

The dynamics of the interaction between the Polycomb protein complex and DNA 498 

methylation are complex and not entirely understood. In vitro studies indicate that the two 499 

repressive systems are mutually exclusive and DNA methylation prevents Polycomb from accessing 500 

the promoter(52). The data reported in the present study suggests that aging may increase the 501 

enrichment of methylated sites in correspondence of TFBSs targeted by EZH2 and SUZ12, and 502 

consequently altering the efficacy of regulation of Polycomb. In line with these results, we could 503 

hypothesise that during aging, a more stable epigenetic silencing by DNA methylation could replace 504 

the plastic Polycomb repressive signal. Changes such as those described above might contribute to 505 

the early mechanisms involved in age-related diseases, specifically cancer. As proposed by other 506 

studies from Ohm et al.(53), Baylin et al.(54) and Widschwendter et al.(55) the tumour suppressive 507 
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genes regulated by Polycomb may switch from a dynamic to a fixed repressive state. In this context, 508 

tumour suppressor genes would not work properly, letting cells grow abnormally and become 509 

malignant. Vaz et al. suggested that these genes appear most vulnerable to aberrant promoter DNA 510 

methylation during cancer initiation and progression(56). More studies are needed to verify these 511 

data that raised new intriguing hypothesis connecting aging and cancer but the fact that SEMs data 512 

have been extracted from prospective study enforce previous studies done on cancer patients when 513 

the disease was already present (Tsai and Baylin, 2011 cell research). 514 

Study limitations  515 

Although most risk factors were measured carefully in the three cohort studies, the 516 

procedure to minimize variability due to the different sources of information possibly introduced 517 

bias in the regression models we used. 518 

Besides, in the present study, we measured DNA methylation levels in blood and not in 519 

tissues. Tissue biopsy still represents the gold-standard approach for patients’ diagnosis and 520 

prognostication. However, tissues do not represent tumour heterogeneity and, especially for early 521 

stages, residual disease and recurrence monitoring, a tissue biopsy sampling could be difficult or 522 

even dangerous (47). The evaluation of whole blood DNA methylation as a cancer risk marker is of 523 

particular interest because blood DNA constitutes a convenient ‘tissue’ to assay for constitutional 524 

methylation and its collection is non-invasive. Our results about SEMs using the TGCA data and 525 

recent literature suggest the methylation status of cancer tissues may reflects acquired or inherited 526 

somatic events that are detectable in non-targeted tissues (methylation memory of 527 

exposures/inheritance) and correlate with cancer susceptibility (46). Thus, epigenetic signatures in 528 

whole blood DNA could reflect the interaction of host genetic and environmental factors associated 529 

with cancer susceptibility as previously shown by others(57-59). Wong et al., for instance, showed 530 

that methylation of the BRCA1 promoter in blood DNA was more frequent in early-onset breast 531 

cancer patients and correlated with increased BRCA1 methylation levels in tumours(58). Finally, 532 

methylation in whole blood might reflect cancer predisposition as already demonstrated (60). 533 
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We found significant associations of SEMs with three out of eight cancers investigated and 534 

overall small magnitude in the effect sizes. This study results indicate accumulation of epimutations 535 

at a genome-wide level as a possible common biomarker in various cancers; however, each type of 536 

cancer is a well distinct disease, with its unique genetic landscape. The considerations above, 537 

indicate further research, possibly combining DNA methylation and gene expression data from both 538 

blood and tissue from the same individuals to understand better which specific genes or genomic 539 

regions influence cancer-risk when affected by SEMs, that is to investigate which epimutations are 540 

more deleterious than others. Future studies are also needed to identify cancer-specific 541 

epimutational signatures and to understand the biological mechanisms associated with accumulation 542 

of epimutations during the lifespan, possibly involving genetic background and DNA-repair 543 

capacity. 544 

Conclusions 545 

To our knowledge, this is the most extensive study on the association of SEMs with cancer risk 546 

using a prospective study design. A higher number of SEMs was significantly associated with an 547 

increased risk of breast and lung cancer and with MBCN. Also, we confirmed previous observation 548 

about the exponential increase of SEMs during aging using longitudinal data, showing that most of 549 

SEMs are stable in time and conserved in tumour compared with normal-adjacent tissue. Finally, 550 

we showed that SEMs more likely occur in specific genomic regions, suggesting a biomolecular 551 

mechanism involving PRC2 proteins, which may deserve further investigation. If confirmed with 552 

additional studies in vitro, these observations might open new avenues for the understanding of 553 

carcinogenesis biomolecular mechanisms. 554 
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Figure legends 560 

Figure 1. Exponential increase of the total number of SEMs with age: mean and 95% confidence 561 

interval of the total number of SEMs (on a logarithmic scale) by age group in the three study 562 

cohorts, in cases and controls combined (top) and in controls only (bottom). R and p-values refer to 563 

Pearson Correlation test. 564 

Figure 2. Total number of SEMs and risk of breast and lung cancer. Forest plots representing the 565 

three-studies random effect (RE) maximum likelihood meta-analysis for breast (A) and lung cancer 566 

(B), and the meta-analysis of EPIC and MCCS for colorectal cancer (C). 567 

Supplementary figure legends 568 

Figure S1. Lack of correlation between log(SEM) and white blood cells (WBC) proportions: 569 

heatmap of Pearson correlation coefficients including log(SEM) and WBC proportions estimated 570 

using Houseman algorithm. 571 

Figure S2 Odds ratio (ORs) significantly increase as TTD decrease in breast, colorectal, prostate 572 

cancer and MBCN: Forest plots indicating ORs stratified by the time-to-disease and type of cancer. 573 

P-values refer to the Cochran Armitage test for trend. 574 

Figure S3 Total number of SEMs is associated with Horvath DNAmAge epigenetic clock: 575 

Scatterplots of log(SEM) on the x-axis and DNAmAge on the y-axis, in EPIC (A), MCCS (B) and 576 

NOWAC (C)  (cases and controls combined on the top, controls only on the bottom). P-values refer 577 

to the Pearson correlation test. 578 

Figure S4. Total number of SEMs is associated with DNAmGrimAge epigenetic clock: Scatterplots 579 

of log(SEM) on the x-axis and DNAmGrimAge on the y-axis, in EPIC (A), MCCS (B) and 580 

NOWAC (C)  (cases and controls combined on the top, controls only on the bottom). P-values refer 581 

to the Pearson correlation test. 582 

Figure S5. The number of EZH2-specific SEMs correlates with the total number of SEMs genome-583 

wide: Scatterplots of log(SEM) genome-wide on the x-axis and EZH2-specific logSEM on the y-584 
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axis in EPIC (A), MCCS (B) and NOWAC (C) (cases and controls combined on the top, controls 585 

only on the bottom). P-values refer to Spearman correlation tests. 586 

Figure S6. The majority of CpG sites targeted by EZH2 are on average hypomethylated: Histogram 587 

of average DNAm values for the CpGs targeted by EZH2 protein. 588 

Figure S7. The total number of SEMs in the PEM-Turin dataset significantly increase over time: 589 

Spaghetti plot showing the increasing trend of log(SEM) over time. Each line indicates a single 590 

individual in the PEM-Turin dataset. 591 

Figure S8. SEMs exponentially increase in tumour compared with normal-adjacent tissue: boxplot 592 

of log(SEM) in normal and tumor tissue of lung (A), breast (B) and colorectal cancer (C) (genome-593 

wide logSEM on the top, EZH2-specific logSEM on the bottom). These data come from the TCGA 594 

project. 595 

Figure S9. Batch effect does not influence logSEM computation: Scatterplots for the association of 596 

logSEM with batch adjusted logSEM in EPIC (A), MCCS (B) and NOWAC (C). P-values refer to 597 

Pearson correlation tests. 598 
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