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Abstract—Land cover classification of remote sensing images
is a challenging task due to limited amounts of annotated data,
highly imbalanced classes, frequent incorrect pixel-level annota-
tions, and an inherent complexity in the semantic segmentation
task. In this work, we propose a novel architecture called the
Dense Dilated Convolutions Merging Network (DDCM-Net) to
address this task. The proposed DDCM-Net consists of dense
dilated image convolutions merged with varying dilation rates.
This effectively utilizes rich combinations of dilated convolutions
that enlarge the network’s receptive fields with less parameters
and features compared to the state-of-the-art approaches in the
remote sensing domain. Importantly, DDCM-Net obtains fused
local and global context information, in effect incorporating
surrounding discriminative capability for multi-scale and com-
plex shaped objects with similar color and textures in very
high resolution aerial imagery. We demonstrate the effectiveness,
robustness and flexibility of the proposed DDCM-Net on the
publicly available ISPRS Potsdam and Vaihingen data, as well as
the DeepGlobe land cover dataset. Our single model, trained on
3-band Potsdam and Vaihingen data, achieves better accuracy in
terms of both mean intersection over union (mIoU) and F1-score
compared to other published models trained with more than 3-
band data. We further validate our model on the DeepGlobe
dataset, achieving state-of-the-art result 56.2% mIoU with much
less parameters and at a lower computational cost compared to
related recent work.

Index Terms—Deep learning, very high resolution (VHR)
optical imagery, land cover classification, semantic segmentation

I. INTRODUCTION

AUTOMATIC semantic classification of land cover in
remote sensing data is of great importance for sustainable

development, autonomous agriculture, and urban planning.
Thanks to the progress achieved in the deep learning and
computer vision community on natural images, most deep
learning architectures [1], [2], [3], [4], [5], [6] for semantic
segmentation can also be used for land cover classification
tasks in the remote sensing domain. Semantic segmentation
refers to the assignment of a semantic category to every
pixel in the images, which in this work consist of very high
resolution (VHR) aerial images. Currently, the state-of-the-art
end-to-end semantic segmentation models are mostly inspired
by the idea of fully convolutional networks (FCNs), which
generally consist of an encoder-decoder architecture [1]. All
layers in the encoder and decoder modules are based on
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convolutional neural networks (CNN). However, to achieve
higher performance, FCN-based end-to-end methods normally
rely on deep and wide multi-scale CNN architectures that
typically require a large number of trainable parameters and
computation resources. In addition, there is also a lot of
redundancy in deep CNNs that often results in vanishing
gradients in backward propagation, diminishing feature reuse
in forward propagation, and long training time [7].

Fig. 1. Examples of land cover labels (right) and corresponding remote
sensing images (left) from two different datasets (ISPRS Potsdam [8] and
DeepGlobel [9]) separately. Semantic label colors are shown beside the ground
truths.

In general, VHR remote sensing images contain diverse
objects and intricate variations in their aspect-ratio and color-
textures (e.g. roads, roofs, shadows of buildings, low plants
and branches of trees [8]). Moreover, many remote sensing
images are completely consisting of ”stuff” classes (amor-
phous regions such as forest, agricultural areas, water and so
on). This brings challenges for semantic mapping in remote
sensing images. Fig. 1 shows illustrative examples of land
cover classification for remote sensing images. Thus, richer
and multi-scale global contextual representations play a key
role in land cover mapping for VHR aerial images.

In this work, we propose a novel network architec-
ture, called the dense dilated convolutions merging network
(DDCM-Net), which utilizes multiple dilated convolutions
with various dilation rates. The proposed network learns with
densely linked dilated convolutions and outputs a fusion of
all intermediate features without losing resolutions during the
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extraction of multi-scale features. This significantly reduces
the computational redundancies and costs. Our experiments
demonstrate that the network achieves robust and accurate
results on the representative ISPRS 2D semantic labeling
datasets [8]. Motivated by the recent success of depthwise
separable convolutions [10], we also explore grouped convolu-
tions [11] with strided operations adapted into our DDCM-Net,
which is shown to further improve net speed and accuracy. We
finally demonstrate the effectiveness of the adapted DDCM-
Net on the DeepGlobe land cover challenge dataset [9]. In
summary, our contributions are:

1) We propose a new computationally light-weight and
scalable architecture based on dilated convolutions [12]
that can be used as a simple, yet effective, encoder or
decoder module for semantic segmentation tasks.

2) In the proposed network, one can arbitrarily control
the depths, widths, groups and strides of the modules
with various dilation rates in order to address different
problems.

3) Our proposed end-to-end model outperforms or achieves
competitive performance on different representative re-
mote sensing datasets compared to other published re-
lated methods.

A preliminary version of this paper appeared in [13]. Here,
we extend our work by (i) extending the methodology with two
variants where group and strided convolutions are exploited to
further boost the model’s flexibility; (ii) expanding the exper-
iment section by including more public datasets, providing
more detailed training details and presenting additional result
comparisons; (iii) providing in-depth discussions in terms of
model’s dilation and density policies, generalization, as well
as a more detailed analysis of computation complexity; (iv)
providing a more thorough review of related work.

The paper is structured as follows. Section II provides
an overview of the related work. Section III introduces the
datasets used in our work. In Section IV, we present the
methodology in details. Experimental procedure and evalu-
ation of the proposed method is performed in Section V.
Section VI provides discussion of our results, and, finally in
Section VII, we draw conclusions.

II. BACKGROUND

Deep learning and CNNs have been revolutionary for com-
puter vision and image classification [14], [15] in particular.
Even though segmentation can be viewed as a pixel-to-pixel
classification problem, most modern CNN models for semantic
segmentation are inspired by fully convolutional networks
(FCNs) [1]. The FCN was the first CNN model without
any fully connected layers that was trained in an end-to-end
manner directly classifying each pixel to its corresponding
label. However, vanilla FCNs generally cause loss of spatial
information due to the presence of pooling layers that reduce
the resolutions of feature maps by sacrificing the positional
information of objects. In order to alleviate this issue, U-Net
[2] extends the FCN by introducing skip connections between
the encoder and decoder modules. In the decoder module, the
spatial information is gradually recovered by fusing skipped

connections with upsampling layers or de-convolution layers.
Since then, the encoder-decoder architecture has been widely
extended in recent works including SegNet [16], GCN [6],
PSPNet [4], DUC [5], DeepLabV3+ [10] and so on. In general,
these architectures differ from each other in how they capture
rich and global contextual information at multiple scales. For
instance, PSPNet [4] introduces a pyramid pooling module
to aggregate the context by applying large kernel pooling
layers, while DeepLabV3+ [10] utilizes several parallel atrous
convolution with different rates (called Atrous Spatial Pyramid
Pooling). Similarly, the authors of [17] presented a unified
descriptor network for dense matching tasks, so called SDC-
stacked dilated convolution, which combines parallel dilated
convolutions with different dilation rates of ([1, 2, 3, 4]). In-
stead of the parallel combination methods, a cascading struc-
ture of dilated convolution layers was first presented in [12]
with exponentially increasing rates of dilation that achieved
state-of-the-art results on a natural image segmentation bench-
marks in that year. The authors of [18] have also proposed
a sequential structure of iterating dilated convolutions which
demonstrated higher accuracy with impressive speed improve-
ments in contrast to the previously best performing model
BI-LSTM-CRF [19], for the sequence labeling tasks when
processing entire documents at a time.

In contrast, our novel architecture has three major differ-
ences. Firstly, we sequentially stack the output of each layer
with its input features before feeding it to the next layer in
order to alleviate context information loss. Secondly, our final
output is computed on all features generated by intermediate
layers, which can effectively aggregate the fused receptive
field of each layer and maximally utilize multi-scale context
information. Thirdly, our method is much more flexible and
extendable with group and strided convolutions to address
different domain problems.

Our applied focus in this paper is land cover classification
based on remote sensing. Lately, the FCNs and encoder-
decoder architectures have been widely adapted and applied
to the ISPRS [8] Semantic Labeling Contest [20], [21], [22],
[23], [24], [25], [26], [27], [28], [29], and the DeepGlobe
CVPR-2018 [9] challenge of automatic classification of land
cover types [30], [31], [32], [33], [34], [35], [36]. Paisitkri-
angkrai et al. [20] proposed a scheme for high-resolution
land cover classification using a combination of a patch-
based CNN and a random forest classification that is trained
on hand-crafted features. Further, Sherrah [21] applied FCNs
to semantic labelling of aerial imagery and illustrated that
higher accuracy can be achieved than with more traditional
patch-based approaches. In addition, deep learning has also
been exploited for multi-modal data processing in remote
sensing. For instance, Audebert et al. [25] proposed a multi-
scale SegNet approach (so-called FuseNet) to leverage both
a large spatial context and the high resolution data, while
early and late fusion strategies of multi-modality data are
also exploited. However, such fusion techniques require all
modalities to be available to the classification during both
training and testing. The authors of [28] therefore presented
a novel CNN architecture based on so-called hallucination
networks for urban land cover classification, able to replace
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missing data modalities in the test phase. This enables fusion
capabilities even when data modalities are missing in testing.

Recently, the authors of [27] proposed a recurrent network
in fully convolutional network (RiFCN) trying to better fuse
multi-level features with boundary-aware features to achieve
fine-gained inferences. Similarly, the stacked U-Nets architec-
ture is proposed in [34] for ground material segmentation in
remote sensing imagery, which merges high-resolution details
and the long distance context information captured at low-
resolution to generate segmentation maps. Further, Kuo et
al. [35] introduced an aggregation decoder in combination
with DeepLabV3 architecture to fuse different-level features
progressively from the encoder for final prediction, while the
authors of [36] proposed a dense fusion classmate network
(DFCNet) which tried to fuse auxiliary training data as ”class-
mate” to capture supplementary features for land cover clas-
sification. One of the main ideas behind all the architectures
is to take into account the multi-level context to improve the
prediction of the segmentation. Even though these state-of-
the-art designs could alleviate the loss of global contextual
information, they are often computationally expensive with a
lot of redundancy in order to capture dense and multi-scale
contextual features [7]. In the following, we demonstrate that
the DDCM-Net achieves competitive results or outperforms
for land cover classification on benchmark datasets at a lower
computational cost compared to related recent work.

III. BENCHMARK DATASETS

In this paper, we focus on two publicly used databases,
namely the ISPRS 2D semantic labeling contest datasets [8],
and the DeepGlobe land cover challenge dataset [9]. The
ISPRS datasets are comprised of aerial images over two
cities in Germany: Potsdam1 and Vaihingen2, which have been
labelled with six of the most common land cover classes:
impervious surfaces, buildings, low vegetation, trees, cars and
clutter. The DeepGlobe land cover dataset consists of satellite
data collected from the DigitalGlobe Vivid+ dataset [9], and
focuses on rural areas. This includes seven types of land
covers: urban (man-made, built up areas with human artifacts),
agriculture (farms, cropland, orchards, vineyards, ornamental
horticultural areas, and so on), rangeland (any non-forest, non-
farm, green land and grass), forest (any land with at least 20%
tree crown density plus clear cuts), water (rivers, oceans, lakes,
wetland, ponds), barren (mountain, rock, dessert, beach, land
with no vegetation), and unknown (clounds and others). Each
dataset provides online leaderboards and reports test metrics
measured on hold-out test images.

1) Potsdam: The Potsdam dataset consists of 38 tiles of size
6000×6000 pixels with a ground resolution of 5cm. 14 of these
are used as hold-out test images. Tiles consist of Red-Green-
Blue-Infrared (RGB-IR) four-channel images. While both the
digital surface model (DSM) and normalized DSM (nDSM)
data are also included in the dataset, we only focus on the
3-channel RGB images in this work.

1http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
potsdam.html

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
vaihingen.html

2) Vaihingen: The Vaihingen dataset contains 33 tiles of
varying size (on average approximately 2100 × 2100 pixels)
with a ground resolution of 9cm, of which 17 are used as hold-
out test images. Tiles are composed of Infrared-Red-Green
(IRRG) 3-channel images. Though DSMs and nDSMs data
are also available for all images in the dataset, we only use
IRRG data in this paper.

3) DeepGlobe: DeepGlobe Land Cover data contains 1146
RGB images of size 2448 × 2448 pixels with a ground
resolution of 50cm. 803 of these images have a publicly
available ground truth and are used as the training set, while
the remaining images are split into a hold-out validation and
test set consisting of 171 and 172 images, respectively. Due to
the variety of land cover types and density of annotations [9],
this dataset is more challenging than the two above-mentioned
datasets.

IV. METHODS

We first briefly revisit the concept of dilated convolutions.
We then present our proposed DDCM architecture, based on
such dilated convolutions. Furthermore, we provide detailed
information regarding the procedure for training the network.

A. Dilated Convolutions

Dilated convolutions [12] have been demonstrated to im-
prove performance in many classification and segmentation
tasks [10], [11], [37], [38]. One key advantage is that they
allow us to flexibly adjust the filter’s receptive field to capture
multi-scale information without resorting to down-scaling and
up-scaling operations. A 2D dilated convolution operator can
be defined as

g(x`) =
∑
c∈C`

θck,r ∗ xc` (1)

where, ∗ denotes a convolution operator, g : RH`×W`×C` →
RH`+1×W`+l convolves the input feature map x` ∈
RH`×W`×C` . A dilated convolution θk,r with a filter size k
and dilation rate r ∈ Z+ is only nonzero for a multiple of r
pixels from the center. In a dilated convolution, a kernel size
k is effectively enlarged to k+(k−1)(r−1) with the dilation
factor r. As a special case, a dilated convolution with dilation
rate r = 1 corresponds to a standard convolution.

B. Dense Dilated Convolutions Merging Module

The Dense Dilated Convolutions Merging Module (DDCM-
Module) consists of a number of Dilated CNN-stack (DC)
blocks with a merging module as output as shown in Fig. 2.
A basic DC block is composed of a dilated convolution
followed by PReLU [39] non-linear activation and batch
normalization (BN) [40]. It then stacks the output with its
input and feeds the stacked data to the next layer. The final
network output is computed by a merging layer composed
of 1 × 1 filters with PReLU and BN in order to efficiently
combine all stacked features generated by intermediate DC
blocks. In practice, densely connected DC blocks, typically
configured with linearly or exponentially increasing dilation
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Fig. 2. Example of the DDCM architecture composed of n {1, 2, 3, ..., n} DC blocks with various dilation rates.

Fig. 3. A simple 1-D example of the DDCM module composed of three
DC blocks (kernel size = 3) with dilation rates of 1, 2 and 4. Here we can
see that x1 is produced from x0 by a 1-dilated convolution with a receptive
field of 3. x2 is produced from [x1, x0] by a 2-dilated convolution with
fused receptive fields of [7, 5]. x3 is produced from [x2, x1, x0] by a 4-
dilated convolution with fused receptive fields of [15, 11, 9]. The final output
x∗ is produced from [x3, x2, x1, x0] by the so-called merging layer, which
fuses multi-scale context information by aggregating various receptive fields
of [15, 11, 9, 7, 5, 3, 1].

factors, enable DDCM networks to have very large receptive
fields with just a few layers. Please note that we apply zero
padding to the input of every DC block in order to keep the
resolution of its output equal to the resolution of the input.

Fig. 3 illustrates a simple 1-D example of the DDCM
module composed of three DC blocks (kernel size equal 3)
with dilation rates of [1, 2, 4]. In the DC-1 layer, x1 is produced
from x0 by a 1-dilated convolution, where each element of x1
has a receptive field of 3. In the DC-2 layer, x2 is produced
from [x1, x0] by a 2-dilated convolution. Note, the receptive
field for the elements of x2 are [7, 5]. Similarly, in the DC-3
layer, x3 is produced from [x2, x1, x0] by a 4-dilated convolu-
tion with fused receptive fields of [15, 11, 9]. The final output
x∗ is thus produced from [x3, x2, x1, x0] by the so-called
merging layer, which fuses multi-scale context information by
aggregating various receptive fields of [15, 11, 9, 7, 5, 3, 1]. It
is easy to see that the number of parameters associated with
each DC layer grows linearly, while the fused receptive field

size is nearly exponentially increasing.

C. Variants of the DDCM module

1) Grouped convolutions: Inspired by ResNeXt [41],
grouped convolutions [14] are also exploited in the DC blocks
in order to further reduce the depth and parameter size of
DDCM-net, especially when the DDCM modules are used as
the decoders of high-level features. ResNeXt has demonstrated
that increasing cardinality (group number) is a more effective
way of gaining accuracy than going deeper or wider [41]. We
therefore introduce a variant of DDCM, i.e. DDCM(g = 2),
where “g = 2” denotes the fact that grouped convolutions with
2 groups are used in the DC blocks.

2) Strided convolutions: To further reduce the computa-
tional cost when increasing dilation rates, we can apply a
dilated convolution with a stride of greater than one pixel,
which samples only every s pixels in each direction in the
output. Here s denotes the stride of this dilated convolution.
This is similar to a two-step approach with unit stride convo-
lution followed by downsampling, but reduces computational
cost. When using a strided dilated convolution in a DC
block, we therefore need to apply bilinear upsampling to
scale the output to the same resolution as the input before
concatenation. There are three variants of the DDCM-Module
evaluated in this work, i.e. DDCM(s = 2), DDCM(s = 3) and
DDCM(s = r + 1) with different striding strategies: a stride
of 2, a stride of 3 and a dynamic stride of (r+ 1) separately,
where r denotes the corresponding dilation rate.

D. The DDCM network

DDCM modules define building blocks from which a more
complex network can be built. This is illustrated in Fig. 4
showing the end-to-end pipeline of the DDCM-Net combined
with a pre-trained model for land cover classification. Com-
pared to other encoder-decoder architectures, our proposed
DDCM-Net only fuses low-level features one time before the
final prediction CNN layers, instead of aggregating multi-scale
features captured at many different encoder layers [2], [6],
[27], [31], [32], [33], [34], [35], [36]. This makes our model
simple and neat, yet effective with lower computational cost. In
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Fig. 4. End-to.end pipeline of DDCM-Net for semantic mapping of VHR Potsdam images. The encoder of low level features encodes multi-scale contextual
information from the initial input images by a DDCM module (output 3-channel) using 3 × 3 kernels with 6 different dilation rates [1, 2, 3, 5, 7, 9]. The
decoder of high level features decodes highly abstract representations learned from a ResNet-based backbone (output 1024-channel) by 2 DDCM modules
with rates [1, 2, 3, 4] (output 36-channel) and [1] (output 18-channel) separately. The transformed low-level and high-level feature maps by DDCMs are then
fused together to infer pixel-wise class probabilities. Here, ’p’ and ’up’ denote pooling and up-sampling respectively.

particular, this model is easy to adapt by adjusting the density
(number of the output feature maps) and dilation strategy of
the encoder and/or decoder features to tackle different tasks,
depending on different domains.

In our work, we only utilize the first three bottleneck layers
of pretrained ResNet-based [42] backbones (both ResNet50
[42] and SE-ResNeXt50 [43]) and remove the last bottleneck
layer and the fully connected layers to reduce the number of
parameters to train. Furthermore, due to the larger complexity
and variety of the DeepGlobe dataset compared to the ISPRS
data, we utilize a DDCM(s = 2) module configured with
larger dilation growing rates [1, 2, 4, 8, 16, 32] as the low-level
encoder, and two DDCM(g = 2, s = 2) modules configured
by [1, 2, 4] and [1] as the high-level decoder. This configuration
results in feature maps of size 64-channel and 32-channel,
rather than 36-channel and 18-channel for the model on ISPRS
data. We also choose SE-ResNeXt50 as the backbone, instead
of ResNet50.

V. EXPERIMENTS AND RESULTS

In this section, we investigate the proposed network on
the Potsdam (Section V-C), Vaihingen (Section V-C) and
DeepGlobe (Section V-D) datasets and report both qualitative
and quantitative results of multi-class land cover classification.

A. Training details

According to best practices, we train using Adam [44] with
AMSGrad [45] as the optimizer with weight decay 2× 10−5

applied to all learnable parameters except biases and batch-
norm parameters, and polynomial learning rate (LR) decay
(1− cur iter

max iter )
0.9 with the maximum iterations of 108. We also

set 2 × LR to all bias parameters in contrast to weights pa-
rameters. We use initial LRs of 8.5×10−5

√
2

and 8.5×10−4
√
2

for the
ISPRS data and DeepGlobe data, respectively. For the training
on ISPRS data (both Potsdam and Vaihingen), we utilized a
stepwise LR schedule method that reduces the LR by a factor
of 0.85 every 15 epochs based on our training observations
and empirical evaluations, while for the training on DeepGlobe

data, we utilized multi-step LR policy, which reduces the LR
by a factor of 0.56 at epochs [4, 8, 16, 24, 32, 96, 128] guided
by our empirical results.

We apply a cross-entropy loss function with median fre-
quency balancing (MFB) weights as defined in the equations
2 and 3 [46].

Wc =
median({fc|c ∈ C})

fc
, (2)

Loss = − 1

N

N∑
i=1

C∑
c=1

lc
(n) log (pc

(n))Wc (3)

where Wc is the weight for class c, fc the pixel- frequency of
class c, pc(n) is the probability of sample belonging to class
c, lc(n) denotes the class label of sample n in class c.

We train and validate the networks for the Potsdam and
Vaihingen datasets with ramdomly sampled 5000 patches of
size 256 × 256 as input and batch size of five. For the
experiments on the DeepGlobe dataset, we use two down-
sampled resolutions of 1224 × 1224 and 816 × 816 (down-
scaled from 2448 × 2448), then we train with 4000 crops
(765×765) and batch size of four. The training data is sampled
uniformly and randomly shuffled for each epoch. We conduct
all experiments in this paper using PyTorch [47] on a single
computer with one NVIDIA 1080Ti GPU.

B. Augmentation and evaluation methods

During training on Potsdam and Vaihingen data, we ran-
domly flip or mirror images for data augmentation (with prob-
ability 0.5), while on the DeepGlobe data, we also augment
the crops by randomly shifting (limit 0.0625), scaling (limit
0.1) and rotating them (limit 10). The albumentations library
[48] for data augmentation is utilized in this work. Please note
that all training images are normalized to [0.0, 1.0] after data
augmentation.

We apply test time augmentation (TTA) in terms of flipping
and mirroring. For the Potsdam and Vaihingen data, we use
sliding windows (with 448×448 size at a 100-pixel stride) on
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a test image and stitch the results together by averaging the
predictions of the over-lapping TTA regions to form the output.
While for DeepGlobe data, we first apply TTA on a down-
sampled (3x) test image (816 × 816) and then up-sample all
the predictions back to original sizes and average them to get
the final output. The performance is measured by both the F1-
score [46], and the mean Intersection over Union (IoU) [49].
Please note that the mIoU metric was computed by averaging
over the six classes (excluding the ’Unknown’ class) in the
DeepGlobe contest.

C. Potsdam and Vaihingen

For evaluation, the labeled part of the Potsdam dataset is
split into a training set (19 images), a validation set (2 images
of 4 10 and 7 10), and a local test set (3 images of areas 5 11,
6 9 and 7 11). The Vaihingen dataset is similarly divided into
training (11 images), validation (2 images of areas 7 and 9)
and local test set (4 images of areas 5, 15, 21 and 30). While
the hold-out test sets contain 14 images (areas: 2 13, 2 14,
3 13, 3 14, 4 13, 4 14, 4 15, 5 13, 5 14, 5 15, 6 13, 6 14,
6 15 and 7 13) and 17 images (areas: 2, 4, 6, 8, 10, 12, 14,
16, 20, 22, 24, 27, 29, 31, 33, 35 and 38) for the Potsdam and
Vaihingen datasets, respectively. Table I shows our results on
the hold-out test sets and our local test sets of ISPRS Potsdam
and Vaihingen separately with a single trained model. The
mean F1-score (mF1) and the mean IoU (mIou) are computed
as the average measure of all classes except the clutter class.

TABLE I
RESULTS ON THE HOLD-OUT TEST IMAGES OF ISPRS POTSDAM AND
VAIHINGEN DATASETS WITH A SINGLE TRAINED DDCM-R50 MODEL

SEPARATELY.

F1-score OA Surface Building Low-veg Tree Car mF1
Potsdam 0.908

0.931∗
0.929
0.946∗

0.969
0.983∗

0.877
0.865∗

0.894
0.892∗

0.949
0.939∗

0.923
0.925∗

Vaihingen 0.904
0.921∗

0.927
0.934∗

0.953
0.973∗

0.833
0.814∗

0.894
0.914∗

0.883
0.909∗

0.898
0.909∗

IoU mIoU
Potsdam 0.908

0.931∗
0.867
0.898∗

0.940
0.966∗

0.781
0.762∗

0.809
0.805∗

0.902
0.885∗

0.860
0.863∗

Vaihingen 0.904
0.921∗

0.863
0.876∗

0.909
0.948∗

0.713
0.686∗

0.808
0.842∗

0.790
0.832∗

0.817
0.837∗

* Results marked with ∗ were measured on our local test images, others were measured on
hold-out test sets (14 images and 17 images for the Potsdam and Vaihingen separately).

We also compare our results to other related published
work on the ISPRS Potsdam RGB dataset and Vaihingen
IRRG dataset. These results are shown in Table II and III
respectively. Our single model with overall F1-score (92.3%)
on Potsdam RGB dataset, achieves around 0.5 percent higher
score compared to the second best model - FuseNet+OSM
[25]. Similarly, our model trained on Vaihingen IRRG images,
also obtained the best overall performance with 89.8% F1-
score that is around 1.1% higher than the score of the second
best model - GSN [26]. It is also worth noting that, although
our OA is only marginal better (+0.1%) for Vaihingen, and
even worse (−1.5%) for Potsdam, our model obtained better
F1 scores. We therefore believe that our proposed method
has better capability to handle extremely unbalanced classes.
Further, by balancing and modelling the surrounding classes
(such as road/surface and buildings) more accurately with our
model, the car class will be easier to distinguish and thus

has better results with increased receptive fields as shown in
Table III.

Fig. 5 shows the qualitative comparisons of the land cover
mapping results from our model and the ground truths on the
test set. We observe that our model is able to segment both
large multi-scale objects (such as buildings) and small objects
(such as cars) very well with fine-gained boundary recovery
without any post-processing.

TABLE II
COMPARISONS BETWEEN OUR METHOD WITH OTHER PUBLISHED

METHODS ON THE HOLD-OUT RGB TEST IMAGES OF ISPRS POTSDAM
DATASET.

Models OA Surface Building Low-veg Tree Car mF1
HED+SEG.H-Sc1 [23] 0.851 0.850 0.967 0.842 0.686 0.858 0.846

RiFCN [27] 0.883 0.917 0.930 0.837 0.819 0.937 0.861
RGB+I-ensemble [28] 0.900 0.870 0.936 0.822 0.845 0.892 0.873

Hallucination [28] 0.901 0.873 0.938 0.821 0.848 0.882 0.872
DNN HCRF [29] 0.884 0.912 0.946 0.851 0.851 0.928 0.898
SegNet RGB [25] 0.897 0.930 0.929 0.850 0.851 0.951 0.902

DST 2 [21] 0.903 0.925 0.964 0.867 0.880 0.947 0.917
FuseNet+OSM [25] 0.923 0.953 0.959 0.863 0.851 0.968 0.918

Ours
DDCM-R50 0.908

(-1.5%)
0.929
(-2.4%)

0.969
(+0.5%)

0.877
(+1.0%)

0.894
(+1.4%)

0.949
(-1.9%)

0.923
(+0.5%)

DDCM(s = 2) 0.908 0.930 0.968 0.876 0.895 0.952 0.924
DDCM(s = 3) 0.910 0.932 0.967 0.878 0.895 0.937 0.922

DDCM(s = r + 1) 0.911 0.933 0.968 0.876 0.894 0.950 0.924

TABLE III
COMPARISONS BETWEEN OUR METHOD WITH OTHER PUBLISHED

METHODS ON THE HOLD-OUT IRRG TEST IMAGES OF ISPRS VAIHINGEN
DATASET.

Models OA Surface Building Low-veg Tree Car mF1
UOA [22] 0.876 0.898 0.921 0.804 0.882 0.820 0.865

DNN HCRF [29] 0.878 0.901 0.932 0.814 0.872 0.720 0.848
ADL 3 [20] 0.880 0.895 0.932 0.823 0.882 0.633 0.833
DST 2 [21] 0.891 0.905 0.937 0.834 0.892 0.726 0.859
ONE 7 [24] 0.898 0.910 0.945 0.844 0.899 0.778 0.875
DLR 9 [23] 0.903 0.924 0.952 0.839 0.899 0.812 0.885

GSN [26] 0.903 0.922 0.951 0.837 0.899 0.824 0.887
Ours

DDCM-R50 0.904
(+0.1%)

0.927
(+0.3%)

0.953
(+0.1%)

0.833
(-1.1%)

0.894
(-0.5%)

0.883
(+5.9%)

0.898
(+1.1%)

DDCM(s = 2) 0.901 0.924 0.951 0.826 0.891 0.890 0.896
DDCM(s = 3) 0.901 0.923 0.951 0.828 0.891 0.879 0.894

DDCM(s = r + 1) 0.901 0.923 0.949 0.829 0.892 0.888 0.896

TABLE IV
PERFORMANCE COMPARISONS ON THE HOLD-OUT VALIDATION SET OF

DEEPGLOBE DATA WITH OTHER PUBLISHED METHODS.

Models mIoU GFLOPs
NU-Net [30] 0.428 -

InceptionV3+Haralick [31] 0.476 -
GCN-based [32] 0.485 -

FPN [33] 0.493 -
Stacked U-Nets [34] 0.507 -

DeepLabv3+ [35] 0.510 -
ClassmateNet [36] 0.519 -

DFCNet [36] 0.526 -
Deep Aggregation Net [35] 0.527 -

Ours
DDCM-SER50 0.562 4.68

D. DeepGlobe
Our DDCM-SER50 model achieves new state-of-the-art re-

sult with 56.2% mIoU on DeepGlobe land cover classification
challenge dataset. As shown in Table IV, we compare our
DDCM network with other published models ([30], [31], [32],
[33], [34], [35], [36]) on the hold-out validation set (the
public leaderboard 3 up to the date of May 1, 2019). Our

3https://competitions.codalab.org/competitions/18468#results
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Fig. 5. Mapping results for test images of Potsdam tile-3 14 (top) and Vaihingen tile-27 (bottom). From the left to right, the input images (left), the ground
truths (middle) and the predictions of our single DDCM-R50 model.

model obtained above 3.5% higher mIoU than the second best
model [35]. Fig. 6 shows some examples of the predictions
on the hold-out validation images. We didn’t apply any post-
processing (e.g. graph-based fine tuning as utilized in [35]),
nor any multi-scale prediction fusion methods as applied in
[36]. We just make the prediction on the 3× down scaling
of the test image and then perform up-sampling back to its
original resolution.

VI. DISCUSSION

A. Preliminary analysis

As a baseline, we re-implemented, trained and evaluated
some popular architectures on the local Potsdam test set [49].
We compared our methods to them in terms of parameters

TABLE V
QUANTITATIVE COMPARISON OF PARAMETERS SIZE, FLOPS (MEASURED
ON INPUT IMAGE SIZE OF 3× 256× 256), INFERENCE TIME ON CPU AND

GPU SEPARATELY, AND MIOU ON ISPRS POTSDAM RGB DATASET.

Models Backbones Parameters
(Million)

FLOPs
(Giga)

Inference time
(ms - CPU/GPU)

mIoU∗

U-Net [2] VGG16 31.04 15.25 1460 / 6.37 0.715
FCN8s [1] VGG16 134.30 73.46 6353 / 20.68 0.728
SegNet [3] VGG19 39.79 60.88 5757 / 15.47 0.781
GCN [6] ResNet50 23.84 5.61 593 / 11.93 0.774

PSPNet [4] ResNet50 46.59 44.40 2881 / 81.08 0.789
DUC [5] ResNet50 30.59 32.26 2086 / 68.24 0.793

Ours
DDCM-R50 ResNet50† 9.99 4.86 238 / 10.23 0.808

DDCM(s = 2) ResNet50† 9.99 4.48 159 / 11.39 0.811
DDCM(s = 3) ResNet50† 9.99 4.43 144 / 11.25 0.798

DDCM(s = r + 1) ResNet50† 9.99 4.42 132 / 11.50 0.810
* mIoU was measured on full reference ground truths of our local test images 5 11, 6 9 and 7 11 in
order to fairly compare with our previous work [49].
* Inference time was measured on CPU - AMD Ryzen Threadripper 1950X and GPU - NVIDIA
GeForce GTX 1080Ti respectively.
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Fig. 6. Mapping results on hold-out validation images of DeepGlobe. From
the left to right, the input satellite images and the predictions of our model.

TABLE VI
ABLATION STUDIES FOR OUR PROPOSED METHOD ON THE HOLD-OUT

RGB TEST IMAGES OF THE ISPRS POTSDAM DATASET.

Models OA Surface Building Low-veg Tree Car mF1
DDCM-R50 0.908 0.929 0.969 0.877 0.894 0.949 0.923

No-LL-Encoder 0.899
(-0.9%)

0.919
(-1.0%)

0.948
(-2.1%)

0.869
(-0.8%)

0.893
(-0.1%)

0.936
(-1.3%)

0.913
(-1.0%)

No-Dilation 0.892
(-1.6%)

0.910
(-1.9%)

0.938
(-3.1%)

0.868
(-0.9%)

0.892
(-0.2%)

0.929
(-2.0%)

0.908
(-1.5%)

* No-LL-Encoder means the model was configured without the low-level encoder stream, while
adjusting the output channels of the high level decoder to 21 instead of 18 in the standard DDCM-R50
model. The reason for increasing the number of the high level channels is to counter the loss of features
from the low-level encoder stream.
* No-Dilation means that each DDCM module in the DDCM-R50 model only used unit dilation rates
for its convolution layers.

sizes, computational cost (FLOPs), inference time on both
CPU (AMD Ryzen Threadripper 1950X) and GPU (NVIDIA
GeForce GTX 1080Ti), and mIoU evaluated on the full
reference ground truths of the dataset. Table V details the
quantitative results of our DDCM-R50 model against others.
Our model consumes about 9x and 13x less FLOPs with 4x
and 4.7x fewer parameters and 12x and 24x faster inference
speed on CPU, but achieves +1.9% and +2.7% higher mIoU
than PSPNet [4] and SegNet [3] respectively.

Additionally, we also investigated the effectiveness of
strided convolutions with the purpose of reducing the computa-
tional cost of dilated modules. We observe that with a dynamic
stride of r + 1, our model has the best speed without loss of
the F1-scores in comparison to a stride of 2 or stride-1 model
as shown the final hold-out tests as shown in Table II. And
interestingly, we find that both dynamic strided and stride-2
policies could improve the models accuracy of small objects
(i.e cars). Overall, DDCM(s = 2) based mode obtained the
best performance on small objects (cars) with +0.3% and
+0.7% higher IoU than standard convolutions on both the
Potsdam and Vaihingen test datasets, respectively, as shown in
Tables II and III. We therefore believe that dilated convolutions
with strided operations (i.e a stride of 2) could not only
improve a model’s computational efficiency, but also capture
better contextual representations that further boost the model’s
capability for detailed object boundary recovery.

B. Flexible dilation and density policies
We used two different dilation settings strategies. For ISPRS

data, we configured a DDCM module with linearly growing
dilation rates ([1, 2, 3, 5, 7, 9]) as the low-level features en-
coder, while for the DeepGlobe dataset, we build the encoder
with exponentially growing dilation rates ([1, 2, 4, 8, 16, 32])
with a stride of two, since we see that the DeepGlobe images
contain more spatially chaotic objects with lower resolutions,
larger scales and less geometrical attributes than the ISPRS
images. We believe DDCM modules with bigger dilation
configurations could capture larger multi-scale and global
context in this case, but require more computational cost.
Hence, one has to make some trade-offs on the dilation policies
and the densities based both on the dataset and on the budget of
computation resources. Similarly, as for the decoders of high-
level features, we also follow different strategies in terms of
the dilation settings and densities of DDCM modules for the
ISPRS and DeepGlobe data as described in Section IV-D. In
particular, we adopt both strided and grouped convolutions
together that use stride equal to two and group equal to
two in the DDCM modules with the output densities of 64-
channel and 32-channel respectively. These settings strike the
best trade-off between speed and accuracy on the DeepGlobe
database in our experiments.

We also evaluated the the influence of the low-level feature
encoder and the dilated strategies. We performed two ablation
studies, by training the following two models: 1) The No-
LL-Encoder model that was configured without the low-level
encoder stream, but only used the high level decoder branch
which output 21 channels instead of 18 channels in the stan-
dard DDCM-R50 model; 2) The No-Dilation model that only
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Fig. 7. Mapping results comparison. From the left to right, the input image patches, the ground truth (left), the standard DDCM-R50, the no-low-level-encoder
DDCM-R50, and the no-dilation DDCM-R50 (right).

uses standard convolutions by fixing the dilation rate r = 1
for each of the convolutional layers in the DDCM-R50 model.
Table VI shows the final test results on the Potsdam dataset.
The performance, in terms of mF1, dropped off overall 1.0%
and 1.5% with No-LL-Encoder and No-Dilation, respectively.
Performance is particularly decreasing for the building (-2.1%
and -3.1%) and car (-1.3% and -2.0%) classes. There findings
are also validated by the qualitative visualization of the results
that is shown in Fig. 7. We therefore consider that the low-level
features encoder and merged dilated convolutions can obtain
better local and global context information and thus segment
both multi-scale objects (such as buildings and surface) and
small classes (such as cars) accurately.

C. Generalization

Our models demonstrated very good generalization capabil-
ities on both the Potsdam and Vaihingen dataset. As shown in
Table I, there are only -0.2% and -1.1% gaps in terms of mean
F1-score between our local validation sets and the hold-out
test sets of the Potsdam and Vaihingen, respectively. It is also
worth noting that our model is the only one that works equally
well on both Vaihingen IRRG dataset and Potsdam RGB
dataset, which outperforms the DST 2 [21] model with 3.9%
and 0.6% higher F1-score on Vaihingen and Potsdam dataset,
respectively, as shown in Tables II and III. Furthermore, our
model achieves better performance (+0.5%) in terms of mean
F1-score with fewer labeled training data than FuseNet+OSM
[25] that used OpenStreetMap (OSM) as an additional data
source.

However, we observed a bigger performance drop (approx-
imately -15.9%) on the DeepGlobe dataset when comparing
results on the hold-out test set (mIoU: 56.2%) and local
validation results (K-Fold avg. mIoU: 72.1%) as shown in
Table VII. We see there is higher uncertainty (more false
predictions) between range land (magenta), agriculture land

(yellow), and forest (green) from the confusion matrix between
classes for our model in Table VIII. Note that the model
incorrectly classified some agriculture land to rangeland, and
predicted some rangeland as forest. These observations are
also supported by the qualitative visualization of errors of
our predictions as shown in Fig. 8. Furthermore, in our
experiments on the DeepGlobe data, we found that there are
some annotation inaccuracies, mainly introduced by highly
ambiguous objects and lower ground resolutions. What is
worse, we observed that the hold-out test images have different
contrast and darker shadows than in the training set [30]. This
obviously affected the model’s final performance on the test
sets.

TABLE VII
IOU SCORES OF OUR 5 K-FOLD MODELS ON LOCAL VALIDATION SETS OF

DEEPGLOBE DATASET.

K-Fold Urban Agriculture Range Forest Water Barren mIoU
k0 0.783 0.901 0.488 0.760 0.605 0.723 0.710
k1 0.735 0.876 0.391 0.772 0.730 0.739 0.707
k2 0.821 0.873 0.381 0.757 0.832 0.723 0.731
k3 0.796 0.883 0.421 0.789 0.849 0.716 0.742
k4 0.724 0.830 0.431 0.795 0.857 0.654 0.715

Avg. 0.772 0.872 0.422 0.775 0.775 0.711 0.721

VII. CONCLUSIONS

In this paper, we presented a dense dilated convolutions
merging (DDCM) architecture for land cover classification
for aerial imagery. The proposed architecture applies dilated
convolutions to learn features at varying dilation rates, and
merges the feature map of each layer with the feature maps
from all previous layers. On both the Potsdam and Vahingen
datasets, our single model based on the DDCM-Net architec-
ture achieves the best mean F1-score compared to the other
architectures, but with much fewer parameters and feature
maps. DDCM-Net is easy to adapt to address a wide range
of different problems, is fast to train, and achieves accurate
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Fig. 8. Mapping results on local validation images of DeepGlobe. From top
to bottom, the input satellite images, the ground truths, the predictions of
DDCM-SER50 model, and the errors of predictions.

results even on small datasets. The variants of our DDCM-Net
by using different combinations of dilations and densities for
the DeepGlobe dataset also demonstrated better performance,
but consumed much fewer computation resources compared to
other published methods.
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TABLE VIII
NORMALIZED CONFUSION MATRIX ON A LOCAL VALIDATION SET OF

DEEPGLOBE DATA.
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