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Abstract 65 

A standardised methodology was used to compile and validate a methyl-group carrier database 66 

(MGDB) including folate, choline, betaine and methionine, for use in the European Prospective 67 

Investigation into Cancer and Nutrition (EPIC) study. Compilation was performed by following 68 

structured guidelines to match the EPIC dietary intake data to food items from four food 69 

composition databases, according to their assigned priority of use. To assess relative validity, 70 

calculated dietary folate intakes were compared between the MGDB and the EPIC nutrient database 71 

(ENDB), used as the reference database. Folate intakes based on the MGDB and those generated 72 

using the ENDB showed good agreement (weighted κ = 0.63) and were strongly correlated (r = 73 

0.81); 74 

This MGDB can be used for investigating potential associations between methyl-group carrier 75 

intakes and risk or prognosis of cancer and other diseases in the EPIC study population. 76 

 77 

Keywords: food composition database; methyl-group carriers; folate; choline; betaine; methionine; 78 

comparative study 79 

 80 
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1. Introduction 84 

Methyl-group carriers are nutrients such as folate, choline, betaine and methionine that carry a one-85 

carbon (1C) unit which can be activated and transferred within a metabolic process, a mechanism 86 

known as 1C metabolism (Ducker & Rabinowitz, 2017). The methyl-group carriers enter 1C 87 

metabolism at different points, but all serve as precursors to S-adenosylmethionine (SAM) (Figure 88 

1) (Anderson, Sant, & Dolinoy, 2012; Feil & Fraga, 2012). SAM, considered the universal methyl 89 

donor, supplies a 1C unit in methylation reactions, in.cluding DNA methylation (S. Friso, Udali, De 90 

Santis, & Choi, 2017). 91 

 92 

Figure 1: Simplified illustration of one-carbon metabolism. 93 

Dark blue: Methyl-group carriers; light blue: nutrients acting as coenzymes; white: intermediates 94 

within the 1C metabolism 95 

Abbreviations: DHF dihydrofolate: ; THF: tetrahydrofolate; Vit B6: vitamin B6; Vit B2: vitamin 96 

B2; Vit B12: vitamin B12; DMG: dimethylglycine; SAM: S-adenosylmethionine; SAH: S-97 

adenosylhomocysteine 98 

 99 

DNA methylation has been suggested as an underlying molecular mechanism contributing to the 100 

effects of dietary factors on the development and progression of several diseases, including cancer 101 

(Jiménez-Chillarón et al., 2012). DNA methylation is a dynamic and potentially reversible process 102 

in which methyl-groups bind to the dinucleotides without changing the DNA sequence itself (Bird, 103 

2002; Simonetta Friso & Choi, 2002). Modifications in DNA methylation patterns can affect gene 104 

expression or influence genome stability, leading to alterations in disease risk (Jiménez-Chillarón et 105 

al., 2012; Nazki, Sameer, & Ganaie, 2014).  106 

Because of their presumed impact on DNA methylation through 1C metabolism, much attention has 107 

been given to methyl-group carriers in the diet. Deficient or excessive dietary intakes of methyl-108 

group carriers might affect the availability of SAM and subsequently influence DNA methylation 109 



6 
 
patterns and thus also cancer risk (McKay & Mathers, 2011). Research has begun to elucidate the 110 

effects of methyl-group carriers, folate and methionine in particular, on cancer risk; however, 111 

results are not robust. Adequate dietary intakes, before the appearance of preneoplastic tissue, 112 

potentially prevents tumour development (Chen, Li, Li, Li, Chu, & Wang, 2014; Wu, Cheng, & Lu, 113 

2013), but overconsumption may contribute to the proliferation of already-initiated tumour cells 114 

(Cavuoto & Fenech, 2012; Cellarier et al., 2003; Ulrich, 2007). 115 

 116 

Analyses in large-scale cohort studies investigating the role of dietary methyl-group carriers in 1C 117 

metabolism, DNA-methylation and associated disease outcomes are still scarce due to the lack of 118 

high-quality data on dietary methyl-group carriers. Detailed information on the chemical 119 

composition and nutrient yield of foods, based on chemical analysis can be found in food 120 

composition databases (FCDBs) (EuroFIR, 2020). In 1999, a study comparing nutrients in the 121 

FCDBs from nine European countries concluded that only France, The Netherlands and the United 122 

Kingdom (UK) provided FCDBs including comparable, methodologically correct folate values; the 123 

incomparable values resulted primarily from problems in the standard methods used and lack of 124 

clarity in the terminology and definitions (Deharveng, Charrondiere, Slimani, Southgate, & Riboli, 125 

1999). In 2011, a critical evaluation of folate data in 15 European and three international FCDBs 126 

also stated a lack of comparability, mainly due to a lack of value documentation (e.g. method of 127 

measurement) and the use of generic terminologies (Bouckaert et al., 2011). Aside from folate, most 128 

of the European national FCDBs are lacking data on methyl-group carriers: none of them include 129 

choline or betaine, and only the German and Danish FCDBs contain methionine. Therefore, data 130 

from foreign FCDBs need to be used when assigning nutritional values of methyl-group carriers to 131 

dietary intake data. In order to evaluate methyl-group carrier intakes and their associations with 132 

adverse health outcomes such as cancer, a standardised FCDB for folate, choline, betaine, and 133 

methionine is needed for use in the European Prospective Investigation into Cancer and Nutrition 134 

(EPIC) study. 135 
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 136 

This paper aims to describe the methodology used to compile a methyl-group carrier database 137 

(MGDB) for epidemiological research, using four foreign FCDBs and dietary assessment data from 138 

the EPIC study. In addition, this project allows for the assessment of the overall quality of the 139 

applied methodology by examining the comparability of the dietary folate intakes determined by 140 

two different approaches: a) this more pragmatic approach to compile a MGDB using four available 141 

FCDBs and b) a similarly standardised approach preferentially using national FCDBs (Nicolas et 142 

al., 2016). 143 

 144 

2. Materials and methods 145 

2.1. EPIC Study design 146 

Briefly, the EPIC study is an ongoing prospective cohort study aiming to investigate the role of 147 

dietary habits and nutritional status, as well as a wide range of environmental and lifestyle factors in 148 

relation to cancer and disease morbidity (Riboli et al., 2002; Riboli & Kaaks, 1997). Between 1992 149 

and 2000, this project enrolled 521,324 apparently healthy men and women (age 20 - 84 years) from 150 

23 recruitment centres across ten European countries (Denmark, France, Germany, Greece, Italy, 151 

Norway, Spain, Sweden, the Netherlands, and the UK) (Riboli et al., 2002). The rationale, design 152 

and methods of the EPIC study have been described elsewhere (Riboli et al., 2002). The ethical 153 

review boards of the International Agency for Research on Cancer (IARC – Lyon, France) and 154 

those of all participating recruitment centres approved the EPIC study. Written informed consent 155 

was provided by all EPIC participants in order to process their data. 156 

 157 

2.2. Dietary assessment within EPIC 158 

Within the EPIC study, the prospective cohort approach included the collection of information at 159 

baseline through country-specific, validated dietary questionnaires (DQ), designed to capture 160 

individual long-term usual dietary intake and geographical specificity of the diet (Riboli et al., 161 
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2002). To calibrate dietary intake measurements obtained through these different DQ, a computer-162 

assisted, single 24-hour dietary recall (24-HDR) interview program (EPIC-soft) was used by trained 163 

interviewers (Slimani, Ferrari, Ocke, & Welch, 2000). The program was designed to conduct 164 

interactive, by telephone (Norway) or face-to-face dietary interviews according to a procedure that 165 

was standardised within and between EPIC centres (Slimani et al., 2000). The 24-HDR was 166 

collected in a representative sample (N =36,994) of the entire EPIC cohort (Slimani et al., 2002). 167 

 168 

2.3. Initial compilation of a harmonised nutrient database for the EPIC project 169 

The EPIC Nutrient Database (ENDB), which originally focused on 26 priority components, was 170 

compiled at the end of the nineties to harmonise the nutrient values of national FCDBs across the 10 171 

participating EPIC countries (Slimani et al., 2007). Methyl-group carriers were not included during 172 

the ENDB-project due to the absence of (comparable) food composition data on methyl-group 173 

carriers across FCDBs in the different EPIC countries (Deharveng et al., 1999). Since 2010, a folate 174 

database has been compiled as an extension of the ENDB, based on a new inventory focused on 175 

folates (Bouckaert et al., 2011). Nutrient values, preferentially obtained from the national FCDBs of 176 

the respective EPIC countries were adopted, using standardised procedures. The in-depth process 177 

for compiling this EPIC folate database was described elsewhere (Nicolas et al., 2016). 178 

 179 

2.4. Selecting food composition data sources for methyl-group carriers 180 

To date, none of the national FCDBs of the ten EPIC countries contain methodologically reliable 181 

nutritional values for all four methyl-group carriers: folate, choline, betaine, and methionine. 182 

Standard reference analytical methods are microbiological assay (MA) for folate (Greenfield & 183 

Southgate, 2003), liquid chromatography-electrospray ionization-isotope dilution mass 184 

spectrometry for choline and betaine (Koc, Mar, Ranasinghe, Swenberg, & Zeisel, 2002), and 185 

performic oxidation/ high performance liquid chromatography (HPLC) for methionine (Greenfield 186 

et al., 2003). In the past few years, these methyl-group carriers have been incorporated into a few 187 
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FCDBs including the U.S. FCDB (National Nutrient Database for Standard Reference of the U.S. 188 

Department of Agriculture - USDA) and the Canadian FCDB (Canadian Nutrient File). Both of 189 

these FCDBs include all four nutrients of interest, a large number of food items and made use of the 190 

standard reference analytical methods. Betaine and choline were only included in the U.S. FCDB 191 

since 2008. Two European databases include nutritional data concerning methyl-group carriers 192 

other than folate, obtained by the reference analytical methods: the Danish FCDB (Danish Food 193 

Composition Databank) and the German FCDB (Bundeslebensmittelschlüssel), which include 194 

methionine as well as folate.  195 

 196 

In order of priority, the U.S. FCDB, Canadian FCDB, German FCDB, and Danish FCDB were used 197 

to compile the MGDB for EPIC. Priority was determined based on the quality of the analytical 198 

methods used, the availability of the maximum number of methyl-group carriers and the total 199 

number of food items comprising nutritional values of the respective methyl-group carriers. 200 

Compilation of this MGDB took place between 2014 and 2017. Further details on the four FCDBs 201 

used for this compilation are listed in Appendix 1. 202 

 203 

2.5. Food composition database compilation 204 

The compilation of the MGDB builds on the procedure of the aforementioned folate database of the 205 

ENDB (Nicolas et al., 2016), which is based on the general concepts of the original ENDB project 206 

(Slimani et al., 2007). The matching was first performed for the food items derived from the 24-207 

HDR data (Figure 2). Subsequently, links between food items reported in the 24-HDR and DQ, set 208 

during the ENDB project, were used to assign nutrient values to DQ food items. DQ items with no 209 

link with 24-HDR items were matched using the U.S. FCDB exclusively, following the same 210 

procedure as described in Figure 2. 211 

 212 

Figure 2: The compilation process of the methyl-group carrier database (MGDB) 213 
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 214 

Consumed foods reported in the EPIC 24-HDR were described in a detailed and systematic way. 215 

Therefore, the food list from the EPIC 24-HDR, rather than DQ data, was used as the starting point 216 

for the compilation of the nutrient database (Slimani et al., 2007). This resulted in a high number of 217 

different food items for each country and was reduced to bring it to the same level of detail as the 218 

foods provided in the FCDB, as described in detail by Slimani et al (2007) and Nicolas et al (2016). 219 

Briefly, food items were aggregated using common rules across countries and with respect to their 220 

relevance to cancer research. A total number of 547-1,537 food items per country were included in 221 

the final food list to compile the MGDB (Nicolas et al., 2016).  222 

 223 

2.5.1. General guidelines for matching food items 224 

The EPIC food items were linked to one of the food items available in the four FCDBs, taking into 225 

account their priority. If an exact match could be found, nutritional values for the respective methyl-226 

group carriers were assigned directly. However, some specific food items (e.g., different types of 227 

cheese) could not be found in any of the four FCDBs used. In that case, the matching process 228 

included an equivalency check between the reported food items and similar food items available in 229 

the used FCDBs on the basis of their definition, description and nutritional composition as 230 

described in the ENDB (e.g. red Leicester cheese was linked to cheddar cheese).  231 

 232 

Although the EPIC-Soft 24-HDR interview programme allowed for the collection of detailed and 233 

standardised data, some reported foods lacked sufficiently detailed descriptions or specifications to 234 

allow an exact or equivalent match. These food items were coded as ‘not specified’ (n.s.) and a 235 

weighted average based on the frequencies of consumption of equivalent reported foods was 236 

assigned (e.g., vegetable oil n.s.: weighted average of all vegetable oils including olive oil, rapeseed 237 

oil, corn oil, etc.). These food items were named ‘generic items’. 238 

 239 
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Nutritional values for multi-ingredient foods (composite foods in particular, e.g. béarnaise sauce, 240 

mango chutney or fruit scones) which were not available in any of the FCDBs were obtained by 241 

recipe calculations, considering the use of retention factors (corrects for changes in the nutrient 242 

composition of food by thermal processing) at the ingredient level and yield factor (corrects for 243 

weight changes due to food preparation methods) at the recipe level, if relevant. The existing 244 

country-specific recipe files of the ENDB project, provided by the EPIC partners, were used as 245 

recipe sources. If no suitable recipe was found, a new recipe was created by breaking down the 246 

composite foods into their single, least modified ingredients. The single ingredients were treated as 247 

separate food items to match with the FCDBs, and were consequently subject to recipe calculations.  248 

 249 

In case no exact or equivalent match could be found for a single food item or ingredient, nutritional 250 

values for methyl-group carriers were obtained by applying different available algorithms, yield 251 

factors and retention factors, depending on the nature of the food item. This included calculation 252 

methods to adjust for raw-to-cooked water losses/gains and mineral and vitamin losses of the FCDB 253 

item. These approaches were mainly applicable for single food items (e.g. fat-reduced cheese), or 254 

single foods cooked using cooking methods not available in the four selected FCDBs. Food items 255 

subject to these algorithms were called ‘one-ingredient recipes’.  256 

 257 

2.5.2. Guidelines for matching food items: special cases 258 

To properly match foods with different cooking methods to food items in the four FCDBs, the same 259 

rules for food linkage as used in the ENDB project were applied (Slimani et al., 2007). Foods 260 

cooked without fat (e.g. boiled or steamed) were preferably matched to an exact or similar cooked 261 

food item in the FCDBs. In case an exact or similar match was not possible, the food item was 262 

treated as a one-ingredient recipe by matching the cooked food item to its raw variant and applying 263 

the calculation methods described in paragraph 2.5.1. On the other hand, foods cooked with fat 264 

were systematically treated as two separate food items: the raw food and its specified fat. Both food 265 
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items had to be linked to the FCDBs and subsequently adjusted for cooking using the algorithms, 266 

yield and retention factors.  267 

 268 

Likewise, canned food items were preferentially linked to an identical drained canned item. 269 

However, a canned item was considered similar to a boiled/steamed item when no exact match 270 

could be found in the FCDBs. Frozen items were linked to raw items if no frozen item was 271 

available. Priority was given to the least modified food item if no information on the state of 272 

processing was specified (e.g., “cooked without salt” was chosen over “cooked with salt”, and 273 

“vegetables with skin” were prioritised). No fortified food items were included in the MGDB, 274 

unless the food item was described as enriched with folate. 275 

 276 

2.5.3. Additional efforts to complete the database 277 

To limit missing values, logical zero values for methionine were assigned to all foods containing no 278 

protein. For betaine and choline, logical zero values were assigned to products such as water and 279 

artificial sweeteners. Thereafter, all remaining missing values were replaced by zeros to allow the 280 

calculation of methyl-group carrier intakes for all subjects in further analyses. 281 

 282 

Two quality controls were performed to guarantee the accuracy of the food matching and avoid 283 

errors. First, blinded re-matching of a random sample of food items was performed independently 284 

by two researchers. Second, the fully completed files were checked twice: once by an accredited 285 

nutritionist and once by an expert of the ENDB project. 286 

 287 

Although country-specific folate values had already been included in the ENDB, alternative values 288 

were derived using the four selected FCDBs. This created the opportunity to carry out comparative 289 

analyses between our approach and the folate ENDB approach in which all EPIC countries used 290 
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preferably local FCDBs, completed with other FCDBs such as the U.S. FCDB when local data were 291 

missing (Nicolas et al., 2016). 292 

 293 

2.6. Statistical Analyses 294 

Reported food intakes from participants of the 24-HDR and the DQ were analysed in this study. To 295 

reduce the impact of outliers, participants at the lowest and highest 1% of the distribution of the 296 

ratio of reported total energy intake to energy requirement were excluded from the analyses for the 297 

DQ data. No exclusions were carried out regarding the data of the 24-HDR because of its detailed 298 

and standardised nature and built-in quality controls.  299 

 300 

Descriptive analyses were carried out to report missing values for folate, choline, betaine and 301 

methionine (before replacement by logical zeros). To evaluate the relative validity of the newly 302 

compiled MGDB, dietary folate intakes calculated by the MGDB were compared to dietary folate 303 

intakes calculated by the ENDB, used as the reference database in this study. Therefore, absolute 304 

and relative differences in dietary folate intakes were examined. Relative measurements are of great 305 

importance because accurate ranking and categorising of individuals according to their dietary 306 

intakes is the main requirement for further epidemiological analyses.  307 

To report on absolute differences in dietary folate intakes obtained by the ENDB and the MGDB, 308 

mean differences were calculated using the method proposed by Giavarina (2015), and paired 309 

samples t-tests were carried out, both globally and stratified by the ten EPIC countries involved.  310 

Relative differences in dietary folate intake between the ENDB and the MGDB were examined 311 

using Pearson correlations, Bland-Altman plots and weighted kappas. Pearson correlation 312 

coefficients were calculated to assess the associations between dietary folate intakes estimated using 313 

the ENDB and the MGDB. To further investigate the agreement between these methods, a Bland-314 

Altman test was used (Bland & Altman, 1986), presented as mean difference percentage plots and 315 

the corresponding limits of agreement within which an estimated 95% of the differences in dietary 316 
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folate intake fall (Giavarina, 2015). For the Bland-Altman plots, differences in folate intakes 317 

between the databases (displayed on the y-axis) were expressed as percentages as there is an 318 

increase in variability of the differences with increasing magnitude of the mean folate intakes 319 

(Giavarina, 2015). The agreement of the classification of individual folate intakes into quintiles was 320 

calculated and tested by weighted kappa coefficients. Cut-offs for quintiles were assigned 321 

separately for the two databases. 322 

Non-parametric tests (Spearman correlations and Wilcoxon signed-rank tests) were performed as a 323 

sensitivity analysis. As results were very similar, only results of the parametric tests were reported. 324 

 325 

All statistical tests were carried out for the 24-HDR data and DQ data as two-sided tests and with a 326 

statistical significance level of α = 0.05. Statistical analyses were carried out with the Statistical 327 

Package for the Social Sciences (SPSS Inc., Chicago, IL, USA) version 20.0. 328 

 329 

3. Results 330 

A description of the matched food items is shown in Table 1, for both the 24-HDR and the DQ food 331 

data. Regarding the 24-HDR data, a total of 10,173 food items were included for matching, of 332 

which 5,069 (49.8%) were categorised as an exact or equivalent match. For 4,926 food items 333 

(48.4%), recipes were applied to compute the nutritional values - including ‘one-ingredient recipes’. 334 

The remaining food items (N =178; 1.7%) were generic items. Concerning the DQ data, 13,951 335 

food items had to be matched, of which 9,692 (69.5%) were an exact or equivalent match, 1,796 336 

(12.9%) food items were treated as a ‘recipe’ or ‘one-ingredient recipe’ and 2,463 (17.6%) food 337 

items were deemed generic items. 338 

 339 

For the 24-HDR data, the U.S. FCDB was responsible for 87.1% of all exact or equivalent matches 340 

made, followed by the Danish FCDB (5.2%), the Canadian FCDB (4.3%) and the German FCDB 341 

(3.3%). For the DQ data, the U.S. FCDB had a much larger share (97.4%), followed by the Danish 342 
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FCDB (1.2%), German FCDB (0.8%) and Canadian FCDB (0.6%) to obtain the exact or equivalent 343 

matches. 344 

 345 

The distribution of missing values for folate, choline, betaine and methionine for the exact matches 346 

in the MGDB is shown in Table 1. In both the 24-HDR and DQ data, the lowest number of missing 347 

values was found for folate (1.8% and 1.9% respectively) and the highest number was found for 348 

betaine (48.8% and 46.3% respectively). 349 

 350 

Table 1: Description of the matched food items and the number of missing values for methyl-group carriers in the MGDB 

 24-HDR DQ 

 N (%) N (%) 

Food items (total)  10,173  13,951 

Food items treated as:    

 Generic items  178 (1.7%)  2,463 (17.6 %) 

 (One-ingredient) recipes  4,926 (48.4 %)  1,796 (12.9 %) 

 Exact match  5,069 (49.8%)  9,692 (69.5 %) 

Food items matched to  

(exact matches only): 

  

 U.S. FCDB  4,417 (87.1%)  9,437 (97.4 %) 

 Canadian FCDB  168 (4.3 %)  63 (0.6 %) 

 Danish FCDB  265 (5.2 %)  114 (1.2 %) 

 German FCDB  219 (3.3 %)  78 (0.8 %) 

Missing values (exact matches only):   

 Folate - ENDB  0 (0.0%)  54 (0.4%) 

 Folate - MGDB  178 (1.8%)  259 (1.9%) 

 Choline - MGDB  1,790 (17.6%)  1,951 (14.0%) 

 Betaine - MGDB  4,969 (48.8%)  6,458 (46.3%) 

 Methionine - MGDB  1,292 (12.7%)  1,646 (11.8%) 

Abbreviations: MGDB: methyl-group carrier database; ENDB: EPIC nutrient database; 24-HDR: 24-hour dietary recall; 

DQ: dietary questionnaire; N: number 

 351 
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Reported food intakes of 36,994 participants for the 24-HDR data and 504,245 participants for the 352 

DQ data were analysed in this study. Table 2 shows the differences in mean dietary folate intakes 353 

between the ENDB and the MGDB. Results by country can be found in Appendix 2. For both the 354 

24-HDR and DQ data, estimated dietary folate intakes were higher when calculated by the new 355 

MGDB procedures (24-HDR: 325.91 µg/day, SD =159.30; DQ: 354.56 µg/day, SD =127.84) 356 

compared to the ENDB (24-HDR: 265.25 µg/day, SD =137.83; DQ: 308.55 µg/day, SD =120.14). 357 

All stratified analyses showed this trend except for the DQ data in the UK, which had slightly, but 358 

still significantly, lower folate intake reported for the MGDB (396.17 µg/day; SD =129.26) 359 

compared to the reference ENDB (408.76 µg/day; SD =157.68). Italy, Spain and Germany showed 360 

the highest numbers of significant differences of the mean folate intakes between the approaches. 361 

 362 

Table 2: Paired sample t-tests and mean differences for individual dietary folate intake between the compiled MGDB and 

the ENDB 

 Folate (µg) N Mean (µg/day) SD Mean  (µg/day)* 

24-HDR data MGDB 36,994 325.91 159.30 

-60.66# (-20%) 

 ENDB 36,994 265.25 137.83 

DQ data MGDB 504,247 354.56 127.84 

-46.01# (-14%) 

 ENDB 504,247 308.55 120.14 

* Mean difference (%):The MGDB mean minus the ENDB mean (divided by their arithmetic mean [*100%]) 

# Statistical difference p < 0.001 for the paired sample t-test 

Abbreviations: N: number; SD: standard difference; Mean : mean difference; 24-HDR: 24-hour dietary recall; DQ: 

dietary questionnaire; MGDB: methyl-group carrier database; ENDB: EPIC nutrient database 

 

 363 

Strong correlations for dietary folate intakes were shown between the ENDB and the MGDB for 364 

both the 24-HDR data (r =0.73; p <0.001) and the DQ data (r =0.81; p <0.001). Results per country 365 

can be found in Appendix 3. Bland-Altman plots for the 24-HDR data and DQ data are presented in 366 

Figure 3. The mean difference, or bias, for the 24-HDR was -20.26% (SD = 29.80%) and the limits 367 
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of agreement ranged from -78.66% to 38.14% (mean difference ± 1.96*SD). Concerning the DQ-368 

data, a bias of -14.31% (SD = 19.48%) was found with limits of agreement ranging from -52.48% 369 

to 23.87%.  370 

  371 

Figure 3: Bland-Altman plots for a) 24-HDR data and b) DQ data representing the mean differences 372 

of folate intake (in percentages) between the reference ENDB and the MGDB and their limits of 373 

agreement.  374 

Legend: full line: mean difference in folate intake (%) calculated as the ENDB mean minus MGDB 375 

mean divided by their arithmetic mean (*100%); dotted line: limits of agreement (%) calculated as 376 

the mean difference in folate ± 1.96*SD (*100%); 377 

 378 

The proportion of the participants classified into the same quintile for folate intake according to the 379 

reference ENDB and the newly created MGDB is 46% and 50% for the 24-HDR data and DQ data 380 

respectively (Table 3). If adjacent quintiles are also included, this increases to 86% (24-HDR data) 381 

and 91% (DQ data). Of all participants, 0.28% and 0.04% for respectively the 24-HDR data and DQ 382 

data were misclassified into the extreme opposite quintile. Results of the weighted kappa analysis 383 

indicated moderate agreement (weighted κ =0.56) in case of the 24-HDR data and good agreement 384 

(weighted κ =0.63) according to the DQ data, for folate intakes. Results per country can be found in 385 

Appendix 4. 386 

 387 

Table 3: Weighted Kappas for individual dietary folate intake between the compiled MGDB and the ENDB 

 
Classified 

into the same 

Q (%) 

Classified 

into the 

adjacent  

Q (%) Weighted  SE CI lower CI upper 

24-HDR data 46.17 39.83 0.56 0.003 0.55 0.56 
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DQ data 50.59 40.53 0.63 0.001 0.63 0.63 

Abbreviations: MGDB : methyl-group carrier database ; ENDB : EPIC nutrient database ; Q: quintile; : kappa; SE: 

standard error; CI: 95% confidence interval   

  388 
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4. Discussion 389 

The aim of this project was to generate a MGDB for use in the EPIC study in order to further 390 

investigate the relationship between dietary intakes of methyl-group carriers and health and disease 391 

outcomes. Therefore, dietary data from the ten European countries participating in the EPIC study 392 

were matched with food items from four selected FCDBs (in order of priority: U.S. FCDB, 393 

Canadian FCDB, Danish FCDB and German FCDB), using standardised procedures based upon 394 

those developed in the ENDB project.  395 

 396 

The majority of nutritional values for the methyl-group carriers were derived from the U.S. FCDB, 397 

completed with information from the three other databases. The larger share from the U.S. FCDB 398 

can be attributed to the order of priority that was defined among the selected FCDBs, based on the 399 

quality of the analytical methods used, the availability of all methyl-group carriers of interest, and 400 

the exhaustiveness of the food list. The U.S. FCDB and Canadian FCDB provided values for all 401 

four methyl-group carriers, while the German FCDB and Danish FCDB only provided values for 402 

folate and methionine. Additionally, all FCDBs except for the German FCDB contained missing 403 

nutritional values for certain food items which led to numerous missing values in the MGDB, 404 

particularly for betaine. Food compilers prioritize their laboratory analysis for most frequently 405 

consumed foods or for certain nutrients by giving priority to the foods that most likely contain the 406 

nutrient to be analysed (Haytowitz et al., 1996). Therefore, missing values appear more often for 407 

foods that only contain traces or none of the nutrients under study. As such, many of the missing 408 

values in FCDBs can be considered as logical zeros, meaning that the component is not expected in 409 

that particular food item. The ENDB showed no missing values for folate because any available 410 

folate data for a food item or from a similar food was accepted from neighbouring countries or from 411 

the U.S. FCDB when no values analysed by MA could be found (Nicolas et al., 2016). 412 

Even though folate had already been included in the ENDB, a second linking of the food items was 413 

carried out using the four selected FCDBs. This created the opportunity to assess the relative 414 
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validity of the food matching performed in this study, while using the ENDB folate values as a 415 

reference (Nicolas et al., 2016).  416 

 417 

Comparative analyses showed differences between dietary folate intakes estimated by the ENDB 418 

and the MGDB for participants in the EPIC study. For the dietary assessment data derived from the 419 

24-HDR and the DQ, calculated mean dietary folate intakes were higher using the new MGDB 420 

compared to the ENDB, except for the UK DQ data. A plausible explanation for this difference is 421 

the use of more recently updated FCDBs to compile the MGDB compared to the ENDB, meaning 422 

that nutritional values for methyl-group carriers measured by MA have been recently assigned to a 423 

larger amount of the FCDB’s food items. MA may provide higher folate values than other analytical 424 

methods. Additionally, product reformulation should be taken into account when using more 425 

recently updated FCDBs, which is important because the food industry has a high turnover of 426 

products. Therefore, it would be preferable to match nutritional data from the same time period as 427 

the baseline dietary assessment, especially for processed foods and composite foods. However, as 428 

previously highlighted, methodologically correct folate data were too scarce at that time. Another 429 

possible explanation for the differences between dietary folate intakes is the use of preferably 430 

country-specific FCDBs to compile the ENDB compared to the use of mainly the U.S. FCDB for 431 

compilation of the MGDB. There is likely a variation, especially in the content of vitamins and 432 

minerals, between different samples of the same food used in the different FCDBs. These 433 

differences in food composition can be found between regions (e.g. European carrots versus 434 

American carrots), but differences are also likely to be found between foods originating from the 435 

same geographic region or even from the same grower or manufacturer (e.g. one carrot can be more 436 

exposed to sunlight or pesticides then another carrot growing on the same field). Taking also into 437 

account import and export of foods between regions, it is hard to conclude on real regional variation 438 

in food composition. This concern supports the selection of one or few high-quality FCDBs that 439 

meet our selection criteria, above the constrained use of merely country-specific FCDBs. 440 
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Regarding the comparability of the two databases, it should be noted that national FCDBs 441 

sometimes use foreign FCDBs as a source of folate values analysed by MA. In the ENDB, the 442 

number of reported folate values analysed by MA ranged from 43% - 70%. Within this subset, 443 

between 14% (UK, France) and 27% (Italy) of folate values were borrowed from the U.S. FCDB 444 

release 21 (Nicolas et al., 2016).  445 

 446 

Because of a lack of national nutritional values for methyl-group carriers, the U.S., Canadian, 447 

German and Danish FCDBs were used to compile the MGDB. This created difficulties for finding 448 

an appropriate match for each food item. International comparisons are more complex since each 449 

country has unique typical and local foods and meals. Identification of these kinds of foods and 450 

meals might be difficult, and assigned values taken from similar foods may be unreliable. Another 451 

possible explanation for the difference in intakes could be fortification, whether or not done 452 

nationally, which can result in different folate content of the same food items in the two databases. 453 

However, no fortified food items were included in the MGDB, unless it was described as enriched 454 

with folate.  455 

 456 

Although significant differences in mean values were reported, strong correlations were found 457 

between folate intakes, demonstrating a good ranking of the subjects according to their folate 458 

intake. Also, results of the weighted kappa analysis indicated moderate agreement for the 24-HDR 459 

(weighted κ =0.56) and good agreement for the DQ folate intakes (weighted κ =0.63). The 460 

agreement between folate intakes is at least satisfactory, as 86% (24-HDR) and 91% (DQ) of the 461 

participants are classified into the same or adjacent quintile. Furthermore, Bland-Altman plots 462 

indicated good agreement between dietary folate intakes. The average discrepancy between 463 

methods, or bias, was acceptable (-20.26% for 24-HDR data; -14.31% for DQ data). This small bias 464 

goes with rather narrow limits of agreement, within which an estimated 95% of the differences in 465 

dietary folate intake fall, indicating that the two methods are sufficiently similar. Results of the DQ 466 
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show consistently higher agreement compared to results of the 24-HDR. This is most likely due to 467 

the fact that food items in the 24-HDR were described in more detail compared to the DQ. 468 

Therefore, the matching procedure was more complex for the 24-HDR which could lead to extra 469 

bias. These comparative folate analyses demonstrate good relative validity of the new MGDB for 470 

ranking and categorising individuals according to their folate intakes; the main requirement in 471 

epidemiological cohort studies.  472 

 473 

Previous studies have compared nutrient intake data calculated via different procedures and by 474 

different FCDBs. One such study examined the level of agreement between macro- and 475 

micronutrients of the U.S. FCDB (modified by Chilean food items) and the British FCDB. High to 476 

excellent agreement was found for all macronutrients (intra-class correlation coefficient (ICC) 477 

ranged from 0.96 (95% CI: 0.95–0.98) for proteins to 0.98 (95% CI: 0.98–0.99) for total fat) and for 478 

vitamin A (ICC: 0.998, 95% CI: 0.995–1.00) and vitamin C (ICC 0.995, 95% CI: 0.992–0.998), 479 

respectively). However, the interpretation for other vitamins and especially minerals was more 480 

uncertain (Garcia, Rona, & Chinn, 2004). In most of the studies, comparisons were made between 481 

European FCDBs (Deharveng et al., 1999; Hakala, Knuts, Vuorinen, Hammar, & Becker, 2003; 482 

Julian-Almarcegui et al., 2016; Slimani et al., 2007; Vaask et al., 2004). The use of non-national 483 

FCDBs in these studies could be partially justified since strong correlations (r >0.70) have been 484 

found between the different European FCDBs, but these correlations apply mostly for 485 

macronutrients (Deharveng et al., 1999; Hakala et al., 2003; Julian-Almarcegui et al., 2016). 486 

However, some comparative studies suggest a discrepancy between FCDBs (Vaask et al., 2004). 487 

Research has shown that some nutrients, mostly micronutrients, are not analysed and expressed in a 488 

compatible way between nutrient tables, resulting in values that are not always comparable 489 

(Deharveng et al., 1999; Hakala et al., 2003; Vaask et al., 2004). This issue favours the use of one 490 

or few high quality FCDBs above the use of very different and lower quality regional FCDBs for 491 

multi-centre cohorts that include countries with very different levels of food composition data 492 
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availability and quality. Indeed, differences between FCDBs are often more due to differences in 493 

laboratory methods used rather than true differences in food composition between regions 494 

(Deharveng et al., 1999; Nicolas et al., 2016).  495 

 496 

It has long been recognised that folate values are difficult to harmonise when comparing national 497 

FCDBs (Bouckaert et al., 2011; Deharveng et al., 1999). Concerning their comparability, extra 498 

attention should be given to the source of nutritional values (i.e. analytical methods used to measure 499 

the nutrient content of foods, calculations or published literature by the food industry), accuracy in 500 

the definitions of nutrients and unit of measurement (Leclercq, Valsta, & Turrini, 2001). 501 

Furthermore, folate is an unstable component as it is labile to temperature, pH and oxidation, 502 

leading to potential problems in the measurement of this nutrient (Deharveng et al., 1999). 503 

 504 

Given the various arguments that can explain differences between FCDBs, it is reassuring that in 505 

this project a satisfactory level of agreement for folate intake between the ENDB and the MGDB 506 

was shown. However, the results of the relative validation study for folate might not be 507 

generalisable to the other methyl-group carriers, especially betaine, which showed considerably 508 

more missing values compared to choline or methionine. Frequent missing values may lead to 509 

underestimation of the true betaine intakes. Comparison with nutritional biomarkers could 510 

potentially further assess the validity of these methyl-group carrier estimates in the EPIC study; 511 

although endogenous mechanisms may mask expected correlations between intakes and blood 512 

levels. The lack of food composition data for several food items for betaine, and to a lesser extent 513 

also for choline and methionine, is a limitation of this study. It may affect exposure estimations 514 

(underestimation of true intakes) and lead to the attenuation of associations found between methyl-515 

group carrier intakes and health outcomes. However, most missing values concern food items that 516 

are not frequently consumed or that contain only traces or none of the methyl-group carriers 517 

(Haytowitz et al., 1996). Therefore, the impact of missing values is likely to be minimal. Yet, this 518 
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emphasizes the need for valid food composition data on the methyl-group carriers to estimate 519 

individual nutrient intakes in order to provide better epidemiological evidence on their associations 520 

with disease risk. 521 

 522 

To the best of our knowledge, this study is the first to compile a database of methyl-group carriers 523 

other than folate for international use. Two major strengths should be highlighted. First, in order to 524 

optimise accuracy and continuity, a standard procedure was maintained, building on the previous 525 

experiences of the ENDB project. For example, calculation principles (e.g. algorithms and retention 526 

factors) between databases were standardised, and country-specific recipes and generic food 527 

weightings were used because there are differences in recipes and food preparation methods 528 

between countries. Secondly, two complimentary, comprehensive quality controls were performed 529 

during the matching procedure to assure a systematic and standardised linking. Furthermore, the 530 

compilation of a MGDB is a valuable addition to the EPIC study. The establishment of the 531 

estimated dietary methyl-group carrier intakes, as new variables to explore in the EPIC cohort, will 532 

provide researchers with the opportunity to investigate additional risk factors for specific cancers 533 

and other chronic diseases. This is in alignment with the increasing amount of existing evidence 534 

indicating the importance of the methyl-group carrier nutrients (Obeid, 2013; Wallace et al., 2018). 535 

 536 

5. Conclusion 537 

This project demonstrates the complexity of matching food consumption data from an international 538 

cohort with FCDBs from other regions. However, this pragmatic approach for matching dietary 539 

assessment data to foreign FCDBs compares adequately to the ENDB approach adopting nutrient 540 

values from national FCDBs of the EPIC countries. Therefore, this methodology for matching food 541 

items from multi-centre cohorts to one or a few high-quality FCDBs, has the potential to be a 542 

framework to build off for other similar projects. Strong correlations and moderate to good levels of 543 

agreements were shown for folate intakes. However, to date there are no resources available to 544 
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examine to what extent this can be generalised to the other three methyl-group carriers, in particular 545 

for betaine. As there were many missing values for betaine, more efforts are needed to include 546 

comparable values across national FCDBs, using reference analytical methods for assessing the 547 

nutrient contents of the foods.  548 

This methyl-group carrier intake data in EPIC will assist in disentangling the role of dietary methyl-549 

group carriers in 1C metabolism, DNA methylation and disease risk.  550 
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Figure 1: Simplified illustration of one-carbon metabolism. 585 
Dark blue: Methyl-group carriers; light blue: nutrients acting as coenzymes; white: intermediates 586 
within the 1C metabolism 587 
Abbreviations: DHF dihydrofolate: ; THF: tetrahydrofolate; Vit B6: vitamin B6; Vit B2: vitamin 588 
B2; Vit B12: vitamin B12; DMG: dimethylglycine; SAM: S-adenosylmethionine; SAH: S-589 
adenosylhomocysteine 590 

 591 

 592 

  593 
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Figure 2: The compilation process of the methyl-group carrier database (MGDB) 594 

 595 

  596 
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Figure 3: Bland-Altman plots for a) 24-HDR data and b) DQ data representing the mean 597 

differences of folate intake (in percentages) between the reference ENDB and the MGDB and their 598 

limits of agreement.  599 

Legend: full line: mean difference in folate intake (%) calculated as the ENDB mean minus MGDB 600 

mean divided by their arithmetic mean (*100%); dotted line: limits of agreement (%) calculated as 601 

the mean difference in folate ± 1.96*SD (*100%); 602 

 603 



31 
 

  604 



32 
 
References 605 

Anderson, O. S., Sant, K. E., & Dolinoy, D. C. (2012). Nutrition and epigenetics: an interplay of 606 

dietary methyl donors, one-carbon metabolism and DNA methylation. The Journal of 607 

nutritional biochemistry, 23(8), 853-859. https://doi.org/10.1016/j.jnutbio.2012.03.003.  608 

Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes & development, 16(1), 609 

6-21. https://doi.org/10.1101/gad.947102  610 

Bland, J. M., & Altman, D. (1986). Statistical methods for assessing agreement between two 611 

methods of clinical measurement. The Lancet, 327(8476), 307-310.  612 

Bouckaert, K. P., Slimani, N., Nicolas, G., Vignat, J., Wright, A. J., Roe, M., . . . Finglas, P. M. 613 

(2011). Critical evaluation of folate data in European and international databases: 614 

recommendations for standardization in international nutritional studies. Molecular nutrition 615 

& food research, 55(1), 166-180.  616 

Cavuoto, P., & Fenech, M. F. (2012). A review of methionine dependency and the role of 617 

methionine restriction in cancer growth control and life-span extension. Cancer treatment 618 

reviews, 38(6), 726-736.  619 

Cellarier, E., Durando, X., Vasson, M., Farges, M., Demiden, A., Maurizis, J., . . . Chollet, P. 620 

(2003). Methionine dependency and cancer treatment. Cancer treatment reviews, 29(6), 621 

489-499.  622 

Chen, P., Li, C., Li, X., Li, J., Chu, R., & Wang, H. (2014). Higher dietary folate intake reduces the 623 

breast cancer risk: a systematic review and meta-analysis. British journal of cancer, 110(9), 624 

2327-2338. https://doi.org/10.1038/bjc.2014.155.  625 

Deharveng, G., Charrondiere, U. R., Slimani, N., Southgate, D. A., & Riboli, E. (1999). 626 

Comparison of nutrients in the food composition tables available in the nine European 627 

countries participating in EPIC. European Prospective Investigation into Cancer and 628 

Nutrition. European journal of clinical nutrition, 53(1), 60-79.  629 



33 
 
Ducker, G. S., & Rabinowitz, J. D. (2017). One-Carbon Metabolism in Health and Disease. Cell 630 

Metabolism, 25(1), 27-42. https://doi.org/10.1016/j.cmet.2016.08.009.  631 

European Food information Resource (EuroFIR). What Makes a Food Composition Database 632 

(FCDB)? (2020). https://www.eurofir.org/food-information/what-are-fcdbs/ Accessed 1 633 

March 2020. 634 

Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: emerging patterns and 635 

implications. Nature Reviews Genetics, 13(2), 97-109. https://doi.org/10.1038/nrg3142.  636 

Friso, S., & Choi, S.-W. (2002). Gene-nutrient interactions and DNA methylation. The Journal of 637 

nutrition, 132(8), 2382-2387.  638 

Friso, S., Udali, S., De Santis, D., & Choi, S. W. (2017). One-carbon metabolism and epigenetics. 639 

Mol Aspects Med, 54, 28-36. https://doi.org/10.1016/j.mam.2016.11.007.  640 

Garcia, V., Rona, R. J., & Chinn, S. (2004). Effect of the choice of food composition table on 641 

nutrient estimates: a comparison between the British and American (Chilean) tables. Public 642 

health nutrition, 7(4), 577-583.  643 

Giavarina, D. (2015). Understanding bland altman analysis. Biochemia medica: Biochemia medica, 644 

25(2), 141-151.  645 

Greenfield, H., & Southgate, D. A. (2003). Food composition data: production, management, and 646 

use: Food & Agriculture Org. 647 

Hakala, P., Knuts, L. R., Vuorinen, A., Hammar, N., & Becker, W. (2003). Comparison of nutrient 648 

intake data calculated on the basis of two different databases. Results and experiences from 649 

a Swedish-Finnish study. European journal of clinical nutrition, 57(9), 1035-1044. 650 

https://doi.org/10.1038/sj.ejcn.1601639.  651 

Haytowitz, D. B., Pehrsson, P. R., Smith, J., Gebhardt, S. E., Matthews, R. H., Anderson, B. A., & 652 

Analysis. (1996). Key foods: setting priorities for nutrient analyses. 9(4), 331-364.  653 



34 
 
Jiménez-Chillarón, J. C., Díaz, R., Martínez, D., Pentinat, T., Ramón-Krauel, M., Ribó, S., & 654 

Plösch, T. (2012). The role of nutrition on epigenetic modifications and their implications 655 

on health. Biochimie, 94(11), 2242-2263. https://doi.org/10.1016/j.biochi.2012.06.012.  656 

Julian-Almarcegui, C., Bel-Serrat, S., Kersting, M., Vicente-Rodriguez, G., Nicolas, G., Vyncke, 657 

K., . . . Huybrechts, I. (2016). Comparison of different approaches to calculate nutrient 658 

intakes based upon 24-h recall data derived from a multicenter study in European 659 

adolescents. European journal of nutrition, 55(2), 537-545. https://doi.org/10.1007/s00394-660 

015-0870-9.  661 

Koc, H., Mar, M. H., Ranasinghe, A., Swenberg, J. A., & Zeisel, S. H. (2002). Quantitation of 662 

choline and its metabolites in tissues and foods by liquid chromatography/electrospray 663 

ionization-isotope dilution mass spectrometry. Analytical chemistry, 74(18), 4734-4740.  664 

Leclercq, C., Valsta, L. M., & Turrini, A. (2001). Food composition issues--implications for the 665 

development of food-based dietary guidelines. Public health nutrition, 4(2b), 677-682.  666 

McKay, J., & Mathers, J. (2011). Diet induced epigenetic changes and their implications for health. 667 

Acta Physiologica, 202(2), 103-118. https://doi.org/10.1111/j.1748-1716.2011.02278.x.  668 

Nazki, F. H., Sameer, A. S., & Ganaie, B. A. (2014). Folate: Metabolism, genes, polymorphisms 669 

and the associated diseases. Gene, 533(1), 11-20. 670 

https://doi.org/10.1016/j.gene.2013.09.063.  671 

Nicolas, G., Witthöft, C. M., Vignat, J., Knaze, V., Huybrechts, I., Roe, M., . . . Slimani, N. (2016). 672 

Compilation of a standardised international folate database for EPIC. Food Chemistry, 193, 673 

134-140. https://doi.org/10.1016/j.foodchem.2014.11.044.  674 

Obeid, R. (2013). The metabolic burden of methyl donor deficiency with focus on the betaine 675 

homocysteine methyltransferase pathway. Nutrients, 5(9), 3481-3495. 676 

https://doi.org/10.3390/nu5093481.  677 



35 
 
Riboli, E., Hunt, K., Slimani, N., Ferrari, P., Norat, T., Fahey, M., . . . Vignat, J. (2002). European 678 

Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data 679 

collection. Public health nutrition, 5(6b), 1113-1124. https://doi.org/10.1079/PHN2002394.  680 

Riboli, E., & Kaaks, R. (1997). The EPIC Project: rationale and study design. European Prospective 681 

Investigation into Cancer and Nutrition. International journal of epidemiology, 26(suppl 1), 682 

6-14. https://doi.org/10.1093/ije/26.suppl_1.S6.  683 

Slimani, N., Deharveng, G., Unwin, I., Southgate, D., Vignat, J., Skeie, G., . . . Ireland, J. (2007). 684 

The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases 685 

across the 10 European countries participating in the EPIC study. European journal of 686 

clinical nutrition, 61(9), 1037-1056. https://doi.org/10.1038/sj.ejcn.1602679.  687 

Slimani, N., Ferrari, P., Ocke, M., & Welch, A. (2000). Standardization of the 24-hour diet recall 688 

calibration method used in the European Prospective Investigation into Cancer and Nutrition 689 

(EPIC): general concepts and preliminary results. European journal of clinical nutrition, 690 

54(12), 900-917. https://doi.org/10.1038/sj.ejcn.1601107.  691 

Slimani, N., Kaaks, R., Ferrari, P., Casagrande, C., Clavel-Chapelon, F., Lotze, G., . . . Lauria, C. 692 

(2002). European Prospective Investigation into Cancer and Nutrition (EPIC) calibration 693 

study: rationale, design and population characteristics. Public health nutrition, 5(6b), 1125-694 

1145. https://doi.org/10.1079/PHN2002395.  695 

Ulrich, C. M. (2007). Folate and cancer prevention: a closer look at a complex picture. The 696 

American journal of clinical nutrition, 86(2), 271-273. 697 

https://doi.org/10.1093/ajcn/86.2.271.  698 

Vaask, S., Pomerleau, J., Pudule, I., Grinberga, D., Abaravicius, A., Robertson, A., & McKee, M. 699 

(2004). Comparison of the Micro-Nutrica Nutritional Analysis program and the Russian 700 

Food Composition Database using data from the Baltic Nutrition Surveys. European journal 701 

of clinical nutrition, 58(4), 573-579. https://doi.org/10.1038/sj.ejcn.1601848.  702 



36 
 
Wallace, T. C., Blusztajn, J. K., Caudill, M. A., Klatt, K. C., Natker, E., Zeisel, S. H., & Zelman, K. 703 

M. (2018). Choline: The Underconsumed and Underappreciated Essential Nutrient. 704 

Nutrition today, 53(6), 240-253. https://doi.org/10.1097/nt.0000000000000302.  705 

Wu, X. Y., Cheng, J. N., & Lu, L. (2013). Vitamin B12 and Methionine Deficiencies Induce 706 

Genome Damage Measured Using the Cytokinesis-Block Micronucleus Cytome Assay in 707 

Human B Lymphoblastoid Cell Lines. Nutrition and Cancer-an International Journal, 708 

65(6), 866-873. https://doi.org/10.1080/01635581.2013.802000.  709 



 

Methodological approaches to compile and validate a food composition database for methyl-

group carriers in the European Prospective Investigation into Cancer and Nutrition (EPIC) 

Study. 

 

 

Heleen Van Puyvelde, Vickà Versele, Marlène De Backer, Corinne Casagrande, Geneviève Nicolas, 

Joanna L. Clasen, Cristina Julián, Guri Skeie, Maria-Dolores Chirlaque, Yahya Mahamat-Saleh, Pilar 

Amiano Etxezarreta, Sara Pauwels, Lode Godderis, Marc J. Gunter, Koen Van Herck, Inge 

Huybrechts, on behalf of the EPIC collaborators 

 

Journal: Food Chemistry 

 

Corresponding author: 

Inge Huybrechts, PhD. 

International Agency for Research on Cancer (IARC), World Health Organisation 

Nutritional Epidemiology Group (NME\NEP) 

150 Cours Albert Thomas, 69372 Lyon Cedex 08, France 

Email: huybrechtsi@iarc.fr 

 

Appendix 1: List of food composition databases used to compile the methyl-group carrier database



 

 

Appendix 1:  List of food composition databases used to compile the methyl-group carrier database 

Country Database Components Number of food 

items (%) 

Web-address 

United 

States 

U.S. FCDB - National 

Nutrient Database for 

Standard Reference of the 

U.S. Department of 

Agriculture, Release 26 

(October 2013 revision) 

Total 

Folate 

Choline 

Betaine 

Methionine 

8463 

7330 (87%) 

4511 (53%) 

2005 (24%) 

5019 (59%) 

 

https://www.ars.usda.gov/northeast-

area/beltsville-md-bhnrc/beltsville-

human-nutrition-research-

center/nutrient-data-

laboratory/docs/sr26-home-page/  

Canada Canadian FCDB - Canadian 

Nutrient File, 2010 

Total 

Folate 

Choline 

Betaine 

Methionine 

5807 

5134 (88%) 

2415 (42%) 

865   (15%) 

4039 (70%) 

https://food-nutrition.canada.ca/cnf-

fce/index-eng.jsp 

Germany German FCDB –Bundes 

Lebensmittel Schlüssel, 

version 3.01 (2010) 

Total 

Folate 

Methionine 

10 185 

10 185  (100%)a 

10 185  (100%)a 

https://www.blsdb.de/ 

Denmark Danish FCDB - Danish Food 

Composition Databank, 

version 7.01 (March 2009)b 

Total 

Folate 

Methionine 

1049 

838   (80%) 

739   (70%) 

http://www.foodcomp.dk/v7/fcdb_abo

utfooddata_vitamins.asp 

a Missing values were replaced by the existing values of the same food group or the same group of constituents 

b Folate values should be used with caution due to use of an inadequate microbiological assay which systematically 

provided high folate values (Nicolas et al., 2016) 
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Appendix 2: Paired sample t-test by country for individual dietary folate intake (µg/day) between the 

methyl-group carrier database (MGDB) and the EPIC nutrient database (ENDB)



Appendix 2: Paired sample t-tests and mean differences by country for individual dietary folate intake (µg/day) between the newly compiled MGDB and the ENDB 

 24-HDR DQ 

 Database N Mean (µg/day) SD Mean  (%)*# N Mean (µg/day) SD Mean  (%)*# 

Total MGDB 36 994 325.91 159.30 -60.66 504 247 354.56 127.84 -46.01 

 ENDB 36 994 265.25 137.83 (-20.2%) 504 247 308.55 120.14 (-13.88%) 

France MGDB 4735 345.37 149.65 -54.10 73,035 435.43 131.61 -77.88 

 ENDB 4735 291.27 142.60 (-17.00%) 73,035 357.55 105.93 (-19.64%) 

Italy MGDB 3961 361.13 193.57 -99.74 45,908 372.38 130.75 -107.07 

 ENDB 3961 261.39 150.22 (-32.04%) 45,908 265.31 86.79 (-33.58%) 

Spain MGDB 3220 391.67 209.94 -95.60 40,624 420.59 151.06 -103.71 

 ENDB 3220 296.06 160.27 (-27.80%) 40,621 316.88 112.71 (-28.13%) 

United Kingdom MGDB 1315 357.24 154.66 -35.26 81,097 396.17 129.26 12.58 

 ENDB 1315 321.98 140.06 (-10.38%) 81,097 408.76 157.68 (3.13%) 

The Netherlands MGDB 4567 326.52 146.32 -54.65 39,037 326.33 86.30 -39.14 

 ENDB 4567 271.87 150.64 (-18.27%) 39,037 287.19 74.96 (-12.76%) 

Greece MGDB 2930 297.39 182.30 -24.36 27,476 350.60 111.96 -11.31 

 ENDB 2930 273.03 146.83 (-8.54%) 27,476 339.29 109.89 (-3.28%) 

Germany MGDB 4418 330.16 160.34 -82.56 52,013 334.17 96.47 -87.94 

 ENDB 4418 247.60 146.03 (-28.58%) 52,013 246.22 70.57 (-30.30%) 

Sweden MGDB  6132 287.67 114.95 -64.66 52,750 285.89 97.84 -41.76 

 ENDB 6132 223.01 94.23 (-25.32%) 52,750 244.12 81.41 (-15.76%) 

Denmark MGDB 3918 304.54 118.91 -19.61 55,860 308.62 82.38 -0.72 

 ENDB 3918 284.93 113.03 (-6.65%) 55,860 307.90 87.48 (-0.23%) 

Norway MGDB 1798 267.75 117.57 -44.14 36,448 236.07 67.14 -20.58 

 ENDB 1798 223.61 92.43 (-17.97%) 36,448 215.49 60.83 (-9.12%) 

* Mean difference (%): The MGDB mean minus the ENDB mean (divided by their arithmetic mean [*100%]) 

# Statistical difference p < 0.001 for the paired sample t-test 

Abbreviations: MGDB: methyl-group carrier database; ENDB: EPIC nutrient database; N: number; SD: standard difference; Mean : mean difference; 24-HDR: 24-hour dietary recall; DQ: 

dietary questionnaire 
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Appendix 3: Pearson’s correlation coefficients by country for individual dietary folate intake (µg/day) 

between the methyl-group carrier database (MGDB) and the EPIC nutrient database (ENDB)



Appendix 3: Pearson’s correlation coefficients by country for individual dietary folate intake (µg/day) between the MGDB and the ENDB 

 Total France Italy Spain United 

Kingdom 

The 

Netherlands 

Greece Germany Sweden Denmark Norway 

24-HDR 0.73 0.70 0.71 0.70 0.69 0.77 0.84 0.71 0.73 0.80 0.80 

DQ 0.81 0.79 0.80 0.77 0.88 0.85 0.98 0.89 0.82 0.90 0.96 

All correlations are statistically significant (p < 0.001) 

Abbreviations: MGDB: methyl-group carrier database; ENDB: EPIC nutrient database; 24-HDR: 24-hour dietary recall; DQ: dietary questionnaire 
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Appendix 4: Weighted Kappas by country for individual dietary folate intake (µg/day) between the 

methyl-group carrier database (MGDB) and the EPIC nutrient database (ENDB)
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