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A B S T R A C T

For a sensor, high sensitivity, structural simplicity, and longevity are highly desired for measurement of salinity
in seawater. This work proposed an ultrahigh sensitive photonic crystal fiber (PCF) salinity sensor based on the
sagnac interferometer (SI). The propagation characteristics of the proposed PCF are analyzed by the finite ele-
ment method (FEM). The achieved sensitivity reaches up to 37,500 nm/RIU and 7.5 nm/% in the salinity range
from 0% to 100%. The maximum resolutions of 2.66 × 10−06 RIU and 1.33 × 10−02% are achieved with high
linearity of 0.9924 for 2.20 cm length of the proposed PCF. Owing to such excellent results, this proposed sensor
offers the potential to measure the salinity of seawater.

Introduction

Measurement of salt level in seawater is essential as it has sig-
nificant effect on seawater organism and submarine activities. Mainly,
salinity is measured based on the electrical conductivity of chloride
ions. However, this measurement process is affected by the inter-
ferences from other contaminant ions [1]. In this regard, fiber optic
salinity sensors have arisen interest to the researchers because of sev-
eral advantages like electromagnetic interference (EMI) immunity,
compactness, remote sensing, tunable dispersion and controllable bi-
refringence [2].

To date, several optical fiber salinity sensors have been proposed to
achieve high sensitivity and structural simplicity. For instance, a hy-
drogel coated fiber Bragg grating (FBG) salinity sensor was fabricated
by J. Cong et al. [3]. Soon later, X. Liu et al. [4] optimized the same
structure by etching the cladding and achieved sensitivity about
10.4 pm/%. Very recently, M. Sun et al. [5] proposed an experimental
study of FBG based salinity sensor and achieved sensitivity of
−0.0358 nm/%. Though FBG sensors have simple structure and are
suitable for long-term measurement process, they exhibits very low
sensitivity. D. J. Gentleman et al. demonstrated a surface plasmon

resonance (SPR) based metal coted optical fiber salinity sensor having
sensitivity of 200 pm/% [6]. In SPR phenomena, electromagnetic waves
are coupled with free electron oscillations at the metal-dielectric in-
terface under p-polarized light radiation [7]. The sensing properties of
SPR sensors depend on the metallic materials. Among the various types
of plasmonic materials, gold and silver are the most common ones due
to their relatively low loss in the visible and near-infrared region [8].
Although SPR based salinity sensors have comparatively high sensi-
tivity, fabrication of SPR sensors is challenging as they require metal
film deposition. Besides that, due to the metal film, these sensor are not
suitable for long-term measurement process as the seawater is strong
corrosive. Sensor based on microfiber knot resonator [9], and nano-
cavity photonic crystal resonator [10] are demonstrated for the purpose
of salinity concentration measurement of sea water but the reported
sensitivities are very low of 21.18 pm/% and 544 nm/RIU, respectively.
Moreover, sensor based on two-core fiber [11,12], tapered fiber [13],
U-shaped fiber [14], long period grating (LPG) [15] have been also
proposed. But these sensors also have low sensitivity. Furthermore,
many work for simultaneous sensing of salinity and temperature have
been done [16–21], but the outcomes are not so promising. In recent
days, Sagnac interferometer (SI) based sensors are widely used in
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sensing application such as temperature [22], pressure [23], magnetic
field [24] and glucose sensor [25] due to its compactness, high sensi-
tivity, and easy fabrication. Besides that, SI sensors are suitable for long
hours work under seawater [1].

In this paper, a simple photonic crystal fiber (PCF) salinity sensor
based on SI is presented. The guiding characteristics are investigated
using finite element method (FEM) based COMSOL software with op-
timized thingness of perfect match layer (PML). All the air holes of the
four rings hexagonal lattice PCF are proposed to be filled by the sea
water. Two big air holes create large birefringence in the proposed
structure that significantly helps to achieve high sensitivity. Moreover,
the optimum length of the proposed sensor is chosen based on the
sensitivity and the linearity response.

Sensor design and theoretical modelling

The cross section of the proposed salinity sensor is illustrated in
Fig. 1(a) and field distribution of x- and y-polarization is shown in
Fig. 1(b) and (c), respectively. All the air holes are organized in trian-
gular lattice, where the two adjacent air holes distance is Λ. Three air
holes from the center are eliminated, that forms the core of the PCF.
Two air holes having diameter d along the horizontal axis are kept large
from the regular air hole diameter d1, which creates asymmetry in the
fiber structure. As a result, the fiber birefringence increases. The ma-
terial dispersion of the fiber material (fused silica) is calculated by the
Sellmeier formula [1].
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where n(λ) is the refractive index of silica at wavelength λ (µm) and Xk

and Yk are the constants. The value of the constant X1, X2, X3, Y1, Y2,
and Y3 are 69.6163 × 10−2, 40.79426 × 10−2, 89.74794 × 10−2,
46.914826 × 10−4, 13.5120631 × 10−3, and 97.9340025, respec-
tively. All air holes are proposed to be filled by the sea water whose
refractive index (RI) can be expressed as follows [2],
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where, T, S, and λ indicates room temperature (°C), salinity (%), and
wavelength (µm), respectively. Solution having same salinity may have
different refractive index due to other components (MgCL2, MgSO4)
which may create cross-sensitivity problem. However, NaCl is the main
component of inorganic salts (several orders of magnitude larger than

other salts) in seawater [1]. Hence, the probability of cross sensitivity is
very low.

Liquid infiltration is quite popular in different sensing application
such as temperature [22], glucose [25], salinity [2], and magnetic field
[26]. With regard to liquid infiltration into the fiber air holes, many
techniques have been proposed theoretically and experimentally. Li-
quid filling process into the PCF air holes by the FBG fiber with col-
lapsed cladding holes is demonstrated by K. Nielsen et al. [27]. Tech-
nique assisted by focused ion beam and femtosecond laser are also
proposed by F. Wang et al [28] and Y. Wang et al. [29], respectively.
Using these techniques, even an air hole having diameter of 1 µm is
possible to fill up by the fluid. The minimum air hole diameter of the
proposed PCF is 1.6 µm. So we presumed that the sea water can be
infiltrated in to the PCF by pumping or any of these existing techniques.

A typical setup for measuring salinity using SI is shown in Fig. 2. A
broadband source (BBS) generates a beam of light which is divided into
two beams after encountered at the 3 dB coupler. Then these two
beams, one in clockwise and the other in anticlockwise, travel through
the sea water filled PCF. Finally, the two beams couple when they meet
at the 3 dB coupler again. The polarization controller (PC) can be used

Fig. 1. The proposed seawater filled PCF with Λ = 3 µm, d = 1.6 µm, d1 = 3.6 µm, and PML = 2 µm (a) Cross-section view (b) Field distribution in x-pol.(c) Field
distribution in y-pol.

Fig. 2. Sagnac interferometer generalized setup.
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to adjust the polarization state of the light. The two beams have phase
difference due to birefringence of the designed PCF. Besides that, ac-
cording to the Eq. (2), with the variation of the salinity, the RI of the
water varies that changes the birefringence too. Thus, the interference
spectrum changes with the variation of the salinity which can be

observed in the optical spectrum analyser (OSA).
The normalized power at 3 dB coupler can be obtained by the fol-

lowing equation [22],

= −P πBL λ(dB) [1 cos(2 / )]/2 (3)

where, 2πBL/λ denotes the phase difference and B indicates the bi-
refringence which is equal to |nj − nk|, nj and nk are the effective RI in
x- and y-polarization, respectively. L denotes the length of the proposed
PCF. When BL/λ is an integer then the phase matching condition is
satisfied. As a result, a dip is found at the interference spectrum.

Results and discussion

The birefringence (B) of the proposed PCF as a function of wave-
length by varying the salinity lavel is illustrated in Fig. 3. As all the air
holes are filled by the sea water, different salinity level of the water can
directly vary the distribution of RI of the PCF and then leads to the
variation in the birefringence. From Fig. 3, it can be noticed that at the
same salinity level, with the increasing of the wavelength the bi-
refringence increases and then decreases. On the other hand, the bi-
refringence decreases with the increasing of the salinity level as the
index difference between silica and sea water is decreased with the
increasing of salinity.

The interference spectrum with fiber length 2.15, 2.20, 2.25, and
2.30 cm are shown in Fig. 4(a)–(d), respectively. In those figures, two
dips are found, the dip 1 covers wavelength from 1000 nm to 1500 nm
and the dip 2 covers wavelength from 1700 nm to 2500 nm. It can be
noticed that dip 1 experiences a red shift while dip 2 experiences an
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Fig. 4. Normalized power spectrum of the proposed sea water filled PCF with the variation of salinity in sea water for (a) 2.15 cm, (b) 2.20 cm, (c) 2.25 cm and (d)
2.30 cm sensor length.
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obvious blue shift. This is because with the variation of wavelength the
birefringence increase first and then decrease as illustrated in Fig. 3
[25]. It can be also seen that dip 2 experiences greater shift than dip 1.
That mainly because that the birefringence difference between two
successive salinity level is insignificance in shorter wavelength (dip 1)
and it is high in the higher wavelength (dip 2). Therefore, the proposed
sensor offers higher sensitivity at dip 2 than that of dip 1. Although the
sensitivity at dip 1 is comparatively lower, dip 1 offers low cost sensing
as the light sources are commercially available in shorter wavelength
region. Hence, both dip 1 and dip 2 are taken in to consideration for
sensitivity analysis. The dip wavelength (DW) variation due to the
change of salinity for dip 1 and dip 2 is shown in Fig. 5(a) and (b),

respectively. According to the linear fitting characteristics, the pro-
posed salinity sensor exhibits average sensitivity of 19,214 nm/RIU,
16,120 nm/RIU, 13,896 nm/RIU and 12,960 nm/RIU for fiber length of
2.15 cm, 2.20 cm, 2.25 cm, and 2.30 cm, respectively, for dip 1. On the
other hand, for dip 2, the average sensitivities are 34,498 nm/RIU,
30,920 nm/RIU, 29,298 nm/RIU and 27,508 nm/RIU for fiber length of
2.15 cm, 2.20 cm, 2.25 cm, and 2.30 cm, respectively. As mention
earlier, dips are found only when the value of BL/λ is equal to an in-
teger [22] as illustrated in Fig. 6. From Fig. 6 it can be seen that dips are
found only when the value of BL/λ is equal to 1. Hence, dip wavelength
is directly dependent on the birefringence. As the change of bi-
refringence (B) with the wavelength (λ) of our proposed sensor is not
linear in the entire operating range (also the birefringence is different at
different wavelength), wavelength shift with the variation of length is
also nonlinear. However, it is found that sensitivity can be increased by
decreasing the sensor length but at the cost of linearity. Therefore, the
sensor length is selected to 2.20 cm as a trade-off between sensitivity
and linearity.

The sensitivity and resolution of the sensor at different salinity level
can be calculated using Eqs. (4) [30,31] and (5) [2], respectively.
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∂

∂
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where ∂λ is the shift of DW due to change of salinity (∂S) in the sea
water or change of RI of sea water (∂nsw). For the optimum sensor
length of L = 2.20 cm, the blue shift of DW from 1.13 µm to 1.16 µm is
found by varying the salinity from 0% to 20% at dip 2. Therefore, ac-
cording to the Eq. (4), the sensitivity of 7500 nm/RIU and 1.5 nm/%
are calculated at 20% salinity. Considering OSA resolution (λmin) of

Fig. 5. Linear fitting of dip wavelength for (a) dip 1 and (b) dip 2 with the variation of salinity in the sea water for different sensor length.

Fig. 6. Normalized power spectrum and BL/λ as a function of wavelength at
100% salinity for L = 2.20 cm.

Table 1
Proposed salinity sensor’s performance at different salinity.

Salt (%) ∂nsw (RIU) ∂S (%) Dip Dip Wave. (nm) ∂λ (nm) Sw (nm/RIU) Sw (nm/%) SR (RIU) SR (%)

0 N/A N/A dip 1 1130 N/A N/A N/A N/A N/A
dip 2 2380 N/A N/A N/A N/A N/A

20 0.004 20 dip 1 1160 30 7500 1.5 1.33 × 10−05 6.67 × 10−02

dip 2 2300 80 20,000 4.0 5.00 × 10−06 2.50 × 10−02

40 0.003 20 dip 1 1200 40 13,333 2.0 7.50 × 10−06 5.00 × 10−02

dip 2 2210 90 30,000 4.5 3.33 × 10−06 2.22 × 10−02

60 0.004 20 dip 1 1250 50 12,500 2.5 8.00 × 10−06 4.00 × 10−02

dip 2 2110 100 25,000 5.0 4.00 × 10−06 2.00 × 10−02

80 0.003 20 dip 1 1310 60 20,000 3.0 5.00 × 10−06 3.33 × 10−02

dip 2 2000 110 36,666.67 5.5 2.72 × 10−06 1.82 × 10−02

100 0.004 20 dip 1 1410 100 25,000 5.0 4.00 × 10−06 2.00 × 10−02

dip 2 1850 150 37,500 7.5 2.66 × 10−06 1.33 × 10−02
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0.1 nm, corresponding sensor resolution (R) is calculated of
1.33 × 10−06 RIU and 6.67 × 10−02% by using Eq. (5). The sensitivity
of the designed sensor for different salt level is noted at Table 1. The
maximum sensitivity of the proposed salinity sensor reaches up to
37,500 nm/RIU and 7.5 nm/% at 100% salinity for dip 2.

A number of previously reported salinity sensors with their corre-
sponding sensitivity is summarized at Table 2. According to the Table 2,
our proposed sea water filled PCF exhibits few times better sensitivity
than other sensors reported in the literature. At the same time, the
proposed PCF has very simple and common structure. So we believe
that our PCF will be easy to fabricate.

Conclusion

A PCF salinity sensor based on SI is numerically investigated in this
paper. All the air holes of the PCF are proposed to be filled by the
different salinity concentration of sea water. Two air holes along the
horizontal axis are intentionally kept large to introduce birefringence in
the fiber structure. However, with the variation of the salinity, the RI of
the sea water changes that leads to the change in the fiber bi-
refringence. Hence, a shift of dip wavelength is observed with the
variation of the salinity. By observing these wavelength shift, it is found
that the designed sensor’s sensitivity reaches up to 37,500 nm/RIU and
7.5 nm/% in the salinity range from 0% to 100%. Besides that, the
average sensitivity of the sensor is also high as 29,298 nm/RIU. Owing
to such promising results and simple structure, the proposed sensor has
immense potential for salinity measurement of seawater.
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