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Integrating Incidence Angle Dependencies Into the
Clustering-Based Segmentation of SAR Images
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Abstract—Synthetic aperture radar systems perform signal ac-
quisition under varying incidence angles and register an implicit
intensity decay from near to far range. Owing to the geometrical
interaction between microwaves and the imaged targets, the rates
at which intensities decay depend on the nature of the targets, thus
rendering single-rate image correction approaches only partially
successful. The decay, also known as the incidence angle effect,
impacts the segmentation of wide-swath images performed on
absolute intensity values. We propose to integrate the target-specific
intensity decay rates into a nonstationary statistical model, for use
in a fully automatic and unsupervised segmentation algorithm.
We demonstrate this concept by assuming Gaussian distributed
log-intensities and linear decay rates, a fitting approximation for
the smooth systematic decay observed for extended flat targets.
The segmentation is performed on Sentinel-1, Radarsat-2, and
UAVSAR wide-swath scenes containing open water, sea ice, and
oil slicks. As a result, we obtain segments connected throughout
the entire incidence angle range, thus overcoming the limitations of
modeling that does not account for different per-target decays. The
model simplicity also allows for short execution times and presents
the segmentation approach as a potential operational algorithm. In
addition, we estimate the log-linear decay rates and examine their
potential for a physical interpretation of the segments.

Index Terms—Image segmentation, sea ice, synthetic aperture
radar (SAR).

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is used for a broad scope
of observations, both from satellite and airborne platforms.

The SAR imaging modality involves side-looking geometry and
the acquisition of backscattered signals under varying incidence
angles. As a result of the incidence angle-dependent interaction
between microwaves and the imaged targets, the amount of
backscattered energy decreases from near to far range, a phe-
nomenon known as the incidence angle effect. The backscatter
gradient becomes particularly noticeable in the case of wide-
swath scenes, which cover hundreds of kilometers over large
ranges of incidence angles (>20◦). Owing to differences in the
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physical properties of the targets, the effect also has a local char-
acter, which further complicates image interpretation by both
human observers and algorithms. Advanced algorithms often
rely on statistical representations of the backscattered signals,
which currently do not account for the incidence angle effect.
This work proposes to address this issue by demonstrating that
incorporating a functional form of the effect into the statistical
model is feasible, and that using the model for segmentation can
significantly improve results.

Studies of specific backscatter dependencies with incidence
angle have been conducted in the past approximately four
decades for a variety of areas such as oceans, sea ice, forests,
or agricultural terrain (see [1]–[4]). In many cases, especially
when dealing with flat terrain and dominant surface scattering,
a direct relationship between the backscattered intensity and the
incidence angle can be found and even measured for different
polarizations (see [5]–[7]). The empirically observed average
decay rates have sometimes been approximated as linear in
decibels per degree ([dB/1◦]) (see [7] and [8]). Based on sim-
ple modeling and decay rate measurements, global correction
(see [9] and [10]) and manual class-based correction methods
(see [2], [11], and [12]) have become the standard mitigation
approaches. These approaches, although useful, have their lim-
itations. Global corrections account for part of the effect, but
as they do not consider the specifics of each area, they will
ultimately undercorrect some areas while overcorrecting others.
In contrast, manual corrections have the obvious disadvantage
of being time-consuming and requiring significant involvement
of a human operator. Additionally, in the case of nonflat areas,
local topography must also be accounted for, as it plays a
more important role than the instrument incidence angle to the
geoid (see [13] and [14]). Overall, existing approaches could be
enhanced by an automatic manner of accounting for different
decay rates in a single scene. The authors of [15] seem to be
the only ones to have explored this avenue, but their approach
is limited to a fixed scenario and has since not been extended.

We introduce a new segmentation approach constructed by
merging theoretical aspects and empirical observations into a
statistical model that accounts for the incidence angle effect
by assuming nonstationary per-segment means. We present
the simplest functional form of the model, assuming Gaussian
distributed log-intensities with linearly varying means. This
model is then integrated into an already established automatic
segmentation framework based on statistical mixtures. This
article builds on [16], where the concept was initially introduced.
We show how the approach eliminates incidence-angle-related
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segmentation artefacts in wide-swath scenes from three sen-
sors (Sentinel-1, Radarsat-2, and UAVSAR). The scenes were
selected to include flat areas clearly exhibiting a smooth sys-
tematic decay with incidence angle: open water, sea ice, and oil
slicks. With the help of remote sensing experts and overlapping
optical data, we performed a visual segment validation. How-
ever, the results and discussion are based entirely on the unsuper-
vised approach, as the supervised implementation of the same
model (the classification) represents another topic and is treated
in a parallel study. In addition to performing segmentation,
the algorithm delivers estimates of the per-segment log-linear
decay rates. We show that these estimates carry a physical
meaning and can contribute to the interpretation of the obtained
segments. The decays for the same target can vary between
datasets acquired in different frequency bands or modes (due
to sensitivity to wavelength, as well as calibration); therefore,
the possibility of estimating them automatically constitutes an
additional advantage. From a computational point of view, the
segmentation task can be performed in a matter of minutes on
typical wide-swath images, thus proving particularly useful for
the sea ice and oil spill monitoring communities who require
operational near-real-time algorithms.

The presented model was designed with sea ice and oil spill
monitoring in mind, as they represent vast subdomains of Earth
observation with important applications in both academia and
industry. Nevertheless, the model is a general-purpose one and
can be applied to other environments, provided that the analyzed
regions are composed of relatively flat areas with predominant
surface scattering. Targets that exhibit nonlinear decays remain
to be studied, and if their decays can be modeled consistently,
they can be incorporated into the model.

II. METHODS

A. Modeling the Incidence Angle Effect

The SAR remote sensing community has tackled the inci-
dence angle-dependent backscatter by employing various cor-
rection strategies. As the dependence is strongly related to
surface scattering (see [1] and [17]), it is often treated as an illu-
mination problem by using models adapted from optical remote
sensing. At the core of this class of models stands Lambert’s
cosine law (see [1]), which states that radiant intensities depend
linearly on the cosine of the incidence angle. The same principle
applies to the observed intensities, and as the incidence and
viewing angles are the same for SAR, the corresponding law
for a monostatic setup relates the intensities to the square of
the cosine (see [12]). However, this assumption is often too
simplistic as it only applies to ideally diffusive (Lambertian)
surfaces that appear uniformly bright from all directions of
observation. For surfaces with different scattering properties,
focus has shifted to the exploration of more general models. The
Minnaert model [18] attempts to account for these differences
by incorporating a surface-specific exponent k into the cosine
law. k measures deviation from a perfectly diffuse reflector and
depends on surface roughness: the rougher the surface, the lower
its value and the slower the decay. The Minnaert model has been
applied extensively in optical remote sensing for the correction

of topographic effects (see [19]), and to a smaller extent in SAR
imaging for vegetation studies (see [2] and [20]). Even if it does
not fit every given case, it introduces the important concept of
considering different incidence angle dependencies per surface.

An alternative approach to studying the incidence angle effect
is estimating backscatter over smooth surfaces that exhibit small
periodic perturbations, using variants of the Bragg model. In
[21], theoretical curves computed using the tilted Bragg model
are shown to fit backscatter measurements over open water
and different types of oil slicks reasonably well. The authors
of [1] report backscatter measurements for various types of
surfaces and conditions, exhibiting linear, exponential, or more
complicated incidence angle dependencies.

The more complicated modeling options are sometimes re-
duced to an empirical approximation, the exponential decay of
the mean intensity Ī with incidence angle, as

Ī(θi) = Ī0e
− θi

c (1)

where θi is the incidence angle, Ī0 is the mean intensity at θ = 0,
and c is a surface-specific constant. The exponential decay of
intensities implies the linear decay of log-intensities, a practical
simplification used in recent studies (see [7], [9], [11], and [22])

ĪdB(θi) = a− bθi (2)

where ĪdB = 10 log10 Ī , the intercept a = 10 log10 Ī0 is the
mean log-intensity at an angle θ0 = 0◦, and the slope b =
10/c ln 10 is the intensity decay rate in dB/1◦. Note that we
explicitly specify the decay with a negative sign and use a
positive decay rate. Alternative conventions use a plus sign and
negative decay rates. Using this simplification, it is possible to
measure decay rates per degree for open water (see [9]) and
different types of sea ice in the Arctic area throughout the year
(see [7] and [22]). The simplicity of the linear decay and its
demonstrated applicability to arctic scenarios make it an ideal
candidate for integration into the new statistical model.

B. Existing Segmentation Framework

Our in-house automatic unsupervised SAR image segmen-
tation framework is summarized here. The common principle
consists of using statistical mixtures to model the ensemble of
(multilooked) intensities or polarimetric features. Commonly
used models have ranged from a simple mixture of Gaussian
distributions (see [23]) to variations using more complicated
textured models (see [24] and [25]). The framework itself has
been successively upgraded, with its latest form having been
described in detail in [25]. The previously cited works have
focused on polarimetric features for relatively narrow-swath
images, where the incidence angle effect is not a major concern
and is essentially ignored. In this work, we only consider the
log-intensities as features, as their decays with incidence angle
have been studied and are known to be approximately linear
[see (2)] for a variety of targets.

The base algorithm has two stages: the Gaussian-mixture-
based clustering and the Markov random field (MRF)-based
contextual smoothing (see [25]). We will refer to the results
of the first stage as clusters, and to the final results as segments.



CRISTEA et al.: INTEGRATING INCIDENCE ANGLE DEPENDENCIES INTO THE CLUSTERING-BASED SEGMENTATION OF SAR IMAGES 2927

Clustering is performed iteratively and on two levels. At the
“model selection” level, goodness-of-fit (GoF) testing and clus-
ter splitting are performed. At the second level, mixture fitting
is performed by expectation–maximization (EM) (see [26]). A
consistent clustering initialization is achieved by always starting
with a single cluster, which will subsequently be split until the
GoF criterion is met. At the end of each EM convergence, the
GoF of individual clusters is tested using Pearson’s chi-squared
test; then, the least well-fitting one is split. The clustering stops
once all clusters are considered as good fits to a chosen sensitivity
(or confidence level). Finally, hard cluster labels are assigned
to all image pixels, according to their associated maximum
posterior probabilities. In the second stage, MRF-based contex-
tual smoothing can be applied if more spatially homogeneous
segments are desired, while generating new posterior labels. In
general, the contextual smoothing reduces clustering errors by
relabeling misclassified isolated pixels, but it may also amplify
them in cases where the misclassified pixels are adjacent. During
this stage, the class label image is modeled as an MRF together
with an isotropic second-order neighborhood system. Based on
the intensity distributions, the global class prior probabilities
are replaced with spatially varying local prior probabilities
determined from the local neighborhoods. This stage is more
computationally intensive, as it is necessary to consider all
pixels.

The automatic characteristic of the algorithm refers to its
capacity to determine the suitable number of clusters based
on the input data, the number of samples used for clustering,
and the chosen confidence level for Pearson’s test. A uniformly
subsampled subset of the total image pixels is used for clustering,
with the dual purpose of reducing the processing time and the
number of identifiable clusters. Using a low number of samples
leads to the identification of only a few major well-represented
clusters and thus simplifies result interpretation. As the sample
number is increased, less-well-represented clusters also become
identifiable, and more image details become visible. The sample
number must, therefore, be adjusted empirically for each task,
together with the confidence level (usually set to 99%).

C. Nonstationary Statistical Model for Log-Intensities

Intensity-based segmentation of SAR images is grounded in
the assumption that intensities follow a certain statistical model
based on the stochastic representation of a known physical
process (here, scattering). Commonly used models account for
measurable factors such as average brightness, speckle variance,
and texture (see [25]), but do not account for the incidence angle.
As a consequence, the systematic decay of intensities resulting
from backscatter by a single target may instead appear as bright-
ness variation, causing the respective target to be incorrectly split
into multiple segments in the range dimension. An illustration
of this phenomenon is given in Fig. 1, using a dual-channel
wide-swath scene containing two main targets: water and sea ice.
In the copolarized (HH) channel, the water intensity values cover
roughly the entire dynamic range of the image, whereas the ice
intensity values show a lower spread and considerable overlap
with the water intensities [see Fig. 1(a) and (c)]. The effect is

also present in the cross-polarized (HV) channel, although it is
less pronounced [see Fig. 1(b) and (d)], because of the reduced
contribution from surface scattering. When the incidence angle
is added as an extra histogram dimension, the data form tubular
shapes with roughly Gaussian profiles and different orientations
per cluster and channel [see Fig. 1(e) and (f)]. The different
decay rates become more evident when visualizing the data
corresponding to the two targets separately [see Fig. 1(g) and (h):
open water in green and sea ice in red]. Some overlap is present
in both polarized channels (usually at different angle values),
but their joint use may resolve such ambiguities. In the given
example, maximum data overlap in the HH log-intensity versus
incidence angle space is observed around θ = 37◦. However, the
data are clearly separated in the joint HH and HV log-intensity
space at θ = 37◦ [see Fig. 1(i)]. These observations motivate
the necessity to formulate a model that includes incidence angle
information.

The proposed model is based on a multivariate Gaussian
mixture, where the incidence angle modulates the mean value
of each component in the joint space of log-intensities (x)
and incidence angles (θ). In other words, the mixture compo-
nents (clusters) are assumed to follow multivariate Gaussian
distributions along constant incidence angle azimuth lines, with
mean values expressed as a linear function of the corresponding
incidence angles. Multidimensionality relates to the existence of
multiple (d) polarimetric channels. We implement the different
per-cluster and per-channel incidence angle dependencies by
considering d-dimensional parameter vectors for each cluster k:
ak represents the mean value [dB] at θ = 0◦ and bk represents
the decay rate [dB/1◦]. The two parameters correspond to the
intercept and slope, respectively, from (2). The covariances Σk

are assumed to be constant with respect to the incidence angle.
The concept can thus be interpreted as a Gaussian distribution
“shifted” along the range dimension. After including the prior
weights πk, the M -component mixture becomes

pX,Θ(x, θ) =

M∑

k=1

πk
1

(2π)d/2|Σk|1/2

× exp

(
−1

2
(x− (ak − bkθ))

TΣk
−1(x− (ak − bkθ))

)
.

(3)

Mixture separation is conducted using the EM algorithm. The
expectation step represents the computation of the component
membership weights per sample, expressed as posterior prob-
abilities. If N (xk;ak − bkθi,Σk) denotes the Gaussian (Nor-
mal) likelihood that the sample (xi, θi) belongs to component
k, then the posterior probability that the same sample (xi, θi)
belongs to the component k is

zik =
πkN (xi;ak − bkθi,Σk)∑M
j=1 πjN (xi;aj − bjθi,Σj)

. (4)

The maximization step consists of estimating the parameter
values that maximize the total likelihood given the previously
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Fig. 1. Scene 1 (Sentinel-1 EW mode): (a) and (b) log-intensities and selected regions of open water (green, top) and sea ice (red, bottom), (c) and (d) global log-
intensity histograms, and (e) and (f) global log-intensity versus incidence angle histograms. Representation of the selected open water and sea ice regions: (g) and (h)
log-intensity decay rates with incidence angle and linear model lines, (i) log-intensities and 95% confidence ellipses corresponding to Gaussian model fits at θ = 37◦.
(g) and (i) show how data overlap in two of the feature spaces can be resolved in the third feature space.
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TABLE I
SUMMARY OF THE SCENE CHARACTERISTICS

computed membership weights. In this case, closed-form ex-
pressions are obtained for all four model parameters, i.e.,

πk =

∑n
i=1 zik∑M

j=1

∑n
i=1 zij

(5)

ak =

∑n
i=1 zikxi + bk

∑n
i=1 zikθi∑n

i=1 zik
(6)

bk =
−∑n

i=1 zikθixk + ak
∑n

i=1 zikθi∑n
i=1 zikθ

2
i

(7)

Σk =

∑n
i=1 zik(xi − (ak − bkθi))(xi − (ak − bkθi))

T

∑n
i=1 zik

.

(8)

The above describe our prototype approach to introducing
nonstationarity with respect to incidence angle in the statistics
of SAR images. Imprecision due to simplistic modeling can be
corrected in the future by assuming statistical models with an
increased level of complexity and nonlinear decay rates. The
simple prototype is sufficient to demonstrate functionality, while
also bypassing complex calculations and long runtimes.

III. DATA PREPROCESSING AND DESIGN OF DEMONSTRATIONS

We have conducted four demonstrations in order to highlight
the improvements obtained when using the proposed model for
segmentation, the consistency of the results upon application
on scenes from different sensors, the possibility to identify
structures associated with the obtained segments on optical
data, and the potential of using estimated log-linear decay rates
for ice–water mapping. We have selected six SAR scenes and
one optical scene (see Table I) for these demonstrations. The
SAR scenes were acquired over wide swaths and contain flat
distributed targets presenting predominant surface scattering,
the type that are known to display log-linear intensity decays.
The satellite scenes depict arctic scenarios typical for sea ice
monitoring, i.e., open water and sea ice subtypes (see Fig. 3),

and were selected with the purpose of illustrating similar algo-
rithm behavior on scenes with similar compositions from two
different sensors. The UAVSAR scenes were acquired in the
North Sea during the NORSE2015 oil spill exercise (see [27])
and contain oil slicks on an open water background. We note that
the grayscale representations of the HH and, respectively, HV
log-intensities are always visualized from near to far range, thus
making the scenes acquired in ascending orbits appear inverted
in comparison to the geolocated ones from Fig. 3. Finally, the
Landsat-8 scene was selected due to its good spatial and temporal
overlap with Sentinel-1 scene 6 (see Table I).

The Sentinel-1 and Radarsat-2 satellite scenes were processed
using the same protocol. First, thermal noise removal was ap-
plied to the original products by subtracting the noise equivalent
sigma zero (NESZ) profiles provided in the metadata. This
is an important step, as both satellites have irregular NESZ
profiles. It must nevertheless be noted that the provided profiles
are not perfectly estimated, and residual noise is still present
after correction, especially for the Sentinel-1 Extra-Wide (EW)
mode data. More specifically, this acquisition mode presents
two types of problematic artefacts. First, the image construction
process involves a step where five acquisition strips affected by
different thermal noise levels are stitched together into a final
image, resulting in visible stitching boundaries and variable
noise-floor patterns in the range direction. Second, the TOP-
SAR technique used in the EW mode (see [28]) introduces a
scalloping effect in the azimuth direction, which also varies
between strips (see [29]). The descalloping function used to
correct this effect then further amplifies the noise at the beam
edges. Both artefacts are more visible in the HV channel, because
of weaker backscatter and lower signal-to-noise ratio. Out of the
two selected examples, Scene 1 does not exhibit obvious noise
patterns because of the high brightness of the targets, whereas
Scene 2 represents a more typical case dominated by dark areas
and visible noise. The corrected images were radiometrically
calibrated to Sigma Nought using ESAs Sentinel Application
Platform. Smoothing was applied using an averaging 5 × 5
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Fig. 2. Workflow diagram illustration of the main image preprocessing and
segmentation steps, including the two EM steps (E-step and M-step), GoF test,
and MRF-based smoothing.

pixel window in order to reduce data spread and thus increase
cluster radiometric separability. Next, the size of the images was
reduced by subsampling at a 5 × 5 rate in range and azimuth. Fi-
nally, the intensities were log-transformed, this step being essen-
tial for ensuring both that the data are approximately Gaussian
distributed and that the decay is linear. Prior to segmentation, the
original product land masks were applied, as land topography
is more complicated than a flat surface, and intensities do not
follow the expected log-linear decay with respect to the geoid
angle.

The UAVSAR polarimetric data are available in single-look
complex format and incorporates radiometric calibration. In
addition, the UAVSAR instrument’s NESZ is low (varying
between approximately −55 and −40 dB across the range
according to [21, Appendix A]), much lower than the NESZ of

approximately −22 dB of the two satellites. The acquired signal
values were situated above this limit; therefore, noise correction
was not necessary. The preprocessing of UAVSAR scenes was
reduced to spatial multilooking (using a 15 × 60 pixel window),
subsampling (at a 15 × 60 rate), and log-transformation. Seg-
mentation was applied only to the HH intensities in the 30–60◦

range, where log-linear decays were observed. The remaining
channels exhibited irregular decays. The same dataset is used
in [30], where it is reported that the data collected over water
were not corrected for crosstalk in the cross-polarized channels.
The irregular decays can, therefore, be explained by imperfect
calibration, at least in the cross-polarized channels. Discussions
with co-authors of the study describing UAVSAR calibration
(see [31]) confirmed that the procedure has since improved.

The preprocessing steps common to all scenes (spatial multi-
looking and log-transformation) as well as the main algorithm
steps are summarized in Fig. 2.

A. Demonstration 1: Improving Wide-Swath
Image Segmentation

We demonstrate the improved segmentation results using two
examples.

For the first example, we use Scene 1 (see Figs. 1(a), (b) and 3)
to conduct a comparison between three segmentation strategies:
segmenting using a Gaussian mixture model, applying a global
correction (based on one mean decay rate) before segmenting
using the same Gaussian mixture model, and segmenting using
the proposed nonstationary mixture model. The applied global
correction is based on the mean decay rate considering all
intensity values and is, therefore, expected to undercorrect areas
with steep decays and overcorrect areas with flatter decays.
Here, these correspond to the open water areas and the ice
areas, respectively, owing to the differences in roughness. We
note that since the method is unsupervised, the segments need
further assessment in order to be assigned physically meaningful
labels, i.e., become “classes.” A thorough validation of each
segment was not performed, as we lack the ground truth to
verify the profile of certain regions, and only segments that
were considered clear to interpret by visual inspection by sea
ice experts were referred to as water or ice.

The second example has the additional purpose of showing the
effect of noise on the segmentation. We use Scene 2 [see Figs. 3
and 5(a) and (b)], where the noise artefacts are still noticeable
after thermal noise correction. We compare the segmentation
results obtained when using the Gaussian mixture model and
the new nonstationary mixture model.

B. Demonstration 2: Multisensor Reproducibility

The second demonstration focuses on the applicability of the
proposed model for the segmentation, using three scenes from
different sensors: Radarsat-2 and UAVSAR. All three scenes
were segmented using the Gaussian mixture model and the
nonstationary mixture model, for comparison. Like in the first
demonstration, the segments obtained from the satellite scene
were only validated by visual inspection. As the UAVSAR
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Fig. 3. (a) Locations of the five satellite scenes used in the article: 1, 2, and 4: Sentinel-1 EW mode (Copernicus Sentinel data [2015, 2016]), 3: Radarsat-2
SCWA mode, and 5: Landsat-8. False-color representations [HH(R), HV(G), and HV/HH(B)] of the SAR scenes used to demonstrate full-image segmentation,
using WGS84 coordinates: (b) Scene 1. (c) Scene 2. (d) Scene 3. Scenes 4 and 5 have partial overlap, displayed in Fig. 9.

scenes were acquired during a controlled exercise, their compo-
sitions are known precisely, and the validation of the obtained
segments is straightforward.

C. Demonstration 3: Comparison With
Overlapping Optical Data

We present an example of overlapping Sentinel-1 and
Landsat-8 scenes, both acquired during spring when illumina-
tion is not an issue for the optical sensor. The example is meant
to serve as an indication that the proposed algorithm can identify
visible structures, even if it is not a full-on validation with in situ
information. The overlapping region covers the incidence angles
from approximately 23◦ to 37◦ in the SAR scene and contains
sea ice, which is covered by snow in the optical scene, and leads
that are sometimes covered by thin ice, which are identifiable
in both scenes (see Fig. 9). Because the optical image and the
SAR image are different in nature, we can only make statements
about the structures that have well-identifiable signatures in both
images. The Sentinel-1 SAR scene and the Landsat-8 optical
scene (scenes 6 and 7 in Table I) are acquired at 16:35 and
15:39, respectively, and an examination of the superimposed

images showed no differences in the positions of the leads within
the ice mass. The segmentation was performed using clustering
alone, but using a higher number of samples than in the other
cases, in order to better capture the details of the fine leads. The
MRF-based smoothing stage was skipped in order to avoid any
resulting ambiguity.

D. Demonstration 4: Ice–Water Distinction

Ice–water mapping is a high-interest topic for operational
services and is currently being investigated using various strate-
gies often based on local pixel statistics (see [32]) and locally
computed polarimetric features (see [8] and [33]). The incidence
angle effect is typically no less of a nuisance for this task than it is
for segmentation, but we now have the tool to transform it into a
source of physically significant information, as our segmentation
algorithm also estimates segment features, i.e., the slope (log-
intensity decay rate), intercept, and covariance. Among these
features, the HH log-intensity slope is of particular interest, as it
is sensitive to roughness and could, therefore, help distinguish
ice and water based on their roughness, i.e., act as a feature
for ice–water mapping. In this demonstration, we show that
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Fig. 4. Scene 1 (Sentinel-1 EW mode): comparison of the segmentation results and segment histograms obtained after applying: (a) and (b) the Gaussian mixture
model, (c) and (d) a global correction and the Gaussian mixture model, and (e) and (f) the proposed nonstationary mixture model. Results from the three approaches
show incremental improvement of across-range segment connectivity and class distinction. Land masked out in black.
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Fig. 5. Scene 2 (Sentinel-1 EW mode): (a) and (b) log-intensities; comparison of the segmentation results obtained after applying (c) the Gaussian mixture model,
and (d) the proposed nonstationary mixture model. Application of the nonstationary model leads to connected segments, despite the visible residual noise artefacts.
Land masked out in black.

ice–water distinction may be achieved by using the slope alone,
while also discussing potential limitations. After conducting a
comparison between slope values reported in previous studies
(see [7] and [22]) and our own measurements, we selected an
appropriate threshold value to distinguish between water and ice.
The previously segmented satellite images were then relabeled
as “ice” or “water” according to this threshold.

IV. RESULTS AND DISCUSSION

A. Demonstration 1: Improving Wide-Swath
Image Segmentation

Fig. 4 shows the results obtained after applying each of the
three segmentation approaches on Scene 1. Using a Gaussian
mixture model led to oversegmentation into multiple bands in the
range dimension [see Fig. 4(a)]. Histogram overlap illustrated

statistical ambiguities [see Fig. 4(b)]. The application of a single-
rate correction followed by Gaussian-mixture-based segmenta-
tion resulted in fewer bands and less overlap compared to the first
case, but the segments were still not connected throughout the
entire range [see Fig. 4(c)]. The limited efficiency of the global
correction was expected, as the two major targets present in the
scene have very different decay rates. Finally, considering the
per-cluster incidence angle dependencies produced connected
segments [see Fig. 4(e)], proving that the nonstationary model
is better fitting. A representation of the data distribution using
projections at a single incidence angle also illustrated the ex-
pected Gaussian profiles, and the projection at θ = 0◦ showed
minimal overlap, notably in the HH channel [see Fig. 4(d)].

According to visual inspection by sea ice experts, the high
backscatter in the near range of the open water area suggests
the presence of wind, while some alternating intensity levels
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on the water surface and in the ice leads (at similar incidence
angle values) also suggest the presence of different wind regimes
(see [34] and [35]). The segments obtained with the proposed
model [see Fig. 4(e)] offered the most detail in terms of identifi-
able structures: water areas (segments 3 and 5), sea ice (segment
1), and mixtures of sea ice and leads (segments 2 and 4).

The segmented Scene 2 [see Fig. 5(a) and (b)] was visibly
affected by both types of noise artefacts, stitching boundaries,
and scalloping, regardless of the model [see Fig. 5(c) and (d)].
As the noise problems are not addressed by either model, this
outcome was expected. Nevertheless, when the nonstationary
model was employed, segment connectivity was maintained de-
spite the artefacts [in Fig. 5(d)]. According to visual validation,
segment 3 covers a large ice floe, and segments 2 and 4 appear
to cover water regions with different wind regimes. The area
corresponding to segment 6 has the aspect of open water or
grease ice, but this information contains some uncertainty. While
this result confirms the utility of the proposed model, it also re-
iterates the need for reliable noise-correction procedures. Noise
correction could potentially be achieved during segmentation, by
simultaneously estimating the linear decays and variable noise
floor for each cluster.

B. Demonstration 2: Multisensor Reproducibility

Scenes 3–5 (from Radarsat-2 and UAVSAR) exhibit the same
statistical properties and incidence angle-dependencies as the
Sentinel-1 scenes. As a result, segmenting the Radarsat-2 scene
[see Fig. 6(a) and (b)] without considering the incidence an-
gle led to banding in the range dimension [see Fig. 6(c) and
(d)], although the effect was less pronounced compared to the
Sentinel-1 scenes. This is due to the scene being dominated
by sea ice, which exhibits slower intensity decays than water.
Applying the proposed model [see Fig. 6(e) and (f)] eliminated
the banding and connected the segments throughout the range,
like in the previous examples.

Scene 4 [see Fig. 7(a)] contains an oil spill that was detectable
by clustering even without considering the incidence angle
effect. However, banding occurred when the effect was not con-
sidered, and the oil slicks appeared to belong to the same cluster
as one of the water bands [see Fig. 7(b)]. By using the current
model, the banding was eliminated, and the open water regions
were connected into one cluster, while different clusters were
identified for the oil slicks and the previously undetected ships
[see Fig. 7(d)]. The incorrectly labeled pixels from the very near
range were a result of deviations from the linear approximation
of the decay, which in turn were due to nonnegligible specular
contributions. Scene 5 [see Fig. 8(a)] shows a series of oil spills
that were not detected when using the Gaussian-mixture-based
model [see Fig. 8(b)], but appeared as connected structures when
using the proposed model [see Fig. 7(d)]. However, owing to a
lower radiometric contrast between oil and water and thus higher
statistical overlap than in Scene 4, more clustering errors were
present. Adding texture and incorporating the other channels
(with correctly calibrated data) may reduce such false alarms in
the future. The inclusion of the entire range of incidence angles
may be possible if a nonlinear decay is used, as the very near and

very far range data exhibit deviations from linearity. MRF-based
smoothing was not applied to the clustered UAVSAR scenes, as it
did not improve result interpretation. In Scene 1, few errors were
present postclustering, and smoothing would not have changed
the result significantly. On the opposite side, Scene 2 contained
many adjacent misclustered pixels and smoothing would have
amplified the error by grouping them together.

The system used for processing is equipped with an i7
@ 2.6-GHz CPU, 16-GB RAM, and a solid-state drive and
is running MATLAB on Windows. The processing time for
the clustering stage of the algorithm varied slightly with the
subsampling rate, but did not exceed 1 min for the examples
presented in this article (or similar ones). The smoothing stage
for the same scenes took on average under 5 min.

Overall, segmenting using the nonstationary model was ef-
fective for all scenes, thus confirming its applicability for both
large-scale environmental monitoring from satellites and tar-
geted UAVSAR missions.

C. Demonstration 3: Comparison With
Overlapping Optical Data

The overlapping fragments of the Sentinel-1 and Landsat-8
scenes (Scenes 6 and 7 in Table I) as well as the segmentation
result from the SAR scene fragment are shown in Fig. 9. We have
highlighted the segments corresponding to the open water/leads
(red) and the thin ice-covered leads (green). In the case of very
thin leads, some ambiguity is observed between the two lead
types, likely because the concerned intensity values lie in the
overlapping region of the respective clusters. The remainder of
the image contains snow-covered ice that cannot be detected in
the optical image, but the varying backscatter in the SAR image
indicates the presence of multiple ice types. In addition, due to
the different resolutions (20 m by 40 m for the SAR image and
30 m for the optical image), the finer details are not captured in
the SAR image.

D. Demonstration 4: Ice–Water Distinction

Based on HH log-intensity slope measurements from previous
studies and on our own estimations, the value of 0.39 dB/1◦

was selected as the threshold between ice and water. Using this
threshold to relabel the previously segmented satellite images
(i.e., the segments with slow decaying intensities were mapped
as ice and those with fast-decaying intensities as water), we
obtained the ice–water maps illustrated in Fig. 10. According to
sea ice experts, the result is realistic, with some ambiguities for
segments 1 and 6 of the Radarsat-2 scene [see Fig. 6(c)]. The
signal from the corresponding areas was too low to be accurately
measured and their slopes appeared flat; therefore, they were
classified as ice. In this case, it would be necessary to introduce
a constraint that excludes such areas from classification, or
to jointly consider the slope and other features for a more
accurate result. Nevertheless, the current example is sufficient
to demonstrate the potential of the HH log-intensity slope as an
interpretative feature.
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Fig. 6. Scene 3 (Radarsat-2 SCWA mode): (a) and (b) log-intensities; comparison of the segmentation results and segment histograms obtained after applying
(c), and (d) the Gaussian mixture model and (e) and (f) the proposed nonstationary mixture model. Application of the nonstationary model has the same impact
here as in the case of Sentinel-1 scenes (see Figs. 4 and 5). Land masked out in black.
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Fig. 7. Scene 4 (UAVSAR PolSAR mode): oil slicks and ships in the open sea: (a) HH intensities [dB], (b) segmentation result obtained after applying the
Gaussian mixture model, (c) intensity decay rates per segment, and (d) segmentation result obtained after applying the proposed nonstationary mixture model.
Application of the nonstationary model correctly segments the underlying image structures, eliminating the clear banding artefacts produced by the Gaussian
mixture model.

Fig. 8. Scene 5 (UAVSAR PolSAR mode) : low-contrast oil slicks in the open sea: (a) HH intensities [dB], (b) segmentation result obtained after applying the
Gaussian mixture model, (c) intensity decay rates per segment, and (d) segmentation result obtained after applying the proposed nonstationary mixture model.
Application of the nonstationary model identifies the oil slicks, although some segmentation errors remain because of statistical ambiguities (due to the use of only
one channel).
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Fig. 9. Overlaping sections of (a) Scene 7 (Landsat-8 RGB). (b) Scene 6 [Sentinel-1 EW mode, false-color representation: HH(R), HV(G) and HV/HH(B)].
(c) Segmentation result obtained from the SAR scene. Color codes were preferred for simplicity: black—masked out land, red—the darkest patches (open
water/leads), and green—leads covered by thin ice, the remaining segments represent different ice types that cannot be differentiated by evaluating the optical
image alone.

Fig. 10. Ice–water maps obtained by segmentation and thresholding of the three satellite scenes: (a) Scene 1 (Sentinel-1 EW). (b) Scene 2 (Sentinel-1 EW). (c)
Scene 3 (Radarsat-2 SCWA). Blue: water and green: ice.

V. CONCLUSION

This article presents a new approach for the automatic seg-
mentation of wide-swath SAR images. The approach consists
in integrating the per-segment incidence angle dependence into
the statistical model by considering nonstationary means. To
our knowledge, this concept has not been demonstrated in other
works. The resulting model was integrated into an automatic
unsupervised segmentation algorithm and can be applied on
a scene without requiring prior information about its content.
Furthermore, a nonstationary statistical model can be applied
to all SAR systems, regardless of frequency (here demonstrated
on L-band UAVSAR and C-band satellites) or polarization. The
approach delivers the expected results, effectively connecting
segments throughout the incidence angle range, thus removing
the often encountered banding artefacts that result from inade-
quate modeling. In addition, we demonstrated the potential of
using the HH log-intensity decay rate as a feature for ice–water
mapping, after showing that it is possible to effectively separate
ice from water in three presegmented image examples by simply
thresholding the decay rate values.

The presented method delivered good results in terms of
correcting major image artefacts, and we consider that it can
be further extended within this framework. We are currently
exploring more complex statistical models that could account
for the presence of heavy tails or texture, together with nonlinear
log-intensity decay rates, which could characterize targets with
different properties. The persistent noise patterns could also be
corrected automatically, by introducing an adaptive model for
the mean. Additional gains may be obtained by exploring the
variability of polarimetric and texture features with incidence an-
gle. The segmentation algorithm is unsupervised, but implies the
possibility of performing supervised segmentation, particularly
on images with limited amounts of data available at different
incidence angles.
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