
Open Universiteit 
www.ou.nl 

Effects of Process-Oriented Worked Examples on
Troubleshooting Transfer Performance
Citation for published version (APA):

Van Gog, T., Paas, G. W. C., & van Merrienboer, J. J. G. (2006). Effects of Process-Oriented Worked Examples
on Troubleshooting Transfer Performance. Learning and Instruction, 16(2), 154-164.
https://doi.org/10.1016/j.learninstruc.2006.02.003

DOI:
10.1016/j.learninstruc.2006.02.003

Document status and date:
Published: 01/04/2006

Document Version:
Peer reviewed version

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between
the submitted version and the official published version of record. People interested in the research are advised to contact the author for the
final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

https://www.ou.nl/taverne-agreement

Take down policy
If you believe that this document breaches copyright please contact us at:

pure-support@ou.nl

providing details and we will investigate your claim.

Downloaded from https://research.ou.nl/ on date: 02 Jul. 2022

https://doi.org/10.1016/j.learninstruc.2006.02.003
https://doi.org/10.1016/j.learninstruc.2006.02.003
https://research.ou.nl/en/publications/db9a6ad6-79b6-40a8-a753-bb85ed6a5637


Process-Oriented Worked Examples 1

1Running head:  PROCESS-ORIENTED WORKED EXAMPLES

This is a pre-print of: Van Gog, T., Paas, F., & Van Merriënboer, J. J. G. (2006). Effects of process-

oriented worked examples on troubleshooting transfer performance. Learning and Instruction, 16, 

154-164.

Copyright Elsevier, available online at 

http://www.elsevier.com/wps/find/journaldescription.cws_home/956/description#description

Effects of Process-Oriented Worked Examples on Troubleshooting Transfer Performance

Tamara van Gog, Fred Paas, and Jeroen J. G. van Merriënboer

Educational Technology Expertise Centre, 

Open University of the Netherlands, Heerlen, The Netherlands

Author Note:

Correspondence concerning this article should be addressed to Tamara van Gog, Open 

University of the Netherlands, Educational Technology Expertise Centre, P.O. Box 2960, 6401 

DL, Heerlen, The Netherlands. E-mail: tamara.vangog@ou.nl. 

This research project is funded by the Netherlands Organization for Scientific Research 

(NWO, The Hague, project no. 411-01-010). 

The authors would like to extend a word of thanks to Nico Pluijmaekers (Arcus College, 

Heerlen), Roger Sliepen (Leeuwenborgh Opleidingen Sittard) and Louise Verhoeven 

(Leeuwenborgh Opleidingen Maastricht) for their practical help in conducting this study, to 

Mihály Koltai of DesignSoft, Inc. for making the TINA Pro software available free of charge for 

this study, and to the OTEC pub.group members for their comments on a previous draft of this 

article.

http://www.elsevier.com/wps/find/journaldescription.cws_home/956/description#description


Process-Oriented Worked Examples 2

Abstract

In the domain of electrical circuits troubleshooting, a full factorial experiment investigated the 

hypotheses that a) studying worked examples would lead to better transfer performance than 

solving conventional problems, with less investment of time and mental effort during training 

and test, and b) adding process information to worked examples would increase investment of 

effort during training and enhance transfer performance; whereas adding it to conventional 

problems would increase investment of effort, but would not positively affect transfer 

performance. The first hypothesis was largely confirmed by the data; the second was not: adding 

process information indeed resulted in increased investment of effort during training, but not in 

higher transfer performance in combination with worked examples.
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Effects of Process-Oriented Worked Examples on Troubleshooting Transfer Performance

Troubleshooting, that is, diagnosing and repairing faults in a technical system, constitutes 

an important part of most technical jobs. Fault diagnosis is considered a complex cognitive skill 

to carry out, and even more complex to acquire (Gott, Parker Hall, Pokorny, Dibble, & Glaser, 

1993; Schaafstal, Schraagen, & Van Berlo, 2000). This study addresses the question of how 

initial acquisition of this skill can be fostered by the design of effective troubleshooting 

instruction and, in particular, the support given to students during practice. Specially, the study 

investigates the effects on learning outcomes of support formats that are assumed to help 

students to use their cognitive resources more effectively. 

According to Cognitive Load Theory (CLT; Sweller, 1988; Sweller, Van Merriënboer, & 

Paas, 1998; Van Merriënboer & Sweller, 2005) instructional materials draw on students’ 

cognitive resources in three ways, related to the intrinsic, extraneous and germane cognitive load 

they impose. Intrinsic cognitive load is imposed by the complexity of the instructional task and 

depends on the number of interacting elements that have to be related, controlled, and kept active 

in working memory during learning activities. By nature, troubleshooting tasks are complex and 

require processing of numerous information elements. For example, in troubleshooting a simple 

electrical DC circuit, specific knowledge of the function of its components (e.g., voltage sources, 

resistors) and general knowledge about the relation between voltage, current and resistance 

(Ohm’s law) and about the conservation of energy and charge (Kirchoff’s laws) is needed to be 

able to determine how the circuit should function. Knowledge about how to use different meters 

is required to be able to measure the voltage, current and resistance at different points in the 

circuit. The troubleshooter has to compare those measurements to his/her own calculations of 

optimal functioning. Furthermore, s/he needs to relate the outcome of that comparison to 

knowledge about how certain symptoms (e.g., no current in the entire circuit) relate to certain 
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faults (e.g., defect voltage source or open wire). And this is only an example of a very simple 

system; these circuits very often form just one subsystem in a more complex whole. 

Ineffective, or extraneous cognitive load is imposed by the design of the instructional 

task or by the activities required of the learner and has been known to hamper learning. Effective 

cognitive load is also imposed by instructional design, but is germane to learning, as it focuses 

attention to activities relevant to the acquisition of knowledge and/or skills. Thus, in order to be 

effective, especially for tasks that impose a high intrinsic cognitive load such as troubleshooting, 

instruction should be designed in such a way that extraneous cognitive load is minimised and 

learners are challenged to use the resulting freed-up cognitive capacity for processes and 

activities directed at learning. 

As the above example shows, troubleshooting tasks impose a high intrinsic cognitive load 

because effective performance requires the interactive use of system knowledge or given system 

information, principled domain knowledge, strategic knowledge and information provided 

through measurements conducted on the system, to reason about the system’s (mal)functioning 

(Gitomer, 1988; Gott et al., 1993; Schaafstal, Schraagen, & Van Berlo, 2000). Troubleshooting 

remains complex, even for highly experienced individuals. However, experience does offer 

tremendous advantages. For example, expert troubleshooters have well-developed cognitive 

schemas that contain quantitatively (more) and qualitatively (better) different system, principled, 

and strategic knowledge than novices’ schemas do (Chi, Glaser, & Rees, 1982; Larkin, 

McDermott, Simon, & Simon, 1980). When troubleshooting familiar systems, experts can also 

use the case-based knowledge they gained through previous fault-finding experiences. When 

faced with unfamiliar systems troubleshooting, their schema-based knowledge assists them in 

more rapidly building a mental representation of that system than less experienced 

troubleshooters can (Egan & Schwartz, 1979). These sophisticated mental representations can 
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then be used to reason about the system’s (mal)functioning. 

Since novices lack both experience (case-based knowledge) and effective schemas, they 

have to keep in working memory all the system elements to construct an appropriate mental 

representation. Given that working memory capacity is limited to about 7 plus or minus 2 

elements when merely holding information, and considerably less when processing it (Miller, 

1956; Sweller, 2004), processing the system elements alone imposes very high demands on a 

novice’s cognitive system. In fact, little capacity is likely to be left for reasoning based on this 

representation. Furthermore, when reasoning about system (mal)functioning, experts can rely on 

their strategic knowledge, which allows them to apply more effective strategies (e.g., the 

structured approach to troubleshooting described by Schaafstal et al., 2000), whereas novices 

have to rely on weaker strategies (using domain-general heuristics), which impose a high 

extraneous cognitive load (Sweller, 1988; Sweller et al., 1998). 

Instruction that consists mainly of solving conventional problems (with only a 

formulation of criteria for an acceptable goal state and some “givens”) forces novices to resort to 

weak problem-solving strategies (such as means-ends analysis), which is known to be ineffective 

for learning. By offering instructional formats that prevent the use of weak strategies, such as 

studying well-structured worked examples (possibly alternated with solving problems), 

extraneous cognitive load is reduced and learning is enhanced (Carroll, 1994; Cooper & Sweller, 

1987; Ward & Sweller, 1990). Worked examples present the learner not only with the begin (or 

problem) state and a description of the criteria for an acceptable goal state as conventional 

problems do, but also show the solution steps that are to be taken to reach the goal state. So, the 

use of means-ends analysis is prevented because the learner does not have to search for a 

solution and can instead devote all available cognitive capacity to studying the given solution 

and constructing an appropriate problem schema (see Sweller, 1988). The ‘worked example 
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effect’ demonstrates that for novices, instruction that relies more heavily on studying worked 

examples rather than exclusively conventional problem solving is superior with regard to 

learning outcomes, as measured by both near and far transfer tasks (for an overview of the 

benefits of worked examples, see Atkinson, Derry, Renkl, & Wortham, 2000; Sweller et al, 

1998; Sweller, 2004). 

The cognitive capacity that is freed-up by reducing the extraneous load can –within 

working memory limits- be used to induce germane cognitive load activities that stimulate 

learning. For example, asking students to self-explain the solution steps may be an effective way 

to increase germane cognitive load and enhance learning (Chi, Bassok, Lewis, Reimann, & 

Glaser, 1989; Renkl, 1997). The reason why worked examples require self-explaining is that the 

solution steps are given but the rationale for taking each step is not. Such examples can be called 

product-oriented (Van Gog, Paas, & Van Merriënboer, 2004), because they show the problem 

solved, that is, which solution steps are applied to attain the goal state (the product). They do, 

however, not explain the problem-solving process, that is, why those steps are chosen (i.e., 

strategic knowledge) or why they are appropriate (i.e., principled knowledge). Recently, Van 

Gog et al. (2004) have argued that including in worked examples not only the solution steps, but 

also the strategic (“how”) and principled (“why”) information used in selecting the steps, may 

enhance learners’ understanding of the solution procedure. This enhanced understanding due to 

given process information (i.e., “how” plus “why” information) is expected to lead to higher 

transfer test performance. Especially, far transfer performance can be expected to increase, 

because in contrast to near transfer tasks, which have structural features comparable to those of 

the training tasks but different surface features, far transfer tasks have different structural 

features, and therefore do not allow learners to merely apply a memorized procedure. Flexibly 

using those parts of a learned procedure that are relevant for a new (far transfer) problem 
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requires that the learner understands the rationale behind (subgroups of) solution steps (cf. 

Catrambone, 1996, 1998), that is, “not only knows the procedural steps for problem-solving 

tasks, but also understands when to deploy them and why they work” (Gott et al., 1993, p. 260).

Research on either unsolicited or on-demand provision of only principle-based 

instructional explanations/elaborations in examples versus prompting for self-explanations, has 

suggested that prompting self-explanations is more effective for increasing transfer performance 

(e.g., Schworm & Renkl, 2002). However, a precondition is that students are capable of 

providing high quality self-explanations, which is not always the case (see Chi et al., 1989; 

Lovett, 1992; Renkl, 1997). If this precondition is not met, providing high quality instructional 

explanations may improve performance (Lovett, 1992). 

This study intended to empirically address the issues raised by Van Gog et al. (2004), by 

investigating the effectiveness for novices of a computer-simulated electrical circuits 

troubleshooting training program consisting of solving conventional problems with or without 

process information, and studying worked examples with or without process information (i.e., 

process-oriented and product-oriented worked examples). In line with consistent findings in the 

field of instructional design and CLT-inspired research (see Atkinson et al., 2000; Sweller, 

2004), we hypothesized that practice consisting of studying worked examples would result in 

more effective learning than practice consisting of solving conventional problems. This ‘worked 

example effect’ would be demonstrated by higher near and —especially— far transfer test 

performance, with less investment of time and mental effort during both the training and the 

subsequent test.

Furthermore, we hypothesized that process information added to worked examples and 

conventional problems would result in higher investment of mental effort during practice 

compared to the conditions without process information (i.e., conventional problems and 
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product-oriented worked examples). This higher investment of effort during practice is expected 

to produce differential effects on learning for the worked examples and conventional problems 

conditions (cf. Van Merriënboer, Schuurman, De Croock, & Paas, 2002). Combined with worked 

examples, process information is expected to produce higher (far) transfer test performance than 

studying worked examples without process information would, because this higher effort is 

assumed to be an indication of germane load. Learners would be able to handle this germane 

load because extraneous load has been reduced through the implementation of worked-out 

solutions. Combined with conventional problems, in contrast, process information is expected to 

produce equally low or even lower transfer test performance than solving conventional problems 

without process information would, because the conventional problems already impose a high 

extraneous load. This would make it impossible to handle the process information in such a way 

that it facilitates learning.

Method

Participants

Sixty-eight first year electrotechnics students of three schools of senior secondary 

vocational education were asked to participate in the experiment. Because some of them did not 

attend school when the experiment took place, only 61 students actually participated (all male; 

age M = 17.04 years, SD = .90). They were rewarded with € 7.50. In the 4.5 months prior to the 

experiment, the school curricula (all schools used the same textbooks) offered electrotechnics 

instruction from which participants had gained the basic knowledge required to perform the 

experimental tasks. For example, students were given instruction in the function of basic circuit 

components such as voltage sources, resistors, ammeters, and voltmeters. They were familiarized 

with Ohm’s law and Kirchoff’s laws, and knew how to restate those laws in order to find an 

unknown value from the givens. They were also instructed on how to design basic parallel and 
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series circuits. However, they had not yet acquired any troubleshooting experience.

Design

A 2 x 2 between-subjects factorial design, with the factors ‘solution worked-out’ (no/yes) 

and ‘process information given’ (no/yes) was used. The resulting four training conditions were: 

conventional problem solving (CP: no solution given, no process information), conventional 

problem solving with process information given (PCP: no solution given, process information), 

studying product-oriented worked examples (WE: solution given, no process information), and 

studying process-oriented worked examples (PWE: solution given, process information). 

Materials

Training and test tasks. All experimental tasks were designed and delivered with TINA 

Pro software, version 6.0 (TINA = Toolkit for Interactive Network Analysis; DesignSoft, Inc., 

2002) and consisted of malfunctioning electrical DC circuits simulations with one or two faults. 

The training tasks were preceded by an introduction to the TINA program (on paper) and an 

“introduction practice task” (in TINA) on which students could try out the functioning of the 

program described in the introduction. For example, participants could ascertain where to find 

the meter in the menu, how to use that meter, and how to repair a circuit component with TINA.

The training consisted of six parallel circuit tasks that contained the following faults: a 

resistor could be open, shorted, or its resistance could have changed to a higher or lower value 

than it should have according to the circuit diagram. In the first three tasks, those faults occurred 

in isolation and in the last three tasks two different faults occurred in combination, so that each 

fault occurred three times during the training: once in isolation and twice in combination with 

another fault. In the CP training condition, only the circuit diagrams were presented with a 

formulation of the criterion for an acceptable goal state (see Appendix A). In the PCP condition, 

the circuit diagrams, a formulation of the goal state criterion, and the process information (the 
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text printed in bold and bold italics in Appendix B) was given. In the WE condition, the circuit 

diagram was shown, together with a formulation of the goal state criterion and a worked-out 

solution (the non-bold text in Appendix B). In the PWE condition, the circuit diagram, the goal 

state criterion formulation, and a worked-out solution complemented with the process 

information (Appendix B) was given. 

The transfer test consisted, in order, of three near and three far transfer tasks. The 

structural features of the near transfer tasks were comparable to those of the training tasks: they 

were parallel circuit tasks with the same types of faults. The first near transfer task contained one 

fault, the second and third contained two different faults. The far transfer tasks had different 

structural features and consisted of one parallel circuit task with a new fault (voltage source) and 

two combined circuit (i.e., series-parallel) tasks with a familiar fault. The process information 

would be expected to lead to better performance on those tasks because it for example taught 

students to always measure again after repairing a component (higher likelihood of finding both 

faults in the near transfer tasks), and contained principles that helped identify the type of fault, 

and the faulty component’s location in the circuit (for example knowing the principle that 

infinitely low current in the entire circuit –as opposed to in just one branch- involves an open 

component/wire outside the branches would result in a higher likelihood of finding the new 

fault). 

Performance. On pre-printed training and test answer sheets, participants were asked to 

indicate for each task which components were faulty and to indicate what the fault was: the 

component: a) “is open”, b) “is shorted”, c) “has changed value: from … (given in diagram) to ... 

”, or d) “I do not know”. They were instructed to fill out the values when they indicated ‘c’. 

Although for both worked examples conditions the faulty components and the nature of the faults 

were given, participants in those conditions were asked to fill out the training answer sheet 
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anyway, to ensure that this activity would not lead to time-on-task differences between 

conditions (i.e., to make sure that possible differences between the worked examples and 

conventional problems conditions are not due to the longer study time participants in the worked 

examples groups might have when they would not have to fill in the answer sheets).

Mental effort. On the answer sheets participants also had to indicate how much mental 

effort they invested to complete each task, on a 9-point rating scale ranging from 1 “very, very 

low effort” to 9 “very, very high effort” (Paas, 1992; Paas, Tuovinen, Tabbers, & Van Gerven, 

2003). 

Time-on-Task. To be able to determine the time participants spent on each task, the 

screen coordinates of their mouse clicks and the time (in seconds) at which these were made, 

were logged with GazeTrackerTM software (Lankford, 2000). 

Procedure

Before the experiment, the 68 participants were randomly assigned to one of the four 

conditions, in such a way that each condition contained 17 participants. As mentioned in the 

‘participants’ section, only 61 students actually participated, with 16 participants in the CP and 

PWE conditions, 15 in the PCP condition, and 14 in the WE condition. The study was run in five 

sessions in a computer room at the participants’ respective schools. When participants arrived in 

the computer room, a PC was marked with their name, and the introduction and answer sheets 

were placed next to the PC. GazeTrackerTM was already recording at that moment and the 

introduction practice task was already visible on the screen. Participants were instructed to start 

reading the introduction to the program and to familiarize themselves with the functioning of the 

program through the “introduction practice task”. At this point, they were not yet allowed to start 

on the actual training tasks. When all participants had finished the introduction and had no more 

queries regarding the program, they were allowed to move on to the training tasks. Participants 
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were allocated a maximum time of three minutes per training task, and although they could 

complete a task faster, they could not move on to the next task until three minutes had passed. 

On the test tasks, they were allowed to work at their own pace. Both during the training and the 

test, a “task list” was always visible on the right-hand side of their screen. When they had 

finished a task, they were instructed to click on the “submit” button, located under the “task list”, 

before proceeding to the next task in that list. Participants could use a calculator (‘real’ or 

software) both during the training and the test, to ensure that simple computational errors would 

not affect task performance. After completing each task participants indicated the faulty 

component(s) and the type of fault(s), as well as the mental effort they invested in the task on the 

answer sheets.

After the experiment, participants’ performance on the near and far transfer test tasks was 

scored in the following way. For each correctly diagnosed faulty component 1 point was given 

and for correct diagnosis of the fault in that component an additional point was given (and in 

case ‘c’ was indicated, but the value was wrong, ½ point was given). So, the maximum mean 

performance score on the near transfer test tasks was 10 points / 3 tasks = 3⅓ points (one task 

containing one fault with a maximum score of 2 points and two tasks containing two faults with 

a maximum score of 4 points each), and on the far transfer tasks it was 6 points / 3 tasks = 2 

points (three tasks containing one fault with a maximum score of 2 points each). 

Training and test time-on-task were calculated by first determining the screen coordinates 

of the tasks in the “task list” and of the “submit” button. Based on those coordinates, the time at 

which each task was selected and submitted could be determined from the mouse-click logging 

files. By subtracting the time of selection from the time of submission, the time-on-task was 

obtained. Due to recording errors, all time-on-task data were lost for three participants in the CP 

condition and two participants in the WE condition, test-time on task data were lost for on 
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participant in the PWE condition, and training time-on-task data for one participant in PCP 

condition.

Results

Because of random assignment to conditions, it is unlikely that there are differences in 

prior knowledge between the conditions. An ANOVA on the performance scores on school 

exams of the subject matter (remember that all schools used the same textbooks) that were taken 

after 3 months of instruction (i.e., 1.5 months before the experiment) from participants of two 

schools (N = 48; the third school could not provide this information), indeed showed no 

differences in exam performance between the four conditions F (3, 44) = .198, ns. Hence, the 

results reported here are not likely to be artefacts of prior knowledge differences between 

conditions. 

Data under analysis with respect to the training phase are mean training time-on-task (in 

seconds) and mean mental effort during the training. With regard to the test phase, the data under 

analysis are mean performance on near and far transfer test tasks, mean time spent on near and 

far transfer test tasks, and mean mental effort on near and far transfer test tasks. A series of 2 x 2 

ANOVAs with ‘solution worked out’ and ‘process information given’ as between-subjects 

factors were conducted. The means and standard deviations for all dependent variables are 

presented in Table 1. Given the relatively large number of dependent variables examined, only 

the significant main and interaction effects are reported here. Cohen’s f is provided as a measure 

of effect size, with f = .10 corresponding to a small effect, f = .25 to a medium, and f = .40 to a 

large effect (Cohen, 1988).

Training Data

The ANOVA on mean training time-on-task showed significant main effects for ‘solution 

worked out,’ F (1, 51) = 9.18, MSE = 517.64, p < .01, f = .39, and for ‘process information 
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given,’ F (1, 51) = 6.60, MSE = 517.64, p < .05, f = .32, and a significant interaction effect, F (1, 

51) = 5.78, MSE = 517.64, p < .05, f = .30. The conditions with worked-out solutions (WE and 

PWE) showed lower time-on task (M = 146.04, SD = 30.39) than the conditions without worked-

out solutions (CP and PCP; M = 162.57, SD = 17.45), and the conditions with process 

information (PCP and PWE) showed higher time-on-task (M = 160.99, SD = 18.39) than the 

conditions without process information (CP and WE; M = 145.95, SD = 31.44). The interaction 

(depicted in Figure 1) suggests that the availability of a worked-out solution had a large 

beneficial effect on time-on-task only when no process information was given, that is, the 

product-oriented worked-out examples group (WE) had to invest less time on the training tasks.

On mean mental effort during the training significant main effects in the expected 

direction were found for ‘solution worked out’, F (1, 57) = 5.12, MSE = 3.21, p < .05, f = .29, 

and for ‘process information given’, F (1, 57) = 4.05, MSE = 3.21, p < .05, f = .26. Specifically, 

participants in the conditions with worked-out solutions (WE and PWE) had to invest less mental 

effort during training (M = 4.59, SD = 1.93) than their counterparts in the conditions without 

worked-out solutions (CP and PCP; M = 5.59, SD = 1.72). Furthermore, participants in the 

conditions with process information given (PCP and PWE) had to invest more mental effort 

during training (M = 5.53, SD = 1.91) than participants in the conditions without this information 

(CP and WE; M = 4.66, SD = 1.77). 

Test Data

For the near transfer test, ANOVA on mean test performance yielded a significant main 

effect for ‘solution worked out,’ F (1, 57) = 6.53, MSE = .44, p < .05, f = .34. In line with our 

expectation, participants in the conditions with worked-out solutions (WE and PWE) obtained 

higher performance (M = 2.11, SD = .70) than participants in the conditions without worked-out 

solutions (CP and PCP; M = 1.68, SD = .61). With respect to mean time-on-task, a significant 
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main effect was also found for ‘solution worked out,’ F (1, 51) = 14.68, MSE = 5378.36, p < .

001, f = .52. This effect was, however, not in the expected direction: Participants who studied 

worked-out solutions (WE and PWE) spent more time on those test tasks (M = 232.04, SD = 

90.09) than participants who had solved conventional problems (CP and PCP; M = 155.30, SD = 

54.77). The fact that participants in the conditions with worked-out solutions spent more time on 

the test tasks might be a possible explanation for their higher performance. Therefore, an 

additional ANCOVA was performed with time-on-task as a covariate (for this analysis, the 6 

participants’ missing test time-on-task data were replaced with the means of their conditions). 

Again, a significant main effect on near transfer test performance, in the same direction, was 

found for ‘solution worked out,’ F (1, 56) = 5.85, MSE = .44, p < .05, f = .33. Thus, the extra 

time participants in the conditions with worked-out solutions spent on the near transfer test tasks 

did not explain their higher performance. Finally, for the mean mental effort invested in the near 

transfer test tasks, a significant main effect for ‘process information given’ was found, F (1, 57) 

= 10.00, MSE = 2.64, p < .01, f = .41. Participants in the conditions with process information 

(PCP and PWE) invested more mental effort in solving the test tasks (M = 6.00, SD = 1.61) than 

participants in the conditions without this process information (CP and WE; M = 4.68, SD = 

1.60).

The results on the far transfer test are in line with those on the near transfer test. The 

ANOVA on far transfer test performance yielded a significant main effect for ‘solution worked 

out,’ F (1, 57) = 5.99, MSE = .13, p < .05, f = .32. As expected, participants in the conditions 

with worked-out solutions (WE and PWE) obtained higher performance (M = 1.30, SD = .40) 

than participants in the conditions without worked-out solutions (CP and PCP; M = 1.08, SD = .

33). With respect to mean time-on-task on the far transfer test, no significant main or interaction 

effects were found. For the mean mental effort invested in this test, the pattern is the same as for 
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the near transfer test with a significant main effect for ‘process information given,’ F (1, 57) = 

5.02, MSE = 2.64, p < .05, f = .30. Participants who received process information (PCP and 

PWE) invested more mental effort in solving the far transfer test tasks (M = 5.96, SD = 1.50) 

than participants who did not receive such information (CP and WE; M = 5.02, SD = 1.71).

Discussion

The hypothesis that a training consisting of studying worked examples would lead to 

higher near and far transfer test performance, with less investment of time and mental effort 

during the training and the test, than a training consisting of solving conventional problems, was 

largely confirmed. Both on near and far transfer test tasks participants who had studied worked 

examples obtained a higher performance, with lower investment of effort and time on task during 

the training (the ‘worked example effect’). Furthermore, the interaction between worked-out 

solution and process information showed a disproportionately low time-on-task for the product-

oriented worked examples group compared to the other groups, including the process-oriented 

worked examples group. With regard to investment of time and mental effort during the test, 

only a main effect on near transfer test time-on-task was found, and in the direction opposite of 

our prediction. Specifically, participants who had studied worked examples during training spent 

more time on the near transfer test tasks than participants who had solved conventional 

problems. The fact that they spent more time on those tasks could not, however, explain their 

higher transfer performance. 

A possible explanation for this unexpected finding that studying worked examples did not 

result in decreased time-on-task and invested mental effort on the test tasks, might be that the 

duration of the training was to short for schema automation to occur. Schema construction was 

fostered, as is reflected in the higher performance outcomes. However, only when automation 

has been established can schemas be handled fast and effortlessly in working memory (Sweller, 
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et al., 1998). The fact that near transfer test time-on-task was even higher for participants who 

had studied worked examples might be due to motivational aspects. Participants who had solved 

conventional problems during training may have given up on the test tasks when they felt that 

they would not be able to solve the problems. This would result in a (artificially) lower solution 

time. 

The results clearly confirm the first part of the second hypothesis, process information 

added to worked examples and conventional problems resulted in higher investment of mental 

effort during the training compared to the conditions without process information. Participants 

who were given process information invested higher mental effort during practice tasks, near 

transfer test tasks, and far transfer test tasks. During practice, process information also increased 

time-on-task, which might be due to the additional processing of the “why” and “how” 

information. We did not, however, find any interaction effects of ‘solution worked out’ and 

‘process information given’ on near and far transfer test performance. So, the second part of that 

hypothesis, that this higher investment of effort on the training would lead the process-oriented 

worked examples condition to obtain higher transfer test performance than the product-oriented 

worked examples condition, whereas it would lead the conventional condition with process 

information to obtain equal or even lower transfer performance than the conventional condition 

without that information, was not supported by our data. 

There may be two possible explanations for why we did not find beneficial effects on 

performance of process information added to worked examples. The first is in terms of 

extraneous load. The ‘split-attention effect’ demonstrates that mutually referring information 

sources (e.g., text and diagram) that cannot be understood in isolation are best presented in an 

integrated format. For instance, by dividing the text into small pieces that can be included at the 

appropriate places in the diagram or by presenting the text as spoken sentences and 
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simultaneously highlighting the parts of the diagram each sentence refers to. Thanks to the 

integrated format the learner is not required to switch attention between different information 

sources; a process that imposes an extraneous cognitive load that is not effective for learning 

(Chandler & Sweller, 1992; Tarmizi & Sweller, 1998; Ward & Sweller, 1990). Whereas in our 

training tasks, the two types of text (worked-out solution and process information) in the 

process-oriented worked examples were integrated, they were not integrated in the diagram or 

presented as spoken text. Although text and diagram were separated for all worked examples, the 

text of the process-oriented worked examples was much longer than that of the product-oriented 

worked examples (see Appendix B for the information given with both types of worked 

examples). So, because of the short text, switching attention may not have imposed (high) 

extraneous load for participants studying the product-oriented worked examples, but may have 

imposed high extraneous load for those studying process-oriented worked examples. In sum, this 

first explanation refers to the fact that the form in which the process information was offered may 

have caused a high extraneous load, which resulted in more investment of effort during the 

training but not in higher performance. To test this explanation, future research should also use 

process-oriented worked examples in which texts are fully integrated with the diagram or in 

which the texts and diagrams are presented in an audiovisual format. 

The second explanation is in terms of intrinsic cognitive load. Although intrinsic 

cognitive load is considered fixed because it is innate to the task (number of interacting 

elements), and instructional procedures are considered to influence only extrinsic (i.e., 

extraneous and germane) cognitive load (Ayres, in press; Sweller et al., 1998) adding process 

information in essence means adding extra information to the task. Although we conceived of 

this as an instructional procedure and expected it to induce a germane cognitive load, the fact 

that information was added to the task may have “changed” the task and increased the intrinsic 
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cognitive load, (i.e., task complexity; see Ayres, in press); especially the principled information 

(Appendix B, bold italics text) is highly interactive with other information elements. Novice 

learners might not have been able to handle this increased complexity, even though the 

extraneous load was reduced through a worked-out solution (and this might even be the case 

when an integrated worked-out solution is presented). Therefore, it might have been better for 

novice learners if we had presented all or part of the process information before or after the 

worked example. This would be in accordance with the findings of Kester, Kirschner, and Van 

Merriënboer (in press), that presenting different types of information together, either before or 

during task execution, leads to lower learning efficiency than presenting one of these information 

types before and the other during task execution. More advanced learners have already acquired 

a basic problem schema and the task therefore imposes a lower intrinsic cognitive load for them. 

For that reason, they do not necessarily benefit from studying product-oriented worked examples 

(the ‘expertise reversal effect’; Kalyuga, Ayres, Chandler, & Sweller, 2003), but they might be 

able to use process-oriented worked examples to their advantage. 

In sum, this second explanation refers to the fact that the content of the process 

information may have caused a too high intrinsic load for our participants, which resulted in 

more investment of effort during the training and the test, but not in higher performance. Future 

research should compare the effects of process-oriented worked examples for novice and 

advanced learners. Furthermore, it might be necessary to reconsider the definitions of the 

different kinds of cognitive load. Our instructional procedure differed from other procedures to 

induce germane cognitive load in the sense that self-explaining examples (Renkl, 1997), or being 

offered a sequence of examples with high variability (Paas & Van Merriënboer, 1994), require 

different activities from learners than merely studying examples, but do not involve processing 

of additional information elements. Even though the process information may not change the 
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task complexity in the sense that the ultimate target skills (effective performance of the task after 

the study phase) are not changed, it does make the “task” of studying the example more complex 

(by adding information elements that are interacting with other information elements). 

Unfortunately, we have no means to support either of those theoretical explanations, 

since a pilot study with 4 first-year electrotechnical vocational education students had shown that 

they had great cognitive and motivational difficulties with thinking aloud (and those were 

students who volunteered), resulting in protocols of extremely poor quality. Hence, we decided 

not to implement a think aloud procedure in the experiment, as we had originally intended, but 

such kind of data would have been very informative. 

The results of this study show that implementing more support in the form of worked 

examples in troubleshooting instruction will make that instruction more effective (lead to better 

transfer performance) as well as efficient (better performance is obtained with less investment of 

time and effort) for novice learners. This study also resulted in specific questions for further 

research that need to be addressed in order to find out whether and how additional support in the 

form of process information added to worked examples can be effective for novice learners. 
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Appendix A

A Training Task (Conventional Problem) 

Note: SW = Switch, VS = Voltage Source, R = Resistor, AM = Ampère measurement point. The 

value of the voltage source and resistors is given after the component label (V = Volt, k = kilo 

[Ohm]).

This circuit is not functioning correctly. 

Find the fault(s) and repair the circuit so that it does function correctly.
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Appendix B

Process-Information (Strategic in Bold and Principled in Bold and Italics) and the Worked-out 

Solution (Normal Print) of the Problem shown in Appendix A

1. Determine how this circuit should function, using Ohm’s law
(so what the current is that you should measure at the different measurement points)
In parallel circuits, the total current equals the sum of the currents in the parallel branches. 
The total current should be It = I1 + I2 + I3, or It = U1 / R1 + U2 / R2 + U3 / R3, 
or It = 12V / 6kOhm + 12V / 6kOhm + 12V / 3kOhm = 2mA + 2mA + 4mA = 8mA.
You should measure:
AM1 = 2mA
AM2 = 2mA
AM3 = 4mA
AM4 = 8mA

2. Measure how it actually functions, using the Multimeter
(so what the current is that you actually measure at the different measurement points)
Go to T&M > Multimeter and measure the current at AM1, AM2, AM3, and AM4. You get:
AM1 = 2mA
AM2 = 2mA
AM3 = 12nA
AM4 = 4mA 

3. Compare the outcomes of 1 and 2
They do not correspond, something is wrong. 

4. Determine which component is faulty and what the fault in that component is, using the 
principles given below.
If the total current is lower than you would expect, the resistance in one or more of the 
parallel branches is too high (the same voltage [U] divided by a higher resistance [R] results 
in a lower current [I]).
If the total current is higher than you would expect, the resistance in one or more of the 
parallel branches is too low (the same voltage [U] divided by a lower resistance [R] results in 
a higher current [I]).
Infinitely low current in a parallel branch means that there is infinitely high resistance in that 
branch; very likely the resistor is open, but it can also be another component or the wire that 
is open.
No or infinitely low current in the entire circuit (in all branches) indicates that there is 
infinitely high resistance somewhere outside the branches; possibly the voltage source, the 
switch, or the wire outside the branches is open.
Infinitely high current in a parallel branch plus infinitely high total current indicates that the 
resistance is infinitely low; very likely the resistor in that one branch is shorted.
I3 = 12nA. Conclusion: R3 = open.

5. Repair the component
Repair R3.

6. Measure again
Go to T&M > Multimeter and measure the current at AM1, AM2, AM3, and AM4. You get: AM1 = 
2mA
AM2 = 2mA
AM3 = 4mA
AM4 = 8mA

7. Determine if the measures correspond to those you determined at step 1. If so, the circuit 
now functions correctly. If not, start over again at step 4.
The circuit now functions correctly.
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Table 1

Means and Standard Deviations of Time-on-Task and Mental Effort during Training and Test,  

and Test Performance as a Function of Experimental Condition

Experimental Condition

Solution worked out Solution not worked out

Process No process Process No process

Dependent Variables M SD M SD M SD M SD

Training
   Time-on-task (s) 159.19 17.18 128.51 35.76 163.06 20.13 162.04 14.83
   Mental effort (1-9) 5.10 1.93 4.01 1.82 5.98 1.85 5.22 1.56

Test –near transfer
   Performance (0-3⅓) 1.98 .66 2.25 .74 1.68 .54 1.70 .68
   Time-on-task (s) 247.60 99.00 212.58 77.24 172.49 44.70 135.46 60.19
   Mental effort (1-9) 6.27 1.43 4.62 1.57 5.71 1.80 4.73 1.68

Test –far transfer
   Performance (0-2) 1.21 .44 1.40 .35 1.13 .37 1.02 .28
   Time-on-task (s) 133.07 64.10 151.64 71.95 134.09 49.58 125.56 74.28
   Mental effort (1-9) 5.90 1.62 4.81 1.66 6.02 1.40 5.21 1.78
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Figure Caption

Figure 1. Interaction between the factors ‘solution worked out’ and ‘process information 

given’ on training time-on-task.




