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Abstract
We propose a camera model for line-scan cameras with telecentric lenses. The camera model assumes a linear relative motion
with constant velocity between the camera and the object. It allows to model lens distortions, while supporting arbitrary
positions of the line sensor with respect to the optical axis. We comprehensively examine the degeneracies of the camera
model and propose methods to handle them. Furthermore, we examine the relation of the proposed camera model to affine
cameras. In addition, we propose an algorithm to calibrate telecentric line-scan cameras using a planar calibration object.
We perform an extensive evaluation of the proposed camera model that establishes the validity and accuracy of the proposed
model. We also show that even for lenses with very small lens distortions, the distortions are statistically highly significant.
Therefore, they cannot be omitted in real-world applications.

Keywords Line-scan cameras · Telecentric lenses · Camera models · Camera model degeneracies · Camera calibration

1 Introduction

Line-scan cameras play an important role in machine vision
applications because they offer a better resolution per price in
comparison to area-scan cameras. Today, line-scan cameras
with lines of up to 16,384 pixels are available (Steger et al.
2018, Chapter 2.3.4). The height of the resulting image is
essentially unlimited because it corresponds to the number
of 1D images acquired over time, as described in more detail
below. Hence, several hundred megapixels per image can be
achieved easily.

In contrast to area-scan cameras, the sensor of a line-scan
camera consists of a single line of photosensitive elements.
Consequently, the image that is obtained from a line-scan
camera would be one pixel high. To obtain a 2D image that
can be processed in computer vision applications, multiple
1D images are stacked over time while moving the sensor
with respect to the object that is to be imaged. In machine
vision applications, the relative motion is realized either by
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mounting the camera above the moving object or by moving
the camera across the stationary object (Steger et al. 2018,
Chapter 2.3.1.1). Themotion can be effected, for example, by
a conveyor belt, a linear motion slide, or other linear actua-
tors. For practical applications, it is therefore not sufficient to
calibrate the single sensor line only. Instead, also the process
of creating the 2D image must be included in the calibration.

Obviously, the resulting image strongly depends on the
relative motion of the camera with respect to the object.
In almost all machine vision applications, a linear motion
is applied. This requires the camera to move with constant
velocity along a straight line relative to the object while
the orientation of the camera is constant with respect to the
object. Furthermore, the motion must be equal for all images
(Gupta and Hartley 1997). In other application domains, e.g.,
in remote sensing, more general motion models are applied.
For example, themotion of an airborne or spaceborne camera
can be modeled by discrete positions and orientations (Haala
et al. 1998) or approximated by polynomial functions (Lee
et al. 2000; Poli 2007). Since our focus is on machine vision
applications, we will assume a linear motion in this paper. In
practice, a linear motion can be realized by using appropri-
ate encoders that ensure a constant speed (Steger et al. 2018,
Chapter 2.3.1.1; Beyerer et al. 2016, Chapter 6.8).

Because typical readout rates of line-scan cameras are in
the range of 10–200 kHz (Steger et al. 2018, Chapter 2.3.1.1),
in some applications the exposure time of each line needs to
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be very short. Therefore, line-scan applications often require
a very bright illumination. Fortunately, the illumination only
needs to cover the narrow footprint of the sensor line, and
hence often line-shaped LED or halogen light sources are
used. Another consequence of the short exposure time is that
often an open diaphragm, i.e., a large aperture, is used to
maximize the amount of light that passes through the lens.
This must be taken into account when choosing an appropri-
ate hardware setup because a large aperture severely limits
the depth of field.

For line-scan cameras with linear motion and a con-
ventional entocentric (i.e., perspective) lens, an appropriate
cameramodel and calibration procedure have been described
in Steger et al. (2018, Chapter 3.9.3). Because of the perspec-
tive projection of an entocentric lens, objects that are closer
to the lens produce a larger image. Therefore, this kind of
line-scan camera performs a perspective projection in the
direction of the line sensor and a parallel projection perpen-
dicular to the line sensor.

In contrast to entocentric lenses, telecentric lenses per-
form a parallel projection of the world into the image (Steger
et al. 2018, Chapter 2.2.4). In many machine vision applica-
tions, and especially inmeasurement applications, telecentric
lenses are preferred over entocentric lenses because they
eliminate perspective distortions, which is especially impor-
tant for gauging applications when non-flat objects must be
inspected. Also, self-occlusions of objects that would occur
because of perspective distortions are avoided (Luster and
Batchelor 2012, Chapter 6.1).

Steger (2017, Section 4) and Steger et al. (2018, Chap-
ter 2.2.4) show that the placement of the aperture stop is
crucial for the projection properties of a lens. For entocen-
tric lenses, the aperture stop is placed between the two focal
points of the lens system. For telecentric lenses that per-
form a parallel projection in object space, the aperture stop
is placed at the image-side focal point (Steger et al. 2018,
Chapter 2.2.4; Lenhardt 2017, Chapter 4.2.14; Beyerer et al.
2016, Chapter 3.4.5). This effectively filters out all light rays
that are not parallel to the optical axis in object space. Owing
to the parallel projection in object space, the lens must be
chosen at least as large as the object to be imaged.

Because of the advantages of line-scan cameras and tele-
centric lenses, many machine vision applications would
benefit from a camera model for line-scan cameras with tele-
centric lenses. Obviously, a cameramodel and an appropriate
calibration procedure are essential for accurate 2D measure-
ments in world units. The calibration result facilitates the
removal of image distortions and the rectification from the
image to a world plane.

In addition to accurate measurement tasks, the calibration
of line-scan cameras is important for many other applica-
tions. For example, if the motion direction is not perfectly
perpendicular to the sensor line, i.e., has a non-zero motion

component in the direction of the sensor line, skew pixels
will be obtained (Steger et al. 2018, Chapter 3.9.3.4). Fur-
thermore, if the speed of the motion is not perfectly adjusted,
rectangular instead of square pixels will be obtained. Both
effects cause many image processing operations that (often
implicitly) assume square pixels to return false or unusable
results. Examples are segmentation and feature extraction
(e.g., the computation of moments or shape features from
segmented regions), 2D template matching approaches, and
stereo matching. Unfortunately, a perfect alignment of the
camera is very cumbersome to realize in practice. For exam-
ple, a sensor line with 16,384 pixels would have to be
mounted with an accuracy of 1/140◦ in order to keep the
total skew of the image below one pixel. Camera calibration
allows us to rectify the images in order to eliminate lens dis-
tortions or skew, for example, and to ensure square pixels,
hence making an exact alignment of the sensor line unnec-
essary.

In this paper, we introduce a versatile camera model for
line-scan cameras with telecentric lenses. We first discuss
work relating to camera models for entocentric line-scan
cameras in Sect. 2. We then discuss the camera models for
area-scan and entocentric line-scan cameras on which our
model is based in Sect. 3. In Sect. 4, we describe our camera
model for telecentric line-scan cameras, the calibration of its
parameters, its relation to affine cameras, as well as the cam-
era model’s degeneracies and how to handle them. Various
experiments that establish the validity and accuracy of the
model are described in Sect. 5. Finally, Sect. 6 concludes the
paper.

Our main contributions are the following:

– We propose a comprehensive and versatile cameramodel
for line-scan cameras with telecentric lenses. The cam-
era model allows to model a very large class of lens
distortions. It does not assume that the sensor line is
aligned with the optical axis of the lens. To the best of our
knowledge, no camera model for line-scan cameras with
telecentric lenses has ever been proposed in the scientific
literature.

– The parameterization of the camera model is very intu-
itive for machine vision users. All parameters have a
physical meaning that is easy to understand.

– We prove that for the division model of lens distortions,
the projection of a 3D point to the image can be computed
analytically.

– We establish that images of telecentric line-scan cameras
with lens distortions and a potential skew can be rectified
to have no lens distortions and no skew without know-
ing the 3D geometry of the scene in the image. This is
in contrast to line-scan cameras with entocentric lenses,
where this is impossible in general.
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– We propose a camera calibration algorithm that deter-
mines the camera parameters using images of a planar
calibration object.

– We examine how telecentric line-scan cameras without
lens distortions are related to affine cameras and prove
that every affine camera be regarded as a telecentric
line-scan camera with appropriately chosen interior ori-
entation parameters. We also show that every telecentric
line-scan camera without lens distortions has an equiva-
lent area-scan camera with a bilateral telecentric tilt lens.

– We comprehensively examine the degeneracies of the
camera model and propose methods to handle them.

– We perform an extensive evaluation that establishes the
validity and versatility of our camera model.

– We show that even for lenses with very small lens distor-
tions, the distortions are statistically highly significant
and therefore cannot be omitted in real-world applica-
tions.

2 RelatedWork

We have been unable to find any research relating to camera
models for line-scan cameras with telecentric lenses. The
research closest to the camera model we will propose is
research on camera models for line-scan cameras with ento-
centric lenses. Therefore, we will discuss these approaches
in this section. In our experience, it is very important for
machine vision users to have a camera model with explicit
parameters that are easy to understand and have a physi-
cal meaning. Hence, in the taxonomy of Sturm et al. (2010,
Section 3), we require a global and not a local or discrete
camera model. Therefore, although in principle any camera
could be modeled by a generalized camera model, such as
those described by Sturm et al. (2010, Sections 3.2 and 3.3)
or Ramalingam and Sturm (2017), we do not consider and
discuss these approaches.

Camera models for line-scan cameras with entocentric
lenses can be grouped into two categories: static and dynamic
camera models. In static camera models, the motion of the
camera is not taken into account in the camera model and
therefore is not calibrated. In contrast, dynamic camera mod-
els take the camera motion into account and calibrate it.
In dynamic models, a linear camera motion is typically
assumed. As discussed in Sect. 1, the ability to model the
linear camera motion is essential in machine vision applica-
tions. Therefore, static camera models are less relevant there.

Another distinction is whether a camera model is able
to model lens distortions. Machine vision applications often
have very high accuracy requirements that can only be
achieved if the camera model is able to model lens distor-
tions accurately. Furthermore, the large size of the sensors
also makes the ability to model lens distortions essential. For

example, a maximum lens distortion of 0.1% (a figure often
specified in data sheets of telecentric lenses) will cause a dis-
tortion of more than 8 pixels at the left and right edges of the
image for a line-scan sensor with 16,384 pixels.

Even if a camera model supports lens distortions, often
the model assumes that the sensor line is mounted exactly
behind the principal point, i.e., that the optical axis inter-
sects the sensor line. In a real camera, this assumption may
not be fulfilled. In fact, in photogrammetry and remote sens-
ing, multiple sensor lines are often mounted behind the lens
at large distances to the principal point (Chen et al. 2003).
Therefore, to provide general applicability, the cameramodel
should be able to represent cameras in which the line sensor
is not mounted directly behind the principal point.

A final distinction iswhether a planar (2D) or a 3D calibra-
tion object is used to calibrate the camera. In machine vision
applications, there is often limited space in the machine
where the camera must be calibrated. Here, 3D calibration
objects may be too cumbersome to handle or may not even fit
into the available space. In contrast, planar calibration targets
typically are much easier to handle for the users. Further-
more, a backlight illumination is used frequently. For these
applications, 2D calibration targets are much easier to manu-
facture. Finally, 2D calibration targets can be produced more
cheaply and accurately than 3D calibration objects.

As a result of the above discussion, we require that the
camera model is dynamic, supports lens distortions, allows
the line sensor to be mounted anywhere with respect to the
principal point or optical axis, and uses a planar calibration
object. In the following, we will not discuss every camera
model in detail. Instead, we will only mention the require-
ments that the respective model does not fulfill.

Static entocentric line-scan camera models are described
by Horaud et al. (1993), Luna et al. (2010), Lilienblum et al.
(2013), Yao et al. (2014), Sun et al. (2016a, b, 2017), Niu
et al. (2018) and Song et al. (2018). The camera models by
Horaud et al. (1993) and Luna et al. (2010) do not model lens
distortions. The camera models by Lilienblum et al. (2013),
Yao et al. (2014), Niu et al. (2018), Sun et al. (2016a, b, 2017)
and Song et al. (2018)model lens distortions, but assume that
the sensor is mounted exactly behind the principal point. 3D
calibration objects are used by Luna et al. (2010), Lilien-
blum et al. (2013), Niu et al. (2018) and Song et al. (2018).
Finally, Sun et al. (2016b) use an additional area-scan camera
to calibrate the line-scan camera, which is undesirable since
it increases the cost of the camera setup.

Dynamic entocentric line-scan camera models are pro-
posed byGupta andHartley (1997),MVTec Software GmbH
(2005a, b), Steger et al. (2008, 2018), Draréni et al. (2011),
Hui et al. (2012a, b, 2013) Donné et al. (2017) and Zhang
et al. (2018). Lens distortions are not modeled in the camera
models by Gupta and Hartley (1997), Draréni et al. (2011),
Hui et al. (2012b), Donné et al. (2017) and Zhang et al.
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(2018). The camera models by Hui et al. (2012a, 2013) take
into account lens distortions, but assume that the sensor is
mounted exactly behind the principal point. 3D calibration
objects are used by Hui et al. (2012a, b). Furthermore, Hui
et al. (2013) use an additional area-scan camera to calibrate
the line-scan camera, which is undesirable for the reasons
that were mentioned previously. A camera model that fulfills
all of the above requirements (i.e., a dynamic camera model
that supports lens distortions, allows an arbitrary line sensor
position with respect to the principal point, and uses a planar
calibration object) is described by MVTec Software GmbH
(2005a, b) and Steger et al. (2008, 2018) . We will describe it
in more detail in Sect. 3.2 and use it to develop our proposed
model for telecentric line-scan cameras.

3 Fundamental CameraModels

The camera model for line-scan cameras with telecentric
lenses that we will propose in Sect. 4 is based on camera
models for area-scan cameras and on a camera model for
line-scan cameras with entocentric lenses. Therefore, wewill
discuss these models first. Our presentation is based on the
descriptions in Steger et al. (2018, Chapter 3.9) and Steger
(2017, Section 6).

We start by discussing camera models for area-scan cam-
eras sincewewill latermodel line-scan cameras conceptually
as one particular line of an area-scan camera. This will enable
us to model that the line sensor may not be perfectly aligned
with the optical axis of the lens. This, in turn, will allow us to
model a more general class of lens distortions for line-scan
cameras.

Furthermore, we will describe some of the properties of
the existing camera models. This will allow us to compare
the properties of the camera model for telecentric line-scan
cameras with those of the existing camera models in Sect. 4.

3.1 Camera Models for Area-Scan Cameras

The camera model for area-scan cameras is capable of mod-
eling a multi-view setup with nc cameras (Steger 2017,
Section 6.1). In this paper, we will only consider single cam-
eras. Therefore, we simplify the discussion to this case.

To calibrate the camera, no images of a calibration object
in different poses are used. Each pose l (l = 1, . . . , no) of
the calibration object defines a transformation from the cal-
ibration object coordinate system to the camera coordinate
system. The transformation of a point po = (xo, yo, zo)� is
given by

pl = Rlpo + tl , (1)

where tl = (tl,x , tl,y, tl,z)� is a translation vector and Rl
is a rotation matrix that is parameterized by Euler angles:
Rl = Rx (αl)Ry(βl)Rz(γl). The transformation can also be
written as a 4 × 4 homogeneous matrix:

pl = Hlpo =
(
Rl tl
0� 1

)
po, (2)

where it is silently assumed that pl and po have been extended
with a fourth coordinate of 1.

As discussed by Steger (2017, Section 6.1) and Ulrich and
Steger (2019), the origin of the camera coordinate system lies
at the center of the entrance pupil of the lens.

Next, the point pl = (xl , yl , zl)� is projected into the
image plane. For entocentric lenses, the projection is given
by:

(
xu
yu

)
= c

zl

(
xl
yl

)
, (3)

where c is the principal distance of the lens. For telecentric
lenses, the projection is given by:

(
xu
yu

)
= m

(
xl
yl

)
, (4)

where m is the magnification of the lens.1

Subsequently, the undistorted point (xu, yu)� is distorted
to a point (xd, yd)�. We support two distortion models (Ste-
ger 2017, Section 6.1; Steger et al. 2018, Chapter 3.9.1.3):
the division model (Lenz 1987, 1988; Lenz and Fritsch
1990; Lanser et al. 1995; Lanser 1997; Blahusch et al. 1999;
Fitzgibbon 2001; Steger 2012) and the polynomial model
(Brown 1966, 1971).

In the division model, the undistorted point (xu, yu)� is
computed from the distorted point by:

(
xu
yu

)
= 1

1 + κr2d

(
xd
yd

)
, (5)

where r2d = x2d + y2d . The division model can be inverted
analytically:

(
xd
yd

)
= 2

1 + √
1 − 4κr2u

(
xu
yu

)
, (6)

where r2u = x2u + y2u . The division model only supports radial
distortion.

1 The camera model for area-scan cameras also supports tilt lenses
(Scheimpflug optics); see Steger (2017) for details. Furthermore, it sup-
ports hypercentric lenses (Ulrich and Steger 2019).

123



International Journal of Computer Vision

The polynomial model supports radial as well as decen-
tering distortions. The undistorted point is computed by:

(
xu
yu

)
=

⎛
⎜⎜⎜⎝
xd

(
1 + K1r2d + K2r4d + K3r6d

)
+(

P1
(
r2d + 2x2d

) + 2P2xdyd
)

yd
(
1 + K1r2d + K2r4d + K3r6d

)
+(

2P1xdyd + P2
(
r2d + 2y2d

))

⎞
⎟⎟⎟⎠ . (7)

The polynomial model cannot be inverted analytically. The
computation of the distorted point from the undistorted point
must be performed by a numerical root finding algorithm.

Finally, the distorted point (xd, yd)� is transformed into
the image coordinate system:

(
xi
yi

)
=

(
xd/sx + cx
yd/sy + cy

)
. (8)

Here, sx and sy denote the pixel pitches on the sensor and
(cx , cy)� is the principal point. Note that x refers to the hor-
izontal axis of the image (increasing rightward) and y to the
vertical axis (increasing downward).

The calibration of the camera model is described in detail
in Steger (2017, Sections 9 and 10).

Remark 1 The above parameterization is very intuitive for
machine vision users (Steger 2017, Section 6.1). All param-
eters have a physical meaning that is easy to understand.
Approximate initial values for the interior orientation param-
eters simply can be read off the data sheets of the camera (sx
and sy) and the lens (c or m) or can be obtained easily oth-
erwise (the initial values for the principal point can be set
to the center of the image and the distortion coefficients can
typically be set to 0). Furthermore, the calibration results are
easy to check for validity.

Remark 2 For telecentric lenses, (cx , cy)� is solely defined
by the lens distortions (Steger 2017, Remark 2). If there are
no lens distortions, (cx , cy)� and (tl,x , tl,y)� have the same
effect. Therefore, in this case (cx , cy)� should remain fixed
at the initial value specified by the user (typically, the image
center).

Remark 3 For telecentric lenses, the pose parameter tl,z obvi-
ously cannot be determined. We arbitrarily set it to 1m
(Steger 2017, Remark 4).

Remark 4 For telecentric cameras and planar calibration
objects, the rotation part of the pose can only be determined
up to a twofold ambiguity from a single camera (Steger 2017,
Remark5).This is a special case of aNecker reversal (Shapiro
et al. 1995, Section 4.1) when the object is planar. The two
sets of pose parameters (αl , βl , γl) and (−αl ,−βl , γl) (with
identical translation vectors) result in the same points in the
image (Steger 2018, Section 2.4). If a correct exterior orien-
tation of the calibration object is required in the application,

the user must resolve this ambiguity by selecting the correct
pose based on prior knowledge.

Remark 5 An operation that we will use below is the calcu-
lation of the optical ray of an image point (also called camera
ray or line of sight). We first invert (8):

(
xd
yd

)
=

(
sx (xi − cx )
sy(yi − cy)

)
. (9)

Then, we rectify the lens distortions by applying (5) or (7).
Now, for entocentric lenses, the optical ray is given by:

(0, 0, 0)� + λ(xu, yu, c)
�, (10)

while for telecentric lenses, it is given by:

(xu/m, yu/m, 0)� + λ(0, 0, 1)�. (11)

Remark 6 In machine vision applications, it is often desir-
able to remove the lens distortions from an image or from
data, such as subpixel-precise contours, that were extracted
from an image. For example, fitting a line to a contour
only returns useful results if the lens distortions have been
removed. Since (5) and (7) represent transformations that are
performed purely within the image plane, this can easily be
achieved. Furthermore, often it is also desirable to remove
perspective distortions as well as lens distortions. This can be
achieved from a single image if the scene exhibits a known
geometry, e.g., a plane, by intersecting the optical ray with
the plane (Steger et al. 2018, Section 3.9.5.4).

3.2 Camera Model for Line-Scan Cameras with
Entocentric Lenses

The camera model for line-scan cameras was first described
in MVTec Software GmbH (2005a, b) and Steger et al.
(2008). Our discussion is based on Steger et al. (2018, Chap-
ter 3.9.3).

As described in Sect. 1, we assume that the relative
motion between the line-scan camera and the object is linear
with constant velocity. Therefore, the camera motion can be
described by themotion vector v = (vx , vy, vz)

�. The vector
v is described in units of meters per scan line in the camera
coordinate system (i.e., the units are mPixel−1).2 This def-
inition of v assumes a moving camera and a fixed object. If
the camera is stationary and the object is moving, e.g., on a
conveyor belt, we can simply use −v as the motion vector
(see Fig. 1).

2 If the speed of the motion vector v is specified in world units (i.e.,
ms−1), it must be divided by the readout rate of the camera (units:
Pixel s−1, i.e., scan lines per second) to obtain the motion vector in
meters per scan line.

123



International Journal of Computer Vision

Fig. 1 Camera model for line-scan cameras with entocentric lenses

The camera model for line-scan cameras is displayed in
Fig. 1. The origin of the camera coordinate system lies at
the center of the entrance pupil of the lens. The z axis is
identical to the optical axis and is oriented such that points
in front of the camera have positive z coordinates. The x axis
is parallel to the sensor line and perpendicular to the z axis.
It points rightward in the image. The y axis is perpendicular
to the sensor line and to the z axis such that a right handed
coordinate system is obtained.

Like for area-scan cameras, the transformation from the
calibration object coordinate system to the camera coordinate
system is given by (1). In contrast to area-scan cameras, this
exterior orientation refers only to the first line of the image.
Since the camera moves relative to the object, the exterior
orientation is different for each line. However, because we
assume a linear motion, the motion vector v can be used to
compute the exterior orientation of all lines. Therefore, the
single exterior orientation is sufficient.

Since we want to be able to model line-scan cameras for
which the sensor line is not perfectly aligned with the optical
axis, we model the sensor line as one particular line of a
virtual area-scan camera.Weuse the principal point (cx , cy)�
to model this misalignment (cf. Fig. 1). The semantics of cy
are slightly different than for area-scan cameras: cy = 0
signifies that the sensor line is perfectly aligned with the
optical axis in the y direction.

The remaining parameters of the model are identical to
those of area-scan cameras (see Sect. 3.1): c is the principal
distance, the lens distortions are described by (5) or (7), and
sx and sy describe the pixel pitch on the sensor.

To compute the projection of a point pc = (xc, yc, zc)�
that has been transformed into the camera coordinate sys-

tem,3 we can use the fact that pc moves along the straight
line pc − tv, where t denotes the number of scan lines that
have been acquired since the first scan line. As the point
moves, it must at some point intersect the optical ray of an
image point if it projects to a point ps = (xs, 0)� on the
sensor line.4 This optical ray is given by (9) and (10).

Let us assume that we have transformed the point ps to a
distorted image point pd by (9), i.e., (xd, yd)� = (sx (xs −
cx ),−sycy)�. Furthermore, let us call the undistortion func-
tion in (5) or (7) u(p) = (ux (xd, yd), uy(xd, yd))�. Then, the
intersection of the moving point and the optical ray results
in the following equation system:

λux (xd, yd) = xc − tvx

λuy(xd, yd) = yc − tvy

λc = zc − tvz . (12)

The equation system (12), which for both distortion mod-
els is a polynomial equation system, must be solved for λ,
t , and xd. Once t and xd have been determined, the point is
transformed into the image coordinate system by:

(
xi
yi

)
=

(
xd/sx + cx

t

)
. (13)

Thus, the interior orientation of line-scan cameras with
entocentric lenses is given by: c; κ or K1, K2, K3, P1, P2;
sx , sy , cx , cy , vx , vy , and vz .5

Remark 7 The model is overparameterized. The values of c
and sx cannot be determined simultaneously. This can be
solved by fixing sx at the initial value that was specified by
the user. Furthermore, since there is only one image line, sy
is only used to specify the principal point in pixels. It has no
physical meaning on the sensor and only occurs in the term
yd = −sycy . Therefore, it cannot be determined and is kept
fixed at the initial value specified by the user. In practice,
sy = sx is typically used.

Remark 8 The value of cy is solely defined by the lens distor-
tions. If there are no lens distortions, cy should remain fixed
at the initial value specified by the user (typically, cy = 0 is
used).

Remark 9 If cy = 0, the effect of the lens distortions is purely
along the sensor line, i.e., in the horizontal direction. If cy �=

3 This corresponds to the point pl in (1).
4 The above definition of the principal point implies that points on the
sensor line have a y coordinate of 0.
5 One could also argue that the motion vector v logically belongs to the
exterior orientation of the camera. However, as (12) shows, the motion
vector affects the projection of a point given in the camera coordinate
system. Therefore, we include it in the interior orientation.
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0, lens distortions will also cause the sensor line to appear
bent (Steger et al. 2018, Chapter 3.9.3.4).

Remark 10 The parameters P1 and P2 of the polynomial dis-
tortion model are highly correlated with other parameters
of the entocentric line-scan camera model, especially if the
radial distortions are small. Therefore, they typically can-
not be determined reliably. Consequently, in practice, they
should be set to 0 and should be excluded from the calibra-
tion.

Remark 11 In contrast to area-scan cameras,where the aspect
ratio of the pixels is determined by sx and sy , the aspect ratio
of the pixels is determined by sx and vy for line-scan cam-
eras. Furthermore, in contrast to area-scan cameras, forwhich
we have assumed orthogonal pixels, for line-scan cameras,
a nonzero vx will result in pixels that appear skewed (i.e.,
non-orthogonal). Therefore, to achieve square pixels, it is
important that the sensor is aligned to be perpendicular to
the motion vector and the motion speed or the line frequency
of the camera must be selected appropriately (Steger et al.
2018, Chapter 3.9.3.4).

Remark 12 A pure removal of lens distortions is impossible
for entocentric line-scan cameras if cy �= 0. To remove the
lens distortions, we would have to compute the optical ray
for an image point and thenwould have to reproject it into the
rectified image. However, if there are lens distortions and if
cy �= 0, the optical ray in general does not project to a single
point in the rectified image. Therefore, a pure removal of
lens distortions requires a 3D reconstruction to be available
because we can then reconstruct a unique 3D point that we
can project into the rectified image. What is possible, on
the other hand, is to reproject the image onto a world plane
(Steger et al. 2018, Chapter 3.9.5.4). This rectification also
removes the lens distortions, of course.

4 CameraModel for Line-Scan Cameras with
Telecentric Lenses

Based on the discussion in Sect. 3, we can now derive the
camera model for line-scan cameras with telecentric lenses.

4.1 Camera Model

The first step of the camera model is identical to that in
Sect. 3.2: We transform points from the calibration object
coordinate system to the camera coordinate system by (1).
Again, we will call the transformed point pc.

To project the point into the image, we use the same
approach as in Sect. 3.2: We intersect the line on which the
point moves with the optical ray of the point to which it

projects. The equation of the optical ray is given by (11).
This results in the following equation system:

ux (xd, yd)/m = xc − tvx (14)

uy(xd, yd)/m = yc − tvy (15)

λ = zc − tvz, (16)

where u(p) = (ux (xd, yd), uy(xd, yd))� is defined as in
Sect. 3.2. It can be seen that λ does not occur in (14) and
(15). Therefore, neither zc nor vz influence the projection
and we can omit (16). Consequently, line-scan cameras with
telecentric lenses perform an orthographic projection, simi-
lar to area-scan cameras with telecentric lenses. Thus, with
respect to the taxonomy by Sturm et al. (2010), line-scan
cameras with telecentric lenses are central cameras (Sturm
et al. 2010, Section 3), unlike line-scan cameras with ento-
centric lenses, which are axial cameras (Ramalingam et al.
2006; Sturm et al. 2010, Section 3.1.4). Furthermore, with
respect to the taxonomy by Ye and Yu (2014), line-scan cam-
eras with telecentric lenses are orthographic cameras and not
pushbroom cameras.

For the polynomial model, Eqs. (14) and (15) define a
polynomial equation system of degree 7 in the unknowns xd
and t . Therefore, the equations cannot be solved analytically,
i.e., a numerical root finding algorithm must be used to solve
them. For the divisionmodel, however, an analytical solution
is possible. Specializing (14) and (15) to the division model
results in the following equation system:

uxd/m = xc − tvx (17)

uyd/m = yc − tvy, (18)

where u = 1/(1+κ(x2d+y2d )). Since yd = −sycy is constant,
we solve (18) for t :

t = 1

vy

(
yc − yd

m
(
1 + κ

(
x2d + y2d

))
)

. (19)

Substituting (19) into (17) results in:

xd
m

(
1 + κ

(
x2d + y2d

)) = xc − vx

vy

(
yc − yd

m
(
1 + κ

(
x2d + y2d

))
)

.

(20)

If wemultiply both sides by 1+κ(x2d+y2d ), expand the terms,
and sort them according to powers of xd, we obtain:

κ

(
xc − yc

vx

vy

)
x2d − 1

m
xd

+ (
1 + κ y2d

)(
xc − yc

vx

vy

)
+ yd

m

vx

vy
= 0. (21)
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The term xc − ycvx/vy is the x coordinate of the point at
which the line (xc, yc)� − t(vx , vy)� intersects the x axis
(or, in 3D, at which the line (xc, yc, zc)� − t(vx , vy, vz)�
intersects the xz plane). Let us call this term x0. The term
1+κ y2d represents the inverse of the undistortion factor u for
xd = 0. Let us call this term d0. Then, we have:

κx0x
2
d − 1

m
xd + x0d0 + yd

m

vx

vy
= 0. (22)

Hence, for κ �= 0 and x0 �= 0, we have:

xd =

1

m
±

√
1

m2 − 4κx0
(
x0d0 + yd

m

vx

vy

)

2κx0
. (23)

For κ = 0 or x0 = 0, (22) reduces to a linear equation. We
examine both cases in turn. For x0 = 0, we have:

xd = yd
vx

vy
. (24)

Inserting the value of xd obtained from (23) or (24) into (19)
returns the value of t in both cases. For κ = 0, we have:

xd = mx0 + yd
vx

vy
. (25)

In this case, Eq. (19) can be simplified to:

t = 1

vy

(
yc − yd

m

)
. (26)

Note that for κ = 0, yd, i.e., cy , is not meaningful (cf.
Remarks 8 and 20). Therefore, if it is known a priori that
κ = 0, cy (and, therefore, yd) should be set to 0, which
simplifies the equations even further to:

xd = mx0 = m

(
xc − yc

vx

vy

)
(27)

t = yc
vy

. (28)

If there are lens distortions, we can see from (23) that there
are two potential solutions for the projection into the image,
whereas in the cases without distortion, (24) and (25), there
is a unique solution. Intuitively, we expect that for the case
with lens distortions, there also is a unique solution since
there is only one particular instant of time when the point
will appear in front of the sensor line.

Proposition 1 In (23), the correct solution is given by:

xd =

1

m
−

√
1

m2 − 4κx0
(
x0d0 + yd

m

vx

vy

)

2κx0
. (29)

Proof To prove the assertion, we will examine the limit of
(23) for κ → 0. Obviously, this solution must converge to
(25) for the correct solution because (17) and (18) are contin-
uous around κ = 0. We first examine the solution in (29) and
note that both the numerator and denominator converge to 0
for κ → 0. Therefore, we use L’Hôpital’s rule to compute
the limit:

lim
κ→0

1

m
−

√
1

m2 − 4κx0

(
x0d0 + yd

m

vx

vy

)

2κx0

= lim
κ→0

d

dκ

(
1

m
−

√
1

m2 − 4κx0

(
x0d0 + yd

m

vx

vy

))

d

dκ
(2κx0)

= lim
κ→0

−
−

(
x0d0 + yd

m

vx

vy

)
− κ y2d x0√

1

m2 − 4κx0

(
x0d0 + yd

m

vx

vy

)

= mx0 + yd
vx

vy
. (30)

Hence, Eq. (29) converges to (25) for κ → 0. We now exam-
ine the solution of (23) with the plus sign and note that the
numerator converges to 2/m for κ → 0, while the denomi-
nator converges to 0. Hence, the second solution converges
to ∞ for κ → 0. Therefore, Eq. (29) is the correct solution.

��
Remark 13 The optical ray of an image point (xi, yi)� can
be computed as follows. First, Eq. (13) is inverted:

(
xd
t

)
=

(
sx (xi − cx )

yi

)
. (31)

Next, Eqs. (14) and (15) are solved for (xc, yc)�:

xc = ux (xd, yd)/m + tvx (32)

yc = uy(xd, yd)/m + tvy, (33)

where yd = −sycy . The optical ray is then given by:

(xc, yc, 0)
� + λ(0, 0, 1)�. (34)

Remark 14 In contrast to line-scan cameras with entocentric
lenses (cf. Remark 12), a pure removal of lens distortions
is possible for line-scan cameras with telecentric lenses
because (14) and (15) do not depend on zc. Given an image
point (xi, yi)�, the corresponding point (xc, yc)� in the cam-
era coordinate system can be computed, as described in
Remark 13. This point can then be projected into a recti-
fied camera for which all distortion coefficients have been
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set to 0. Moreover, any skew in the pixels can be removed
by setting vx to 0 in the rectified camera. Finally, square pix-
els can be enforced by setting sx to min(sx ,mvy) and then
setting vy to sx/m. This approach ensures that no aliasing
occurs when rectifying the image.

Remark 15 As is the case for line-scan cameras with ento-
centric lenses (cf. Remark 12), a reprojection of the image
onto a world plane is possible for line-scan cameras with
telecentric lenses.

4.2 Calibration

Like the camera models that were described in Sect. 3, the
camera is calibrated by using the planar calibration object
introduced in Steger (2017, Section 9). The calibration object
has a hexagonal layout of circular control points. It has been
designed in such a way that it can cover the entire field of
view. Further advantages of this kind of calibration object
are discussed in Steger (2017, Section 9).

Let the known 3D coordinates of the centers of the con-
trol points of the calibration object be denoted by p j ( j =
1, . . . , nm, where nm denotes the number of control points
on the calibration object). The user acquires no images of
the calibration object. Let us denote the exterior orienta-
tion parameters of the calibration object in image l by el
(l = 1, . . . , no), the interior orientation parameters of the
camera by i, and the projection of a point in the calibration
object coordinate system to the image coordinate system by
π (cf. Sect. 4.1). In addition, let v jl denote a function that is 1
if the control point j of the observation l of the calibration
object is visible with the camera, and 0 otherwise. Finally, let
p jl denote the position of control point j in image l. Then, the
camera is calibrated by minimizing the following function:

ε2 =
no∑
l=1

nm∑
j=1

v jl‖p jl − π(p j , el , i)‖22. (35)

The minimization is performed by a suitable version of the
sparse Levenberg–Marquardt algorithms described in Hart-
ley and Zisserman (2003, Appendix A6).

The points p jl are extracted by fitting ellipses (Fitzgibbon
et al. 1999) to edges extracted with a subpixel-accurate edge
extractor (Steger 1998b, Chapter 3.3; Steger 2000). As dis-
cussed by Steger (2017, Section 5.2) andMallon andWhelan
(2007), this causes a bias in the point positions. Since telecen-
tric line-scan cameras perform an orthographic projection,
there is no perspective bias, i.e., the bias consists solely of
distortion bias. The bias can be removed with the approach
for entocentric line-scan cameras described by Steger (2017,
Section 10).

The optimization of (35) requires initial values for the
unknownparameters. Initial values for the interior orientation

parameters, except for the motion vector, can be obtained
from the specification of the camera and the lens, as described
in Remark 1. In contrast to area-scan cameras, cy = 0 is
typically used as the initial value. An approximate value for
vy usually will be known from the considerations that led to
the line-scan camera setup. Finally, vx typically can be set
to 0.With known initial values for the interior orientation, the
image points p jl can be transformed into metric coordinates
in the camera coordinate systemusing (31)– (33). This allows
us to use the OnP algorithm described by Steger (2018) to
obtain estimates for the exterior orientation of the calibration
object.

Remark 16 The Levenberg–Marquardt algorithm requires
the partial derivatives of xi and yi with respect to the inte-
rior and exterior orientation parameters of the camera model.
This, in turn, requires the partial derivatives of xd and t with
respect to the interior orientation parameters. These can be
computed analytically using the implicit function theorem
(de Oliveira 2013).

4.3 Line-Scan Cameras with Telecentric Lenses in
Projective Geometry

In this section, wewill consider telecentric line-scan cameras
without lens distortions. In this case, Eqs. (27), (28), and (13)
can be written as the following calibration matrix:

K =
⎛
⎝a −a vx/vy 0
0 1/vy 0
0 0 1

⎞
⎠ . (36)

Since m and sx cannot be determined simultaneously (cf.
Remark 19), we have removed this overparameterization
by using the parameter a = m/sx . Furthermore, since the
principal point is undefined if there are no distortions (see
Remark 20), we have used cx = cy = 0.6 The orthographic
projection that the telecentric line-scan camera performs can
be written as:

O =
⎛
⎝ 1 0 0 0
0 1 0 0
0 0 0 1

⎞
⎠ . (37)

Finally, the pose of the camerawith respect to theworld coor-
dinate system can be written as a 4× 4 homogeneous matrix
H (see Sect. 3.1). Hence, if there are no distortions, line-scan
cameras with telecentric lenses are affine cameras (Hartley

6 A principal point (cx , cy)� �= (0, 0)� would lead to K1,3 =
−cy(sy/sx )(vx/vy) + cx because of (25) and (13) and to K2,3 =
cysy/(mvy) because of (26). We will refer to these values as c′

x and
c′
y where necessary.
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and Zisserman 2003, Chapter 6.3.4) with the following cam-
era matrix:

P = KOH. (38)

A general affine camera can be written as the following cam-
era matrix:

M =
⎛
⎝m11 m12 m13 m14

m21 m22 m23 m24

0 0 0 1

⎞
⎠ , (39)

where the top left 2× 3 submatrix must have rank 2 (Hartley
and Zisserman 2003, Chapter 6.3.4). M has eight degrees of
freedom: its elements mi j (i = 1, 2, j = 1, . . . , 4) (Hartley
and Zisserman 2003, Chapter 6.3.4). The camera matrix in
(38) also has eight degrees of freedom: a, vx , vy , tx , ty , α, β,
and γ . Therefore, it is natural to examine whether a general
affine camera matrix M can be decomposed uniquely into the
eight parameters of a telecentric line-scan camera without
lens distortions.

Theorem 1 Every affine cameramatrixM can be decomposed
into the eight parameters a, vx , vy , tx , ty , α, β, and γ of a
telecentric line-scan camera without lens distortions. There
is a twofold ambiguity in the decomposition: If a valid decom-
position of M is given by (a, vx , vy, tx , ty, α, β, γ ), another
valid decomposition is given by (a, vx ,−vy, tx ,−ty, α +
π, β, γ ).

Proof To prove Theorem 1, we will make use of the dual
image of the absolute conic (DIAC) (Hartley and Zisserman
2003, Chapter 8.5), given by

ω∗ = PQ∗∞P�, (40)

where Q∗∞ = diag(1, 1, 1, 0) is the canonical form of the
absolute dual quadric (Hartley and Zisserman 2003, Chapter
3.7).7 This will allow us to remove the exterior orientation
from the equations to be solved. If we denote the entries of
a camera matrix M by mi j , the elements ωi j of the DIAC ω∗
are given by

ωi j =
3∑

k=1

mikm jk . (41)

Note that ω∗ is a symmetric matrix.
Let us denote the DIAC of M by ω∗

M and the DIAC of the
camera matrix (38) by ω∗

P. We require that both DIACs are
identical:

ω∗
P = ω∗

M. (42)

7 The function diag constructs a diagonal matrix with the specified
elements.

The DIAC ω∗
P is given by:

ω∗
P = KK� =

⎛
⎜⎜⎝
a2

(
1 + v2x

v2y

)
−a vx

v2y
0

−a vx
v2y

1
v2y

0

0 0 1

⎞
⎟⎟⎠ . (43)

Hence, we have the following three equations to determine
a, vx , and vy :

ω11 = a2
(
1 + v2x

v2y

)
(44)

ω12 = −a
vx

v2y
(45)

ω22 = 1

v2y
. (46)

We can solve (46) for vy :

vy = ± 1√
ω22

. (47)

Substituting vy into (45) and solving for vx results in:

vx = − ω12

aω22
. (48)

Substituting vx and vy into (44) and solving for a yields:

a = ±
√

ω11 − ω2
12

ω22
. (49)

We can assume that a = m/sx is positive. Hence, only the
positive square root in (49) yields a valid result:

a =
√

ω11 − ω2
12

ω22
. (50)

Substituting a into (48) results in:

vx = − ω12√
ω22

(
ω11ω22 − ω2

12

) . (51)

Note that ω11 > 0 and ω22 > 0 because M has rank 3 and
that ω11ω22 − ω2

12 ≥ 0 (and, therefore, ω11 − ω2
12/ω22 ≥

0) because of the Cauchy-Schwarz inequality (Steger 2017,
Appendix A.1). Consequently, all equations can always be
solved.

The above derivation shows that that there are two solu-
tions: (a, vx , vy) and (a, vx ,−vy), where we have selected
vy = 1/

√
ω22. These solutions allow us to compute the

respective calibration matrix K. If we compute K−1M, we
obtain the first two rows of H (Steger 2017, Appendix A.1).
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The left 2× 3 submatrix of K−1M contains the first two rows
of the rotation matrix of the pose. The third row of the rota-
tion matrix can be computed as the vector product of the first
two rows. This rotation matrix can then be decomposed into
the parameters α, β, and γ . The right 2 × 1 submatrix of
K−1M contains tx and ty .

We now examine what effect the two different solutions
for the interior orientation parameters have on the pose. The
two different calibration matrices are given by:

K1 =
⎛
⎝a −a vx/vy 0
0 1/vy 0
0 0 1

⎞
⎠ (52)

K2 =
⎛
⎝a a vx/vy 0
0 −1/vy 0
0 0 1

⎞
⎠ (53)

Their inverses are given by:

K−1
1 =

⎛
⎝ 1/a vx 0

0 vy 0
0 0 1

⎞
⎠ (54)

K−1
2 =

⎛
⎝ 1/a vx 0

0 −vy 0
0 0 1

⎞
⎠ (55)

Since the only difference between the two inverses is the sign
of the element (2, 2), thismeans that whenH1,2 are computed
as K−1

1,2M, the two solutions H1 and H2 will have inverse signs
in their second row. If the third row of the rotation matrix
is computed by the vector product, the two rotation matrices
R1 and R2 will differ by having inverse signs in their second
and third rows. This corresponds to a multiplication by a
matrix Q = diag(1,−1,−1) on the left. Note that Q is a
rotation by π around the x axis. Since in our Euler angle
representation the rotation around the x axis is performed last
(see Sect. 3.1), multiplying by Q on the left corresponds to
addingπ toα. This shows that for the first solution (a, vx , vy)

of the interior orientationparameters, the solution for the pose
parameters is given by (tx , ty, α, β, γ ), while for the second
solution (a, vx ,−vy) of the interior orientation parameters,
the solution for the pose parameters is given by (tx ,−ty, α +
π, β, γ ). ��

Remark 17 A rotation by π around the x axis corresponds
to looking at the front or at the back of an object. There-
fore, if the camera is acquiring images of opaque objects,
it is typically possible to select the correct solution. How-
ever, if images of transparent objects are acquired, which is
the case in applications with backlight illumination (at least
the calibration object must be transparent in this case), the
ambiguity of Theorem 1 can occur in practice.

Remark 18 Theorem 1 shows that every affine camera is
equivalent to a telecentric line-scan camera with no distor-
tions. On the other hand, Theorem 1 in Steger (2017) shows
that every affine camera is equivalent to an area-scan camera
with a bilateral telecentric tilt lens with no distortions. Ther-
fore, telecentric line-scan cameras with no distortions are
equivalent to telecentric area-scan cameras (with tilt lenses
if the pixels are skewed). Thismeans that we can replace tele-
centric line-scan cameras with no distortions by telecentric
area-scan cameras with no distortions if this is convenient.
In particular, this allows us to reuse existing algorithms for
telecentric area-scan cameras for telecentric line-scan cam-
eras.

We note that a telecentric line-scan camera that has been
rectifiedwith the approach described inRemark 14 fulfills the
above criterion of having no distortions. Therefore, a rectified
telecentric line-scan camera with parametersml = m, sx,l =
sx , sy,l = sy , cx,l = cx , cy,l = cy , vx,l = 0, and vy,l = vy =
sx/m can be represented by a telecentric area-scan camera
(cf. Sect. 3.1) with ma = m, sx,a = sx , sy,a = sx , cx,a = cx ,
and cy,a = cysx/sy .

4.4 Model Degeneracies

Remark 19 The model for telecentric line-scan cameras is
overparameterized. The values of m and sx cannot be deter-
mined simultaneously. This can be solved by fixing sx at the
initial value that was specified by the user. Furthermore, like
for entocentric line-scan cameras, sy is only used to specify
the principal point in pixels (cf. Remark 7) and is therefore
kept fixed at the initial value specified by the user.

Remark 20 Like for telecentric area-scan cameras (cf.
Remark 2), (cx , cy)� is solely defined by the lens distor-
tions for telecentric line-scan cameras. If there are no lens
distortions, (cx , cy)� and (tl,x , tl,y)� have the same effect.
Therefore, in this case (cx , cy)� should remain fixed at the
initial value specified by the user (typically, cx is set to the
horizontal image center and cy is set to 0).

Remark 21 Like for entocentric line-scan cameras (cf.
Remark 10), the parameters P1 and P2 of the polynomial
distortion model are highly correlated with other parameters
of the telecentric line-scan camera model, especially if the
radial distortions are small. Therefore, they typically can-
not be determined reliably. Consequently, in practice, they
should be set to 0 and should be excluded from the calibra-
tion.

Remark 22 Neither tz nor vz can be determined since they
have no effect on the projection (cf. Sect. 4.1). We leave vz
at the initial value specified by the user and set tz to 1m (see
also Remark 3).
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Remark 23 As described in Theorem 1 and Remark 17, there
is a sign ambiguity for vy . Therefore, the user must specify
the initial value of vy with the correct sign to ensure the
calibration converges to the correct solution.

Remark 24 Like for telecentric area-scan cameras (see
Remark 4), the rotation of the pose of a planar calibration
object can only be determined up to a twofold ambiguity.
This is a special case of a Necker reversal (Shapiro et al.
1995, Section 4.1) when the object is planar. The two sets of
pose parameters (αl , βl , γl) and (−αl ,−βl , γl) (with identi-
cal translation vectors) result in the same points in the image.
If a correct exterior orientation of the calibration object is
required in the application, the user must resolve this ambi-
guity by selecting the correct pose based on prior knowledge.

Proposition 2 For a planar calibration object, if cy = 0, or
if cy �= 0 and there are no distortions (i.e., κ = 0 for the
division model), and if β = 0, then vy , α, and ty cannot be
determined simultaneously.

Proof Without loss of generality, we can assume that the pla-
nar calibration object lies in the plane z = 0 in the calibration
object coordinate system. Let us first assume we have cam-
eras with cy = 0. Furthermore, let us assume that the first
camera has α1 = 0, ty,1 = ty , and vy,1 = vy , where ty and vy
are arbitrary but fixed. In addition, let us assume the remain-
ing interior and exterior orientation parameters m, cx , sx , sy ,
vx , tx , and γ are arbitrary and identical for both cameras. We
now can select an arbitrary value α for the rotation around the
x axis for the second camera, i.e., α2 = α. Then, by setting
vy,2 = vy cosα and ty,2 = ty cosα, we obtain a camera with
identical projection geometry for points in the plane z = 0.
If cy �= 0 and if there are no distortions, we must also set
cy,1 = cy and cy,2 = cy cosα.

To prove that both cameras result in the same projection
geometry, we can construct their camera matrices P1,2, as
described in Sect. 4.3. Then, we can project an arbitrary point
pc = (xc, yc, 0)�, i.e., we can compute pi,1,2 = P1,2pc.
Comparing the resulting expressions forpi,1,2,whichweomit
here, shows that they are identical. ��
Proposition 3 For a planar calibration object, if cy = 0, or
if cy �= 0 and there are no distortions (i.e., κ = 0 for the
division model), and if α = 0, then m, vx , β, and tx cannot
be determined simultaneously.

Proof Without loss of generality, we can assume that the pla-
nar calibration object lies in the plane z = 0 in the calibration
object coordinate system. Let us first assume we have cam-
eras with cy = 0. Furthermore, let us assume that the first
camera has β1 = 0, tx,1 = tx , m1 = m, and vx,1 = vx ,
where tx , m, and vx are arbitrary but fixed. In addition, let us
assume the remaining interior and exterior orientation param-
eters cx , sx , sy , vy , ty , and γ are arbitrary and identical for

both cameras. We now can select an arbitrary value β for
the rotation around the y axis for the second camera, i.e.,
β2 = β. Then, by setting m2 = m/ cosβ, vx,2 = vx cosβ,
and tx,2 = tx cosβ, we obtain a camera with identical pro-
jection geometry for points in the plane z = 0. If cy �= 0 and
if there are no distortions, we must also set cy,1 = cy and
cy,2 = cy/ cosβ.

To prove the assertion, we can proceed in the samemanner
as in the proof of Proposition 2. ��
Remark 25 Proposition 2 shows that a rotation of a planar
calibration object around the x axis can be exchanged with
different values for the speed vy and the translation ty . Propo-
sition 3 shows that a rotation of a planar calibration object
around the y axis can be exchanged with different values
for the magnification m, the speed vx , and the translation
tx . Since the interior and exterior orientation parameters that
are affected by these degeneracies are independent of each
other, we conjecture that there is a universal degeneracy that
implies that the interior and exterior orientation parameters
cannot be determined from a single image of a planar calibra-
tion object, no matter how the calibration object is oriented
in 3D.We prove that this is the case in the following theorem.

Theorem 2 For a single image of a planar calibration object,
m, vx , vy , α, β, tx , and ty cannot be determined simultane-
ously if cy = 0, or if cy �= 0 and there are no distortions
(i.e., κ = 0 for the division model).

Proof Without loss of generality, we can assume that the
planar calibration object lies in the plane z = 0. Furthermore,
we can immediately see that a rotation around the z axis is
immaterial since a rotation of a point in the plane z = 0 by an
angle γ around the z axis merely corresponds to a different
point in the plane z = 0. Consequently, we can use γ = 0 in
the following.

We will now show that a camera with parameters m, sx ,
sy , cx = 0, cy = 0, vx , vy , tx , ty , α, and β leads to an
identical projection as a camera with parameters m/ cosβ,
sx , sy , cx = 0, cy = 0, vx cosβ, vy f , tx cosβ, ty f , φ, and ψ

for a suitably chosen factor f and suitably chosen angles φ

and ψ . We will only examine the case of no lens distortions
since for cy = 0 the distortion is purely along the horizontal
direction of the image and therefore can be rectified within
each line independently.

To prove that the two camera parameter sets above result
in the same projection, we will construct the affine trans-
formation matrix A of points in the plane z = 0 in the
calibration object coordinate system to points in the image
plane. The affine transformation is given by multiplying the
camera matrix in (38) by O� from the right, where O is given
by (37). Hence, we have:

A = PO� = KOHO�. (56)
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For the first set of camera parameters, this results in:

A1 =
⎛
⎜⎝
a cosβ − avx sin α sin β

vy
− avx cosα

vy

a(txvy−tyvx )
vy

sin α sin β
vy

cosα
vy

ty
vy

0 0 1

⎞
⎟⎠ ,

(57)

where a = m/sx . For the second set of camera parameters,
we obtain:

A2 =
⎛
⎜⎝

a cosψ
cosβ

− avx sin φ sinψ
vy f

− avx cosφ
vy f

a(txvy−tyvx )
vy

sin φ sinψ
vy f

cosφ
vy f

ty
vy

0 0 1

⎞
⎟⎠ .

(58)

Hence, we can see that the translation part of A1 and A2 (their
last columns) are identical. This leaves us with the following
four equations for f , φ, and ψ :

a cosψ

cosβ
− avx sin φ sinψ

vy f
= a cosβ − avx sin α sin β

vy

(59)

avx cosφ

vy f
= avx cosα

vy
(60)

sin φ sinψ

vy f
= sin α sin β

vy
(61)

cosφ

vy f
= cosα

vy
. (62)

We solve (62) for f and obtain:

f = cosφ

cosα
. (63)

By substituting (63) into (60), we obtain an equation that is
fulfilled tautologically. Hence, we substitute (63) into (61)
and simplify to obtain:

tan φ sinψ = tan α sin β, (64)

which we solve for tan φ:

tan φ = tan α sin β

sinψ
. (65)

By substituting (63) into (59) and simplifying, we obtain:

avy cosψ

cosβ
− avx cosα tan φ sinψ

= avy cosβ − avx sin α sin β. (66)

By substituting (65) into (66), we obtain:

avy cosψ

cosβ
− avx sin α sin β

= avy cosβ − avx sin α sin β. (67)

Hence, we have:

cosψ = cos2 β, (68)

where cos2 β is an abbreviation for (cosβ)2. Thus:

ψ = arccos(cos2 β). (69)

By substituting (68) into (65) and using the identity sin θ =√
1 − cos2 θ , we obtain:

tan φ = tan α sin β√
1 − cos4 β

. (70)

Therefore, we have:

tan φ = arctan

(
tan α sin β√
1 − cos4 β

)
. (71)

Finally, by substituting (71) into (63) and using the identity
cos(arctan θ) = 1/

√
θ2 + 1, we obtain:

f =
⎛
⎝cosα

√
1 + tan2 α sin2 β

1 − cos4 β

⎞
⎠

−1

. (72)

To extend the proof to the case, (cx , cy)� �= (0, 0)�, we
note (see Footnote 6) that c′

y,1 = cy,1sy/(mvy) for the first
camera and c′

y,2 = cy,2sy cosβ/(mvy f ) for the second cam-
era, whence cy,2 = cy,1( f / cosβ). Furthermore, for the first
camera, c′

x,1 = −cy,1(sy/sx )(vx/vy) + cx,1, while for the
second camera, c′

x,2 = −cy,2(sy/sx )(vx cosβ)/(vy f )+cx,2.
Substituting cy,2 = cy,1( f / cosβ) into the last equation
shows that cx,2 = cx,1. ��

Remark 26 Table 1 displays an example for interior and exte-
rior orientation parameters that result in identical projections
for planar objects in the plane z = 0 that were obtained with
solution in the proof of Theorem 2.

Remark 27 From the proof of Theorem 2, it might appear
that there is only a twofold ambiguity. However, this is only
caused by the fact that we have chosen the specific values
of m/ cosβ, vx cosβ, and tx cosβ for the second camera to
simplify the proof asmuch as possible. If other factors instead
of cosβ had been chosen, the values of f , φ, and ψ would
change accordingly. Therefore, like in Propositions 2 and 3,
the degeneracy is completely generic.
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Table 1 An example for interior and exterior orientation parameters
that result in identical projections for planar objects in the plane z = 0

Camera 1 Camera 2

Interior orientation

m (Scalar) 0.3 0.346410162

κ (m−2) −2000 −2000

sx (µmPixel−1) 10 10

sy (µmPixel−1) 10 10

cx (Pixel) 950 950

cy (Pixel) 0 0

vx (µmPixel−1) 1.5 1.299038106

vy (µmPixel−1) 55 56.43276971

Exterior orientation

tx (m) 0.01 0.008660254

ty (m) 0.1 0.102605036

α (◦) 20 15.38347596

β (◦) 30 41.40962211

γ (◦) 50 50

Corollary 1 The results above show that telecentric line-scan
cameras cannot be calibrated from a single image of a pla-
nar calibration object. Consequently, multiple images of a
planar calibration object with different exterior orientation
must be used to calibrate the camera if all parameters are to
be determined unambiguously.

Remark 28 In machine vision applications, it sometimes is
important to calibrate the camera from a single image. As
the above discussion shows, this will lead to camera parame-
ters that differ from their true values. However, if the residual
error of the calibration is sufficiently small, a camera geom-
etry that is consistent within the plane that is defined by the
exterior orientation of the calibration object (and all planes
parallel thereto) will be obtained. Therefore, an image or fea-
tures extracted from an image can be rectified to this plane
(cf. Remark 15). On the other hand, algorithms that solely
rely on the interior orientation, e.g., the pure removal of radial
distortions in Remark 14, are less useful because the ambigu-
ities with respect to m and vy imply that we cannot reliably
undistort an image or features extracted from an image to
have square pixels.

5 Calibration Experiments

5.1 Robustness of Principal Point Estimation

In our first experiment, we evaluate the importance of mod-
eling cy and lens distortions in general. We mounted an
area-scan camerawith a telecentric lens approximately 30cm
above a linear stage. The camera was oriented such that its

viewing direction was vertically downwards onto the linear
stage and its y axis was approximately parallel to the lin-
ear motion of the stage. An encoder that triggered the image
acquisition was used to ensure a constant speed.We acquired
an image at each trigger event and saved the obtained image
array.We restricted the part that was read out from the sensor
to the center image rows only: we selected the 90 sensor rows
above and below the center image row, resulting in images
of height 181. This setup enabled us to generate images of a
virtual line-scan camera that consist of one of the 181 image
rows. The line-scan image for one selected row was obtained
by stacking the selected image row of all images in the array
on top of each other. The frequency of the encoder was cho-
sen such that the pixels in the generated line-scan images
were approximately square.

For the tests, we chose two different hardware setups.
In the first setup, we used an IDS GV-5280CP-C-HQ color
camera (2/3 inch sensor size, CMOS, 3.45µm pixel pitch,
2448×2048)with a telecentricVicotar T201/0.19 lens (nom-
inal magnification: 0.19). We set up the camera, which uses
a color filter array to capture color information, to directly
return gray-scale images. The generated line-scan images are
of size 2448 × 3330.

In the second setup, we used an IDS UI-3080CP-M-GL
monochrome camera (2/3 inch sensor size, CMOS, 3.45µm
pixel pitch, 2456×2054)with a telecentricV.S. Technologies
L-VS-TC017 lens (nominal magnification: 0.17). Because
the lens was designed for amaximum sensor size of 1/2 inch,
we cropped the images to 70% of their width. The generated
line-scan images are of size 1719 × 2954.

With both setups, we acquired 16 image arrays of a
4×3cm2 planar calibration object with a hexagonal layout of
circular marks in different poses, as described in Steger et al.
(2018, Chapter 3.9.4.1). For each of the 181 image rows, we
generated 16 virtual line-scan images, one from each of the
16 image arrays. Consequently, for each of the 181 image
rows, we obtained 16 calibration images that we used for
calibration by minimizing (35). Lens distortions were taken
into account by applying the division model. The variation
of the resulting camera parameters depending on the selected
sensor row is shown in Figs. 2 and 3. In addition, the vari-
ation of the root mean square (RMS) calibration error, i.e.,√

ε2/
∑no

l=1

∑nm
j=1 v jl , is plotted.

From the plots, it can be seen that all parameters except
for cy do not change substantially when selecting different
sensor rows (note the scaling of the vertical axes). This is the
expected behavior because cy measures the misalignment of
the sensor line with respect to the optical axis in the y direc-
tion (see Sect. 3.2). Therefore, there is a linear relationship
between the selected sensor row and cy , which is evident
from the plots. While the expected change of cy over the
sensor rows is 181, it is 182 for the color camera but only
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Fig. 2 Variation of the calibrated interior orientation of the IDS GV-
5280CP-C-HQcolor camerawith theVicotar T201/0.19 lens depending
on the selected sensor row when applying the division distortion model.

For each twentieth sensor row, the standard deviation is indicated by
error bars. Additionally, the root mean square (RMS) calibration error
is plotted

Fig. 3 Variation of the calibrated interior orientation of the IDS
UI-3080CP-M-GL monochrome camera with the V.S. Technologies L-
VS-TC017 lens depending on the selected sensor rowwhen applying the

division distortion model. For each twentieth sensor row, the standard
deviation is indicated by error bars. Additionally, the root mean square
(RMS) calibration error is plotted
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131 for the monochrome camera. Although we are not per-
fectly sure, we assume that the reason for cy changing only
by 131 pixels is that the circular actuator of the linear stage is
not perfectly centered, resulting in a non-uniform movement
(see Sect. 5.2 for more details). Because of the different mag-
nifications of the lenses, for the color camera, there seems to
be an integer number of periods of the movement bias in the
images, whereas for the monochrome camera there seems
to be a non-integer number of periods. Since cy is primarily
determined by the bending of the image lines, an asymmetry
in the movement bias in the images may prevent the reliable
extraction of cy for the monochrome camera.

For increasing sensor rows, the values form and κ increase
slightly for the color camera and decrease slightly for the
monochrome camera. This is because a larger magnification
can be at least partially compensated by a larger value of κ ,
which causes a non-uniform scaling in the image row, and
vice versa.

Also note that the RMS error of the color camera is sig-
nificantly larger than that of the monochrome camera, which
probably is caused by image artifacts that are caused by the
color filter array.

Despite the relatively small lens distortions of at most 1.8
pixels in the images, cx and cy are estimated consistently over
different sensor rows. Nevertheless, the standard deviations
of the estimated principal point are significantly larger for
the color camera than for the monochrome camera because
the magnitude of κ is larger by a factor of almost 3 for the
monochrome camera. Consequently, the principal point of
the monochrome camera is better defined (see Remark 20).

We alternatively applied the polynomial distortion model
to the calibration of the monochrome camera. As suggested
in Remark 21, we set P1 and P2 to 0 and excluded them
from the calibration. The results are shown in Fig. 4. The
obtained values for the parameters are very similar to those
obtained with the division model. The RMS error decreases
only marginally from 0.3318 (division) to 0.3316 (polyno-
mial), on average. As for the division model, a correlation
between m and the radial lens distortion parameters (Ki )
is observable. The experiment shows that the division model
obviously represents the lens distortions sufficiently well and
that both models return consistent results.

These experiments show that the proposed camera model
is able to estimate the principal point of the camera accu-
rately, and hence is able to handle lens distortions effectively,
even for lenses with only small lens distortions.

5.2 Calibration of Line-Scan Cameras

In the second experiment, we calibrated two monochrome
Basler raL2048-48gm line-scan cameras (14.3mm sensor
size, CMOS, 7.0µm pixel pitch, 2048× 1) with Opto Engi-
neering telecentric lenses. On the first camera, we mounted

a TC2MHR048-F (nominal magnification: 0.268, working
distance: 133mm) and on the second camera, we mounted
a TC2MHR058-F (nominal magnification: 0.228, working
distance: 158mm). We used the same setup as described
in Sect. 5.1 and acquired 16 images of a 8 × 6cm2 planar
calibration object in different poses. Each calibration was
performed with the division and polynomial distortion mod-
els. The results are shown in Tables 2 and 3.

The low RMS errors indicate that the cameras and lenses
can be represented very accurately by our proposed model.
Both high-quality lenses have very small lens distortions.
This also causes the principal points to be poorly defined,
resulting in significantly different values for cy for the divi-
sion and polynomial distortion models in Table 2. When
setting cx = 1024, cy = 0, all distortion parameters to 0, and
excluding these parameters from the calibration, the RMS
errors only marginally increase to 0.3545 (division model)
and 0.3541 (polynomial model) for the TC2MHR048-F lens
and to 0.2928 (division model) and 0.2927 (polynomial
model) for the TC2MHR058-F lens. Nevertheless, the max-
imum absolute distortion in the images is approximately
1.2 pixels (TC2MHR048-F) and 1.4 pixels (TC2MHR058-
F), which would decrease the accuracy of measurements
when being ignored.

The small distortions raise the question whether any of the
parameters in the model are redundant for these lenses, i.e.,
whether overfitting has occurred. Obviously, m, vx , and vy
are significant geometrically and therefore cannot be omit-
ted. Hence, the question is whether (cx , cy) or the distortion
parameters κ or K1, K2, and K3 are significant. We use the
significance test proposed byGrün (1978) to test whether any
useful combinations of these parameters are significant. Each
test hypothesis was obtained by setting the respective distor-
tion parameters to 0 and the principal point to the center of the
sensor line. In Table 4, we display the results of this test for
the TC2MHR058-F lens. The results for the TC2MHR048-F
lens are omitted because they are similar. As can be seen from
Table 4, all distortion-related parameters are highly signifi-
cant. Therefore, no overfitting occurs, even for these small
distortions.

Figure 5 shows one of the calibration images that were
used to calibrate the camera with the TC2MHR048-F lens.
In addition, the residuals (scaled by a factor of 130) are visu-
alized for each circular calibrationmark. The residuals are the
differences between the extracted centers of the calibration
marks in the image and the projections of the corresponding
points on the calibration object into the image. The projec-
tion is performed by using the calibrated camera parameters
of the interior and exterior orientation while applying poly-
nomial distortion model. The mean and maximum length of
the residuals was 0.284 pixels and 0.538 pixels, respectively.
This corresponds to 7.21µm and 13.67µm in the world. It
can be seen that the predominant part of the residuals is a sys-

123



International Journal of Computer Vision

Fig. 4 Variation of the calibrated interior orientation of the IDS
UI-3080CP-M-GL monochrome camera with the V.S. Technologies L-
VS-TC017 lens depending on the selected sensor rowwhen applying the

polynomial distortion model. For each twentieth sensor row, the stan-
dard deviation is indicated by error bars. Additionally, the root mean
square (RMS) calibration error is plotted

Table 2 Calibration results for a Basler raL2048-48gm line-scan cam-
era with an Opto Engineering TC2MHR048-F telecentric lens for the
division and polynomial lens distortion models

RMS eror (Pixel) Division Polynomial
0.3211 0.3210

m (Scalar) 0.26717 0.26716

sx (µmPixel−1)∗ 7.0 7.0

sy (µmPixel−1)∗ 7.0 7.0

cx (Pixel) 854.725 855.278

cy (Pixel) −16.030 −157.289

vx (µmPixel−1) −0.0963 −0.0963

vy (µmPixel−1) 25.2901 25.2906

κ (m−2) 14.0165 –

K1 (m−2) – −12.4707

K2 (m−4) – −110858.0

K3 (m−6) – 1409814283.2

P1 (m−1)∗ – 0.0

P2 (m−1)∗ – 0.0

Parameters indicated by ∗ are excluded from the calibration

tematic periodic error in the direction of the movement, i.e.,
in vertical direction in the image. It should be noted that the
used encoder reacts to the angle position of the electric motor
of the linear stage. Therefore, we assume that the major part
of the residuals is caused by the circular actuator that is not
perfectly centered. Another indication of this assumption is
the fact that the periodicity of the error corresponds to one full
revolution of the actuator. In this case, the calibration error
could be further reduced by using a higher-quality electric

Table 3 Calibration results for a Basler raL2048-48gm line-scan cam-
era with an Opto Engineering TC2MHR058-F telecentric lens for the
division and polynomial lens distortion models

Division Polynomial
RMS eror (Pixel) 0.2522 0.2521

m (Scalar) 0.22802 0.22803

sx (µmPixel−1)∗ 7.0 7.0

sy (µmPixel−1)∗ 7.0 7.0

cx (Pixel) 1231.955 1237.057

cy (Pixel) −130.684 −131.088

vx (µmPixel−1) −1.0491 −1.0491

vy (µmPixel−1) 30.0455 30.0455

κ (m−2) −13.7166 –

K1 (m−2) – 18.3485

K2 (m−4) – −196535.0

K3 (m−6) – 1983345655.0

P1 (m−1)∗ – 0.0

P2 (m−1)∗ – 0.0

Parameters indicated by ∗ are excluded from the calibration

actuator that better realizes a constant speed. In comparison,
the residuals in horizontal direction are very small, which
again shows that the proposed camera model represents the
true projection very well.

5.3 Example Application: Image Rectification

To be able to precisely measure distances and angles in the
image, the obtained line-scan images must be rectified to
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Table 4 Results of the significance test for parameter combinations
for a Basler raL2048-48gm line-scan camera with an Opto Engineering
TC2MHR058-F telecentric lens for the division and polynomial lens
distortion models

Parameters T m n α

Division model

κ 3194.29 1 20,662 < 1 × 10−16

κ , (cx , cy) 6780.65 3 20,662 < 1 × 10−16

Polynomial model

K3 18.87 1 20,660 1.4028 × 10−5

K2, K3 14.12 2 20,660 7.4479 × 10−7

K1, K2, K3 758.99 3 20,660 < 1 × 10−16

K3, (cx , cy) 559.51 3 20,660 < 1 × 10−16

K2, K3, (cx , cy) 492.51 4 20,660 < 1 × 10−16

K1, K2, K3, (cx , cy) 4801.52 5 20,660 < 1 × 10−16

The values of the significance level α were computed using the MAT-
LAB function 1−fcdf(T ,m, n). T is the test statistic proposed byGrün
(1978),m is the number of parameters tested for significance, andn is the
redundancy of the system (2×number of calibration marks extracted−
number of camera parameters optimized−5no). The entry< 1×10−16

indicates that fcdf(T ,m, n) = 1 to double precision accuracy. Note that
all distortion-related parameters are highly significant

eliminate lens distortions and skew to ensure square pixels.
While this is generally impossible for entocentric lenses (see
Remark 12), we can perform such a rectification for telecen-
tric lenses (see Remark 14).

For the example shown in Fig. 6, we acquired a line-scan
image of a graph paper with the setup described in Sect. 5.2
with the TC2MHR058-F lens. The acquired image is shown
in Fig. 6a. Because the motion direction was not perfectly
perpendicular to the sensor line, i.e., has a significant non-
zero motion component in the direction of the sensor line
(vx = −1.0491µmPixel−1, see Table 3), the squares of the
graph paper appear skewed. Furthermore, because the speed
of the motion was not perfectly adjusted, rectangular instead
of square pixels are obtained, causing a non-uniform scaling
of the squares on the graph paper in the image.

By setting all distortion coefficients to 0, vx to 0, sx to
min(sx ,mvy), and vy to sx/m (see Remark 14), we can gen-
erate an image mapping that rectifies the images acquired
with the setup. After the rectification, the images have no
lens distortions and square pixels. Fig. 6b shows the resulting
rectified image. The squares on the graph paper are squares
in the rectified image. Hence, in the rectified image, it is pos-
sible tomeasure angles and distances and areas inworld units
correctly.

For a quantitative comparison, we extracted subpixel-
precise lines (Steger 1998a, b, 2013) in the original and in the
rectified image, fitted straight lines, and computed their inter-
section angles. The mean over all angles was 87.971◦ in the
original image and 90.004◦ in the rectified image. Further-

Fig. 5 One of the images of the planar calibration object that were used
to calibrate the raL2048-48gm line-scan camerawith the TC2MHR048-
F lens. Residuals are overlaid for each circular calibrationmark as white
lines. The residuals were scaled by a factor of 130 for better visibility.
The predominant part of the residuals is a systematic periodic error in
the direction of the movement, i.e., in vertical direction in the image

Fig. 6 Example application: image rectification by eliminating lens
distortions and ensuring square pixels. a Original line-scan image. The
squares on the graph paper are skewed and have a non-uniform scaling
in the image. b Rectified line-scan image. The squares on the graph
paper are squares in the image
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more,we computed the area of each square on the graphpaper
in both images and transformed it to metric units by multi-
plying it by sx sy/m2. Here, sx and sy are the pixel pitches
on the sensor and m is the lens magnification obtained from
calibration. The mean area was 25.50mm2 in the original
image and 24.98mm2 in the rectified image, while the actual
size of the squares on the paper was 25mm2.

6 Conclusions

Wehave proposed a cameramodel for line-scan cameraswith
telecentric lenses. The model assumes a linear motion of the
camera with constant velocity. It can model general lens dis-
tortions by allowing the sensor line to lie anywhere with
respect to the optical axis. The model is parameterized by
camera parameters that have a physical meaning and is there-
fore easy to understand by machine vision users. We have
described an algorithm to calibrate the camera model using a
planar calibration object. Furthermore, we have investigated
the degeneracies of the model and have discussed how they
can be handled in practice. In addition, we have shown that
every affine camera can be interpreted as a telecentric line-
scan camera and vice versa, provided the lens does not exhibit
any lens distortions. Experiments with real setups have been
used to establish the validity of the model. In particular, we
have shown that even for lenses with very small lens distor-
tions, the distortions statistically are highly significant and
therefore cannot be omitted in real-world applications.

One direction for future research is to derive an explicit
stereo or multi-view camera model for telecentric line-scan
cameras.
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