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Abstract: The Mekong delta, like many deltas around the world, is subsiding at a relatively high
rate, predominately due to natural compaction and groundwater overexploitation. Land subsidence
influences many urbanized areas in the delta. Loading, differences in infrastructural foundation
depths, land-use history, and subsurface heterogeneity cause a high spatial variability in subsidence
rates. While overall subsidence of a city increases its exposure to flooding and reduces the ability to
drain excess surface water, differential subsidence results in damage to buildings and above-ground
and underground infrastructure. However, the exact contribution of different processes driving
differential subsidence within cities in the Mekong delta has not been quantified yet. In this study
we aim to identify and quantify drivers of processes causing differential subsidence within three
major cities in the Vietnamese Mekong delta: Can Tho, Ca Mau and Long Xuyen. Satellite-based
PS-InSAR (Persistent Scatterer Interferometric Synthetic Aperture Radar) vertical velocity datasets
were used to identify structures that moved at vertical velocities different from their surroundings.
The selected buildings were surveyed in the field to measure vertical offsets between their foundation
and the surface level of their surroundings. Additionally, building specific information, such as
construction year and piling depth, were collected to investigate the effect of piling depth and time
since construction on differential vertical subsidence. Analysis of the PS-InSAR-based velocities from
the individual buildings revealed that most buildings in this survey showed less vertical movement
compared to their surroundings. Most of these buildings have a piled foundation, which seems to
give them more stability. The difference in subsidence rate can be up to 30 mm/year, revealing the
contribution of shallow compaction processes above the piled foundation level (up to 20 m depth).
This way, piling depths can be used to quantify depth-dependent subsidence. Other local factors
such as previous land use, loading of structures without a piled foundation and variation in piling
depth, i.e., which subsurface layer the structures are founded on, are proposed as important factors
determining urban differential subsidence. PS-InSAR data, in combination with field observations
and site-specific information (e.g., piling depths, land use, loading), provides an excellent opportunity
to study urban differential subsidence and quantify depth-dependent subsidence rates. Knowing
the magnitude of differential subsidence in urban areas helps to differentiate between local and
delta wide subsidence patterns in InSAR-based velocity data and to further improve estimates of
future subsidence.

Keywords: land subsidence; urban differential subsidence; PS-InSAR; building foundation depth;
depth-dependent subsidence; Vietnamese Mekong delta
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1. Introduction

The Vietnamese Mekong delta (MKD) is, like many low-lying deltas across the world,
threatened by global sea-level rise [1]. As its average elevation is only ~0.8 m above
local mean sea level, the delta is already exposed to flooding and saltwater intrusion [2].
Additionally, human influence in the MKD has been growing in the past decades. For
example, the building of upstream dams [3–6] and sand mining in the river channels has
caused the sediment load of the Mekong River to decrease [7]. Furthermore, engineering
along the river channel to prevent flooding, e.g., the construction of dikes, is disturbing the
natural mechanism that delivers new sediments into the floodplains during floods [4,8,9].
As a result, the natural sedimentation in the delta decreases and erosion is enhanced
along the delta’s riverbanks and shoreline because more water is concentrated in the
channels [5,10–12]. The demand for fresh and clean water has grown due to the large
growth in population and agriculture over the past decades. People increasingly use fresh
groundwater to satisfy their water demand, as river discharges are being suppressed by
upstream dams [13,14] and surface water is often polluted [15] or increasingly saline due
to relative sea-level rise in combination with lower river discharges [16,17]. The increase in
groundwater extraction has caused an overexploitation of the groundwater resources, since
more water is being extracted than recharged, which is identified as one of the main drivers
of land subsidence in the MKD [15,18,19]. Several studies show that land subsidence
in the MKD occurs at rates up to ~5 cm yr−1 [15,18–21], being about ten times larger
than global sea-level rise which occurs at rates of approximately 3.3 mm yr−1 [22]. As a
result, the present-day rates of relative sea-level rise in the MKD are dominated by land
subsidence [2].

Superimposed on the delta wide subsidence patterns are local differences in sub-
sidence rates, which can cause additional problems for people living in the delta. The
(spatial) variability in subsidence rates, or differential subsidence, can lead to serious dam-
age to infrastructure, e.g., cracks in buildings, or in roads or in sewage systems (Figure 1a).
Especially in cities, differential subsidence often occurs, as the high amount of human
activities adds different stresses to the subsurface, e.g., by extracting groundwater or by
adding extra weight to the subsurface by constructions [23] and because of differences in
(piled) foundation depths of buildings (Figure 1b) [24].

Differences in already occurred prior compaction of subsurface sediments can also
cause present day differential subsidence rates. This can be seen for example in the Dutch
coastal-deltaic plain where unconsolidated sediments in urban areas are already strongly
compressed by historical loading, making these areas less susceptible to future subsidence
due to lowering of the phreatic water table than the agricultural areas [25]. However, this
is opposite to what is currently happening in many other urbanizing deltas where build-
up areas typically show the highest subsidence rates, due to recent rapid expansion and
extraction of deeper groundwater [26]. On top of that, local heterogeneity of the subsurface
may also make one area more susceptible to subsidence than others [27,28]. This illustrates
the importance of integrating data from different disciplines to understand the occurrence
of differential subsidence. In the MKD, information about subsurface composition at the
scale of a city is limited and detailed construction information about the foundation of
buildings (e.g., type of foundation, number of foundation pillars, materials used) is often
hard to collect, making it difficult to study differential subsidence rates (Figure 1b). Still,
areas that are highly urbanized and densely populated are severely affected by differential
subsidence, highlighting the urgency for a detailed study of both the local variation in, and
magnitude of, subsidence rates.
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Figure 1. (a) Damage caused by differential subsidence because the surroundings are subsiding faster than the buildings 
in a hospital (upper) and a college (lower) in Can Tho city, Vietnam. (b) Schematic example of how differences in piling 
depth (foundation) or loading can cause differential subsidence. The red arrows symbolize the vertical movement of the 
surface, which is largest under the unfounded building due to loading. The buildings with deeper foundations stand on 
the coarse-grained sediment layer, which is less compressible. These buildings are subsiding less than their surroundings, 
and an offset forms between the buildings ground floor and the ground surface. The road lies on the surface and represents 
the total subsidence of the subsurface. 
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tions of InSAR is temporal decorrelation, i.e., loss of interferometric coherence with time, 
due to changing scattering properties [32]. Persistent Scatterer Interferometry (PSI) aims 
at identifying pixels whose signal is dominated by stable backscatter in stacks of SAR 
scenes [33,34]. The temporal decorrelation for these pixels, which are called persistent 
scatterers (PS), is greatly reduced so that they can be used to study above-mentioned pa-
rameters of the Earth’s surface. Persistent scatterers can be frequently identified on 
manmade structures like roads and rooftops and on natural objects like rocks. The ad-
vantage of InSAR is that it can be used to map vertical movements of a large area and a 
certain period at once. Several studies have already used InSAR to map subsidence in the 
MKD, showing promising results [15,21,35,36]. For identifying differential subsidence, the 
spatial resolution of the sensor must be high enough to distinguish separate buildings. A 
disadvantage of PSI is that it only measures displacements where PS are identified. For 
measuring differential displacement rates between two locations, both sites must exhibit 
PS points, which can be challenging since the PS coverage in rural areas is often low. An-
other problem might be the subpixel location of the PS. The assignment of an identified 
PS to a structure within the pixel becomes more difficult with poorer spatial resolution of 
the SAR sensor, especially in densely built-up areas. 

The aim of this research is to show how site-specific information can help derive the 
causes for urban differential subsidence that is identified by InSAR-based estimated sub-
sidence rates. This is done by combining vertical velocity data obtained from several In-
SAR datasets with specific building characteristics (e.g., building height, piling depth etc.), 
field measurements of differential subsidence and subsurface data (e.g., lithology) from 
three different cities in the Vietnamese Mekong delta. Building foundation depths are 
used to derive depth-dependent subsidence rates and information about lithology and 
(previous) land use is used for explaining spatial variations in subsidence rates. 

Figure 1. (a) Damage caused by differential subsidence because the surroundings are subsiding faster than the buildings
in a hospital (upper) and a college (lower) in Can Tho city, Vietnam. (b) Schematic example of how differences in piling
depth (foundation) or loading can cause differential subsidence. The red arrows symbolize the vertical movement of the
surface, which is largest under the unfounded building due to loading. The buildings with deeper foundations stand on the
coarse-grained sediment layer, which is less compressible. These buildings are subsiding less than their surroundings, and
an offset forms between the buildings ground floor and the ground surface. The road lies on the surface and represents the
total subsidence of the subsurface.

Spaceborne Interferometric Synthetic Aperture Radar (InSAR) has proven to be an
effective method for remotely measuring displacements of the land surface, both on a large
and small spatial scale [15,28–30]. SAR systems are side-looking systems which transmit
radar waves coherently and record the backscatter. By exploiting the phase difference of
at least two SAR images, the topography, or displacements of the Earth’s surface, which
occurred between the acquisitions, can be measured [31]. One of the limitations of InSAR
is temporal decorrelation, i.e., loss of interferometric coherence with time, due to changing
scattering properties [32]. Persistent Scatterer Interferometry (PSI) aims at identifying
pixels whose signal is dominated by stable backscatter in stacks of SAR scenes [33,34].
The temporal decorrelation for these pixels, which are called persistent scatterers (PS),
is greatly reduced so that they can be used to study above-mentioned parameters of the
Earth’s surface. Persistent scatterers can be frequently identified on manmade structures
like roads and rooftops and on natural objects like rocks. The advantage of InSAR is that it
can be used to map vertical movements of a large area and a certain period at once. Several
studies have already used InSAR to map subsidence in the MKD, showing promising
results [15,21,35,36]. For identifying differential subsidence, the spatial resolution of the
sensor must be high enough to distinguish separate buildings. A disadvantage of PSI is
that it only measures displacements where PS are identified. For measuring differential
displacement rates between two locations, both sites must exhibit PS points, which can be
challenging since the PS coverage in rural areas is often low. Another problem might be
the subpixel location of the PS. The assignment of an identified PS to a structure within the
pixel becomes more difficult with poorer spatial resolution of the SAR sensor, especially in
densely built-up areas.

The aim of this research is to show how site-specific information can help derive
the causes for urban differential subsidence that is identified by InSAR-based estimated
subsidence rates. This is done by combining vertical velocity data obtained from several
InSAR datasets with specific building characteristics (e.g., building height, piling depth
etc.), field measurements of differential subsidence and subsurface data (e.g., lithology)
from three different cities in the Vietnamese Mekong delta. Building foundation depths
are used to derive depth-dependent subsidence rates and information about lithology and
(previous) land use is used for explaining spatial variations in subsidence rates.
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Site Description and Study Areas

For this pilot study, three cities in the MKD were selected based on the availability of
InSAR data and the possibility to do field measurements on site. The selected cities were
Can Tho, Ca Mau and Long Xuyen (Figure 2). In all three cities, large subsidence rates were
found in previous (InSAR) studies [15,35,36], and city-scale variations in subsidence are
visible, making them suitable to study urban differential subsidence. The MKD was formed
in the late Holocene when rapid transgression took place [37,38]. During this transgression,
mainly fine-grained sediments were deposited, which, together with annual flood-drought
cycles in the area, make it suitable for agricultural purposes [39,40].
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Figure 2. Vietnamese Mekong delta with the locations of the study areas and the reference areas used
by the different InSAR studies. Source: ESRI World Ocean base map.

The delta can be divided in the upper delta plain that consists mainly of fluvial
deposits and the lower delta plain, which is dominated by marine deposits [41–43]. The
cities of Can Tho and Long Xuyen are both located in the upper delta plain (Figure 2) and
the sediments found in the cities are dominated by coarser grained fluvial deposits. The
area where Long Xuyen is now located was already formed 6000 years Before Present (BP),
and the area around the current city of Can Tho was formed between 6000 and 3000 years
BP [37]. Ca Mau city is the most southern city investigated in this study and is located on
the lower delta plain (Figure 2). The Ca Mau peninsula is the youngest part of the MKD
and it was formed in the past 3000 years when large amounts of fine-grained sediments
entered the South China Sea via the Mekong River, which were moved westwards due to
the dominant longshore current along the coastline [37,44,45]. Ca Mau city was built on
top of the fine-grained Holocene sediments, which mostly consist of organic clay but also
some clay and silty clay up to a depth of 20 m [40].
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2. Materials and Methods
2.1. InSAR Data Collection

Displacement results from PSI-processed InSAR data are estimations of the true dis-
placement time series with uncertainties. PSI algorithms differ in various properties, like
assumptions on spatial and temporal correlations and filters to reduce orbital and atmo-
spheric errors. As a result, different PSI algorithms will not result in the same displacement
estimations, even when applied to the identical dataset. This is highlighted by the study of
Raucoules et al. (2009) [46], in which eight teams independently created an InSAR dataset
for a mining area in France without additional information about the site, resulting in eight
different vertical velocity datasets. By combining the results of different (InSAR-based)
studies, a better weighted estimation of the actual subsidence can be made [47]. Therefore,
in this study we combine the data from three InSAR-based velocity estimates to study
differential subsidence.

The three InSAR-based vertical velocity datasets that were used in this study were all
derived from Sentinel-1 satellite data but processed by two different institutes (Table 1).
Two of the InSAR-based vertical velocity datasets were created for two activations of the
Copernicus Emergency Management Service (EMS), respectively referred to as EMSN57
and EMSN62 [35,36]. The third dataset was created by the Karlsruhe Institute of Tech-
nology (KIT) and is referred to as KIT in this study. This dataset was processed with a
multistack small baseline approach (multi-SBAS), based on the StaMPS PSI processing
package [34,48]. For this study, no particular processing steps were carried out with respect
to the atmospheric phase component, as only differential displacement rates are considered
over small distances up to maximum of a few hundred meters. By only considering average
displacement rates over the whole period, any residual atmospheric phase components
are reflected in the displacement accuracy, as given in Table 1. The EMSN57 InSAR covers
both Ca Mau and Long Xuyen and EMSN62 and KIT cover all three cities (Table 1). The
presumed stable areas of no vertical movement used as reference to create each velocity
dataset differ between each dataset (Figure 2). EMSN62 and KIT both use the Óc Éo outcrop
in the northwest of the delta, but KIT and EMSN57 also use local reference points (Figure 2).
The InSAR-derived displacements were converted from line of sight (LOS) to the vertical
displacements under the assumption of no horizontal displacement [35,36].

Table 1. Specifications of the Copernicus EMS Risk & Recovery Mapping Activations 57 and 62 (EMSN57, EMSN62), and
KIT InSAR-based velocity datasets.

Dataset Reference Coverage/Spatial
Resolution Temporal Coverage Satellite Estimated Accuracy

KIT
(unpublished)

Cities of Ca Mau, Long
Xuyen and Can Tho

2015–2020 for Ca Mau
2017–2020 for Long Xuyen

and Can Tho
Sentinel-1

3–5 mm local scale,
larger error for delta

scale

EMSN57
(https://emergency.cope
rnicus.eu/mapping/list-o
f-components/EMSN057)

Cities of Ca Mau, Long
Xuyen and Rach Gia

November 2014–September
2018 Sentinel-1

Approximately 95.8%
in Ca Mau and 98.1% in

Long Xuyen

EMSN62
(https://emergency.cope
rnicus.eu/mapping/list-o
f-components/EMSN062)

Delta wide

23 November 2014–31
January 2019 (descending),
13 March 2017–26 January

2019 (ascending)

Sentinel-1
Delta scale 5–8 mm.
Local scale (up to
10 km) 3–4 mm

A cross-comparison was done to see how the different InSAR-based vertical velocity
datasets correspond with each other. For each individual InSAR-based dataset, vertical
velocity data were retrieved from PS points located on the studied buildings and from PS
points located on the ground surface level surrounding these building (further explanation
in Appendix A). From this velocity data, both average absolute vertical velocities from the

https://emergency.copernicus.eu/mapping/list-of-components/EMSN057
https://emergency.copernicus.eu/mapping/list-of-components/EMSN057
https://emergency.copernicus.eu/mapping/list-of-components/EMSN057
https://emergency.copernicus.eu/mapping/list-of-components/EMSN062
https://emergency.copernicus.eu/mapping/list-of-components/EMSN062
https://emergency.copernicus.eu/mapping/list-of-components/EMSN062
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buildings and surroundings and the average difference in vertical velocity were calculated,
defined as:

Difference in vertical velocity = vertical velocity surroundings − vertical velocity building (1)

The absolute and relative velocities from the EMSN57 and KIT datasets almost showed
a perfect fit with average velocity offsets smaller than 1 mm/year between the two datasets.
The absolute velocities from the EMSN62 InSAR-based dataset are on average ~5 mm/year
higher than the velocities from the KIT and EMSN57 datasets. The difference in velocity
between the datasets was lower for the movement of the buildings (~3 mm/year) than
for the surroundings (~8 mm/year). In addition, the spread in the offset was higher for
the surroundings. This indicates that larger absolute vertical movements result in a larger
offset and more uncertainty in this offset between the EMSN62 velocity dataset and the
EMSN57 and KIT velocity datasets. Consequently, the relative velocity will also show
an offset, with ~5 mm/year higher velocity rates for the EMSN62 velocity dataset (See
Appendix B for a detailed overview of the dataset comparison).

The aim of this study is to identify differential subsidence and link this to other data
known about buildings and their surroundings, e.g., year of construction, previous land
use, depth of piled foundation and subsurface composition. Because the differences in
subsidence studied in this research are relative, the absolute offsets between the three
datasets, and uncertainties herein, are less important than the offsets in relative velocities.
The relative velocities in all three datasets show the same trends, meaning that buildings
with low vertical velocities in one dataset also have low vertical velocities in the other two
datasets, but possibly with an absolute offset. Considering this and the lack of absolute
vertical velocity measurements for validation, the vertical velocity data of the separate
InSAR-based datasets were combined into one ensemble dataset. This resulted in a denser
coverage of the subsidence signal and therefore gives a more complete view of the dif-
ferences in subsidence rates. By combining the datasets, a single outlier in the vertical
velocity of a dataset or in the selection of the PS points of a certain location, is averaged out
by the data points from the other datasets. The error margin of the combined dataset is
5 mm/year, since the error of the individual datasets is estimated to be <5 mm/year on
a local scale (Table 1) and because the offset between the InSAR-based velocity datasets
was approximately 5 mm/year as well, meaning that differences in subsidence rates larger
than 5 mm/year reflect actual significant differential subsidence.

Within the three selected cities, the vertical displacement rates were analyzed, and
buildings were selected of which the vertical movement was notably different from its
surroundings (Figure 3). Additionally, the selected structures were large enough to be
identified in the field. The InSAR datasets used for choosing the measurement locations
were primarily EMSN57 for Long Xuyen and Ca Mau and EMSN62 for Can Tho since Can
Tho was not covered by the EMSN57 survey. EMSN62 data were used to supplement the
data for Long Xuyen and Ca Mau.

In Figure 4, an example is given of how differential subsidence can be identified
using InSAR-based displacement and velocity data, using data from the PS points on
the convention center in Ca Mau and its surroundings. The displacement time series
gives insight in the time depended vertical movement, showing that it is not perfectly
constant. In this research, the average vertical velocity was used to reduce the influence of
movements over short time periods.
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2.2. Field Data

A field campaign was conducted to gain insight into the actual differential subsidence
occurring in the three studied cities. During this survey, we directly measured the observed
vertical offset formed by differential subsidence between buildings and their surroundings
and collected relevant constructional information about each individual building. This
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information included the year of the construction, the height of the buildings, the piled
foundation depth, and the previous land use of the area for each building (Appendix C).
This data, when available, was provided either by the owner of the building or by the
Department of Construction of the concerning district.

The observed vertical offset between a building and its surroundings, i.e., the area
directly next to the building up to the street or next building, is defined as the vertical
distance between the current level of the ground surface and the original level of the
ground surface at the time the building was constructed, which we named the ‘Starting
Point’ (SP) and which is often still visible at the building (Figure 5). Using a theodolite
with an accuracy of ~1 mm, the distance between the SP and current ground surface was
measured along transects perpendicular to the SP (between 4 and 30 m long), resulting in
multiple measurements per transect (Figure 6). The offset between the original and current
level of the ground was divided by the age of the building to obtain the relative annual
vertical velocity that the ground has presented with respect to the building, assuming a
linear temporal subsidence rate.
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Because only relative movements can be derived from the field measurements, the
field-based dataset cannot be used as ground-truthing data for the velocities of individual
PSI points from the InSAR-based velocity datasets. Still, the field measurements give an
indication of the minimal differential subsidence that has occurred since the construction
of the building at the studied locations. The main limitation of the field measurements is
that the identification of the differential subsidence that has occurred was done visually,
making it more prone to over-, and underestimations, for example due to external factors
like renovations or water management (Figure 7).
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Additionally, the year of construction was used to calculate the average annual ver-
tical velocity from the measured offset, as it is assumed that the offset was formed after
construction. However, the offset can start forming during construction as well, which
would mean it formed during a longer period, and using the final year of construction will
then lead to an overestimation of the differential subsidence rate. A solution would be to
repeat the measurements on a yearly base, using fixed benchmarks as reference points (SPs)
on the buildings, because this gives a better insight of the differential subsidence occurring
annually and modifications to the current ground surface level are noted.

For the analysis, buildings were studied from different parts of each of the three cities,
including 44 buildings in Can Tho, 32 in Ca Mau, and 23 in Long Xuyen. Because some
of the buildings or their direct surroundings lacked sufficient InSAR-based velocity data,
these buildings were left out of the results, leaving 34 buildings in Can Tho, 28 in Ca Mau,
and 23 in Long Xuyen.

3. Results

To identify possible causes for the observed differential subsidence between buildings
and their surroundings, the characteristics of the individual buildings (e.g., height, age,
piled foundation depth etc.) were compared to the vertical velocities of the buildings. We
found a correlation between the differential subsidence occurring and the existence of a
piled foundation underneath a building (Figures 8 and 9). Nearly all studied buildings
have a (known) piled foundation, whilst the surroundings of these buildings are expected
not to have a piled foundation underneath them. For the other building characteristics, we
did not find a correlation with observed differential subsidence between the buildings and
their surroundings.

The differential subsidence occurring between buildings with piled foundations and
the surroundings without piled foundations (Table 2, Figure 8), indicates that there are
factors contributing significantly to subsidence in the upper layers of the subsurface, above
the bottom of the piled foundations. Figure 9 further illustrates the difference in vertical
movement between the studied buildings and their surroundings, with the piling depths
of each building included to visualize correlations between piling depth and the vertical
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movement of each building. A correlation was found between observed urban differential
subsidence and the differences in piled foundation depths. However, this was not a linear
correlation with deeper piling depths causing less subsidence, which would be expected
if the amount of subsidence taking place is distributed equally through the subsurface
(increasing linearly with depth), but other factors contributing to the subsidence rate, e.g.,
land use, groundwater extraction and lithology. For example, in Ca Mau most piling
depths between 18 and 38 m reach into the same sandy lithostratigraphic unit, which acts
as foundation layer, explaining why there is little variation in movement between buildings
with different piled foundation depths. On the other hand, in Long Xuyen, it is visible that
buildings with a shallower piled foundation (<12 m deep) are subsiding at higher rates
(>5 mm/year) than the buildings with deeper piled foundations (with the exception of
building I, Figures 8A and 9C). This is an indication that between 12 and 22 m deep more
subsidence is occurring, only affecting the shallow piled foundations. Additionally, when
buildings are located close to each other but have different piling depths often the building
with the deepest piled foundation shows less subsidence than the building with shallower
foundation, for example buildings E and LL in Can Tho, with building LL (piling depth
40 m) subsiding 5 mm/year less than building E (piling depth 15 m).

Table 2. Summary of the number of buildings showing little subsidence and the number of locations
at which differential subsidence is occurring between the building and the surroundings, in each city
and for all cities combined (Total).

Can Tho Ca Mau Long Xuyen Total

Total number of buildings 34 28 23 85
Buildings with average subsidence

rate below 5 mm/year 27 22 12 61
(71.8%)

Locations with differential
subsidence (>5 mm/year) 30 27 15 72

(84.7%)
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Figure 8. (A) Locations of measured buildings and InSAR-based vertical velocities in Can Tho, Ca Mau and Long Xuyen.
For each location, the average vertical velocity of the building (inner circle) and surroundings (outer circle) is shown when
this was available from the Ensemble InSAR velocity dataset. When the vertical velocity of the surroundings was unknown
only the velocity of the building is shown. The buildings are named according to their vertical velocity, with building A
having the highest velocity. (B) Example of the inner and outer circle representing the building and surroundings vertical
velocity rate. Base map: ESRI Imagery base map.
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Figure 9. Boxplot showing for each building in (A) Can Tho, (B) Ca Mau and (C) Long Xuyen the vertical velocity data,
based on the ensemble data of the KIT, EMSN62 and EMSN57 datasets. The buildings are sorted and named by mean
vertical velocity from high (left, building A) to low velocities (right). The box extends between the 25th and 75th percentile
(Q1 and Q3) of the data, with the central mark being the median. The maximum length of the whiskers is determined by
taking 1.5 times the interquartile range (i.e., Q3−Q1). Datapoints outside this range are marked as outliers (+). The blue
lines show the average velocities from the separate datasets. The red line shows the average velocity from the combined
InSAR dataset of the reference area around the building. Buildings without velocity data from reference surroundings are
excluded. Underneath each building the depth of the piled foundation is given, both by the length of the columns and
their color.

4. Discussion

The analysis of the InSAR-based velocity data showed that from the 85 analyzed
buildings 72 subsided significantly less than their surroundings, with differences in sub-
sidence rates up to 30 mm/year. To find the cause of this urban differential subsidence
the correlation between multiple building characteristics and the vertical movement of the
buildings was analyzed, with only the piling depth showing a strong correlation. However,
piling depth or the existence of a piled foundation is not the only source for differential
subsidence, but rather it is the result of a combination of differences in piled foundation
depths and the contribution of other factors such as prior land use, groundwater extraction,
lithology, lithological composition of the subsurface and its properties. In the following
sections these main contributors are discussed, explaining how each individual factor plays
a role in the urban differential subsidence occurring in the studied cities.

4.1. Piled Foundation Depths and Building Sizes

From the studied correlations between building characteristics and building subsi-
dence rate, the only clear correlation found was that buildings with a piled foundation
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are subsiding less than the surroundings without piled foundation, which is in line with
our expectations and findings from studies in delta cities elsewhere, e.g., Bangkok [24].
We also studied whether differences in building weight caused a difference in subsidence
rates between buildings as well. The estimated size (based on building height and area)
of the buildings was used as a proxy for the building weight, for which we assumed
larger buildings to be relatively heavier than smaller buildings, subsequently causing more
loading and hence more subsidence. However, we found no clear correlation between
the estimated building sizes and the subsidence rates of the buildings, perhaps because
building size does not directly reflect actual weight and subsurface loading of the build, but
also because other factors such as piled foundation depth, loading, number of piles used
for the foundation and lithological composition of the subsurface also influence subsidence
rate. We expect the effect of these factors to be the explanation for the observed differences
between buildings with similar deep foundations (Figure 9).

Individual building movement is also dependent on a temporal response related to
the construction of a new building. The loading effect is largest in the beginning, when the
weight is added on top of the surface (in this case when a building is built) and decreases
over time [49,50], when a new equilibrium state is formed between the total stress added
to the subsurface by loading, and the pore water pressure [51]. This means not only the
weight of the building but also the building year needs to be considered when studying
the effect of loading on the building’s subsidence rate. Furthermore, the stability of the
piled foundation is often not solely based on the stability of the layer in which the piles
are founded but also on the cohesion of the pillar to its surrounding sediments. Therefore
subsidence taking place in layers surrounding the pillars causes a downward pull which
may cause a downward movement of the building as well [52]. This means the whole
sediment column above the piled foundation depth needs to be considered to understand
the relation between the effect of loading, piled foundation depth, type of foundation and
the subsidence rate of the building.

4.2. Lithology

The occurrence of differential subsidence is strongly dependent on the local lithology
and its associated properties. As a result, subsurface heterogeneity makes some areas
more susceptible to subsidence than others and can cause differences in subsidence rates
throughout a city [28,29]. For example, buildings I, U and R in Long Xuyen all have a
piling depth of 35 m and similar vertical movement of their surroundings, but building I
is subsiding with ~12 mm/year and buildings R and U with ~3 mm/year. In terms of
building size (and presumably weight), I is actually the smallest building. In this case the
difference in subsidence rate between these building could be explained by a difference in
subsurface lithology and geomechanical properties. Buildings R and U in Long Xuyen are
located close together, whilst building I is located further south (Figure 8). Lithological data
show that in the area around R and U the upper ~40 m of the subsurface contains coarser
grained sediments than the upper ~40 m beneath building I, which probably explains
the difference in observed subsidence rates, as finer-grained sediments are more prone to
compaction [53].

Next to horizontal spatial variability in lithology, depth-dependent variability is also
important for understanding urban differential subsidence. A detailed mapping of the
subsurface stratigraphy and geomechanical properties is really useful to interpret these
effects on the observed differential subsidence [54]. On a larger, more regional scale it
is important to consider the entire subsurface to understand the large-scale variations in
subsidence rates, not just the upper ~50 m in which the piled foundations are found. For
example, in Ca Mau the overall observed subsidence rates were higher than in Can Tho
and Long Xuyen. This can be explained by the increasing presence of highly compressible,
fine-grained Holocene deposits towards the south in the Ca Mau peninsula, which causes
higher natural compaction rates and increased the overall subsidence potential of this area
(Figure 10) [40]. Additionally, Long Xuyen is the only city in which we studied buildings
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with piling depths shallower than 15 m deep. As their short piling length does not reach
the deeper, less compressible coarse-grained deposits, this causes them to subside more
despite having the piled foundation (Figure 11). In Can Tho and Ca Mau, nearly all the
studied buildings have deep piled foundations that reach the coarse-grained sediments.
This explains why in Can Tho and Ca Mau most of the studied buildings show almost
no vertical movement (Figures 9 and 10), but in Long Xuyen some, with shallow piled
foundations, do.
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Figure 10. Schematic representation of the shallow subsurface of the cities Ca Mau, Can Tho and Long Xuyen. The layer
of soft, fine-grained sediments is thicker in Ca Mau, causing overall more subsidence in this city compared to Can Tho
and Long Xuyen,. The shown piling depths indicate the range of piling depths found for the studied buildings in each
city. The buildings with a piled foundation in the soft, fine-grained sediments are subsiding faster due to compaction of
underlying soft sediments. In case the piled foundation reached into the coarser sediments, difference in depth of the
piles within the coarser sediment did not result in much vertical movement variation. N.B., The y-axis is representative for
subsurface sediments and piled foundations, the vertical displacement of the surface level and the buildings is not scaled
and exaggerated for visualization purpose.

4.3. Land-Use Change and Drainage

Variation in land use and land-use history may also cause urban differential subsi-
dence, which is also seen at a larger delta scale in the Mekong delta, with different land-use
types experiencing different rates of subsidence [26]. Although it is difficult to prove a
direct relationship between previous land use and building velocity based on the data
of this study, we did find indications for a relationship between previous land use and
difference in subsidence rates for building surroundings. In the case of Long Xuyen, the
buildings E, G, H, J, K (Figure 9) all show similar subsidence rates and are all located in
areas that used to be rice fields (see Appendix C). Minderhoud et al. (2018) [26] suggested
that often less shallow subsidence occurs in areas with dry-season rice fields because the
phreatic water level is kept high all year by irrigation. Likely the change of land use
towards an urban area resulted in a lowering of the phreatic water table, which caused
additional loading as the shallow sediments are no longer supported by water, resulting
in more subsidence in this area than in others without this land-use history. Another
example are the fast-subsiding surroundings of buildings A, H, T, U and AA in Ca Mau
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and building V in Long Xuyen (Figures 8 and 9) which are all constructed in areas that used
to be ponds or lakes (Appendix C). As lacustrine sediments consist of soft fine-grained
and often organic-rich material [53], dewatering of these areas will induce higher rates
of compaction (Figure 11). Additionally, spatially variable shallow drainage and deeper
groundwater extraction within the same land use type, for example within urban areas,
can also cause differential subsidence rates [26].
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Figure 11. Schematic representation showing an example of how land-use change, in this case a lake drained to create
space for constructions, can locally result in additional subsidence. (a,b) During natural conditions, the lake is gradually
filled with fine-grained, compressible sediments, during which some initial compaction of the lake sediments occurs. (c)
Ditches are created that drain the lake and its surroundings, resulting in a lowering of the phreatic water table and increased
compaction of the soft sediments. (d) A building is constructed with a piled foundation resting on the deeper coarse-grained
sediments. (e) Compaction of the shallow unconsolidated sediments continues, resulting in differential subsidence.

4.4. Recommendations for Future Studies to Unravel Urban Differential Subsidence

Here we discuss several recommendations to improve the presented approach of this
study in order to use InSAR-based vertical velocity data and field surveys to assess urban
differential subsidence. Most of the studied buildings had a piled foundation that seemed
to give them more stability than their surroundings. To analyze this relation between piled
foundation depth and subsidence rates, buildings with an even deeper foundation (>40 m)
and buildings without foundations should be included as well. Differential subsidence be-
tween structures with different piling depths furthermore provides information to analyze
depth-dependent subsidence throughout a city. In addition, other construction information
such as the number of pillars and their size and shape can also be included to determine
how the type of construction contributes to the stability of a building, apart from the piling
depth. With a larger dataset including multiple buildings with the same piling depth,
it is possible to study the effect of other factors such as loading as well. Moreover, it is
recommended to include geodetic field measurements, e.g., by differential GPS, to validate
and improve the subsidence estimates from InSAR-based datasets, because integrating
high-resolution data is a powerful tool for identifying differential subsidence and depth-
dependent subsidence [49]. Additionally, using the estimated height of the PS point from
the InSAR datasets can help improve the separation of the PS points on buildings and the
PS points on the ground surrounding the buildings [55].

Gathering detailed data about the local urban subsurface will be valuable input to
understand local variations in subsidence rates caused by differences in lithology and
geotechnical properties. Such information can be used to determine in which type of sedi-
ment buildings have their foundation and how compressible these sediments are. It may
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also provide input for a numerical model based on this subsurface reconstruction, which
includes natural compaction, shallow groundwater extraction and the effects of loading.
Similar models have been created for example to reconstruct natural compaction in the
Mekong delta [40] or the Mississippi delta [56], for studying the effects of lowering the
phreatic groundwater in the coastal-deltaic plain of the Netherlands [25] or modelling sub-
sidence caused by groundwater extraction in the Mekong delta [18]. Because the processes
causing subsidence can occur simultaneously and can influence each other, integrating
them into a single model results in a more complete estimate of the subsidence rate. Such a
modelling study can furthermore help to understand depth-dependent subsidence and
quantify and predict urban differential subsidence. Lastly, accounting for land-use history
prior to urban expansion may also help to explain local differences in subsidence rates,
as previous land-use practices could still have effects on present and future subsidence
rates [26].

5. Conclusions

The integrated approach used in this research highlights the potential for unravelling
causes for urban differential subsidence by combining different types of data and analyses.
Datasets on vertical displacement based on field measurements or InSAR-derived data
give a good estimate of the magnitude of subsidence taking place in the Mekong delta.
This study pilots the approach for three cities in the Mekong delta where velocity data from
multiple sources were combined with field data and information on building characteristics
(e.g., building height, year of construction, piling depth) to identify correlations between
these characteristics and the occurrence of differential subsidence.

Piled foundations play an important role in the stability of buildings and differential
subsidence within the cities Can Tho, Long Xuyen, and Ca Mau. This also shows the poten-
tial for using differential subsidence rates and foundation depth to assess depth-dependent
subsidence in a city. Nearly all buildings in this study that have a piled foundation showed
less vertical movement compared to their surroundings, with differences up to 30 mm/year.
The relative stability of buildings with deeper foundations suggest that there is a significant
amount of subsidence taking place in the shallow subsurface (up to 20 m deep depending
on the city). The additional subsidence that is occurring in the surroundings originates
from the shallow subsurface between the depth of the piled foundation and the surface.
This provides valuable insights which may help to distinguish between regional subsi-
dence signals, like deep groundwater extractions (beneath the piled foundation depths)
and shallow local subsidence in an urban setting. The magnitude of the differential sub-
sidence may also help to identify the contribution of shallow subsidence due to factors
like shallow drainage or groundwater extraction and infrastructural loading, to the total
subsidence signal. Furthermore, a possible relationship was found between areas with
higher subsidence rates and their previous land use within urbanized areas in Ca Mau
and Long Xuyen, which underscores the findings of a previous work that showed that
land use and land-use history are important factors that determine subsidence within the
delta [26]. More information available on previous land use, drainage and groundwater
extraction, local lithology and detailed information about buildings, e.g., piling depths,
size, and building year, will further increase our capability to understand the origin of the
urban differential subsidence, in the Mekong delta and in urban setting in general.

Unraveling differential subsidence helps to gain insight in the magnitude of drivers
and processes of depth-dependent subsidence in the shallow subsurface. This knowl-
edge will help to assess how much of this subsidence is occurring naturally, how much
occurs due to anthropogenic causes such as infrastructural loading and the extraction of
groundwater and provides useful input for numerical models to assess and predict future
subsidence. This will generate valuable knowledge for policymakers as it will help them
make reasonable scientific-based decisions to manage and prevent future land subsidence
in the urban environment.
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Appendix A. Selection of Individual Building Data

The vertical velocity rates of both the studied building and their direct surroundings
were needed to study the differential subsidence between them. PS points belonging to the
buildings and or to the surroundings were extracted from the InSAR-based velocity datasets.
ArcGIS pro was used to extract the PS points on each building and their surroundings. Each
InSAR dataset was laid on top a satellite visual image from Sentinel-1. The points belonging
to a certain building were selected manually by creating polygons of the buildings as shown
in Figure A1A. Next, PS points which were located near the building and situated on a
presumably unfounded area e.g., the road or a square were selected (Figure A1A). These
PS points are the reference points representing the ground movement of the surroundings
of the building. The data of the PS points for each building and their surroundings were
clipped out of the original InSAR datasets and exported to separate Excel files. Velocity data
were subsequently processed using MATLAB 2018b. Likewise, an approximation of the
area of the structures was obtained from ArcGIS pro, drawing a polygon of each building
based on the Sentinel-1 satellite image. The size of the polygons was calculated using the
UTM coordinate system, giving an estimation of the area covered by each structure.

https://emergency.copernicus.eu/mapping/list-of-components/EMSN062
https://emergency.copernicus.eu/mapping/list-of-components/EMSN062
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misinterpretations, reference points were chosen carefully using PS points on larger areas 
of road or squares so that other reflecting objects are further away. 

  

Figure A1. (A) Selection of InSAR-based velocity data from GIS, for a building in Ca Mau. (B) Offset shown by PS points
compared to a power pylon in Long Xuyen. Source base map: Open Street Map.

The EMSN57 InSAR dataset georeferencing was slightly misaligned when comparing
to the satellite image. The location of the PS points in this dataset was therefore corrected
using the location of stand-alone power pylons. The data from EMSN57 were moved
separately for Long Xuyen and Ca Mau. For the EMSN62 and KIT datasets, the data
were used in its original position and the possible offset of the PS location was kept
in mind when selecting the PS points belonging to building and their reference areas
(Figure A1B). However, the offset caused difficulties especially for choosing reference
points, as it was more difficult to see if a point belonged to the road or a building. To reduce
misinterpretations, reference points were chosen carefully using PS points on larger areas
of road or squares so that other reflecting objects are further away.

Appendix B. Analysis of the Vertical Velocity Data

Appendix B.1. Introduction

Four different vertical velocity datasets were used to study urban differential subsi-
dence rates in the Vietnamese Mekong delta, which made it possible to perform a cross
comparison between the different velocity datasets. The four datasets included three PS-
InSAR-based vertical velocity datasets that were compared to each other prior to comparing
them to the fourth dataset, which contains relative vertical velocities between buildings
and their surroundings, calculated by dividing the offsets measured in the field by the
buildings age.

Appendix B.2. Methods

To quantify the correlations between the different velocity datasets, multiple corre-
lation tests were performed and the offset between the datasets was calculated. In this
section the different equations and correlation tests used are described.

Appendix B.2.1. Pearson Correlation Test

The Pearson correlation test indicates if a correlation is linear or not. The rho indicates
how strong the correlation is, 0 means no correlation, −1 means a perfect negative correla-
tion and 1 means a perfect positive correlation. The p-value indicates the significance of
the correlation, with lower values representing a higher significance. A p-value lower than
0.05 is assumed to be significant. The Pearson rho of columns a and b from variables x and
y is calculated using Equation (A1):

rho(a, b) =
∑n

i=1(xa,i − xa)(yb,i − yb){
∑n

i=1 (xa,i − xa)
2 ∑n

j=1 (yb,j − yb)
2
}1/2 (A1)
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And the corresponding p-value is calculated by performing a two tailed t-test on the
T-value and the degree of freedom from the datasets (df = n − 2). The T-value is calculated
using Equation (A2):

T-value = rho ∗
√

(n− 2)

(1− rho)2 (A2)

Appendix B.2.2. Spearman’s Rank Order Test

A Spearman’s rank order test can be used to show if there is a monotonic correlation
between two datasets. A monotonic relationship exists if when one variable is increasing
the other is increasing as well, or if one is decreasing the other is decreasing as well. The
Spearman’s correlation is very similar to the Pearson correlation, but it uses the rank of the
values in a dataset rather than the actual value itself to perform the correlation test. First,
the data of both variables are sorted and given a rank number (1 − n, with n the being the
length of the variables). Then a Pearson correlation, using Equation (A1), is performed
to show if there is a linear correlation between the ranks. Again, the rho indicates how
strong the correlation is, 0 means no correlation, −1 means a perfect negative correlation
and 1 means a perfect positive correlation. The p-value indicates the significance of the
correlation, with lower values representing a higher significance. A p-value lower than 0.05
is assumed to be significant and is calculated using the two tailed T-test using the T-value
calculated with Equation (A2).

Appendix B.2.3. Linear Fit (From MATLAB 2018b)

The function fitlm (from MATLAB 2018b) was used to fit linear trends to different
correlations. This function fits a linear trend, y = ax + b, to the data and presents the R2,
which indicates the significance of the linear trend. The R2 varies between 0 and 1 with
a higher R2 indicating a stronger significant correlation. The R2 indicates which portion
of data is explained by the linear model that was fitted. In this case the adjusted R2 was
used, which considers the total size of the data and corrects the R2 for this. Because not
all datasets had the same size it was better to use this adjusted R2. The adjusted R2 is
calculated using Equation (A3):

R2
adj = 1−

(
n− 1
n− p

)
SSE
SST

(A3)

In which SSE is the sum of the squared error, SST is the sum of the squared total, n is
the number of observations, and p is the number of regression coefficients.

Appendix B.2.4. Calculating Mean Offset

The mean offset (∆) between dataset A and B is calculated following Equation (A3)
First, the difference in average vertical velocity is calculated for each separate building,
surrounding area or for the relative velocity at each location. This is done for the total
number of locations for which data are available in both datasets (n), e.g., when dataset A
contains data for 20 buildings, but dataset B only contains data for 16 buildings as velocity
data for some buildings are missing, n will be 16. The sum of all the calculated differences
between A and B is divided by n to obtain the mean offset between dataset A and B.

∆ =
∑n

i=1(ai − bi)

n
(A4)

The standard deviation of the offsets was calculated following Equation (A4) in which
∆i = ai − bi, ∆ is the mean offset and n is the number of locations for which both ai and
bi exist.

σ =

√
∑n

i=1 (|∆i − ∆|) 2

(n− 1)
(A5)
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Appendix B.3. Results

This section gives an overview of the comparisons between the velocity data obtained
from the different velocity datasets, first comparing the individual InSAR-based velocity
datasets to each other and subsequently comparing the InSAR-based velocity datasets
to the field-based velocity dataset. The InSAR-based vertical velocity data used in these
comparisons are the selected data from the buildings and their surroundings, collected
using the method described in Appendix A.

Appendix B.3.1. Comparing the EMSN57 and KIT Vertical Velocity Datasets

The EMSN57 and KIT InSAR-based vertical velocity datasets correlate quite well when
comparing all absolute vertical velocities of the selected buildings and their surroundings
in Ca Mau and Long Xuyen together (Figure A2). The absolute vertical velocities from
the surroundings correspond less well than those from the buildings; however, combining
all these absolute velocities does show a clear linear trend indicated by the Pearson rho
of 0.88 and the R2 of 0.77 for the linear fit (Table A1 and Figure A2). The correlations are
weaker for the data from Ca Mau than that from Long Xuyen. The absolute velocity data
from Ca Mau shows the EMSN57 velocity data to be slightly higher than the KIT velocity
data, whilst in Long Xuyen it is the other way around. Combining the data from both cities
shows that the linear fit is close to a perfect fit but shows a slight offset with the velocities
from the KIT data being 0.49 mm/year lower than the velocities from the EMSN57 dataset.

The relative velocities of the surroundings compared to the buildings are aligning
very well between the KIT and EMSN57 dataset (Figure A2 and Table A1). The Pearson rho
is 0.81 for the relative data, and the linear fit has a R2 of 0.65. The linear fit shows that there
is slight offset with the KIT velocity data being 1.09 mm/year higher than the EMSN57
velocity data, but otherwise the two datasets align very well. The relative velocities are
higher in Ca Mau than in Long Xuyen according to Figure A3. The average offsets are
small for the dataset with Long Xuyen and Ca Mau combined, −0.88 mm/year and σ is
4.91 mm/year for the absolute velocities and 1.36 mm/year and σ is 6.87 mm/year for the
relative velocities (Table A2). The standard deviations are of a similar magnitude as the
uncertainty of an individual InSAR velocity dataset which is approximately 5 mm/year.
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Figure A2. Comparison between the average absolute vertical velocities extracted from the KIT
InSAR-based velocity dataset (x-axis) and EMSN57 InSAR-based velocity dataset (y-axis). Both the
velocity from the buildings (*) and the surroundings (x) are plotted. The data from Ca Mau (blue)
and Long Xuyen (yellow) are included in the linear fit (dashed black line). The equation belonging to
this fit is y = 0.97x + 0.49 with R2 = 0.77. The red dotted line shows a one-to-one perfect fit between
the datasets.
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Table A1. Results of statistical analysis of Ca Mau and Long Xuyen together between the velocity data of the KIT and
EMSN57 InSAR-based datasets. Ntot shows the total number of buildings included in the dataset, and n shows the number
that was used for the correlations. Ntot for all absolute data is twice the normal Ntot because this is the data from the
buildings and surroundings combined. For both Spearman’s and Pearson correlation the Rho shows the strength of the
correlation (between −1 and 1, with zero showing no correlation) and the p-value shows the statistical significance of the
correlation (p-values < 0.05 shows is statistically valid). Both the mean offset between the datasets (∆), and the standard
deviation (σ) are given. The parameters from the linear fit depict the values from y = ax + b. The R2 gives the significance of
the linear fit adjusted to n.

Dataset n Spearman’s Pearson Mean Data Offset Linear Fit

Rho p-Value Rho p-Value
∆

[mm/yr]
σ

[mm/yr]
Interception

(b)
Direction

Coefficient (a) R2

Buildings 51 0.59 5.5 × 10−6 0.86 3.6 × 10−16 −1.59 4.23 0.65 0.87 0.74
Surroundings 40 0.58 7.6 × 10−5 0.52 5.2 × 10−4 0.03 5.59 −6.08 0.70 0.26
All absolute 91 0.85 1.0 × 10−26 0.88 3.7 × 10−30 −0.88 4.91 0.49 0.97 0.77

Relative 40 0.76 1.8 × 10−8 0.81 2.0 × 10−10 1.36 6.87 −1.09 1.02 0.65
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Figure A3. Comparison between the average relative vertical velocities of the surroundings compared to the buildings
calculated from the KIT InSAR-based velocity dataset (x-axis) and EMSN57 InSAR-based velocity dataset (y-axis). The data
from Ca Mau (blue) and Long Xuyen (yellow) are included in the linear fit (dashed black line). The equation belonging to
this fit is y = 1.02x − 1.09 with R2 = 0.65. The red dotted line shows a one-to-one perfect fit between the datasets.

Appendix B.3.2. Comparing the EMSN62 and KIT Vertical Velocity Datasets

The KIT and EMSN62 InSAR-based vertical velocity datasets do show a linear cor-
relation with each other but there is an offset showing higher velocities for the EMSN62
dataset, for both the absolute and relative velocities (Figures A4 and A5 and Table A2). The
combined absolute velocity data from all three cities show a mean offset of 5.52 mm/year.
However, the mean offsets from the vertical velocities of the surroundings are always
higher than those from the buildings, being 8.74 mm/year and 2.92 mm/year respectively
for the combined city data (Table A2). Also, there is less spread, and the standard deviation
is lower for the building velocities (Table A2). Considering that the surroundings are in
general moving at higher velocities than the buildings (Figure A4), this shows that the
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offset between the two datasets increases for higher velocities, but the uncertainty of the
offset also increases.

The absolute velocities from the surroundings show the weakest correlation, similar
to the comparison between the KIT and EMSN57 velocity data, with a Spearman’s rho of
0.47 and a Pearson’s rho of 0.45. However, combined with the absolute building velocities,
the Pearson’s rho becomes 0.81 and the linear fit has an R2 of 0.65. The relative velocities of
the surroundings compared to the buildings align quite well comparing the fitted trend
between the KIT and EMSN62 dataset with the perfect fit, but with the EMSN62 velocity
data being 6.8 mm/year higher than the KIT velocity data (Figure A5 and Table A2). The
Pearson rho is 0.62 for the relative data, and the linear fit has a R2 of 0.34. The relative
velocities are highest in Ca Mau and of similar rates in Long Xuyen and Can Tho according
to Figure A5.
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surroundings (x) are plotted. The data from Ca Mau (blue), Can Tho (red) and Long Xuyen (yellow) are included in the
linear fit (dashed black line). The equation belonging to this fit is y = 1.12x − 4.31 with R2 = 0.65. The red dotted line shows
a 1-to-1 perfect fit between the datasets.

Table A2. Results of statistical analysis of Ca Mau, Can Tho and Long Xuyen together between the velocity data of the KIT
and EMSN62 InSAR-based datasets. Ntot shows the total number of buildings included in the dataset, and n shows the
number that was used for the correlations. Ntot for all absolute data is twice the normal Ntot because this is the data from
the buildings and surroundings combined. For both Spearman’s and Pearson correlation the Rho shows the strength of the
correlation (between −1 and 1, with zero showing no correlation) and the p-value shows the statistical significance of the
correlation (p-values < 0.05 shows is statistically valid). Both the mean offset between the datasets (∆), and the standard
deviation (σ) are given. The parameters from the linear fit depict the values from y = ax + b. The R2 gives the significance of
the linear fit adjusted to n.

Dataset n Spearman’s Pearson Mean Data Offset Linear Fit

Rho p-Value Rho p-Value
∆

[mm/yr]
σ

[mm/yr]
Interception

(b)
Direction

Coefficient (a) R2

Buildings 78 0.42 1.4 × 10−4 0.75 1.5 × 10−15 2.92 5.36 −3.36 0.89 0.56
Surroundings 63 0.47 1.1 × 10−4 0.45 2.3 × 10−4 8.74 8.19 −14.3 0.67 0.19
All absolute 141 0.80 1.1 × 10−32 0.81 5.0 × 10−34 5.52 7.34 −4.31 1.12 0.65

Relative 56 0.55 9.4 × 10−6 0.62 3.3 × 10−7 6.24 9.75 −6.81 0.95 0.37
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Appendix B.3.3. Comparing the EMSN57 and EMSN62 Vertical Velocity Datasets

The EMSN57 and EMSN62 InSAR-based vertical velocity datasets show a linear corre-
lation but the EMSN62 dataset has higher velocities than the EMSN57 (Figures A6 and A7
and Table A3). For the combined absolute velocities of Ca Mau and Long Xuyen together
the mean offset is 4.71 mm/year. Similar to the comparison between the KIT and EMSN62
datasets, the mean offset from the surroundings velocity data is higher (7.04 mm/year)
than the building velocity data (2.83 mm/year). The linear fit coefficient is 1.16 which also
shows an increase in offset for increasing velocities. The spread is highest, and the linear
correlations are weakest for the velocities of the surroundings (σ is 7.46 mm/year and R2 is
0.31, Table A3).

Table A3. Results of statistical analysis of Ca Mau and Long Xuyen together between the velocity data of the EMSN57
and EMSN62 InSAR-based datasets. Ntot shows the total number of buildings included in the dataset, and n shows the
number that was used for the correlations. Ntot for all absolute data is twice the normal Ntot because this is the data from
the buildings and surroundings combined. For both Spearman’s and Pearson correlation the Rho shows the strength of the
correlation (between −1 and 1, with zero showing no correlation) and the p-value shows the statistical significance of the
correlation (p-values < 0.05 shows is statistically valid). Both the mean offset between the datasets (∆), and the standard
deviation (σ) are given. The parameters from the linear fit depict the values from y = ax + b. R2 gives the significance of the
linear fit adjusted to n.

Dataset n Spearman’s Pearson Mean Data Offset Linear Fit

Rho p-Value Rho p-Value ∆

[mm/yr]
σ

[mm/yr]
Interception

(b)
Direction

Coefficient (a) R2

Buildings 46 0.58 3 × 10−5 0.87 2 × 10−15 2.83 4.94 −1.81 1.21 0.76
Surroundings 37 0.56 4 × 10−4 0.57 2 × 10−4 7.04 7.46 −12.1 0.75 0.31
All absolute 83 0.87 5 × 10−26 0.88 4 × 10−28 4.71 6.50 −2.90 1.16 0.77

Relative 34 0.60 2 × 10−4 0.75 3 × 10−7 4.14 9.79 −2.53 1.11 0.55
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the EMSN62 velocity data showing on average 4.14 mm/year higher velocities than the 
KIT velocity dataset (Figure A7 and Table A3). However, the σ is 9.97 mm/year and the 
R2 of the linear fit is 0.55, showing a larger uncertainty than the absolute velocities (Table 
A3). The relative velocities are again higher in Ca Mau than in Long Xuyen (Figure A7). 

 

Figure A6. Comparison between the average absolute vertical velocities extracted from the EMSN57 InSAR-based velocity
dataset (x-axis) and EMSN62 InSAR-based velocity dataset (y-axis). Both the velocity from the buildings (*) and the
surroundings (x) are plotted. The data from Ca Mau (blue) and Long Xuyen (yellow) are included in the linear fit (dashed
black line). The equation belonging to this fit is y = 1.16x − 2.90 with R2 = 0.77. The red dotted line shows a one-to-one
perfect fit between the datasets.

In the comparison of the relative velocities of the surroundings compared to the
buildings as similar increase in offset with an increase in vertical velocity is visible, with
the EMSN62 velocity data showing on average 4.14 mm/year higher velocities than the
KIT velocity dataset (Figure A7 and Table A3). However, the σ is 9.97 mm/year and the R2

of the linear fit is 0.55, showing a larger uncertainty than the absolute velocities (Table A3).
The relative velocities are again higher in Ca Mau than in Long Xuyen (Figure A7).
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Figure A7. Comparison between the average relative vertical velocities of the surroundings compared to the buildings
calculated from the EMSN57 InSAR-based velocity dataset (x-axis) and EMSN62 InSAR-based velocity dataset (y-axis). The
data from Ca Mau (blue) and Long Xuyen (yellow) are included in the linear fit (dashed black line). The equation belonging
to this fit is y = 1.11x − 2.53 with R2 = 0.55. The red dotted line shows a 1-to-1 perfect fit between the datasets.
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Appendix B.3.4. Comparing Field-, and InSAR-Based Velocity Datasets

From the offsets measured in the field result only the relative vertical movement of
the surroundings compared to the buildings can be calculated. Therefore, only relative
velocities could be compared to the InSAR-based velocity datasets. The comparison of
these relative vertical velocities obtained from the InSAR-based velocity datasets and the
vertical velocities calculated from the offsets measured in the field, shows that there is a
weak correlation between these datasets (Figures A8–A10 and Tables A4–A6). Combining
the velocity data from each city does show a significant positive trend according to the
Spearman’s rho (0.26 for the KIT and EMSN57 velocity datasets and 0.41 for the EMSN62
velocity dataset (Tables A4–A6). Possibly, the lower p-values, indicating a stronger statistical
trend, are due to the higher number of values tested (n).

Separating the data for each city shows that the velocity data from Long Xuyen show
the best correlation between the field-, and InSAR-based relative velocities according to the
low p-values (Tables A4–A6). However, the linear trend fitted indicates that the velocities
based on the field measurements are three times higher than the InSAR-based relative
velocities. The mean offset from the Long Xuyen data shows that the field-based relative
velocities are ~24 mm/year higher than those from the InSAR-based datasets, whilst in
Can Tho and Ca Mau the field-based velocities are ~5 mm/year higher according to the
EMSN57 and KIT velocity datasets and ~1 mm/year lower according to the EMSN62
velocity dataset. This shows that in Ca Mau and Can Tho the relative velocity rates of the
field-based velocity dataset and the InSAR-based velocity dataset are more similar. This is
also visible in Figures A7 and A8 (Ca Mau and Can Tho) where the data points are closer
to the perfect fit line, whereas, in Figure A9 (Long Xuyen), the data points are further away
from this line.
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Figure A8. Comparison between the average relative vertical velocities of the surroundings compared to the buildings in Ca
Mau calculated from the offsets measured in the field (x-axis) and calculated from the InSAR-based velocity dataset (y-axis).
The velocity datasets from KIT (blue), EMSN57 (yellow) and EMSN62 (red) are included and the colored dashed lines
and equations show the corresponding linear trends between the separate InSAR velocity datasets and the field velocity
datasets. The dotted black line shows the one-to-one perfect fit between field-, and InSAR-based relative velocities. All
InSAR datasets show a weak trend with the velocity dataset, but most data points are close to the perfect fit line, indicating
a similarity in the values.
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Figure A9. Comparison between the average relative vertical velocities of the surroundings compared to the buildings in
Can Tho calculated from the offsets measured in the field (x-axis) and calculated from the InSAR-based velocity dataset
(y-axis). The velocity datasets from KIT (blue) and EMSN62 (red) are included and the colored dashed lines and equations
show the corresponding linear trends between the separate InSAR velocity datasets and the field velocity datasets. The
dotted black line shows the one-to-one perfect fit between field-, and InSAR-based relative velocities. All InSAR datasets
show a weak trend with the velocity dataset, but most data points are somewhat close to the perfect fit line, indicating a
similarity in the values.
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Figure A10. Comparison between the average relative vertical velocities of the surroundings compared to the buildings
in Long Xuyen calculated from the offsets measured in the field (x-axis) and calculated from the InSAR-based velocity
dataset (y-axis), using the year construction was started as a correction for the large offsets in relative velocity. The velocity
datasets from KIT (blue), EMSN57 (yellow) and EMSN62 (red) are included and the colored dashed lines and equations
show the corresponding linear trends between the separate InSAR velocity datasets and the field velocity datasets. The
dotted black line shows the one-to-one perfect fit between field-, and InSAR-based relative velocities. All InSAR datasets
show a moderate trend with the velocity dataset, but the field-based velocities are three times higher than those from the
InSAR-based datasets.
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Comparing the mean offset of the different InSAR-based velocity datasets show that
the EMSN62 velocity dataset has the lowest offset from the field-based velocity dataset,
excluding the data from Long Xuyen (Table A4). The relative velocities from the field data
were on average lower than the velocities from the EMSN62 dataset, with 0.92 mm/year in
Ca Mau and 1.19 mm/year in Can Tho (Table A4). For the relative velocities from the KIT
and EMSN57 InSAR datasets the offset shows that on average the field-based velocities
were ~5 mm/year higher than the InSAR-based velocities. This is similar to the offset found
between the EMSN62 InSAR dataset and the KIT and EMSN57 InSAR datasets. However,
it is important to keep in mind the large standard deviations, between 11.2 mm/year and
23.3 mm/year, which indicate a large spread of the velocity offsets between the datasets
and add uncertainty to the mean offsets (Table A4).

Sorting the offsets between the field-, and InSAR-based relative velocities by age shows
that the offset is higher for younger buildings in all three cities (Figure A11). The offset was
calculated the same way as in Tables A3–A6 (Field velocities—InSAR velocities), which
means that more negative velocities indicate that the InSAR-based velocities are lower
than the field-based velocities. According to Figure A11, the offset between the datasets is
highest for buildings younger than six years old, and the offset becomes smaller for older
buildings. Figure A11 again shows that in Long Xuyen the offset between the datasets
is generally higher, also for the older buildings (Field-based velocities are ~15 mm/year
higher than InSAR based velocities), than in Ca Mau and Can Tho.

Table A4. Results of statistical analysis between the velocity data of the relative velocities calculated from the offsets
measured in the field and from KIT InSAR-based velocity dataset. Ntot shows the total number of buildings included in the
dataset, and n shows the number that was used for the correlations. Ntot for all absolute data is twice the normal Ntot
because this is the data from the buildings and surroundings combined. For both Spearman’s and Pearson correlation,
Rho shows the strength of the correlation (between −1 and 1, with zero showing no correlation) and the p-value shows
the statistical significance of the correlation (p-values < 0.05 shows is statistically valid). Both the mean offset between the
datasets (∆), and the standard deviation (σ) are given. The parameters from the linear fit depict the values from y = ax + b.
R2 gives the significance of the linear fit adjusted to n.

Dataset n Spearman’s Pearson Mean Data Offset Linear Fit

Rho p-Value Rho p-Value ∆

[mm/yr]
σ

[mm/yr]
Interception

(b)
Direction

Coefficient (a) R2

All cities 74 0.29 0.01 0.22 0.06 −7.79 15.0 −9.16 0.12 0.04
Ca Mau 21 −0.02 0.95 −0.05 0.84 −5.0 17.1 −17.57 −0.02 −0.05
Can Tho 31 0.29 0.11 0.37 0.04 −4.7 11.2 −7.48 0.19 0.11

Long Xuyen 22 0.31 0.16 0.33 0.13 −14.8 15.7 −3.97 0.18 0.06

Table A5. Results of statistical analysis between the velocity data of the relative velocities calculated from the offsets
measured in the field and from EMSN62 InSAR-based velocity dataset. Ntot shows the total number of buildings included
in the dataset, and n shows the number that was used for the correlations. Ntot for all absolute data is twice the normal
Ntot because this is the data from the buildings and surroundings combined. For both Spearman’s and Pearson correlation,
Rho shows the strength of the correlation (between −1 and 1, with zero showing no correlation) and the p-value shows
the statistical significance of the correlation (p-values < 0.05 shows is statistically valid). Both the mean offset between the
datasets (∆), and the standard deviation (σ) are given. The parameters from the linear fit depict the values from y = ax + b.
R2 gives the significance of the linear fit adjusted to n.

Dataset n Spearman’s Pearson Mean Data Offset Linear Fit

Rho p-Value Rho p-Value ∆

[mm/yr]
σ

[mm/yr]
Interception

(b)
Direction

Coefficient (a) R2

All cities 57 0.45 4.1 × 10−4 0.34 0.01 −3.18 16.1 −12.0 0.27 0.10
Ca Mau 14 0.41 0.14 0.24 0.40 0.92 17.1 −23.7 0.10 −0.02
Can Tho 24 0.30 0.15 0.18 0.41 1.19 13.0 −14.3 0.10 −0.01

Long Xuyen 19 0.64 2.9 × 10−3 0.50 0.03 −11.7 16.3 −0.04 0.53 0.20
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Table A6. Results of statistical analysis between the velocity data of the relative velocities calculated from the offsets
measured in the field and from EMSN57 InSAR-based velocity dataset. Ntot shows the total number of buildings included
in the dataset, and n shows the number that was used for the correlations. Ntot for all absolute data is twice the normal
Ntot because this is the data from the buildings and surroundings combined. For both Spearman’s and Pearson correlation,
Rho shows the strength of the correlation (between −1 and 1, with zero showing no correlation) and the p-value shows
the statistical significance of the correlation (p-values < 0.05 shows is statistically valid). Both the mean offset between the
datasets (∆), and the standard deviation (σ) are given. The parameters from the linear fit depict the values from y = ax + b.
R2 gives the significance of the linear fit adjusted to n.

Dataset n Spearman’s Pearson Mean Data Offset Linear Fit

Rho p-Value Rho p-Value ∆

[mm/yr]
σ

[mm/yr]
Interception

(b)
Direction

Coefficient (a) R2

All cities 46 0.29 0.05 0.26 0.08 −9.28 20.5 −11.2 0.15 0.05
Ca Mau 24 0.23 0.27 0.14 0.51 −4.91 23.30 −20.1 0.04 −0.02

Long Xuyen 22 0.45 0.03 0.39 0.07 −14.0 16.2 −1.53 0.30 0.11
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between each InSAR-based velocity dataset and the velocity data calculated from the offsets measured
in the field, for every city. The velocity data of each dataset were sorted by age and the offset from the
field-based relative velocities was calculated by subtracting the moving mean of the relative velocities
(using a window of three data points) of the InSAR-based datasets from the moving mean of the
field-based dataset (offset = field-InSAR). Furthermore, a fourth-order polynomial was fitted through
the data to show the trend in the anomaly with age. Negative offsets show that the InSAR-based
velocities are lower than the field-based velocities, and thus that the InSAR underestimates the
field-based velocities.

Appendix C. Building Information

Additional to the field measurements, data were collected about each individual
building in this study. The key elements are presented here when they were available,
including the final year of construction, piling depth, building height, area of the building
and the previous land use of the location where the building is currently standing. These
data were obtained from the Department of Construction of the concerning city or region
and from the building owners. From the year of construction, the age of the building
in 2019 was calculated, and from the building height and area the estimated size of the
building is calculated.

Table A7. Can Tho building information.

Building Year of
Construction Age (Years) Piling Depth

(m)
Building

Height (m) Area (m2)
Estimate

Volume (m3)
Previous Land

Use

A 2015 4 45.6 19 1000 18,996 Urban
B 2005 14 22 n/a 676 n/a n/a
C 2007 12 n/a 6.2 531 3294 Vacant land
D 2011 8 40 13 874 11,361 Vacant land
E 2001 18 15 n/a 1448 n/a n/a
F 2008 11 32 9 3343 30,086 Orchard
G 2014 5 n/a n/a 5080 n/a n/a
H 2006 13 17.2 n/a 601 n/a n/a
I 2010 9 38 24 720 17,280 Grassland
J 2007 12 22 n/a 746 n/a n/a
K 2006 13 18 n/a 1157 n/a n/a
L 2011 8 22.3 n/a 519 n/a n/a

M 2010 9 34 9 1516 13,643 Vacant land from
government

N 2008 11 32 9 1345 12,108 Orchard
O 2014 5 13.5 n/a 2044 n/a n/a
P 2011 8 24 n/a 912 n/a n/a
Q 2009 10 45 14.8 1588 23,497 n/a
R 2015 4 24.5 n/a 2789 n/a n/a
S 2015 4 35 9 2632 23,684 Agricultural land
T 2005 14 22.5 n/a 820 n/a n/a
U 2013 6 24.5 n/a 1112 n/a n/a

V 2013 6 35.1 26 865 22,494 Pond/vacant
grassland

W 2011 8 24 n/a 957 n/a n/a
X 2013 6 36 18 1116 20,092 Orchard
Y 2014 5 35 n/a 3887 n/a n/a
Z 2008 11 22 n/a 1774 n/a n/a

AA 2011 8 23 n/a 1678 n/a n/a
BB 2011 8 36 25 478 11,961 n/a
CC 2012 7 30 13 892 11,591 Orchard
DD 2014 5 49.05 27 1270 34,296 Other building
EE 2015 4 40 42 9684 406,730 Agricultural land
FF 2008 11 30 15 1859 27,890 Agricultural land
GG 2012 7 39 31.8 339 10,766 n/a
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Table A7. Cont.

Building Year of
Construction Age (Years) Piling Depth

(m)
Building

Height (m) Area (m2)
Estimate

Volume (m3)
Previous Land

Use

HH 2012 7 18.6 n/a 1425 n/a n/a
II 2008 11 21.5 n/a 7690 n/a n/a
JJ 2004 15 24 n/a 2109 n/a n/a

KK 2013 6 30 8 719 5756 Vacant land
LL 2010 9 40 n/a 330 n/a n/a

MM n/a n/a n/a n/a 4238 n/a n/a
NN 2011 8 40 17 2157 36,664 Urban

OO 2005 14 40 13 2605 33,865 Vacant
grassland/fen

PP 2014 5 40 20 434 8678 Orchard
QQ 2009 10 45.6 19 1000 18,996 Urban
RR 2005 14 22 n/a 324 n/a n/a

Table A8. Ca Mau building information.

Building Year of
Construction

Age in 2019
(Years)

Piling Depth
(m)

Building
Height (m)

Area
(m2)

Estimated
size (m3)

Previous Land
Use

A 2008 11 30 9 1570 14,131 Pond
B 2016 3 36 11 684 7525 Fen
C n/a n/a 35 n/a 4541 n/a n/a
D 2008 11 24 7 2199 15,396 Orchards
E 2007 12 28 26 565 14,677 Vacant land
F 2012 7 26 24 1452 34,852 Other building

G 2016 3 20 19 2168 41,196 Building/vacant
land

H 2011 8 26 15.2 927 14,088 Pond
I 2012 7 27 14 284 3978 Agricultural Land
J 2012 7 27 14 540 7555 Agricultural Land
K 2011 8 28 17 822 13,968 Vacant land/fen
L 2009 10 30 9 521 4689 Grassland/ fen
M 2014 5 28 19 8426 160,102 Fen
N 2011 8 26 13.5 478 6450 Reed land
O 2014 5 30 11 4855 53,409 Aquaculture
P 2011 8 38 31.5 1221 38,451 Vacant land
Q 2004 15 26 12 645 7743 Grassland
R 2014 5 26 16.3 1164 18,971 Vacant land
S 2013 6 22 8.5 2399 20,391 Vacant grassland
T 2013 6 25 17 743 12,627 Pond/reeds
U 2011 8 24 11.8 489 5771 Lake
V 2013 6 28 14.5 2379 34,496 Agricultural Land
W 2011 8 18 11 406 4466 Aqua cultural land
X 2009 10 28 12 453 5441 Vacant land/fen
Y 2010 9 30 15 550 8243 Fen/grassland
Z 2005 14 23.6 13.4 1024 13,726 Vacant land

AA 2012 7 28 9 601 5409 Lake
BB 2008 11 26 13.5 400 5400 Aqua cultural land
CC 2009 10 25 9 542 4881 Pond/grassland
DD 2015 4 24 6.5 3339 21,704 Vacant land
EE 2009 10 24 27 1579 42,636 Reed/vacant land
FF 2009 10 26 16.3 1308 21,315 Vacant land
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Table A9. Long Xuyen building information.

Building Year of
Construction Age (Years) Piling Depth

(m)
Building

Height (m) Area (m2)
Estimated

Volume (m3) Previous Land Use

A 2012 7 12 8 842 6737 Food company
B 2010 9 n/a 8 4062 32,499 Unknown
C 2015 4 n/a 8 3803 30,424 Unknown
D 2010 9 n/a 8 6139 49,115 Unknown
E 2002 17 8 12 1342 16,105 Rice field
F 2002 17 n/a 8 5571 44,571 Unknown
G 2008 11 6 12 436 5228 Rice field
H 2008 11 6 20 1648 32,964 Rice field
I 2010 9 35 12 1484 17,804 Food company
J 2007 12 5.7 10.75 994 10,683 Rice field
K 2012 7 5.2 7.5 614 4602 Rice field
L 2015 4 24 22 2058 45,266 n/a
M 2015 4 24 22 1861 40,945 n/a
N 2010 9 24 24 4218 101,222 n/a
O 2009 10 22.5 5 5655 28,277 n/a
P 2006 13 n/a 8 5367 42,938 n/a

Q 2006 13 22.2 24 1392 33,411

Museum
Conservation Office.

Rice fields before
1976

R 2016 3 35 54 11,574 625,005 Rice field
S 2014 5 23 17 4814 81,830 n/a
T 2010 9 n/a 20 3599 71,981 Rice field
U 2009 10 35 18 1953 35,145 n/a
V 2012 7 25 22 9947 218,837 Pond
W 2009 10 22 16 2824 45,177 n/a
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