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Owing to its unique thermodynamical description, phase separation has largely been modeled in the
Cahn-Hilliard framework. In the present work, as a computationally efficient alternative, a multicomponent,
multiphase-field model operating in Allen-Cahn framework is presented and subsequently employed to simulate
spinodal decomposition. Stability analysis shows that the formulation can cover the effect of phase separation
while simplifying the extension to multiple phases and incorporation of additional driving forces. Computational
efficiency of the proposed approach is compared with the conventional technique by modeling intercalation in a
representative one-dimensional domain. Moreover, intercalation within a multigrain system involving multipar-
ticle interaction is studied. Our results suggest initiation of phase transformation at higher order junctions as well
as a grain-by-grain intercalation behavior in a two-phase cathode material such as the well-studied LiFePO4.
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I. INTRODUCTION

Microstructural evolutions include regular first-order phase
transformations such as solidification as well as second-order
continuous phase separations. For instance, some state-of-the-
art cathode materials in lithium ion battery systems exhibit
phase separation during charging which influences their per-
formance significantly. Therefore, attempts have been made to
investigate the second-order phase transition in a multiphysics
framework which encompasses electrical, chemical, and me-
chanical driving forces.

Originally introduced to the field of battery simulation by
the studies of Han et al. [1] and Guyer et al. [2], the phase-field
method is well established nowadays and has been applied
in numerous works investigating electrodeposition [3–5] and
intercalation in phase separating electrode materials [6–23].
Technically relevant cathode materials such as LiFePO4 (LFP)
and the related NaFePO4 exhibit phase separation during
charge and discharge which has been shown experimentally
[24–26] and furthermore predicted by first-principles calcula-
tions [27,28]. The modeling thereof has been realized by the
core-shell model [29] which prescribes an interface according
to the Stefan problem and alternatively, by the phase-field
method, which accounts for phase separation in a more natural
manner [1]. The first work was limited to pure diffusion in one
dimension [1], but applicability of the method was proven.
Singh et al. [6] predicted intercalation waves by accounting
for diffusion anisotropy and a surface reaction rate given by
the Butler-Volmer (BV) equation.

Different focuses have been set since, one being the Allen-
Cahn reaction model [30], which is based on the assumption
of surface reaction limitation and fast bulk diffusion in
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one-dimensional (1D) channels for LFP. This approach has
been used to study the suppression of phase separation for
high fluxes [7] and the pattern formation on an active facet
of nanosized single crystals including coherency strain [8].
In a recent work [9], pattern formation depending on particle
size was studied. Another approach, often referred to as the
Cahn-Hilliard reaction model [30], uses the BV equation as a
boundary condition while computing the flux inside the par-
ticle based on the conservative Cahn-Hilliard equation. Tang
et al. [10] showed that the interface evolution is dependent
on both surface flux and bulk diffusion. The recent works of
Hong et al. [11,12] show how larger overpotentials shift the
interface motion from surface reaction limitation to a hybrid
or mainly bulk-diffusion limited case.

Huttin and Kamlah [13] studied intercalation in spheri-
cal particles reduced to one dimension by radial symmetry
with constant boundary flux. Their original work was based
on small deformations and later extended to large defor-
mation mechanics [14]. Subsequent studies comprise the
intercalation simulation in NaFePO4, a promising candidate
for post-lithium batteries [15], and a comparison of misci-
bility gaps for various cathode materials [16]. Zhao et al.
[17] introduced concentration-dependent elastic properties
and performed simulations in spheroidal three-dimensional
particles. In their later work [18], surface reaction was ac-
counted for by the BV equation rather than constant flux,
and diffusion-induced cracking was investigated. All these
works focus on the influence of strongly coupled chemome-
chanics on diffusion and are characterized by sophisticated
treatment of large deformation mechanics with the finite ele-
ment method.

Other studies attempted to account for more realistic par-
ticle shapes. For example, Santoki et al. [19] studied the
intercalation in an arbitrarily shaped particle in three dimen-
sions. Constant boundary flux has been applied based on the
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smoothed boundary method, which has also been previously
used to study spherical particles in two dimensions [20]. More
complex geometries have been studied, such as the agglomer-
ate of three spherical particles neglecting internal interfaces
[21] and two touching nanowires [22]. Wu et al. [23] per-
formed simulations with particle shapes reconstructed from
x-ray tomography. They discuss the importance of realistic
shapes as higher stress arises during insertion compared to
simulations with idealized particles.

Since experimental observations provide evidence that
multiparticle interaction noticeably affects the intercalation
behavior [31], the need for extending existing techniques
to multiparticle systems has been reported [32]. So far,
phase-field simulations of intercalation are restricted to single
crystals or single particles. Possible reasons are, first of all,
the limitations linked to the Cahn-Hilliard approach used in
basically all phase-field intercalation simulations including
spinodal decomposition. The underlaying evolution equation
is a fourth-order partial differential equation (PDE) which is
computationally challenging. Furthermore, if the numerical
interface width is set to reproduce the physical interface in
the range of nanometers, this smallest resolved scale lim-
its simulations to single nanoparticles with diameters in the
range of 20–500 nm. Secondly, the models reviewed above
are formulated in a single-phase framework. Fleck et al.
[33] and Santoki et al. [19] introduced an order parame-
ter differentiating between particle and electrolyte for spatial
parametrization but neglecting the ion transport due to electro-
chemical reaction between the two. Furthermore, both studies
are limited to a single particle. From the discussion above, we
identify two important steps paving the way to more realistic
simulations. The modeling approach should be multiphase in
the sense that it is capable of describing multiple particles
with varying material properties surrounded by electrolytes.
Secondly, a thermodynamically consistent formulation of the
electrochemical reaction occurring at the interface between
an active material and electrolyte is needed in terms of the
phase-field method. The first is within the scope of this paper.

We therefore propose the use of an Allen-Cahn multiphase-
field formulation coupled with conservative concentration
evolution. Starting from a free-energy functional for mul-
tiphase systems [34], we introduce energetically decoupled
interfacial and bulk energy contributions to avoid interfacial
excess energy. This approach allows the width of the diffuse
interface to be rescaled for numerical efficiency in the case
of larger computational domains. The interfacial free-energy
formulation from Nestler et al. [35] is used due to its abil-
ity to scale interfacial energy and width independently. The
chemical free-energy density and consistent treatment of con-
centration evolution is based on the works of Plapp [36] as
well as Choudhury and Nestler [37]. These works are based
on a grand-potential formulation, but evolution equations can
also be derived starting from a free-energy functional [38].
This approach is compatible with elastic driving forces based
on jump conditions [39,40] and has successfully been used
for computation of first -order phase transformations [41]. The
ability of this model formulation to account for spinodal phase
separating behavior has recently been shown by Aagesen et al.
[42], though it had previously been considered impossible due
to the requirement of convex free-energy functions [36]. The

aim of this study is to demonstrate the potentiality of modeling
phase separation within the proposed framework and compare
it with the model by Cahn and Hilliard [43] with regard to
two-phase intercalation processes in LiFePO4. Parallelization
using Message Passing Interface for computational efficiency
allows for simulation of large-scale systems [44].

This paper is organized as follows. Section II presents two
modeling approaches, both of which are started from a free-
energy functional, followed by a discussion of the free-energy
density contributions and the evolution equations of primary
variables of the system. The fitting of thermodynamic data
by appropriate choice of the respective model parameters is
performed in Sec. III. In this section, we also examine the
stability of both model formulations with regard to the spon-
taneous separation of phases dependent on composition. The
theoretical predictions are then studied further with an exam-
ple system in Sec. IV A, followed by application to modeling
intercalation in a multiparticle system in Sec. IV B. In Sec. V,
the conclusion and future applications are discussed.

II. MODEL FORMULATION IN CAHN-HILLIARD AND
ALLEN-CAHN FRAMEWORKS

A. Cahn-Hilliard approach

The model presented in this section stems from the seminal
work of Cahn and Hilliard [43] but is generalized to K chem-
ical species with molar fractions c = {c1, . . . , ci, . . . , cK}T .
The total free energy for a nonuniform system can, in first
approximation, be expressed as

FCH(c,∇c) =
∫

V
f CH
grad(∇c) + f CH

chem(c)dV (1)

consisting of two contributions, namely, the free chemical
energy and a gradient energy [43]. In a multicomponent
framework, several choices of free-energy contributions are
possible but consistency with the binary case has to be ensured
[45]. The gradient energy with coefficient κ takes the form

f CH
grad(∇c) = κ

K∑
i

|∇ci|2, (2)

and following Refs. [13,17,19], the regular solution theory is
used to express the chemical free energy of the system

f CH
chem,RS(c) = R

Vm
T

K∑
i

ci ln(ci ) +
K∑
i

K∑
j

ciχi jc j, (3)

where R denotes the gas constant, Vm the molar volume, T the
temperature, and χi j the matrix of interaction parameters. In
the following, all considerations refer to this specific choice
of free energy though the transfer of the analysis performed in
Secs. III A and III B to other formulations is straightforward.
The evolution of composition can be computed by a set of
K − 1 equations of Cahn-Hilliard type,

∂ci

∂t
= ∇ · [Li j (c)∇μ j (T, c,φ)] (4)

with the mobility matrix Li j (c) = Vm
R Dici(δi j − c j ), diffusion

coefficients Di and (∇·) denoting the divergence operator. The
last mole fraction can be determined by the sum constraint
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cK = 1 − ∑K−1
i ci. The chemical potential μi of species i

can be expressed as the sum μi = μ
grad
i + μchem

i of the two
contributions

μ
grad
i = −∇ · ∂ f CH

grad(∇c)

∂∇ci
= −2κ∇2ci, (5)

μchem
i = ∂ f CH

chem(c)

∂ci
= R

Vm
T [ln(ci ) + 1] + 2

K∑
j

χi jc j . (6)

The resulting evolution equation is fourth order in c:

∂ci

∂t
= ∇ ·

[
Dici

K∑
j

(δi j − c j )

× ∇
{

T
[

ln(c j ) + 1
] + 2

Vm

R

K∑
k

χ jkck − 2κ∇2c j

}]
.

(7)

B. Allen-Cahn approach with concentration conservation

The Allen-Cahn equation is another evolutionary relation
often used in the context of microstructure simulations. In
combination with the grand-chemical potential approach in-
troduced by Plapp [36] and Choudhury and Nestler [37],
conservation of mass for species i combined with the noncon-
served evolution of phases can be simulated. The decoupling
of interfacial and bulk contributions eliminates the chemical
excess to the interface energy which is particularly important
in the context of numerically efficient computations of larger
domains with rescaled interface width [37].

We introduce a multiphase-field model following [35]
consisting of N phases with corresponding order parame-
ters φ = {φ1, . . . , φα, . . . , φN }T and K chemical species with
molar fractions c̄ = {c̄1, . . . , c̄i, . . . , c̄K}T . The free-energy
functional can be expressed as

F (φ,∇φ, c̄) = Fint(φ,∇φ) + Fbulk(φ, c̄), (8)

F =
∫

V
fgrad(φ,∇φ) + fpot(φ) + fchem(φ, c̄)dV, (9)

consisting of interfacial and bulk contributions. The diffuse in-
terface is determined by two terms; firstly the gradient energy
density [46]

fgrad(∇φ) = −ε
∑

α,β>α

γαβ∇φα∇φβ (10)

with the numerical parameter ε linked to interface width and
the surface energy γαβ between two phases φα and φβ . The
second term fpot is the potential energy density. Two common
choices for multiphase-field models are the well potential
and secondly the obstacle potential, which is often used for
numerical performance reasons. We here employ a multiwell
approach following [47]

fwell(φ) = 9

ε
γ̃

(
1

12
+ 1

2

∑
α,β>α

φ2
αφ2

β +
∑

α

φ4
α

4
− φ3

α

3

)
(11)

with γ̃ = ∑
γαβφ2

αφ2
β/

∑
φ2

αφ2
β and compare it with a multi-

obstacle potential of the form

fob(φ) = 16

επ2

N∑
α,β>α

γαβφαφβ. (12)

Both approaches in combination with Eq. (10) prevent the
nonphysical formation of third phases in binary interfaces
[47]. The bulk energy term is expressed as the interpolation
of phase-dependent chemical free-energy contributions

fchem(φ, c̄) =
N∑
α

f α (cα )hα (φ), (13)

where each f α depends on a local phase-dependent com-
position cα which is given as molar fraction. The mean
compositions are defined by interpolation c̄i = ∑N

α cα
i hα (φ)

which follows from interpolation of chemical energies [37]
and fulfill the constraint

∑K
i c̄i = 1. The formulation of

interpolation functions hα (φ) poses a problem with thermo-
dynamical consistency at multiple junctions. Following [40],
we introduce normalized interpolation functions

hα (φ) := h(φα )∑
β h(φβ )

,

hwell(φα ) = φ2
α (3 − 2φα ),

hob(φα ) = 1

2
+ 2

π

[
(2φα − 1)

√
φα (1 − φα )

+ 1

2
arcsin(2φα − 1)

]
(14)

and adjust our choice to the potential formulation to ensure
correct kinetics of the traveling-wave solution in the dual-
phase case [48]. More detailed discussion of interpolation
functions in the multiphase context can be found at [49].

The chemical free energies f α can be fitted by incorpo-
ration of CALPHAD data. In this work we use a quadratic
fitting for numerical efficiency and furthermore to fulfill the
invertibility criterion used for the derivation of the grand-
potential model [37]. The chemical energy of each component
in phase α is formulated dependent on the phase-dependent
mole fraction cα

i of species i and three fitting parameters
Aα

i , Bα
i , and cα

i,min. The free energy of phase α can then be
expressed as the sum over all species contributions

f α (cα ) =
K∑
i

Aα
i

(
cα

i − cα
i,min

)2 + Bα
i . (15)

The evolution of order parameters can be computed via a
variational approach as the summation of dual interactions
[46]

∂φα

∂t
= − 1

Ñε

Ñ∑
β �=α

Mαβ

(
δF
δφα

− δF
δφβ

)
, (16)

where Ñ � N is the number of active phases and Mαβ denotes
the mobility of an α-β interface. The variational derivative of
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the overall free energy with respect to φα reads

δF
δφα

=
(

∂

∂φα

− ∇ · ∂

∂∇φα

)
f (φ,∇φ, c̄). (17)

The set of K − 1 diffusion equations determines the evolution
of independent compositions caused by the gradient of phase
diffusion potentials μ j = ∂ f α/∂cα

j ,

∂ c̄i

∂t
= ∇ ·

(
K−1∑
j=1

M̄i j (φ)∇μ j

)
. (18)

The mean mobility comprises the individual phase mobil-
ities M̄i j = ∑N

α Mα
i jh

α (φ) where each Mα
i j is defined by

expression Mα
i j = Dα

i j∂cα
i /∂μ j in the general case. Insert-

ing Eq. (15) this yields Mα
i j = Dα

i jδi j/2Ai. Similar to [38],
we solve for phase diffusion potentials instead and rewrite
Eq. (18) following [37] to obtain the evolution equation

∂μk

∂t
=

[
N∑
α

∂cα
i

∂μk
hα (φ)

]−1

×
[
∇ ·

(
K−1∑
j=1

M̄i j (φ)∇μ j

)
−

N∑
α

cα
i

N∑
β

∂hα

∂φβ

∂φβ

∂t

]
.

(19)

Equations (16) and (19) are two sets of coupled partial differ-
ential equations and second order in space.

For the simulations in Sec. IV B a noise term is necessary in
order to enable growth of phases that are initially not present.
We follow the idea of Schoof et al. [50] and include a term
representing thermal fluctuations in the evolution equation

∂φα

∂t
= − 1

Ñε

Ñ∑
β �=α

Mαβ

(
δF
δφα

− δF
δφβ

)
+ ∂ζ

∂φα

(20)

which is only active in the interface regions as we assume
LiFePO4 to nucleate heterogeneously at structural defects
such as grain or phase boundaries. The noise is applied as

ζ =
N∑

α<β<γ

ADφαφβφγ (21)

with an amplitude A and random distribution D which is cho-
sen to be uniform. Simultaneously, correction of the diffusion
potentials is included to ensure c̄ being unaffected by the noise
[51].

III. MODEL COMPARISON

In this section we relate the two models presented above in
terms of thermodynamical data which is accessible by experi-
ments or first-principles calculations. For better comparability
of the modeling approaches, we reformulate the free-energy
functionals (1) and (9) and all respective contributions for
the case of one diffusing species and constant temperature.
This setup is quite simple and yet suitable to investigate phase
separating cathode materials with one intercalating species.

All equations are presented in dimensionless form. The Cahn-
Hilliard formulation presented in Sec. II A then reduces to

FCH(c,∇c) = RT

Vm

∫
V

f̃ CH
grad(∇c) + f̃ CH

chem(c)dV, (22)

f̃ CH
grad(∇c) = κ̃|∇c|2, (23)

f̃ CH
chem,RS(c) = c ln(c) + (1 − c) ln(1 − c) + 2χ̃c(1 − c)

(24)

which coincides with the models used in many studies of
phase separation in single electrode particles [13,17,19] if
we neglect mechanical contributions. κ̃ and χ̃ are normalized
with respect to the factor Vm

RT and are the only parameters de-
termining interfacial properties and equilibrium compositions.
In the following, we will refer to this reduced model as “CH
model”.”

Equations (8)–(15) based on nonconservative Allen-Cahn
type phase evolution coupled with evolution of the diffusional
potential (“AC model”) can be simplified in the case of two
phases α, β with order parameters φα = φ, φβ = 1 − φ and
one diffusing species with mole fraction c̄. The free-energy
functional takes the form

F (φ,∇φ, c̄) =
∫

V
fgrad(φ,∇φ) + fpot(φ) + fchem(φ, c̄)dV

(25)

with the free-energy density contributions

fgrad(∇φ) = εγαβ |∇φ|2, (26)

fpot(φ) =
{ 9γαβ

ε
φ2(1 − φ)2, double well

16γαβ

επ2 φ(1 − φ), double obstacle,
(27)

fchem(φ, c̄) = f α (c̄)h(φ) + f β (c̄)h(1 − φ). (28)

The bulk chemical energies for the two phases are given by

f α (cα ) = Aα
(
cα − cα

min

)2 + Bα,

f β (cβ ) = Aβ
(
cβ − cβ

min

)2 + Bβ. (29)

A. Relating conventional parameters

First of all, the equilibrium composition of the two phases
will be related to the model parameters. In the case of the CH
model, they are given by the minima of chemical free energy
which can be determined by

∂ f̃ CH
chem(c)

∂c

∣∣∣∣
c=ceq

= ln(ceq) − ln(1 − ceq) + 2χ̃ (1 − 2ceq)

= 0. (30)

For χ̃ > 1 two minima exist which are symmetric with regard
to c = 0.5. In the AC model the minima of chemical energy
density are explicitly introduced as model parameters cα

min and
cβ

min. For Bα = Bβ they are equivalent to the equilibrium mole
fractions. For the case of Aα = Aβ = A and a difference in
energy levels B = Bα − Bβ the equilibrium compositions are
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FIG. 1. Comparison of the two modeling approaches regarding diffuse interface between two levels of composition in equilibrium state.

shifted from the minima to

cα
eq = cα

min + B

2A
(
cα

min − cβ

min

) ,

cβ
eq = cβ

min + B

2A
(
cα

min − cβ

min

) . (31)

We now consider a flat interface in equilibrium as shown
in Fig. 1 to relate the thermodynamical properties interfacial
energy σ and interface width l . We therefore start with cal-
culation of the respective values in the Cahn-Hilliard case.
Following [43], the stationary solution of concentration that
minimizes the functional (22) holds condition f̃ CH

chem,RS(c) −
fmin = κ̃ ( dc

dx )
2

with fmin = f̃ CH
chem,RS(ceq) being the minimal

chemical energy. Therefore, the interfacial energy can be ex-
pressed as

σ = 2
RT

Vm

∫ ∞

−∞
f̃ CH
chem,RS(c) − fmindx

= 2
RT

Vm

∫ ceq2

ceq1

√
κ̃
[

f̃ CH
chem,RS(c) − fmin

]
dc. (32)

The interface width l is approximated by the distance between
intersections of a linear tangent in c = 0.5 and the equilibrium
compositions

lCH,RS = (ceq2 − ceq1)
dc
dx

∣∣∣∣
c=0.5

= (ceq2 − ceq1)

√
κ̃

f̃chem,RS(c = 0.5)
. (33)

The tangent construction and computed interface width are
indicated by green shading in Fig. 1(a). Note that interfacial
energy and interface width are intrinsically coupled by the
choice of κ̃ for the CH model.

In the AC model interface and bulk contributions are de-
coupled, which becomes obvious upon consideration of an
interface in equilibrium as the one depicted in Fig. 1(b). The
chemical energy density contribution (29) vanishes and the in-
terface properties are solely determined by Eqs. (26) and (27).
The resulting equilibrium profile of a two-phase flat interface
for the double-well potential φ(x) = 1

2 + 1
2 tanh( 3

2ε
x) corre-

sponds to an interfacial energy of σ = γαβ and the interface
width lDW

φ = 4ε/3 for linear tangent fit of the gradient in φ =
0.5. Similarly, the choice of double-obstacle potential yields
φ(x) = 1

2 + 1
2 sin( 4

επ
x) with an interfacial energy σ = γαβ and

the interface width lDO
φ = επ/2. The profile of mean compo-

sition follows by interpolation c̄ = cα
eqh(φ) + cβ

eq[1 − h(φ)].

The AC model features the advantage that surface energy γαβ

and interface width l (ε) are two independent variables.

B. Stability analysis

This section is dedicated to the examination of stability
regarding spontaneous formation of new phases as in the case
of spinodal decomposition. The stability of the CH model has
been studied in the works of Cahn and Hilliard [52] and by
Cahn [53,54]. Starting with a constant initial composition in
the whole domain, the stability of the system toward small
pertubations can be analyzed. Stable behavior would lead to
a decay of small pertubations while in the unstable region
any small pertubation will lead to spinodal decomposition.
The spinodal is defined by vanishing second derivative of
free-energy density where the critical radius for a nucleus
becomes zero [53], which yields

∂2 f̃ CH
chem,RS(c)

∂c2
= 1

c(1 − c)
− 4χ̃ = 0 (34)

under the assumption of negligible gradients |∇c| � 1. For
χ̃ � 1 only one solution ccrit = 0.5, for values χ̃ > 1 two so-
lutions are existent, and spinodal decomposition occurs for all
concentrations within the interval c ∈ (ccrit,1, ccrit,2 ). Equation
(24) is plotted in Fig. 2 for a specific choice of parameter
χ > 1 with distinct spinodal region.

The simulation of spontaneous phase separation has long
been considered impossible within the framework of grand-
potential-based phase-field models [36] but has recently been
accomplished by Aagesen et al. [42]. In this study, we ex-
tend similar treatment to the multiphase-field approach. To
derive a criterion for critical composition, we first express
Eq. (28) explicitly as a function of average composition. The

FIG. 2. Regular solution free-energy density f̃chem,RS for χ̃ > 1.
The spinodal points are indicated by black marks and the spinodal
region by gray shading.
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phase-dependent mole fractions in the diffuse interface are
linked by the assumption of equal phase diffusion potentials
for all phases μ = μα = μβ [55] which yields

μ = ∂ f α

∂cα
= ∂ f β

∂cβ
= ∂ fchem

∂ c̄
. (35)

From Eqs. (29) and (35) we get the equality 2Aα (cα − cα
min) =

2Aβ (cβ − cβ

min). Furthermore, applying the relation c̄ =
cαh(φ) + cβh(1 − φ) for the mean concentration which can
be derived from the interpolation of chemical energy densities
(13) [37], we express the phase-dependent chemical energy
density Eq. (29) in terms of variables c̄, φ:

f α (c̄, φ) = Aα

(
c̄ − [

cα
minh(φ) + cβ

minh(1 − φ)
]

h(φ) + Aα

Aβ h(1 − φ)

)2

+ Bα.

(36)

By inserting Eq. (36) into Eq. (28) and using the symmetry of
interpolation function h(1 − φ) = 1 − h(φ), the free-energy

density is expressed as

fchem(c̄, φ) = AαAβ
(
c̄ − {

cα
minh(φ) + cβ

min[1 − h(φ)]
})2

Aβh(φ) + Aα[1 − h(φ)]

+ (Bα − Bβ )h(φ) + Bβ. (37)

Without loss of generality, we set the reference of energy
level to Bβ = 0 and rename Bα = B. By introducing the
term c̄min(φ) = {cα

minh(φ) + cβ

min[1 − h(φ)]} and assuming a
simplified system with Aα = Aβ = A the free-energy density
takes the form

fchem(c̄, φ) = A[c̄ − c̄min(φ)]2 + Bh(φ). (38)

To investigate the stability, we first need to examine the sta-
tionary solutions of the given system of evolution equations in
the two-phase case

εφ̇ = −M

(
δF
δφ

)
,

∂ c̄

∂t
= ∇ ·

[
D(φ)∇

(
δF
δc̄

)]
. (39)

The coupled system of equations is then given by

[
φ̇
˙̄c

]
=

[
M
ε

(
2εγαβ∇2φ − ∂ fpot

∂φ
+ {2A�cmin[c̄ − c̄min(φ)] − B} ∂h

∂φ

)
D

(∇2c̄ − �cmin
∂h
∂φ

∇2φ − �cmin
∂2h
∂φ2 (∇φ)2

)
]

(40)

with �cmin = cα
min − cβ

min. Examination of stationary solutions
[φ̇, ˙̄c]T = 0 for ∇φ ≈ 0 and thus φ constant in the whole
domain, yields for the double-well potential

−18γαβ

ε
φ(1 − φ)(1 − 2φ)

+ {2A�cmin[c̄ − c̄min(φ)] − B} ∂h

∂φ

!= 0 (41)

with ∂h/∂φ = 6φ(1 − φ), which results in

c̄stat =c0 (const.), φ = 0 or φ = 1, (42)

c̄stat =cβ

min + �cminφ
2(3 − 2φ)

+ B

2A�cmin
+ 3γαβ

2Aε�cmin
(1 − 2φ), φ ∈ (0, 1). (43)

Stability analysis of these stationary solutions (see
Appendix A) shows that the critical solution for φ ∈ (0, 1) is
always unstable, whereas in the case of φ = 0 and φ = 1 a
change in the stability behavior can be observed. The domain
of instability is limited by the critical composition

ccrit(φ = 0) = cβ
eq + 18γαβ

12A�cminε
, (44)

ccrit(φ = 1) = cα
eq − 18γαβ

12A�cminε
. (45)

These two critical values are symmetric with regard to c̄ =
0.5(cα

eq + cβ
eq), which is due to the choice of Aα = Aβ = A.

The difference in energy height B results in a constant shift
of critical concentrations analogous to the shift of equilib-
rium compositions Eq. (31) according to the common tangent
construction. For the obstacle potential, examination of the

stationary solutions of Eq. (40) leads to the criterion

−16γαβ

επ2
(1 − 2φ)

+ 8

π

√
φ(1 − φ){2A�cmin[c̄ − c̄min(φ)] − B} != 0,

(46)

which results in

c̄stat = cβ

min + �cminhob(φ)

+ B

2A�cmin
+ γαβ

Aεπ�cmin

1 − 2φ√
φ(1 − φ)

, (47)

which is unstable for all φ ∈ (0, 1). In the following section
we study the numerical behavior of the two models to investi-
gate the validity of theoretical predictions.

IV. SIMULATION RESULTS AND DISCUSSION

A. Phase separation in a two-phase model system

The first study aims at proving the theoretical predictions
in Sec. III B and comparing the simulation results. In Table I,
a set of nondimensionalized simulation parameters is shown

TABLE I. Input parameters for model validation.

Parameter Symbol Value

Equilibrium mole fractions cα
eq 0.9

cβ
eq 0.1

Interfacial energy σ 0.5
Diffusivity D 1.0
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FIG. 3. Stability map for well potential in the variable space φ ∈ [0, 1] and c̄ ∈ [0, 1]. Stationary solutions according to Eqs. (42) and (43)
are shown in blue if stable and green for the case of instability. All simulations marked by blue dots feature decaying fluctuations and one
stable phase, while red diamonds indicate simulations exhibiting phase separation.

which corresponds to a choice of χ̃ = 1.373 and κ̃ = 2.854
for the CH model. The combination of both yields an in-
terface width according to Eq. (33) of lCH,RS = 5.058. For
the AC model we choose γαβ = 0.5 to fit the surface en-
ergy and request equal interface width in accordance with
the CH model. As shown in Fig. 1(b), the interfacial widths
of the concentration and the phase profile are not identical
in the general case of an arbitrary interpolation function h(φ).
The equilibrium mole fractions are fitted by choice of cα

min =
0.9, cβ

min = 0.1, and B = 0. The choice of χ̃ sets the spinodal
compositions ccrit,1 and ccrit,2 which are fitted by criterion (44)
to Aα = Aβ = 6.73/ε such that ccrit(φ = 0) = ccrit,1. Because
of symmetry, ccrit(φ = 1) = ccrit,2 is also fulfilled.

The predicted instability (44) is studied for different initial
configurations in the variable space φ ∈ [0, 1] and c̄ ∈ [0, 1].
Figure 3 shows the results for the double-well potential and
three different choices of Aα = Aβ while all other parame-
ters are kept constant. For all cases, three domains with
different phase evolution can be identified. All setups with
an initial composition above the upper critical one lead to
decaying concentration fluctuations and stable α phase. The
phase values in the whole domain trend toward φ = 1, as
indicated by the gray arrows. The second stable domain below
the lower critical composition favors the β phase and φ values
trend toward zero. The area in between is characterized by
unstable amplification of small fluctuations and the formation
of regular homogeneous two-phase patterns as in the example
shown in Fig. 4. All simulations are in agreement with the
theoretical predictions.

We apply the same procedure to study the stability for the
obstacle potential. The results are shown in Fig. 5 and once
again agreement with the theoretical predictions is observed.
The same three domains as before can be identified and are
separated by the stationary solution Eq. (47). A qualitative
difference to the well potential is the nonexistence of a stable
stationary solution for φ = 0 or φ = 1 due to the shape of

the potential. We nevertheless observe stable α or β phase
within the blue shaded areas as the energy exhibits minimal
values at the boundary and φ is limited to φ ∈ [0, 1] by the
Gibbs simplex constraint.

The resulting pattern formation during the spinodal de-
composition process is highly dependent on the choice of
energy density contributions. In Fig. 6, the demixing process
is compared for the three modeling approaches. The param-
eters were chosen according to Table I. The kinetics of the
systems are comparable while the structures of the emerging
phase are slightly different. While the CH model tends to form
spheroidal precipitates, the AC model and especially the ob-
stable potential formulation form more entangled structures.

B. Multigrain intercalation

As pointed out in the Introduction, LFP has been well
studied over the past several years employing the phase-field
method. To prove applicability of the newly proposed model-
ing approach via comparison of the CH model with the AC
model, we choose a rather simplified 1D particle intercalation
setup neglecting mechanical contributions and applying con-
stant flux as a boundary condition (BC), as shown in Fig. 7(a).
This BC reflects discharge at constant current (CC). We fur-
thermore study the multiparticle interaction upon discharge at
C rate C = 1 with the 2D setup shown in Fig. 7(b).

TABLE II. Material input data for LFP.

Parameter Symbol Value Ref.

Energy coefficient χ̃ 2.4055 [10]
Gradient energy κ̃ 1.475 × 10−18 m2 [11]
Diffusion coefficient D0 10−15 m2/s [11]
Molar volume Vm 4.38 × 10−5 m3/mol [10]
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FIG. 4. Concentration evolution due to spinodal decomposition in 2D domain with 200 × 200 cells starting from (a) initial noise where
cells with composition above c = 0.3 are colored in black. Three time steps of temporal evolution are shown for (b) AC model with double-well
potential, ε = 4.8 and M = 10.

LFP exhibits strongly anisotropic diffusion [12] and
anisotropic surface energy properties [27]. The influence of
diffusion anisotropy is reduced by antisite defects, which is
why we assume homogeneous diffusion and, therefore, em-
ploy the parameters used in [11] which are partly taken from
[10]. An overview of the parameters is given in Table II. The
length of the simulation domain is chosen to be L = 300 nm
and discretized with 300 cells. The influence of particle size
on the miscibility gap is considered negligible as the resulting
interfacial width for parameters in Table II is 1.6 nm. We
choose C rate C = 0.1 as a reference and start with an initial
composition of c̄ = 0.01. From these values and the ones
given in Table II, the constant boundary flux JN = LC/Vm =
3.17 × 10−5 mol/m2s can be determined which is used as a
boundary condition on the left side of the simulation do-
main. No flux boundary condition ∇c̄ = 0 is applied on the
right-hand side. All simulations are carried out for constant
temperature T = 300 K. Figure 8(a) shows the simulation
result employing the CH model, which is used as a baseline
for comparison. The discretization is sufficient to resolve the
phase boundary between the FP and LFP phases. Coarser grid
resolution results in large deviation of the chemical energies

of the system due to numerical errors, while finer spatial
resolution results in minor improvement in accuracy, but with
the disadvantage of a tremendous increase in computational
cost. After approximately 1 h, phase separation occurs and
the phase front moves through the electrode. After 10 h, the
particle is fully charged. The parameters given in Table II
correspond to a spinodal mole fraction of ccrit,1 = 0.118 and
interface energy σ = 72 mJ

m2 . These values are fitted for the
AC model following the procedure described in Secs. III A
and III B. Comparison with the AC model shows that the
position of the phase front is reproduced accurately even when
interfacial width is increased and the number of grid points is
reduced. However, we note that there is a qualitative differ-
ence between the two modeling approaches. The CH model
allows for nucleation in the composition range between the
first local minimum and the spinodal composition if fluctu-
ations are large enough to reach instability (the mechanism
of nucleation continuously converts into spinodal phase sep-
aration [53]). On the other hand, it can be derived from the
stability maps Figs. 3 and 5 that no growth of the second phase
is possible in the domain below a certain critical composition
with the AC model. Accordingly, phase separation occurs at

FIG. 5. Stability map for obstacle potential. Stationary solutions according to Eq. (47) are always unstable and therefore shown in green.
All simulations marked by blue dots feature decaying fluctuations and one stable phase while red diamonds indicate simulations exhibiting
phase separation.
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FIG. 6. Concentration evolution in a three-dimensional domain
with 200 × 200 × 200 voxels and initial c̄ = 0.3. Opacity of compo-
sition below c̄ = 0.5 is set to 20 % for better visibility of the phase
separation. Three time steps of temporal evolution are shown for
(a) CH model, (b) AC model with well potential, and (c) AC model
with obstacle potential.

1 h in the CH model shortly before the spinodal concentration
is reached in the system due to the fluctuation induced by
the boundary condition while the AC model still exhibits one
phase and decomposes after 1.1 h of charge time.

The computation time can be massively reduced by in-
creasing ε and reducing the discretization points as the
stable time step �t is linked to spatial discretization via the
Courant–Friedrichs–Lewy (CFL) condition for finite differ-
ence schemes. Comparison of some simulations in Fig. 8(b)

FIG. 7. Simulation setup for particle intercalation study.

FIG. 8. Simulation results of 1D particle charge. (a) Temporal
evolution of c̄ with CH-model, Nx = 300. (b) Comparison of CH-
model and AC-model simulations for varying ε.

yields the results shown in Table. III. The value �tmax refers
to the maximal possible time step that yields a numerically
stable simulation employing a temporal discretization via the
explicit Euler method with constant time stepping. It strongly
influences the absolute computational time. The CH model
exhibits a relatively long wall time due to the massive amount
of simulation steps and the strong dependence of �t on �x
due to the fourth-order PDE. This simulation is taken as a
reference for the relative time. The corresponding simulation
with Nx = 300 employing the AC model features a slightly
larger stable time step and therefore, computational time is
reduced by 4%. Increasing the interfacial width enables a
reduction of grid points Nx in the AC model while the CH
model formulation does not allow for rescaling. Coarser spa-
tial discretization would lead to a large increase of numerical
errors. In this example, computation time could be reduced
by a factor of 8.2 by applying rescaling of the numerical
interface width and reduction of grid points. The choice of
obstacle potential, in particular, reduces computational cost
because of its finite interface width. This effect becomes even
more pronounced in two- or three-dimensional simulations
where the total amount of cells scales with (�x)2 and (�x)3,
respectively.

In our last example we study the intercalation behavior
of a multigrain section. For performance reasons, we only
choose the obstacle potential. We start from a Voronoi filling

FIG. 9. Composition gradient within a multigrain cathode sec-
tion under CC discharge at t = 0.01 h.
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TABLE III. Computation time.

1 CPU 5 CPUs
Simulation Nx �tmax Wall time Rel. time Wall time Rel. time

CH model 300 7.5 × 10−8 s 8231.7 s 100% 3012.0 s 100%
AC model ACε=0.25

ob 300 1.0 × 10−7 s 7921.6 s 96.2% 2893.7 s 96.1%
AC model ACε=1.0

well 150 5.0 × 10−7 s 2493.6 s 30.3% 725.5 s 24.1%
AC model ACε=1.0

ob 150 5.0 × 10−7 s 1003.0 s 12.2% 479.3 s 15.9%

of ten phases which have undergone some volume preserving
relaxation to reduce the initially high interfacial energies and
reproduce equilibrium angles at triple junctions. Phase pairs
that are assumed to have the same interfacial energy γαβ =
72 mJ

m2 and the same parameters according to Table II are used.
We furthermore apply a boundary flux corresponding to 1C
discharge rate at the left-hand side and no flux BC at the right
side of the simulation domain. The phase boundary between
FP and LFP is often assumed to be coherent [8] while grain
boundaries are noncoherent. This is reflected in the choice of
corresponding LFP phases that can only grow at the expense
of an FP grain, hence preserving the original grain boundaries.

In Fig. 9, the lithium composition is shown at the beginning
of the intercalation process at t = 0.01 h. Composition grad-
ually decays in horizontal direction and the gradient is only
weakly influenced by the grain boundaries. Consideration of
anisotropic diffusion or grain boundary diffusion would most
likely largely influence the transport but are neglected at this
point. These are subject to future studies. Phase separation
is initiated at lower composition c̄ than in the previous ex-
ample as the presence of equilibrium interfaces and multiple
junctions lowers the barrier toward nucleation of the LFP
phase. The considerations presented in Appendix B confirm
this observation analytically. Using Eq. (47), we fit the local
minimum of c̄stat (see Fig. 5) to c̄ dual

stat,min = ccrit,1 = 0.118. The
resulting choice of parameters can be inserted into Eq. (B4)
and analysis shows that the critical composition for nucleation
of the LFP phase within an equilibrium interface of two FP
phases is reduced to c̄ triple

stat,min = 0.0725. The stability analysis
furthermore reveals that Eq. (B4) is indeed unstable with
regard to small fluctuations as the criterion Eq. (B7) is not
fulfilled for all {φα, φβ, φγ } on the Gibbs simplex

∑
α φα = 1.

Thus, phase separation occurs for compositions higher than

c̄ triple
stat,min in a two-phase equilibrium interface. Higher order

junctions most likely lower the nucleation barrier additionally
but proving this analytically was out of the scope of this paper.
We note, however, that in the present simulations nucleation of
the LFP phases was always initiated at higher order junctions,
which might be due to the fact that less surface is created.
These considerations strongly support the choice of the noise
term Eq. (21), which is only active in the interfacial regions
based on the assumption of heterogeneous nucleation.

Once the critical composition has been exceeded and phase
separation occurs, grain-by-grain-like filling can be observed.
Figure 10(a) shows two grains in which nucleation has been
initiated and LFP phases grow on the expense of the cor-
responding FP phase. The phase transformation within each
grain is triggered at higher order junctions such as that marked
by the red circle in Fig. 10(b), and then proceeds through the
grain. If multiple nucleation events happen simultaneously,
the energetically more favorable grain will be filled com-
pletely by diffusion of ions from the surrounding grains before
the next grain will be filled (see Supplemental Material [56]).
This illustrates the strong coupling between diffusion and
phase transformation. Over time, all grains within the section
exhibit phase transformation and a front between LFP phases
and FP phases moves through the simulation domain as shown
in Fig. 11. Neighboring grains influence the progression of
the phase transformation as it is energetically favorable for
the intercalation to proceed in a grain-by-grain process. This
seems reasonable from a physical point of view as the overall
interfacial energy is reduced. From Fig. 11 and the Supple-
mental Material, we conclude that the evolving LFP phases
form 90◦ contact angles at the left and right boundaries of
the domain due to the ∇c̄ = 0 BC, but also at the preexistent
internal grain boundaries. This is in agreement with the Young

FIG. 10. Intercalation in a 2D multigrain cathode section with 200 × 300 cells under constant current discharge. Evolution of phases (a) is
coupled to composition and (b) is displayed here for 1C rate at time t = 0.5 h.
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FIG. 11. Evolution of FP to LFP phase transformation during intercalation in 2D multigrain cathode section with 200 × 300 cells under
CC discharge with 1C rate.

equation for the wetting angle on a rigid surface where all
three phase pairs exhibit the same surface energy γαβ . In this
sense, the initial grain boundaries can be interpreted as a rigid
substrate because of their immobility. The observed phase
front between the LFP and FP phase within each grain then
evolves such that curvature and total surface are minimized
while keeping 90◦ contact angles with the grain boundaries.
Movies of the intercalation process are available in the Sup-
plemental Material [56].

V. CONCLUSION

In this work, we presented a computationally efficient
alternative to model intercalation in cathode materials ex-
hibiting phase transformation upon charge and discharge. The
multicomponent, multiphase-field model presented above fea-
tures the advantage of decoupling interfacial and bulk energy
contributions and, therefore, overcomes the discretization lim-
itation of the classical Cahn-Hilliard description based on
regular solution free energy. Computation of phase evolution
within the Allen-Cahn framework enables the simulation of
heterogeneous nucleation of a coherent LFP phase within a
multigrain section of noncoherent FP phases. The model is
able to predict composition-dependent phase transformation
nucleating at grain boundaries without making a priori as-
sumptions about the nucleation site. The multiphase field can
be utilized to include lattice orientation information of the

FIG. 12. φβ -φγ equilibrium interface.

respective phases which can be reflected by anisotropy of
diffusion and volumetric expansion. The explicit modeling of
evolving phases also facilitates the incorporation of mechani-
cal energy contributions based on mechanical jump conditions
[40]. We intend to investigate these effects in future works.

The considerations in Sec. III have been utilized to re-
late the model parameters of the Cahn-Hilliard with the
Allen-Cahn formulation but can further be applied for fitting
parameters according to ab initio simulations or experimental
results. Understanding the phase decomposition instability
studied in Sec. IV A can be particularly useful for modeling
solubility limits of the respective phases. We also note that
this framework is not limited to a one-step phase transition
process within the composition range of c̄ ∈ [0, 1] but can
easily be extended to a multistep process as in the FePO4 →
Na0.66FePO4 → NaFePO4 phase transformation. Here we
used a multiphase-field approach to study intercalation in a
multigrain system. Simulations strongly support the assump-
tion of coexistence of fully lithiated and delithiated primary
particles as the filling process proceeds stepwise in a grain-
after-grain manner through the agglomerate. This result is in
agreement with the domino-cascade mechanism proposed by
Delmas et al. [31] and the assumption that a core-shell-like
intercalation occurs in larger secondary particles. Size and
porosity of these secondary structures probably influences
the battery performance strongly. The effects of lattice ori-
entation, elastic energy, and the electrochemical reaction at
active electrolyte-electrode surfaces on this process should be
studied further.
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APPENDIX A: STABILITY ANALYSIS IN A TWO-PHASE SYSTEM

We introduce the system variable vector y = [φ, c̄]T and linearize the given system around the critical point P0 = (φ0, c0)
following the approach in [57]:

ẏ =
[−1/ετ 0

0 D∇2/2A

]⎛
⎝[−2εγαβ 0

0 0

]
P0

∇2y +
[

∂2 fpot

∂φ2 + ∂2 fchem

∂φ2
∂2 fchem

∂φ∂ c̄
∂2 fchem

∂φ∂ c̄
∂2 fchem

∂ c̄2

]
P0

y

⎞
⎠.

We then transform our system into Fourier space with ∂ny
∂xn = (ik)nŷ(k),

∂ ŷ

∂t
= −

[
1/ετ 0

0 Dk2/2A

][
2εγαβk2 + ∂2 fpot

∂φ2 + ∂2 fchem

∂φ2
∂2 fchem

∂φ∂ c̄
∂2 fchem

∂φ∂ c̄
∂2 fchem

∂ c̄2

]
P0

ŷ.

As the gradient in φ is negligibly small initially, the gradient energy contribution can be neglected |∇φ|2 ≈ 0, which yields

∂ ŷ

∂t
= −M̃

[
∂2 fpot

∂φ2 + ∂2 fchem

∂φ2
∂2 fchem

∂φ∂ c̄
∂2 fchem

∂φ∂ c̄
∂2 fchem

∂ c̄2

]
P0

ŷ = −M̃Hf ŷ

with the system matrix A = −M̃Hf . The mobility matrix M̃ is diagonal and has two constant positive entries. The system is
stable if the system matrix is negative definite which is fulfilled if the Hessian matrix Hf is positive definite. We investigate the
stability concerning small perturbations around a constant value of c̄ by first looking at the determinant

det(Hf ) =
[
∂2 fpot

∂φ2
+ ∂2 fchem

∂φ2

][
∂2 fchem

∂ c̄2

]
−

[
∂2 fchem

∂ c̄∂φ

]2

= λ1λ2. (A1)

The entries of the Hessian matrix are

∂2 ftot

∂φ2
= ∂2 fpot

∂φ2
+ 2A(�cmin)2

(
∂h

∂φ

)2

− 2A[c̄ − c̄min(φ)]�cmin
∂2h

∂φ2
+ B

∂2h

∂φ2
,

∂2 fchem

∂ c̄2
= 2A,

∂2 fchem

∂ c̄∂φ
= −2A�cmin

∂h(φ)

∂φ

which yields with ∂2 fpot

∂φ2 = 18γαβ

ε
(6φ2 − 6φ + 1) in the double-well case

det(Hf ) =2A
18γαβ

ε
(6φ2 − 6φ + 1) + 2AB

∂2hwell

∂φ2
− 4A2[c̄ − c̄min(φ)]�cmin

∂2hwell

∂φ2

!
> 0.

Investigating the stability of the critical solutions from Eq. (42) then leads to

18γαβ

ε
− 12A

(
c̄ − cβ

min

)
�cmin + 6B > 0 (A2)

for φ = 0, c̄ = c0 and from Eq. (43) yields

18γαβ

ε
(6φ2 − 6φ + 1) − 18γαβ

ε
(1 − 2φ)2 > 0 (A3)

with φ ∈ (0, 1). Evaluating Eq. (A2), the first critical solution becomes unstable for mole fractions higher than ccrit. Similar
analysis can be performed for φ0 = 1 and we get

c̄crit(φ = 0) = cβ

min + B

2A�cmin
+ 3γαβ

2A�cminε
,

ccrit(φ = 1) = cα
min + B

2A�cmin
− 3γαβ

2A�cminε
.

In the second case, Eq. (A3) yields −φ(1 − φ) > 0 which is false ∀φ ∈ (0, 1). This means the second critical solution is always
unstable. To evaluate the stability of Eq. (A2) for c̄0 < c̄crit we look at the trace of the system matrix tr(Hf ) = λ1 + λ2 which
yields for φ0 = 0

2A + 18γαβ

ε
− 12A

(
c̄0 − c̄β

min

)
�cmin + 6B > 0. (A4)

Expression (A4) holds ∀c̄0 < c̄crit and therefore is a stable solution of our system (40).
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In the case of an obstacle potential with ∂2 fpot

∂φ2 = − 32γαβ

επ2 the determinant reads

det(Hf ) = −2A
32γαβ

επ2
+ 2AB

∂2hob

∂φ2
− 4A2[c̄ − c̄min(φ)]�cmin

∂2hob

∂φ2

!
> 0. (A5)

Inserting the critical points from Eq. (47), we get

det(Hf ) = −8γαβ

επ2

1

φ(1 − φ)
< 0 ∀φ ∈ (0, 1), (A6)

which means all critical solutions from Eq. (47) are unstable with respect to small fluctuations.

APPENDIX B: STABILITY ANALYSIS OF THIRD-PHASE NUCLEATION WITHIN A PRESENT EQUILIBRIUM INTERFACE

We assess the stability of an φβ-φγ equilibrium interface with regard to the formation of a third phase φα driven by chemical
energies depending on the global initial composition c̄0. The initial simulation setup is shown in Fig. 12. Arguing that the two
phases β and γ already present are equal in terms of stoichiometric composition and chemical energies, we assume Aβ = Aγ ,
cβ

min = cγ

min = cβγ

min, and Bβ = Bγ . We further reduce complexity by choice of Aα = Aβγ = A and Bα = B, Bβγ = 0. The chemical
energy Eq. (13) can be rewritten as a function of the average composition c̄ = ∑

cαhα (φ) by introduction of �cmin = cα
min − cβ

min
and assuming equal phase diffusion potentials in the interface μi = ∂ f α/∂cα

i = · · · = f N/∂cN
i ,

fchem(φ, c̄) = A
[
c̄ − cβγ

min − �cminhα (φ)
]2 + Bhα (φ). (B1)

Due to the assumption of coherent nucleation, φα only grows at the expense of φβ . We formulate the evolution equations for φα

based on Eq. (16):

φ̇α = − Mαβ

Ñε

[
εγαβ

(∇2φβ − ∇2φα

) + 16

επ2
γαβ (φβ − φα ) + ε(γαγ − γβγ )

(
∇2φγ + 16

επ2
φγ

)

− 2A�cmin
[
c̄ − cβ

min − �cminhα (φ)
]( ∂hα

∂φα

− ∂hα

∂φβ

)
+ B

(
∂hα

∂φα

− ∂hα

∂φβ

)]
(B2)

We assume ∇φα to be negligibly small, γαβ equal for all phase pairs, and an equilibrium interface between the phases φβ and
φγ . From the equilibrium solution φβ = 1

2 + 1
2 sin( 4x

επ
) we derive

∂2φβ

∂x2
= − 8

ε2π2
sin

(
4x

επ

)
= 8

ε2π2
− 16

ε2π2
φβ. (B3)

Employing Eq. (B3) the stationary solutions of Eq. (B2) are characterized by

− 8γ

επ2
(2φα − 1) −

(
2A�cmin

[
c̄ − cβ

min − �cminhα (φ)
] − B

)(
∂hα

∂φα

− ∂hα

∂φβ

)
!= 0

which yields the criterion for stationary compositions

c̄stat = cβ

min + B

2A�cmin
+ �cminhα (φ) + 4γ

Aεπ2�cmin

1 − 2φα

∂hα/∂φα − ∂hα/∂φβ

. (B4)

The system evolution equation can be linearized around stationary point P0 with the system variable vector y = [φα, c̄]T . We
then transform our system into Fourier space with ∂ny

∂xn = (ik)nŷ(k) and get

∂ ŷ

∂t
= −

[Mαβ

εÑ
0

0 Dk2

2A

][
εγ k2 − 16γ

επ2 + ∂
∂φα

(
∂ fchem

∂φα
− ∂ fchem

∂φβ

)
∂
∂ c̄

(
∂ fchem

∂φα
− ∂ fchem

∂φβ

)
∂2 fchem

∂ c̄∂φα

∂2 fchem

∂ c̄2

]
P0

ŷ.

Assuming the gradient ∇φα to be negligibly small initially, this reduces to

∂ ŷ

∂t
= −M̃

[
− 16γ

επ2 + ∂
∂φα

(
∂ fchem

∂φα
− ∂ fchem

∂φβ

)
∂
∂ c̄

(
∂ fchem

∂φα
− ∂ fchem

∂φβ

)
∂2 fchem

∂ c̄∂φα

∂2 fchem

∂ c̄2

]
P0

ŷ = −M̃S f ŷ (B5)

with the system matrix A = −M̃S f . The mobility matrix M̃ is diagonal and has two constant positive entries. The system is
stable if the stability matrix S f is positive definite. The determinant is given by

det(S f ) = Sφαφα
Sc̄c̄ − Sc̄φα

Sφα c̄ = λ1λ2 (B6)
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with the single contributions

Sφαφα
= −16γ

επ2
− 2A�cmin

[
c̄ − cβ

min − �cminhα (φ)
](∂2hα

∂φ2
α

− ∂2hα

∂φα∂φβ

)
+ 2A(�cmin)2 ∂hα

∂φα

(
∂hα

∂φα

− ∂hα

∂φβ

)
,

Sφα c̄ = −2A�cmin

(
∂hα

∂φα

− ∂hα

∂φβ

)
, Sc̄φα

= −2A�cmin
∂hα

∂φα

, Sc̄c̄ = 2A

which yields

det(S f ) = −32Aγ

επ2
− 4A2�cmin

[
c̄ − cβ

min − �cminhα (φ)
]( ∂hα

∂φ2
α

− ∂hα

∂φαφβ

)
!
> 0.

Investigating the stability of the critical solutions from Eq. (B4), we derive the criterion

−16γ

επ2
− 8γ

επ2

1 − 2φα

∂hα/∂φα − ∂hα/∂φβ

(
∂hα

∂φ2
α

− ∂hα

∂φαφβ

)
> 0. (B7)
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