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Zusammenfassung

In der vorliegenden Arbeit wird die strömungsinduzierte Anisotropie
von Fasersuspensionen modelliert. Die eingetauchten Fasern können
sich aufgrund der Strömung umorientieren, und die momentane Faser-
orientierungsverteilung beeinflusst wiederum die Strömung.

Der erste Effekt, die Entwicklung der Faserorientierung, ist in der Li-
teratur weitgehend untersucht und zahlreiche Modelle sind bereits in
kommerziellen Softwarepaketen implementiert. In den meisten Model-
len werden Faserorientierungstensoren verwendet, um die Anisotropie
und die Entwicklung der Faserorientierungsverteilung zu beschreiben.

Für den zweiten Effekt, die Anisotropie der effektiven Viskosität, gibt es
auch Modelle in der Literatur, aber diese werden meistens nicht in den
Formfüllsimulationen berücksichtigt. Die Gründe für die Vernachlässi-
gung sind die Anzahl, die komplexe Mikrostrukturabhängigkeit und die
bisher fehlenden experimentellen Valdierung der Parameter. Ein weiterer
Grund dafür, dass meistens nur isotrope effektive Viskositätsmodelle in
Formfüllsimulationen verwendet werden ist numerische Instabilität, die
bei der numerischen Berücksichtigung der Anisotropie der Viskosität
auftritt.

Das wichtigste neue Ergebnis dieser Arbeit ist die Bewertung einer
Mean-Field-Homogenisierungsmethode durch Vollfeldsimulationen,
d.h. durch numerische Experimente, unter Berücksichtigung der an-
isotropen effektiven Viskosität von Fasersuspensionen.

Die allgemeine Form des effektiven, linearen Viskositätstensors wird
unter Verwendung von drei Viskositätsparametern abgeleitet, wobei
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Zusammenfassung

von starren, geraden Fasern und einer inkompressiblen Flüssigkeit
ausgegangen wird. Die Abhängigkeit der drei Viskositätsparameter
von den Mikrostruktureigenschaften – dem Faservolumenanteil, dem
Faserlängen-Durchmesser-Aspektverhältnis und der Flüssigkeitsviskosi-
tät – wird durch Mean-Field-Homogenisierung bestimmt.

Zusätzlich wird der effektive Viskositätstensor ebenfalls durch Vollfeld-
Homogenisierung berechnet, basierend auf repräsentativen Volumen-
elementen synthetischer Mikrostrukturen, und die zugehörigen Viskosi-
tätsparameter werden numerisch bestimmt.

Die resultierenden Viskositätsparameter des Mean-Field- und des
Vollfeld-Homogenisierungsverfahrens werden miteinander verglichen,
und die Fehler in Bezug auf die numerisch berechneten effektiven
Viskositätstensoren werden angegeben. Es wird beobachtet, dass die
relativen Fehler im Falle der Bestimmung der Viskositätsparameter
mittels der Vollfeldmodells etwa eine Größenordnung kleiner sind als
die Fehler bei der Verwendung des Mean-Field-Modells. Zudem werden
analytische Näherungen der Vollfeldviskositätsparametern angegeben,
die zur Verwendung in Formfüllungssimulationen empfohlen werden.
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Summary

In this work, the flow-induced anisotropy of fiber suspensions is mod-
eled. The immersed fibers can reorientate themselves due to the flow,
and on the other hand, the momentary fiber-orientation distribution
influences the flow.

The first effect, i.e., the fiber-orientation evolution, is widely investi-
gated in the literature, and various models are already implemented
in commercial software packages. In most models, fiber-orientation
tensors are used for describing the anisotropy and the evolution of the
fiber-orientation distribution.

For the second effect, i.e., the anisotropy of the effective viscosity, models
already exist in the literature, these are, however, usually not taken
into account in form-filling simulations. The reasons for this neglect
are the number, the complex microstructure dependence, and the lack
of experimental validation of the parameters. Another reason for the
fact that mostly only isotropic effective viscosity models are used in
form-filling simulations is the numerical instability which occurs when
the anisotropy of the viscosity is taken into account numerically.

The main novelty of this work is the evaluation of the accuracy of a
mean-field homogenization method by full-field simulations, i.e., by
numerical experiments, considering the anisotropic effective viscosity of
fiber suspensions.

The general form of the effective linear viscosity tensor is derived with
the use of three viscosity parameters, assuming rigid straight fibers
and an incompressible fluid. The dependence of the three viscosity
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Summary

parameters on the microstructure properties – which are the fiber volume
fraction, the fiber length to diameter aspect ratio and the fluid viscosity –
are determined through mean-field homogenization.

In addition, the effective viscosity tensor is computed by full-field
homogenization, based on representative volume elements of synthetic
microstructures, and the corresponding viscosity parameters are deter-
mined numerically.

The resulting viscosity parameters of the mean-field and the full-field
homogenization methods are compared to each other, and the errors
relative to the numerically computed effective viscosity tensors are
determined. It is observed that the relative errors caused by the viscosity
parameters of the full-field model are about one order of magnitude
smaller than the errors of the mean-field model. Analytical approxi-
mations of the full-field viscosity parameters are derived, which are
recommended to be used in form-filling simulations.
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Chapter 1

Introduction

1.1 Motivation

Reinforcing polymers with discontinuous fibers is a commonly used
way to achieve higher stiffness, while keeping the high formability and
low production costs of unfilled polymers, still using the commonly
spread injection- or compression molding production technology.

During the molding process the discontinuous fibers continuously re-
orientate which causes steadily changing anisotropic effective viscosity.
The reorientation of the fibers leads to an inhomogeneous final fiber
orientation distribution and anisotropic effective material properties of
the produced, solidified parts. The effective material anisotropy can be
measured after production, with the help of different load cases and the
deformation response. Another way to characterize the anisotropy of a
part is to measure the fiber-orientation distribution, e.g., by computer
tomography, and compute the effective anisotropic material properties
with the help of homogenization methods. Both methods include costly
– and mostly destructive – measurements, and expensive prototypes of
the designed part have to be produced.

Knowledge about the evolution of the anisotropy during the produc-
tion process gives the opportunity to have more control on the final
anisotropy of the produced part. For this reason, in the case of injection-
and compression molding, the anisotropy of fiber suspensions has to
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1 Introduction

be investigated, i.e., the anisotropy of the effective viscosity. As a first
approximation, the material behavior can be modeled as linear viscous.
Neglecting the non-linearity of the polymer melt is a simplification, but
a reasonable one to better understand the flow process.

The numerical determination of the effective viscosity allows prediction
of the anisotropic effective material behavior of a designed part, without
measurements and costly production. Whether the predictions of the
simulations – based on assumptions – are correct, has to be validated
with some measurements but less of them is enough than without
simulations.

Originality of the thesis. This work exhibits the following novelties:

• Tensor form of the transversely isotropic effective viscosity, in
the case of incompressibility: A transversely isotropic tensor of
fourth order, like the effective viscosity tensor in the case of aligned
fibers, has in general five independent coefficients. In the case of
incompressibility the number of the independent coefficients re-
duces to three. In several papers the second-order tensor equation
of the deviatoric stress–deviatoric strain rate relation, as function
of the tree viscosity coefficients and the fiber-orientation tensors, is
stated, e.g., Tucker III (1991). In this work the fourth-order tensor
of the effective viscosity is reparameterized as function of the three
viscosity coefficients and the fiber-orientation tensors which is a
more general description.

• Determining the viscosity coefficients by mean-field homoge-
nization: The three viscosity coefficients are determined using
the Mori-Tanaka method, for the special case of incompressible
matrix and rigid fibers. The applied Eshelby’s tensor is singular
due to the considered special case and it has to be inverted on the
non-singular subspace. The considered microstructure parameters
are the matrix viscosity, the fiber volume fraction and the fiber
aspect ratio.
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1.1 Motivation

• Computing the viscosity tensor through full-field homogeniza-
tion: The viscosity tensor is computed by FFT-based full-field
homogenization, with the use of synthetic microstructures. The
orientation space is parameterized with the second-order fiber ori-
entation tensor. The three vertexes of the fiber-orientation triangle,
i.e., unidirectional, planar isotropic and isotropic orientation cases
are investigated. The size of the representative volume element is
investigated in each case. The independence of the approximated
viscosity coefficients on the fiber-orientation state is investigated.

• Improving the analytical predictions of the mean-field model
based on the numerical results of the full-field simulations: Im-
proved analytical forms of the viscosity coefficients are recom-
mended, based on the numerical results of the full-field computa-
tions, for the investigated microstructure parameter range.
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1 Introduction

1.2 State of the art

Flow-induced anisotropy of the fiber orientation. The reorientation of
a single fiber in an incompressible isotropic Newtonian fluid was first
described by Jeffery (1922). This is the basis of all later fiber evolution
models which are widely used today in form-filling softwares. A more
general derivation of Jeffery’s equation is given by Junk and Illner (2007).

To describe the orientation state and the dynamics of rigid fiber systems –
in a numerically efficient way – Advani and Tucker III (1987) introduced
the fiber-orientation tensors of the first kind (Kanatani, 1984). These
tensors are used – similarly as the texture coefficients for polycrys-
tals (Böhlke and Bertram, 2001; Böhlke et al., 2003; Böhlke, 2006) – to
describe the anisotropy evolution caused by the deformation process.

Jeffery’s equation, also in the tensorial form, accounts only for the effect
of the hydrodynamic forces, but does not include the fiber-fiber inter-
action which plays an important role for higher fiber volume fractions.
For many fiber systems the fiber-fiber interactions are modeled with
the use of phenomenological interaction coefficients. The most often
used models are the Folgar-Tucker (Folgar and Tucker III, 1984), the
Reduced Strain Closure (Wang et al., 2008) and the Anisotropic Rotary
Diffusion (Phelps and Tucker III, 2009). The interaction coefficients
can be determined empirically, see for example the works presented
by Bay and Tucker III (1992a;b) and Phan-Thien et al. (2002). Slightly
modified versions of these theories are given by the Retarding Principal
Rate model (Tseng et al., 2013b) and the objective improved Anisotropic
Rotary Diffusion model (Tseng et al., 2013a; 2016). All of these models
and their combinations are nowadays implemented in open source and
commercial software packages, see some applications presented by Tang
and Altan (1995); Chung and Kwon (2002b); Ospald (2014) and Bertóti
and Böhlke (2017a).
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1.2 State of the art

The extensions of Jeffery’s equation in the tensorial form need a closure
application to approximate the arising fourth-order fiber-orientation ten-
sor, see for example the papers presented by Doi (1981); Hand (1962); Ad-
vani and Tucker III (1990); Verleye (1993); Cintra Jr and Tucker III (1995)
and Chung and Kwon (2002a). For special cases there also exist closure-
free models, see (Montgomery-Smith et al., 2011a) and (Montgomery-
Smith et al., 2011b).

The above mentioned models consider how the fluid flow affects the fiber
reorientation but they neglect the back-coupling, namely the effect of
the permanently changing fiber orientation on the fluid flow. In the next
paragraph the models considering the back-coupling are summarized.

Effective-viscosity models for fiber reinforced polymer melts. The
rheology of fiber suspensions is described by various models in the liter-
ature. If a molten composite is considered to be linear and isotropic, then
the viscosity model of Newtonian fluids (Newton, 1999) is applicable,
by describing the fiber-matrix mixture with an effective scalar viscosity,
which can be measured by a shear rheometer (Eschbach, 1993).

But polymer melts show a strongly nonlinear behaviour, see for exam-
ple (Ferry, 1980). The stress is not directly proportional to the strain
rate, even not for pure molten polymers, this is the so-called shear-
thinning behaviour, often described by the Cross-model (Cross, 1970).
Considering filled polymer melts, the nonlinear stress–strain rate relation
is described, e.g., by Poslinski et al. (1988).

In the case of polymer melts the temperature dependence of the
viscosity is also notable, which is commonly described by the WLF
model (Williams et al., 1955).

Nowadays, in commercial software, for modeling the flow of fiber
reinforced polymer melts, nonlinear behaviors are included, i.e., shear
thinning behaviour, and the temperature dependence of the fiber-fluid
mixture is implemented, see for example (Koszkul and Nabialek, 2004).

5



1 Introduction

In contrast, the anisotropy of the suspensions is not accounted for in
most of the simulations/simulation codes.

The anisotropy of fiber suspensions, e.g., glass fibers immersed in a poly-
mer matrix, is similar to the anisotropy of liquid crystals (Oseen, 1933;
Papenfuss and Muschik, 2018) but due to the long range interaction of
the fibers their descriptions are not identical to liquid crystals (Ericksen,
1959; 1960a).

One of the first constitutive laws considering the anisotropic flow prop-
erties of fiber suspensions is the Transversely Isotropic Fluid (TIF) model
from Ericksen (1960b). The models by Hinch and Leal (1972); Brenner
(1974); Dinh and Armstrong (1984); Lipscomb II et al. (1988); Pipes et al.
(1991) and Phan-Thien and Graham (1991) are modifications of the TIF
model and they all depend linearly on the fourth-order fiber-orientation
tensor, similarly as the models presented in (Bertóti and Böhlke, 2016;
2017b; Bertóti et al., 2020a;b) and in this work.

Numerical implementations of the above mentioned models are pre-
sented by Alexandrou and Mitsoulis (2007); Heinen (2007); Latz et al.
(2010); Bertóti and Böhlke (2017a); Sommer et al. (2018); Wittemann et al.
(2019); Mezi et al. (2019) and Tseng and Favaloro (2019).

1.3 Notation, frequently used abbreviations and
symbols

A direct tensor notation is preferred throughout the text. The tensor
components are given with the use of Latin indices. Einstein’s summa-
tion convention is applied. Three-dimensional space is considered. A
Cartesian coordinate system is used. In the following, frequently used
symbols, operators and abbreviations are listed. SI units are used, where
nothing else is given.
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Abbreviations

ap Approximated
disc Discrete model
fit Fitted
iso Isotropic orientation state, 𝑁̄ iso=̂diag(0.33, 0.33, 0.33)
mf Mean-field
num Numerical
piso Planar isotropic orientation state, 𝑁̄ piso=̂diag(0.5, 0.5, 0)
quad Quadratic closure
sf Single fiber
ud Unidirectional orientation state, 𝑁̄ ud=̂diag(1, 0, 0)
FFT Fast Fourier transformation
IBOF Invariant-based optimal fitting
MT Mori-Tanaka
RVE Representative volume element
7715 Frequently formed orientation state, 𝑁̄ 7715=̂diag(0.77, 0.15, 0)

Greek letters

𝛼 Serial number
𝛽𝑖 Scalar coefficients
𝜀M Effective von Mises equivalent strain
𝜂 Shear viscosity
𝜂 Effective viscosity
𝜂s Effective shear viscosity
𝜂v Effective volume viscosity
𝜆1 First largest eigenvalue of 𝑁̄

𝜆2 Second largest eigenvalue of 𝑁̄

𝜈 Effective Poisson’s ratio
𝜉 Geometry parameter of a fiber
𝜎̄ Effective Cauchy stress tensor
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Latin letters

𝑐f Fiber volume fraction
𝑑 Diameter of a fiber
𝑒 Error
𝑙 Length of a fiber
𝑟a Aspect ratio of a fiber
𝑡 Time

Δ𝑡 Time step
𝐾̄ Effective bulk modulus
𝐿 Length of a volume element
𝑀 Total number of fibers
𝑁̄s Shear number
𝑁̄p Particle number
𝑃 Permutation symbol
𝑊 Width of a volume element
𝑛 Fiber-orientation vector
𝑣̄ Effective velocity vector
𝑥 Position vector
𝐷̄ Effective strain rate tensor
𝐿̄ Effective velocity gradient
𝑁̄ Fiber-orientation tensor of second order
𝑃 Eigenprojector
𝑊̄ Effective vorticity tensor
1 Second-order identity tensor
E Eshelby tensor
I Fourth-order identity tensor
Is Right-symmetric part of the fourth-order identity tensor
N̄ Fiber-orientation tensor of fourth order
P1 First projector tensor of fourth order: P1 = 1 ⊗ 1/3
P2 Second projector tensor of fourth order: P1 = Is − P1

V̄ Effective viscosity tensor
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Operators

𝐴 · 𝐵 Scalar product : 𝐴 · 𝐵=𝐴𝑖𝑗𝐵𝑖𝑗

||𝐴|| Frobenius norm: ||𝐴|| =
√

𝐴 · 𝐴

𝐴 ⊗ 𝐵 Dyadic product: (𝐴 ⊗ 𝐵)𝑖𝑗𝑘𝑙=𝐴𝑖𝑗𝐵𝑘𝑙

tr(𝐴) Trace of a second-order tensor: tr(𝐴)=𝐴 · 1=𝐴𝑖𝑖

𝐴𝐵 Composition of second-order tensors: (𝐴𝐵)𝑖𝑗=𝐴𝑖𝑘𝐵𝑘𝑗

A[𝐵] Linear mapping of a second-order tensor by a fourth-order
tensor: (A[𝐵])𝑖𝑗=𝐴𝑖𝑗𝑘𝑙𝐵𝑘𝑙

𝐴2𝐵 Box product of second-order tensors: (𝐴2𝐵)𝑖𝑗𝑘𝑙=𝐴𝑖𝑘𝐵𝑙𝑗

ATR Right minor transposition: (ATR)𝑖𝑗𝑘𝑙=𝐴𝑖𝑗𝑙𝑘

A : B Composition of fourth-order
tensors: (A : B)𝑖𝑗𝑘𝑙=𝐴𝑖𝑗𝑚𝑛𝐵𝑚𝑛𝑘𝑙

S(A) Fully symmetrization of a fourth-order tensor:
S(𝐴𝑖𝑗𝑘𝑙)=1/24

∑︀24
𝛼=1 𝐴𝑃𝛼(𝑖,𝑗,𝑘,𝑙)

Subscripts and superscripts

(̄·) Effective, macroscopic value
(·)′ Deviatoric part
˙(·) Material time derivative

(·)f Property belonging to the fiber
(·)m Property belonging to the matrix
(·)cf Property belonging to the compressional flow
(·)aniso Anisotropic part of a tensor
(·)ef Property belonging to the elongational flow
(·)iso Isotropic part of a tensor
(·)pf Property belonging to the planar flow
(·)sf Property belonging to the shear flow
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Chapter 2

Modeling preliminaries

2.1 Assumptions on incompressible short-fiber
suspensions

2.1.1 Microstructure of short-fiber suspensions

Straight, cylindrical, rigid fibers with the length 𝑙 and diameter 𝑑, im-
mersed in an incompressible Newtonian fluid are considered in this
work. The modeled microstucture parameters are: the fiber aspect
ratio 𝑟a = 𝑙/𝑑 which is considered to be constant, the fiber volume
fraction 𝑐f, the isotropic scalar viscosity of the surrounding fluid referred
as matrix viscosity 𝜂m, and the fiber-orientation distribution described
by the normalized vectors 𝑛𝛼, where 𝛼 = 1, . . . , 𝑀 is the index corre-
sponding to each of the fibers. The rigid fibers are modeled by infinite
isotropic scalar viscosity 𝜂f = ∞. The possible shear-thinning behavior
and the temperature dependence of the matrix viscosity 𝜂m are neglected
in this work.

The orientation distribution of fiber systems is exactly described by
the fiber-orientation distribution function 𝑓(𝑛) which is defined on the
surface of a unit sphere 𝑆 = {𝑛 ∈ R3 : ||𝑛|| = 1}. The function 𝑓(𝑛) is
non-negative, centrosymmetric and normalized

𝑓(𝑛) ≥ 0, 𝑓(−𝑛) = 𝑓(𝑛),
∫︁

𝑆

𝑓(𝑛) d𝑆 = 1, (2.1)
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2 Modeling preliminaries

where the surface element d𝑆 = sin 𝜗/(4𝜋) d𝜙 d𝜗 with the azimuthal and
polar angles 𝜙 and 𝜗, respectively. The empirical orientation distribution
function of 𝑀 equally weighted fiber orientations 𝑛𝛼 is defined by

𝑓(𝑛) = 1
2𝑀

𝑀∑︁
𝛼=1

(𝛿(𝑛,𝑛𝛼) + 𝛿(−𝑛,𝑛𝛼)) , (2.2)

utilizing Dirac’s delta distribution function 𝛿(𝑛,𝑛𝛼). The fiber-orientation
distribution is approximately described by the fiber-orientation tensors
of second- and fourth order (Advani and Tucker III, 1987), denoted by 𝑁̄

and N̄, respectively, and defined by

𝑁̄ =
∫︁

𝑆

𝑛 ⊗ 𝑛 𝑓(𝑛) d𝑆, N̄ =
∫︁

𝑆

𝑛 ⊗ 𝑛 ⊗ 𝑛 ⊗ 𝑛 𝑓(𝑛) d𝑆. (2.3)

With the use of the empirical orientation distribution function

𝑁̄ = 1
𝑀

𝑀∑︁
𝛼=1

𝑛𝛼 ⊗ 𝑛𝛼, N̄ = 1
𝑀

𝑀∑︁
𝛼=1

𝑛𝛼 ⊗ 𝑛𝛼 ⊗ 𝑛𝛼 ⊗ 𝑛𝛼. (2.4)

These fiber-orientation tensors are fabric tensors of the first kind
(Kanatani, 1984), and they are used in the second step of the mean-field
homogenization (see section 2.2 considering orientation averaging)
and also as target value for the synthetic microstructure generation
(see section 5.1.1). These orientation tensors of the first kind have all
symmetries, i.e., symmetries for changing any two of their indexes,
due to their definition (2.4). The reduction N̄[1] = 𝑁̄ lowers the rank,
and 𝑁̄ · 1 = 1.

The two largest of the three eigenvalues of the second-order fiber-
orientation tensor 𝑁̄ are denoted by 𝜆1 and 𝜆2, where 𝜆1 ≥ 𝜆2.
Considering the two largest eigenvalues of 𝑁̄ , the orientation space
reduces to a planar triangle, shown in Figure 2.1, similarly colored as
in Köbler et al. (2018). The reduced fiber-orientation triangle describes

12



2.1 Assumptions on incompressible short-fiber suspensions

Figure 2.1: Fiber-orientation reference triangle, where 𝜆1 ≥ 𝜆2 are the two largest
eigenvalues of the second-order fiber-orientation tensor 𝑁̄ . The three extreme orientations
are the isotropic 𝜆1 = 𝜆2 = 1/3 (cyan), the unidirectional 𝜆1 = 1 (magenta), and the
planar isotropic 𝜆1 = 𝜆2 = 1/2 (yellow) cases. The colors of the intermediate orientations
are the combinations of CMY, such that the middle of the triangle is white. (Köbler et al.,
2018)

the second-order fiber-orientation tensor 𝑁̄ explicitly up to a rotation 𝑅,
i.e.,

𝑁̄ = 𝑅Λ̄𝑅, Λ̄ = 𝜆𝑖𝑃
Λ
𝑖 ,

𝜆1 ≥ 𝜆2 ≥ 𝜆3≥ 0, 𝜆1 + 𝜆2 + 𝜆3 = 1.

The reduced orientation space and the color scheme of Figure 2.1 are
used throughout sections 5.3 and 6.3.

Note that the fiber-orientation tensors of the first kind 𝑁̄ and N̄ do
not contain all the information about 𝑓(𝑛) and that 𝑁̄ and N̄ are not
independent (N̄[1] = 𝑁̄ ). The orientation tensors of the second kind 𝐺̄

13



2 Modeling preliminaries

and Ḡ minimize the approximation measure

𝐸 =
∫︁

𝑆

(︀
𝐺̄ · 𝑛 ⊗ 𝑛 + Ḡ · 𝑛 ⊗ 𝑛 ⊗ 𝑛 ⊗ 𝑛 − 𝑓(𝑛)

)︀2
d𝑆 → min (2.5)

of the exact orientation distribution function 𝑓(𝑛). The orientation
tensors of the third kind 𝐻̄ and H̄ have the advantage that they are
independent form each other. For the detailed derivation, special proper-
ties and explicit forms of the orientation tensors of the second and third
kind, the reader is referred to Kanatani (1984).

2.1.2 Flow regimes

Three flow regimes of fiber suspensions are distinguished (Chung and
Kwon, 2002a):

• dilute (𝑐f ≪ 1/𝑟2
a ),

• semi-dilute (1/𝑟2
a ≪ 𝑐f ≪ 1/𝑟a) and

• concentrated (𝑐f ≫ 1/𝑟a).

The dimensionless measures 𝑐f 𝑟2
a and 𝑐f 𝑟a correspond to the number

of interacting fibers, and the number of – one fiber diameter thick –
layers which can be densely filled with the fibers within a cubic volume
swept by a single fiber, respectively. It means that already for a small
aspect ratio of 𝑟a = 10, the semi-dilute regime ends at fiber volume
fractions much smaller than 1/𝑟a = 10%. In the case of industrial
applications, short fibers typically have an aspect ratio between 30
and 300 (1/𝑟a ≈ 0.3% − 3%). Thus, real manufacturing processes typ-
ically concerned with concentrated suspensions. The value of 𝑐f 𝑟a is
typically in the range of 1 to 5 (Chung and Kwon, 2002a). Due to the lack
of theoretical predictions, often dilute or semi-dilute models are used
also in industrial cases. Also in this work, the models are derived under
the (semi-)dilute assumption. Whether the models continue to be valid
for higher concentration must be investigated later. There exist other
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2.1 Assumptions on incompressible short-fiber suspensions

classifications of the flow regimes, e.g., by Tucker III (1991), where the
classification is based on a narrow gap, which can be important if the
fiber length to part thickness ratio is approximately one or higher.

2.1.3 Linear effective viscosity tensor in incompressible
fiber suspensions

It is assumed that the fluid-fiber suspension is incompressible. The
effective, i.e., macroscopic, Cauchy stress 𝜎̄ is additively decomposed
into a pressure-dependent spherical −𝑝 1 and a pressure-independent
deviatoric 𝜎̄′ part

𝜎̄ = −𝑝 1 + 𝜎̄′. (2.6)

In this work, only the pressure-independent deviatoric part of the
Cauchy stress 𝜎̄ is considered. Because of the assumed incompressibil-
ity, 𝑝 is a reaction force determined by the boundary conditions.

It is also assumed that the effective viscous material behaviour is linear

𝜎̄ = V̄[𝐷̄], 𝐷̄ = F̄[𝜎̄], (2.7)

where 𝜎̄ is the effective Cauchy stress, V̄ is the effective viscosity ten-
sor, 𝐷̄ is the effective strain rate (i.e., the symmetric part of the velocity
gradient) and F̄ = V̄−1 is the effective fluidity tensor. For the isotropic
case

V̄iso = 3𝜂vP𝐼
1 + 2𝜂sP𝐼

2, F̄iso = V̄−1
iso = 1

3𝜂v
P𝐼

1 + 1
2𝜂s

P𝐼
2, (2.8)

where 𝜂v is the effective volume viscosity and 𝜂s the effective shear
viscosity, P𝐼

1 = 1
3 1 ⊗ 1 and P𝐼

2 = Is − P𝐼
1 are the first and the second

projector tensors with major and minor symmetry, 1 is the second-order
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2 Modeling preliminaries

identity tensor, and Is = 1/2 (I + ITR) is the right-symmetric part of the
fourth-order identity tensor I = 121.

For the incompressible purely viscous case 𝜂v → ∞, similarly to 𝐾̄ → ∞
and 𝜈 → 0.5 in the case of linear elasticity, where 𝐾̄ and 𝜈 are the effective
bulk modulus and the effective Poisson’s ratio, respectively. In the case
of incompressibility only the deviatoric effective Cauchy stress 𝜎̄′ is of
principal interest

𝜎̄′ = V̄′[𝐷̄′], 𝐷̄
′ = F̄′[𝜎̄′], (2.9)

where 𝜎̄′ = P𝐼
2[𝜎̄], V̄′ = P𝐼

2 : V̄ : P𝐼
2, 𝐷̄

′ = P𝐼
2[𝐷̄] and F̄′ = P𝐼

2 : F̄ : P𝐼
2. In

the isotropic case they have the form

V̄′
iso = 2𝜂sP𝐼

2 and F̄′
iso = 1

2𝜂s
P𝐼

2. (2.10)

Note that the effective viscosity V̄′ is only pseudo-invertible, because of
the assumed incompressibility, i.e., invertible only on the non-singular
subspace. The fluidity F̄ is used in the numerical computations (Schnei-
der, 2016).

Simplification of the notation. The prime ′ from V̄′ and the super-
script 𝐼 from P𝐼

1 and P𝐼
2 are dropped, as in this work only the incompress-

ible case is considered and because the general projectors P𝛼 (Halmos,
1958) are not used here. So in the following V̄ = V̄′, P1 = P𝐼

1 and P2 = P𝐼
2.

2.2 Viscosity parameters

A possible way to estimate the effective viscosity tensor is to apply a two-
step homogenization theory, also known as orientation averaging tech-
nique (Advani and Tucker III, 1987) or as averaging over unidirectional
pseudo-grains (Kammoun et al., 2011). In the first step, the effective
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2.3 Viscosity parameters

properties of an unidirectional (transversely isotropic) pseudo-grain are
specified, and in the second step the differently oriented pseudo-grains
are averaged. Considering the first step in the case of incompressibility
and fibers pointing in the direction of the unit vector 𝑛, the unidirectional
effective viscosity tensor V̄ud is transversely isotropic. Therefore, it has
the form

V̄ud(𝜂, 𝑁̄s, 𝑁̄p, 𝑛) = 2𝜂

(︂
P2

+ 𝑁̄s

(︂
𝑛 ⊗ 𝑛 � 1 + 1 � 𝑛 ⊗ 𝑛 − 2

3 (1 ⊗ 𝑛 ⊗ 𝑛 + 𝑛 ⊗ 𝑛 ⊗ 1) + 2
3P1

)︂
+ 𝑁̄p

(︂
𝑛 ⊗ 𝑛 ⊗ 𝑛 ⊗ 𝑛 − 1

3 (1 ⊗ 𝑛 ⊗ 𝑛 + 𝑛 ⊗ 𝑛 ⊗ 1) + 1
3P1

)︂)︂
, (2.11)

derived based on the works Tucker III (1991); Fiolka (2008); Weise and
Meyer (2010). The three scalar parameters 𝜂, 𝑁̄s, 𝑁̄p are the effective
scalar viscosity, the shear number and the particle number, respectively,
and they are referred in the succeeding as viscosity parameters.

Assuming that the three viscosity parameters are independent of the
fiber-orientation state and by using orientation averaging (Advani and
Tucker III, 1987), the viscosity tensor V̄ may be written in the form

V̄(𝜂, 𝑁̄s, 𝑁̄p, N̄) = 2𝜂

(︂
P2

+ 𝑁̄s

(︂
𝑁̄ � 1 + 1 � 𝑁̄ − 2

3
(︀
1 ⊗ 𝑁̄ + 𝑁̄ ⊗ 1

)︀
+ 2

9 (1 ⊗ 1)
)︂

+ 𝑁̄p

(︂
N̄ − 1

3
(︀
1 ⊗ 𝑁̄ + 𝑁̄ ⊗ 1

)︀
+ 1

9 (1 ⊗ 1)
)︂)︂

, (2.12)

considering arbitrary fiber-orientation distributions, described by the
fourth- and ther second-order fiber-orientation tensors, N̄ and 𝑁̄ = N̄[1],
respectively (for their definitions see section 2.1.1). The assumption that
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2 Modeling preliminaries

the viscosity parameters are independent of the fiber-orientation state is
discussed in section 6.3.

2.3 Modeling approach

The fiber-orientation evolution-models and the effective-viscosity mod-
els described in this work may serve as input for form-filling simulations,
e.g., (Ospald, 2014; Buck et al., 2015; Bertóti and Böhlke, 2017a; Köbler
et al., 2018). The fiber motion induced by the fluid flow (fluid→fiber in-
teraction) is generally modeled by Jeffery’s equation (Jeffery, 1922; Junk
and Illner, 2007), as described in Chapter 3. Concerning a momentary
fiber-orientation state, the back-coupling, i.e., the influence of the actual
fiber orientation on the fluid motion (fiber→fluid interaction) is mostly
neglected in form-filling simulations. One possible way to account for
the back-coupling is to describe the fluid-fiber suspension by the effective
tensorial viscosity which depends on the microstructure properties
and especially on the actual fiber-orientation state. Neglecting the
tensorial nature of the effective viscosity in the form-filling simulations
has different reasons:

1. Computing with isotropic effective viscosity, with the use of fitting
parameters in the fiber-orientation evolution-models is already a
challenging and complex task, without the consideration of the
anisotropy of the viscosity.

2. Most fluid dynamics codes are numerically optimized for isotropic
viscosity but not for anisotropic, i.e., tensorial viscosity.

3. Experimental validation of a tensorial viscosity model prediction
is quite difficult, because of the continuously re-orientating fibers.
Such a work is not known to the author.

Tensorial effective material models, e.g., (Hinch and Leal, 1972; Mori and
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2.3 Modeling approach

Tanaka, 1973; Shaqfeh and Fredrickson, 1990), applied for the viscosity,
give predictions for the three viscosity parameters, see Chapter 4. To
overcome the lack of real experiments, numerical full-field simulations
are carried out – which can be considered as numerical experiments –
to determine the viscosity parameters in this way, see Chapter 5. The
numerical results are used to prove the theoretical model predictions
and to give improved approximations of V̄, considering also the size
of the homogenized volume element and the spatial distribution of the
fibers in it, see Chapter 6.
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Chapter 3

Flow-induced anisotropy of the
fiber orientation 1

3.1 Jeffery’s equation

Jeffery (1922) described a single fiber with its normalized direction
vector 𝑛𝛼, where 𝛼 = 1, 2, . . . , 𝑀 denotes the index of the fiber. The
evolution equation of 𝑛𝛼 is given by

𝑛̇𝛼 = 𝑊̄ [𝑛𝛼] + 𝜉(𝐷̄[𝑛𝛼] − (𝑛𝛼 ⊗ 𝑛𝛼 ⊗ 𝑛𝛼)[𝐷̄]), 𝜉 = 𝑟2
a − 1

𝑟2
a + 1 , 𝑟a = 𝑙/𝑑,

(3.1)
where 𝑊̄ is the effective vorticity tensor, and 𝐷̄ is the effective strain rate
tensor, being the skew-symmetric and the symmetric parts of the effec-
tive velocity gradient 𝐿̄ = 𝜕𝑣̄/𝜕𝑥, respectively. The parameter 𝜉 ∈ (0, 1)
describes the geometry of the fibers, determined by the aspect-ratio 𝑟a,
the fiber length 𝑙 and the fiber diameter 𝑑. For fibers 𝜉 ≈ 1. A modern
derivation of (3.1) is given by Junk and Illner (2007).

With the use of the dilute distribution approximation – which assumes
that the fibers do not interact with each other – Jeffery’s equation sep-
arately describes the motion of all 𝑀 fibers in a viscous flow. In the
Figures 3.1-3.4 the fiber-orientation evolutions of 𝑀 = 1000 randomly
generated, initially equally distributed (Mardia and Jupp, 2009) fibers are

1 This chapter is based on Bertóti and Böhlke (2017b).
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3 Flow-induced anisotropy of the fiber orientation

represented, considering slender fibers (𝑟a → ∞, 𝜉 → 1). The following
four representative, isochoric flow modes are considered: shear flow (sf),
elongational flow (ef), compressional flow (cf), and a planar flow (pf)
which is the superposition of an elongational and a compressional flow.
The corresponding velocity gradients are given by

𝐿̄
sf=̂

⎛⎜⎝ 0 𝑏 0
0 0 0
0 0 0

⎞⎟⎠ , 𝐿̄
ef=̂

⎛⎜⎝ 𝑏 0 0
0 − 𝑏

2 0
0 0 − 𝑏

2

⎞⎟⎠ ,

𝐿̄
cf=̂

⎛⎜⎝ −𝑏 0 0
0 𝑏

2 0
0 0 𝑏

2

⎞⎟⎠ , 𝐿̄
pf=̂

⎛⎜⎝ 𝑏 0 0
0 −𝑏 0
0 0 0

⎞⎟⎠ ,

(3.2)

where 𝑏 is an arbitrary scalar factor with dimension s−1. The Figures 3.1-
3.8 are generated with 𝑏 = 1 s−1, and they depict the deformation states
from left to right 𝜀M = 0, 𝜀M = 3, 𝜀M = 6 and the quasi-stationary 𝜀M = 9.
The variable 𝜀M denotes the chosen scalar deformation measure, i.e., the
effective von Mises equivalent strain, defined by

𝜀M(𝑡) =
∫︁ 𝑡

0
˙̄𝜀Md𝑡, ˙̄𝜀M =

√︂
2
3

⃦⃦⃦
𝐷̄

′
⃦⃦⃦

. (3.3)

which also depends on the magnitude of the parameter 𝑏. For generating
the Figures 3.1-3.8 an explicit Euler method is used:

𝜀M(𝑡+Δ𝑡) = 𝜀M(𝑡)+ ˙̄𝜀M(𝑡)Δ𝑡, 𝑛𝛼(𝑡+Δ𝑡) = 𝑛𝛼(𝑡) + 𝑛̇𝛼(𝑡)Δ𝑡

‖𝑛𝛼(𝑡) + 𝑛̇𝛼(𝑡)Δ𝑡‖
. (3.4)
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3.1 Jeffery’s equation

Figure 3.1: Pole figures of 1000 fibers in a shear flow (Bertóti and Böhlke, 2017b).

Figure 3.2: Pole figures of 1000 fibers in an elongational flow (Bertóti and Böhlke, 2017b).

Figure 3.3: Pole figures of 1000 fibers in a compressional flow (Bertóti and Böhlke, 2017b).

Figure 3.4: Pole figures of 1000 fibers in a planar flow (Bertóti and Böhlke, 2017b).
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3 Flow-induced anisotropy of the fiber orientation

The velocity gradient is considered to be constant. For this reason, the
numerically computed 𝜀M is exact. The time increment Δ𝑡 was decreased
until the computations with the time step sizes 2Δ𝑡, Δ𝑡 and Δ𝑡/2 gave
similar results.

Each of the Figures 3.1-3.4 belongs to one of the investigated flow modes.
The last pole figures in a row (𝜀M = 9) indicate that the quasi-stationary
orientation state for the shear flow and for the compressional flow is
nearly planar and planar, respectively. The quasi-stationary orientation
state for the elongational flow and for the planar flow is unidirectional
and nearly unidirectional, respectively. A periodic solution does not
appear here, because the aspect ratio of the representative fiber is set to
infinity. For this case, the stationary solution is also stated, e.g., by Jeffery
(1922) and Junk and Illner (2007). Approximating the fiber reorientations
by fiber-orientation tensors is discussed in the next section.

3.2 Tensor form of Jeffery’s equation

Applying orientation averaging to (3.1) results the second-order tensor
form of Jeffery’s equation:

˙̄𝑁 = 𝑊̄ 𝑁̄ − 𝑁̄𝑊̄ + 𝜉(𝐷̄𝑁̄ + 𝑁̄𝐷̄ − 2N̄[𝐷̄]), (3.5)

where N̄ denotes the fourth-order fiber-orientation tensor which can be
determined directly from the 𝑛𝛼-s, as defined in equation (2.4), or it can
be approximated – e.g., by a closure approximation (see section 3.3) – if
fast computations without tracking each of the 𝑀 fibers are wanted. An
alternative representation of (3.5) with the objective Jaumann-Zaremba
rate is given by ˚̄𝑁 JZ = ˙̄𝑁 − 𝑊̄ 𝑁̄ + 𝑁̄𝑊̄ (Holzapfel, 2000; Wang et al.,
2008). The anisotropy of 𝑁̄ is measured by the norm ||𝑁̄ aniso||, where

𝑁̄
aniso = 𝑁̄ − 𝑁̄

iso
, 𝑁̄

iso = 1
3(𝑁̄ · 1)1. (3.6)
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3.2 Tensor form of Jeffery’s equation

Figure 3.5: Shear flow: evolution of the components 𝑁̄𝑖𝑗 and the anisotropy norm ||𝑁̄ aniso||
of the second-order fiber-orientation tensor 𝑁̄ (Bertóti and Böhlke, 2017b).

Figure 3.6: Elongational flow: evolution of the components 𝑁̄𝑖𝑗 and the anisotropy
norm ||𝑁̄ aniso|| of the second-order fiber-orientation tensor 𝑁̄ (Bertóti and Böhlke, 2017b).
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3 Flow-induced anisotropy of the fiber orientation

Figure 3.7: Compressional flow: evolution of the components 𝑁̄𝑖𝑗 and the anisotropy
norm ||𝑁̄ aniso|| of the second-order fiber-orientation tensor 𝑁̄ (Bertóti and Böhlke, 2017b).

Figure 3.8: Planar flow: evolution of the components 𝑁̄𝑖𝑗 and the anisotropy
norm ||𝑁̄ aniso|| of the second-order fiber-orientation tensor 𝑁̄ (Bertóti and Böhlke, 2017b).
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3.3 Investigated closure approximations

The Figures 3.5-3.8 show the evolution of the components 𝑁̄𝑖𝑗 and
of the anisotropy norm ||𝑁̄ aniso|| depending on 𝜀𝑀 , computed by the
discrete (disc) model, considering the four investigated flow modes. In
all four flow cases, the initial (𝜀𝑀 = 0) fiber-orientation state is isotropic
(||𝑁̄ aniso|| = 0). It is observed that the slowest anisotropy increase is
caused by the shear flow (||𝑁̄ aniso

sf ||max = ||𝑁̄ aniso
sf (𝜀𝑀 = 15)|| = 0.75) and

the fastest anisotropy increase is caused by the compressional flow
(||𝑁̄ aniso

cf ||max = ||𝑁̄ aniso
cf (𝜀𝑀 ≥ 3)|| = 0.8).

3.3 Investigated closure approximations

Two of the various closure approximations are investigated for com-
putations without tracking all of the 𝑀 fibers. The simplest one is the
quadratic closure (Doi, 1981)

N̄quad = 𝑁̄ ⊗ 𝑁̄ (3.7)

which is only exact for aligned fibers. The invariant-based optimal
fitting (Chung and Kwon, 2002a)

N̄IBOF = 𝛽1 S(1 ⊗ 1) + 𝛽2 S(1 ⊗ 𝑁̄) + 𝛽3 S(𝑁̄ ⊗ 𝑁̄)+
𝛽4 S(1 ⊗ 𝑁̄𝑁̄) + 𝛽5 S(𝑁̄ ⊗ 𝑁̄𝑁̄) + 𝛽6 S(𝑁̄𝑁̄ ⊗ 𝑁̄𝑁̄)

(3.8)

is more complex but also more realistic. In the case of closure ap-
proximations, the numerical integration of equation (3.5) is computed
analogously to equation (3.4) as

𝑁̄(𝑡 + Δ𝑡) = 𝑁̄(𝑡) + ˙̄𝑁(𝑡)Δ𝑡

tr(𝑁̄(𝑡) + ˙̄𝑁(𝑡)Δ𝑡)
. (3.9)

The term in the denominator ensures that the new second-order fiber-
orientation tensor has also unit trace.
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3 Flow-induced anisotropy of the fiber orientation

Figure 3.9: Relative computation times of the investigated models (Bertóti and Böhlke,
2017b).

Figure 3.10: Discrete model, 𝑀 = 1000: Evolution of the components 𝑁̄𝑖𝑗 and the
anisotropy norm ||𝑁̄ aniso|| of the second-order fiber-orientation tensor 𝑁̄ in a shear
flow (Bertóti and Böhlke, 2017b).

28



3.3 Investigated closure approximations

Figure 3.11: Quadratic model: Evolution of the components 𝑁̄𝑖𝑗 and the anisotropy
norm ||𝑁̄ aniso|| of the second-order fiber-orientation tensor 𝑁̄ in a shear flow (Bertóti and
Böhlke, 2017b).

Figure 3.12: IBOF model: Evolution of the components 𝑁̄𝑖𝑗 and the anisotropy
norm ||𝑁̄ aniso|| of the second-order fiber-orientation tensor 𝑁̄ in a shear flow (Bertóti and
Böhlke, 2017b).
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3 Flow-induced anisotropy of the fiber orientation

A notable difference is observed considering the relative computation
times of the discrete, the quadratic and that of the IBOF model, see
Figure 3.9. The discrete model with the 𝑀 = 1000 fibers is about 8 times
slower, and the model with the quadratic closure about 3 times faster
than the model with the IBOF closure. Although the model with the
quadratic closure is the fastest, its use is not recommended, because it
provides qualitatively different results for the transient change than the
discrete model, which is regarded as the validating reference (compare
Figures 3.10 and 3.11). The reason for the qualitative difference is that
the quadratic closure is exact only for highly aligned fibers, but not
for general fiber-orientation distributions. Computing with the IBOF
closure is slower than computing with the quadratic closure, but the
IBOF closure provides qualitatively the same results as the discrete
reference model, also during the transient change (compare Figures 3.10
and 3.12). The differences and similarities are depicted here only for
the shear flow (3.2), but similar qualitative differences and similarities
are observed also for the three other investigated flow modes. Because
of the above mentioned reasons, using of the fiber-orientation tensors
with the IBOF closure is recommended, as also stated in, e.g., Chung
and Kwon (2002a).

In this chapter the evolution of the flow-induced anisotropy in short-
fiber suspensions was demonstrated. In the following, fiber-orientation
states at fixed times are investigated. The goal is to determine the
anisotropic effective viscosity V̄ of the momentary fiber-orientation
states, first by mean-field homogenization (Chapter 4) and then by
full-field homogenization (Chapter 5).
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Chapter 4

Mean-field homogenization of
viscous properties

4.1 Mean-field homogenization using Mori-Ta-
naka’s method based on Eshelby’s tensor

Scale separation, ergodicity and the existence of a representative volume
element 𝑉 is assumed (Torquato, 2002). Two-phase materials made
up of piecewise constant, isotropic and linear viscous constituents are
considered. Taking these assumptions into account the exact effective
viscosity V̄ is determined by the volume average of the local viscosity
tensor V and the strain-rate localization tensor A

V̄ = ⟨VA⟩ = 1
𝑉

∫︁
𝑉

VAd𝑉, (4.1)

where A describes the relationship between the strain rate on the micro-
scopic scale and the macroscopic scale 𝐷 = A[𝐷̄], and V is the viscosity
on the microscopic scale for the microscopic stress 𝜎 = V[𝐷]. The
macroscopic stress 𝜎̄ = ⟨𝜎⟩ and the macroscopic strain rate 𝐷̄ = ⟨𝐷⟩
are volume averages of the corresponding microscopic measures due to
the assumption of ergodicity.

When the two-phase material is specified by rigid fibers immersed in an
incompressible viscous fluid matrix with piecewise constant, isotropic
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4 Mean-field homogenization of viscous properties

and linear viscosities Vf = 𝜂fP2 and Vm = 𝜂mP2, then (4.1) reduces to

V̄ = 𝑐mVmAm + 𝑐fVfAf, (4.2)

where 𝑐f is the fiber volume fraction, 𝑐m = 1 − 𝑐f is the matrix volume
fraction, and Am = ⟨A⟩m , Af = ⟨A⟩f are the phase averages of the
strain-rate localization tensor A for the fibers (f) and the matrix (m). The
scalars 𝜂m and 𝜂f are the shear viscosities of the matrix and the fiber,
respectively, and P2 is the second projector tensor of fourth order (see
section 2.1). Due to the normalization condition Is = 𝑐mAm + 𝑐fAf, Am

can be expressed as

Am = 1
𝑐m

(Is − 𝑐fAf). (4.3)

Substituting (4.3) into (4.2), we get

V̄ = Vm + 𝑐f(Vf − Vm)Af. (4.4)

Using Mori-Tanaka’s method (Mori and Tanaka, 1973), Af is estimated
by

AMT
f = (𝑐fIs + 𝑐mA∞

f )−1 =
(︀
Is + 𝑐mEmV−1

m (Vf − Vm)
)︀−1

, (4.5)

where A∞
f = Is + EmV−1

m (Vf − Vm) is the influence tensor (Gross and
Seelig, 2017), and Em is Eshelby’s tensor depending on the matrix mate-
rial properties (Eshelby, 1957). Substituting (4.5) into (4.4), we get the
approximation of V̄ using Mori-Tanaka’s method

V̄MT = Vm + 𝑐f(Vf − Vm)
(︀
Is + 𝑐mEmV−1

m (Vf − Vm)
)︀−1

(4.6)

= Vm + 𝑐f
(︀
(Vf − Vm)−1 + 𝑐mEmV−1

m
)︀−1

. (4.7)

The fibers are assumed to be rigid, as discussed in section 2.1, i.e.,
they are infinitely viscous Vf = 2𝜂fP2, 𝜂f = ∞ which implies that

32



4.2 Microstructure dependence of the transversely isotropic viscosity parameters

(Vf − Vm)−1 = 0 and

V̄MT = Vm + 𝑐f

𝑐m

(︀
EmV−1

m
)︀−1 = Vm + 𝑐f

𝑐m
P−1

0 , (4.8)

where P0 = EmV−1
m is the polarization tensor (Walpole, 1969; Castaneda

and Suquet, 1997). For infinitely viscous fibers (𝜂f = ∞), the same form
is obtained by using the Hashin-Strikman lower bound (Hashin and
Shtrikman, 1962; Willis, 1977).

4.2 Microstructure dependence of the transver-
sely isotropic viscosity parameters

The approximation of the unidirectional, i.e., a transversely isotropic,
effective viscosity tensor V̄ud based on the Mori-Tanaka homogeniza-
tion scheme (Mori and Tanaka, 1973) and the unidirectional Eshelby
tensor Eud for a spheroidal fiber inclusion (Eshelby, 1957; Tandon and
Weng, 1984), considering infinitely viscous fibers (𝜂f = ∞) immersed in
a purely viscous matrix with shear viscosity 𝜂m has the form

V̄ud = 2𝜂m

(︂
P2 + 𝑐f

1 − 𝑐f
E−1

ud

)︂
, (4.9)

analogously to (4.8), where 𝑐f is the fiber volume fraction and P2 is the
second projector tensor of fourth order (see section 2.1).

A fourth-order transversely isotropic tensor T with symmetry axis 𝑛

has, in general, five independent scalar parameters (Spencer et al.,
1984; Boehler, 1987; Fiolka, 2008; Weise and Meyer, 2010), denoted
here by 𝜆1, 𝜆2, 𝜇, 𝛼, 𝛽. In the case of incompressibility, only three of
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4 Mean-field homogenization of viscous properties

them (𝜇, 𝛼, 𝛽) are left, such that

T′(𝜇, 𝛼, 𝛽, 𝑛) = P2T(𝜆1, 𝜆2, 𝜇, 𝛼, 𝛽, 𝑛)P2

= P2(𝜆1P1 + 𝜆2(𝑛⊗2 ⊗ 1 + 1 ⊗ 𝑛⊗2)

+2𝜇P2 + 𝛼
(︀
𝑛⊗2 � 1 + 1 � 𝑛⊗2)︀+ 𝛽𝑛⊗4)P2

= 2𝜇P2 + 𝛼(𝑛⊗2 � 1 + 1 � 𝑛⊗2 (4.10)

−2
3
(︀
1 ⊗ 𝑛⊗2 + 𝑛⊗2 ⊗ 1

)︀
+ 2

9 (1 ⊗ 1))

+𝛽

(︂
𝑛⊗4 − 1

3
(︀
1 ⊗ 𝑛⊗2 + 𝑛⊗2 ⊗ 1

)︀
+ 1

9 (1 ⊗ 1)
)︂

,

where 𝑛⊗2 = 𝑛 ⊗ 𝑛 and 𝑛⊗4 = 𝑛 ⊗ 𝑛 ⊗ 𝑛 ⊗ 𝑛. Since Eud, E−1
ud and V̄ud

are all fourth-order transversely isotropic tensors, they can be written as

Eud = T′(𝜇E, 𝛼E, 𝛽E, 𝑛),

E−1
ud = T′(𝜇*

E, 𝛼*
E, 𝛽*

E , 𝑛), (4.11)

V̄ud = T′(𝜇̄V, 𝛼̄V, 𝛽V, 𝑛).

Using the formulas for Eshelby’s tensor given by, e.g., Tandon and Weng
(1984), with 𝜈0 = 0.5, which corresponds to the considered incompress-
ibility, we get

𝜇E = 𝑟2
a − ℎ

4(𝑟2
a − 1) , (4.12)

𝛼E = 𝑟2
a + 1

𝑟2
a − 1(ℎ − 1) − 2𝜇E, (4.13)

𝛽E = 3
4

(5 − 4ℎ)𝑟2
a − ℎ

(𝑟2
a − 1) − 2𝛼E, (4.14)

ℎ = 3
2

𝑟a

(︁
𝑟a
√︀

𝑟2
a − 1 − cosh−1(𝑟a)

)︁
(𝑟2

a − 1)3/2 , (4.15)
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4.2 Microstructure dependence of the transversely isotropic viscosity parameters

where 𝑟a is the aspect ratio of the ellipsoidal inclusion, i.e., of the fiber.
The three scalar parameters for the inverse of Eshelby’s tensor are
determined by

𝜇*
E = 1

4𝜇E
, (4.16)

𝛼*
E = − 𝛼E

2𝜇E(2𝜇E + 𝛼E) , (4.17)

𝛽*
E =

2
3 𝛼E(𝛼E + 2𝛽E) − 𝛽E(2𝜇E + 𝛼E)

2𝜇E(2𝜇E + 𝛼E)
(︀
2𝜇E + 2

3 (2𝛼E + 𝛽E)
)︀ . (4.18)

Substituting the equations (4.16)-(4.18) into (4.9)-(4.11), the three scalar
parameters for V̄ud are identified as

𝜇̄V = 𝜂m
(︂

1 + 𝑐f

1 − 𝑐f
2𝜇*

E

)︂
, (4.19)

𝛼̄V = 2𝜂m 𝑐f

1 − 𝑐f
𝛼*

E, (4.20)

𝛽V = 2𝜂m 𝑐f

1 − 𝑐f
𝛽*

E . (4.21)

The viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p for the common parametrization (2.11)
of the transversely isotropic viscosity tensor are determined by

𝜂 = 𝜇̄V, (4.22)

𝑁̄s = 𝛼̄V

2𝜂
, (4.23)

𝑁̄p = 𝛽V

2𝜂
. (4.24)
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4 Mean-field homogenization of viscous properties

Substituting (4.12)-(4.21) into (4.24) yields

𝜂 = 𝜂m

(︃
1 + 2𝑐f

(1 − 𝑐f)

2(𝑟2
a − 1)5/2(︁

2𝑟2
a (𝑟2

a − 1)3/2 − 3𝑟a

(︁
𝑟a
√︀

𝑟2
a − 1 − cosh−1(𝑟a)

)︁)︁)︃, (4.25)

𝑁̄s = 𝑐f(︁√︀
𝑟2

a − 1 (2𝑟4
a (𝑐f + 1) − 𝑟2

a (3𝑐f + 5) + 4𝑐f) − 3𝑟a(𝑐f − 1) cosh−1(𝑟a)
)︁

6𝑟a
(︀
𝑟2

a − 1
)︀5/2 (︀2𝑟2

a + 3
)︀

cosh−1(𝑟a) − 2
(︀
𝑟2

a − 1
)︀3 (︀11𝑟2

a + 4
)︀

(𝑟2
a + 1)

(︁√︀
𝑟2

a − 1 (𝑟2
a + 2) − 3𝑟a cosh−1(𝑟a)

)︁ , (4.26)

𝑁̄p = 𝑐f(︁√︀
𝑟2

a − 1 (2𝑟4
a (𝑐f + 1) − 𝑟2

a (3𝑐f + 5) + 4𝑐f) − 3𝑟a(𝑐f − 1) cosh−1(𝑟a)
)︁

(︀
𝑟2

a − 1
)︀5/2

(𝑟2
a + 1)

(︁√︀
𝑟2

a − 1
(︀
𝑟2

a + 2
)︀

− 3𝑟a cosh−1(𝑟a)
)︁−1

(︁
−3
√︀

𝑟2
a − 1𝑟a + 2𝑟2

a cosh−1(𝑟a) + cosh−1(𝑟a)
)︁

(︁
𝑟a
(︀
2𝑟8

a + 17𝑟6
a − 108𝑟4

a + 67𝑟2
a + 22

)︀
−3𝑟a

(︀
4𝑟4

a + 17𝑟2
a + 9

)︀
cosh−1(𝑟a)2

−2
√︀

𝑟2
a − 1

(︀
9𝑟6

a − 38𝑟4
a − 56𝑟2

a − 5
)︀

cosh−1(𝑟a)
)︁

. (4.27)

4.3 Simplification of the results

Figure 4.1 shows the dependence of the viscosity parameters 𝜂/𝜂m, 𝑁̄s, 𝑁̄p

on the fiber volume fraction 𝑐f and on the aspect ratio 𝑟a (equations (4.25)-
(4.27)) over a range of 𝑐f ∈ (0, 0.8) and 𝑟a ∈ (30, 300). The considered
aspect ratio range is typical for fiber suspensions in engineering
applications, while the commonly used highest fiber volume fraction in
the case of injection molding is about 30% (see, e.g., Fu et al. (2000)).
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Figure 4.1: The relative effective scalar viscosity 𝜂/𝜂m, the shear number 𝑁̄s and the scaled
particle number 𝑁̄p/1000 as functions of the fiber volume fraction 𝑐f and the aspect ratio 𝑟a,
predicted by Mori-Tanaka’s method.
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Figure 4.2: The relative effective scalar viscosity 𝜂/𝜂m vs. the fiber volume fraction 𝑐f for
different length to diameter aspect ratios 𝑟a (left) and the same magnified around 𝑐f = 0.5
(right) to show the slight dependence on 𝑟a. The dashed line depicts the simplified model.
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Figure 4.3: The shear number 𝑁̄s (left) and the particle number 𝑁̄p (right) vs. the fiber
length to diameter aspect ratios 𝑟a for different fiber volume fraction 𝑐f. The dashed line
depicts the simplified model.
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4 Mean-field homogenization of viscous properties

Based on Figure 4.1, the following intuitive qualitative simplifications
are introduced:

𝜂 = 𝜂(𝑐f), (4.28)

𝑁̄s ≈ 0, (4.29)

𝑁̄p = 𝑁̄p(𝑟a, 𝑐f), (4.30)

where equation (4.28) notes the assumption that 𝜂 depends solely on 𝑐f.
In the case of rigid fibers, with large aspect ratio: 𝑟a ≫ 1, the approxima-
tions

𝑟2
a ± 𝑖 ≈ 𝑟2

a for |𝑖| ≤ 2, (4.31)

𝑟𝑗+2
a ± 𝒪(𝑟𝑗

a) ≈ 𝑟𝑗+2
a for 𝑗 ≥ 0, (4.32)

1/𝑟𝑘
a ≈ 0 for 𝑘 ≥ 2, (4.33)

cosh−1(𝑟a) = ln(𝑟a +
√︀

𝑟2
a − 1) ≈ ln(2𝑟a) (4.34)

appear reasonable for engineering applications. With these approxima-
tions, (4.25)-(4.27) result in

𝜂 ≈ 𝜂m
1 + 𝑐f

1 − 𝑐f
, (4.35)

𝑁̄s ≈ 0, (4.36)

𝑁̄p ≈ 𝑐f

1 + 𝑐f

𝑟2
a

2(ln(2𝑟a) − 3/2) . (4.37)

Figures 4.2-4.3 show that the difference between the original and the
simplified model is minimal, taking into account that the parameters 𝑁̄𝑠

and 𝑁̄𝑝 are linearly combined to get V̄ – see equation (2.12) – and 𝑁̄𝑠 is
at least three orders of magnitude smaller than 𝑁̄𝑝, see Figure 4.1. This
is the reason for setting the value of 𝑁̄𝑠 to constant zero.
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4.3 Simplification of the results

With the simplifications (4.35)-(4.37), equation (2.12) reduces to

V̄mf(𝜂, 𝑁̄p, N̄) = 2𝜂

(︂
P2

+ 𝑁̄p

(︂
N̄ − 1

3
(︀
1 ⊗ 𝑁̄ + 𝑁̄ ⊗ 1

)︀
+ 1

9 (1 ⊗ 1)
)︂)︂

(4.38)

which is analogous to the two-parameter-form of the effective viscosity,
also used by, e.g., Latz et al. (2010). We denote by V̄mf the simplified
form (4.38) of (2.12), due to the fact, that the simplifications are the
results of evaluating the mean-field theory.

In the next chapter, numerical full-field simulations, i.e., numerical
experiments, are considered to evaluate the accuracy of the theoretically
predicted values of the viscosity parameters (4.35)-(4.37). Furthermore,
the validity of (2.12) and its simplified form (4.38) – both of them
approximating the effective viscosity V̄ – are investigated.
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Chapter 5

Full-field homogenization of
viscous properties

5.1 Preliminaries

5.1.1 Synthetic microstructures

For the numerical full-field homogenization, single fiber geometries
and numerically generated, so-called synthetic, microstructures are
used, generated by an algorithm of Schneider (2017) using the exact
closure method of Montgomery-Smith et al. (2011a). Periodic boundary
conditions are applied in all cases and the microstuctures are voxelized,
i.e., spatially discretized on a regular grid, for the numerical full-field ho-
mogenization. Figure 5.1 shows examples for unidirectional (ud), planar
isotropic (piso), isotropic (iso) and a frequently occurring (7715) (Köbler
et al., 2018) fiber-orientation state, corresponding to the second-order
fiber-orientation tensors

𝑁̄ ud̂︀= diag(1, 0, 0), 𝑁̄ pisô︀= diag(0.5, 0.5, 0),

𝑁̄ isô︀= diag(0.33, 0.33, 0.33), 𝑁̄7715̂︀= diag(0.77, 0.15, 0),

respectively.
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5 Full-field homogenization of viscous properties

Figure 5.1: Examples of synthetic microstructures, from left to right and top to bottom:
unidirectional (magenta), planar isotropic (yellow), isotropic (cyan) and a frequently
occurring (Köbler et al. (2018), blue) fiber-orientation state, corresponding to the second-
order fiber-orientation tensors depicted in equations above.

5.1.2 Computational setup and used hardware

The numerical homogenization of the viscosity, based on the synthetic
microstructure data, is carried out by using the homKIT package devel-
oped by Matti Schneider et al. at the Institute of Engineering Mechan-
ics, Karlsruhe Institute of Technology (KIT) based on Schneider et al.
(2016). For the computations a dual framework (Schneider, 2016) and
the Barzilai-Borwein solver (Barzilai and Borwein, 1988; Schneider, 2019;
Wicht et al., 2020) are used. The fibers are assumed to be rigid, therefore,
the velocity gradient within the fibers is constant zero, see Figure 5.2.
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The computed stress within the fibers is not constant, see Figure 5.3, this
is the main difference in contrast to the mean-field model.

Figure 5.2: Example of the computed velocity gradient field, considering a shear flow.

Figure 5.3: Example of the computed stress field, considering a shear flow.

The computations are carried out using a computer with 8 GB RAM and
3.50GHz×4 CPU.
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5 Full-field homogenization of viscous properties

5.1.3 Fast approximation of the viscosity parameters in
the case of aligned fibers

In the case of unidirectionally aligned fibers (𝑛ud̂︀=(1, 0, 0)), the second-
and the fourth-order orientation tensors are exactly described by

𝑁̄ ud ̂︀=
⎛⎜⎝ 1 0 0

0 0 0
0 0 0

⎞⎟⎠ and N̄ud = 𝑁̄ ud⊗𝑁̄ ud ̂︀=
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(5.1)
where the first axis is directed parallel to the fiber direction and the other
two perpendicular to the fiber. By using these orientation tensors and
the general form of the viscosity tensor (2.12), the deviatoric effective
stress tensor for unidirectional fibers 𝜎̄′

ud = V̄ud[𝐷̄′] results in the form

𝜎̄′
ud(𝐷̄′) = 2𝜂

⎛⎜⎝𝐷̄
′ + 𝑁̄s

⎛⎜⎝
4
3 𝐷̄′

11 𝐷̄′
12 𝐷̄′

13
𝐷̄′

12 − 2
3 𝐷̄′

11 0
𝐷̄′

13 0 − 2
3 𝐷̄′

11

⎞⎟⎠
+𝑁̄p

⎛⎜⎝
2
3 𝐷̄′

11 0 0
0 − 1

3 𝐷̄′
11 0

0 0 − 1
3 𝐷̄′

11

⎞⎟⎠
⎞⎟⎠ . (5.2)
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With three special deformation rates, namely

𝐷̄
(𝜂) =̂

⎛⎜⎝ 0 0 0
0 0 1
0 1 0

⎞⎟⎠ , (5.3)

𝐷̄
(𝑁̄s) =̂

⎛⎜⎝ 0 1 0
1 0 0
0 0 0

⎞⎟⎠ , (5.4)

𝐷̄
(𝑁̄p) =̂

⎛⎜⎝ 1 0 0
0 −1 0
0 0 0

⎞⎟⎠ , (5.5)

the viscosity parameters can be approximated easily and quickly, i.e.,
with only one load case per unknown viscosity parameter. The formulas
to identify the viscosity parameters read

𝜎̄
(𝜂)
ud · 𝐷̄

(𝜂) = 4𝜂, (5.6)

𝜎̄
(𝑁̄s)
ud · 𝐷̄

(𝑁̄s) = 4(1 + 𝑁̄s)𝜂, (5.7)

𝜎̄
(𝑁̄p)
ud · 𝐷̄

(𝑁̄p) = 2𝜂(2 + 2𝑁̄s + 𝑁̄p), (5.8)

where the stress tensors 𝜎̄
(𝜂)
ud , 𝜎̄

(𝑁̄s)
ud , 𝜎̄

(𝑁̄p)
ud , corresponding to the strain

rates 𝐷̄
(𝜂)

, 𝐷̄
(𝑁̄s)

, 𝐷̄
(𝑁̄p)

, are computed by homKIT numerically. Recall
that the symbol · denotes the scalar product.

The results in the subsections 5.1.4-5.1.6 are computed with the above
described fast approximation. The numerical determination of the
complete viscosity tensor and the corresponding viscosity parameters –
in a least-squares manner – is described in section 5.2.
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5.1.4 Resolution study

The numerical results and the computation times depend strongly on
the voxel-resolution of the fibers and of the volume element. Therefore,
the optimal resolution of a single fiber was investigated, considering the
effective stress in fiber direction 𝜎̄𝑥𝑥, the effective scalar viscosity 𝜂, the
shear number 𝑁̄s and the particle number 𝑁̄p. The investigated resolu-
tions and the results are depicted in Figures 5.4 and 5.5, respectively.

Figure 5.4: Investigated resolutions, left to right: 5, 10, 20 and 40 voxels/fiber diameter.
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Figure 5.5: Resolution dependence of 𝜎̄𝑥𝑥, 𝜂, 𝑁̄s and 𝑁̄p, for 𝑟a = 10, 𝑐f = 5%.

Over 10 voxels/fiber diameter, the errors, relative to the results of
the highest resolution (40 voxels/fiber diameter) are below 5% except
for 𝑁̄s, whose value is almost zero. Based on these results all further
computations are carried out with resolution of 12 voxels/fiber diameter.
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5.1 Preliminaries

5.1.5 Microstructure dependence of the viscosity parame-
ters

The mean-field model-results, cf. equations (4.35)-(4.37), describe the
dependence of the viscosity parameters 𝜂, 𝑁̄s and 𝑁̄p on the material
and microstructure parameters 𝜂m (matrix viscosity), 𝑐f (fiber volume
fraction) and 𝑟a = 𝑙/𝑑 (fiber aspect ratio). The mean-field model assumes
that a representative volume element is considered. However, a single
fiber in a periodic cell is not representative for distributed fibers, but
such a simple microstructure allows a quick qualitative comparison of
the mean-field and the full-field methods considering the microstructure
dependence of the viscosity parameters, see Figs. 5.6-5.8 with detailed
explanation in their captions.
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Figure 5.6: Microstructure dependence of the effective viscosity 𝜂 relative to the matrix
viscosity 𝜂m vs. the fiber volume fraction 𝑐f, for different aspect ratios 𝑟a = 𝑙/𝑑. The
colored lines with the markers are the results of the full-field model considering one single
fiber in the volume element with periodic boundary conditions. The black line is the
prediction of the mean-field model corresponding to a representative volume element. The
mean-field homogenization predicted that 𝜂 is independent of 𝑟a. This independence is
confirmed by the full-field model. Beside the qualitative similarity of the two models a
quantitative difference is specified in the considered cases.
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5 Full-field homogenization of viscous properties

Figure 5.6 depicts the microstructure dependence of the effective viscos-
ity 𝜂 relative to the matrix viscosity 𝜂m over the fiber volume fraction 𝑐f,
considering different 𝑟a aspect ratios. The independence of 𝜂 from 𝑟a, pre-
dicted by the mean-field homogenization, is confirmed by the full-field
model. Beside the qualitative similarity of the two models, a quantitative
difference is specified in the considered cases. The quantitative difference
could be caused by considering only one single fiber in the periodic cell
of the full-field model, which is not representative – contrary to the
assumption of the mean-field model – for unidirectionally distributed
fibers.
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Figure 5.7: Microstructure dependence of the shear number 𝑁̄s on the fiber volume
fraction 𝑐f, for different aspect ratios 𝑟a = 𝑙/𝑑. The colored lines with the markers are
the results of the full-field model considering one single fiber in the volume element with
periodic boundary conditions. The black horizontal line is the prediction of the mean-field
model corresponding to a representative volume element. Neglecting the shear number
(𝑁̄s = 0), as predicted by the mean-field homogenization, is justified by full-field model
only relative to 𝜂 and 𝑁̄p.

The microstructure dependence of the shear number 𝑁̄s on the fiber
volume fraction 𝑐f, considering different 𝑟a aspect ratios, is shown in
Figure 5.7. The magnitude of 𝑁̄s is, for all investigated cases, at least
one order smaller than the corresponding 𝜂 and 𝑁̄p values. This justifies
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5.1 Preliminaries

to neglect the shear number (𝑁̄s = 0), as predicted by the mean-field
homogenization.

Figure 5.8 depicts the microstructure dependence of the particle num-
ber 𝑁̄p on the fiber volume fraction 𝑐f, considering different aspect ra-
tios 𝑟a. Beside the qualitative similarity of the two models, a quantitative
difference is observed.
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Figure 5.8: Microstructure dependence of the particle number 𝑁̄p over the fiber volume
fraction 𝑐f, for different fiber length to fiber diameter aspect ratios 𝑟a = 𝑙/𝑑. The colored
lines with the markers are the results of the full-field model considering one single fiber
in the volume element with periodic boundary conditions. The colored lines without
the markers are the predictions of the mean-field model corresponding to representative
volume elements. Note that the vertical axis has a logarithmic scale.

Based on the considered 50 different single fiber microstuctures and the
corresponding 150 computations it can be stated that the "single fiber
model", i.e., the full-field model of one single fiber in the volume element
with periodic boundary conditions, gives qualitatively the same results
as the mean-field model, but quantitatively they are different. The results
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5 Full-field homogenization of viscous properties

of the mean-field model are gained assuming a representative volume
element of randomly distributed fibers. This assumption is not fulfilled
by the "single fiber model" which could be the reason for the quantitative
difference of the mean-field and the full-field models.

In the next sections the analysis is extended, examining several aligned
fibers and the effect of the volume element size. In the following, fibers
with aspect ratio 𝑟a = 10 are investigated.

5.1.6 Estimation of the RVE size in the case of aligned
fibers

One of the reasons for the difference between the mean-field and the full-
field models in the Figures 5.6 and 5.8 could be that one single fiber and
the surrounding matrix material with periodic boundary conditions is
not a representative volume element. To investigate the representativity
of volume elements, synthetic microstructures are generated, for further
details see section 5.1.1.

In this subsection, only aligned synthetic microstructures are considered,
and square-column shaped (𝐿 × 𝑊 × 𝑊 ) volume elements of different
sizes are randomly filled with unidirectionally aligned fibers. The
length 𝐿 and the width 𝑊 of the volume elements are varied relative to
the fiber length 𝑙 and the fiber diameter 𝑑, respectively, as shown in the
Figures 5.9 and 5.11.

The mean values and the scatter of the resulting effective viscosities are
compared for the different volume element sizes. A volume element is
considered to be representative, if a larger volume element does result in
almost the same mean value and scatter of the effective viscosity (Gitman
et al., 2007). The results for varying the volume element length and
the volume element width are depicted in Figure 5.10 and Figure 5.12,
respectively.
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5.1 Preliminaries

Figure 5.9: Axonometric view of unidirectional synthetic microstructures, in square-
column shaped (𝐿 × 𝑊 × 𝑊 ) volume elements of different sizes (from top to bot-
tom): 𝐿 = 1.1𝑙, 𝐿 = 2.2𝑙, and 𝐿 = 4.4𝑙, where 𝑙 is the fiber length and 𝐿 the volume
element length. The volume element width is set to 𝑊 = 5𝑑 in each case, where 𝑑 denotes
the fiber diameter.
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Figure 5.10: RVE study: varying the volume element length in voxels.

The curves in Figure 5.10 shows the mean value and the scatter of the rel-
ative effective viscosity vs. the fiber volume fraction for different lengths
of a volume element, according to the microstructures and the color
code of Figure 5.9. For each volume element length and for each fiber
volume fraction eight randomly filled unidirectional microstructures are
investigated, leading to the scatter in the diagram. The continuous lines
connect the mean values. The results of one single fiber in a periodic
volume element are also depicted in the figure with grey.

Volume elements with the length 𝐿 = 2.2𝑙 (green curve) give the same
mean values as the case 𝐿 = 4.4𝑙 (blue curve), and the difference in
their scatter is negligible for engineering purposes. The problem of the
volume elements with lengths 𝐿 = 1.1𝑙 (red curve) is that the distance
between two fiber ends is always 0.1𝑙. This unrealistic condition cannot
occure for volume element lengths exceeding 𝐿 = 2𝑙. Based on these
investigations, the volume element length 𝐿 = 2.2𝑙 is considered to be
representative for microstructures of aligned fibers.
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5.1 Preliminaries

Figure 5.11: Front view of unidirectional synthetic microstructures, in square-column
shaped (𝐿 × 𝑊 × 𝑊 ) volume elements of different sizes (from top to bot-
tom): 𝑊 = 5𝑑, 𝑊 = 10𝑑 and 𝑊 = 20𝑑, where 𝑑 is the fiber diameter and 𝑊 the volume
element width. The volume element length is set to 𝐿 = 2.2𝑙 in each case, where 𝑙 denotes
the fiber length.
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Figure 5.12: RVE study: varying the volume element width in voxels.

Figure 5.12 shows the mean value and the scatter of the relative effective
viscosity vs. the fiber volume fraction, considering different widths
of a volume element according to the microstructures and the color
code of Figure 5.11. For each volume element width and for each fiber
volume fraction, eight randomly filled unidirectional microstructures are
investigated, inducing the scatter in the diagram. The continuous lines
connect the mean values. The results of one single fiber in a periodic
volume element are also included in the figure.

The mean values are almost the same in all of the three considered cases,
but the scatter for 𝑊 = 10𝑑 and above (green and blue colors in the dia-
gram) is smaller than the scatter in the case of the smallest investigated
volume element width, i.e., 𝑊 = 5𝑑 (red color in the diagram). Based on
these investigations, the volume element width 𝑊 = 10𝑑 is considered
as representative volume element width for microstructures of aligned
fibers.
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5.2 Determination of the effective viscosity

From now on 𝜂m = 1 Pas is used and only 𝜂 is referred instead of 𝜂/𝜂m,
because the effective viscosity V̄ is linear in 𝜂m.

5.2 Determination of the effective viscosity

5.2.1 Assumptions on the RVE size

Besides aligned fibers (ud), three cases of non-aligned fibers are inves-
tigated: planar isotropic (piso), isotropic (iso), and a common (7715) –
i.e., frequently occurring (Köbler et al., 2018), not transversely isotropic –
fiber-orientation state, with fiber-orientation tensors

𝑁̄ ud ̂︀= diag(1, 0, 0), (5.9)

𝑁̄ piso ̂︀= diag(0.5, 0.5, 0), (5.10)

𝑁̄ iso ̂︀= diag(0.33, 0.33, 0.33), (5.11)

𝑁̄7715 ̂︀= diag(0.77, 0.15, 0), (5.12)

respectively, see Figure 5.1 for examples. The considered volume element
sizes – for each orientation state separately – are chosen based on the
results of the former subsection 5.1.6. For the unidirectional cases,
square-column shaped volume elements of the size 𝐿 × 𝑊 × 𝑊 are
considered. For the planar isotropic cases, also square-column shaped
volume elements, but of the size 𝐿 × 𝐿 × 𝑊 are used. For the isotropic
and the frequently occurring cases, cubic 𝐿 × 𝐿 × 𝐿 sized volume ele-
ments are considered. The volume elements with 𝐿 = 2.2𝑙 and 𝑊 = 20𝑑

are assumed to be representative, where 𝑙 denotes the fiber length and 𝑑

the fiber diameter. This assumption is confirmed by the acceptable scatter
of the results – regarding the viscosity parameters 𝜂, 𝑁̄s, and 𝑁̄p – in all
investigated cases, see the scatter in the diagrams of the subsections 5.3-
6.3.
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5 Full-field homogenization of viscous properties

5.2.2 Numerical determination of the effective viscosity

The numerical approximation V̄num of the effective viscosity tensor V̄ is
determined through computing the deviatoric effective stress response
of the synthetic microstuctures according to the following six effective
load cases:

𝐷̄
(1)=̂

⎛⎜⎝ 1 0 0
0 1 0
0 0 1

⎞⎟⎠ , 𝐷̄
(2)=̂

⎛⎜⎝ 1 0 0
0 −1 0
0 0 0

⎞⎟⎠ ,

𝐷̄
(3)=̂

⎛⎜⎝ 0 0 0
0 1 0
0 0 −1

⎞⎟⎠ , 𝐷̄
(4)=̂

⎛⎜⎝ 0 0 0
0 0 1
0 1 0

⎞⎟⎠ ,

𝐷̄
(5)=̂

⎛⎜⎝ 0 0 1
0 0 0
1 0 0

⎞⎟⎠ , 𝐷̄
(6)=̂

⎛⎜⎝ 0 1 0
1 0 0
0 0 0

⎞⎟⎠ .

(5.13)

The deviatoric effective stress response 𝜎̄(1) corresponding to 𝐷̄
(1)

must

be zero, because 𝐷̄
(1)

is a spherical (hydrostatic) effective load case,
which induces only spherical (hydrostatic) effective stresses, which
do not enter V̄′ (see subsection 2.1.3, especially equations (2.6) and

(2.9)). For the effective load cases 𝐷̄
(2)

to 𝐷̄
(6)

, the deviatoric effective
stresses 𝜎̄(𝑖), 𝑖 = 2, . . . , 6 are computed by homKIT, and they define the
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5.2 Determination of the effective viscosity

numerical effective viscosity tensor in Mandel’s notation (Mandel, 1965):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 𝜎̄
(2)
11 𝜎̄

(3)
11 𝜎̄

(4)
11 𝜎̄

(5)
11 𝜎̄

(6)
11

0 𝜎̄
(2)
22 𝜎̄

(3)
22 𝜎̄

(4)
22 𝜎̄

(5)
22 𝜎̄

(6)
22

0 𝜎̄
(2)
33 𝜎̄

(3)
33 𝜎̄

(4)
33 𝜎̄

(5)
33 𝜎̄

(6)
33

0
√

2𝜎̄
(2)
23

√
2𝜎̄

(3)
23

√
2𝜎̄

(4)
23

√
2𝜎̄

(5)
23

√
2𝜎̄

(6)
23

0
√

2𝜎̄
(2)
13

√
2𝜎̄

(3)
13

√
2𝜎̄

(4)
13

√
2𝜎̄

(5)
13

√
2𝜎̄

(6)
13

0
√

2𝜎̄
(2)
12

√
2𝜎̄

(3)
12

√
2𝜎̄

(4)
12

√
2𝜎̄

(5)
12

√
2𝜎̄

(6)
12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑉11 𝑉12 𝑉13 𝑉14 𝑉15 𝑉16

𝑉22 𝑉23 𝑉24 𝑉25 𝑉26

𝑉33 𝑉34 𝑉35 𝑉36

𝑉44 𝑉45 𝑉46

sym. 𝑉55 𝑉56

𝑉66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 0 0 0 0
1 −1 1 0 0 0
1 0 −1 0 0 0
0 0 0

√
2 0 0

0 0 0 0
√

2 0
0 0 0 0 0

√
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.14)

The matrix equation (5.14) is written in a short form as 𝜎̄ = 𝑉 𝐷̄

from which it follows that 𝑉 = 𝜎̄ 𝐷̄
−1

. Note that 𝜎̄ is singular, but 𝐷̄

and 𝐷̄
−1

are non-singular matrices. The first row of 𝜎̄ is zero, because
the considered anisotropic material model (2.9) determines only the
deviatoric stress, as already mentioned above. The tensor of the numeri-
cally determided 𝑉 matrix is denoted by V̄num, and it is considered as
reference solution.

5.2.3 Numerical determination of the viscosity parame-
ters

Approximating V̄num by the form (2.12), the fitted viscosity tensor V̄fit is
determined by minimizing the error in a least-squares manner, i.e.,

𝑒fit := min
𝜂,𝑁̄s,𝑁̄p

||V̄fit(𝜂, 𝑁̄s, 𝑁̄p) − V̄num||
||V̄num||

. (5.15)
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5 Full-field homogenization of viscous properties

The error of the mean-field model V̄mf (4.38) is defined analogously

𝑒mf := ||V̄mf − V̄num||
||V̄num||

. (5.16)

The results for different cases are presented in the following section.

5.3 Resulting viscosity parameters considering
different cases

5.3.1 Single fiber

The fitted viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p and the error 𝑒 for a single
fiber (sf) are depicted in Figure 5.13. The error 𝑒fit

sf < 5% is much smaller
than the error 𝑒mf

sf < 75%, because of the large difference regarding 𝑁̄p.
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Figure 5.13: Mean-field (black) vs. fitted (grey) viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p and the
error 𝑒 considering a single fiber (sf). The red and the green lines mark the upper limits of 𝑒.
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5.3.2 Unidirectional case

Figure 5.14: RVE of an unidirectional (ud) microstructure made up by straight fibers.

As expected – based on the subsections 5.1.5-5.1.6 – a single fiber in a
periodic cell is not an RVE regarding randomly distributed unidirec-
tional fibers. Considering the assumed representative volume element
size: 𝐿 × 𝑊 × 𝑊 = 2.2𝑙 × 10𝑑 × 10𝑑 for unidirectionally aligned fibers
(see for example Figure 5.14), the results are much closer to the mean-
field predictions than they were in the case of the single fiber (see
Figure 5.13 vs. Figure 5.15).

In the diagrams of Figure 5.15, the resulting fitted viscosity parame-
ters 𝜂, 𝑁̄s, 𝑁̄p, and the relative error of the fitted (𝑒fit) and of the mean-
field (𝑒mf) model are shown in the case of unidirectional microstructures,
for fiber volume fractions in the range of 5%-20%.

The fitted effective viscosity 𝜂ud is consistently higher than the effective
viscosity 𝜂mf of the mean-field model. The scatter of 𝜂ud is smaller than
the magenta disk shaped markers, this is the reason why the scatter is
not visible. Note that 𝜂ud is slightly higher than 𝜂sf.
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Figure 5.15: Mean-field (black) vs. fitted (magenta) viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p and the
error 𝑒 considering the unidirectional (ud) fiber-orientation sate. The red and the green
lines mark the upper limits of 𝑒.

The fitted effective shear number 𝑁̄ud
s is in an average sense lower than

the effective shear number 𝑁̄mf
s of the mean-field model, but 𝑁̄ud

s is very
close to zero and to 𝑁̄ sf

s . The scatter of 𝑁̄ud
s cannot be seen.

The fitted effective particle number 𝑁̄ud
p is almost identical to the effec-

tive particle number 𝑁̄mf
p of the mean-field model, only for the highest

investigated fiber volume fraction 𝑐f = 20% there exists a small dif-
ference. A small scatter of 𝑁̄ud

p can be seen, but the magnitude of the
scatter is small enough to consider the investigated volume element
(2.2𝑙 × 10𝑑 × 10𝑑) henceforth as an RVE. Note that 𝑁̄ud

p is much closer to
the mean-field predictions than 𝑁̄ sf

p .

The error 𝑒fit
ud < 2.5% is much smaller than the error 𝑒mf

ud < 18%, because
of the difference in 𝜂. The scatter of 𝑒fit

ud is so small that it cannot be seen.
Also note the difference between 𝑒fit

ud < 2.5% and 𝑒fit
sf < 5%.
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5.3.3 Planar isotropic case

Figure 5.16: RVE of a planar isotropic (piso) microstructure made up by straight fibers.

Based on the estimations and the assumptions on the RVE (see sec-
tions 5.1.6 and 5.2.1), the size of the representative volume element for the
planar isotropic case is considered to be: 𝐿 × 𝐿 × 𝑊 = 2.2𝑙 × 2.2𝑙 × 10𝑑,
see for example Figure 5.16.

In the diagrams of Figure 5.17, the resulting fitted viscosity param-
eters 𝜂, 𝑁̄s, 𝑁̄p, the relative error of the fitted (𝑒fit) and of the mean-
field (𝑒mf) model are shown in the case of planar isotropic microstruc-
tures, for fiber volume fractions in the range of 5%-20%.

The fitted effective viscosity 𝜂piso is consistently higher than the effective
viscosity 𝜂mf of the mean-field model. A small scatter of 𝜂piso can be
seen, but the magnitude of the scatter is small enough to consider the
investigated volume element (2.2𝑙 × 2.2𝑙 × 10𝑑) henceforth as RVE.

The fitted effective shear number 𝑁̄
piso
s is slightly lower than the effective

shear number 𝑁̄mf
s of the mean-field model, but 𝑁̄

piso
s is very close to
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Figure 5.17: Mean-field (black) vs. fitted (yellow) viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p and the
error 𝑒 considering the planar isotropic (piso) fiber-orientation state. The red and the green
lines mark the upper limits of 𝑒.

zero. The maximum of the scatter is below 0.03 which is negligible
compared to the values of 𝜂piso and 𝑁̄

piso
p .

The fitted effective particle number 𝑁̄
piso
p is almost identical to the

effective particle number 𝑁̄mf
p of the mean-field model. Only for the

highest fiber volume fractions 𝑐f = 15%−20%, there is a small difference.
The scatter of 𝑁̄

piso
p is smaller than the yellow disk shaped markers, this

is the reason why the scatter cannot be seen.

The error 𝑒fit
piso < 3.5% is much smaller than the error 𝑒mf

piso < 13%,
because of the difference in 𝜂. The scatter of 𝑒fit

piso is acceptably small to
consider the investigated volume element (2.2𝑙 × 2.2𝑙 × 10𝑑) henceforth
as RVE.
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5.3 Resulting viscosity parameters considering different cases

5.3.4 Isotropic case

Figure 5.18: RVE of an isotropic (iso) microstructure made up by straight fibers.

Based on the estimations and the assumptions on the RVE (see sec-
tions 5.1.6 and 5.2.1), the size of the representative volume element for
the isotropic case is considered to be: 𝐿 × 𝐿 × 𝐿 = 2.2𝑙 × 2.2𝑙 × 2.2𝑙, see
for example Figure 5.18.

In the diagrams of Figure 5.19, the resulting fitted viscosity parame-
ters 𝜂, 𝑁̄s, 𝑁̄p, and the relative error of the fitted (𝑒fit) and of the mean-
field (𝑒mf) model are shown in the case of isotropic microstructures, for
fiber volume fractions in the range of 5%-20%.

The fitted effective viscosity 𝜂iso is consistently higher than the effective
viscosity 𝜂mf of the mean-field model. The scatter of 𝜂iso is smaller than
the cyan disk shaped markers, this is the reason why the scatter cannot
be seen.

The fitted effective shear number 𝑁̄ iso
s is slightly lower than the effective

shear number 𝑁̄mf
s of the mean-field model, except for the highest fiber
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Figure 5.19: Mean-field (black) vs. fitted (cyan) viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p and the
error 𝑒 considering the isotropic (iso) fiber-orientation state. The red and the green lines
mark the upper limits of 𝑒.

volume fraction 𝑐f = 20%, where the relation is reverse. In spite of these
observations, 𝑁̄ iso

s is very close to zero for all 𝑐f. The maximum of the
scatter is below 0.025, which is negligable compared to the values of 𝜂iso

and 𝑁̄ iso
p .

The fitted effective particle number 𝑁̄ iso
p slightly underestimates the

effective particle number 𝑁̄mf
p of the mean-field model. The scatter

of 𝑁̄ iso
p is smaller than the cyan disk shaped markers, this is the reason

why the scatter cannot be seen.

The error 𝑒fit
iso < 2.5% is much smaller than the error 𝑒mf

iso < 13%, because
of the difference in 𝜂. The scatter of 𝑒fit

iso is smaller than the cyan disk
shaped markers, this is the reason why the scatter cannot be seen. Thus
the investigated volume element (2.2𝑙 × 2.2𝑙 × 2.2𝑙) may henceforth be
considered as RVE.
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5.3 Resulting viscosity parameters considering different cases

5.3.5 Frequently occurring case

Figure 5.20: RVE of a frequently occurring (7715) microstructure made up by straight fibers.

Based on the estimations and the assumptions on the RVE (see sec-
tions 5.1.6 and 5.2.1), the size of the representative volume element
for the frequently occurring case (Köbler et al., 2018) is considered to
be: 𝐿 × 𝐿 × 𝐿 = 2.2𝑙 × 2.2𝑙 × 2.2𝑙, see for example Figure 5.20.

In the diagrams of Figure 5.21, the resulting fitted viscosity parame-
ters 𝜂, 𝑁̄s, 𝑁̄p, and the relative error of the fitted (𝑒fit) and of the mean-
field (𝑒mf) model are shown in the case of the investigated frequently
occurring microstructures, for fiber volume fractions in the range of 5%-
20%.

The fitted effective viscosity 𝜂7715 is consistently higher than the effective
viscosity 𝜂mf of the mean-field model. The scatter of 𝜂7715 is smaller than
the blue disk shaped markers, this is the reason why the scatter cannot
be seen.
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Figure 5.21: Mean-field (black) vs. fitted (blue) viscosity parameters 𝜂, 𝑁̄s, 𝑁̄p and the
error 𝑒 considering the frequently occurring (7715) fiber-orientation state. The red and the
green lines mark the upper limits of 𝑒.

The fitted effective shear number 𝑁̄ 7715
s is slightly lower than the effective

shear number 𝑁̄mf
s of the mean-field model, but 𝑁̄ud

s is very close to zero.
The maximum of the scatter is below 0.01 which is negligible compared
to the values of 𝜂7715 and 𝑁̄ 7715

p .

The fitted effective particle number 𝑁̄ 7715
p slightly underestimates the

effective particle number 𝑁̄mf
p of the mean-field model. The scatter

of 𝑁̄ 7715
p is smaller than the blue disk shaped markers, this is the reason

why the scatter cannot be seen.

The error 𝑒fit
7715 < 2% is much smaller than the error 𝑒mf

7715 < 12%, because
of the difference in 𝜂. The scatter of 𝑒fit

7715 is smaller than the blue disk
shaped markers, this is the reason why the scatter cannot be seen. Thus
the investigated volume element (2.2𝑙 × 2.2𝑙 × 2.2𝑙) may henceforth be
considered as RVE.
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Chapter 6

Discussion

6.1 Fast approximation vs. determination of the
effective viscosity tensor

Comparing the viscosity parameters of the fast approximation (see
section 5.1.3) and the ones determined by V̄num (see section 5.3), it
is observed that the resulting values are slightly different. Compare,
for example, the grey curves of 𝜂 in Figure 5.12 and the ones in Fig-
ure 5.13. The fast approximation slightly underestimates and the pa-
rameters of V̄num slightly overestimate the mean-field predictions of 𝜂.
Determining the viscosity parameters through V̄num is the more precise
method. The fast approximation has the advantage that only three load
cases have to be computed to get the approximation of the viscosity
parameters, instead of computing five load cases and conducting the
fitting procedure for each of the investigated numerous microstructures,
as described in section 5.1. The approximated viscosity parameters
substituted into (2.12) result exactly the same stress response as the
numerical model only for the three special load cases (5.3)-(5.5), but they
do not give exactly the same values for other load cases. Furthermore,
the error measures 𝑒fit (5.15) and 𝑒mf (5.16) can be well defined only in
the case of determining V̄num. Therefore, all viscosity parameters in and
after subsection 5.3 are determined through the more precise method –
through the determination of V̄num –, as described in subsection 5.2.
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6 Discussion

6.2 Single fiber vs. unidirectional fibers

The resulting viscosity parameters and the errors – obtained by the
parameter fitting method – of a single fiber in a periodic cell (see sec-
tion 5.3.1) and those of the unidirectional fibers (see section 5.3.2) are
compared in the diagrams of the Figures 6.1-6.4.

The resulting effective viscosities have the ordering: 𝜂mf ≤ 𝜂sf ≤ 𝜂ud, see
Figure 6.1. The largest relative difference between 𝜂ud and 𝜂sf is about 6%
at the highest investigated fiber volume fraction 𝑐f = 0.2.

The relations considering the effective shear number for 𝑐f ≥ 0.1 are
reversed, namely 𝑁̄mf

s ≥ 𝑁̄ sf
s ≥ 𝑁̄ud

s , see Figure 6.2. Note that the fitted
values of 𝑁̄ sf

s and 𝑁̄ud
s are mainly negative, but they are very close to the

mean-field predicted zero value, relative to the magnitudes of 𝜂 and 𝑁̄p.

A difference of factor two to three is observed in the case of the effective
particle number comparing 𝑁̄ sf

p to 𝑁̄ud
p , whereas 𝑁̄mf

p and 𝑁̄ud
p are almost

identical for the investigated fiber volume fraction range, see Figure 6.3.

The negligible scatter of 𝜂ud, 𝑁̄ud
s and 𝑁̄ud

p and the large difference
between 𝑁̄ud

p to 𝑁̄ sf
p show that the considered 2.2𝑙 × 10𝑑 × 10𝑑 sized

volume element is an RVE, but a single fiber in a periodic cell is not an
RVE, for randomly distributed unidirectionally aligned fibers.

Considering the errors of the different methods relative to the numer-
ical reference solution V̄num

ud , the relations 𝑒fit
ud ≤ 𝑒mf

ud ≤ 𝑒sf
ud are ob-

served, see Figure 6.4. Note that the vertical axis has a logarithmic
scale. The three considered errors have different orders of magnitude:
𝑒fit

ud ∼ 1%, 𝑒mf
ud ∼ 10% and 𝑒sf

ud ∼ 100%. Taking the scatters in account, the
upper limits of the errors are: 𝑒fit

ud ≤ 2.5%, 𝑒mf
ud ≤ 18% and 𝑒sf

ud ≤ 200%.

The main conclusion of this section is that the costly microstructure
generation, the computations on them, the fitting procedure and the
RVE-determination are worth to carry out, because the error of the fitted
model – relative to V̄num

ud – is tenth and hundredth smaller than the errors
of the mean-field and the single fiber model, respectively.
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Figure 6.1: Comparison of the effective viscosity 𝜂 of the single fiber (sf) and that of the
unidirectional (ud) model. The black curve depicts the prediction of the mean-field (mf)
model.
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Figure 6.2: Comparison of the shear number 𝑁̄s of the single fiber (sf) and that of the
unidirectional (ud) model. The black curve depicts the prediction of the mean-field (mf)
model.
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6.3 On orientation averaging

6.3 On orientation averaging

In this section, the results of the investigated four orientation cases (ud,
iso, piso, 7715) are compared. The goal of the comparison is to evaluate
which of the following three approaches is the most appropriate for
engineering applications to model the orientation dependence of the
effective viscosity tensor. The three considered approaches are:

V̄model-1 = V̄(𝜂, 𝑁̄s, 𝑁̄p, N̄), (6.1)

V̄model-2 = V̄(𝜂(N̄), 𝑁̄s(N̄), 𝑁̄p(N̄), N̄), (6.2)

V̄model-3 = V̄fft(𝜂m, 𝑟a, 𝑐𝑓 , 𝑛𝛼(𝑥)). (6.3)

Model-1 is the simplest approach, assuming that the viscosity param-
eters are orientation independent and that orientation averaging – see
equations (2.11) and (2.12) – is justified. Model-2 assumes that the
viscosity parameters are unique for each orientation case and they have
to be identified for each orientation state separately. Model-3 is the
most complex one which assumes that there are no unique viscosity
parameters, e.g., because of large scatter of the results, which would
mean that an RVE does not exist and that the viscosity tensor has to be
determined for each spatial distribution (𝑛𝛼(𝑥)) of the fibers separately.

As already shown in section 5.3, there exists an RVE for each investigated
orientation state, although their sizes are different. This implies that the
most complex approach (model-3) can be simplified, and the correctness
of the simpler approach (model-2) can be supposed.

In the diagrams of the Figures 6.5-6.8, the viscosity parameters and the
errors of the four investigated cases are compared. The curves of the
considered four orientation cases are almost identical, except for 𝑁̄s

which value is, however, almost zero. This implies that the viscosity
parameters are orientation state independent and that model-2 can be
further simplified, i.e., model-1 with orientation averaging is justified
for 𝑟a = 10.
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Figure 6.5: Comparison of the effective viscosity 𝜂 of the different orientation states. The
black curve depicts the prediction of the mean-field (mf) model.
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Figure 6.7: Comparison of the particle number 𝑁̄p of the different orientation states. The
black curve depicts the prediction of the mean-field (mf) model.
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6.4 RVE size of short-fiber microstructures

Based on all the aforementioned results, it can be stated that a cubic
volume element of the size 2.2𝑙 × 2.2𝑙 × 2.2𝑙 is an RVE for every fiber-
orientation state, where 𝑙 denotes the constant length of the straight and
rigid fibers. For special orientation cases, e.g., for unidirectional or planar
isotropic ones, the RVE size is even smaller. These observation were
obtained by considering short fibers with constant aspect ratio 𝑟a = 10.
However, for fiber systems with higher or mixed aspect ratios, it should
be always tested if the above statement is true, e.g., through repeating
the analysis of section 5.2, and investigating the scatter in the results.

6.5 Recommendations for form-filling simula-
tions

The main difference between the mean-field and the fitted models (see
Figure 6.8) is caused by the differences in 𝜂 and 𝑁̄p (see Figures 6.5-6.7).
Note that the magnitudes of 𝑁̄s are mainly negative but they are very
close to the mean-field predicted zero value, relative to the magnitudes
of 𝜂 and 𝑁̄p. With the following analytical approximations

𝜂ap := 𝜂m

(︂
1 + 2𝑐f

1 −
√

𝑐f

)︂
, (6.4)

𝑁̄
ap
s := 𝑁̄mf

s = 0, (6.5)

𝑁̄
ap
p := 35.6 𝑐f, (6.6)

the appropriate orange curves depicted in Figure 6.9 are obtained. Using
the viscosity parameters 𝜂ap, 𝑁̄mf

s and 𝑁̄
ap
p within equation (2.12), we

get an analytical approximation of the numerical viscosity tensor V̄num

for 𝑟a = 10. The overall error of the fitted and the approximated mod-
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Figure 6.9: Mean-field (black) vs. fitted (purple) vs. approximated (orange) viscosity
parameters 𝜂, 𝑁̄s, 𝑁̄p and the error 𝑒 considering all investigated fiber-orientation states.
The red and the green horizontal lines mark the upper limits of 𝑒.

els 𝑒fit = 𝑒ap < 3% is one order of magnitude smaller than the overall
error of the mean-field model 𝑒mf < 15%, see Figure 6.9.

The analytical approximation V̄ap = V̄(𝜂ap, 𝑁̄mf
s , 𝑁̄

ap
p , N̄) with the equa-

tions (2.12) and (6.4)-(6.6) is recommended to be used for form-filling
simulations.
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Chapter 7

Summary, conclusions and
outlook

7.1 Summary and conclusions

The present work deals with the flow-induced anisotropy of fiber sus-
pensions and compares different modeling approaches to describe this
phenomenon for form-filling simulations.

Using orientation tensors of the first kind, the general form of the
effective viscosity tensor is derived in Chapter 2. The conclusion of the
derivation is that in the case of straight rigid fibers and an incompressible
fluid, three parameters – the effective scalar viscosity, the shear number
and the particle number – are sufficient to describe the dependence of
the viscosity tensor on the constitutive behavior of matrix and fibers.

In Chapter 3 it is shown that it is much more efficient to model the
fiber orientation of straight rigid fibers immersed in an incompressible
fluid flow by applying orientation tensors instead of modeling the
fibers individually in terms of their normalized orientation vectors.
This observation is made based on Jeffery’s equation and the invariant-
based optimal fitting closure which is slower but more suitable than the
quadratic closure approximation.

The microstructure dependence of the three viscosity parameters is
derived by applying Mori-Tanaka’s mean-field homogenization method
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7 Summary, conclusions and outlook

based on Eshelby’s tensor, see Chapter 4. The considered microstructure
properties are the fiber volume fraction, the aspect ratio and the fluid
viscosity. The resulting complex equations are mathematically simplified
into convenient formulas without a notable change in precision.

The investigated, synthetically generated microstructure types – on
which the numerical computations are carried out – are presented in
Chapter 5. Based on preliminary full-field simulations, the size of
the RVE for each examined orientation case is estimated. One of the
most important parts of this work is the numerical computation of
the effective viscosity tensors, based on five load cases per considered
microstructure. The viscosity parameters corresponding to the numerical
effective viscosity tensors are determined by minimizing the relative
error of the Frobenius norm in a least-squares manner. The resulting
effective scalar viscosity, the shear number and the particle number of
the mean-field and the full-field homogenization methods are compared
to each other, and their errors, relative to the numerically computed
effective viscosity tensors, are given for all five investigated orientation
cases.

It is shown in Chapter 6 that a single fiber in a periodic cell is not an
RVE for the unidirectional fiber-orientation state, and it is concluded
that a cubic volume element with edge sizes 2.2 times larger than the
length of the considered straight rigid fibers is a representative volume
element. Furthermore, it is observed that the relative errors of the
full-field model are about one order of magnitude smaller than the
errors of the mean-field model. The final conclusion is that the compact
analytical approximations of the viscosity parameters, derived based
on the numerical results of the presented full-field computations, lead
to the same precision regarding the effective viscosity tensor as the nu-
merically identified viscosity parameters. The compact approximations
of the viscosity parameters are recommended to be used in form-filling
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7 Summary, conclusions and outlook

simulations for modeling the flow-induced anisotropic effective viscosity
of fiber suspensions in an efficient way.

7.2 Outlook

The numerical results in this work were computed with the use of
only 8 GB RAM. With the use of more memory, representative vol-
ume elements of higher fiber volume fractions and fiber systems with
larger/mixed aspect ratios could be investigated. That would be inter-
esting, e.g., for engineering applications in the field of injection- and
compression molding.

In the present work, the nonlinearity of the fluid viscosity is neglected. To
account for this effect, the simplest way is to substitute the deformation
rate dependent viscosity of the fluid into the equations of the viscosity
parameters. It would be worth to investigate whether the obtained
formulas match the results of shear rate dependent full-field simulations,
and whether the results of form-filling simulations with such a nonlinear
material model are close to the results of form-filling measurements.

The temperature dependence of the viscosity could be similarly modeled
and numerically validated as the nonlinearity mentioned above.

A challenging task for further research work is the development of
effective-viscosity models considering flexible fibers in the suspension.

For form-filling simulations another interesting question is how the
evolution and the anisotropy of the flow front, as well as the spatial and
temporal change of the fiber volume fraction could be modeled.

For fiber volume fractions 𝑐f > 0.5 and for matrix materials which cannot
be considered as fluid, other modeling techniques have to be developed.
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Appendix A

Investigated microstructures

Some of the investigated synthetic microsturtures are depicted on the
following pages.
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A Investigated microstructures

A.1 Unidirectional synthetic microstructures

Figure A.1.1: Eight series of the investigated unidirectional synthetic microstructures. The
fiber volume fractions from left to right are: 5%, 10%, 15% and 20%.
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A Investigated microstructures

A.2 Planar isotropic synthetic microstructures

Figure A.2.1: Eight series of the investigated planar isotropic synthetic microstructures.
The fiber volume fractions from left to right are: 5%, 10%, 15% and 20%.
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A Investigated microstructures

A.3 Isotropic synthetic microstructures

Figure A.3.1: Eight series of the investigated isotropic synthetic microstructures. The fiber
volume fractions from left to right are: 5%, 10%, 15% and 20%.
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A Investigated microstructures

A.4 Frequently occurring synth. microstructures

Figure A.4.1: Eight series of the investigated frequently occurring synthetic microstruc-
tures. The fiber volume fractions from left to right are: 5%, 10%, 15% and 20%.
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