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Abstract We extend the already existing two-loop calcula-
tion of the effective bottom-Yukawa coupling in the MSSM.
In addition to the resummation of the dominant corrections
for large values of tgβ, we include the subleading terms
related to the trilinear Higgs coupling Ab and contributions
induced by the electroweak gauge couplings. This calcula-
tion has been extended to the NNLO corrections to the MSSM
strange-Yukawa coupling. Our analysis leads to residual the-
oretical uncertainties of the effective Yukawa couplings at
the per-cent level.

1 Introduction

The discovery of a Standard-Model-like Higgs boson at the
LHC [1,2] completed the theory of electroweak and strong
interactions. The existence of an elementary Higgs boson [3–
8] is a necessary ingredient of a weakly interacting renormal-
izable theory with spontaneous symmetry breaking [9,10].
The measured Higgs mass of (125.09 ± 0.24) GeV [11]
ranges at the order of the weak scale. However, if embed-
ded in a Grand Unified Theory (GUT), radiative corrections
tend to push the Higgs mass towards the GUT scale, if the
Higgs couples to particles at this large scale. This problem is
known as the hierarchy problem [12–15]. A solution to this
problem might be offered by supersymmetry (SUSY) at the
TeV scale [16–22].

The minimal supersymmetric extension of the Standard
Model (MSSM) contains two Higgs doublets yielding five
elementary Higgs bosons after electroweak symmetry break-
ing, two neutral CP-even (scalar) bosons h, H , one neutral
CP-odd (pseudoscalar) boson A and two charged bosons

a e-mail: michael.spira@psi.ch (corresponding author)

H±. The MSSM Higgs sector is described by two input
parameters at leading order, which are generally chosen as
tgβ = v2/v1, the ratio of the two vacuum expectation val-
ues v1,2, and the pseudoscalar Higgs mass MA, if all SUSY
parameters are real. Including the one-loop and leading two-
loop corrections, the upper bound on the light scalar Higgs
mass is lifted to Mh � 130 GeV if stop masses are con-
strained to less than 10 TeV [23–28]. The more recent three-
loop results modify this upper bound by less than 1 GeV
[29–31]. The Higgs couplings to gauge bosons and fermions
involve mixing angles α and β, which are defined by diago-
nalizing the neutral and charged Higgs mass matrices. They
are listed in Table 1 relative to the SM Higgs couplings.

For large tgβ values the down-type Yukawa couplings are
enhanced and the up-type Yukawa couplings suppressed, if
the light (heavy) scalar Higgs mass does not range at its
upper (lower) bound, where the couplings become Standard-
Model-like (up to a sign for the heavy scalar Higgs boson)1.
At present and future colliders this property leads to the dom-
inance of bottom-Yukawa-coupling induced heavy-Higgs
processes for large tgβ values as heavy Higgs decays into
bottom quarks and heavy Higgs bremsstrahlung off bottom
quarks at hadron and e+e− colliders. In addition, Higgs-
boson production via gluon fusion gg → H, A is domi-
nantly induced by the bottom-loop contributions for large
tgβ. The strongly enhanced strange-Yukawa coupling on the
other hand plays a role for the subleading charged Higgs
decay mode H+ → cs̄ that can reach branching ratios at
the per-cent level or the reverse charged Higgs production
process cs̄ → H+ [33].

1 Scenarios with a SM-like heavy scalar Higgs boson are disfavoured
by the present searches [32].
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Table 1 MSSM Higgs couplings to SM particles relative to the SM
Higgs couplings

� g�
u g�

d g�
V

SM H 1 1 1

MSSM h cos α/ sin β − sin α/ cos β sin(β − α)

H sin α/ sin β cos α/ cos β cos(β − α)

A 1/tgβ tgβ 0

The soft SUSY-breaking terms in the MSSM induce mix-
ing of the current sfermion eigenstates f̃L and f̃ R . The
sfermion mass matrix in the current eigenstate basis is given
by2

M2
f̃

=
(
M2

LL M2
LR

M2
RL M2

RR

)

=
(

M2
f̃L

+ m2
f m f (A f − μr f )

m f (A f − μr f ) M2
f̃ R

+ m2
f

)
(1)

with the factors rd = 1/ru = tgβ for down- and up-
type sfermions. The parameter μ denotes the higgsino mass
parameter of the superpotential and A f the soft SUSY-
breaking trilinear couplings. The sfermion mass eigenstates
f̃1,2 emerge from the current eigenstates f̃L ,R through rota-
tions by mixing angles θ f ,

f̃1 = f̃L cos θ f + f̃ R sin θ f

f̃2 = − f̃L sin θ f + f̃ R cos θ f (2)

which scale with the masses m f of the SM fermions. Mixing
effects are only relevant for the third-generation sfermions
t̃, b̃, τ̃ and will thus be neglected for the strange squarks in
this work. The mixing angles are determined by

sin 2θ f = 2m f (A f − μr f )

m2
f̃1

− m2
f̃2

,

cos 2θ f =
M2

f̃L
− M2

f̃ R

m2
f̃1

− m2
f̃2

(3)

while the masses of the squark mass eigenstates read as

m2
f̃1,2

= m2
f + 1

2

[
M2

f̃L

+M2
f̃ R

∓
√

(M2
f̃L

− M2
f̃ R

)2 + 4m2
f (A f − μr f )2

]
(4)

The topic of this work is the extension of the next-to-
next-to-leading-order (NNLO) SUSY–QCD and top-induced
SUSY–electroweak corrections of the effective bottom-
Yukawa couplings [34,35] to the terms induced by the soft

2 For convenience, the D-terms have been absorbed in the soft SUSY-
breaking sfermion mass parameters M2

f̃L/R
.

SUSY-breaking trilinear coupling Ab, the electroweak cou-
plings α1 = g′2/(4π), α2 = g2/(4π) [g, g′ being the isospin
and hypercharge gauge couplings, respectively] and to the
SUSY–QCD corrections of the strange-Yukawa couplings.
The results will play a role in all processes to which the
bottom- and strange-Yukawa couplings contribute. In partic-
ular the neutral and charged Higgs decay widths and Higgs
radiation off bottom quarks at hadron colliders, which con-
stitutes the dominant heavy Higgs boson production channel
for large tgβ at the LHC [36–38], are affected.

2 Effective bottom- and strange-Yukawa couplings

The dominant parts of the SUSY–QCD (and SUSY–
electroweak) corrections to processes mediated by the
bottom- and strange-Yukawa couplings can be described in
terms of effective bottom- and strange-Yukawa couplings.
These corrections arise in the limit of heavy supersymmetric
particles relative to the energy scale of the particular pro-
cess. The reliability of this large mass approximation has
been analyzed for neutral MSSM Higgs decays into bottom
quarks h/H/A → bb̄ [39], charged Higgs decays to top and
bottom quarks H± → tb [40] and Higgs radiation off bottom
quarks at e+e− colliders [41,42] and hadron colliders [43–
47] by comparing to the full next-to-leading-order (NLO)
results. For large values of tgβ the approximation agrees with
the NLO results at the sub-per-cent level for SUSY masses
in the TeV range.

2.1 Effective Lagrangian

The dominant contributions to the MSSM bottom- and
strange-Yukawa couplings can be obtained from the effec-
tive Lagrangian [39,40]

Le f f = −
∑
q=b,s

λqqR
[
(1 + 	q,1)φ

0
1 + 	q,2φ

0∗
2

]
qL + h.c.

= −
∑
q=b,s

mqq̄

[
1 + iγ5

G0

v

]
q

− mq/v

1 + 	q
q̄

[
ghq

(
1 − 	q

tgα tgβ

)
h

+gHq

(
1 + 	q

tgα

tgβ

)
H − gA

q

(
1 − 	q

tg2β

)
iγ5A

]
q

(5)

with the individual leading one-loop terms for the bottom
Yukawa couplings (CF = 4/3) [48–50]

	b,1 = −CF

2

αs(μR)

π
mg̃ Ab(μR) I (m2

b̃1
,m2

b̃2
,m2

g̃)

	b,2 = 	
QCD
b,2 + 	

elw,t
b,2 + 	

elw,1
b,2 + 	

elw,2
b,2
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QCD
b,2 = CF

2

αs(μR)

π
mg̃ μ I (m2

b̃1
,m2

b̃2
,m2

g̃)

	
elw,t
b,2 = λ2

t (μR)

(4π)2 At (μR) μ I (m2
t̃1
,m2

t̃2
, μ2)

	
elw,1
b,2 = − α1

12π
M1 μ{

1

3
I (m2

b̃1
,m2

b̃2
, M2

1 )+
(
c2
b

2
+s2

b

)
I (m2

b̃1
, M2

1 , μ2)

+
(
s2
b

2
+ c2

b

)
I (m2

b̃2
, M2

1 , μ2)

}

	
elw,2
b,2 = − α2

4π
M2 μ

{
c2
t I (m

2
t̃1
, M2

2 , μ2)

+s2
t I (m

2
t̃2
, M2

2 , μ2)

+c2
b

2
I (m2

b̃1
, M2

2 , μ2) + s2
b

2
I (m2

b̃2
, M2

2 , μ2)

}
(6)

and for the strange-Yukawa couplings3

	s,1 = −CF

2

αs(μR)

π
mg̃ As(μR) I (m2

s̃1
,m2

s̃2
,m2

g̃)

	s,2 = 	
QCD
s,2 + 	

elw,1
s,2 + 	

elw,2
s,2

	
QCD
s,2 = CF

2

αs(μR)

π
mg̃ μ I (m2

s̃1
,m2

s̃2
,m2

g̃)

	
elw,1
s,2 = − α1

12π
M1 μ

{
1

3
I (m2

s̃1
,m2

s̃2
, M2

1 )

+
(
c2
s

2
+ s2

s

)
I (m2

s̃1
, M2

1 , μ2)

+
(
s2
s

2
+ c2

s

)
I (m2

s̃2
, M2

1 , μ2)

}

	
elw,2
s,2 = − α2

4π
M2 μ

{
c2
c I (m

2
c̃1

, M2
2 , μ2)

+s2
c I (m

2
c̃2

, M2
2 , μ2)

+c2
s

2
I (m2

s̃1
, M2

2 , μ2) + s2
s

2
I (m2

s̃2
, M2

2 , μ2)

}
(7)

where sq = sin θq , cq = cos θq (q = t, b, c, s) are related to
the squark mixing angles θq of Eq. (3). The final contribution
in the mass-eigenstate-basis can be derived as

	q = 	q,2 tgβ

1 + 	q,1
(q = b, s) (8)

where the 	q,1 terms have been shown to be properly
resummed in this way [39]4. The auxiliary function I is given

3 Due to the tiny charm-Yukawa coupling λc we neglect electroweak
corrections induced by λc. Moreover, for the strange and charm squarks
we neglect mixing effects, i.e. work with c2

s/c = 1 and s2
s/c = 0.

4 The Ab,s terms in the resummed expression of Eq. (8) are formally
of three-loop order and thus subleading compared to the 	q,2 contribu-
tions. Electroweak contributions to 	q,1 have therefore been neglected,
since these are expected to be phenomenologically irrelevant.

by

I (a, b, c) =
ab log

a

b
+ bc log

b

c
+ ca log

c

a
(a − b)(b − c)(a − c)

(9)

The field amplitudes φ0
1 and φ0

2 of the neutral components of
the Higgs doublets that couple to down- and up-type quarks,
respectively, are transformed to the mass eigenstates h, H, A
by the mixing angles α, β

φ0
1 = 1√

2

[
v1 + H cos α − h sin α + i A sin β − iG0 cos β

]

φ0
2 = 1√

2

[
v2 + H sin α + h cos α + i A cos β + iG0 sin β

]
(10)

The two vacuum expectation values are connected to the
Fermi constant GF by v2 = v2

1 + v2
2 = 1/(

√
2GF ). The

would-be Goldstone field G0 is ’eaten’ by the Z boson and
builds up its longitudinal component. The top-Yukawa cou-
pling λt determines the top mass bymt = λtv2/

√
2 at leading

order. The soft SUSY-breaking trilinear couplings of the top,
bottom and strange squarks are denoted by At , Ab and As ,
the higgsino mass parameter by μ and the strong coupling
constant by αs . The renormalization scale is depicted as μR .
The corrections 	b,s modify the relation between the bot-
tom (strange) quark mass mb (ms) and the bottom (strange)
Yukawa coupling λb (λs),

mq = λqv1√
2

[
1 + 	q,1 + 	q,2 tgβ

]
(q = b, s) (11)

The effective Lagrangian of Eq. (5) can be expressed as (omit-
ting the mass and Goldstone terms)

Le f f = −
∑
q=b,s

mq

v
q̄
[
g̃hq h + g̃Hq H − g̃ A

q iγ5 A ] q (12)

with the effective (resummed) couplings

g̃hq = ghq
1 + 	q

[
1 − 	q

tgαtgβ

]

g̃Hq = gHq
1 + 	q

[
1 + 	q

tgα

tgβ

]

g̃ A
q = gA

q

1 + 	q

[
1 − 	q

tgβ2

]
(13)

Even though the SUSY corrections 	q are loop-suppressed,
they are significant for large values of tgβ. In these regions
they dominate the supersymmetric corrections to the bottom-
and strange-Yukawa couplings. The effective Lagrangian
in Eq. (5) has been derived by integrating out the heavy
SUSY particles so that it is not only valid for large values
of tgβ. By using power counting it has been shown that the
Lagrangian of Eq. (5) resums all terms ofO [

(αs μ tgβ)n
]

and

123
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(a) (b)

Fig. 1 One-loop diagrams of the SUSY–QCD contributions to a the
bottom and b the strange self-energies with the off-diagonal mass inser-
tions related to the 	q (q = b, s) corrections of the bottom- and
strange-Yukawa couplings. The contributing particles involve bottom
and strange quarks b, s and squarks b̃, s̃ as well as gluinos g̃

O [
(αs Ab,s)

n
]
. For the bottom-Yukawa coupling a resum-

mation of the O [
(λ2

t At tgβ)n
]

terms is achieved in addition
[39,40] (including mixed contributions).

2.2 Low energy theorems

The derivation of higher-order corrections to the effective
Yukawa couplings would need the calculation of the related
three-point functions in the low-energy limit. This, however,
can be reduced to the determination of self-energy diagrams
by means of low energy theorems [51–55]. These are based
on the feature that in the limit of vanishing Higgs momen-
tum, matrix elements with an external Higgs boson can be
generated from the corresponding matrix elements without
the external Higgs particle by the shifts v1 → √

2φ0
1 and

v2 → √
2φ0∗

2 . Thus, only the calculation of the related parts
of the bottom and strange quark self-energies is required.
The dominant parts 	q,1/2 (q = b, s) originate from the
scalar part �S(m2

q) of the self-energy5. This affects the rela-
tion between the bottom- (strange-) Yukawa coupling λb (λs)

and the mass mq of the bottom (strange) quark,

mq = λq√
2
v1 + �S(m

2
q) (14)

with the dominant terms of the self-energy �S(m2
q) for heavy

SUSY particles

�S(m
2
q) = λq√

2
v1

[
	q,1 + 	q,2tgβ

]
(15)

The NLO–QCD parts of 	b and 	s in Eq. (5) can be obtained
from off-diagonal mass insertions of the type λq(Aqv1−μv2)

(up to a factor 1/
√

2) in the squark propagators, as shown in
Fig. 1 at one-loop order.

This results in the finite expressions of Eqs. (6, 7) (sup-
plemented by the SUSY–electroweak corrections originat-
ing from higgsino, wino and bino exchange to the bottom-
Yukawa couplings) after transforming the fields from current-
eigenstates to the mass eigenstates. These contributions are

5 The fermionic self-energy can be split into a scalar, vectorial and
axial-vectorial part as �(p) = �S(p2) + /p�V (p2) + /pγ5 �A(p2).

not renormalized at NLO due to the absence of tree-level
bottom and strange couplings involving Aq or μ.

3 NNLO corrections

The NNLO analysis of the effective bottom- and strange-
Yukawa couplings necessitates the calculation of the leading
NNLO corrections to the bottom and strange self-energies.
The NNLO expressions of the bottom-Yukawa couplings
have been obtained in Refs. [34,35,56–58]. We will extend
these results to the non-tgβ-enhanced Ab terms and to the
strange Yukawa couplings. In this work we will neglect inter-
generational mixing so that issues related to the flavour sector
[59–65] can be disregarded.

3.1 Bottom-Yukawa couplings

3.1.1 SUSY–QCD corrections to 	b,1

Since the effective insertions according to Fig. 1 are always
proportional to Ab −μ tgβ, the contributions of all two-loop
diagrams for the bottom-Yukawa coupling are the same for
the Ab and the μ tgβ contributions (up to the relative overall
sign). The renormalization proceeds along the lines of Ref.
[34,35] so that the SUSY–QCD corrections to the 	b,1 terms
are the same as for the 	b,2 contributions after renormal-
ization (including the SUSY-restoring counter terms [66]).
Denoting the (renormalized) NNLO-corrected SUSY–QCD
part 	

QCD
b,2 of Refs. [34,35] as

	
QCD
b,2 = μ	NLO [1 + δb] (16)

with the NNLO correction δb and

	NLO = CF

2

αs(μR)

π
mg̃ I (m2

b̃1
,m2

b̃2
,m2

g̃) (17)

the effective correction to the bottom-Yukawa couplings of
Eq. (8) acquires the form

	b =
μ 	NLO [1 + δb] + 	

elw,t
b,2 [1 + δt ] + 	

elw,1
b,2 [1 + δ1] + 	

elw,2
b,2 [1 + δ2]

1 − A0
b 	NLO [1 + δb]

tgβ

(18)

where A0
b denotes the bare trilinear coupling that is renor-

malized in SUSY–QCD and δt the SUSY–QCD corrections
to 	

elw,t
b,2 [34,35]. The NNLO SUSY–QCD corrections δ1

(δ2) to 	
elw,1
b,2 (	elw,2

b,2 ) will be derived and discussed in the
next subsection. The renormalization of Ab emerges from a
non-leading order contribution in our context: for the MS-
renormalized trilinear coupling within dimensional regular-
ization in n = 4 − 2ε dimensions we obtain

123



Eur. Phys. J. C           (2021) 81:259 Page 5 of 13   259 

Fig. 2 Two-loop diagram of sbottom-self-energy insertions contribut-
ing to the SUSY–QCD corrections to the bottom-quark self-energy. This
involves bottom quarks b, bottom squarks b̃ and gluinos g̃

A0
b = Ab(μ

2
R) + δAb

δAb = CF
αs

π
�(1 + ε)

(
4πμ2

μ2
R

)ε
mg̃

ε
�= O(Ab) (19)

so that Ab is not renormalized at O(αs Ab). We have explic-
itly checked that the divergence corresponding to the coun-
terterm of Ab is generated by the diagram of Fig. 2 with an
insertion λb v1 (up to a factor 1/

√
2) at the virtual bottom-

quark line. Thus the final expression including the O(Ab)

terms is given by Eq. (18) with A0
b replaced by the renormal-

ized Ab(μ
2
R) coupling,

	b

= 	
QCD
b,2 [1+δb]+	

elw,t
b,2 [1+δt ]+	

elw,1
b,2 [1+δ1]+	

elw,2
b,2 [1+δ2]

1+	b,1 [1+δb]
tgβ

(20)

with 	b,1,	
QCD
b,2 ,	

elw,t
b,2 ,	

elw,1
b,2 and 	

elw,2
b,2 defined in

Eq. (6).
In this work we adopt the renormalization program of

Ref. [67], i.e. the counterterm for the top-Yukawa-induced
electroweak contributions 	

elw,t
b,2 is modified for the trilinear

coupling At that is defined in the MS scheme. This leads to a
vanishing counterterm for At at the order we are calculating.

3.1.2 SUSY–QCD corrections to 	
elw,1/2
b,2

For the calculation of the SUSY–QCD corrections to the
terms 	

elw,1
b,2 and 	

elw,1
b,2 we will reduce the associated

higgsino propagators to the contributions relevant for the
tgβ-enhanced corrections. For the neutralinos in the basis
(B̃, W̃ 3, H̃0

1 , H̃0
2 ), the full inverse propagator matrix is given

by

P−1 = P−1
0 + D

P−1
0 =

⎛
⎜⎜⎝

�p − M1 0 0 0
0 �p − M2 0 0
0 0 �p μ

0 0 μ �p

⎞
⎟⎟⎠

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
g′v
2

cβ −g′v
2

sβ

0 0 −gv

2
cβ

gv

2
sβ

g′v
2

cβ −gv

2
cβ 0 0

−g′v
2

sβ
gv

2
sβ 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(21)

where the part D is subleading in the limit of heavy SUSY
particles that we are working in. Keeping only linear terms
in D, the propagator matrix is then given by

P = P0 − P0DP0

P0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�p + M1

p2 − M2
1

0 0 0

0
�p + M2

p2 − M2
2

0 0

0 0
�p

p2 − μ2 − μ

p2 − μ2

0 0 − μ

p2 − μ2

�p
p2 − μ2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−P0DP0 =
(

0 A
AT 0

)

A = cβ

p2 − μ2

⎛
⎜⎜⎝

− g′v
2

( �p + M1)( �p + μtgβ)

p2 − M2
1

g′v
2

( �p + M1)( �ptgβ + μ)

p2 − M2
1

gv

2

( �p + M2)( �p + μtgβ)

p2 − M2
2

− gv

2

( �p + M2)( �ptgβ + μ)

p2 − M2
2

⎞
⎟⎟⎠ .

(22)

Inserting the corresponding diagonal and off-diagonal prop-
agators into the self-energies of Fig. 3 and keeping only the
tgβ-enhanced terms in the numerators of the off-diagonal
propagators contained in A, we arrive at the proper expres-
sions for 	

elw,1
b,2 of Eq. (6) where the identities

M2
LL = M2

q̃L
+ m2

q = m2
q̃1
c2
q + m2

q̃2
s2
q

M2
RR = M2

q̃R
+ m2

q = m2
q̃1
s2
q + m2

q̃2
c2
q (q = b, t) (23)

have been used. Including only the tgβ-enhanced contribu-
tions ensures that terms proportional to v2 are kept thanks
to the relation v cβ tgβ = v2 that are then shifted by the
full Higgs field v2 → √

2φ0∗
2 according to the discussion of

Sect. 2.2.
For the calculation of 	

elw,2
b,2 we have to use the off-

diagonal propagators of Eq. (22) proportional to the isospin
gauge coupling g, but have to include chargino propagators
for the diagrams involving top squarks in addition. In the
basis (W̃+, H̃+

1 , H̃+
2 ), the full inverse chargino propagator

matrix is given by

P−1 = P−1
0 + D

P−1
0 =

⎛
⎝ �p − M2 0 0

0 �p −μ

0 −μ �p

⎞
⎠ ,

123
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Fig. 3 One-loop diagrams of sbottom-self-energy insertions contributing to the SUSY–QCD corrections 	
elw,1
b,2 of the bottom-quark self-energy

involving bottom quarks b, bottom squarks b̃, binos B̃ and higgsinos H̃0
1 . The crossed lines indicate off-diagonal propagator contributions

D =

⎛
⎜⎜⎜⎜⎝

0 − gv√
2
cβ − gv√

2
sβ

− gv√
2
cβ 0 0

− gv√
2
sβ 0 0

⎞
⎟⎟⎟⎟⎠ (24)

where the term D is subleading in the heavy-SUSY-particle
limit. The propagator matrix is then obtained as

P = P0 − P0DP0

P0 =

⎛
⎜⎜⎜⎜⎜⎝

�p + M2

p2 − M2
2

0 0

0
�p

p2 − μ2

μ

p2 − μ2

0
μ

p2 − μ2

�p
p2 − μ2

⎞
⎟⎟⎟⎟⎟⎠

−P0DP0

= N
⎛
⎝ 0 ( �p+M2)( �p+μtgβ) ( �p+M2)( �ptgβ+μ)

( �p+μtgβ)( �p+M2) 0 0
( �ptgβ+μ)( �p+M2) 0 0

⎞
⎠

(25)

where the normalization factor reads

N = gvcβ√
2(p2 − M2

2 )(p2 − μ2)
(26)

Inserting the corresponding tgβ-enhanced terms of the off-
diagonal propagators into the self-energies of Fig. 4, we
obtain the proper expressions for 	

elw,2
b,2 of Eq. (6).

The leading tgβ-enhanced terms of the off-diagonal
chargino- and neutralino-propagator-matrix entries have
been used for the calculation of the two-loop SUSY–QCD
corrections of corrections 	

elw,1/2
b,2 to the bottom Yukawa

couplings in Eq. (6). The relevant two-loop diagrams of
the bottom self-energy are depicted in Fig. 5. The techni-
cal method of our calculation follows the analysis of Refs.

Fig. 4 One-loop diagrams of sbottom-self-energy insertions contribut-
ing to the SUSY–QCD corrections 	

elw,2
b,2 of the bottom-quark self-

energy involving bottom quarks b, sbottoms b̃, stops t̃ , winos W̃ 3,±
and higgsinos H̃0,±

1 . The crossed lines indicate the tgβ-enhanced off-
diagonal wino-higgsino propagator contributions

[34,35]. The diagrams of Fig. 5 are evaluated with single
crosses in each sbottom/stop or gaugino/higgsino line indi-
vidually. However, for the additional contributions going
with s2

b , c
2
b, s

2
t , c

2
t in Eq. (6) diagrams with three crosses have

to be taken into account, too, as exemplified for one diagram
involving top quarks and stops in Fig. 6. This means that
there are contributions with three off-diagonal propagators
inserted in the two-loop diagrams. These diagrams complete
the corrections to the terms proportional to s2

b , c
2
b, s

2
t , c

2
t in

Eq. (6) by means of the relations of Eq. (23) and

M2
LR = mq(Aq − μrq) = (m2

q̃1
− m2

q̃2
)sqcq (q = b, t)

(27)

For the contributions to 	
elw,2
b,2 , crosses involving the off-

diagonal entry of the top-quark propagator matrix

P = 1

p2 − m2
t

( �p mt

mt �p
)

(28)

in the (tL , tR) basis induced by the large top mass have to be
considered, too. It should be noted that the symmetry factors
between the self-energies and the effective coupling of the
Lagrangian have to be taken into account properly for the
shift v2 → √

2φ0∗
2 .

For the finite result of the two-loop corrections to 	
elw,1/2
b,2

we have to renormalize the sbottom and stop masses as well
as the sbottom and stop mixing angles. The counterterm of
the 	

elw,1
b,2 term can be derived as

δ	
elw,1
b,2,NNLO =

∑
i=1,2

∂	
elw,1
b,2

∂(m2
b̃i

)
δm2

b̃i
+ ∂	

elw,1
b,2

∂θb
δθb (29)

where 	
elw,1
b,2 is the NLO expression of Eq. (6). The renor-

malization constants are given by

δθb = −CF

4

αs

π
�e

⎧⎨
⎩s2θbc2θb

A0(mb̃2
) − A0(mb̃1

)

m2
b̃2

− m2
b̃1

⎫⎬
⎭

δm2
b̃i

= CF

4

αs

π
�e

{
(1 + c2

2θb
)A0(mb̃i

)

+s2
2θb

A0(mb̃ j
) − 2A0(mg̃)

−4m2
b̃i
B0(m

2
b̃i

; 0,mb̃i
) + 2(m2

b̃i

−m2
g̃)B0(m

2
b̃i

;mg̃, 0)
}

( j �= i) (30)
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Fig. 5 Generic two-loop
diagrams of the SUSY–QCD
contributions to the bottom
self-energy involving bottom
quarks b, sbottoms b̃ and stops
t̃ , gluons g, gluinos g̃, binos B̃,
winos W̃ and higgsinos H̃0,±

1

Fig. 6 All possible cross
insertions into one of the
diagrams contributing to the
leading terms of 	

elw,2
b,2 at

NNLO involving top quarks and
stops

where we neglected kinematical O(mb) terms consistently
but kept the full mixing-angle dependence. The scalar inte-
grals are defined as

A0(m) = (4π)2

i
μ̄4−n

∫
dnk

(2π)n

1

k2 − m2

B0(p
2;m1,m2) = (4π)2

i
μ̄4−n

×
∫

dnk

(2π)n

1

(k2−m2
1)[(k+ p)2−m2

2]
(31)

where μ̄ deotes the ’t Hooft mass.
For the 	

elw,2
b,2 term we have to renormalize the stop con-

tributions in addition so that the full counterterm is given

by

δ	
elw,2
b,2,NNLO =

∑
i=1,2

∂	
elw,2
b,2

∂(m2
b̃i

)
δm2

b̃i
+ ∂	

elw,2
b,2

∂θb
δθb

+
∑
i=1,2

∂	
elw,2
b,2

∂(m2
t̃i
)

δm2
t̃i

+ ∂	
elw,2
b,2

∂θt
δθt (32)

with the NLO contribution 	
elw,2
b,2 of Eq. (6), the renormal-

ization constants δm2
b̃i

, δθb of Eq. (30) and

δθt = CF

4

αs

π
c2θt �e

{
s2θt

A0(mt̃2 ) − A0(mt̃1 )

m2
t̃1

− m2
t̃2

+2mg̃mt

B0(m2
t̃1
;mg̃,mt ) + B0(m2

t̃2
;mg̃,mt )

m2
t̃1

− m2
t̃2

}

123
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δm2
t̃i

= CF

4

αs

π
�e

{
(1 + c2

2θt
)A0(mt̃i ) + s2

2θt
A0(mt̃ j )

−2A0(mg̃) − 2A0(mt )

−4m2
t̃i
B0(m

2
t̃i
; 0,mt̃i )

−2(m2
g̃ + m2

t − m2
t̃i
∓mg̃mt s2θt )B0(m

2
b̃i

;mg̃,mt )
}

( j �= i)

(33)

for the stop renormalization constants, where we kept all
terms proportional to the top mass mt . The final results have
been explicitly checked to be ultraviolet finite after renor-
malization. The whole calculation has been performed twice
independently with different methods and implementations.

Due to the mismatch between the (n−2) gluonic d.o.f. and
the 2 d.o.f. of the gluinos in dimensional regularization,
anomalous counterterms have to be added to restore super-
symmetry [66]. This affects the SUSY-counterparts ĝ, ĝ′ of
the electroweak gauge couplings at the B̃qq̃ and W̃qq̃ ver-
tices (q = t, b and q̃ = b̃, t̃),

ĝ = g

[
1 − CF

8

αs

π

]
, ĝ′ = g′

[
1 − CF

8

αs

π

]
(34)

as well as the SUSY-counterparts of the Higgs Yukawa cou-
plings6,

λH̃qq̃ = λHqq

[
1 − 3

8
CF

αs

π

]
,

λHq̃q̃ = λHqq

[
1 − CF

4

αs

π

]
(35)

This results in anomalous counterterms of the contributions
	

elw,1/2
b,2 ,

δ	
elw,1
b,2,anom = −CF

2

αs

π
	

elw,1
b,2

δ	
elw,2
b,2,anom = −CF

2

αs

π
	

elw,2
b,2 (36)

where 	
elw,1/2
b,2 denote the one-loop expressions of Eq. (6).

3.2 Strange Yukawa couplings

The translation of the results for the bottom-Yukawa cou-
plings to the Higgs boson couplings to strange quarks
requires a careful investigation of the corresponding quark-
mass contributions. Since in the calculation of the bottom-
Yukawa coupling the bottom quark is treated strictly massless
and the external momentum dependence is omitted, there is
no difference for the individual two-loop diagrams, if the bot-
tom parameters are replaced by their corresponding strange
parameters. Care must be taken for the proper summation

6 The same anomalous counterterms arise for the charged higgsino
coupling λH± t̃b, too.

over all quark/squark flavours for the diagrams with gluino-
self-energy insertions since the strange-squark mass coin-
cides with the left- and right-handed squark masses of the
second generation and the sbottom and stop masses of the
third generation are independent. Another difference to the
bottom-quark case is the absence of sizeable charm-Yukawa-
induced SUSY–electroweak contributions to the strange-
Yukawa coupling, since we are neglecting the charm-Yukawa
coupling λc. The final result can be cast into the form

	s = 	
QCD
s,2 [1 + δs ] + 	

elw,1
s,2 [1 + δ1] + 	

elw,2
s,2 [1 + δ2]

1 + 	s,1 [1 + δs ]
tgβ

(37)

where δs (δ1/2) denotes the NNLO SUSY–QCD correc-
tions to the QCD (electroweak) part of the strange Yukawa
couplings and 	

QCD
s,1/2 ,	

elw,1/2
s,2 are defined in Eq. (7). The

expression above for 	s is then inserted into the effective
Lagrangian of Eq. (5) and into the resummed couplings of
Eq. (13), respectively, resumming in this way all terms of
O [

(	s)
n
]
.

4 Results

The final results of this paper have been implemented in the
program Hdecay [68–70]. This code computes the MSSM
Higgs couplings and masses based on the RG-improved
expressions of Ref. [71]. Moreover, the partial decay widths
and branching ratios of the MSSM Higgs bosons are calcu-
lated including higher-order corrections [36–38]. For large
tgβ values the dominant neutral Higgs boson decays are into
bb̄ and τ+τ−. In Ref. [39] their branching ratios have been
analyzed including the correction 	b of Eq. (6) at the one-
loop level.

4.1 Higgs decays into bottom and strange quarks

The QCD and SUSY–QCD corrected partial decay widths of
the neutral Higgs bosons � = h, H, A into bottom quarks
can be expressed as [39]

�[� → bb] = 3GFM�

4
√

2π
m2

b(M�)

× [
1 + δQCD + δ�

t

]
g̃�
b

[
g̃�
b + δremSQCD

]
(38)

with mb(M�) denoting the MS bottom mass at the scale of
the Higgs mass M� and quark mass effects beyond O(m2

b)

are neglected. The QCD corrections δQCD and the top quark
induced contributions δ�

t are known [72–86] and can be
found in Refs. [36–38] in compact form. The QCD correc-
tions δQCD are taken into account up to N4LO and the cor-
rections δ�

t at the NNLO level in Hdecay.

123
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The leading contributions of the SUSY–QCD corrections
[87,88] have been absorbed in the resummed bottom-Yukawa
couplings g̃φ

b as given in Eq. (13). The remainder δremSQCD is
small, i.e. at the sub-per-cent level, in phenomenologically
relevant scenarios for large tgβ values [39]. This observa-
tion at NLO implies the expectation that at higher orders
the remainders after factorizing the corrections involved in
the effective Lagrangian of Eq. (12) are even smaller and
thus negligible in general. This underlines that the results of
our work constitute the major part of the corrections beyond
NLO with tiny remainders at higher loop-levels. It should be
noted that our two-loop corrections to the Ab, As-induced
terms are formally of three-loop order of the related physical
observables involving the corresponding effective Yukawa
couplings, but they modify the relations between the Yukawa
couplings and quark masses at NNLO. In our analysis we
include the full (two-loop corrected) 	b (	s) contributions
including the QCD and electroweak parts in the couplings
g̃φ
b (g̃φ

s ).
The strange Yukawa coupling plays a phenomenological

role for charged Higgs decays into charm and strange quarks
H+ → cs̄. Neglecting regular quark mass effects7 this partial
decay width can be expressed as [89–91]8

�[ H+ → cs ] = 3GFMH±

4
√

2π
|Vcs |2

×
[
m2

c(MH±)(gA
c )2 + m2

s (MH±)(g̃ A
s )2

]
(1 + δQCD)

(39)

with the same QCD-correction-factor δQCD as in Eq. (38).
The small remainder of the genuine SUSY–QCD corrections
after absorbing the dominant part in the effective strange-
Yukawa coupling g̃ A

s is neglected.

4.2 Numerical results

We perform our numerical analysis of the MSSM Higgs
boson decays into bottom and strange quarks for the MSSM
benchmark scenario M125

h [32] as a representative case9:

M125
h : tgβ = 40, MQ̃ = 1.5 TeV,

M
�̃3

= 2 TeV, Mg̃ = 2.5 TeV,

M1 = M2 = 1 TeV,

7 Hdecay includes the full quark-mass dependence up to NLO.
8 Vcs denotes the corresponding CKM-matrix element.
9 The values for Ab, Aτ , At have been obtained from Xt = At −
μ/tgβ = 2.8 TeV. The trilinear coupling As has been chosen as As =
Ab. The soft SUSY-breaking squark mass parameter MQ̃ is defined

in the on-shell scheme. We have determined the corresponding MS
parameters by appropriate iterations. The MS squark-mass parameters
of the second generation have been identified with the corresponding
ones of the third generation.

Ab = Aτ = At = 2.825 TeV, μ = 1 TeV (40)

For the Higgs masses and couplings we use the RG-improved
two-loop expressions of Ref. [71], so that the leading cor-
rections at the one- and two-loop level to the Higgs masses
and the effective mixing angle α are taken into account. The
bottom MS-mass has been chosen as mb(mb) = 4.18 GeV,
which corresponds to a pole mass mb = 4.84 GeV accord-
ing to the implementation in Hdecay that determines the
bottom-quark pole mass from the MS-mass at the scale of
the pole mass. The strange MS-mass has been initialized as
ms(2 GeV) = 95 MeV and the strong coupling constant
as αs(MZ ) = 0.118. The top pole mass has been taken to
be mt = 172.5 GeV. In the mass matrices of the stop and
sbottom states effective top and bottom masses are imple-
mented as discussed in Ref. [67]. With this set-up we obtain
the following squark masses e.g. for tgβ = 40,

mt̃1 = 1374.8 GeV, mt̃2 = 1632.6 GeV,

mb̃1
= 1479.3 GeV, mb̃2

= 1525.3 GeV,

mc̃1 = 1502.6 GeV, mc̃2 = 1503.1 GeV,

ms̃1 = 1500.2 GeV, ms̃2 = 1504.8 GeV (41)

We will present the impact of the new results on the
bottom- and strange-Yukawa couplings as well as related
observables. Figure 7 displays the scale dependence of the
SUSY–QCD parts of 	b and 	s ,

	QCD
q = 	

QCD
q,2 (1 + δq)

1 + 	q,1(1 + δq)
tgβ (q = b, s) (42)

with and without the Ab, As contributions 	b,1,	s,1 for the
M125

h scenario. For tgβ = 40 the 	b and 	s corrections
range at the level of 30%. The scale dependence is reduced
significantly from one- to two-loop order to a few per cent
at NNLO, while the additional contributions of the Ab, As

terms are small, i.e. at the per-cent level, as can be inferred
from the differences between the red and blue curves. The
comparison between the blue and red curves shows that the
additional scale dependence induced by Ab and As is numer-
ically small in line with neglecting terms that are not of
O(μtgβ)orO(Ab,s). The effects of the contributions induced
by Ab, As are significantly larger than the NLO remainder
so that this can naturally be expected for the remainders
at NNLO and beyond, too. However, in general the sizes
and directions of the total 	b and 	s corrections depend
on the MSSM scenario, in particular on the sign and size of
μ and the value of tgβ. The central scales have been cho-
sen equal to the average of the corresponding SUSY masses,
i.e. μ0 = (mq̃1 + mq̃2 + mg̃)/3 for 	

QCD
b,1/2 , 	

QCD
s,1/2 . For the

electroweak parts we have adopted μ0 = (mt̃1 +mt̃2 +μ)/3

for 	
elw,t
b,2 and the average of the involved SUSY particles

for the strong-coupling scale involved in the individual con-
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Fig. 7 Scale dependence of the SUSY–QCD corrections 	
QCD
b (upper

plot) and 	
QCD
s (lower plot) at one-loop and two-loop order with and

without the Ab, As contributions in the M125
h scenario

tributions to 	
elw,1/2
q,2 (q = b, s) at NNLO. These choices

are suitable as the appropriate natural central scales.
In Fig. 8 we present the individual and total contributions

to 	b and 	s as a function of tgβ for the M125
h scenario.10

While the SUSY-QCD parts 	
QCD
b/s,2 dominate the contribu-

tions, the electroweak contributions 	
elw,t/1/2
b/s,2 amount to

O(10%) reaching up to about 20% for large tgβ-values. Espe-
cially the terms 	

elw,t/2
b/s,2 cannot be neglected if a prediction

with an accuracy at the per-cent level should be achieved. The
two-loop corrections to the electroweak terms range acciden-
tially at the per-cent level in this benchmark scenario11. They

10 The values of At = Ab = Aτ have been derived from Xt = 2.8 TeV
for each value of tgβ accordingly.
11 For the 	

elw,t
b,2 terms they amount to about 1.7%, for 	

elw,1
b,2 to about

0.4% and for 	
elw,2
b,2 to about -0.7%.
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QCD w/  As

α1

α2

tgβ

-0.1

0
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0.2

0.3

0.4

0.5

0.6

10 20 30 40 50 60

Fig. 8 Dependence of the full SUSY–QCD + SUSY–electroweak cor-
rections 	b (upper plot) and 	s (lower plot) on tgβ at one-loop and
two-loop order with and without the Ab, As contributions in the M125

h
scenario, and the individual contributions to 	b and 	s

can be larger in other scenarios reaching a level of 10–15%
in general.

To exemplify this, we show the size of the two-loop correc-
tions to the terms 	

elw,1/2
b,s in Fig. 9 as a function of the gaug-

ino masses M = M1 = M2 with all other MSSM parame-
ters kept fixed at their values of the M125

h scenario. For small
gaugino masses the corrections can amount to more than
20%.

As a particular application we analyze the partial decay
widths of the heavy neutral MSSM Higgs bosons into bb̄
pairs and of the charged Higgs boson into cs̄ in Fig. 10 for
the M125

h scenario, respectively. The two-loop parts of 	b

(	s) reduce the partial decay widths to bb̄ (cs̄) pairs for the
central scale choices by O(10%). The NLO bands (dashed
blue curves) and the NNLO bands (full red curves) are gen-
erated by varying the renormalization scales of 	b and 	s

between 1/3 and 3 times the corresponding central scales
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Fig. 9 Radiative corrections to the SUSY–electroweak corrections
	

elw,1/2
b (upper plot) and 	

elw,1/2
s (lower plot) as a function of the

gaugino mass parameters M = M1 = M2

μ0.12 A significant reduction of the dashed one-loop bands
of O(10%) to the full two-loop bands at the per-cent level
can be inferred from these results which is expected based
on the previously known two-loop corrections [34,35]. All
NNLO results are positioned at the lower ends of the NLO
error bands.

5 Conclusions

We have calculated the NNLO corrections to the effec-
tive bottom- and strange-quark-Yukawa couplings within the
MSSM, extending previous analyses to non-leading terms
that are mediated by the soft SUSY-breaking trilinear cou-

12 We have extended the usual range to a factor of three, because for a
factor of two, the bands do not overlap so that the more restricted range
is not appropriate.
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Fig. 10 Partial decay widths of the heavy scalar H and the pseu-
doscalar A Higgs bosons to bb̄ (upper two plots) and charged Higgs
decays to cs̄ (lower plot) in the M125

h scenario. The dashed blue bands
display the scale dependence at the one-loop level and the full red bands
at the two-loop level by varying the renormalization scales of 	b and
	s between 1/3 and 3 times the central scale fixed by the average of
the involved SUSY-particle masses
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plings Ab, As and the weak couplings α1, α2 for large
values of tgβ. The dominant contributions of the SUSY–
QCD corrections arise from virtual two-loop squark and
gluino exchange, that factorize and can be absorbed in
effective Yukawa couplings. We have derived the two-loop
SUSY–QCD corrections to the effective bottom- and strange-
Yukawa couplings beyond the leading contributions obtained
previously.

In summary, the significant scale dependence of O (10%)

of the NLO predictions for processes involving the bottom-
and strange-quark-Yukawa couplings of MSSM Higgs bosons
necessitate the inclusion of NNLO corrections. For the
NNLO-corrected Yukawa couplings, we observe a reduc-
tion of the scale dependence to the per-cent level. These
results were previously known for the leading terms of the
bottom-Yukawa couplings. In this work they have been estab-
lished for the non-leading Ab and electroweak terms and the
strange-Yukawa couplings. The improved NNLO results for
the bottom- and strange-Yukawa couplings provide a quanti-
tative basis for experimental analyses at the LHC and future
e+e− colliders as the ILC.
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