
Distributed Planning for
Self-Organizing Production Systems

Zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften
von der KIT-Fakultät für Informatik

des Karlsruher Instituts für Technologie (KIT)

genehmigte
Dissertation

von

Dipl.-Wirt.-Ing. Julius Pfrommer
aus Ostfildern

Tag der mündlichen Prüfung: 22. Juli 2019

Referent: Prof. Dr.-Ing. habil. Jürgen Beyerer

Korreferent: Prof. Dr.-Ing. Michael Weyrich

Kurzfassung

Für automatisierte Produktionsanlagen gibt es einen fundamentalen Tradeoff
zwischen Effizienz und Flexibilität. In den meisten Fällen sind die Abläufe
nicht nur durch den physischen Aufbau der Produktionsanlage, sondern auch
durch die spezielle zugeschnittene Programmierung der Anlagensteuerung fest
vorgegeben. Änderungen müssen aufwändig in einer Vielzahl von Systemen
nachgezogen werden. Das macht die Herstellung kleiner Stückzahlen unrentabel.

In dieser Dissertation wird ein Ansatz entwickelt, um eine automatische
Anpassung des Verhaltens von Produktionsanlagen an wechselnde Aufträge und
Rahmenbedingungen zu erreichen. Dabei kommt das Prinzip der Selbstorga-
nisation durch verteilte Planung zum Einsatz. Die aufeinander aufbauenden
Ergebnisse der Dissertation sind wie folgt:

1. Es wird ein Modell von Produktionsanlagen entwickelt, dass nahtlos von
der detaillierten Betrachtung physikalischer Produktionsprozesse bis hin
zu Lieferbeziehungen zwischen Unternehmen skaliert. Im Vergleich zu
existierenden Modellen von Produktionsanlagen werden weniger limitie-
rende Annahmen gestellt. In diesem Sinne ist der Modellierungsansatz
ein Kandidat für eine häufig geforderte “Theorie der Produktion”.

2. Für die so modellierten Szenarien wird ein Algorithmus zur Optimierung
der nebenläufigen Abläufe entwickelt. Der Algorithmus verbindet Tech-
niken für die kombinatorische und die kontinuierliche Optimierung: Je
nach Detailgrad und Ausgestaltung des modellierten Szenarios kann der
identische Algorithmus kombinatorische Fertigungsfeinplanung (Sche-
duling) vornehmen, weltweite Lieferbeziehungen unter Einbezug von
Unsicherheiten und Risiko optimieren und physikalische Prozesse prä-
diktiv regeln. Dafür werden Techniken der Monte-Carlo Baumsuche (die
auch bei Deepminds Alpha Go zum Einsatz kommen) weiterentwickelt.
Durch Ausnutzung zusätzlicher Struktur in den Modellen skaliert der
Ansatz auch auf große Szenarien.

ii

3. Der Planungsalgorithmus wird auf die verteilte Optimierung durch un-
abhängige Agenten übertragen. Dafür wird die sogenannte “Nutzen-
Propagation” als Koordinations-Mechanismus entwickelt. Diese ist von
der Belief-Propagation zur Inferenz in Probabilistischen Graphischen
Modellen inspiriert. Jeder teilnehmende Agent hat einen lokalen Hand-
lungsraum, in dem er den Systemzustand beobachten und handelnd ein-
greifen kann. Die Agenten sind an der Maximierung der Gesamtwohlfahrt
über alle Agenten hinweg interessiert. Die dafür notwendige Kooperation
entsteht über den Austausch von Nachrichten zwischen benachbarten
Agenten. Die Nachrichten beschreiben den erwarteten Nutzen für ein
angenommenes Verhalten im Handlungsraum beider Agenten.

4. Es wird eine Beschreibung der wiederverwendbaren Fähigkeiten von Ma-
schinen und Anlagen auf Basis formaler Beschreibungslogiken entwickelt.
Ausgehend von den beschriebenen Fähigkeiten, sowie der vorliegenden
Aufträge mit ihren notwendigen Produktionsschritten, werden ausführbare
Aktionen abgeleitet. Die ausführbaren Aktionen, mit wohldefinierten
Vorbedingungen und Effekten, kapseln benötigte Parametrierungen, pro-
grammierte Abläufe und die Synchronisation von Maschinen zur Laufzeit.

Die Ergebnisse zusammenfassend werden Grundlagen für flexible automa-
tisierte Produktionssysteme geschaffen – in einer Werkshalle, aber auch über
Standorte und Organisationen verteilt – welche die ihnen innewohnenden Frei-
heitsgrade durch Planung zur Laufzeit und agentenbasierte Koordination gezielt
einsetzen können. Der Bezug zur Praxis wird durch Anwendungsbeispiele
hergestellt. Die Machbarkeit des Ansatzes wurde mit realen Maschinen im Rah-
men des EU-Projekts SkillPro und in einer Simulationsumgebung mit weiteren
Szenarien demonstriert.

Abstract

There is a fundamental tradeoff between automation and flexibility in production
systems. Large lot sizes can be produced efficiently with automated production
systems. Many machines and equipment, like a 5-axis CNC mill, are in principle
capable of producing many different kinds of parts. Similarly, (intra-) logistics
systems exist for the automated transport and warehousing. Integrating these
flexible components to an overall production system that is equally flexible has
been prevented by the limits of automation technology in dealing with the ensuing
complexity. Most production processes are rigid not only by way of the physical
layout of machines and their integration, but also by the custom programming
of the control logic for the integration of components to a production systems.
Changes are time- and resource-expensive. This makes the production of small
lot sizes of customized products economically challenging.

This thesis develops solutions for the automated adaptation of production
systems based on self-organisation and distributed planning. The main results
are the following:

1. A model of production systems that scales seamlessly from detailed
physical process dynamics up to more abstract descriptions of entire
supply chains. Compared to existing models of production systems, the
proposed approach requires less limiting assumptions and also includes
a treatment of concurrency—many productions on many machines in
parallel and their interaction. In the sense, the proposed model is a
candidate for a “theory of production”.

2. Based on the model, an algorithm for the optimization of concurrent
production scenarios is proposed. The algorithm combines techniques
for combinatorial and continuous optimization. Depending on the level
fidelity of of the model, the same algorithm can solve combinatorial
scheduling problems, minimize risk in global supply-chains and control
physical production processes. For this, the technique of Monte-Carlo

iv

Tree Search is extended. By exploiting algebraic structure in the models,
the approach can be scaled to large scenarios.

3. The algorithm is further extended to decentralized optimization by in-
dependent agents. For the coordination between agents, the technique
of “utility propagation” is developed. Utility propagation is inspired by
belief propagation, a well-known technique for inference in probabilistic
graphical models. Every agent has a local scope of visibility where can
further influence the actions taking place. For the coordination, it is
expected that the scope of the different agents is overlapping. The agents
are further expected to cooperate, i.e. they are interested to maximize the
overall welfare that is generated. The coordination between agents is based
on the exchange of messages between neighboring agents. The messages
describe the expected generated welfare conditional to the actions that are
in the scope of both the sending and the receiving agent.

4. A formal description of reusable skills of production resources (machines
and tools) in production systems is developed. By combining the modeled
skills with a description of the production steps, executable actions are
generated that are described by preconditions and effects. Internally, the
actions encapsulate all required program logic for the automation and
the runtime-synchronization between different machines and tools that
participate in the action.

In summary, the results of this work enable future production systems that are
both efficient and adaptive. For this the components of the production system
are enabled to use the degrees of freedom that are available to them. By the use
of self-organization for the coordination, components of the overall system can
react to changes in the system topology and external conditions. The approach
was tested in application scenarios—in simulation and in physical production
systems. For example as part of the EU-project SkillPro.

Acknowledgments

Let me first thank Prof. Dr.-Ing. habil. Jürgen Beyerer for his mentorship,
guidance and shared passion for agent-based and distributed systems throughout
the development of this thesis. The time at the IES chair and the interactions were
formative and invaluable. Furthermore I want to thank Prof. Dr.-Ing. Michael
Weyrich for the discussions and his role as a reviewer of this dissertation.

Fraunhofer IOSB, and particularly the ILT department led by Thomas Usländer,
was a great environment to conduct both scientific research leading up this thesis
and to pursue high-impact engineering projects in the automation environment.
The colleagues at IOSB and especially my former group leaders Miriam
Schleipen and Ljiljana Stojanovic taught me the ropes of the craft of applied
research. This was an experience from which I still profit immensely, now that I
am also in the position of group leader at Fraunhofer IOSB.

Besides the results on distributed planning for production control, a “byprod-
uct” of this thesis was that it enabled me to contribute to the open62541 open
source implementation of the OPC UA standard for industrial communication.
This background ensures a clear technological path from the theoretical work
to the application scenarios. The open62541 development team proved very
inspirational and productive, so let me thank Florian Palm and Sten Grüner,
Prof. Leon Urbas, Chris Iatrou, Stefan Profanter, and Andreas Ebner.

Another thank you goes to Joseph Warrington and Georg Schildbach for their
guidance during my first steps into research during my time at the Automatic
Control Laboratory at ETH Zurich.

Most importantly, this thesis would not have been possible without the
encouragement and support of my family. Ce thèse n’aurait pas été possible
sans tout ton soutien, Ingrid!

Karlsruhe, July 2019 Julius Pfrommer

Table of Contents

Kurzfassung . i

Abstract . iii

Acknowledgments . v

Table of Contents . vii

List of Figures . ix

List of Tables . xi

List of Symbols . xiii

List of Acronyms . xvii

1 Introduction . 1
1.1 Production and Logistics in a Global Economy 1
1.2 The Structure of Automated Production Systems 4
1.3 Approaches for Flexible Production Systems 11
1.4 The Missing Hierarchy of Production Theories 16
1.5 Scientific Contributions and Thesis Organization 18

2 A Model of Concurrent Production Systems 25
2.1 State, Actions and Action Sequences 25
2.2 Parameterized Actions . 34
2.3 Uncertainty and Observations 36
2.4 Reward and Policies . 39

viii Table of Contents

3 Simulation-Based Planning for Concurrent Production Systems 43
3.1 Tree Search with Backtracking 44

3.1.1 Background: Trace Theory 44
3.1.2 Tree-Search with Trace-Based Pruning 46
3.1.3 Evaluation . 52

3.2 Planning for Discrete Action Sequences 56
3.2.1 Background: Monte-Carlo Tree Search 57
3.2.2 Monte-Carlo Tree Search for Discrete Action Sequences 60
3.2.3 Evaluation . 62

3.3 Planning with Uncertainty and Continuous Action Parameters 64
3.3.1 Background: MCTS under Uncertainty 64
3.3.2 Background: Optimistic Optimization 66
3.3.3 Planning for Parameterized Action Sequences 70
3.3.4 Evaluation . 76

3.4 Planning with Linear Actions 80
3.4.1 Linear Actions and Action Repetition 80
3.4.2 MILP Relaxation of the Planning Problem 84
3.4.3 Evaluation . 88

4 Distributed Planning for Self-Organizing Production Systems . . 91
4.1 Background: The Generalized Distributive Law 92
4.2 A Model of Distributed Concurrent Production Systems 96
4.3 Distributed Planning for Deterministic Action Sequences . . . 102
4.4 Distributed Planning under Uncertainty 109
4.5 Evaluation . 121

5 Modeling of Production Skills . 125
5.1 Background: Skill Models for Production 126
5.2 Background: Description Logics 128
5.3 The PPRS Model for Production Skills 130
5.4 Assisted Generation of Executable Actions 136

6 Conclusion . 141

Bibliography . 147

List of Figures

1.1 The automation hierarchy in discrete manufacturing 5
1.2 Typical automation ontrol hierarchy of a chemical plant. 6
1.3 Example for a PLC program in ladder logic 7
1.4 Classes of manufacturing changeability 12
1.5 Decomposition of the automation hierarchy with distributed services 13
1.6 PROSA reference architecture 15
1.7 The model hierarchy in optics 17
1.8 Recommended reading order . 19

2.1 IRB140 robotic manipulator with inverse kinematics control. . . . 26
2.2 Minimal scenario for discrete manufacturing 30
2.3 Sequence tree for Example 2.2. 32
2.4 P&ID Diagram. 35

3.1 Dependence Graph and Hasse Diagram 46
3.2 Sequence tree from Example 2.3 before (left) and after the pruning

of equivalent sequences (right). 47
3.3 Outline of a Monte-Carlo Tree Search. 59
3.4 JSP benchmarks for Monte-Carlo Tree Search 63
3.5 Optimistic Optimization. 66
3.6 Example functions that are locally smooth around the optimized for

a semi-metric `. 68
3.7 Partially Observable Hybrid Tree. 72
3.8 The inverted pendulum problem. 76
3.9 Swingup of an inverted pendulum 78
3.10 Expected reward for different numbers of ordered pencil casings. . 79
3.11 Convergence speed of the optimization for the order quantity under

uncertainty example. 79
3.12 Supply chain example . 89

x List of Figures

4.1 Factor graph . 93
4.2 Minimal Production Scenario with Agents 97
4.3 Conditioned sequence trees of two agents. 103
4.4 Autonomous driving example without coordination. 123
4.5 Autonomous driving example with coordination. 124

5.1 Outline of the relations between the PCM concepts. 131
5.2 Excerpt from a hierarchy of production processes based on DIN 8580.133
5.3 Architecture of the SkillPro project [Pfr+15b] 138

List of Tables

2.1 Evolution of the system state for the sequence produce, put, produce, take.
The component state s is simplified and describes only the number
of products currently at the component. All actions are assumed to
have a duration of five time units. 33

3.1 Example JSP problems. 53
3.2 Benchmarking of pruning techniques for DFS and Branch & Bound. 55

4.1 Reward generated by the actions in the supply-chain example. . . . 116

5.1 Syntax and Semantics of the EL+
⊥ Description Logic. 130

List of Symbols

General Notation

a, . . . , z Scalar (including tuples) and function mapping to a scalar

A, . . . , Z Set

A, . . . ,Z Graph represented by a tuple (V,E) with nodes V and
edges E ⊆ V × V

a, . . . , z Vector or function mapping to a vector. Column vectors
are constructed as a = (a1, a2, . . .)>.

A, . . . ,Z Matrix. Constructed as A = [a11 a12; a21 a22] or from
column vectors as A = [ab].

0,1 Zero and one column vectors. The size is clear from the
context or explicitly mentioned.

νi Basis-vector with zeros and a single one-entry at index i

General Sets

Z Set of integers

N Set of natural numbers (without zero)

N0 Set of natural numbers (including zero)

R Set of real numbers

R+ Set of real positive numbers (including zero)

xiv List of Tables

Probability

P, E Probability, Expectation

N (µ, σ) Normal distribution with mean µ and standard deviation
σ

U(X) Uniform distribution on the support of set X

∼ Distributed according to

a, . . . , z Random variable (scalar)

a, . . . , z Random variable (vectorial)

Production System Model

ρ, P Product type, Set of product types

p ∈ N|P |
0 Collection of products, represented by a vector with the

number of products for each product type

c, C System component, Set of components

s, S Component state, Set of component states

σ,Σ Time-indexed resource state, Set of time-indexed resource
states

a,A Action, Set of actions

Ca Set of components that participate in the action a

Σa Feasible initial states for the action a

θ,Θa,Θ Action parameter, Parameter space of action a, Parameter
space across all actions

o,O Observation, Set of observations

r : Σ×A×Θ×
Σ→ R

Reward function

List of Tables xv

Distributed Production System Model

i, I Agent, Set of agents

j ∈ N(i) Neighbours of agent i

ai ∈ Ai Action where agent i participates projected to the scope
of agent i

Ca,i Set of components that participate in action a that are
also in the scope of agent i

Σa,i Feasible initial states for the action a for the components
that are in the scope of agent i

Trace Theory

[w] The trace of equivalent action sequences generated by the
action sequence w

w ' v Action sequences w and v are equivalent

a ⊥ b Actions a and b are independent

wk ≺ wl Partial order relation between the elements with indices
k and l of the sequence w

τ Permutation of sequence element indices

Planning

w ∈ A∗ Action sequence with elements wk

ε Empty action sequence

W,Wσ Set of action sequences; Set of possible action sequences
starting at state σ.

Wi,W
σ
i Set of action sequences for agent i; Set of possible action

sequences for agent i starting at state σi.

xvi List of Tables

Wi |vij Set of possible action sequences for agent i starting at
state σi that project to the sequence vij for the shared
scope of the agents i and j

h History of (parameterized) actions and observations. The
elements are (ak, ok) or (ak, θk, ok) respectively.

H Set of possible histories with (parameterized) actions and
observations

hi,hij History projected to the scope of agent i; History projected
to shared scope of the neighboring agents i and j

Hi Set of possible histories with (parameterized) actions and
observations for agent i

π : Σ→ A×Θ Policy for observable settings. Maps from the current
state to the next action.

π : H → A×Θ Policy for partially-observable settings. Maps from ob-
served histories to the next action.

v, q V-value and Q-value for the expected reward under opti-
mal decision making

mi→j Message send from agent i to a neighbor j ∈ N(i)

Miscellaneous

1[ψ] Indicator function (one if ψ is true, zero otherwise)

n[k],n[k], N [k] Access to a hash-map under the key k. The shown
notation is for a scalar, vector or set value respectively.
If no value was stored for k prior, n returns a (scalar or
vectorial) zero or the empty set.

� Element-wise comparison of two column-vectors

List of Acronyms

AMS Automated Manufacturing System

B&B Branch and Bound

BP Belief Propagation

DL Description Logics

ERP Enterprise Resource Planning

EWO Enterprise-Wide Optimization

FMS Flexible Manufacturing System

GDL Generalized Distributive Law

JSP Job-Shop Problem

LNF Lexicographical Normal Form

MARL Multi-Agent Reinforcement Learning

MCTS Monte-Carlo Tree Search

MDP Markov Decision Process

MES Manufacturing Execution System

MILP Mixed-Integer Linear Program

MPC Model Predictive Control

ODE Ordinary Differential Equation

OEM Original Equipment Manufacturer

OO Optimistic Optimization

OPC UA OPC Unified Architecture

xviii List of Tables

POMDP Partially-Observable Markov Decision Process

PGM Probabilistic Graphical Models

PLC Programmable Logic Controller

RL Reinforcement Learning

SC Situation Calculus

SCADA Supervisory Control and Data Akquisition

TT Trace Theory

1 Introduction

There has been a great deal of talk, much of it well founded,
that the effect of science on economics and on the economy
has not only been very large but that something like a
second industrial revolution is impending. Illustrating this
are the enormous advances in communications – physical
and informational –, advances in automatization and in
the domain of information and control, and finally, atomic
energy.

John von Neumann [Neu55]

1.1 Production and Logistics in a Global Economy

After introducing the assembly line for the production of the Model T automobile
in 1908, Henry Ford sought to make his company self-sufficient. For the supply
of raw material, his Ford Motor Company bought 700,000 acres of forest,
rubber plantations, iron and coal mines, and so on. The Ford River Rouge
Complex near Detroit was designed to transform the incoming raw material
into fully assembled cars. The manufacturing operations performed at River
Rouge included coal coking, steel forging, sheet metal stamping, engine casting,
lumber milling, tire making, the production of sheet glass from molten sand, and
many more. All leading up to the final production step: the final car assembly
in Ford’s assembly line [Bri03]. Since Ford’s only product at the time was
the Model T, all production processes were highly specialized to maximize
efficiency and reduce costs. This made the Model T the most affordable car at the
time. Ford’s competitor Chevrolet had a different approach. They used generic
manufacturing equipment that could produce parts for several models at the
same time. This also enabled frequent updates of the car models. Innovations
of the 1920s, such as motors with electric starters that require no hand crank, let
the Model T appear increasingly outdated. In 1927, Ford finally introduced a

2 1 Introduction

successor: the Model A. However, since the production processes were tailored
towards the Model T, the changeover proved difficult. The River Rouge site
came to standstill for a duration of six months until production could be slowly
resumed [Hou85]. In the following years, Ford gave up the model of the highly
integrated manufacturing site. Today, like all automotive companies, Ford
operates a range of production sites that are specialized on a range of parts (e.g.
the internal combustion engine) that is used for several car models. And also
the final assembly lines can switch between car models to adjust to changing
customer demands. All production sites are connected with logistics networks
and rely heavily on external material and component suppliers.

Ford’s change from an integration manufacturing site to a network of intercon-
nected production sites is exemplary for the evolution of many manufacturing
industries. Initially, customized craft production is replaced by mass production,
resulting in large efficiency gains and opening up new markets. When the
markets are divided up, companies diversify their product portfolio to cater for
individual customer groups. This leads to smaller order sizes, reducing the effi-
ciency of the mass production approach. New methods have been developed to
enable customization without loosing all the efficiency gains of mass production.
Among the most popular ones are Lean Production [Ohn88] (also known as the
Toyota Production System) and the Just in Sequence (JIS) inventory strategy
[WS11]. They enable production sites to reduce the minimum order size that is
still economical to produce. Sometimes lot sizes are reduced to the absolute
minimum: a single customized product.

While automotive brands rely on a network of suppliers, these relationships
are relatively stable. Building up the capacity to produce a specific part in
high quantities in the expected quality takes time and investments in automated
processes. This only makes economical sense when years of high demand are
expected. For many retail goods, a similar division of labour happens in a
complex supply-chain. But, these relationships can be established and dissolved
literally overnight. Cheap long-range shipping, the reduction of tariffs and easy
communication has enabled world-wide supply chains. We will take the example
of global supply chains in the apparel industry [Ger99]. The supply-chain
for a cotton shirt comprises the provider of raw cotton, spinning of the yarn,
color dyeing of the yarn, weaving of the textile, cutting and sewing to make

1.1 Production and Logistics in a Global Economy 3

the shirt, design printing and stitching of brand logos. All of these production
steps are typically executed by different companies in different countries. And
the supply-chain is dynamically reconfigured for individual orders based on
availability and price. A shirt bought today may have taken a wholly different
way around the world than the same shirt bought a week earlier in the same store
[Chr00]. Many apparel retailers even forego central warehousing for their stores.
Instead, products are delivered directly from the last link in the supply chain
to the store. So the retailers do not bind capital in stock for the entire season.
And they can react within weeks to data showing good or bad sales of a specific
product [CM15]. On the downside, most western apparel brands do not control
their supply-chain and rely on sourcing agents from overseas.

The biggest sourcing agent is Li&Fung Limited. Operating out of Hong
Kong, Li&Fung self-describes it’s core business as “managing the supply chain
for high volume, time sensitive goods” [FFW07]. Li&Fung owns no factory,
warehouse or inventory and can still source nearly any retail good. Its database
contains factories throughout Asia with their support for different manufacturing
processes, available capacity and logistics options, as well as the availability and
prices of raw material commodity components. Orchestrating the supply chain
is a profitable business. In 2015, Li&Fung achieved a turnover of $18.8 billion
and a healthy $2.2 billion profit [Lim15]. The leverage the sourcing agent has
over the supply chain is seen increasingly critical by companies who rely on
their services. In 2015, Wal-Mart announced a plan to reduce their reliance
specifically on Li&Fung. Relying too much on a single provider had become a
strategic weakness for the world’s biggest retailer [WS15].

So why are dynamic reconfigurations of the supply-chain possible for the
apparel industry, but not for automotive? In the apparel supply-chain, suppliers
provide generic access to manufacturing processes that can be used for many
different customers with little changeover costs and fast production ramp-up.

• Standardized commodity goods enable a high degree of automation. For
example, the objective of textile plants is to run their power looms with
as little downtime as possible. The automated equipment allows the
configuration of different product types. For example, a Jacquard loom
can configure different weaving patterns. The difference between product
types can be entirely handled by the automated production system.

4 1 Introduction

• On the other end of the spectrum, cutting and sewing of apparel is highly
dependent on human labour. Lot-sizes are generally smaller and the type
of product can change drastically between orders (e.g. switching from
jeans to dress shirts). Handling of pliable textile material is difficult for
automated equipment and requires custom machines and long changeover
times. This makes automated equipment ineconomical as long as cheap
human labour is available in overseas countries.

Globalization and the decentralization of supply chains lead to increased
requirements for flexibility in production [Abe+06]. In practice, however,
flexibility in production is a conflicting goal with efficiency. Automated
systems provide the increased efficiency required for mass production. But they
require considerable investment for the initial setup and the changeover between
products. In recent years, many countries with a large industrial base have
set up research programmes to renew industrial production with the increased
use of information processing and communication technology. Among these
programmes are “Industrie 4.0” in Germany [KWH13], “Made in China 2025”
[Ken15] in China and “Industrie du Futur” [FD16] in France. A major part of
these efforts is the creation of new automation technology that improves on the
tradeoff between efficiency and flexibility in production.

1.2 The Structure of Automated Production Systems

The vast majority of control systems for production systems is organized as
a hierarchy. This is true both for discrete manufacturing and continuous
production processes (e.g. chemicals, pharmaceuticals, beverages). Figure 1.1
shows the automation pyramid, a frame of reference for the hierarchical design
of most automated systems in discrete manufacturing. Figure 1.2 depicts the
typical automation hierarchy from the process industry (e.g. chemicals and
pharmaceuticals). Decisions are made hierarchically and data is aggregated
more and more as it is forwarded to the upper levels of the automation hierarchy.
Hierarchical control follows the principle of subsidiarity, where upper levels
make high-level decisions that are gradually refined as they are forwarded down
the automation hierarchy. Subsidiarity is a necessary consequence of the fact
that information is aggregated when it moves up the automation hierarchy.

1.2 The Structure of Automated Production Systems 5

Enterprise Level

Plant Management Level

Operations Level

Control Level

Field Level

C
on

tr
ol

 D
ec

is
io

ns

D
at

a
A

kq
ui

si
tio

n

Process Level

ERP

MES

SCADA

PLC

I/O-Signals

Manufacturing Process

Figure 1.1: The automation hierarchy in discrete manufacturing. The IEC
62264 / ISA-95 standard does not include the enterprise level. It was added here
to include interfaces to systems outside the shopfloor.

The models used for decision making in the upper levels are more and more
coarse and abstract away low-level details. But the low-level details have to
be considered eventually. The lower levels in the automation hierarchy takes
decisions from one level above and “fill the gaps”.

In many systems, the control levels are tightly coupled. Changes to a
component of a production system usually requires changes in many adjacent
systems both vertically and horizontally. The subsystems are interwoven and
implicit assumptions about adjacent systems are represented only in custom
control code. This makes modifications to automated systems costly and
time-intensive. Reducing this effort is the focus of an entire research community.

The remainder of this section gives an overview on the most important
planning and optimization methods for decision-making on the different levels
of the automation hierarchy. Whilst it is not possible to provide a complete
enumeration, the examples from this chapter will set the frame for the modeling
and planning techniques that are introduced later on.

The Control Level

Modern control theory and their implementation on computers can be traced back
to work done at MIT in the 1940s. There, Norbert Wiener first coined the term

6 1 Introduction

Supervisory Control
(Minutes)

Regulatory Control
(Seconds)

C
on

tr
ol

La
ye

r
Local Optimization

(Hour)

Site-wide Optimization
(Day)

Scheduling
(Weeks)

Figure 1.2: Typical automation hierarchy of a chemical plant [Sko04].

“cybernetics” as the conjunction of control and communication [Wie48]. At the
same time, project Whirlwind, conducted at Jay Forrester’s Servomechanisms
Laboratory, developed digital “feedback control” for numerically controlled
(NC) manufacturing processes [Rei91]. Both modern Programmable Logic
Controllers (PLCs) and the application of feedback control methods on digital
computers are descendant from this work in a direct lineage. The fundamental
difference between the two lies in the type of decisions they have to make.
Programmable Logic Controllers (PLC) generally are driven by a state machine
with discrete transitions or events. Feedback (optimal) control is mostly
concerned with physical systems with continuous dynamics.

Programmable Logic Controllers Programmable Logic Controllers [Joh87;
Wal12] (PLC) are directly interfaced with a physical process via sensors
and actuators. In the automation of discrete manufacturing, PLC couple
the physical system with digital control and communication. This coupling
requires custom program code to accomodate for the specific details of the

1.2 The Structure of Automated Production Systems 7

Figure 1.3: Example for a PLC program in ladder logic

physical system and its intended functionality. As the control level often deals
with safety-critical functionality, hard bounds on realtime reactiveness have
to be guaranteed. The IEC-61131 languages [Com93] are standard for PLC
programming and mandate a programming style that is idiomatic to industrial
controllers. Figure 1.3 shows an example for one of the IEC-61131 languages,
ladder logic, which is directly descendent from the analog circuits that were
originally used for industrial control before the PLC.

The logic coded into a PLC is mostly reactive. Sensor inputs are read and
translated into actuation commands. This loop is repeated at a fast pace
(many hundred Hertz) for realtime operations. Lengthy planning procedures
do not usually fit into the constraints of the control loop in a PLC. The
IEC-61499 standard is intended as a modernization of IEC-61131 [Vya11]. It
adds an event-based control flow to the strictly cyclic operations of previous
PLC generations. But even with IC-61499, PLC-based control is mostly
reactive. Computationally expensive planning is generally not performed in a
safety-critical control environment.

Automated production systems typically are integrated from components
that come with their own control hardware. The integration requires com-
munication between individual controllers and custom control software to
react to cyclically transmitted status messages and events. On the control
level, traditional fieldbuses are still common today [Zur14]. Fieldbuses

8 1 Introduction

are even mandatory to use if safety-critical functionality relies on digital
communication between controllers or between a PLCs and field devices with
sensors and actuators. The programming of PLCs is often finished on-site as
part of the integration of system components. As many automation systems
are custom solutions, code reuse for PLCs is difficult even if systems are built
from standard components. This leads to a tight coupling that also increases
the time required to make changes in an existing system.

Feedback Control The canonical definition of an optimal control problem is as
follows [Lib11]:

ẋ = f(t,x,u), x(t0) = x0 (1.1)

The system dynamics is described by an ordinary differential equation (ODE)
f . The system state at time t is x(t) ∈ Rn and its evolution depends on
the control input u(t) ∈ Rm. The initial condition is given by x0. A cost
functional for the state evolution assigns costs to the state and control effort
between times t0 and tf and an additional terminal cost on the final state
x(tf).

C(u) =
∫ tf

t0

L(t,x(t),u(t))dt+K(tf , xf) (1.2)

The problem of optimal control is to compute u∗ = arg minu C(u). In
this general framework, computing u∗ is a variational problem as u is a
(vectorial) function over time [Lue69]. A popular approach is to discretize
the time domain T = {t0, t1, . . . , tf} so that u∗ problem of finding the
sequence of u that minimizes C. Applying the resulting u blindly until tf is
called open-loop control. Repeating the optimization after every time period
with updated state information is called Model Predictive Control (MPC) or
Receding Horizon Control [ML99; Mac02].

Traditionally, feedback control has be implemented as analog electrical
circuits. But these are restricted to relatively simplistic solutions, such as
PID controllers [Ben93]. With the increase in computational power available
in control devices, Model Predictive Control (MPC) has become possible
for many application. Here, the control problem is stated as an optimization
problem that is solved repetitively at a high frequency to incorporate sensor
measurements for “feedback” control. Optimal control as an optimization

1.2 The Structure of Automated Production Systems 9

problem originates from the association of dynamical system with control
input with

The Operations Level

Supervisory Control and Data Acquisition On the operations level, decisions
are being made with respect to a horizon of minutes or hours. So-called
SCADA systems (Supervisory Control and Data Acquisition) collect data from
the control level, aggregate it and present it to a higher-level decision making
system or a human operator. Some aspects of the lower-level control layer,
such as reactions to safety critical conditions are typically abstracted away.
SCADA systems are often interfaced directly with the PLC that control the
process. So the possible choices of communication technology are reduced to
the capabilities of the PLC. In addition to classical fieldbuses, Ethernet-based
protocols are making inroads into factories. The most popular protocol for
non-realtime communication on the shopfloor today is OPC UA [MLD09].

Performance and Quality Control The supervision of the process performance
and resulting product quality is performed on the operations level [Jel06].
The performance and quality of production processes is generally varying
over time. The reasons for this are the following: a) an inherent stochasticity
of the process, b) changes to the input material and semi-finished goods, c)
effects from changing ambient conditions, such as temperature and humidity,
d) gradual degradation of the equipment and tools and their maintenance, and
e) the evolution of the dynamic system state. To illustrate e), take the example
of a stamping press. The evolution of the dynamic system state could refer
to an increase in the tool temperature during long uninterrupted production
runs, or a buildup of residual oil from the metal coating in the stamp tool.
It is often up to a skilled process expert to adjust the process parameters at
runtime to ensure the required performance.

The Plant Management Level

On the plant management level, an entire shopfloor is considered. Typically the
planning horizon is between several hours and several days of operation [She03].

10 1 Introduction

Scheduling Scheduling theory [Pin08] is concerned with the distribution of
production steps to machines in order to maximize the overall efficiency and
to reduce costs. The field was active since the early 1960s [GT60] and many
important breakthroughs have been made. Scheduling functionality is often
sold under names such as Manufacturing Resource Planning (MRP, [Wig81])
or Advanced Planning and Scheduling (APS). Traditionally, due to the long
runtime of schedule optimization, updates were being computed at night. If
the original plan is disrupted by an unforeseen event, such as a delay or a
machine breakdown, the scheduling procedure is restarted or the original plan
is repaired with appropriate heuristics. Repairing or iterative refinement of
plans has a long history [HL05]. Modern systems can also perform a full
rescheduling even during a running shift [VHL03; Dim15].

Material Handling Material handling with uncertain arrival and processing
times is usually modeled using stochastic processes and queuing theory
[Gro08; Fur18]. Based on such a stochastic queuing system model the
system behaviour can be described. One approach is to compute a steady
state occupancy of the queues, for example based on the landmark BCMP
theorem [Bas+75]. The discipline of queuing theory is concerned not only
with computing steady state occupancy, but also to apply queuing algorithms
/ network schedulers for customer routing such that the network throughput is
optimized.

The Enterprise Level

Enterprise Resource Planning Enterprise Resource Planning (ERP) describes
a class of software systems to assist enterprise-wide management [Jac+07].
The ERP products with the highest market share are SAP ERP (previously
SAP/R3) and the Oracle E-Business Suite [Gar18]. In many aspects, ERP
functionality mirrors tasks performed at the plant management level. But the
timeframes are generally much longer and several production and warehousing
sites are jointly considered. Enterprise-wide optimization (EWO) aims at
optimizing the operations of supply, manufacturing and distribution activities
of a company to reduce overall costs and inventories [Gro05].

1.3 Approaches for Flexible Production Systems 11

Supply-Chain Management Supply-Chain Management (SCM) [Ali05; GF08]
is concerned with production scenarios that include several layers of suppliers.
SCM is most common in industries where suppliers are not delivering
specialized parts instead of commodity products. The integration with
suppliers is often very tight. This enables the reduction of buffer storage at
the production site by the use of just-in-time and just-in-sequence delivery.
The so-called bullwhip effect [LPW97] describes how small fluctuations in
customer demand lead to large fluctuations in demands at suppliers that are
several tiers removed. A big motivator for digitalisation and information
sharing in the supply-chain is the reduction of the bullwhip effect by enabling
better forecasts for the suppliers.

1.3 Approaches for Flexible Production Systems

This section discusses approaches to render automated production system
flexible. The possibility of flexible production is one of the driving motivations
for Industrie 4.0 [Wey+14]. This thesis has a scope on automated production.
Organizational methods that focus on the human element in production, such as
Lean Manufacturing [Ohn88], are therefore not considered in depth. Several
authors have developed frameworks to characterize flexibility in production
systems [Bro+84; BS88; GG89; SS90; Ger93; DT98; Wie+07]

The scientific literature uses specific terms to describe flexibility in a produc-
tion context. See Figure 1.4 for a common nomenclature by Wiendahl [Wie+07].
Even though specific terms exist, the term flexibility is deliberately used with
its colloquial meaning in this thesis: The models and planning algorithms
developed in this thesis apply to all level in the automation hierarchy. The
specific terms for flexibility from the scientific literature are mostly tied to one
level of the automation hierarchy. We aim to avoid misunderstandings by the
specific terms outside of their commonly understood definition.

Service-Oriented Production Systems The principle of service-orientation is
used in computer science to develop system architectures where components are
loosely coupled [Mac+06]. A specific service provider can be exchanged as long
as the interfaces for interaction remain identical and the underlying functionality

12 1 Introduction

Station Cell Segment Site Network

Feature

Workpiece

Subproduct

Product

Product
Portfolio

Change-
over-

ability

Reconfigurability

Flexibility

Transformability

Agility

Production Level

Pr
od

uc
tL

ev
el

Figure 1.4: Classes of manufacturing changeability from [Wie+07].

is still provided. Discovery mechanisms are used to find and select appropriate
service providers. In the context of Industrie 4.0, service-orientation is regarded
as an enabler for future control system architectures that dissolve the classical
automation hierarchy. See Figure 1.5 for a popular depiction. The DIN SPEC
16593-1 standard [DIN18] defines a reference model with basic principles for
service-based architectures in the context of Industrie 4.0. This is the common
basis for technical realisations to the vision from Figure 1.5.

A range of research projects has translated service-orientation to production
control. The authors from the SOCRADES project [JS05; De +08; Cân+11]
and Shen et al. [She+07] develop a service-oriented manufacturing system
architecture where semantic technologies are used to match possible providers
of functionality in a manufacturing system. Loskyll et al. [Los+11; Los+12]
expand the concept of semantic service discovery to the parameterization and
orchestration of services. For this, they develop a domain-specific ontology for
the use in semantic reasoning tools. Puttonen et al. [PLM13] describe a set
of specialized web services for composing and invoking semantically enriched
automated procedures in a manufacturing setting. They also present an algorithm

1.3 Approaches for Flexible Production Systems 13

Figure 1.5: Decomposition of the automation hierarchy with distributed services
[Mes13; Mon14].

to identify the steps required to reach a predefined goal state. Dürkop et al.
[Dür+14] discuss the use of service-oriented architectures in reconfigurable
manufacturing systems (see Figure 1.4 and the technical challenges that need to
be overcome. [SZW17] use model-based approach for the service development
and a modular architecture to reduce the complexity of service-based production
systems. [LV15] combine service-oriented manufacturing control with a multi-
agent architecture. The Smart Factory Web testbed in the Industrial Internet
Consortium (IIC) uses web services for planning and control in global supply
chains [Jun+17].

Agent-Based Production Systems An even more radical departure from
the classical automation hierarchy is investigated with agent-based distributed
control of production systems. Agent-based systems in manufacturing and
logistics are the topic of a dedicated research community that has been active
since the 1980s [DP87; LS92]. The survey papers [MVK06; LK08; Lei09;
LMV13; LK15] give an account on the history of agent-based control and
an overview on the focus of current work. Notably, the IEEE-IES Technical
Committee on Industrial Agents (TC-IA1 brings together researchers on an
international level.

1https://tcia.ieee-ies.org/

https://tcia.ieee-ies.org/

14 1 Introduction

Software frameworks have been developed to assist the development of
agent-based systems. For example the well-known JADE project [BCG07].
The frameworks for software agents, however, do not provide abstractions
specifically for the production domain and are used for the development of
distributed software systems in general.

The core challenge of agent-based control is the coordination of individual
decision making across agents. The remainder of this paragraph discusses the
most common approaches. A common coordination mechanisms for agent-
based control is negotiation [ZR89]. The Contract Net Protocol (CNP) [Smi80]
replaces the market with a negotiation scheme in order to decompose and
distribute tasks between agents. The CNP has been applied for agent-based
manufacturing systems in a range of research projects and industrial installations
[Par87; LL94; SKB97; Oue+99]. While the CNP is mostly used for greedy
decision making, other authors have integrated scheduling theory with agent-
based control [SWH06; Agn+14; Bad11] Other coordination mechanisms are
nature-inspired and derived from the behavior of animals [XL08].

Holonic production control is a special case of agent-based control. The term
holon, originally coined in [Koe68], refers to systems made up from components
that encapsulates both physical assets and virtual functionality [GLK98; Fis99;
MB00]. The key idea is that the system components are themselves holons. This
goes beyond the usual system-of-systems approach, as holons are self-similar in
the sense that the structure and functionality of the constituent parts is governed
by the same principles as their parent. Taken to its extreme, this self-similarity in
manufacturing systems has led to the concept of the fractal factory [War93]. The
PROSA project has proposed a architecture reference architecture for holonic
manufacturing systems [Van+98]. See Figure 1.6 for the building blocks defined
by PROSA.

What is currently lacking in the field of agent-based and holonic manufacturing
control are widely used benchmark scenarios to quantitatively compare the
proposed coordination mechanisms. Compared to other scientific fields, this
has led to many competing approaches without a clear winner and uncertainty
on how well the different approaches can cope with aspects outside of their
original scope. For example if unforeseen events are introduced in a stochastic
environment. For practitioners, this has led to an overwhelming range of choices.

1.3 Approaches for Flexible Production Systems 15

Order
Holon

Product
Holon

Resource
Holon

Product
knowledge

Process
execution
knowledge

Process
knowledge

Figure 1.6: Building blocks of a holonic manufacturing system according to
the PROSA reference architecture [Van+98].

For researchers, years of effort have so far not amalgamated into a unified theory
of agent-based production control.

Plug and Produce

The idea of Plug & Produce is derived from plug-and-play functionality known
from the USB interface for computer hardware. There, well-known device
classes with standardized functionality remove the need for custom software
drivers for the hardware integration. Arai et al. [Ara+00] first translated plug-
an-play to the production domain and coined the term Plug & Produce. Onori
et al. [Ono+12] use the concept for a self-configuring assembly system at the
shop-floor level.

The integration of machines and equipment with Plug & Produce encompasses
the following aspects: First of all, basic connectivity is established for an
existing (industrial) communication infrastructure [Dür+12; Rei+10]. Second,
the new component announces its presence to a central controller or directly
to the adjacent components with a discovery mechanism [Pro+17]. Third,
in production, there exists a wide range of machines and equipment. This
heterogeneity cannot be reduced to a small number of devices classes. A way to
enable Plug & Work scenarios in the face of device heterogeneity is the use of
self-descriptions languages for the integration [OHN14; Sch+15a]. The fourth

16 1 Introduction

and most challenging aspect is the functional integration. Lepuschitz et al.
[Lep+11] show reconfiguration of manufacturing resources based on distributed
IEC 61499 function blocks and a semantic description of the manufacturing
setting and the expected behavior.

Many of the published Plug & Produce implementations use a dedicated
interconnector module that acts as a facade for manufacturing equipment and
provides a uniform interface and that generates low-level commands for the
underlying device [NWS07; Dor+17].

One approach for the functional integration in Plug & Produce is the modeling
of the skills of technical equipment. For this, see the review of the state of the
art in Chapter 5.

1.4 The Missing Hierarchy of Production Theories

Scientists and engineers use models on a level of abstraction that is the most
useful for the phenomena under investigation [Gie04]. It often occurs that a
more accurate model is available in principle. But working with an increased
level of accuracy would overburden the analysis with unnecessary complexity.
For example, an electrical engineer laying out the power grid of a city will not
use Maxwell’s Equation for a power-flow study. Many technical fields have
arranged these model approaches (theories) in a hierarchy. This hierarchy has
evolved over time and – in the natural sciences – its development is closely
related to the process of scientific discovery [Kuh62; Car84]. As an example,
Figure 1.7 shows how the model hierarchy established in the field of optics . If
some phenomena cannot be explained one can resort to a more detailed (and
computationally or analytically more expensive) model until the first principles
from Maxwell’s Equations and quantum physics are reached [MW59].

Different academic fields have produced “Theories of Production”. For
example economics [Sch34; Dan66; She71], business administration [Sch86;
Fär88] and production management [Dyc06]. Around the year 2000, prominent
authors have called for a unified theory of production that provides a common
foundation that integrates existing results [Dyc03; Sch04; WNH10]. Recent
years have seen a range of proposals to fulfill this need [NW10; Sch+11;
Sch+15b]. The authors of [Sch+17] provide a comprehensive review and

1.4 The Missing Hierarchy of Production Theories 17

Re
fle

cti
on

Re
fra

cti
on

Co
lo

r
Di

ffr
ac

tio
n

Po
lar

iza
tio

n
Ke

rr
Eff

ec
t

Fa
ra

da
y E

ffe
ct

Co
he

re
nc

e L
en

gt
hs

Ray Optics X X X

Huygen’s Waves X X X X

Transverse Waves X X X X X X X

Maxwell’s Equations X X X X X X X

Quantum Mechanics X X X X X X X X

Figure 1.7: The model hierarchy in optics. (Reproduced from http://www.
argmin.net/2018/01/25/optics.)

classification of such production theories. But the cited work remains mostly
conceptual and does not model the detailed control of automated systems on the
lower levels of the control hierarchy.

By contrasting the model hierarchies in other academic fields with the control
hierarchy in automation, one could aim for a high-fidelity model at the bottom
layers that is abstracted more and more as we go up in the control hierarchy.
While that is the case, we want to stress that the underlying modeling principles
should stay the same for all levels of the control hierarchy.

The work on a theory of production is not only of academic interest and also
relevant to practitioners that have to cope with the increasing complexity of
production systems. Currently, each layer of the control hierarchy works with
dedicated system models that are tailored for the tasks at hand. But the models
are so task-specific that they become mutually incompatible. This is problematic
at vertical as well as horizontal interfaces of the control hierarchy. Assumptions
about the behavior of adjacent components are implicit in the custom rules for
the interaction between subsystems and encoded in custom control program
code. The lack of a common core to translate between subsystems leads to

http://www.argmin.net/2018/01/25/optics
http://www.argmin.net/2018/01/25/optics

18 1 Introduction

constant manual effort for system integrators and the loss of flexibility due to
the task-specific hard coupling of components.

1.5 Scientific Contributions and Thesis Organization

The original title at the very beginning of the work leading to this thesis was
“Agent-based production control using the paradigm of self-organisation in the
context of Industrie 4.0”. The path to the final thesis led through scientific fields
that are not directly associated with that original title. For example Probabilistic
Graphical Models, Convex Optimisation, Description Logics, Reinforcement
Learning, and many more. Some of these detours did not pay off as intended.
But many did. While not always visible, the thesis has stayed true to the original
topic and the results and techniques from different fields finally tie to together
into one body of work.

The thesis is organized into six chapters. See Figure 1.8 for an overview
and recommended reading order. The scientific contributions are closely
related to the thesis structure. In general, prior results are summarized in
dedicated “background” sections. Beyond the background sections, all results
with an explicit reference to the literature were developed as part of the thesis
development. It follows a summary of the key developments.

Chapter 2: A Model of Concurrent Production Systems A novel model
representation for production systems is introduced. The goal of the model is to
provide a uniform representation of both discrete and continuous production
processes on all levels of the automation hierarchy. To achieve this, the model
combines the following aspects:

• Seamless scaling from the dynamics of cyber-physical components within
machines and equipment up to the orchestration of global supply chains.

• Integration of discrete manufacturing (where individual work-pieces are
considered) and process manufacturing (for the production of chemicals,
beverages).

• Representation of concurrency, i.e. parallelism and the synchronization
of operations across multiple system components.

1.5 Scientific Contributions and Thesis Organization 19

1. Introduction

2. A Model of
Concurrent

Production Systems

3. Simulation-Based
Planning for Concurrent

Production Systems

4. Distributed Planning
for Self-Organizing
Production Systems

5. Modeling of
Production

Skills

6. Conclusion and Outlook

Figure 1.8: Structure and recommended reading order of the thesis.

• Representation of both deterministic and stochastic scenarios.

The following four chapters aim to show that the model representation not
only presents a common core for higher-level models but is practical to use in
flexible production systems. For this, a tailored planning algorithm is developed,
further scaling of planning is achieved by exploiting additional model structure,
the planning algorithm is extended to distributed planning by independent agents,
and finally models of the skills of machines and equipment are used as high-level
abstraction from which executable low-level representations are derived for
runtime control.

Chapter 3: Simulation-Based Planning for Concurrent Production Systems
The production system model implies a planning problem: maximizing the
expected reward that is generated. Existing planning algorithms from the
production domain do not apply to the model from Chapter 2. They make
limiting assumptions on the planning problem structure that no longer apply. To
solve the planning problem, an algorithm based on Monte-Carlo Tree Search
(MCTS) is developed.

20 1 Introduction

• Combines MCTS for discrete decision making with Optimistic Optimiza-
tion (OO) for decision-making on continuous domains.

• Requires only forward-simulation (rollout) of the planning scenario.

• Additional knowledge about the planning problem can be integrated via
so-called Rollout Policies. A large class of planning problems is identified
where a relaxation of the planning problem can be solved as a Mixed
Integer Linear Program (MILP). The solution to the MILP is then used
for the Rollout Policy.

• The algorithm is shown to solve a wide range of standard benchmark
problems after casting them into the model of Chapter 2. The range of
benchmark problems considered includes combinatorial decision-making
in the Jopshop Scheduling Problem (JSP) and optimal control for the
swing-up of an inverted pendulum.

• A large class of models is identified that can be relaxed to a Mixed-Integer
Linear Program (MILP). This leads to a large improvements for planning
in scenarios where actions are repeated many times in a row.

Chapter 4: Distributed Planning for Self-Organizing Production Systems
The planning complexity depends on the number of individual components that
partake in the system. By reducing the planning scope to a subset of the system
components, it is much easier to explore the solution space and converge to good
solutions. We develop an algorithm that combines Monte-Carlo Tree Search
with Message Passing approaches known from Belief Propagation. Thereby, the
system can be compartmentalized into individual agents who are coordinating
their actions. The agent coordination mechanism is shown to improve the
planning solution quality compared to uncoordinated individual planning. The
same implementation of our novel planning algorithm can be used the solve
hitherto separate planning and optimization concerns from all levels of the
automation hierarchy.

• Combines MCTS with Message-Passing algorithms originally developed
for Belief Propagation in Probabilistic Graphical Models.

1.5 Scientific Contributions and Thesis Organization 21

• The agents need to simulate only a small portion of the overall system.

• The considered benchmark problems include distributed supply chain
orchestration by independent agents and the distributed maneuver planning
of autonomous vehicles.

Chapter 5: Modeling of Production Skills In order to achieve flexibility
in automation with runtime planning, an accurate system model is required.
It can be quite resource-intensive to keep the physical system and its model
representation synchronized. Especially if new manufacturing operations are
frequently introduced in a flexible production environment. To reduce this effort,
higher-level descriptions are developed from which low-level representations for
runtime control are generated. We introduce a formal model for the technical
skills of components in an automated system based on semantic modeling and
deductive inference based on second-order logic.

The modeled skills are used to generate executable action-representations for
specific operations. The generation of executable actions take in as input the
capabilities of the system components, the topological layout of the system and
a description of the requested operation. The capability model is therefore used
as a high-level descriptive language that can be compiled to executable actions
for the participating system components. The generated action representations
contain all preconditions and effects required for detailed planning.

Already published results that were created in preparation for this thesis are:

• Julius Pfrommer, Miriam Schleipen, and Jürgen Beyerer. “Fähigkeiten
adaptiver Produktionsanlagen”. In: atp-edition 55 (11) (2013)

• Julius Pfrommer, Miriam Schleipen, and Jürgen Beyerer. “PPRS: Pro-
duction skills and their relation to product, process, and resource”. In:
Proceedings of the 2013 IEEE 18th Conference on Emerging Technologies
& Factory Automation (ETFA). IEEE. Cagliari, Italy, 2013

22 1 Introduction

• Julius Pfrommer, Denis Stogl, Kiril Aleksandrov, Viktor Schubert, and
Björn Hein. “Modelling and Orchestration of Service-Based Manu-
facturing Systems via Skills”. In: Emerging Technologies & Factory
Automation (ETFA), 2014 IEEE 19th Conference on. Barcelona, Spain,
Sept. 2014

• Julius Pfrommer, Denis Stogl, Kiril Aleksandrov, Stefan Escaida Navarro,
Björn Hein, and Jürgen Beyerer. “Plug & produce by modelling skills and
service-oriented orchestration of reconfigurable manufacturing systems”.
In: at-Automatisierungstechnik 63.10 (2015), pp. 790–800

• Selma Azaiez, Michael Boc, Loic Cudennec, Max Da Silva Simoes, Jens
Haupert, Selma Kchir, Xenia Klinge, Wael Labidi, Karima Nahhal, Julius
Pfrommer, Miriam Schleipen, Christian Schulz, and Thibaud Tortech.
“Towards Flexibility in Future Industrial Manufacturing: A Global Frame-
work for Self-organization of Production Cells”. In: Procedia Computer
Science 83 (2016), pp. 1268–1273

• Julius Pfrommer, Sten Grüner, Thomas Goldschmidt, and Dirk Schulz.
“A common core for information modeling in the Industrial Internet of
Things”. In: at-Automatisierungstechnik 64.9 (2016), pp. 729–741

• Sten Grüner, Julius Pfrommer, and Florian Palm. “RESTful Industrial
Communication With OPC UA”. in: IEEE Transactions on Industrial
Informatics 12.5 (2016), pp. 1832–1841

• Julius Pfrommer, Miriam Schleipen, Selma Azaiez, Michael Boc, and Xe-
nia Kling. “Deploying software functionality to manufacturing resources
safely at runtime”. In: Emerging Technologies and Factory Automation
(ETFA), 2016 IEEE 21st International Conference on. Berlin, Germany:
IEEE, Sept. 2016, pp. 1–7

• Julius Pfrommer. “Graphical Partially Observable Monte-Carlo Planning”.
In: Workshop on Learning, Inference and Control of Multi-Agent Systems,
Conference on Neural Information Processing Systems (NIPS). Dec. 2016

The following publications are our technical reports or publications in adjacent
fields. They contributed to the thesis indirectly by using similar techniques or

1.5 Scientific Contributions and Thesis Organization 23

by working on implementation technologies in industrial automation (e.g. using
technologies such as OPC UA and AutomationML) that are relevant for bringing
the results of this thesis into practice.

• Julius Pfrommer. Towards Graphical Partially Observable Monte-Carlo
Planning. Tech. rep. 2016, pp. 113–125

• Julius Pfrommer. Distributed Constraint Optimization over Constrained
Communication Topologies. Tech. rep. 2015, pp. 77–87

• Julius Pfrommer. Information and Control in Cyber-Physical Production
Systems. Tech. rep. 2014, pp. 61–74

• Julius Pfrommer, Clemens Zimmerling, Jinzhao Liu, Luise Kärger, Frank
Henning, and Jürgen Beyerer. “Optimisation of manufacturing process
parameters using deep neural networks as surrogate models”. In: Proceed-
ings of the 51st CIRP Conference on Manufacturing Systems. Stockholm:
CIRP, 2018

• Julius Pfrommer. “Semantic Interoperability at Big-Data Scale with the
open62541 OPC UA Implementation”. In: 2nd International Workshop
on Interoperability and Open-Source Solutions for the Internet of Things
(InterOSS-IoT). Stuttgart, Germany, Nov. 2016

• Julius Pfrommer, Sten Grüner, and Florian Palm. “Hybrid OPC UA
and DDS: Combining architectural styles for the industrial internet”. In:
Factory Communication Systems (WFCS), 2016 IEEE World Conference
on. Aveiro, Portugal: IEEE, May 2016, pp. 1–7

• Thomas Usländer, Julius Pfrommer, and Miriam Schleipen. “Das Internet
der Dinge in der Automation - Anforderungen und Technologien”. In: 5.
Jahreskolloquium "Kommunikation in der Automation" (KommA 2014).
Lemgo, 2014

• Julius Pfrommer, Miriam Schleipen, Thomas Usländer, Ulrich Epple,
Roland Heidel, Leon Urbas, Olaf Sauer, and Jürgen Beyerer. “Begrif-
flichkeiten um Industrie 4.0 – Ordnung im Sprachwirrwarr”. In: Tagungs-
band zu Entwurf komplexer Automatisierungssysteme (EKA) 2014. Ed. by
Ulrich Jumar and Christian Diedrich. Magdeburg, May 2014

24 1 Introduction

• Julius Pfrommer, Joseph Warrington, Georg Schildbach, and Manfred
Morari. “Dynamic vehicle redistribution and online price incentives
in shared mobility systems”. In: IEEE Transactions on Intelligent
Transportation Systems 15.4 (2014), pp. 1567–1578

2 A Model of Concurrent Production Systems

The value of [Lagrange’s book “Mécanique Analytique”]
consists in the exposition of a general method by which every
mechanical question may be stated in a single algebraic
equation. The entire history of any mechanical system, as
for example, the solar system, may thus be condensed into a
single sentence.

Robert S. Woodward [Woo95]

The chapter introduces a model for production systems that combines contin-
uous and discrete system dynamics with concurrency, i.e. parallel operations
and the synchronization of system components. The model is intended as the
basis for a “theory of production systems”. For this, the model needs to able to
represent the system dynamics on all levels of the control hierarchy. Examples
from different levels of the control hierarchy are used for demonstration and to
substantiate this claim. The core postulate of this chapter is the following:

The same set of modeling principles can represent the re-
levant properties of production systems on all levels of the
control hierarchy.

2.1 State, Actions and Action Sequences

Definition 2.1. A system is a set of components c ∈ C.

Examples for components on a manufacturing shopfloor are machines and
logistics equipment, such as forklifts. Depending on the level of abstraction of
the model, components can also represent parts inside a machine, as well as
entire production plants and warehouses. Assume for now that components do
not contain other components in a hierarchy.

26 2 A Model of Concurrent Production Systems

Definition 2.2. Each component c has a state s ∈ Sc. The set Sc contains all
possible states of the component c.

The global state space S = ×c∈CSc is the cartesian product of the possible
states for every component. A global state is a vector s ∈ S with elements sc.
The state space of a subset of the components Q ⊆ C is SQ = ×c∈QSc. The
projection ΠQ(s) = (sc : c ∈ Q) extracts the state of the components Q from
the global state. In general, a subscript denoting a set of components indicates
projection and sQ = ΠQ(s). The inverse projection is Π−1

Q (sQ) = {u ∈ S :
ΠQ(u) = sQ }.

Example 2.1. Consider the ABB IRB140 robotic manipulator from
Figure 2.1. The green sphere represents the Tool Center Point (TCP). The
TCP has six degrees of freedom (three each for translation and rotation).
But some positions are not reachable due to the physical constraints of the
manipulator. The constraints are encoded in the set of reachable positions
Ψ ⊂ R6. In addition, the IRB140 can be fitted with different tools. In this
example, the possible tools are Υ = {gripper, welder, drill, none}.
The overall state space of the manipulator is Sirb140 = Ψ×Υ.

Figure 2.1: IRB140 robotic manipulator with inverse kinematics
control. The simulation environment V-Rep and the model of
the IRB140 robotic manipulator is courtesy of Coppelia Robotics
(http://www.coppeliarobotics.com/).

Many manufacturing operations define trajectories where the manipulator
starts and finishes at fixed locations. As an alternative to modeling a

http://www.coppeliarobotics.com/

2.1 State, Actions and Action Sequences 27

continuous state space, one can limit the possible positions to a discrete set
of predefined positions. A continuous configuration space for the position
is however better suited to model the physical movement dynamics of
the robot.

Components can change their state over time. The following nomenclature
is taken from [Fuj98]: Physical time refers to time in the physical system that
is represented by the model. Simulation time refers to a time representation,
for example a real value that corresponds to a physical clock by scaling and an
epoch-date for the origin. Wallclock time refers to the time when the simulation
is executed. In distributed systems, it is generally impossible to assign an
absolute order to events [Lam78]. We make the simplifying assumption that
clocks are synchronized to absolute precision. So the physical time of the
system components is always identical. In the model representation, however,
the simulation time can differ between components. That is, components can
evolve their state independently from one another until synchronization forces
their simulation time to coincide again. If not stated otherwise, time refers to
simulation time in the remainder of the text.

Definition 2.3. The time-indexed state of a component c is

σ = (s, t) ∈ Σc, Σc = Sc × R . (2.1)

It indicates the state of the component s at time t. The time t represents the
offset from some epoch-date in seconds.

The time-indexed state of the entire system is σ ∈ Σ for Σ = ×c∈CΣc. In the
context of a system state σ, the time-indexed state of a component c is referred
to as σc = (sc, tc). Again, subscript-based notation for projection refers to the
definitions from the surrounding context: ΣQ denotes the joint time-indexed
state-space for a subset of the components Q ⊆ C and σQ = ΠQ(σ) is the
projection of a global time-indexed state into ΣQ.

Components change their time-indexed state by executing actions. In the
model, actions skip the time-indexed state ahead to the time after the execution.
Components have no well-defined state during the execution of an action. If the

28 2 A Model of Concurrent Production Systems

model is linked to a physical instance of the system, then the relation between
simulation time and physical time is as follows. If the time tc of some component
c is earlier or equal to the physical time, then the component has been idle since
tc and is immediately available. If tc is later than the physical time, then the
component is occupied with the execution of one or more actions until tc.

Definition 2.4. Actions are possible state transitions, represented as a tuple

a =
(
Ca, Σ̄a, ea, da

)
. (2.2)

The tuple describes the action via its participating components, preconditions
and effects. It consists of

• the participating components Ca ⊆ C,

• the feasible initial time-indexed states of the participating components
Σ̄a ⊆ ΣCa

= (×c∈Ca
Σc),

• the action effect ea : Σ̄a → SCa , where ea,c is the effect for just the
participating component c ∈ Ca, and

• the action duration da : Σ̄a → R+.

The set of feasible time-indexed initial states Σ̄a encodes the preconditions
of the action a for the participating components. The shorthand notation for
the state of the participating components is σa = ΠCa(σ). The feasible global
initial states for the action a are Σa = {σ ∈ Σ : σa ∈ Σ̄a}. Every action is an
operator on the time-indexed global state a : Σa → Σ.

From the initial global state σ it follows that the earliest possible starting
time is tstart

a (σa) = maxc∈Ca
tc for the action a. Let σ′ = a(σ) denote the

global state following the execution. The new global time-indexed state is then
comprised of elements

σ′
c =

(
ea,c(σa), tstart

a (σa) + da(σa)
)
, if c ∈ Ca

σc, else .
(2.3)

Equation 2.3 defines the operational semantics of all actions. It implies the
Markov assumption: The outcome of an action depends only on the previous

2.1 State, Actions and Action Sequences 29

system state. Components that are not participating in an action do not partake
in the preconditions and their state is left unchanged as well.

Equation 2.3 defines how components with different simulation times are
synchronized: The participating component with the highest simulation time
defines the starting time of the action. The other participating components idle
until they join the execution.1 The feasible initial states Σa can also encode
preconditions for the component timing. Consider a physical system whose
dynamics is described by a differential equation. Such systems typically cannot
idle without any effect on their state. To adequately cover components that
cannot idle in the sense of Equation 2.3, the preconditions of Σa can require
identical simulation times for all participating components ∀σa ∈ Σa,∀(c, c′) ∈
Ca×Ca, tc = tc′ . Alternatively, as the effect function ea takes the time-indexed
state of all participating components as input, the state evolution of the individual
components up until the starting time of a can be modeled as part of the effect
function.

In discrete manufacturing, the major concern is the movement and transfor-
mation of products within the system. Many modeling approaches represent
products as objects with individual lifecycles [Sal+10] or even as independent
agents who negotiate and make independent decisions [KBT17]. To model
products as individual objects, they could be represented as system components
c. But, in this text, we follow a different approach that enables algorithmic
improvements for planning later on.

Let ρ ∈ P denote the set of different product types. A product type not
only represents marketable output, but also raw material and semi-finished
work-pieces that occur between production steps. Products are not considered
individually. So products of the same product type are indistinguishable. Instead
of representing each component individually, it suffices to track the number of
products of each product type present at every component. A product is always
contained in some component. Take for example a workpiece mounted inside a
machine, a crate of material sitting on a forklift, or a finished product stored in a
high bay warehouse. The following definition is a special case of Definition 2.2
for the component state.

1This corresponds to the use of the popular Max-Plus algebra to describe the time-evolution of
discrete event systems [Bac+92].

30 2 A Model of Concurrent Production Systems

Definition 2.5. Some components can physically contain products. In that case,
the component state decomposes into the component configuration ξ ∈ Ξc and
a vector p for the number of contained products for each product type.

s = (ξ,p) ∈ Sc, Sc ⊆
(
Ξc × N|P |

0
)
.

For convenience, we denote a vector with just a single product of type ρ as
the basis-vector νρ. The number of products of type ρ in component c is (pc)ρ.
A component c with no contained products has pc = 0, where 0 denotes the
null-vector of appropriate dimensionality.

Example 2.2. This example introduces a minimal manufacturing sce-
nario that will be used throughout this text. The scenario, shown in
Figure 2.2, is comprised of a machine tool (mt) that mills piston rods out
of steel bars, a lattice box (box) and a robotic manipulator that packages
the piston rods for transport (manip).

produce put take package

Figure 2.2: Minimal scenario for discrete manufacturing

Four actions have been defined for the scenario. The actions produce
and package have only one participating components, the machine tool
and the manipulator respectively. The actions put and take require the
participation of two components to model the transition of a product
between them. We do not consider single piston rods, but only orders of
100 parts with the product type order. Every component can only hold
a single order-product at once. Therefore, once the machine tool has
completed an order, the parts need to be put into the lattice box before
the next order can be produced. The manipulator then has to take the

2.1 State, Actions and Action Sequences 31

parts of the previous order out of the lattice box before the machine tool
can put in the next. Products “appear” and “disappear” when they leave
the scope of the modeled system.
The complete definition of the action put is as follows:

• Cput = {mt, box}

• Σ̄put = {σput ∈ ΣCput : pmt = νorder, pbox = 0}

• eput(σput) = ((ξmt,0), (ξbox,νorder))

• dput(σput) = (5s, 5s)

Actions can be chained to form action sequences. The set of actions A is
the alphabet for the free monoid (Kleene Star, [HU79]) A∗ which contains all
words (sequences) of finite length. The empty sequence is written as ε. The
sequence elements wk are indexed according to their position in the sequence
w = w1w2 . . . w|w|.

Definition 2.6. An action sequence w ∈ A∗ is itself an action resulting from
the composition of the constituent actions.

For a valid initial state σ ∈ Σw (defined in the next paragraph), the resulting
state after the execution of w is w(σ) = (w|w| ◦ · · · ◦ w1)(σ) according to the
dynamics of action execution from Equation (2.3). The multiplication notation
for sequences is preferred to the ◦-notation for function composition to keep
the notation light, to write the sequence elements in-order, and because we will
take on an algebraic perspective on composition later on. Note that, due to the
way concurrency is represented with the time-indexing of component states, an
action at a later sequence index may actually start at an earlier simulation time
than one of its predecessors in the sequence. But this is possible only if the two
actions do not share participating components.

The subsequence of the first k elements is w:k =
∏k
l=1 w

l. The subsequence
starting at the kth element is wk: =

∏|w|
l=k w

l. The domain of w as an operator
is Σw =

{
σ ∈ Σ : ∀k ∈ {1, . . . , |w|}, w:k−1(σ) ∈ Σwk

}
. This ensures that

the preconditions of all actions are satisfied when the sequence is executed in

32 2 A Model of Concurrent Production Systems

order. The composition of action operators to a sequence is always possible.
But the resulting sequence might be infeasible with an empty domain Σw = ∅.

The set of all action sequences, from now on denoted as W = A∗, implies
a tree-graph. In the context of an initial system state σ, infeasible sequences
are removed from the tree. The feasible sequences starting at σ are Wσ =
{w ∈ A∗ : σ ∈ Σw}. Obviously, the pruned tree is a subset Wσ ⊆ W and
is still a tree since for every sequence w ∈ Wσ all subsequences of the first
k ∈ {0, . . . , |w|} elements are also contained w:k ∈Wσ . After the first action
a has been executed, the system states becomes a(σ) and the sequence tree
becomes a(W) = {w : aw ∈W}.

Example 2.3. This example extends the minimal manufacturing scenario
from Example 2.2. Assume an initial system stateσ where no component
contains any products. The four defined actions with their preconditions
and effects yield a sequence tree Wσ of feasible sequences. All feasible
sequences up to five actions are shown in Figure 2.3.

ε

produce

put

take

produce

package

...

put

...

package

produce

...

produce

take

package

...

put

...

Figure 2.3: Sequence tree for Example 2.2.

Note that the order of the actions in the sequence do not require that
the start times of the actions have the same ordering. Consider the

2.1 State, Actions and Action Sequences 33

action sequence (produce put produce take). The last two actions
produce and take can start at the same time. It is even possible that an
action occurs later in a sequence but starts before a preceding action in
terms of absolute time.

k Machine Tool Box Robot

0 (s = 0, t = 0) (s = 0, t = 0) (s = 0, t = 0)︸ ︷︷ ︸
produce

︷ ︸︸ ︷
1 (s = 1, t = 5) (s = 0, t = 0) (s = 0, t = 0)︸ ︷︷ ︸

put

︷ ︸︸ ︷
2 (s = 0, t = 10) (s = 1, t = 10) (s = 0, t = 0)︸ ︷︷ ︸

produce

︷ ︸︸ ︷
3 (s = 1, t = 15) (s = 1, t = 10) (s = 0, t = 0)︸ ︷︷ ︸

take

︷ ︸︸ ︷
4 (s = 1, t = 15) (s = 0, t = 15) (s = 1, t = 15)

Table 2.1: Evolution of the system state for the sequence
produce, put, produce, take. The component state s is simplified
and describes only the number of products currently at the component.
All actions are assumed to have a duration of five time units.

34 2 A Model of Concurrent Production Systems

Action sequences can be the result of a planning procedure that are executed
only once for the current situation. But sequences can also be used as reusable
macro-actions. Many manufacturing systems are organized in lines, within
which work-pieces undergo a fixed sequence of actions. In Example 2.3, the
sequence (produce put take package) could be such a macro action. System
parts with little flexibility can thus be modeled with comparatively few macro-
actions. These can be integrated seamlessly with more fine-grained actions
where more behavioral flexibility is required.

2.2 Parameterized Actions

The action definition from Section 2.1 has been accompanied by examples from
discrete manufacturing. In the process industry (e.g. chemicals, pharmaceuticals,
food and beverages), many decisions have to be made on a continuous domain.
In principle, the set of actions A could represent continuous decisions with
an uncountably infinite set of actions. But then we could no longer maintain
explicit representations of every action in computer-based simulations. Instead,
we allow actions to be parameterized.

Definition 2.7. The preconditions, effects and durations of a parameterized
action a depend on the choice of action parameter θ ∈ Θa.

aθ = (Ca, Σ̄θa, eθa, dθa) (2.4)

There are no particular restrictions on possible parameter spaces Θa. Of
course, parameters can also be vectorial or sets, even though we use scalar
notation for parameters in general. Actions a that do not define parameters
have Θa = ∅. In that case, the parameter can be omitted in the notation. The
following list gives examples for parameters on different scales of measure and
sizes of the parameter space.

Nominal and Ordinal Parameters In the simplest case, parameterized actions
simply group actions that, in some sense, belong together. For example the
action paint with categorical parameters Θpaint = {blue, green}. There
can also be a natural order among the parameters on an ordinal scale, such as
{cold, warm, hot}.

2.2 Parameterized Actions 35

Discrete Parameters Discrete parameters (on an interval or ratio scale) can
indicate for example the number of repetitions of an action. When 5,000
parts of a certain product are needed, this can then be achieved by an action
sequence with appropriate parameters in much less than 5,000 sequence
entries.

Continuous Parameters Process control (in the sense of control theory [Lib11])
usually makes decisions about continuous control values at every considered
point in time. An example for this is setting a continuous voltage for an
electric motor.

Vectorial Parameters An action can take a vector or some other structured
mathematical object for its parameter. We continue to write action parameters
as a scalar θ, even though it may be vectorial.

Example 2.4. Take the example of a storage tank in a process control
setting. The tank can be filled with liquid and drained afterward. The
fill level is controlled by a pump and a valve at the bottom of the tank.

Figure 2.4: Piping and instrumentation diagram (P&ID) of a storage tank.
(Reproduced with permission from https://commons.wikimedia.
org/wiki/File:Pump_with_tank_pid_en.svg.)

Consider the action drain acting on the tank. Let v ∈ [0, 1] be
the control value for the valve and τ the duration of the action with
θdrain = (v, τ). The valve is closed for v = 0 and fully open for v = 1.
In addition, the liquid flow depends on the pressure at the valve and

https://commons.wikimedia.org/wiki/File:Pump_with_tank_pid_en.svg
https://commons.wikimedia.org/wiki/File:Pump_with_tank_pid_en.svg

36 2 A Model of Concurrent Production Systems

hence the fill level described by the state of the tank stank ∈ R+. The
flow of the (incompressible) fluid out of the tank can then be described
by a differential equation ṡtank = g(stank, v) according to Bernoulli’s
principle [Ber38] and stank(t0) is known from the initial state σdrain.
The effect of the action drain on the tank is

e
(v,τ)
drain(σdrain)tank = stank(t0) +

∫ t0+τ

t=t0
g(stank(t), v)dt .

With the introduction of parametric actions, problems from control theory
can be represented in the model. In Model Predictive Control (MPC) [ML99],
a dynamical system is approximated by discretizing the time domain. The
problem of optimal control is then posed as an explicit optimization problem that
selects control values for every time period. By taking the (continuous) control
decisions as action parameters, optimal control problems can be represented
with a single action that encompasses all system components. Control with
mixed discrete-continuous control values can be represented by either a more
complex parameter-space Θ or by representing discrete choices with different
actions. But only with several actions can aspects of concurrency be represented,
where the system components are synchronized via joint participation in an
action and evolve their state independently otherwise.

So far, the model presented in this chapter unifies the treatment of discrete
events, concurrency and continuous system dynamics.

2.3 Uncertainty and Observations

Until now, it was implicitly assumed that actions are deterministic. But
virtually no production system actually is. There is always an interaction with a
stochastic environment, from logistics influenced by weather conditions to the
human operator returning late from a break. In addition, even fully automated
manufacturing processes are inherently stochastic. This is illustrated by the
fact that very few production processes achieve zero-defects production.2 It

2The most common reasons for delays and unforeseen events are, according to [VHL03], machine
failure, urgent job arrival, job cancellation, due date change, shortage or delay in the arrival of

2.3 Uncertainty and Observations 37

is desirable to represent this uncertainty also in the model used for control or
planning. With an explicit representation of the uncertainty in the evolution of
the system state, plans of higher quality can be achieved by optimizing for the
expected reward. In general, uncertainty in the model is represented by belief
distributions over the system state and actions with probabilistic outcomes.

This section uses the notation of [Hem66]: Underlined symbols denote
random variables whose realizations follow some probability distribution. The
same symbol may occur underlined and non-underlined. Here, this can be the
distinction between a random variable and a sampled realization of the random
variable. Another case is the distinction between an action used as an identifier
and the same action used to sample stochastic state transitions.

The system state following an initial state σ and an action with uncertainty a is
in effect the realization of a random variable σ′ ∼ σ′ = a(σ). The probability
(density) of the possible outcomes σ′ ∈ Σ is P(σ′ = σ′). We allow the
application of uncertain states with a belief distribution to actions The resulting
state has a belief distributionP(a(σ) = σ′) =

∫
Σ [P(a(ν) = σ′)P(σ = ν)] dν.

We do not consider the case where a is not applicable to the realization of the
initial state σ.

By Equation 2.3, non-participating components c /∈ Ca are not affected by
the action execution. Actions with uncertainty are not exempt from this rule. All
state transitions where a non-participating component changes its timed-indexed
state via execution of an action a must have zero probability.

∀σ ∈ Σa, ∀σ′ ∈ Σ, ∀c /∈ Ca : σc 6= σ′
c ⇒ P(a(σ) = σ′) = 0 (2.5)

If the state following the execution of an action with uncertainty is not
immediately and fully knowable, we have to indirectly infer probabilities over the
resulting state via incomplete or noisy observations. This is called the partially
observable setting [KLC98]. With partial observability, the components c ∈ C
each generate observations oc ∈ Oc. An action results in observations from the
participating components Oa = (×c∈COc). With a slight abuse of notation,
the next state and the observations are both drawn by sampling the action

material, change in job priority, rework or quality problems, over- or underestimation of process
time, and operator absenteeism.

38 2 A Model of Concurrent Production Systems

(σ′, oa) ∼ a(σ). The distribution of observations conditionally depends on the
action and the state transition P(oa |σ, a,σ′).

Obviously, for every action a, the observations oa are conditionally indepen-
dent of the state of components that do not participate in a. Otherwise, if an
observation was conditionally dependent on the state of a non-participating
component, then the observation could depend on the outcome of an action
that occurs earlier in the action sequence but actually has a later starting time
in simulation. This cannot be possible. Therefore, given the state of the
participating components σa, the resulting state of the participating components
and the observations are conditionally independent of the non-participating
components.

(σ′
a, oa |σa) ⊥ σC\Ca

(2.6)

Now we extend the treatment of uncertainty to action sequences. We write
Θ = ∪a∈AΘa for the set of possible action parameters and O = ∪a∈AOa

for the set of possible observations. The action-subscript for parameters and
observations is dropped when the relation is clear from context.

Definition 2.8. A history h is a sequence of episodes hk. Each episode
consists of the selected action and action parameters, as well as the generated
observation.

h = a1θ1o1︸ ︷︷ ︸
h1

a2θ2o2︸ ︷︷ ︸
h2

. . . a|h|θ|h|o|h|︸ ︷︷ ︸
h|h|

The set of possible histories H ⊂ (A×Θ×O)∗ implies a tree-graph. The
histories in H have finite length. Either because the scenario is done when a
specific state is reached or by a cutoff at a maximum history depth. A history h

can be appended with the next action a, parameters θ and observation o to form
h′ = haθo. In the case of a partially observable system, the current system
state can only be inferred with uncertainty. Every history yields a probability
distribution for the belief over the final system state that is conditioned on the
observations. Recall that ã denotes the already parameterized actions.

σ′ ∼ h(σ), h(σ) = P
((
a1 θ1

· · · a|h| θ|h|)
(σ)

∣∣∣ o1, . . . , o|h|
)

(2.7)

The computation of the belief distribution for the resulting state can be performed
with iterative Bayes updates [Jay03] for the intermediary system state between

2.4 Reward and Policies 39

actions. The state belief distribution following from an uncertain initial state
is h(σ). In general, this computation cannot be performed with the available
computational resources. The planning algorithms from the later chapters
therefore rely on samples from forward simulations of the system only.

2.4 Reward and Policies

So far, only the dynamics of actions and action sequences were discussed. Now
we begin to express preferences between action sequences.

Definition 2.9. Executing action a with parameters θ inducing a transition of
the system state from σ to σ′ generates a reward r(σ, a, θ,σ′). The reward
function is

r : Σ×A×Θ× Σ→ R . (2.8)

With the reward function, each state defines a planning problem with the
goal to maximize the future (expected) reward. This is known as the decision-
theoretic planning problem [De 70; BDH99]. The following hierarchy of
planning problems is distinguished in the literature [LaV06]:

1. Deterministic sequential decision making in deterministic systems is
simply known as the planning problem. It results in a fixed sequence of
actions.

2. Sequential decision making under uncertainty with full observability is
known as the Markov Decision Problem (MDP, [Put94]).

3. The partially observable stochastic case is known as Partially-Observable
Markov Decision Problem (POMDP) in the literature [SS73; KLC98].
The decision maker does not have access to a full description of the system
state. He can only indirectly infer a belief distribution over the system
state based on incomplete or noisy observations.

The application of decision-theoretic planning for the (feedback) control of
dynamical systems is discussed in [DW91; Ber+95; BG01]. See [LP12] for an
application of MDP solvers to model manufacturing scenarios under uncertainty.

Algorithms for solving decision-theoretic planning problems belong to two
distinct groups, online planning algorithms and policy constructing algorithms.

40 2 A Model of Concurrent Production Systems

Online planning algorithms are executed for the selection of the next action
[Ros+08; SV10] at runtime. Policy constructing algorithms are executed ahead
of time. They compute a fixed policy function that takes the current system state
(or observed history) to the next action [KHL08].

Definition 2.10. A policy is a mechanism to select the next action during runtime.
In fully observable settings, policies are represented as functions π : Σ→ A

that map from the current system state to the next action. The policy function
becomes π : Σ→ A×Θ in settings with parameterized actions.

In POMDP, policies π : H → A or π : H → A×Θ map from the observed
history to the next action. Internally, the POMDP policy may decide the next
action and parameters based on a belief distribution over the current system
state conditioned on the observed history P(σ ∈ Σ |h ∈ H).

For simplicity of the exposition, consider fully observable settings without
parameterized actions. For a fixed policy π and a discount rate γ ∈ [0, 1), the
value of an initial state σ0 is the expected discounted reward.3

vπ(σ0) = E

[∞∑
k=0

γkr(σk, ak,σk+1)
∣∣∣ ak = π(σk), σk+1 ∼ ak(σk)

]
(2.9)

As an alternative to the discount factor, we can limit the number of considered
periods. The optimal value of a state v is the expected reward resulting from
optimal action selection in every step. Based on Bellman’s principle of optimality
[Bel57], the V-value can be written as a recursive formula.

v(σ) = max
a∈A

E
σ′∼a(σ)

[r(σ, a,σ′) + γv(σ′)] (2.10)

The corresponding Q-value is the expected reward for selecting action a in state
σ and optimal decision making thereafter.

q(σ, a) = E
σ′∼a(σ)

[r(σ, a,σ′) + γv(σ′)] (2.11)

3The V-value and Q-value are longstanding terms in the literature. As both are scalar values we
denote them as v and q in the mathematical notation.

2.4 Reward and Policies 41

Selecting a value according to maxa∈A q(σ, a) is the optimal policy. But
computing the optimal policy is generally computationally intractable. The
remainder of this thesis is concerned with ways of rendering optimization and
planning in the framework introduced in this chapter computationally feasible.
This is achieved a) with tailored planning algorithms, b) so-called rollout policies
that exploit known structure in the planning problem and c) the decomposition
of the planning problem into a coupled set of smaller problems that are jointly
optimized by cooperating agents.

3 Simulation-Based Planning for Concurrent
Production Systems

Programming, or program planning, may be defined as the
construction of a schedule of actions by means of which an
economy, organisation, or other complex of activities may
move from one defined state to another, or from a defined
state toward some specifically defined objective.

Marshal K. Wood and George B. Dantzig [WD51]

The model from Chapter 2 is generic and can be used to represent many
types of systems. Very little constraints are imposed on the system dynamics
that can be represented. This chapter develops an algorithm for sequential
decision making that does not make additional limiting assumptions. But this
richness with respect to possible system dynamics is a drawback when it comes
to planning. Most planning algorithms impose a much more limited model
structure they exploit to reduce the computational effort. The core postulate of
this chapter is the following:

The same algorithm can be used for planning and runtime
control on all levels of the control hierarchy – ranging from
continuous dynamics of a physical system to global supply-
chain operations – and for both continuous and discrete
production.

This chapter develops a planning algorithm for the full model from Chapter 2
without additional assumptions. In the first two sections, two techniques are
used to reduce the number of action sequences that are visited for planning

44 3 Simulation-Based Planning for Concurrent Production Systems

with action sequences in deterministic scenarios. In Section 3.1 the search
tree is explicitly pruned by removing equivalent action sequences (this will
have a precise definition). Section 3.2 further speeds up planning by implicitly
pruning less promising parts of the search tree via Monte-Carlo Tree Search
(MCTS). Section 3.3 extends planning to the full model with parametric actions
and uncertainty with partial observability. In order to scale to larger scenarios,
Section 3.4 develops a custom rollout policy that uses a relaxation of the planning
problem to a Mixed-Integer Linear Program (MILP).

3.1 Tree Search with Backtracking

The model from Chapter 2 can represent concurrency, i.e. parallelism and the
synchronization of system components. A consequence of the model is that
many action sequences are equivalent with respect to their overall preconditions
and effects.

Example 3.1. Take the scenario from Example 2.2 with the modifi-
cation that the robotic manipulator initially contains a product. The
actions produce and package do not share a participating compo-
nent as Cproduce = {mt} and Cpackage = {manip}. It is easy to see
that the sequence (produce package) is equivalent to the sequence
(package produce) in terms of their preconditions and effects. In that
sense, the two actions are independent from each other.

This notion of action sequence equivalence is made rigorous based on
established results from Trace Theory (TT) [CF69; Maz77]. The theoretical
prerequisites are summarized in the following. Full proofs can be found in
[DM97a]. Some elementary definitions from Group Theory [DF04] are assumed
as known.

3.1.1 Background: Trace Theory

Previous nomenclature from Chapter 2 applies to TT by taking A as a set of
letters of action-identifiers that are concatenated to words corresponding to
action sequences. Let A be a finite alphabet of letters and A∗ the set of all

3.1 Tree Search with Backtracking 45

finite-length words over A. The composition of letters forms a free monoid with
generating set A and the empty word, denoted ε, as the unit element. Some
letters commute and are said to be mutually independent. This is captured
in the set of independence relations Z ⊆ A × A. Independence relations are
symmetric (a, b) ∈ Z ⇒ (b, a) ∈ Z and irreflexive ∀a ∈ A, (a, a) /∈ Z. We
also write a ⊥Z b to denote independence between a and b. From Z follows
an equivalence relation between words 'Z : two words w and v from A∗ are
equivalent according to 'Z if v is a permutation of w that can be reached
by successive reordering of adjacent elements that commute according to Z.
In algebraic terms, the trace monoid M(A,Z) is the quotient of A∗ by the
congruence 'Z . Its elements, called traces, are pairwise disjoint subsets of A∗.
Each trace contains the words that are mutually equivalent according to 'Z .
Let [w]Z denote the trace generated from the word w. We can now rephrase
equivalency as w and v generating the same trace w 'Z v ⇔ [w]Z = [v]Z .
When it is clear from context which independence relations apply, we simply
write [w] for the trace and w ' v to denote equivalence.

The independence relations define a partial order between some of the letters
in a word. This partial order is a “must appear before” binary relation ≺.

wk ≺ wl ⇔ k < l ∧ ¬(wk ⊥ wl) (3.1)

The transformation between equivalent words w ' v is described by a permuta-
tion of the element indices τ . The partial order of the word elements is invariant
to this permutation and therefore

∀k, l ∈ {1, . . . , |w|}, wk ≺ wl ⇒ vτ(k) ≺ vτ(l) . (3.2)

The partial order yields the same dependence graph and Hasse diagram for every
word from the same trace.1 The dependence graph G = (V,E) is a directed
acyclic graph with nodes V = {w1, . . . , w|w|} and edges E = {(w, v) ∈ V 2 :
w ≺ v}. The Hasse diagram G′ = (V,E′) is the dependence graph with
redundancies removed E′ = {(w, v) ∈ E : @u, w ≺ u ≺ v}. See Figure 3.1
for an example.

1Graphs being equal refers to the existence of an isomorphism between the graphs that takes
node labels into account.

46 3 Simulation-Based Planning for Concurrent Production Systems

a b a

c

d

e

a b a

c

d

e

Figure 3.1: The Dependence Graph (left) and Hasse Diagram
(right) for the trace [abcaed] according to the trace monoid M(A,Z)
over the alphabet A = {a, b, c, d, e} and independencies Z =
{(a, c), (c, a), (b, d), (d, b), (d, e), (e, d)}.

Besides their dependence graph and Hasse diagram, traces are uniquely
represented by a word in a normal form. That is, exactly one word from every
trace is in the normal form. There exist several normal forms with this property.
We consider the Lexicographical Normal Form (LNF): Assume a total ordering
of the letters A and a resulting lexicographical ordering over words. Longer
words have a larger order than smaller words regardless of their elements. For
two words w,v of the same length, w < v if wk < vk for the smallest index k
where wk 6= vk. A word is in LNF if it has the smallest lexicographical order
among all words of the trace.

3.1.2 Tree-Search with Trace-Based Pruning

With the prerequisites in place, we now take a look back at Chapter 2. Remember
that action sequences are operators on the system state with defined preconditions
(the operator domain) and effects.

Definition 3.1. Two action sequences w and v are equivalent w ' v if they
have the same domain of initial states Σw = Σv and yield identical results
∀σ ∈ Σw, w(σ) = v(σ).

The independence of actions is defined based on the possibility to commute
them if they occur in adjacent positions in any action sequence.

Definition 3.2. Two actions a and b are independent a ⊥ b if commuting them
yields an equivalent sequence ∀w,v ∈ A∗, wabv ' wbav ⇔ a ⊥ b.

It is generally intractable to show the equivalence of two action sequences
by enumerating the set of valid initial system states and the effect of the action

3.1 Tree Search with Backtracking 47

sequence on those states. For some action pairs however, independence can be
shown without evaluating the preconditions and effects:

Proposition 3.3. Any two actionsa, b that do not share a participating component
are independent.

Ca ∩ Cb = ∅⇒ a ⊥ b (3.3)

Proof. For all action sequences w,v there must be wabv equivalent to wbav.
This follows directly from the operational semantics of actions defined in
Equation 2.3.

Example 3.2. Figure 3.2 shows which sequences from Example 2.3 are
equivalent and can be pruned. Only the sequences up to a length of five
are shown. The initial lexicographic ordering of the actions for the LNF
is produce < put < take < package.

ε

produce

put

take

produce

package

...

put

...

package

produce

...

produce

take

package

...

put

...

ε

produce

put

take

package

produce

take

package

...

put

...

Figure 3.2: Sequence tree from Example 2.3 before (left) and after the
pruning of equivalent sequences (right).

Some sequences may additionally be equivalent due to some lucky alignment
of the action effects. Such additional equivalencies are not considered in this
text. Now that the independence of any two actions is easily computed, we use
this information to speed up the search for the best action sequence. Only one

48 3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 1 Is the action sequence wa in LNF given that w is in LNF?
1: procedure TestLNF(w, a)
2: for k = |w|, . . . , 1 do
3: if Cwk ∩ Ca 6= ∅ then
4: return true
5: else if wk > a then
6: return false
7: return true

sequence from each trace is considered. The sequences from the same trace are
equivalent also with respect to the reward that they generate. To consider only
one sequence per trace, we evaluate only the action sequences in LNF.

Proposition 3.4. If a word w is not in LNF, no word wu starting with the prefix
w is in LNF.

Proof. If w is not in LNF, then a word v ' w must exist so that v < w. For
all u ∈ A∗ there is vu ' wu and vu < wu.

From Proposition 3.4, we know that a sequence wa can only be in LNF if w
is in LNF. During a depth-first traversal of the search tree, entire subtrees can
thus be pruned away. If the action sequence w leading to the current position in
the search tree is known to be in LNF, the candidate sequence wa can be tested
for LNF very fast. The test is performed by Algorithm 1. It has a worst-case
runtime that is linear in the sequence length. In practice the algorithm performs
much faster as a breaking condition is usually found within the first few elements
of the sequence.

Proposition 3.5. If the action sequence w is in LNF, then for all a ∈ A

Algorithm 1 returns true if and only if the sequence wa is also in LNF.

Proof. For a sequence v, denote withZ(v, k) = {l : l < k ∧ ∀m ∈ {l, . . . , k−
1}, vk ⊥ vm} the indices of the contiguous elements before vk that all commute
with vk. In the following we show that an action-sequence v is in Lexicographical
Normal Form (LNF) if and only if

∀k ∈ {1, . . . , |v|}, ∀l ∈ Z(v, k), vl < vk . (3.4)

3.1 Tree Search with Backtracking 49

Algorithm 2 For an LNF sequence w, find the LNF equivalent to wa.
1: procedure AppendLNF(w, a)
2: for k = |w|, . . . , 1 do
3: if TestLNF(w:k, a) then
4: return w:kawk+1:

5: return aw

1: procedure LNF(w)
2: v ← ε
3: for k = 1, . . . , |w| do
4: v ← AppendLNF(v, wk)
5: return v

First, we show that (3.4) must be satisfied for every sequence v in LNF.
Assume v is in LNF and does not hold condition (3.4). Then there exists a
combination of indices l < k where vl > vk and ∀m ∈ {l, k − 1}, vm ' vk.
The decomposition v = uvlqvkz can be rearranged as y = uvkvlqz with
possibly empty subsequence u, q and z. This contradicts v being in LNF since
v ' y and y < v.

Second, we show that condition (3.4) is sufficient for v to be in LNF. Assume
v satisfies (3.4) and is not in LNF. Then there must exist an equivalent sequence
y ' v in LNF. Equivalent sequences are permutations and |y| = |v|. So for
y to have a smaller order, there must be an index l where y and v first differ
y:l−1 = v:l−1 and vl < yl. Due to y ' v, action vl must appear in v at an
index greater than l and v can be decomposed as v = uvlqylz, with possibly
empty subsequences u, q and z, where yl commutes with vl and all elements of
q. This contradicts (3.4).

Since Equation 3.4 only refers to the preceding elements in the action sequence
and w is known to be in LNF, it suffices to test (3.4) for the new element.

Proposition 3.6. For any action a and LNF action sequence w, Algorithm 2
returns an action sequence that is in LNF and equivalent to wa.

Proof. When the condition in line 3 of Algorithm 2 is not true, then a commutes
with wk and a < wk. Therefore, once the condition in line 3 is true, w:ka

is in LNF and the LNF-order of the sequence cannot be improved by moving
an element from wk+1: before a. Since w is in LNF, no permutation of
the sub-sequence wk+1: has reduced LNF-order. Therefore w:kawk+1: is in
LNF.

A trivial approach to search for good sequences is to cast the search space
as a tree structure and to enumerate the solutions at the leaf nodes of the tree.

50 3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 3 Depth-First Search
1: vmax ← −∞, wmax ← ε
2: procedure DFS(ω, v,w)
3: if |w| = kmax then
4: if v > vmax then
5: vmax ← v
6: wmax ← w
7: return
8: for a ∈ A : ω ∈ Σa do
9: ω′ ← a(ω)

10: v′ ← v + r(ω, a,ω′)
11: DFS(ω′, v′,wa)
12: end for
13: DFS(σ, 0, ε)
14: return wmax

Algorithm 4 Pruned Depth-First Search
1: vmax ← −∞, wmax ← ε
2: procedure DFSLNF(ω, v,w)
3: if |w| = kmax then
4: if v > vmax then
5: vmax ← v
6: wmax ← w
7: return
8: for a ∈ A : ω ∈ Σa ∧

TestLNF(w, a) do
9: ω′ ← a(ω)

10: v′ ← v + r(ω, a,ω′)
11: DFSLNF(ω′, v′,wa)
12: end for
13: DFSLNF(σ, 0, ε)
14: return wmax

Algorithm 5 Branch & Bound
1: vmax ← −∞, wmax ← ε
2: procedure B&B(ω, v,w)
3: if |w| = kmax then
4: if v > vmax then
5: vmax ← v
6: wmax ← w
7: return
8: for a ∈ A : ω ∈ Σa do
9: ω′ ← a(ω)

10: v′ ← v + r(ω, a,ω′)
11: if v′+β(ω′,wa) > vmax then
12: B&B(ω′, v′,wa)
13: end for
14: B&B(σ, 0, ε)
15: return wmax

Algorithm 6 Pruned Branch & Bound
1: vmax ← −∞, wmax ← ε
2: procedure B&BLNF(ω, v,w)
3: if |w| = kmax then
4: if v > vmax then
5: vmax ← v
6: wmax ← w
7: return
8: for a ∈ A : ω ∈ Σa ∧

TestLNF(w, a) do
9: ω′ ← a(ω)

10: v′ ← v + r(ω, a,ω′)
11: if v′+β(ω′,wa) > vmax then
12: B&BLNF(ω′, v′,wa)
13: end for
14: B&BLNF(σ, 0, ε)
15: return wmax

3.1 Tree Search with Backtracking 51

Every node in the tree represents a (partial) action sequence. Depth-first search
completely enumerates the solutions at the leaf nodes without having to hold
the entire tree in memory. Algorithm 3, called DFS for depth-first search, walks
over the tree in recursive fashion. The algorithm backtracks to a prior partial
action sequence once all solutions starting at the current position in the tree have
been enumerated. The tree of depth kmax contains up to

∑kmax

k=0 |A|k nodes
and |A|kmax

leaf nodes. Enumerating all possible combinations is intractable
for all but the most trivial scenarios. Usually the branching factor of the tree
is reduced because not all actions from A are applicable in the intermediary
system states. But the problem of combinatorial explosion of the search space
remains. Proposition 3.4 can be used to test at every node whether the entire
subtree starting at the node is not in LNF and can be skipped (pruned). Since
every trace contains exactly one sequence in LNF, it is ensured that traversing
the tree without the pruned branches still visits every trace once. Algorithm 4,
called DFSLNF, extends DFS with the pruning of sequences that are not in LNF.
Note that only line 10 of Algorithm 4 has changed compared to DFS.

Another technique to speed up tree search is Branch & Bound [Lit+63].
Branch & Bound is a well-known technique for combinatorial optimization in
the presence of so-called admissible heuristics [Pea84]. A heuristic is called
admissible if it overestimates the performance that can still result from a partial
solution. Here, we express the admissible heuristics as a function β(σ,w)
with the current system state σ and the current partial action sequence w as
arguments. If the admissible heuristics show that the best performance starting
from the current partial solution is worse than the best solution that was already
encountered, then the entire subtree behind the current partial solution can
be pruned. Branch & Bound is implemented in Algorithm 5. In Algorithm 6,
Branch & Bound is combined with trace-based pruning. Again, only line 10 is
changed to prune out sequences that are not in LNF. The commonality between
DFS and Branch & Bound is the use of backtracking to return to a previous
partial solution either when all nodes in a subtree have been visited or when the
solutions that remain in the subtree are known to be suboptimal.

52 3 Simulation-Based Planning for Concurrent Production Systems

3.1.3 Evaluation

The effect of the pruning techniques for tree search methods is evaluated based
on the Jobshop Scheduling Problem (JSP) [Pin08]. Scheduling is one of the
most important planning problems on the shopfloor. It is also computationally
challenging. The jobs j ∈ J have to be processed on the machines M . Every
job consists of operations o ∈ Oj = {1, 2, . . . , |M |}. The operations need to
be processed in-order for every job and are each assigned to a specific machine
mj,o ∈M . The operation duration is dj,o. The goal is to find a schedule that
assigns operations to machines in order to minimize the finishing time of the
last job. See Table 3.1c for a benchmark JSP from the literature. There are
(|J |!)|M | possible schedules for a JSP with |J | jobs and |M | machines where
every jobs needs to visit every machine once [JM98]. So a JSP with |J | = 20
and |M | = 10 has 7.2651 × 10183 possible solutions. Compare this to the
mass of the observable universe currently estimated to the equivalent of 1080

hydrogen atoms. Even though the number of possible solutions is huge, current
solution techniques can compute near-optimal solutions for JSP with hundreds
of machines and jobs. Many benchmark scheduling problems have even been
solved with certified optimaltiy. However, the worst-case analysis of the JSP
shows that it is NP-hard for instances where |J | ≥ 3 and |M | ≥ 3 [GJS76].
Therefore, unless P = NP, all algorithms for solving the JSP are either heuristic
or require a long running time for some (synthetic) JSP problems.

We cast the JSP in the model from Chapter 2 in terms of actions with
preconditions and effects. Every machine and every job in a JSP is represented
as a component in the system model C = Cmachines ∪ Cjobs. The operations
for each job are represented as actions where both one machine and one job
participate. The time-indexed state of the machine components is trivial. It only
consists of the time when the machine is available next. The state of the job
components is the number of operations that were already performed for the
job. The precondition of every action is that the associated operation is next
in line for the job. The action effect simply increases the number of finished
operations for the job by one. The duration of each action (operation in the
JSP) is deterministic. The cost generated by an action is the increase in the
maximum timestamp of the components. So the cost of the entire sequence is

3.1 Tree Search with Backtracking 53

Job Operations (m, p)

1 (0, 5), (1, 10), (2, 5)

2 (1, 10), (0, 5), (2, 5)

3 (2, 5), (1, 10), (0, 5)

(a) Minimal 3× 3 JSP.

Job Operations (m, p)

1 (0, 5), (1, 10), (2, 5), (3, 10)

2 (1, 10), (3, 5), (2, 5), (0, 5)

3 (1, 5), (0, 10), (2, 5), (3, 5)

4 (3, 5), (2, 10), (0, 5), (1, 10)

(b) Minimal 4× 4 JSP.

Job Operations (m, p)

1 (2,1), (0,3), (1,6), (3,7), (5,3), (4,6)

2 (1,8), (2,5), (4,10), (5,10), (0,10), (3,4)

3 (2,5), (3,4), (5,8), (0,9), (1,1), (4,7)

4 (1,5), (0,5), (2,5), (3,3), (4,8), (5,9)

5 (2,9), (1,3), (4,5), (5,4), (0,3), (3,1)

6 (1,3), (3,3), (5,9), (0,1), (4,4), (2,1)

(c) The 6× 6 benchmark JSP ft06 from [FT63].

Table 3.1: Example JSP problems.

the makespan of the solution.

r(σ, a,σ′) =
(

max
c∈C

tc
)
−

(
max
c∈C

t′c
)

(3.5)

Here, tc refers to the simulation time of component c in the system state σ and
t′c refers to the simulation time of the component in the system state σ′.

Given a partial schedule as an action sequencew, the following trivial heuristic
computes an upper bound for the reward that can be generated following the
execution of w. For every component (representing a job or a machine), the
remaining operations for the component are summed up and added to its current

54 3 Simulation-Based Planning for Concurrent Production Systems

time.
βJSP (σ,w) = −max

c∈C

(
tc +

∑
a∈A:a/∈w,
c∈Ca

da

)
(3.6)

The ft06 benchmark problem from Table 3.1c illustrates the importance of
optimisation. An unoptimized solution can require more than 150 seconds to
complete all jobs. The optimal solution requires just 55s. Finding the optimal
solution for larger problems is not possible without the help of computers.
In addition to the ft06 benchmark, two additional minimal problems are
considered. See Table 3.1 for their exact definition. The minimal examples
are too small to be of any practical value. But they give an indication of how
fast the problem complexity increases. A sequence of 9 unique elements has
9! = 362, 880 permutations. The minimal 3× 3 JSP depicted in Table 3.1 also
defines 9 actions. But the full scenario tree for the JSP has only 1,680 leaf nodes
corresponding to valid schedules. By additionally pruning branches that are not
in the LNF only 63 leaf nodes remain. Using the makespan lower bound from
Equation 3.6, nodes can be pruned where the lower bound is equal or worse to
the best solution encountered so far. With the Branch & Bound pruning, only
3 leaf nodes are actually visited. However, more nodes were visited overall
compared to trace-based pruning for full depth-first search. This indicates that
mostly branches close to the leaves were pruned with Branch & Bound only.
By combining trace pruning with Branch & Bound, only 65 nodes are visited
overall. This is a decrease in the search running time by a factor of more than
50 compared to Branch & Bound search without pruning.

On the 4 × 4 JSP depicted in Table 3.1 an even smaller fraction of the
scenario-tree is visited by combining trace-based and makespan-based pruning.
However, the number of visited nodes still grows fast with the size of the JSP.
On the ft06 6× 6 JSP, 682,508 nodes are expanded with both bound and trace
pruning enabled. Our implementation is capable of visiting over 1,000,000
nodes per second during Branch & Bound search (on a Lenovo T480 laptop
computer). However, with only either trace-based pruning or Branch & Bound
enabled, we could not solve ft06 in over a day of computation. A 10 × 10
JSP could not be solved within several days of compute time even with both
trace-based and bound-based are activated. In summary, trace-based pruning

3.1 Tree Search with Backtracking 55

DFS B&B DFSLNF B&BLNF

Visited Nodes 3,568 405 348 65
Visited Leaf
Nodes 1,680 3 63 3

Trace-Pruned
Branches 0 0 191 41

Bound-Pruned
Branches 0 376 0 35

(a) Visited nodes for the minimal 3× 3 JSP

DFS B&B DFSLNF B&BLNF

Visited Nodes 128,385,941 115,042 105,666 826
Visited Leaf
Nodes 63,063,000 9 11,143 9

Trace-Pruned
Branches 0 0 93,074 1,131

Bound-Pruned
Branches 0 206,025 0 643

(b) Visited nodes for the minimal 4× 4 JSP

DFS B&B DFSLNF B&BLNF

Visited Nodes ? ? ? 682,508
Visited Leaf
Nodes ? ? ? 43

Trace-Pruned
Branches 0 0 ? 2,051,681

Bound-Pruned
Branches 0 ? 0 750,063

(c) Visited nodes for the ft06 6× 6 JSP

Table 3.2: Benchmarking of pruning techniques for DFS and Branch & Bound.
Questionmarks indicate that an optimization did not terminate after two weeks
of computation. So the numbers are outstanding.

56 3 Simulation-Based Planning for Concurrent Production Systems

reduces the number of visited action sequences to a small fraction. For the 4× 4
JSP, the number of action sequences (visited leaf nodes) was reduced by a factor
of more than 5,600. The improvements are comparatively increasing with the
length of the action sequences.

We have shown that LNF pruning leads to a dramatic reduction of the search
space. The reduction is already on many orders of magnitude for the comparably
small benchmark problems that were considered. However, even with trace-
based pruning, naive tree search does not scale up to scenarios of relevant size.
In practice, genetic algorithms are often used to solve combinatorial problems.
Modern heuristic solvers find good solutions for JSP with thousands of jobs
[Dim15]. But these solvers exploit the specific structure of the JSP. Handling of
complex action preconditions is near-impossible for genetic algorithms. The
genetic crossing and mutation of two partial solutions will almost always lead to
an infeasible action sequence where the preconditions of an action are not met.
Repairing an infeasible plan is usually quite difficult. For example if a single
product is missing to finish an order of many hundred products.

3.2 Planning for Discrete Action Sequences

The algorithms from Section 3.1 use backtracking to return to previous partial
solutions. This requires either that the system state is fully known so that it can
be stored in a computer (to return to previous states) or that action sequences
can be deterministically repeated. For experiments carried out in the physical
world, neither of these assumptions is true. In this section, we further speed up
planning by “implicitly pruning” less promising branches with Monte-Carlo Tree
Search (MCTS). Many recent breakthroughs in Artificial Intelligence were made
possible by MCTS. This includes the AlphaGo system [Sil+17] which is able to
play the game of Go with superhuman performance. In short, MCTS enables
planning in scenarios with many combinatorial variations where backtracking
tree search is not able to cover any significant portion of the search space.
In addition, MCTS uses only forward-simulation without backtracking. This
reduces the coupling between the planning algorithm and the simulator to the
point where real-world simulations could be used to generate samples for the
planning algorithm.

3.2 Planning for Discrete Action Sequences 57

3.2.1 Background: Monte-Carlo Tree Search

In MCTS [Bro+12; Mun+14], a scenario tree is explored by iterative playouts. A
playout is essentially one run of the scenario with sequential decision making in a
series of steps. Every playout starts at the root of the sequence tree and evolves by
“forward simulation”. In contrast to Branch & Bound, there is no backtracking to
previous states within a playout. Historically, MCTS evolved from research on
the multi-armed bandit problem: The multi-armed bandit problem is an idealized
version of a slot machine. The following short exposition follows [Mun+14]
and adapts the notation to the conventions of this text. Consider a multi-armed
bandit in a casino where they player can choose a different arm during kmax

rounds (this will be extended to sequential decision making later on). The reward
of the different arms a ∈ A is random according to the distribution Pa with a
support on [0, 1]. But the player is initially unaware of the reward distribution
for every arm. In each round k, the player chooses a bandit ak ∈ A and collects
a reward rk ∼ Pak . The rewards generated at the other arm are not observed.
The goal is to find a strategy that maximizes the expected sum of payouts during
the k rounds. This leads to the so-called Exploration/Exploitation Tradeoff :
The player could select a bandit with high expected reward. But this might get
him stuck at a bandit with suboptimal expected reward. So the player wants to
explore other options without loosing too much in the process. The expected
reward of the different arms a ∈ A is µa = E[Pa]. The expected reward of
the best arm (there can be several best arms) is µ∗ = maxa∈A µa. Possible
strategies for repeated play are analyzed with respect to their expected regret.
The cumulative regret after k rounds compares the actual reward r with the
expected reward of choosing the arm with highest expected reward every time.

bk = kµ∗ −
k∑
l=1

rl

The expected cumulative regret is therefore

E[bk] = kµ∗ −
k∑
l=1

E[rl] =
∑
a∈A

E[na(k)](µ∗ − µa) ,

58 3 Simulation-Based Planning for Concurrent Production Systems

where na(k) denotes the number of draws from a after the first k rounds.
An important tool for bounding the expected cumulative regret is the Chernoff-

Hoeffding inequality. Let (y
i
)i=1,...,n i.i.d. samples of a probability distribution

with support [0, 1] and mean µ. The empirical mean estimator µ̂ = 1
n

∑n
i=1 yi

is a function of the y
i

and therefore a random variable as well. The Chernoff-
Hoeffding inequality gives probability bounds for the distance between the true
and the estimated mean.

P
(
µ̂− µ ≥ ε

)
≤ e−2nε2

and P
(
µ̂− µ ≤ −ε

)
≤ e−2nε2

The bound is independent of the underlying distribution of the yi. So it can be
applied even when the distribution of the y

i
is not known!

There exists a variety of approaches for selecting the next draw in the
multi-armed bandit setting. Auer et al. [ACF02] proposed the so-called Upper
Confidence Bound (UCB) algorithm. Let µ̂a,k denote the mean return of arm a

sampled during the first k rounds. UCB always selects the next arm as follows:

ak = arg max
b∈A

µ̂b,k−1 +

√
3 log k

2nb(k − 1)

Selecting the best arm according to the UCB gives an upper bound for the
expected cumulative regret by application of the Chernoff-Hoeffding inequality.

E[bk] ≤ 6
∑
a∈A,
µ∗>µa

log k
µ∗ − µa

+ |A|(π
2

3 + 1) ,

The expected cumulative regret grows at most logarithmically in k.
The algorithm of Auer et al. [ACF02] selects actions from a flat list of

options. Monte-Carlo Tree Search (MCTS) is a family of algorithms that uses
the same principle of iterative exploration for planning in sequential decision
settings. A popular variation of MCTS, called Upper Confidence on Trees
(UCT) [KS06], uses the UCB decision rule for every action choice during a
playout. See Figure 3.3 for an overview. Algorithm 7 shows UCT (but with
some modifications compared to [KS06] that will be explained in the following).
MCTS can be seen as “simulation-based” planning, as no backtracking is used.

3.2 Planning for Discrete Action Sequences 59

Figure 3.3: Outline of a Monte-Carlo Tree Search. Reproduced from [Cha+08].

Instead, the results from the last simulation are incorporated into statistics about
the expected reward for the possible next actions at the current position in the
scenario tree. The updated empirical reward statistics is used for decision-making
in the following playouts.

The assumption that the reward in every step is in the range [0, 1] is not
required for UCT to converge to optimal decisions in the limit. On the downside,
there is currently no good characterization of the convergence speed achieved by
UCT that doesn’t make strong assumptions on the underlying scenario. It is only
known that for a large enough number of plays, every branch of the scenario tree
is visited. Since only a small subset of the tree is explored in practice before
the algorithm is terminated, MCTS struggles with scenarios where the reward
is “unevenly distributed”. That is, if a big reward can be found after a long
sequence of actions where small changes to the action sequence lead to much
worse results, it is then not very likely that the reward is encountered at all and
MCTS will not assign a correct value estimation for the choices. A workaround
for this is Reward Shaping [NHR99] where the reward is distributed such that it
may be encountered early on in the action sequences.

UCT may require tuning of the parameter α which regulates the importance
of the upper confidence bias. Setting α corresponds to making a choice for the
Exploration/Exploitation tradeoff between the two extremes “always explore”
and “always exploit”. Note that UCB was developed for action selection in
stochastic scenarios with unknown reward distributions for the different actions.

60 3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 7 The Upper Confidence on Trees (UCT) algorithm [KS06].

1: procedure UCT(σ0)
2: q[·]← 0
3: n[·]← 0
4: while enough time do
5: Play(σ0, ε)
6: return arg max

a∈A
q[a]

1: procedure Rollout(σ)
2: if done(σ) then
3: return 0
4: a← πA(σ)
5: (σ′, r)← a(σ)
6: return r +

Rollout(σ′)

1: procedure Play(σ,w)
2: if done(σ) then
3: return 0
4: B ← {b ∈ A : n[wb] = 0}
5: if B 6= ∅ then
6: a← πB(σ)
7: (σ′, r)← a(σ)
8: r ← r + Rollout(σ′)
9: else

10: a← arg max
b∈A,σ∈Σb

[
q[wb] +

α
√

logn[w]+1
n[wb]

]
11: (σ′, r)← a(σ)
12: r ← r + Play(σ′,wa)
13: n[wa]← n[wa] + 1
14: q[wa]← q[wa] + r−q[wa]

n[wa]
15: return v

Here we apply the same principle to tree-search for deterministic scenarios.
There is an informal argument for this. Many rollout policies are stochastic,
similar to the uniform sampling policy described above. So the rollout takes
samples from the reward distribution that is implied by applying the current
rollout policy to the subsequent steps. When nodes are visited several times,
the underlying distribution for the policy changes. So past experience does not
necessarily match the samples taken later on. Nevertheless, the UCB-based
selection rule shows good performance in practice.

3.2.2 Monte-Carlo Tree Search for Discrete Action Sequences

We introduce a modification of UCT called UCTLNF. See Algorithm 8 for
details. UCTLNF is inspired from UCT but deviates in a few key aspects. First,
the original UCT algorithm gradually builds up a tree structure where the nodes
correspond to partial action sequences. But only one new node is added with
every play. Once the edge of the current tree is reached, the remaining steps are
“rolled out” and only the sum of rewards for the rollout is considered. UCTLNF

does not use rollouts and adds nodes for all selected actions in the sequence.

3.2 Planning for Discrete Action Sequences 61

Algorithm 8 UCT for Deterministic Actions with Trace-Based Pruning
1: procedure UCTLNF(σ0)
2: n[·]← 0, q[·]← 0
3: while enough time do
4: Y ← PlayLNF(σ0)
5: UpdateLNF(Y)
6: return arg max

a∈A
q[a]

1: procedure UpdateLNF(Y)
2: z[·]← 0
3: for (w, r) ∈ Y do
4: for k = |w| . . . , 1 do
5: g ← w:k

6: if z[g] > 0 then
7: break
8: n[g]← n[g] + 1, z[g]← 1
9: q[g]← rk+ max

a∈A,
n[ga]>0

q[LNF(ga)]
1: procedure PlayLNF(σ)
2: w ← ε, r ← ε, Y ← ∅
3: while ¬done(σ) do
4: B ← {b ∈ A : n[wb] = 0}
5: if B 6= ∅ then
6: a← πB(σ)
7: else
8: a← arg max

b∈A, σ∈Σb

[
q[LNF(wb)] + α

√
logn[w]+1
n[LNF(wb)]

]
9: (σ, v)← a(σ)

10: Y ← Y ∪ {(wa, rv), LNF(wa, rv)}
11: (w, r)← LNF(wa, rv)
12: return Y

Second, the original UCT stores a statistics about the average reward that was
achieved after selecting a node (action). Instead, we perform a maximization
in every step of the Update procedure. Therefore, the value estimation of
every node is the maximum reward that can be achieved by following the best
known sequence of actions after selecting the node (action). Third, we do not
only update a single sequence for every play. Instead, when we arrive at a
sequence that is not in LNF, then we permute the sequence to the equivalent LNF
sequence. But we store the original sequence and the LNF sequence and run the
Update procedure on both of them. All three modifications to the original UCT
algorithm are interrelated. This is explained next.

The easiest way to restrict the search to sequences in LNF only is to simply
remove actions leading to non-LNF sequences at the current node in the search
tree. But when choosing one action at a time, this often leads to dead-ends

62 3 Simulation-Based Planning for Concurrent Production Systems

where no action can be chosen without breaking the LNF constraint. Since we
do not want to backtrack to previous system states during a playout, virtually
no playout would complete. Therefore we use the LNF algorithm to repair
the action sequence as we go along. However, simply permuting the sequence
to LNF after every action selection is not compatible with the UCT approach
either: Soon, some nodes are always selected because they have a very low
visit count. But as the sequence is permuted to LNF, this nodes continue to
not have their visit count n increased. Suppose an example with three actions
a < b < c that all commute and where every action can be chosen only once in
every sequence. The sequence starting with the action c would always become
the LNF sequences ac or bc after the second action choice. So the node for the
first action c is nevery updated. But the UCT algorithm will always choose c
first as long as the counter n[c] is not increased. This is solved by updating all
sequences that were encountered in the current playout, regardless of whether
they are in LNF or not. The counter z for the node updates within the current
playout ensures that no node is updated twice for one playout. Note that we use
the algorithm LNF in a slightly different fashion. Giving the action sequence
w and the reward history r as input, both are permuted to yield an LNF action
sequence where the index of actions still matches the index of the corresponding
reward.

3.2.3 Evaluation

We evaluate the algorithms UCT and UCTLNF on the benchmark Jobshop
Scheduling Problems (JSP): The ft06 benchmark with 6 jobs on 6 machines
from [FT63] and the abz5 benchmark with 10 jobs on 10 machines from
[ABZ88]. However, we change the classical JSP in one important aspect:
Instead of optimizing the makespan, the time when the last job finishes, we
target the sum of the finishing times (the tardiness if the job is immediately due)
for all jobs. The reason for the change is to ensure that the immediate reward of
actions depends on a small number of participating components Ca only. When
optimizing the makespan, it is of course possible to return the negative increase
of the maximum simulation time for all components. But then the actions would
have all components C as participants. We prefer to have only a small subset of
the components participating in each action, so that the trace-based equivalence

3.2 Planning for Discrete Action Sequences 63

0 20000 40000 60000
Number of Simulations

500

450

400

350

300

250
Re

wa
rd

alpha: 10
alpha: 100
alpha: 1000

(a) Benchmark of UCT with the JSP
example ft06.

0 20000 40000 60000
Number of Simulations

500

450

400

350

300

250

Re
wa

rd

alpha: 10
alpha: 100
alpha: 1000

(b) Benchmark of UCTLNF with the
JSP example ft06.

0 5000 10000 15000
Number of Simulations

25000

22500

20000

17500

15000

12500

Re
wa

rd

alpha: 10
alpha: 100
alpha: 1000
alpha: 10000

(c) Benchmark of UCT with the JSP
example abz5.

0 5000 10000 15000
Number of Simulations

25000

22500

20000

17500

15000

12500

Re
wa

rd
alpha: 10
alpha: 100
alpha: 1000
alpha: 10000

(d) Benchmark of UCTLNF with the
JSP example abz5.

Figure 3.4: JSP benchmarks for Monte-Carlo Tree Search. Every benchmark
was run 10 times. The lines give the average empirical reward. The standard
error is indicated by tick marks and the variance is shown in a lighter shade.

of action sequences as defined in Section 3.1.2 can be used to prune the sequence
tree. The rollout policy π is set to select randomly among the possible choices
with a uniform distribution.

As can be seen in Figure 3.4, MCTS makes big improvements to the best-
known solution early on. Depending on the exploration parameter α, the
algorithm then “converges” towards a reward value that is no longer improved
upon even with very long running times. This is not a true convergence however,
since we know that all branches of the search tree are explored eventually with the
UCB rule. The more complex abz5 example shows an interesting phenomenon
where higher α lead to better results. But it takes longer until “convergence”
is reached. This insight makes sense with regards to the UCB action selection.
Once all actions at a given node have been explored several times, the UCB rule
will predominantly choose actions with a known high reward. So the observed

64 3 Simulation-Based Planning for Concurrent Production Systems

convergence is explained by a shift from exploration to exploitation in the action
selections. Pruning sequences that are not in LNF speeds up the convergence to
some final best reward. This was expected as the pruning effectively reduces the
size of the search tree.

3.3 Planning with Uncertainty and Continuous Action
Parameters

As defined in Section 2.2, parameterized actions a take parameters from the set
Θa. But the algorithms from the previous sections 3.1 and 3.2 can only handle
discrete choices of deterministic actions. If the set of parameters is finite, we can
simply extend the tree-search techniques to search over the joint space of actions
and their parameters. This is however not possible if the action parameters are
uncountable. For example if a parameter is defined on a continuous domain.
Furthermore, while the UCB rule for bandit problems is defined for decision
making in stochastic unknown environments, UCT assumes deterministic actions.
This section deals with the extension of the simulation-based planning approach
to actions a that can be both stochastic and have parameters on a continuous
parameter space.

3.3.1 Background: MCTS under Uncertainty

For MDP, where the outcome depends not only on decision-making, but also on
the response from the stochastic system model, it has been known for some time
that a randomly sampled subset of the scenario tree that covers only a vanishing
fraction of the full scenario is enough to compute near-optimal actions from any
state [KMN02]. If ε is the admissible error for the estimation of the V-value of
the current state (see Section 2.4), then the number of sample playouts grows
exponentially in ε. It does however not depend on the size and complexity of
the state representation. With the advent of MCTS, sampling based methods
have also been used for sequential decision-making under uncertainty [KS06].

The POMCP algorithm (Partially Observable Monte-Carlo Planning) extends
MCTS to scenarios with partial observability (POMDP) [SV10]. The authors
[SV10] write with regards to the performance of their invention POMCP:

3.3 Planning with Uncertainty and Continuous Action Parameters 65

Algorithm 9 Partially Observable Monte-Carlo Planning
1: procedure POMCP(σ0)
2: q[·]← 0
3: n[·]← 0
4: while enough time do
5: σ ∼ σ0

6: Play(σ, ε)
7: return arg maxa∈A q[a]

1: procedure Rollout(σ,h)
2: if done(σ) then
3: return 0
4: a← πA(h)
5: (σ′, o) ∼ a(σ)
6: v ← r(σ, a,σ′)
7: return v +

Rollout(σ′,hao)

1: procedure Play(σ,h)
2: if done(σ) then
3: return 0
4: B ← {b ∈ A : n[hb] = 0}
5: if B 6= ∅ then
6: a← πB(h)
7: (σ′, o, r) ∼ a(σ)
8: r ← r + Rollout(σ′,hao)
9: else

10: a← arg max
b∈A

[
q[hb] +

α
√

logn[h]+1
n[hb]

]
11: (σ′, o, r) ∼ a(σ)
12: r ← r + Play(σ′,hao)
13: n[h]← n[h] + 1
14: n[ha]← n[ha] + 1
15: q[ha]← q[ha] + r−q[ha]

n[ha]
16: return r

[On a benchmark problem], POMCP achieved the same performance
with 4 seconds of online computation to the state-of-the-art solver
SARSOP with 1000 seconds of offline computation.

While the current system state σ is known to the simulator used to sample state
transitions, the decision-making only relies on the observations resulting from
the actions and the reward statistics that were collected prior. See Algorithm 9
for details. The search tree now not only consists of nodes representing actions,
but is a bipartite graph of actions and the resulting observations. The rollout
policy π takes the full history of actions and observations as input. A trivial
rollout policy is to sample uniformly from the previously unexplored actions.
This policy is a popular choice as it does not depend on prior knowledge and
assumptions about the scenario and the state representation.

66 3 Simulation-Based Planning for Concurrent Production Systems

(1, 1) (1, 2)

(3, 1)

(2, 2)

(2, 3)

(3, 2)

(3, 3)

(a) The unit cube split into cells.

(0, 1)

(1, 2)(1, 1) (1, 3)

(2, 2)(2, 1) (2, 3)

(3, 2)(3, 1) (3, 3)

(b) Tree hierarchy of cells.

Figure 3.5: Example for Optimistic Optimization on the unit cube. The unit
cube is split into cells based on a hierarchical partitioning of the domain. Every
cell has an index (~, i) that also represents a node in the partitioning tree: ~ is
the height of the tree at that node (the number of splits) and i is the index within
the set of cells of height ~. The initial node (0, 1) represents the entire domain,
here depicted as the unit cube. Leaf nodes are marked gray in the partitioning
tree.

3.3.2 Background: Optimistic Optimization

Optimization of functions on a continuous domain has a long history. Very
efficient solvers exist today for the optimization of convex functions where
gradient information is available [BV04]. Gradient-free global optimization
of non-convex functions remains challenging. Classical solution techniques
are the Dividing Rectangles (DIRECT) algorithm [JPS93] as well as heuristic
genetic algorithms [SP97]. While the latter provides no lower bounds for
performance, the convergence speed of DIRECT depends on an upper bound of
the function’s gradient known as the Lipschitz bound. In recent years, the ideas
for optimization in discrete bandit settings and MCTS have been translated to
optimization of continuous functions. The resulting techniques are known as
Optimistic Optimization (OO). See [Mun+14] for a comprehensive account.

Suppose we want to maximize some function f : X → R over the domain X .

x∗ = arg max
x∈X

f(x) (3.7)

3.3 Planning with Uncertainty and Continuous Action Parameters 67

If we can make assumptions of convexity, then a range of established methods
and commercial tools can be used to solve the optimization problem [BV04].
OO does not require an assumption of convexity. The basic idea is to iteratively
dissect X into disjoint cells of decreasing size that cover the entire function
domain (Figure 3.5a). The hierarchy of cells forms a tree structure (Figure 3.5b).
An “optimistic” upper bound is computed for every cell. This upper bound
guides the continuing selection and splitting of the cells. The breakthrough
of recent work is to not require a Lipschitz bound for f to compute the upper
bound. Instead, the function is assumed to be smooth around the optimizer with
respect to a semi-metric.2 This is a much weaker assumption.

Algorithm 10 Deterministic Optimistic Optimization (DOO) for the optimization
of an unknown function f : X → R. This formulation is for the special case
where the search domain is the n-dimensional unit cube X = [0, 1]n and cells
are split into three children.

1: procedure DOO(f)
2: L← {(0, 1)} . Set of leaf nodes
3: x[0, 1]← 1 1

2
4: while enough time do
5: (~, i)← arg max(d̄,j)∈L [f(x[d̄, j]) + δ(d̄)]
6: Split(~, i)
7: return arg max(~,i)∈L f(x[~, i])

1: procedure Split(~, i)
2: v ← max {g : x[~ + 1, j] 6= ∅} . Highest node index at depth ~ + 1
3: d← mod(~, n) + 1 . The dimension to split at depth ~
4: o← νd

(1
3
)b~/nc+1

. New distance along the split dimension
5: L← L \ {(~, i)} . Remove the cell from the leaves
6: for j ∈ {1, . . . , 3} do . Add new leaf nodes
7: L← L ∪ {(~ + 1, v + j)}
8: x[~ + 1, v + j]← x[~, i] + (j − 2)o

Deterministic Optimistic Optimization The first considered OO algorithm is
Deterministic Optimistic Optimization (DOO). Algorithm 10 shows a simplified

2A semi-metric has `(x,y) = `(y,x) and `(x,y) = 0 ⇒ x = y. Different from a regular
norm, the triangle inequality (a consequence of the Cauchy-Schwarz inequality) is not required to
hold.

68 3 Simulation-Based Planning for Concurrent Production Systems

version of DOO. It assumes the domain of f is the n-dimensional unit cube and
cells are split into three children. In every iteration, the cell with the highest
upper bound is selected and split into 3 children. The cells are denoted as (~, i)
where ~ is the depth of the tree and i is an index for the cells at the same depth.3

The set L contains the leaf nodes of the current search tree (cf. Figure 3.5b).
The midpoint of the visited cells (~, i) is stored as x[~, i]. The upper bound
of each cell is computed from an evaluation at the midpoint and the bias δ(~)
that depends on the depth-position of the cell. The choice of δ depends on the
target function f and semi-metric `. More detail on that can be found in the next
paragraph. Along which dimension to split is determined from the tree-depth ~
at which the cell is situated.

Example 3.3. Figure 3.6 shows the graph of two example functions
we seek to maximize on the domain X = [0, 1]. Notably, the Garland
function is not differentiable at some points on the domain and has no
Lipschitz constant. The function is also not differentiable at the optimizer
π/6. But there exists a semi-metric for which the Garland function is
locally smooth around the optimizer.

0.0 0.2 0.4 0.6 0.8 1.0
1.0

0.8

0.6

0.4

0.2

0.0

0.2

(a) Sine and quadratic: f1(x) =
0.25 sin(50x) · sin(10x) − (x −
0.75)2 with a scaled Euclidean met-
ric fitted to the optimizer.

0.0 0.2 0.4 0.6 0.8 1.0

0.4
0.2
0.0
0.2
0.4
0.6
0.8
1.0

(b) Garland function: f2(x) = 4x
(1−x)(3

4 + 1
4 (1−

√
| sin(60x)|))

and the semi-metric `(x, y) =
β‖x−y‖1/2 fitted to the optimizer.

Figure 3.6: Example functions that are locally smooth around the
optimized for a semi-metric `.

3Symbols with a crossing bar as in ~ are used to denote height-indices in a tree.

3.3 Planning with Uncertainty and Continuous Action Parameters 69

To show convergence of DOO, the following assumptions are made for f and
its domain [Mun+14].

1. There exists a semi-metric ` : X×X → R+ for which f is locally smooth
around the optimizer: Denote the maximum value of f on its domain
with f∗ = f(x∗). The function is locally smooth around the optimizer if
f(x∗)− f(x) ≤ `(x,x∗) for all x ∈ X .

2. The domain of each cell is X~,i ⊆ X . The midpoint of the cell is
x~,i. The cell diameter δ(~) decreases with increasing depth ~ and
supx∈X~,i

`(x,x~,i) ≤ δ(~). So the value of the midpoint and the cell
diameter give an upper-bound for the best solution the cell can contain
overall.

3. The cells are well-shaped in the sense that there exists a µ > 0 such that
for any depth ~ ≥ 0 all cells (~, i) of that depth fully contain an `-ball
with radius µδ(~) centered in x~,i. So all cells have a positive volume.

For every region (~, i) containing the optimizer x∗ ∈ X~,i, we have f(x~,i) +
δ(~) ≥ f(x~,i) + `(x~,i,x

∗) ≥ f∗. Since the leaf nodes always cover the
entire function domain, cells with x~,i + δ(~) < f∗ are never expanded as they
are dominated by the leaf node containing the optimizer. So the cells potentially
expanded at depth ~ are I~ = {(~, i) : f(x~,i) + δ(~) ≥ f∗}.

(Stochastic) Simultaneous Optimistic Optimization DOO requires no global
Lipschitz bound of the target function. But it requires knowledge of a semi-
metric ` that is smooth around the optimizer. The ` is not known in many
cases. The Simultaneous Optimistic Optimization (SOO) algorithm [Mun11]
adopts ideas from the DIRECT algorithm [JPS93] to achieve nearly the same
convergence results as DOO even without knowledge of `. SOO still assumes
the existence of a such a semi-metric `. But it suffices to show the existence of
any such semi-metric for the convergence analysis without actually using it in the
algorithm. In many cases, the function f itself can be used to construct a suitable
semi-metric! Take any norm ‖ · ‖ for the function domain X . The semi-metric
`(x,y) for points x, y on X is constructed as follows. With η = ‖x− y‖ the
distance on the domain norm, the distance on ` is the difference between the

70 3 Simulation-Based Planning for Concurrent Production Systems

optimizer and the worst point in the η-ball around the optimizer:

˜̀(η) = sup
‖x−x∗‖≤η

(f∗ − f(x)), `(x,y) = ˜̀(‖x− y‖) (3.8)

We forego full convergence proofs at this point and refer to the original paper
[Mun11]. Stochastic SOO (StoSOO) [VCM13] extends SOO to the optimization
of stochastic functions. Cells are split only after κ evaluations. The mean of
the sampled values at the cell midpoint is used for the evaluation. The authors
of [VCM13] provide a convergence bound for the expected regret on the order
of O(log2(ι)/

√
ι) where ι is the number of samples taken from the stochastic

function f . The tuning parameter η controls how much emphasis the algorithm
is putting on exploration, i.e. the tradeoff between exploration and exploitation.

Algorithm 11 shows a simplified version of StoSoo for the n-dimensional unit
cube where cells are split into three child cells after κ evaluations. We will now
explain the major changes compared to DOO. First, the visited nodes are split
into leaf nodes L and internal nodes N . The internal nodes have been sampled
κ times and are no longer evaluated. Second, since we do know the semi-metric
` (and hence the cell diameter δ), an upper confidence bias is added to the cell
evaluation for the selection. Third, the algorithm iterates over the depth-level
~ of the cells. One cell is selected at every level (if there is an improvement
compared to the previous levels) and the cell is either sampled again or split.

3.3.3 Planning for Parameterized Action Sequences

To integrate StoSOO with MCTS, we introduce so-called hybrid trees. Hybrid
trees contain nodes for actions and parameters. Hybrid trees are bipartite as a
parameter selection must follow an action selection and vice versa. Partially-
observable hybrid trees (POHT) use three types of nodes: actions, parameters
and the resulting observations. See Figure 3.7 for an example. Note that hybrid
trees not only grow at the leaf nodes. The paramter-nodes represent a cell in
the parameter space Θa of the associated action a. As the cells of a continuous
domain can be partitioned indefinitely often, a hybrid tree can grow new branches
at the parameter-nodes during planning.

For planning in POHT, we want to combine OO with MCTS. The upper
confidence bound is used to select discrete actions and OO is used to select and

3.3 Planning with Uncertainty and Continuous Action Parameters 71

iteratively refine the choice of action parameters. The StoSOO algorithm samples
from the stochastic target function f several times within the SplitStoSOO
procedure. This prevents its unmodified use for simulation-based planning –
without backtracking – in sequential decision-making settings. Instead, we want
every call to the OO subproblem to return exactly one parameter combination θ
to continue the playout with the following steps in the scenario. The accumulated
reward is then used to update the statistics for the involved branches of the
scenario tree.

Algorithm 11 Stochastic Simultaneous Optimistic Optimization (StoSOO) on
the [0, 1]n cube. Cells are split after having been sampled κ times.

1: procedure StoSOO(f, κ, ι, η)
2: L← {(0, 1)}, x[0, 1]← 1 1

2
3: q[0, 1] ∼ f(x[0, 1]), n[0, 1]← 1
4: while less than ι samples taken do
5: qmax ← −∞
6: for ~ = 0, . . . ,min(depth(L), ~max) do
7: i← arg maxj:(~,j)∈L q[~, j] +

√
log(ι2/η)

2n[~,j]

8: r ← q[~, i] +
√

log(ι2/η)
2n[~,i]

9: if r ≥ qmax then
10: qmax ← r
11: if n[~, i] < κ then
12: SampleStoSOO(~, i)
13: else
14: SplitStoSOO(~, i)
15: return arg max(~,i),n[~,i]>0 q[~, i]

1: procedure SampleStoSOO(~, i)
2: y ∼ f(x[~, i])
3: n[~, i]← n[~, i] + 1
4: q[~, i]← q[~, i] + y−q[~,i]

n[~,i]

1: procedure SplitStoSOO(~, i)
2: v ← max{l : x[~ + 1, l] 6= ∅}
3: d← mod(~, n) + 1
4: o← νd

(1
3
)b~/nc+1

5: for j ∈ {1, . . . , 3} do
6: L← L ∪ {(~ + 1, v + j)}
7: x[~+1, v+j]← x[~, i]+(j−2)o
8: SampleStoSOO(~ + 1, v + j)
9: L← L \ {(~, i)}

72 3 Simulation-Based Planning for Concurrent Production Systems

ε

a1a2 a3

θ0,1

θ1,2θ1,1 θ1,3

θ2,1

o1

a2 a1a3

o2

a3

o1

a2

o3

a3

Figure 3.7: Partially Observable Hybrid Tree. The rectangle encompassing
several circular nodes denotes a subtree for the optimisation of an action
parameter with optimistic optimization. The tree is not fully explored for better
visual representation.

Previous authors have used OO for sequential decision-making with a contin-
uous action-space [MWL11; Bus+13; BPM18]. The TrailBlazer algorithm
of [GVM16] combines discrete action selection with continuous search. But it
uses backtracking to return to a previous position in the scenario tree. In this
thesis, we want to avoid storing the system state for backtracking search. So the
algorithms can just as well be performed with playouts in physical experiments
only.

We now develop the novel Partially Observable Hybrid Tree Planning (PO-
HTP) algorithm that combines MCTS – and in particular the approach for
partially-observable planning from to the POMCP algorithm – with Optimistic
Optimization for parameter selection on continuous domains. See Algorithm 12
for the full details. In every step for sequential decision making, the algorithm is
presented with the choice of several discrete actions that are each parameterized
from a continuous domain. If there is only one action, POHTP reduces to
StoSOO as a special case. On the other hand, if the actions have no parameters,
POHTP reduces to a variation of POMCP. The difference to the original POMCP

3.3 Planning with Uncertainty and Continuous Action Parameters 73

is the update mechanism that maximizes over possible choices to compute the
V-value estimate (instead of taking the empirical reward from the previous
plays), full playouts and a switch between exploitation and exploration within
each playout that is explained in the next paragraph.

In contrast to POMCP, no rollouts are used that aggregate the reward beyond
the previously constructed tree. Instead, the full history of every playout is
recorded and used to update the value estimates for the nodes in a second
Update procedure. Furthermore, the upper confidence bound is not used for
decision-making at every step. Instead, the algorithm initially takes optimal
decisions (for the current value estimates) and switches to an explorative regime
at the depth d of the decision tree. In the StoSOO algorithm, the dimension
along which to split the current cell is determined by the depth in the search tree.
The important ingredient of StoSOO to achieve fast convergence is to select cells
from a specific depth in each iteration. Similar to StoSOO, POHTP for every
iteration selects a depth at which the “exploration” (splitting in StoSOO) begins.
The depth d for this switch of the action-selection regime is iterated together
with number of performed playouts. Every action contributes one level to the
depth of the decision tree. The parameters of the action a contribute according
to the depth in the embedded tree for the parameter selection L[ha] for the
action a after an observed history h. The depth of the parameter-selection tree
depth(L[ha]) is the number of times the smallest cell represented in the tree
has been split.

The POHTP procedure initializes the algorithm and then iterates over a series
of playouts. Importantly, the exploration depth for decision-making d is cut
off at the maximum decision-making depth at log2 of the number of playout
iterations.

The Play procedure simulates steps until the current scenario is “done”. If
a node in the search has not been encountered before, the policy π is used to
select action and action-parameters. Otherwise, the action is selected via a UCB
evaluation and the parameter is selected via OO.

The Update procedure stores the empirical mean reward that is directly
generated by an action-parameter combination as e[haθ]. The Q-value associated
with the action-parameter combination additionaly takes the expected following
reward into account. This is again the empirical mean over the observations

74 3 Simulation-Based Planning for Concurrent Production Systems

Algorithm 12 Partially Observable Hybrid Tree Planning (POHTP)
1: procedure POHTP(σ0)

2:

n[·]← 0, q[·]← 0, e[·]← 0,

L[·]← {(0, 1)},
x[· ; 0, 1]← 1 1

2 , d̄← 1
3: while enough time do
4: (h, r)← Play(σ0)
5: Update(h, r)
6: d̄← d̄ + 1
7: if d̄ > log2(n[ε]) then
8: d̄← 1
9: return arg max

(a,θ):n[aθ]>0
q[aθ]

1: procedure Param(ha, d̄)
2: if d̄ > depth(L[ha]) then
3: return arg max

θ:∃(l̄,i)∈L[ha],
x[ha;l̄,i]=θ

q[haθ]

4: else if d̄ < 1 then
5: G← L[ha]
6: else
7: G← L[ha; d]
8: (~, i)← arg max

(l̄,j)∈G,
x[ha;l̄,j]=θ

[
q[haθ] +

α
√

log n[ha]+1
n[haθ]

]
9: θ ← x[ha; ~, i]

10: if n[haθ] < κ ∧ ~ = ~max then
11: return θ
12: u[ha; ~, i]← u[ha; ~, i] + 1
13: µ← u[ha; ~, i]
14: n← dim(Θa)
15: δ ← mod(~, n) + 1
16: ξ ← |L[ha; ~ + 1]|+ 1
17: x[ha; ~ + 1, ξ]← θ +

(µ− 2)νδ

(
1
3

)b~/nc+1

18: L[ha]← L[ha] ∪ {(~ + 1, ξ)}
19: if µ = 3 then
20: L[ha]← L[ha] \ {(~, i)}
21: return x[ha; ~ + 1, ξ]

1: procedure Update(h)
2: for k = |h|, . . . , 1 do
3: g = h:k−1

4: (a, θ,o, r)← hk

5: n[gaθ]← n[gaθ] + 1
6: e[gaθ]← r−e[gaθ]

n[gaθ]
7: q[gaθ]← e[gaθ] +∑

o∈O

q[gaθo]n[gaθo]
n[gaθ]

8: n[ga]← n[ga] + 1
9: q[ga]← max

φ∈Θa,
n[gaφ]>0

q[gaφ]

10: n[g]← n[ga] + 1
11: q[g]← max

b∈A,
n[gb]>0

q[gb]

1: procedure Play(σ, d̄)
2: h← ε
3: while ¬done(σ) do
4: B ← {b ∈ A : n[hb] = 0}
5: if d̄ > 1 ∧ n[h] > 0 then
6: a← arg max

b∈A,n[hb]>0
q[hb]

7: d̄← d̄− 1
8: θ ← Param(ha, d̄)
9: else if B 6= ∅ then

10: (a, θ)← πB(σ)
11: d̄← d̄− 1
12: else

13:
a← arg max

b∈A

[
q[hb] +

α
√

log n[h]+1
n[hb]

]
14: d̄← d̄− 1
15: θ ← Param(ha, d̄)
16: d̄← d̄− depth(L[ha])
17: (σ′,o, r) ∼ aθ(σ)
18: h← haθor, σ ← σ′

19: return h

3.3 Planning with Uncertainty and Continuous Action Parameters 75

following the action-parameter combinations. The Q-value for the action and
the observation maximize over the respective choices.

So the periods in the observed history are hk = (akθkok). Updating the
parameterization-nodes is very similar to the updating of action-nodes in POMCP.
The considered statistic simply keeps count of how often the node was visited and
the empirical reward generated in the ensuing subtree. Since action parameters
are now selected as well, the rollout policy π(s,A) for choosing an action also
returns a matching parameterization. Choosing a good rollout policy is crucial
since the optimization of parameterized actions leads to a large number of
branches and the search encounters a previously unknown part of the scenario
tree in most iterations.

The Param procedure returns exactly one parameter combination for the
current selected action a. Again, if d is higher than the depth of L[ha], then
the best leaf node is returned. Other Param is in the explorative regime. If d
is smaller than one, then the upper confidence bound is used to select the best
parameter among all parameters in the tree. If instead d points to a depth-level
inside L[ha], then a node at this depth is selected. Note that a level can become
empty when all nodes in the level have been split. If L[ha] contains the indices
of the leaf cells, then L[ha; d] denotes the first level containing leaf cells above
or at depth d.

L[ha; d] = {(c, i) ∈ L[ha] : c ≥ d, @e ∈ {d, . . . , c− 1},∃(e, j) ∈ L[ha]}

If the thus selected parameter has been sampled less than κ times, it will be
returned. Otherwise the selected cell in the parameter space is split. And the
current cell is removed from the list of leaf cells.

The POHTP algorithm can be combined with the pruning of equivalent
sequences according to Section 3.1.2. Now the equivalence applies not only
to action sequences, but to histories where every step consists of an action, an
action parameter and the resulting observation. Entire steps can be commuted if
the respective actions are independent. Note that no problem-specific structure
is exploited in the POHTP algorithm developed in this chapter.

76 3 Simulation-Based Planning for Concurrent Production Systems

β

x

Figure 3.8: The inverted pendulum problem. The goal is to perform a swing-up
of the pendulum to an angle β = 0 and to keep the pendulum in the upright
position.

3.3.4 Evaluation

Swingup of an inverted pendulum

Planning for parameterized actions is evaluated for an inverted pendulum
displayed in Figure 3.8. The inverted pendulum is one of the canonical problems
in the literature on optimal control [Lib11]. A pendulum is attached to a cart
that is free to move in the horizontal plane. The goal is to perform a swing-up to
bring the pendulum into an upright position – and keep it there – by the precise
application of an accelerating force to the cart.

The full problem definition is as follows. Assume a single system component
pend for the pendulum and a single action acc with a parameter Θacc =
[−2N, 2N] for the force applied to accelerate the cart. The cart and the pendulum
are approximated by point-masses mc and mp of 1kg each. The length of the
pendulum l is one meter. The angle of the pendulum β gives the difference from
the upright position. The position of the cartx is in meters from the point of origin.
The initial state of the pendulum is s0

pend = (β = 0.5, β̇ = 0, x = 0, ẋ = 0).
The state evolution of the pendulum is described by two coupled differential

3.3 Planning with Uncertainty and Continuous Action Parameters 77

equations for the cart position x and the pendulum angle β [FYK92]:

ẋ = −mpg sin(β) +mpl sin(β)β̇2 + u

mc +mp sin2(β)

β̇ = (mp +mc)g sin(β)−mpl sin(β) cos(β)β̇2 − cos(β)u
l(mc +mp sin2(β)

(3.9)

The simulation time is discretized into periods of 0.2s. The effect of the action
acc is the (numerical) solution to the forward simulation of Equation (3.9) for
the control value u given by the action parameter. The reward returned by acc
is a cost term associated with the resulting pendulum state s′ and the energy
expenditure for the control.

racc(u, s′) = 2‖β′‖+ x+ u2 (3.10)

By ‖ · ‖ we denote the angular distance from the upright position.
The control (acceleration) applied in each period is the result of POHTP

with 512 playouts over a horizon of 15 steps with a 0.2s time discretization.
Even though the step length is discretized, the simulation uses the Runge-Kutta
method for precise forward-simulation of the underlying differential equation.

After the 512 playouts, the acceleration parameters with the best Q-value is
selected and applied. The optimization is then repeated for the resulting system
state. This resembles optimal control based on MPC [ML99]. But as we directly
optimize on the model from Section 2, we make less limiting assumptions than
traditional MPC based on convex optimization.

As can be seen in Figure 3.9, the POHTP algorithm achieves the swing-up and
balancing of the inverted pendulum. Note that the angle plateaus at multiples of
2π due to the use of the angular distance in the cost function. Adapting the cost
function with a higher penalty for the angle leads to a more speedy swingup.
But at a greater cost for the control energy u.

Optimal Order Quantity under Uncertainty

The scenario is concerned with the operations of a pencil factory. A customer
gives the order for 50,000 pencils with his company logo on the casing. The
customer is willing to pay $2 for each pencil. No payment is made if the order is

78 3 Simulation-Based Planning for Concurrent Production Systems

0 0.5 1 1.5 2 2.5 3 3.5 4
−5

0
5

A
ng

le
β

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.2
0.4
0.6

Po
si

tio
n
x

0 0.5 1 1.5 2 2.5 3 3.5 4
−40
−20

0
20
40

Time in seconds

C
on

tro
lu

Figure 3.9: Swingup of an inverted pendulum. The initial of the pendulum is at
160 degrees (θ = 160

180π). The upper time series show the penalization for |θ|.
The lower time series show the penalization of | atan2(sin(θ), cos(θ))| where
“loopovers”, e.g. angles at a multiple of 2π are not penalized.

incomplete or arrives too late. The plastic pencil casings with the logo printing
are bought from a supplier that demands $0.5 for each casing. The production
costs in our factory are $1. So, in theory, the pencils are sold to the customer with
a margin of $0.5 each. However, some pencils do not make it through quality
control. Every pencil has a 10% chance of being sorted out by an inline quality
control system that verfies every single product. Due to the time constraints, it
is not possible to reorder additional pen casings at the supplier once production
has started. The question now is: how many pencil casings should be ordered at
the supplier initially in order to maximize the expected earnings?

In order to compare the results of our tree-search planning, we implemented
a simple “brute-force” solution technique: Monte-Carlo simulations for all
possible solutions in the relevant range. The simulation model is as follows.
Assume that n pencil casings have been delivered by the supplier. Start to
produce pencils until either 50.000 pencils are done or more than n− 50.000
casings were discarded due to quality problems (otherwise, we would continue

3.3 Planning with Uncertainty and Continuous Action Parameters 79

55000 55200 55400 55600 55800 56000
Number of Ordered Casings

100000

80000

60000

40000

20000

0

20000

40000

Av
er

ag
e

Ea
rn

in
gs

 in
 $

Figure 3.10: Expected reward for different numbers of ordered pencil casings.
The average was computed over 100 simulation runs each. The shaded area
indicates the empirical standard deviation.

losing money during production without being able to complete the order
eventually). Figure 3.10 shows the results of the Monte-Carlo simulation in
the range between 55.000 and 56.000 ordered pencil casings. The results show
a phase transition between virtually all samples not completing the order to
virtuall all samples completing the order. In the transition range, only some
orders are completed and this number differs between simulations. Therefore,
the standard deviation for the reward is much bigger in the transition range.
According to the Monte-Carlo simulations, the optimal order quantity is 55.750,
resulting in an expected reward of $1,6575. With less ordered pencil cases,
there is a high likelihood of the order not completing. Every additional pencil
case incurs higher cost than the additional likelihood of completing the order
justifies.

101 102 103

Number of Simulations

20000

10000

0

10000

Ex
pe

ct
ed

 R
ew

ar
d

in
 $

Figure 3.11: Convergence speed of the optimization for the order quantity under
uncertainty example.

80 3 Simulation-Based Planning for Concurrent Production Systems

Figure 3.11 shows the empirical reward of the best paramater after a certain
number of plays.

3.4 Planning with Linear Actions

Most manufacturing systems perform repetitive tasks. While lot sizes have
generally become smaller, most products are still produced in bulk. When many
product instances are considered individually, the action sequences can become
very long. This section identifies a large class of actions where reasoning and
planning for action repetition is simplified.

Example 3.4. Consider a stamping press that takes in raw material from
an aluminum coil. The action stamp puts the produced work-pieces of
type p1 into a lattice box adjacent to the press. Every execution of stamp
increases the number of parts in the lattice box by one and reduces the
length of the remaining aluminum coil by 2.5cm. Suppose that 20m
of coil are loaded initially. How often can stamp be repeated and how
many additional parts will be in the lattice box afterward? The answer is
of course trivial. But how can this type of reasoning be made accessible
to a planning algorithm that operates on the actions from Definition 2.4?

3.4.1 Linear Actions and Action Repetition

Reasoning about the effects of the action stamp in Example 3.4 is easy and
intuitive. The action has a fixed effect and repeating the action n times multiplies
the effect by n. We can compute the maximum number of repetitions of
stamp that are possible starting from the described initial state. It is implicit
to Example 3.4, that if the action stamp can be repeated n times, any number
of repetitions between zero and n is also possible. We now spell out these
implicit assumptions in the form of conditions that so-called linear actions have
to conform to in addition to Definition 2.4.

Definition 3.7. An action ā is linear if the following conditions hold.

3.4 Planning with Linear Actions 81

1. The effect of the action eā is the generator of a semimodule [Gol99]
Eā that is closed under composition (Eā, ◦) and multiplication with
non-negative scalars, so that (eā ◦ eā)(σā) = (2eā)(σā) for all feasible
σā.

2. Let ān denote the n-fold application of ā. If the action can be repeated
n times (that is ān−1(σ) ∈ Σā) then any number of repetitions between
zero and n is possible.

σ ∈ Σā ∧ ān(σ) ∈ Σā ⇒ ∀k ∈ {0, . . . , n}, āk(σ) ∈ Σā (3.11)

3. The action duration is identical for all feasible initial states.

∀(σ,σ′) ∈ Σā × Σā, dā(σā) = dā(σ′
ā) (3.12)

4. A constant reward rā is generated for every action repetition.

Linear actions have advantages over normal actions: First, once the maximum
number of repetitions has been established, the preconditions don’t need to be
verified for every repetition. Second, the effect of repeatedly applying the action
can be computed with analytical shortcuts instead of n-fold composition of the
effect function.

The notation for repeated application of an action resembles the notation
for action parameterization. This is intentional. Repetition of linear actions
is a special case in the general framework of parameterized actions. If a
parameterized action is also linear, the notation aθ,n indicates that the same
parameter θ ∈ Θā is applied for each of the n repetitions.

The following joke from the mathematical folklore [RD05] sets the frame for
discussing the composition of linear actions and the superposition of the effects.

A biologist, a physicist, and a mathematician sit in a street café watching the
crowd. Across the street they see a man and a woman entering a building. Ten
minutes later they reappear together with a third person.

biologist: They have reproduced.
physicist: The measurement wasn’t accurate.

82 3 Simulation-Based Planning for Concurrent Production Systems

mathematician: If exactly one person enters the building now, it will be
empty again.

The mathematician treats the operators “person entering the house” and
“person leaving the house” as elements from an algebraic group (entering is
the inverse of leaving). The group is indeed closed under composition. But
the operator resulting from the composition does not apply to all situations.
Obviously, there can be no negative number of people in the house. Translated
to our case, components cannot contain a negative number of products. This
universal constraint has ramifications on the definition of linear action.

Suppose that for the considered linear action ā, the participating components
Cā can hold products inside the component. So their state is described by a
tuple s = (ξ,p) for the configuration ξ and the number of contained products
for every product type p (cf. Section 2.1). Definition 3.7 implies a linear effect
on the contained products in the components. This effect can be expressed
by a fixed change vector δāc ∈ Z|P |. So for a state transition σ′ = ā(σ) and
component c ∈ Cā, the state transition is between sc = (ξ,p) and s′

c = (ξ′,p′)
and the product change is p′ = p + δāc .

Since the number of products in the component cannot be negative, there
is a universal positivity constraint for all linear actions. The feasible states all
conform to the positivity constraint Σā ⊆ Σ+

ā .

Σ+
ā = {σ ∈ Σ : ∀c ∈ C̄ā, σc = ((ξ,p), t), p + δāc � 0} . (3.13)

For many linear actions, the condition (3.11) can be shown to hold with a
convexity argument. This is illustrated by the following example.

Example 3.5. This example builds on the previous Example 3.4. Suppose
stamp is a linear action with the participating components Cstamp =
{box, press}. The lattice box has no particular configuration state
and Ξbox = ∅. The configuration of the press ξpress = (ξtool, ξcoil)
consists of the press tooling for either product p1 or p2 and the remaining
length of the coil. So the configuration space for the press is Ξpress =
{p1, p2}×R+. An additional condition of the press is that at least 50cm

3.4 Planning with Linear Actions 83

of coil need to remain after the action in order to facilitate replenishing.
The condition of the lattice box is that the maximum load of 300kg shall
not be exceeded.
The effect on the products in the lattice box δstamp

box = νp1 contains
mostly zeros with a single one-entry at the p1 position. There is no
effect on the lattice box configuration. So the effect on the box is
(nestamp)(σstamp)box = (∅,pbox + nνp1). Let the vector µ describe the
weight of every product. Then the initial states that are feasible for the
lattice box are

Σstamp:box = {σ ∈ Σ : µ>(pbox + νp1) ≤ 300} .

The action has no effect on the products contained in the press and
δ

stamp
press = 0. (As before, 0 is the null-vector of appropriate size). For

simplicity, we refer to the state after executing stamp as σ′ (with
analogous notation for its components). The action has no effect on the
tooling of the press ξ′

tool = ξtool and the remaining coil length is reduced
by a fixed amount ξ′

coil = ξcoil − 2.5. So the n-fold repetition has the
following effect (nestamp)(σstamp)press = ((ξtool, ξcoil − 2.5n),0). At
least 50cm of coil need to remain in the press and

Πpress(Fstamp) = {σ ∈ Σ : ξcoil − 2.5 ≥ 50} .

The valid initial states for stamp must lie in the feasible set for both the
press and the lattice box. In addition, no negative number of products
must be contained in a component is given by the positivity constraint
Σ+

stamp. In total, the feasible states for beginning the action are

Σstamp = Σstamp:box ∩ Σstamp:press ∩ Σ+
stamp .

The following proof sketch shows that (3.11) holds for stamp. Let
ψ(σ) = (pbox, ξcoil) a projection of the set of feasible initial statesX =
{ψ(σ) : σ ∈ Σstamp}. The three constraints Σstamp:box, Σstamp:press and

84 3 Simulation-Based Planning for Concurrent Production Systems

Σ+
stamp are then expressed as a system of linear inequalities for all x ∈ X .

−µ> 0

01×|P | 1

I |P | 0

x �

µ>δstamp

box − 300

52.5

−δstamp
box

 . (3.14)

Since X is equivalent to {x ∈ (N|P |
0 × R) : condition (3.14) is true},

the space of projected valid initial states is convex. The effect of stamp
on X is described by a linear operator f(x) = x + (δstamp

box , 2.5). The
operators stamp and f are related as ψ ◦ stamp = f ◦ ψ. The n-fold
application of f is a linear equation. Due to the described convexity
property of X , for all n ∈ N0 and initial state representations x ∈ X ,
there is

(
x+n

δstamp
box

2.5

)
∈ X ⇒ ∀k ∈ {0, . . . , n},

(
x+k

δstamp
box

2.5

)
∈ X .

Since for every x ∈ X there exists at least one σ ∈ Σstamp such that
x = ψ(σ), the linear action stamp satisfies Equation 3.11.

3.4.2 MILP Relaxation of the Planning Problem

Linear actions were introduced with the promise to simplify reasoning and
planning of action sequences with many repetitions. Now we relax the planning
problem with linear actions so that it can be solved as a Mixed-Integer Linear
Program (MILP) [BW05]. The MILP formulation can be solved with off-the-
shelf solvers [Gur16]. In constrast to MCTS, the planning complexity for the
relaxed planning problem is mostly independent of the number of repetitions for
each action. Used as part of a rollout policy, the MILP relaxation allows the
scaling to scenarios with hundreds of individual products that are considered at
once. On the downside, it imposes limits on the model dynamics that can be
represented.

3.4 Planning with Linear Actions 85

Assumption 3.8. In the remainder of this chapter, the following two assumptions
are made.

1. All considered actions are linear.

2. The constraints for the feasible initial states Σa, only refer to the number
of contained products and not the component configuration.

3. All actions can be executed “in parallel” even if they have the same
components participating and their effect superimposes for the final
system state.

In the Example 3.5, suppose a second action take that takes out one finished
piece from the lattice box. In order to take out 500 pieces, we need to run stamp
500 times as well. Now that we assume actions can run “in parallel” on the
same components, how can the preconditions for the feasible initial states be
represented? So far we have worked with feasible initial states Σa. For linear
actions, this can be transformed to the set of feasible post-states Γa ⊆ Σ.

Γa = {σ ∈ Σ : ∃ω ∈ Σa, σ = a(ω)} (3.15)

For linear actions with a fixed effect vectors δac , the conversion between Σa and
Γa can be achieved by a simple translation of the constraints describing the set
Σa. Instead of tracking the feasible initial states before the execution of the
actions, we only demand that the final system state, when each action has been
repeated the desired number of times, is a feasible post-state for all the actions.

Every action and every component are assigned an index from {1, . . . , |A|}
and {1, . . . , |C|} respectively. Let x = (pc)c∈C denote the concatenated
column vector for the products initially contained in the different components.
So x is a vector with |C||P | elements. In the second statement of Definition 3.7,
it is demanded that a feasible n-fold repetition indicates that any number of
repetitions between zero andnmust be feasible. Since the effect on the number of
contained products (and only these are considered here) is linear, the constraints
for the feasible initial states must be the intersection of a convex set with the
set of integers. Otherwise, it would be possible to find a system stat σ where
the action a in question can be executed n times but not n − 1 times. As the

86 3 Simulation-Based Planning for Concurrent Production Systems

constraints encoded in Σa (and therefore also Γa) are convex in that sense, they
can be represented as the intersection of half-spaces via a set of linear inequalities
[BV04] defined by a matrix Ha and vector ga, such that Hax � ga.

In a production scenario, most actions are associated with costs for material,
energy, worker’s wages, and so on. But some actions have positive reward, such
as finishing an order for the customer. After completing the order, we could
make more products. But if the customer won’t pay for them they only incurr
costs. This is represented for the MILP as follows: Denote with the vector n the
number of repetitions for each action. The vector r contains the costs incurred
for every repetition of the actions.

Goals are defined by a number of target repetitions ng ∈ N |A|
0 for every

action. Each repetition of the action a up to nga yields the additional goal reward
rga. The total goal reward for the repetitions n – in addition to the reward
generated from each action’s fixed reward ra – is∑

a∈A

[
min{na, nga} rga

]
. (3.16)

The MILP computes (3.16) by the introduction of a slack variable v that counts
the missing repetitions for each action according to the goal definition. The
objective function takes the reward for reaching all goals and subtracts the
missing repetitions according to the slack variable.

The column vector δa ∈ N|C||P | describes the effect of action a on the
products contained in all components. These effect vectors are assembled to a
matrix ∆ ∈ Z|C||P |×|A| for the effect across all actions.

δa = (δac)c∈C , ∆ = [δ1, . . . , δ|A|] (3.17)

The post-state after executing all action repetitionsn isx′ = x+∆n. Optimizing
the repetitions to maximize the reward under the defined constraints then gives
the MILP formulation:

V̄ (x,ng, rg) = max
n∈N|A|

0

[
n>r− v>rg

]
+ ng>rg (3.18)

3.4 Planning with Linear Actions 87

such that

x + ∆n = x′ (3.19)

Hax′ � ga, ∀a ∈ A (3.20)

n + v � ng (3.21)

x′ � 0, n � 0, v � 0 (3.22)

x′ ∈ R|C||P |
0 ,n ∈ N|A|

0 , v ∈ R|A|
0 (3.23)

Function V̄ approximates the value of the system state x (with only the contained
products) for optimal decision making in the MILP relaxation. The goal is to
maximize the reward, including the goal reward. The constant additive term
ng>rg can be removed for the actual optimization. But it is required to recover
the actual V -value for the relaxed planning problem including the goal reward.
Lagrangian relaxation is used to penalize if an action a is repeated less than
nga times. The slack vector v gives the number of repetitions lacking for every
action. (If the goal is met, the slack variable is zeroed out by the optimizer.) In
practice, the dimensionality of x and ∆ can be reduced by considering only the
products that are actually referred to by the linear actions. The maximum number
of repetitions for each action is nmax. This maximum number of repetitions is
only introduced to model binary values: The vector m contains binary values
for the fixed reward incurred if an action is repeated at least once.

The constraints for the optimization are as follows. The post-state x′ after
all repetitions have been executed is computed in (3.19). The post-conditions
for all actions must hold simultaneous for x′ according to (3.20). In (3.21), the
slack value v is set to the number of missing repetitions according to the goal
definition. The constraints in (3.22) ensure that the number of products in the
final state, the number of repetitions and the slack repetitions are all non-negative.
In (3.23), the repetitions n are required to be integers. The number of remaining
products x′ and the slack v are real values. But they will only take on integer
values since the repetitions are a natural number and the system dynamics in ∆

leads to integer changes.

For every action selection in the rollout policy, the relaxed planning problem
is solved. Actions that are slated for zero repetitions by the relaxed solution and

88 3 Simulation-Based Planning for Concurrent Production Systems

actions that are not immediately executable due to their preconditions are ignored.
A sensitivity analysis is performed for the remaining actions: For every action a
modified version of the original MILP is solved where the number of repetitions
for that action is fixed to be one less than in the original solution. The difference
of the new solution in the objective function is a grade for “importance” of that
action. The rollout policy then returns the action with the highest importance
and the number of repetitions chosen for the action via the MILP relaxation.

Algorithm 13 Rollout policy for linear actions. Takes as input the current state
and returns a linear action for the next step and its repetitions.

1: procedure πlinear(σ,h,ng, rg)
2: x← (pc)c∈C . State vector of contained products in all components
3: n∗ ← V̄ (x,ng, rg) . Optimal repetitions in the MILP relaxation
4: B ← {b ∈ A : σ ∈ Σb ∧ n∗

b > 0 ∧ TestLNF(h, b)}
5: b ∼ U(B) . Uniform sampling among the eligible actions
6: n′ ← max{m ∈ {1, . . . , n∗

b} : bm−1(σ) ∈ Σb}
7: return (b, n′)

The above description of the setting can be translated to a MILP. Since all
actions are linear, no additional relaxations are required besides the assumption
that actions can execute “in parallel”. By using the solution to the linear program
to guide the rollout, the global optimum is found already in the first rollout.

3.4.3 Evaluation

Consider a simplified supply chain for the production of mobile phones. See
Figure 3.12 for an overview. The OEM (Original Equipment Manufacturer)
owns the phone brand as well as production sites for soldering, assembly and
packaging. Parts are bought from suppliers. The final phone is assembled from
a case, a battery, a screen and a PCB (printed circuit board) with a chipset
soldered on. If the production capacity of the OEM is insufficient, assembled
phones can be bought from an external contract manufacturer. The cost for
soldering, assembly and packaging are $10 each. Transportation costs are not
assumed for the example. The following prices are demanded by the suppliers.

3.4 Planning with Linear Actions 89

PCB2

Chipset

PCB1

Soldering Assembly Packaging

Case

ExternalBattery Screen

4000 1000

5000

5000

5000 5000

5000

5000

1000

6000

Figure 3.12: Supply chain example. The arrows denote the possible number of
transported products between production sites and suppliers.

• PCB1: $5

• PCB2: $2

• Chipset: $20

• Battery: $30

• Screen: $30

• Case: $10

• Assembled Phone: $150

The supplier PCB1 has limited stock and can deliver at most 1,000 PCB. The
chipset supplier has limited stock of 5,000 remaining chipsets. As a consequence,
the first 1,000 phones cost $122 to make (bill of material and production costs).
PCB for additional phones have to be bought from the alternative supplier PCB2
at a higher price. The phones then cost $125 to make. For more than 5,000
phones, the required chipset is no longer available. But assembled phones can
still be bought from the contract manufacturer. This comes at the increased cost
of $160 for each phone: $150 for the phone and $10 for branding and packaging.
So buying from the contract manufacturer is more expensive than producing the
phones in the OEM’s production facilities. It might however be required to buy
assembled phones in order to complete a large order.

Consider now a scenario where a customer orders 6,000 phones for the price
of $175 each. What are the maximum earnings (revenue minus cost) the OEM
can achieve in each scenario? For this supply-chain example, the optimization
problem was solved exactly by the MILP. Hence the decisions by the rollout
policy immediately led to the globally optimal action and parameter sequence.
(This is not the case for all planning problems. For example when only a subset

90 3 Simulation-Based Planning for Concurrent Production Systems

of the actions is linear.) The MILP was solved with the commercial solver
Gurobi [Gur16]. For details, refer to the literature for optimization of convex
functions and optimization over integers [BV04; BW05]. The phones are sold
for $1,050,000 and were produced at a cost of $762,000. This leaves a profit
margin of $288,000.

4 Distributed Planning for Self-Organizing
Production Systems

Outside the firm, price movements direct production, which
is co-ordinated through a series of exchange transactions
on the market. Within a firm, these market transactions are
eliminated and in place of the complicated market structure
with exchange transactions is substituted the entrepreneur-
coordinator, who directs production. It is clear that these
are alternative methods of coordinating production. Yet,
having regard to the fact that, if production is regulated by
price movements, production could be carried on without
any organization at all might we ask, why is there any
organization?

Ronald H. Coase [Coa37]

The coordination of industrial production is historically performed either
by a central planner or market-mechanisms for coordination. The former is
fraught with the problem of keeping the model for planning up-to-date and
the complexity of planning itself. The latter has the problem of suboptimal
solutions arising from market-based coordination. The core idea of markets is
to have selfish participants maximize their personal gain. Under some technical
conditions, markets are “efficient” for the incorporation of information into
prices and the allocation of goods according to a preference function of the
buyers [MF70]. From Game Theory, we know the existence of suboptimal
equilibria in situations with competing agents where no participant has an
incentive to change his strategy even though an equilbrium with higher overall
welfare exists [Nas51]. In this thesis we instead assume cooperating agents that
aim to jointly maximize the overall reward.

92 4 Distributed Planning for Self-Organizing Production Systems

This chapter extends the model from Chapter 2 to include multiple agents
that coordinate their actions in a distributed fashion. Afterwards the POHTP
algorithm from Chapters 3 is adapted for the distributed setting. The result is a
distributed planning algorithm where agents exchange messages for coordination
via “utility propagation”. The postulate for this chapter is the following:

Independent agents can jointly perform planning in a pro-
duction scenario where every agent only has a simulation
model of the system part in his visible scope.

4.1 Background: The Generalized Distributive Law

Judea Pearl introduced Belief Propagation (BP) as a way to efficiently compute
inference tasks on (conditional) probability distributions [Pea88]. The algorithms
that perform BP have become known as “message passing” algorithms since they
are based on the exchange of messages representing conditional distributions
between nodes in a graph [KF09]. In the years following the publication of
[Pea88] the similarities between BP and other preexisting techniques in different
scientific communities have been discovered. The common core of these
techniques has been developed into the Generalized Distributive Law (GDL)
family of algorithms [AM00; KFL01]. The GDL comprises as special cases the
Baum-Welch algorithm for state estimation in Hidden Markov Models [Wel03],
the Max-Plus algorithm for finding the maximum a-posteri event in a probability
distribution, Turbo codes for error correction on noisy communication channels,
and many more. We now summarize message passing for the distributed
optimization of a function. Full proofs are omitted here. They can be found
together with more pointers to the literature in [AM00; KF09].

The function g : X → R is defined for the domain X . For simplicity, let
X contain only a finite number of members. The domain decomposes into
variables v such that X = ×v∈VXv. We write x ∈ X for the vector with

4.1 Background: The Generalized Distributive Law 93

fbc

fc

fab

fa

fbd

fd

Figure 4.1: Factor graph for a problem decomposition. Factors that share are
variable are neighbors and connected with an edge. The subscript indicates the
variables in the domain of the factor.

entries xv ∈ Xv . The function g decomposes into a sum of factors f ∈ F .

g(x) =
∑
f∈F

f(xf)

Every factor depends on a subset of the variables Vf ⊆ V and Xf = ×v∈Vf
Xv .

In the context of a vector x, the projection of x on the variables in the domain of
f is written as xf . The goal is to find the maximizer x∗ = arg maxx∈X g(x).
Usually, the optimization for each factor arg maxxf ∈Xf

f(xf) is much easier
as it only has to consider a fraction of the full domain X .

Now we constrain the domain for the optimization by fixing some of the
variables. Assume that the variables in the scope of the factor f have been fixed
to some yf ∈ Xf . The optimization problem with this additional constraints is
said to be conditioned on yf :

arg max
x∈X | yf

g(x) (4.1)

Since the domainXf is finite, we can write a table with the results of Equation 4.1
for each yf ∈ Xf . This changes the perspective of the optimization. We can
ask which yf ∈ Xf is best, knowing what the optimal “reaction” will be.
Tabular representations of this kind (for finite domains) are the messages that
are exchanged in the message passing algorithms.

94 4 Distributed Planning for Self-Organizing Production Systems

If the factors form a tree-graph, then the computational effort for solving
the optimization problem can be reduced drastically. Figure 4.1 represents the
factors of an example problems as nodes. The factor name indicates the variables
in the factor domain. So the factor fbd has the domain Xfbd

= Xb ×Xd. This
tree structure is a so-called junction tree with respect to the variables of each
factor [Cow+99]. In a junction tree, nodes can be connected (are neighbors) if
they share at least one variable. They don’t have to be connected if they share a
variable. But if they do share a variable, then all nodes on the paths between
these two nodes must also refer to that variable. An example in Figure 4.1 are
the nodes fab and fbd. They share the variable b. So all nodes on a path between
fab and fbd must have b in their domain for the graph to be a junction tree.

On a tree-graph, every edge separates the tree into two otherwise unconnected
halves. Take the edge (fab, fbc) in Figure 4.1. Cutting at the edge splits the set
of factor functions into disjoint sets F = Fab ∪ Fbc. This results in two smaller
optimization problems gab(x) =

∑
f∈Fab

(xf) and gbc(x) =
∑
f∈Fbc

(xf).
Note that, given a fixed assignment to xb, the two subproblems are “conditionally
independent” from one another. That is, for a fixed xb, the overall optimization
problem can be solved by optimizing each subproblem individually and merging
the partial solutions.

By convention, we denote the nodes representing factor functions as i and
j ∈ N(i). The set N(i) contains the neighbors with a direct edge to i. The
subtree behind the edge (i, j) on the side of i contains the factor functions
Fi→j ⊆ F . The factors i and j share the variables Vij = Vi ∩ Vj with the
domain xij ∈ Xij . The message sent from i to j then is (a tabular representation
of) a function mi→j : Xij → R. It contains the value of the best-possible
solution for the subproblem with the factors Fi→j conditioned on the shared
domain.

mi→j(yij) = arg max
x∈X | yij

∑
f∈Fi→j

f(xf) (4.2)

In the junction tree, the messages mi→j can be computed in such a way that
the computation at every node i only considers the domain Xi.The result of
Equation 4.2 can then be computed by only considering the local factor and the

4.1 Background: The Generalized Distributive Law 95

received messages:

mi→j(yij) = arg max
xi∈Xi | yij

[
fi(xi) +

∑
l∈N(i)\{j}

ml→i(xil)
]

(4.3)

In a so-called forward-backward pass, the messages are first sent out by the edge-
nodes with only one neighbor. Here, computing the message with Equation 4.2
is straightforward, as it only requires access to the factor function of the node
itself. Other nodes compute and send out a message to their neighbor j as
soon as a message has arrived from all other neighbors (not considering the
receiving neighbor j). In a tree-graph, the exchanged messages converge after a
forward-backward pass when a message has been sent over every edge in both
directions. Every node i then chooses the solution

arg max
xi∈Xi | yij

[
fi(xi) +

∑
l∈N(i)

ml→i(xil)
]

(4.4)

from his domainXi. If the solution of Equation 4.4 is unique at every node, then
the nodes agree with respect to the assignment of shared variables and the joint
assignment of values to x is optimal. Additional communication is required to
break ties. In practice, small random disturbances added to the values of the
exchanged messages prevent ties effectively. Message passing generally works
on loopy graphs as well. The convergence is then not guaranteed. Still, the
results are often surprisingly good. If convergence in a loopy graph is achieved,
the solution quality can be characterized according to the so-called Bethe free
energy [YFW01].

The algorithm just presented is known under the name “Max-Plus” or “Max-
Sum” according to the operations for joining partial solutions and marginalization.
The general approach also works in any algebraic semiring where the operators
max and + are replaced with their respective counterparts. The underlying
principle of the message-passing algorithm is traced back to the distributive
property of the two operators of the semiring, hence the name Generalized
Distributive Law. In this text, we are only considering the GDL for finite domains.
See the publication [WJ+08] for the application of the GDL to inference on
continuous probability distribution from the exponential family.

96 4 Distributed Planning for Self-Organizing Production Systems

4.2 A Model of Distributed Concurrent Production Systems

The established models for multi-agent coordination decompose the planning
problem in such a way that the sets of actions available to each agent are disjoint.
Compare for example with the popular MA-STRIPS [BD08] and DEC-POMDP
[BZI00] models. We take a different route. The actions available to every agent
and the components that are visible in their scope overlap. This overlap is the
common language that is required for coordination. Informally spoken, the
overlap acts as the “hinge” between the per-agent models.

Definition 4.1. A distributed planning problem is represented by a tuple(
C,A,σ0, I, {Ci, Ai, ri}i∈I

)
.

The definitions for the set of components C, the actions A and the initial
system stateσ0 are identical to the central planning problem from Chapter 3. The
additional agents i ∈ I each have a limited scope with regards to the part of the
overall system that is visible to them. This is reflected in the visible components
Ci ⊆ C, and the actionsAi ⊆ A with parameters from Θi. The joint state of the
components in the scope of i is σi with the state-space Σi = ΣCi

. Each agent
has a private reward function ri : Σi×Ai×Θi×Σi → R. The components and
actions in the scope of two agents i and j can overlap. The shared components
and actions are Cij = Ci ∩ Cj and Aij = Ai ∩Aj . Two agents are considered
neighbors if they share a component in their scope. The set J(i) contains
the neighbors of the agent i. The neighbor relation is of course symmetric
j ∈ N(i)⇔ i ∈ N(j).

J(i) = {j ∈ (I \ {i}) : Ci ∩ Cj 6= ∅}

Example 4.1. Consider again the manufacturing scenario from Ex-
ample 2.2. Now, two agents jointly control the system. One agent is
responsible for production and the other for packaging. Each agent has
only a subset of the system components in his local scope. The lattice

4.2 A Model of Distributed Concurrent Production Systems 97

box in the middle is in the scope of both agents. See Figure 4.2 for
details.
The agents see all actions where a component in their scope par-
ticipates. Therefore, Cprod = {produce, put, take} and Cpack =
{put, take, package}. But since the agent prod has no visibility for
the packaging robot, he can only have a partial view on the action take.
The same is true for the pack agent and the action put.

produce put take package

Scope of the agent prod

Scope of the agent pack

Figure 4.2: Minimal production scenario from Example 2.2 with two
agents and their respective scope.

Every agent i is equipped with a simulation model of the components and
actions in his scope. An agent may have actions a in his scope where some
of the components participating in the action are outside of the scope of i so
Ca * Ci. It would be preferable that all actions entirely fit into the scope of
every participating agent. But then we could not correctly model interactions
across the boundaries of an agent scope. Take the situation of Example 4.1.
Products are moved from the machine tool to the packaging robot. For this,
the products leave the scope of the agent prod and enter the scope of the
agent pack. The component of the lattice box is shared by both agents. More
formally, box ∈ (Cprod ∩ Cpack). The agent prod must be able to predict – in
his private model of the system dynamics – when the lattice box will be free
again. But he does not see the packaging robot who takes out products. If the

98 4 Distributed Planning for Self-Organizing Production Systems

action representations for the individual agents were to include all participating
components and the agents know all actions that act on components in their
scope, then the agents would have to keep all components C in their scope.

To overcome this, each agent has an internal representation of the actions that
only describes the preconditions and effect on components that are in the agents
scope. In Example 4.1, the agent prod has a partial representation of the action
take to work with action sequences where multiple products are sequentially
moved to pack. From the perspective of the agent prod, the products simply
disappear when they are actually moved to the component package. The
remainder of this section spells out the assumptions that are required for the
agents’ individual partial system models to be mutually compatible. This is
required for the distributed planning methods introduced in the later sections of
this chapter.

Definition 4.2. Based on Definition 2.4, the projection of an action a to the
scope of an agent i is

ai = (Ca,i, Σ̄a,i, ea,i, da,i)

• with participating components Ca,i = Ca ∩ Ci,

• feasible initial states Σ̄a,i = ΠCa,i
(Σ̄a), and

• effects and durations ea,i : Σ̄a,i → SCa,i
and da,i : Σ̄a,i → R+.

Similar to the global action definition, per-agent actions ai are operators on
the domain Σa,i = {σi ∈ Σi : ΠCa,i

(σi) ∈ Σ̄a,i}. The full operator signature
is ai : Σa,i → Σi.

Assumption 4.3. If a component in the scope of an agent i participates in an
action a, then the projected action ai is in the scope of that agent.

∀i ∈ I, ∀a ∈ A, Ca,i 6= ∅⇒ ai ∈ Ai

The participating agents of the action a are those with at least one participating
component in their scope Ia = {i ∈ I : Ca,i 6= ∅}. From the definition
of Σ̄a,i, the projected action imposes less constraints on the feasible initial

4.2 A Model of Distributed Concurrent Production Systems 99

states. The inverse projection of the feasible set is Π−1
Ca,i

(Σ̄a,i) = {σ ∈ Σ :
ΠCa,i

(σ) ∈ Σ̄a,i}. Since less constraints are imposed on feasible initial states
Σa ⊆ Π−1

Ca,i
(Σ̄a,i). So there may be global states σ where agent i beliefs σi

to be feasible for his projected action ai so that σi ∈ Σa,i but which are not
feasible for the original action σ /∈ Σa. In order to prevent the agents from
jointly selecting an action that is infeasible for the current global system state σ
(and possible damaging equipment or endangering human operators) we assume
that the action definitions and the decomposition into agents does not lead to
infeasible action selections if the agents jointly agree on the feasibility.

Assumption 4.4. If the participating agents i ∈ Ia agree that action a is feasible
based on their individual projected action ai with preconditions Σa,i, then the
action is also globally feasible.(⋂

i∈Ia

Π−1
Ca,i

(Σ̄a,i)
)
⊆ Σa

Assumption 4.4 implies restrictions for the possible preconditions with respect
to timing and synchronization between agents. The feasibility of an action can
not depend on the simulation time of a participating components outside the
scope of a participating agent. Otherwise, it would be possible to construct
situations where all agents jointly, but incorrectly, belief an action to be feasible.
Suppose a situation where molten iron ore is transferred from a component
exclusively in the scope of agent i to a component exclusively in the scope
of agent j. The global action for the transfer rightly imposes constraints on
the simulation time to ensure that the component with the molten ore does
not idle for too long. But this timing constraint cannot be represented in the
projected action for either agent, violating Assumption 4.4. If timing conditions
are critical, then all participating need to be in the scope of the agents.

In addition to assumptions for the feasible initial states, we limit the effect
so that the post-state of the components Ca,i is correctly predicted by ai. That
means for deterministic scenarios that the effect on the components Ca,i follows
from the initial state of the Ca,i. In stochastic scenarios, the distribution
for the post-states of the components Ca,i is conditionally independent from
components outside of Ca,i.

100 4 Distributed Planning for Self-Organizing Production Systems

Assumption 4.5. If an action a has a participating agent i, then the effect on
the components Ca,i is determined by the initial state of the components Ca,i
only. If the action is deterministic, then

∀σ,ω ∈ Σa, σa,i = ωa,i ⇒ ΠCa,i
(ea,i(σ)) = ΠCa,i

(ea,i(ω)) .

If the action is stochastic, so that the post-state and observations are sampled as
(σ′,oa) ∼ a(σ) with s′ the untimed state of the components from σ′, then

(s′
a,i,oa,i |σa,i) ⊥ σC\Ci

.

Note that Assumption 4.5 restricts the effect on the resulting state sa,i, but
not on the resulting simulation time of the components. This allows the time
synchronization of components across the scope of a single agent.

Last, we require that the reward generated by the actions does not depend on
the simulation time of the components. This will become important later on,
when the agents predict their reward based on an internal simulation model that
is restricted to their scope.

Assumption 4.6. For any two system states σ and σ′ where the untimed
component states are identical s = s′, the reward from any feasible action a is
identical

r(σ, a, θ, a(σ)) = r(σ′, a, θ, a(σ′)) . (4.5)

If an action a is completely outside the scope of agent i, then the projection
is the identity action ε – also used to denote an empty action sequence. The
identity action can be simply omitted in an action sequence.

Ca ∩ Ci = ∅⇒ ai = ε

Action sequences w are projected to the scope of agent i as

Πi(w) = wi = (wki)k∈{1,...,|w|} .

Since actions project to the identity ε for an agent i that is not participating in
it, the sequence wi may contain less elements than w. We continue to use the

4.2 A Model of Distributed Concurrent Production Systems 101

same index notation k for both global and per-agent action sequences and make
the number of sequence members explicit only when this is needed.

As described in Section 2.1, the set W = A∗ contains all action sequences
of finite length generated from a set of base actions A. It implies a tree-graph
where every edge denotes an action that is appended to the previous sequence.
The sequence trees Wσ with a defined initial state σ contains only feasible
sequences starting from the initial state. The sequence treeWi = A∗

i considered
by the agent i contains all sequences formed from the actions in i’s scope. The
sequence tree Wσ

i contains the sequences from Wi that agent i beliefs to be
feasible starting from the initial state σi. The inverse projection of the per-agent
sequence tree Π−1

i (Wσ
i) contains all global sequences that are compatible with

(project to) a sequence from Wσ
i and that are also feasible for some compatible

initial state ω with ωi = σi.

Π−1
i (Wσ

i) = {w ∈W : ∃ω ∈ Σ, ωi = σi, w ∈Wω, wi ∈Wσ
i } (4.6)

Since the considered system dynamics takes concurrency into account, the
index of an action in the action sequence could no longer coincide with the order
in which the actions are executed according to the simulation time. The state of
component c after executing the first k actions is w:k(σ)c = σkc = (skc , tkc).

Proposition 4.7. From the Assumptions 4.3, 4.4 and 4.5 follows that for any
global state σ ∈ Σ and agent i ∈ I(⋂

j∈I
Π−1
j (Wσ

j)
)

= Wσ ⊆ Π−1
i (Wσ

i) .

Proof. Consider the subset relation Wσ ⊆ Π−1
i (Wσ

i). Assume there exists
a sequence v ∈ Wσ. But an agent i beliefs that the projected sequence is
not feasible for his scope so that v /∈ Π−1

i (Wσ
i). Let k the index in v where

v:k ∈ Π−1
i (Wσ

i). Such a k must exist since the empty sequence that is always
feasible. From Equation 4.6 the agent i regards the shortened sequence as feasible
Πi(w:k) ∈Wσ

i . A consequence of Assumption 4.3 and Assumption 4.5 is that
the agent i correctly predicts the (untimed) system state of the components in

102 4 Distributed Planning for Self-Organizing Production Systems

his scope based on the projected sequence w:k
i .

∀σ ∈ Σw:k , σ′ = w:k(σ), ωi = w:k
i (σi), s

σ′
i

i = sωi
i

Here, sσ
′

i and sωi
i denote the untimed state of the components in i’s scope in

the respective timed state vectors σ′ and ωi. Since w ∈ Wσ we know that
σ′ ∈ Σwk+1 . From the preconditions of projected action from Definition 4.2 it
must be that ωi ∈ Σwk+1,i. This contradicts the initial assumption.

We first show that
(⋂

j∈I Π−1
j (Wσ

j)
)
⊆ Wσ. Assume an action sequence

u where u /∈ Wσ and u ∈
(⋂

j∈I Π−1
j (Wσ

j). There exists an index l such
that the subsequence u:l is contained in Wσ but u:l+1 is not. Let σ′ = u:k(σ).
The agents agree that their projection of uk+1 is feasible ∀i ∈ I, σi ∈ Σuk+1,i.
(The identity action ε is always feasible.) But σ′ /∈ Σuk+1 . This contradicts
Assumption 4.4. The equality relation

(⋂
j∈I Π−1

j (Wσ
j)

)
= Wσ is then a

direct consequence of the previously established fact that for all agents j ∈ I
the set Π−1

j (Wσ
j) is a superset of Wσ

Proposition 4.7 summarizes the first important result for distributed planning
from this section. All feasible global sequences are projected to a feasible
sequence from the standpoint of the individual agents. On the other hand, an
individual agent could assume a sequence wi to be valid that has no feasible
global counterpart. If the agents however jointly agree on a sequence by each
considering the projection to their scope, then the sequence is globally feasible.

4.3 Distributed Planning for Deterministic Action Sequences

The sequence tree shared between two agents i and j ∈ N(i) is written as
Wij . It contains all sequences of the joint actions Wij = (Ai ∩ Aj)∗. Note
that the sequences in Wij may be unfeasible. They are partial sequences and
each agent has to “fill the holes” for the components in his scope. Based on a
(partial) sequence wij ∈Wij , the sequence tree of the individual agent i can be
conditioned to contain only sequences that are in accordance with the shared
sequence wij .

4.3 Distributed Planning for Deterministic Action Sequences 103

Definition 4.8. For an action sequence vij ∈Wij shared by the agents i and
j ∈ N(i), the conditional tree Wσ

i |vij contains only those sequences for agent
i whose projection to Wij is compatible with vij in the following sense.

Wσ
i |vij = {wi ∈Wσ

i : wij = vij}

Example 4.2. Consider the two agents from Example 4.1 and an initial
state σ where no component contains products.

ε

produce

put

take

produce

put

...
...

produce

take

put

...
...

(a) Wσ
prod|vprod,pack

ε

put

take

put

take

put

...

(b) vprod,pack

ε

put

take

package

put

take

...
...

put

package

take

...
...

(c) Wσ
pack|vprod,pack

Figure 4.3: Conditioned sequence trees of two agents.

Every agent internally considers the sequence tree Wσ
prod and Wσ

pack

respectively. By imposing the shared sequence vprod,pack, the agents
sequence trees are pruned to the conditional sequence trees shown in
Figure 4.3b, Also compare with the sequence tree for the overall scenario
from Figure 2.3.

104 4 Distributed Planning for Self-Organizing Production Systems

For a given initial state σ, the global reward generated from a history w is

r(σ,w) =
|w|∑
k=1

r
(
w:k−1(σ), wk,w:k(σ)

)
.

The local reward for the agents i ∈ I (who know the initial state of the
components in their scope σi) is

ri(σi,wi) =
|w|∑
k=1

ri
(
w:k−1
i (σi), wki ,w:k

i (σi)
)
.

Now, we can state the planning problem for action sequences as a factorized
optimization problem with factors ri and overlapping factor domains Wi.

Proposition 4.9. If the reward generated by the actions a is factorized into
per-agent reward as r(σ, a,σ′) =

∑
i∈I ri(σi, ai,σ′

i), then the reward r(w)
for a global action sequence w factorizes to the sum of the per-agent reward
functions ri : Wi → R.

r(σ,w) =
∑
i∈I

ri(σi,wi)

Proof. Take the following sequence of equations. The gist of the proof lies in
the equality between the Equations 4.7 and 4.8.

r(σ,w) =
|w|∑
k=1

r
(
w:k−1(σ), wk,w:k(σ)

)
(4.7)

=
|w|∑
k=1

∑
i∈I

ri
(
w:k−1
i (σi), wki ,w:k

i (σi)
)

(4.8)

=
∑
i∈I

|w|∑
k=1

ri
(
w:k−1
i (σi), wki ,w:k

i (σi)
)

=
∑
i∈I

ri(σi,wi)

First, Proposition 4.7 guarantees that for any system state σ and feasible
sequence w the projected sequence wi is feasible for the projected system state
wi. Secondly, from Assumption 4.5 follows that knowledge of wi suffices to

4.3 Distributed Planning for Deterministic Action Sequences 105

determine the untimed state of the components Ci. Third, the agents reward
depends only on the untimed state of the components in their scope according to
Assumption 4.6. Therefore the reward of the individual agents is determined by
just the components in their scope and the action sequence projected to their
scope.

Definition 4.10. The V-value of the agent i with agent-state σi is the sum of
rewards generated by the best feasible action sequence from the perspective of
the agent.

vi(σi) = max
wi∈Wσ

i

ri(σi,wi)

We are not discounting later reward to compute the V-value. Instead it is
implied that the tree W either has a maximum height. Either because the
scenario is “done” after a finite number of actions or based on a cutoff height of
the sequence tree.

Definition 4.11. The conditional V-value of an agent i for the action sequence
vij shared with the neighbor j ∈ N(i) is the best reward the agent can achieve
with a sequence that projects to vij .

vi(σi |vij) =

 max
wi∈Wσ

i
|vij

ri(σi,wi), Wσ
i |vij 6= ∅

−∞, else

The local V-value is defined as −∞ if the shared sequence vij is infeasible
for the initial state of the components in the agent’s scope σi. This becomes
important later on when vi is used by the agents to signal preferences for shared
sequences to their neighbors.

Proposition 4.12. In a setting with just two agents i and j, the global V-value
can be decomposed as follows.

v(σ) = max
w∈Wσ

r(σ,w) = max
wij∈Wij

[
vi(σi |wij) + vj(σj |wij)

]
Proof. Let u ∈W an optimal global action sequence, so the reward generated
by u is r(σ,u) = v(σ). (There may be several optimal action sequences.) This

106 4 Distributed Planning for Self-Organizing Production Systems

reward decomposes into the private reward of the agents i and j.

r(σ,u) = ri(σi,ui) + rj(σj ,uj)

Given the shared sequence uij , agent j can choose any action sequence
from Wσ

j |uij without impacting the reward for i. We know that rj(σj ,uj) =
maxvi∈Wσ

j
|uij

rj(σj ,vj). Otherwise, if the agent j could find a better sequence
thanui,u could not be a maximizer for the global sequence. Sinceuj ∈Wσ

j |uij
we know that Wσ

j |uij is nonempty and therefore with Definition 4.11

r(σ,u) = ri(σi,ui) + vj(σj |uij) .

The same line of reasoning can be followed for the agent i so that r(σ,u) =
vi(σi,uij) + vj(σj |uij).

In the case with two agents, given precomputed conditional V-value functions
vi(σ |wij), (e.g. available as a lookup table), the optimization problem to find
the optimal reward for a given system state σ is simplified from a search over
Wσ to a search over just Wij . Now assume a case with three agents i, j, l.
The agents i and j have shared components and the agents j and l have shared
components. But i and l do not share any components. Conditioned on the
action sequence wjl, the agent l is not only independent from the actions of j
but also of the actions of i. This mechanism is used for “utility propagation”
between agents that form a tree-graph. The difference to the original GDL is
that the overall domain W is not a cartesian product of the Wi.

Assumption 4.13. The agents and their neighbor relations between the agents
form a tree-graph. The components in the scope of agent i are in the shared
scope with at most one of i’s neighboring agents.

∀j ∈ N(i), ∀c ∈ Cij ⇒ ∀l ∈ N(i) \ {j}, c /∈ Cil

For a given initial system state σ, the messages mi→j : Wij → R exchanged
between neighboring agents are computed as follows:

mi→j(vij) = max
wi∈Wσ

i
|vij

[
vi(σi,wi) +

∑
l∈N(i)\{l}

ml→i(wil)
]

(4.9)

4.3 Distributed Planning for Deterministic Action Sequences 107

The messages mi→j : Wij → R describe the best reward that the subgraph
of agents “behind” the edge i → j can achieve for a given shared sequence
wij . Computing the messages m quickly becomes intractable. The number of
possible shared sequences grows exponentially with the length of the shared
sequence. Furthermore, the optimization performed for each messages mi→j

and shared sequence wij requires in itself an optimization of over Wσ
i |vij that

takes the messages received by the other neighbours N(i) \ j into account. The
conditional treeWσ

i |vij also grows exponentially with the tree depth. (Although
pruning non-conforming sequences can drastically reduce the overall size).

The Max-Plus algorithm from the GDL family is used to efficiently solve
the maximum a-posteriori (MAP) problem of finding the event with highest
probability. It has been used for “utility propagation” for multi-agent decision
making by [KV05]. To overcome the combinatorial explosion of the search space,
we develop a novel combination of Max-Plus with MCTS. See Algorithm 14
for the full algorithm specification. Similar to standard UCT, the Distributed
Upper Confidence on Trees (DUCT) algorithm performs iterative playouts and
generates statistics that guide decision-making in later playouts. Every agent
i ∈ I stores the reward he can make after a sequence wi in a hashmap vi[wi]. As
before, the hashmap returns zero when no entry has been set prior. Every agent
is performing independent playouts based on his internal simulator. Actions are
selected according to the UCT rule with the addition that conditional reward
signaled by they neighbors is considered as well. For the updates, the computed
V-value estimate for a sequence wi considers only the reward the agent receives.
But the action a∗

i are selected to maximize the reward for all agents. Afterwards,
the messages to the neighboring agents are computed. Here the action a∗

i is
implied by the use of the local V-value vi. Note that the reward signaled by
the agent j to i is not mirrored back in the messages from i to j. Here, the
agents are jointly exploring the scenario tree. Initially, all messages are set to
zero. Therefore, if rewards are generally negative, then the agents will initially
overestimate the value of sequences where no empirical reward estimate from
the neighbors exist.

108 4 Distributed Planning for Self-Organizing Production Systems

Algorithm 14 Distributed Upper Confidence on Trees (DUCT) Algorithm

1: procedure DUCT(σ0)
2: mi→j [·]← 0 ∀i ∈ I, j ∈ N(i)
3: ni[·]← 0, vi[·]← 0 ∀i ∈ I
4: while enough time do
5: for i ∈ I do
6: (wi, ri)← Playi(σ0

i)
7: Updatei(wi, ri)
8: return arg maxa∈A

[∑
i∈I:
ai∈Ai

vi[ai]
]

1: procedure Playi(σi)
2: wi ← ε, ri ← ε
3: while ¬done(σi) do
4: B ← {bi ∈ Ai : n[wibi] = 0}
5: if B 6= ∅ then
6: ai ← πBi (σi)
7: else
8: ai ← arg max

bi∈Ai

[
vi[wibi] + α

√
logn[wi]+1
n[wibi] +∑

j∈N(i)
mj→i(Πij(wibi))

]
9: (σi, ei)← ai(σi)

10: wi ← wiai, ri ← (r1
i , r

2
i , . . . , ei)

11: return wi, ri

1: procedure Updatei(wi, ri)
2: for k = |wi|, . . . , 1 do
3: ui ← w:k

i

4: n[ui]← n[ui] + 1
5: a∗

i ← arg max
ai∈Ai:n[uiai]>0

[
q[uiai] +

∑
j∈N(i) mj→i[Πij(uiai)]

]
6: vi[ui]← rki + vi[uia∗

i]
7: for j ∈ N(i) do
8: u← vi[ui] +

∑
l∈N(i)\{l} ml→i(Πil(ui))

9: if e > m[Πij(ui)] then
10: m[Πij(ui)]← e

4.4 Distributed Planning under Uncertainty 109

4.4 Distributed Planning under Uncertainty

In stochastic scenarios, following the description from Section 2.3, the current
state is not known with absolute certainty. Instead, the system state can only be
inferred from indirect observations. Recall that histories h are comprised of
episodes hk = (akθkok) with an action, action-parameters and observations.
The set of all possible global histories of finite length is H = (A×Θ×O)∗.
The set of histories H implies a tree-graph with edges between observations
and actions, actions and parameters, and parameters and observations if they
can occur in sequence in a history. From every history, the current system state
can be inferred P(σ |h). For this, an belief distribution for the initial state σ0 is
updated with the received observations. We now make the additional distinction
between histories and complete histories. Complete histories are the leafs in the
tree-graph of H . They denote histories after which the scenario is “done”. This
can also be enforced by a maximum history depth. The set of complete histories
is H ⊆ H .

The algorithm enhances our prior work in [Pfr16a] in several regards. Most
importantly, every agent participating in the decision making has a local
simulator to predict the evolution of the system state based on his restricted
local knowledge. An important inspiration came from [AO15]. However, they
use Variable Elimination [KF09] for selecting joint actions instead of message
passing. In addition, they rely on a central simulator for the global system to
generate sample plays. Since MCTS is an online algorithm, they would require
a simulator for the global system also at runtime for the agent coordination.

As the agents i ∈ I have a limited scope, they can only observe a portion
of the full history. In particular, the projection to the agent-scope Πi(h) = hi

contains only the episodes with actions a ∈ Ai. The observed action parameters
are from the full parameter space of the action θ ∈ Θa. The observations
received by the agent i are from components that participate in action a and are
in the scope of the agent oi ∈ Oa,i = (×c∈Ca,iOc).

Definition 4.14. A history h ∈ H projects to the scope of an agent i ∈ I as

hi = a1
i θ

1
i o

1
i︸ ︷︷ ︸

h1
i

. . . a
|h|
i θ

|h|
i o

|h|
i︸ ︷︷ ︸

h
|h|
i

.

110 4 Distributed Planning for Self-Organizing Production Systems

The set of histories for agent i isHi = (Ai×Θi×Oi)∗ where Θi = (∪a∈Ai
Θa)

and Oi = (∪a∈Ai
Oa,i).

Similar to the projection of deterministic action sequences from Section 4.3,
the episodes are indexed with k. If an episode of the global sequence refers
to an action outside of agent i’s scope, then the action projects to the identity
operator a /∈ Ai ⇒ ai = ε and the episode does not occur in the agent’s local
history. The global history thus may contain more episodes than are visible to
the individual agent. The difference in the index k will be made explicit only
when the meaning is not clear from context.

Agents have a local decision-making policy πi. Since the components in the
agents scope are overlapping, neighboring agents need to coordinate to select
the next action in their shared scope. Disagreement would lead to incompatible
action selections for the components in the shared scope. This needs to be
avoided. So the local decision-making policy of an agent i is no longer a
deterministic result from the local history hi alone. It also depends on the
coordination with neighboring agents – and hence on the observations the agents
j ∈ N(i) have made that are not necessarily in the scope of i. This lack of
information from the limited viewpoint of agent i is expressed by taking the
policy as a random variable as well. The next action and action parameters are
sampled as (ai, θi) ∼ πi(hi).

The value for optimal decision making in each node (from the viewpoint
of agent i), the V-value and the Q-value, can be computed recursively with
Bellman’s Equation [Put94]. Note that the decision-making step is split into
action-selection and parameter-selection. To simplify the notation, we refer to
both the V-value and the Q-value of an agent history as q.

Definition 4.15. The Q-value of selfish agent i assumes optimal decision making
by i. The other agents I \ {i} coordinate with i by agreeing to i’s decisions for
the components in the shared scope.

qi(hi) =

0, hi ∈ Hi

max
ai∈Ai

qi(hiai), else
(4.10)

qi(hiai) = max
θi∈Θa,i

qi(hiaiθi) (4.11)

4.4 Distributed Planning under Uncertainty 111

qi(hiaiθi) = E
σi,σ

′
i∈Σi,

oi∈Oa,i

[
ri(σi, ai, θi,σ′

i) + qi(hiaiθioi)
∣∣hiaiθi] (4.12)

A distinction by cases is made whether the last episode contains only an action,
an action with action parameters, or an action with parameters and the resulting
observations. When action, parameter and observation are appended to a history,
as in h′

i = hiaiθioi, then h′
i matches with Equation 4.10 that is defined for

histories with complete episodes. Equations 4.11 and 4.12 take histories with
an incomplete last episode as input. The case distinction in Equation 4.10 is
required so that the recursive formulation terminates at the leaf nodes of Hi.

A shared history hij ∈ Hij = (Aij ×Θij ×Oij)∗ between an agent i and
his neighbor j ∈ N(i) contains only the episodes with a shared action a ∈ Aij .
The agents i and j both observe the complete action parameters for the shared
actions. The observations in the shared history contain only the observations
from components in the shared scope Oij = (∪a∈Aij (×c∈Ca∩CijOc)). The
V-value and Q-value are now conditioned on a shared history for the future
episodes. Observations that are not compatible with the shared history are
marginalized out in the probabilistic expectation. Incompatible action and
parameter choices are disallowed in the maximization steps.

Definition 4.16. A conditional Q-value for a selfish agent i assumes optimal
decision making under the constraint that future episodes (after the initial history
hi) project to the partial history gij shared with the neighbor j ∈ N(i).

qi(hi | gij) =

0, hi ∈ Hi

max
ai∈(Ai\Aij)∪{a1

ij
}
qi(hiai | gij), else (4.13)

qi(hiai | gij) =

qi(hiaiθ1
ij | gij), ai = a1

ij

max
θi∈Θa,i

qi(hiaiθi | gij), else
(4.14)

112 4 Distributed Planning for Self-Organizing Production Systems

qi(hiaiθi | gij) =

E
σi,σ

′
i∈Σi,

ui∈Oa,i,

uij=o1
ij

[
ri(σi, ai, θi,σ′

i) +
qi(hiaiθiui | g2:

ij)
∣∣hiaiθi], ai = a1

ij

E
σi,σ

′
i∈Σi,

oi∈Oa,i

[
ri(σi, ai, θi,σ′

i) +
qi(hiaiθioi | gij)

∣∣hiaiθi], else

(4.15)

The action, action parameters and observations of the first episode of the
partial history gij are referred to as a1

ij , θ1
ij and o1

ij respectively. As episodes are
added to per-agent history hi, the remaining shared history for future episodes is
getting shorter. Once no shared history for the conditioning remains with gij = ε,
the Q-value and V-value fall back to the formulations from Equations 4.10
to 4.12. The action choice is constrained to agree with the remaining partial
history gij . Actions without participating components from Cij can be freely
chosen as they are not constrained by the partial history. The case distinction in
Equation 4.14 requires that the matching parameters from the partial history gij

are taken if the action is from the partial history. Finally, Equation 4.15 also
makes a case distinction for actions from the constraining partial history gij .
Equation 4.15 then recurses by adding the expected reward from future episodes
constrained on the remaining partial history. If the current action is from the
shared history, then the remaining shared history g:2

ij has the current episode
removed.

The agents in Definition 4.16 are self-interested. In order to have collaborative
agents jointly optimize the global reward (across all agents), each individual
agents has to assess the impact of his choices on the expected future reward
for himself as well as for the other agents. Analogous to the previous section
on distributed planning for deterministic action sequences, the agents are
assumed to form a tree-graph with their neighborhood relations. (Cf. the
discussion of Assumption 4.13.) To coordinate, the agents exchange messages
mi→j : Hij → R with their neighbors j ∈ N(i). The value of the message
mi→j(gij) evaluated for a given shared history gij describes the expected
Q-value (the reward for optimal play in the remaining episodes) for the agents
behind the edge i→ j conditional to the given shared partial history. See the
later Definition 4.18 for the messages. The per-agent history is projected to

4.4 Distributed Planning under Uncertainty 113

the shared scope with hij = Πil(hi). The expected immediate reward in the
subtree behind the edge l→ i

r̄j→i(hi, aiθioi) = mj→i(hij)−mj→i(Πij(hiaiθioi))

refers to the reward the agents in the sub-tree expect to make when they “fill the
gaps” between the partial histories hij and Πij(hiaiθioi).

Definition 4.17. The global Q-value for an unselfish agent i conditioned on the
future partial shared history gij assumes optimal decision making by the agent
i with respect to the expected global reward and a fixed policy followed by the
other agents.

q∗
i (hi | gij) =

−∞, hi ∈ Hi, gij 6= ε

0, hi ∈ Hi, gij = ε

arg max
ai∈(Ai\Aij)∪{a1

ij
}
q∗
i (hiai | gij), else

(4.16)

q∗
i (hiai | gij) =

q∗
i (hiaiθ1

ij | gij), ai = a1
ij

max
θi∈Θa,i

q∗
i (hiaiθi | gij), else

(4.17)

q∗
i (hiaiθi | gij) =

E
σi,σ

′
i∈Σi,

ui∈Oa,i,

uij=o1
ij

[
ri(σi, ai, θi,σ′

i) +∑
l∈N(i)

[
r̄l→i(hi, aiθiui)

]
+

q∗
i (hiaiθiui | g2:

ij)
∣∣∣hiaiθi],

ai = a1
ij

E
σi,σ

′
i∈Σi,

oi∈Oa,i

[
ri(σi, ai, θi,σ′

i) +∑
l∈N(i)

[
r̄l→i(hi, aiθioi)

]
+

q∗
i (hiaiθioi | gij)

∣∣∣hiaiθi],
else

(4.18)

Again, Equation 4.16 can return negative infinity in the case where the
scenario is “done” but the constraint to fulfill the partial history gij has not
been fulfilled. The use of messages ml→i(hil) relies on Assumption 4.13. So at
most two agents share a component in their scope. Otherwise for a given future
shared history gij , the expected reward for the agents in the sub-tree behind

114 4 Distributed Planning for Self-Organizing Production Systems

the edge l→ i could also be conditional to a portion of the shared history gij

that also applies to l, i.e. Πil(gij). The messages m would then be conditioned
to this as ml→i(Πil(hi) |Πil(gij)). Assumption 4.13 removes this source of
further complexity.

Now a word on the difference between the global Q-value q∗
i estimated by

the agents i and the messages mi→j between neighboring agents i and j. In
accordance with the principles of the GDL described in Section 4.1, it has to be
avoided that the agents “mirror back” expected reward that was signaled to them
by a neighbor j. Only the expected reward from the other neighbors N(i) \ {j}
is forwarded in the messages. In essence the message contains the expected
reward generated in the subtree (according to the agent’s neighbor relation)
behind the edge i→ j under the assumption of globally optimal decision making
by the agents according to their respective Q-value estimation.

Definition 4.18. The messages exchanged over the edge i→ j between neigh-
boring agents are computed for optimal decisions based on q∗

i .

qi→j(hi | gij) =

−∞, hi ∈ Hi, gij 6= ε

0, hi ∈ Hi, gij = ε

qi→j(hia∗
i | gij), else

(4.19)

where a∗
i = arg max

ai∈(Ai\Aij)∪{a1
ij

}
q∗
i (hiai | gij),

qi→j(hiai | gij) =

qi→j(hiaiθ1
ij | gij), ai = a1

ij

qi→j(hiaiθ∗
i | gij), else

(4.20)

4.4 Distributed Planning under Uncertainty 115

where θ∗
i = arg max

θi∈Θa,i

q∗
i (hiaiθi | gij),

qi→j(hiaiθi | gij) =

E
σi,σ

′
i∈Σi,

ui∈Oa,i,

uij=o1
ij

[
ri(σi, ai, θi,σ′

i) +∑
l∈N(i)\{j}

[
r̄l→i(hi, aiθiui)

]
+

qi→j(hiaiθiui | g2:
ij)

∣∣∣hiaiθi],
ai = a1

ij

E
σi,σ

′
i∈Σi,

oi∈Oa,i

[
ri(σi, ai, θi,σ′

i) +∑
l∈N(i)\{j}

[
r̄l→i(hi, aiθioi)

]
+

qi→j(hiaiθioi | gij)
∣∣∣hiaiθi],

else

(4.21)

Finally the message from i to the neighbor j is

mi→j(gij) = qi→j(ε | gij) . (4.22)

Decision-making by the agent i depends on optimal decision-making by his
neighbors, as communicated in the messages mj→i and vice versa. Astute
readers will have noticed a circular dependency between Definition 4.17 and
Definition 4.18. Taken together the values are well-defined. Suppose that
H is only one level deep. Then the messages m can be computed with a
forward-backward pass similar to the standard Max-Plus algorithm. Now let H
allow two actions in a row. With the same argument, the messages that evaluate
the second action choice can be generated. Once these messages are known, the
agents can compute the Q-value for the possible first actions. By induction, the
message values are well defined on H where all sequences have finite length.

Example 4.3. Suppose that an Original Equipment Manufacturer (OEM)
owns two production sites. One in Germany and the other in China. A
customer buys a lot of 1000 items to be made to order. The German
site can produce the items for $40 a piece. The Chinese site can
fulfill the order for $35 a piece. But due to uncertainties for the
long transport, there is a 10% chance that the products will not reach

116 4 Distributed Planning for Self-Organizing Production Systems

the OEM headquarters in time for packaging and delivery. For this,
the scenario defines three components C = {oem, de, cn}. Every
component also represents an agentC = I . There are six actions defined:
A = {pass_de, prod_de, prod_cn, pass_cn, pass_oem, deliver}.
The “pass” action terminates the scenario for the respective agent. The
participants of the action Cpass_de = {de}, Cprod_de = {oem, de},
Cpass_cn = {cn}, Cprod_cn = {oem, cn}, Cdeliver = Cpass_oem =
{oem}. The shared actions are Aoem,de = {prod_de} and Aoem,cn =
{prod_cn}. The action prod_cn returns an observation that is either
of or os indicating either failure or success. None of the actions take a
parameter. The reward generated by the actions for the involved agents
is stated in Table 4.1.

Action / Reward (in k$) rprod_de rprod_cn rprod_oem

prod_de −40 − 0

prod_cn − −35 0

deliver − − 55

Table 4.1: Reward generated by the actions in the supply-chain example.

The possible histories are (prod_de, deliver), (prod_cn of) and
(prod_cn os, deliver), as well as the sub-histories with only the
first action. The empty action parameters and observations are omit-
ted for readability. From the perspective of global optimisation, the
deterministic reward for going with the German production site is
(−40 + 55) = 15. The expected reward with the production in China is
0.9(−35 + 55) + 0.1(−35) = 14.5.
We now show some selected examples for the Q-value and the messages
between the agents from Definition 4.17 and 4.18. Once the production
sites have either produced or passed on the production, the scenario is
“done” for them and no further rewards are generated. As de and cn
have only one neighbor, no received messages are “mirrored back” in

4.4 Distributed Planning under Uncertainty 117

qde→oem and qcn→oem.

qde→oem(prod_de | ·) = 0, qde→oem(pass_de | ·) = 0

qcn→oem(prod_cn | ·) = 0, qcn→oem(pass_cn | ·) = 0

Given a either the production-production or the pass-action as a condi-
tional, the optimisation of the actions is trivial for de and cn as there is
only one action that can be selected in accordance with the conditional.
The Equations 4.19 through 4.21 return the following.

mde→oem(prod_de | ·) = qde→oem(ε | prod_de) = −40

mde→oem(pass_de | ·) = qde→oem(ε | pass_de) = 0

mcn→oem(prod_cn | ·) = qcn→oem(ε | prod_cn) = −35

mcn→oem(pass_cn | ·) = qcn→oem(ε | pass_cn) = 0

With these messages transferred, the agent oem can continue with the
computation of q∗

oem.

q∗
oem(prod_cn) = P(os)

[
roem(prod_cn) +

r̄de→oem(ε, prod_cn os) +

r̄cn→oem(ε, prod_cn os) + q∗
oem(prod_cn os)

]
+

P(of)
[
roem(prod_cn) +

r̄de→oem(ε, prod_cn of) +

r̄cn→oem(ε, prod_cn of) + q∗
oem(prod_cn of)

]
= 0.9 · [0 + 0− 35 + roem(deliver)] +

0.1 · [0 + 0− 35 + 0] = 14, 5

118 4 Distributed Planning for Self-Organizing Production Systems

The message from oem to its neighbors do not contain the reward that
was signaled from the neighbor itself.

moem→de(prod_de) = 55, moem→de(pass_de) = 14.5,

moem→cn(prod_cn) = 49.5, moem→de(pass_cn) = 15

With that, the agents can jointly maximize the expected global reward
even though they have only a limited scope to the system state and
possible actions.

The messages mi→j assign a value to every node of the shared history tree
Hij . Computing the messages mi→j is computationally challenging. Instead of
computing the message values directly, they are approximated via Monte-Carlo
sampling. See Algorithm 15 for the full specification of the The Distributed
Partially-Observable Hybrid Tree Planning (DPOHTP) algorithm.

Similar to the DUCT algorithm, the agents I are exchanging messages as they
jointly explore the solution space. Every agent can use his private model for the
components in his scope. So DPOHTP does not rely on a central simulator. The
agents optimize for the global reward with their action choices. But they keep
the reward for the different agents separated for the statistics on expected reward.
The Playi procedure generates playout histories by sampling from the stochastic
simulator and using the current reward statistics, exchanged messages and policy
π for decision making. The Paramsi procedure is used to select parameters for
the current action. It uses Optimistic Optimization similarly to StoSOO. But
every call to Paramsi returns exactly one parameter vector. So several actions
with a parameter each can be selected in one playout. The Updatei procedure
takes the last playout of the agent i and updates his internal reward statistics as
well as the messages sent to the neighbors. Every parameter node stores the
empirical direct reward that was generated by the action-parameter combination
in a hashmap ei. The Q-value of the parameter additionally considers the
expected reward for optimal decision-making later on. Optimal decision-making
here refers to the maximization of the global reward, taking the reward signaled
by the neighboring agents via messages into account. Note that the messages

4.4 Distributed Planning under Uncertainty 119

are updated with an averaging procedure in lines 14–18 instead of maximizing
over the actions and parameters. This is due to the fact that several histories hi
project to the same hij . A maximization under the premise that only the current
hi is considered in the message would distort the message which represents an
expectation over the future reward.

Algorithm 15 The Distributed Partially-Observable Hybrid Tree Planning
(DPOHTP) algorithm

1: procedure DPOHTP(σ0)
2: mi→j [·]← 0 ∀i ∈ I, j ∈ N(i)
3: ni→j [·]← 0 ∀i ∈ I, j ∈ N(i)
4: ni[·]← 0, qi[·]← 0 ∀i ∈ I
5: ei[·]← 0 ∀i ∈ I
6: Li[·]← {(0, 1)} ∀i ∈ I
7: d̄← 1
8: while enough time do
9: for i ∈ I do

10: σi ∼ σ0
i

11: (hi, ri)← Playi(σ0
i)

12: Updatei(hi, ri)
13: d̄← d̄ + 1
14: if d̄ > log2(ni[ε] then
15: d̄← 1
16: return arg max

a∈A, θ∈Θa,
∀i∈Ia, ni[aθ]>0[∑

i∈I
qi[Πi(aθ)]

]

1: procedure Playi(σi, d̄)
2: hi ← ε, ri ← ε
3: while not done(σi) do
4: B ← {bi ∈ Ai : n[hibi] = 0}
5: if B 6= ∅ then
6: (ai, θi)← πi(hi, Bi)
7: d̄← d̄− 1
8: else
9: ai ← arg max

bi∈Ai

[
qi[hibi] +

α
√

log ni[hi]+1
ni[hibi] +∑

j∈N(i) mj→i[Πij(hibi)]
]

10: d̄← d̄− 1
11: θi ← Parami(hiai, d̄)
12: d̄← d̄− depth(Li[hiai]
13: (σi,oi, vi) ∼ aθi

i (σi)
14: hi ← hiaiθioi, ri ← (ri, vi)
15: return hi, ri

120 4 Distributed Planning for Self-Organizing Production Systems

1: procedure Parami(hiai, d̄)
2: if d̄ > depth(L[hiai]) then
3: return arg max

θ:∃(u,v)∈Li[hiai],
xi[hiai;u,v]=θ

q[hiaiθ]

4: else if d̄ < 1 then
5: G← Li[hiai]
6: else
7: G← Li[hiai; d̄]
8: (u, v)← arg max

(c,j)∈G,
xi[hiai;c,j]=θ

[
qi[hiaiθ] + α

√
log ni[hiai]+1

ni[hiaiθ] +∑
j∈N(i) mj→i(Πil(hiaiθ))

]
9: θ ← xi[hiai; u, v]

10: if ni[hiaiθ] < κ ∧ l = lmax then
11: return θ
12: u[ha; l, i]← u[ha; l, i] + 1, µ← u[ha; l, i]
13: n← dim(Θa), δ ← mod(l, n) + 1
14: ξ ← |L[ha; l + 1]|+ 1
15: x[ha; l + 1, ξ]← θ + (µ− 2)νδ

(
1
3

)bl/nc+1

16: L[ha]← L[ha] ∪ {(l + 1, ξ)}
17: if µ = 3 then
18: L[ha]← L[ha] \ {(l, i)}
19: return x[ha; l + 1, ξ]

1: procedure Updatei(hi, ri)
2: for k = |hi|, . . . , 1 do
3: (ai, θi,oi)← hk

i

4: gi ← h:k−1
i

5: ni[gi]← ni[gi] + 1, ni[giai]← ni[giai] + 1, ni[giaiθi]← ni[giaiθi] + 1
6: ei[giaiθi]← ei[giaiθi] + rk

i −ei[giaiθi]
ni[giaiθi]

7: qi[giaiθi]← ei[giaiθi] +
∑

oi∈Oi

[
qi[giaiθioi] n[giaiθioi]

n[giaiθi]

]
8: θ∗

i ← arg maxφi∈Θai
n[giaiφi]>0

[
qi[giaiφi] +

∑
j∈N(i) mj→i(Πij(giaiφi))

]
9: qi[giai]← qi[giaiθ

∗
i]

10: a∗
i ← arg maxbi∈Ai

n[gibi]>0

[
qi[gibi] +

∑
j∈N(i) mj→i(Πij(gibi))

]
11: qi[gi]← qi[gia

∗
i]

12: for j ∈ N(i) : ai ∈ Aij do
13: gij ← Πij(gi)
14: ni→j [gijaiθi]← ni→j [gijaiθi] + 1, ni→j [gijai]← ni→j [gijai] + 1
15: q′ ← qi[gijaiθi] +

∑
l∈N(i)\{j} ml→i(Πil(giaiθi))

16: mi→j [gijaiθi]← mi→j [gijaiθi] + q′−mi→j [gij aiθi]
ni→j [gij aiθi]

17: q′′ ← qi[gijai] +
∑

l∈N(i)\{j} ml→i(Πil(giai))

18: mi→j [gijai]← mi→j [gijai] + q′′−mi→j [gij ai]
n[gij ai]

4.5 Evaluation 121

4.5 Evaluation

A preliminary version of DPOHTP was evaluated in [Pfr16a]. The main
difference is that this version allows each agent to run simulations in a private
simulator. So the agents are completely decoupled besides their message
exchange. Existing benchmark examples from the Dec-POMDP literature
assume a central simulator.

The scenario from autonomous driving was chosen since it enables a good
visual understanding of the effect of agent coordination. Autonomous driving
can be considered as one of the activites on the lower levels of the control
hierarchy for supply-chain logistics. Furthermore, it shows the ability of the
approach to adjust to changing system topologies with agent entering and leaving
at runtime. Note that the example does not claim to be a physically accurate
simulation for autonomous driving. It is a highly stylized benchmark example
and not intended for practical use. Still, the model is based on results from the
relevant literature that uses MCTS for planning of car maneuvers [LKK16]. If
required, the simulation model can be readily replaced with something more
accurate without changing the (implementation of) the GMCTS algorithm used
for planning and coordination.

Two versions of the driving scenario are shown in Figures 4.4 and 4.5. Both
start from the same initial situation. Three cars (blue, green and red) are
driving close to each other at the same speed. They head toward the grey car
that blocks the left lane after an accident. The cars have only a limited radius of
visibility (assume some fog or heavy rain blocking the view). The cars seeing
each other are marked with blue and green lines respectively.

The timeline of the scenario is discretized to 100 millisecond periods. In
every period the cars may choose between five actions: nothing, accelerate,
break, moveLeft and moveRight. The cars receives a reward at every iteration.
A negative reward of −1 is assigned for every action besides nothing. This
gives an incentive not to over-react. An additional negative reward of −50 is
assigned to every car that crosses onto the shoulder of the road. Cars touching
each other receive a reward of −1000 each. Each car has an internal simulator
to predict future situations given joint actions for all cars in their visibility

122 4 Distributed Planning for Self-Organizing Production Systems

scope. Cars outside the visibility scope are not considered in the simulator. The
simulator is the basis for MCTS-based planning.

In the first figure, the red car “sees” the accident at a very late point when
the green car has already nearly passed. Until then, the red car stays in his
line and keeps the original speed. Then, to prevent a crash that can now be
predicted by the red car, the red car moves behind the blue car. The second
figure was produced by identical parameters than the first figure. The only
change is the exchange of messages between agents. So they use our DPOMCP
algorithm instead of plain MCTS. It can be seen that the red car reacts much
sooner to the accident, even before the grey car moves into his scope of visibility.
The reason for this change of behavior is as follows: In the second line of
Figure 4.5, the green car already sees the accident. Therefore the potential crash
of the red and grey cars are predicted by the green car. When the green cars
exchanges a message with preferences with the red car, then the danger of the
crash is marginalized into the expected reward starting from possible shared
action sequences. Thus, the red car learns about the potential strong negative
consequences for staying in its line. The red cars therefore moves to the right
lane and inserts even before the blue car. The change of exchanging messages
leads to a very different – and more safe – outcome compared to the scenario
without coordination.

The advantage of our work compared to previous results [FB10] is that it
does not require that cars explicitly define coordination groups. Second, the
complexity of the coordination algorithm grows exponentially only in the number
of neighbors at every agent. Since every agent has a limited scope (and just a
few neighbors), scaling to very large systems is easily possible. Third, when
agents enter and leave the system at runtime, this has only a very local impact as
just the direct neighbours need to coordinate.

4.5 Evaluation 123

˙

˙

˙

˙

˙

˙

˙

Figure 4.4: Autonomous driving example without coordination. The blue lines
indicate neighbor relations.

124 4 Distributed Planning for Self-Organizing Production Systems

˙

˙

˙

˙

˙

˙

˙

Figure 4.5: Autonomous driving example with coordination. The green lines
indicate neighbor relations that are also communication relations.

5 Modeling of Production Skills

The tape was a small loop that fed continuously between
magnetic pickups. On it were recorded the movements of
a master machinist turning out a shaft. [. . .] Rudy Hertz,
an old timer, who had been about ready to retire. And here,
now, this little loop [. . .] was Rudy as Rudy had been to his
machine that afternoon. Rudy, the turner-on of power, the
setter of speeds, the controller of the cutting tool. This was
the essence of Rudy as far as his machine was concerned.

Kurt Vonnegut – Player Piano [Von52]

The model of production systems developed in Chapter 2 demands that every
possible behavior of the manufacturing resources is captured in the form of
actions with well-defined preconditions and effects. This lays a heavy burden on
plant operators to manage the set of available actions. Especially when changes
are made to the plant topology and the targeted product lineup. While the actions
are conceptually uniform, the complexity of a flexible manufacturing plant
manifests itself in the large number of actions required to model the relevant
aspects. For tens of considered final products with tens of manufacturing steps
each, as well as tooling and transportation, plant operators need to model (and
keep up-to-date) thousands of actions.

In addition to just defining the actions, their execution requires custom control
code or the parameterization of reusable functionality for the product at hand.
This custom effort to foresee, implement and deploy actions that are possibly
needed at runtime is then a bottleneck for system integrators and operators who
want to introduce changes at a later time. To reduce this burden, we introduce
higher-level abstractions for the skills of the system components. Together with
a similar description of the production requirements, the low-level actions are
then generated automatically or with tool assistance.

126 5 Modeling of Production Skills

Executable actions for planning and runtime control in
a production systems can be generated from higher-level
descriptions of the production system and the requirements.

Note: Our work on skill modeling [PSB13a; Pfr+14c; PSB13b; Pfr+15b] was
published starting in 2013. The more recent literature already references and
incorporates these results. This chapter provides a synthesis of our published
work together with a novel representation of the concepts in Description Logics.
Our own publications are not referenced in the summary of the state-of-the-art.

5.1 Background: Skill Models for Production

Sussman was one of the first to define a “theory of skill” that was not focused
on the skilled human but on the computer [Sus73]. He writes:

[. . .] a skill is a set of answer procedures, each indexed by a
description of the problem types for which it is appropriate, along
with a set of pitfalls to avoid when it is necessary to construct a new
answer procedure. A skill is acquired by the construction of such a
store of “runnable” knowledge – canned answers to problems – by
“compiling” it from knowledge of the problem domain supplied in a
more “intelligible” form – a form designed more for communication
than for use as answers to problems.

This early work already talks about representations for the skill and the problem
description, as well as the “compilation” of their combination into an executable
form. Since then, work on technical skill definitions has continued mainly in
the robotics domain. Many authors have worked on methods for learning of
particular robot skills [GFB94; MK97; FRD98]. But we are rather interested in
skill definitions that applies across different application domains.

In the last 10 years, interest in using skill definitions specifically for the
production domain has considerably gained in importance. Some authors from

5.1 Background: Skill Models for Production 127

the production community differentiate between the terms skill and capability.
In this text, we will use the terms interchangeably.

The authors from the SIARAS project [Mal+07] use ontologies to store skills
and their relations for production. This information is then used for automatic
reconfiguration of production systems. Naumann et al. [NWS07] use an ontology
to model robot skills and use state-charts for sequences within manufacturing
processes. Järvenpää et al. [Jar+11] define an ontology for skills in manufacturing
and use it to map resources to manufacturing steps. Kluge [Klu11] uses skill
models for assembly planning. Huckaby and Christensen [HC12] provide a
taxonomy for assembly tasks and related skill primitives. Constraints specify
whether they are executable in a certain situation. Björkelund et al. [Bjö+12]
first make use of the PPR (Product, Process, and Resource) concepts in the
context of skills. They relate skills to all three views of PPR and represent skills
as finite state machines. Keddis et al. [KKZ14] define a description vocabulary
for skills of production resources and an accompanying algorithm for production
planning and scheduling. Legat et al. [LSV14] use a description of the resource
skills to guide engineers in the implementation of field control code. Backhaus
et al. [BUR14] present a classification of manufacturing skills to enable task-
oriented programming. This concept is expanded in [BR15] and used to generate
executable tasks for a welding robot. Malakuti et al. discuss challenges of
skill-based production control for practitioners and possible solutions [Mal+18].
The authors of [Jär+18] use semantic inference to determine the capabilities of
resource combinations. For example of a robotic manipulator combined with a
gripper.

Many interesting approaches to describe the skills of production resources
via ontologies and high-level description schemas have been proposed in the
literature. All authors report the successful application in the demonstration
scenarios for which their description schemas were developed. We argue
that modelling semantic knowledge about production systems facilitates the
integration of resources in a Plug & Produce fashion. But it is not enough. First,
as ontologies for describing manufacturing skills become more detailed, the less
general they are. This leads to the difficult situation where

• general skill description schemas require additional information to cover
implementation-specific edge-cases and constraints, and

128 5 Modeling of Production Skills

• detailed skill description schemas are applicable to only a narrow subset
of resources and will have difficulties in getting the required support
across vendors and integration tooling suppliers. A possible scenario is
the emergence of a standardized core skill description schema from which
domain-specific and sometimes overlapping schemas will branch off.

Second, semantic reasoners were developed to infer further information from
an existing knowledge-base. But they are not equipped for reasoning about
numerical optimization problems, such as the resource- and time-efficient
production of many products on concurrent resources. Therefore, we see the
role of semantic skill descriptions primarily for integration and configuration
tasks. To make the flexibility of generic resource skills available on the level
of large-scale systems, they need to be propagated to dedicated planning and
runtime control systems that may use different representations. This also offers
the possibility to integrate overlapping and domain-specific skill description
schemas if they can be interfaced to a unified abstraction used for planning and
runtime control.

5.2 Background: Description Logics

Description Logics (DL) [Baa03] are a family of formal knowledge representation
languages developed to represent hierarchical and relational structures and to
enable reasoning over these structures. DL are the formal basis of semantic
models with ontologies. DL models are defined in terms of constants, concepts
and roles. The semantics of a DL is defined in terms of first-order logic. Hence,
no DL is more powerful than first-order logic. Let the domain ∆ a fixed
countably infinite set. The interpretation I is a function · I that assigns

• to every constant c an element of ∆ so that cI ∈ ∆,

• to every concept C members of ∆ as CI ⊆ ∆,

• to every role R binary relations between members of ∆ as RI ⊆ ∆×∆.

The interpretation has to be consistent with respect to assurances that are defined
for the model.

5.2 Background: Description Logics 129

Table 5.1 gives an overview on the syntax of the EL DL [KKS14] with the
addition of concrete domains to express and reason about numerical attributes
[BH91]. More expressive DL than EL exist. It was selected for the exposition
due to its relative simplicity and the existence of performant solvers. By
convention, we write the elements of DL models as follows: Constants are
written in typewriter font, Concepts in a sans-serif font with a leading uppercase
and hasRole definitions in a sans-serif font with a leading lowercase.

Example 5.1. Begin with the constants alice and bob. Both of them
are humans and therefore, Human(Alice) and Human(Bob). Every
human is either male or female. Therefore Female v Human, Male v
Human and Female u Male v >. Suppose Alice is the daughter
of Bob. The role childOf describes the parent-child relation. We
assert this relation between our two humans as childOf(Alice, Bob).
Daughters are the female children of a human. This can be stated as
daugherOf v childOf with the domain dom(daughterOf) v Human and
range ran(daughterOf) v Human u Female. From this we can infer
that in effect daughterOf(Alice, Bob).
Attributes from concrete domains are also assigned via role re-
lations. Alice is 11 years old. So she has the attributes
hasAge(Alice, 11) and hasName(Alice, “Alice”). Queries over con-
crete domains are stated in the form of predicates. The concept
Human u ∃hasAge.(<, 12) u ∃hasName.(=, “Alice”) contains all hu-
mans named Alice and less than 12 years old.

130 5 Modeling of Production Skills

DL Syntax Set-Theoretic Semantics

Concepts

Universal Concept (Top) > ∆I

Empty Concept (Bottom) ⊥ ∅

Concept Assertion C(a) aI ∈ CI

Conjunction C uD CI ∩DI

Inclusion C v D CI ⊆ DI

Restriction ∃R.C {x | ∃y : (x, y) ∈ RI ∧ y ∈ CI}

Roles

Role Assertion R(a, b) (aI , bI) ∈ RI

Domain Restriction dom(R) v C RI ⊆ CI ×∆I

Range Restriction ran(R) v C RI ⊆ ∆I × CI

Inclusion R v S RI ⊆ SI

Composition R1 ◦R2 v S (x, y) ∈ RI
1 ∧ (y, z) ∈ RI

2 → (x, z) ∈ SI

Data Types

Restriction ∃F.r {x | ∃v ∈ D : (x, v) ∈ F I ∧ r(v)}

Table 5.1: Syntax and Semantics of the EL+
⊥ Description Logic.

5.3 The PPRS Model for Production Skills

We begin with an informal characterization of the PPRS model. In production,
processes are used to create products. Processes stand for a type of operation,
such as welding. The processes are performed by the resources of a production
system, such as machines and technical equipment in general. Skills describe
what a component is capable of in general. Transformations describe a specific
production step that changes the attributes of a workpiece, consumes ingoing
workpieces and material to create some output, and so on. Transformations
are associated with one or more processes. Actions are realizations of a skill.
For example to perform a specific transformation of a workpiece. Figure 5.1
gives a high-level overview on the six concepts and their relations. More precise
definitions are now given, together with the representation the language of DL.

5.3 The PPRS Model for Production Skills 131

Product Process Resource

Transformation Skill

Action

Figure 5.1: Outline of the relations between the PCM concepts.

Example 5.2. The example used for the remainder of this chapter comes
from the production of automotive battery systems. The example is
heavily simplified to serve as an educational example. From a high-level
perspective, battery systems are comprised of battery cells that are
welded to a conductive busbar. See [Das+18] for a detailed account of
the different joining techniques in battery production.

Definition 5.1 (Product). A product is a type of marketable good, raw material
or intermediate workpiece between production steps. Products describe discrete
(countable) entities. Bulk material and fluids must be “packaged” to be
considered a discrete product. Whenever product types and product instances
need to be differentiated, product instances are denoted as workpieces to make
the distinction clear.

In DL, products are represented as constants. The properties of the product
type are defined via attributes from concrete domains. The definition corresponds
to the product definition from Chapter 2. Workpieces (product instances) of the
same product type are interchangeable.

Example 5.3. The products defined for the battery production example
are cell, busbar and battery.

132 5 Modeling of Production Skills

Product(cell)
Product(busbar)
Product(battery)

Definition 5.2 (Process). Processes denote a type of production operation.
Every process defines a set of process attributes that are used to characterize
instances derived from the process. Processes form a hierarchy where attributes
are inherited from parent processes.

The term process is overloaded and understood differently in the fields of
computer science, statistics, workflow management, production, and many more.
The definition used here corresponds to the use of the term manufacturing
process in DIN 8580 [DIN8580]. In DL, processes are represented as concepts.
Processes form a hierarchy of concepts derived from the topmost concept
Process.

Example 5.4. The processes defined for the battery production example
are welding and the more specialized laser-welding. The processes
are described by the power used for welding and, for the laser-welding
process, the wavelength of the laser.

LaserWelding vWelding v Process
dom(hasPower) vWelding
ran(hasPower) = P (R+)
dom(hasWaveLength) v LaserWelding
ran(hasWaveLength) = P (R+)

The use of the powerset P (R+) as the concrete domain of the hasPower role
allows instances of a welding process to refer to ranges of possible temperatures
instead of a single scalar. Note that the concrete domains for process attributes
may become quite complex, e.g. to describe the possible tool positions and
rotations for a 5-axis CNC mill. Implementation may restrict concrete domains
for example to one-dimensional ranges, where the representation and verification
of predicates on a computer is trivial.

5.3 The PPRS Model for Production Skills 133

Separation (DIN 8580 – 3)

Cutting with geometrically
defined cutting edges
(DIN 8580 – 3.2)

Severing (DIN 8580 – 3.1)

Drilling (DIN 8580 – 3.2.2)
• Position / mm2 (R× R)
• Diameter / mm (R+)
• Depth / mm (R+)

Turning (DIN 8580 – 3.2.1)

Cooled Drilling
• Coolant Type ({water, oil})
• Max. Temperature / °C (R)

Countersink Drilling
• Chamfer Angle / mm (R+)
• Outer Diameter / mm (R+)

Figure 5.2: Excerpt from a hierarchy of production processes based on DIN
8580 [DIN8580]. The process attributes are from the indicated concrete domains.
Arrows denote an inheritance relation, which is expressed in DL via concept
inclusion, such as CountersinkDrilling v Drilling.

Figure 5.2 shows a more complete example process hierarchy, specializing
processes for drilling from DIN 8580. Processes usually originate from the
production and logistics domain. But they can also be auxiliary to the core
production operations. For example processes for machine maintenance.

Definition 5.3 (Resource). Resources denote machines and technical assets in
general. Resources are components in the nomenclature of Chapter 2.

Renaming the components from Chapter 2 to resources may seem unnecessary.
This is done in this chapter only to assure the possibility of comparison with
existing production skill models from the literature.

In DL, resources are represented as constants. The set of all resources is
denoted with the concept Resource. In addition, derived concepts can be used to
group resources. For example 5AxisManipulator v Manipulator v Resource.
This is useful to query for specific resources. But this grouping of resource has
no further purpose in this text.

134 5 Modeling of Production Skills

Example 5.5. In the battery production example, we consider only one
resource: The (imginary) LaserWelder200.

Resource(LaserWelder200)

Definition 5.4 (Transformation). Transformations are production operations
that transition one or several input products into one or several output products
by the application of production processes.

In DL, transformations are represented as constants that are instances of
the Transformation concept. Two new roles, hasInput and hasOutput, both
with the range Transformation and the range Product, are used to model which
ingoing products are transformed to which output. The input/output relations
between transformations can be used to draw a graph of a bill of processes. Note
however, that transformations must act on a product. Auxiliary processes, such
as machine tooling and transportation steps, are not considered.

In addition, transformations are also instances of one or more process concepts.

Transformation v Process

With that, the transformations can assign values to the respective process
attributes. The attributes of a transformation describe requirements that need
to be fulfilled by implementations of the transformation. As described earlier,
process attributes can have powersets for their domain in order to describe subsets,
such as ranges. For example, a transformation for welding two workpieces
together could indicate the range of supported temperatures in reference to the
temperature attribute specified for the welding process.

Example 5.6. To produce a battery, cells are welded together with a
busbar. The welding process requires a power to be applied from the
range between 2kW and 3kW.

Transformation(JoinBatteryCells)
hasInput(JoinBatteryCells, cell)

5.3 The PPRS Model for Production Skills 135

hasInput(JoinBatteryCells, busbar)
hasOutput(JoinBatteryCells, battery)

Welding(JoinBatteryCells)
hasPower(JoinBatteryCells, [2.000, 3.000])

Definition 5.5 (Skill). Skills describe that a resource can execute a process
under constraints defined in terms of the process attributes.

In DL, skills are represented as constants. Similar to transformations, skills
are also instances of processes.

Skill v Process

Therefore, skills refer to the same attributes used to defined the transformation
requirements. But it in the case of skills, the attributes describe the possibility
to realize a process for given attributes.

Example 5.7. The LaserWelder has the skill to weld with a power
between 2.5kW and 5kW. The CO2 laser used has a fixed wavelength of
10.6µm.

Skill(LW200LaserWeld)
hasSkill(LaserWelder200, LW200LaserWeld)

LaserWelding(LW200LaserWeld)
hasPower(LW200LaserWeld, [2.500, 5.000])
hasWavelength(LW200LaserWeld, 10.6)

Now we can formulate a query to find all skills that match with the
JoinBatteryCells transformation in terms of supported processes and
process attributes. This leads us to the resources that possess said skills.
The ∩ operator is used to find attributes where the overlap with the
indicated range is nonempty.

SkillMatch vWelding u ∃hasPower(∩, [2.000, 3.000])
ResourceMatch v ∃hasSkill.SkillMatch

136 5 Modeling of Production Skills

The skill representations cannot capture all details of a production system.
Therefore, we can only test whether a resource can perform a transformation
in general. For some domains, the attributes might be sufficient to guarantee
feasibility of the match. In other domains, additional checks need to be performed
either by detailed descriptions of the machine and product geometry or by manual
intervention.

However, once a skill has been specialized for a transformation or auxiliary
operation, implemented, tested and deployed to the production system, e.g. in
the form of PLC control code, then we know the exact conditions under which
the concrete operation can be applied.

Definition 5.6 (Action). An action is an executable process instance with
well-defined preconditions and effects. Actions are defined for one or several
participating resources. The DL concept Action contains instance elements that
correspond to the formal action definition from Chapter 2.

Actions are assumed to encapsulate all the required information to execute on
the resource. For example in the form of IEC-61131 PLC code, configuration
parameters, and so on. As a consequence, actions can be triggered simply by
reference to their identifier, provided that all the preconditions are fulfilled.

Example 5.8. The action LW200BatteryWeld is an implementation
of the JoinBatteryCells transformation. It makes use of the
LW200LaserWeld skill.

Action(LW200BatteryWeld)
implements(LW200BatteryWeld, JoinBatteryCells)
uses(LW200BatteryWeld, LW200LaserWeld)

5.4 Assisted Generation of Executable Actions

In a Plug & Produce scenario, at some point the generic skills of machines
and equipment need to be specialzied into executable actions with known
preconditions and effects. This splits into two steps:

5.4 Assisted Generation of Executable Actions 137

1. Selection of the actions that are required for runtime planning and control.

2. Implementation and deployment of the actions.

The assistend generation of actions was considered as part of the arhitecture of
the SkillPro project. See Figure 5.3 for an overview.

The machines and equipment are assigned to a Skill Execution Engine (SEE).
The SEE provide smart wrappers to the physical resources, which range from
conveyor belts with little configurability to complex machine tools and even
human workers. Facing towards the underlying resources, the SEE implement
domain-specific connectivity, e.g. based on a fieldbus protocol or OPC UA. In
case of the human worker, this is accomplished with a tablet-based graphical-
user-interface. Also, the SEE may contain domain-specific knowledge on how
to derive actions from high-level skill-based descriptions

The Manufacturing Execution System (MES) is responsible for orchestrating
the available resources in order to achive short- to mid-term manufacturing
goals. For this, the MES implements two main features working in lockstep:
computing a fine-grained execution plan that accomplishes the manufacturing
goals, and the orchestration of the manufacturing resources at runtime.

The Asset Management System AMS constitutes the central knowledge base of
a manufacturing facility and provides this information to the adjacent components.
It contains semantic descriptions of the available resources and their skills,
as well as a detailed plant model including topological (e.g. how resources
are arranged in work cells) and topographical (e.g. layout and position of the
resources) relations. The AMS also holds product models, including drawings,
bills of material and bills of processes. The AMS furthermore manages customer
orders on a long-term horizon and ensures that the required resources with
the right skills are available. Lastly, it interfaces the SkillPro framework with
enterprise level ERP (Enterprise Resource Planning) and PDM (Product Data
Management) systems.

Assume that a list of product transformations (bill of processes) are initially
provided or it could be inferred from the product description itself [TMP92].
The task of determining the right operations to produce a specific product was
originally investigated as Computer-Aided Process Planning (CAPP) [ElM93;
Kir95]. CAPP deals with finding “a way through the production system”.

138 5 Modeling of Production Skills

AMS

MES MES

SEE SEE SEE SEESEESEE

Figure 5.3: Architecture of the SkillPro project [Pfr+15b]

So CAPP is different from production planning and scheduling, where the
production of many products on a given plant layout is considered.

The generation of executable actions from high-level skill-based descriptions
requires the communication of AMS and SEE framework components. The
SEE may internally implement actions with a variety of technologies. Possible
ways for implementing actions are:

• Customization of predefined procedures by parametrization, where the
defined parameters are either resource- or production-domain specific
[ON15]. Note that a description of the entire product in an appropriate
format may constitute a parameter in this context. More examples of
reasoning on the execution of a high-level task model can be found for
example in the RoboEarth project [TB09; Wai+11].

• Automatic code synthesis from a high-level description [VWK05], which
can also be either resource-specific or based on a domain specific language
[DM97b; MOW01; Mit+05].

• Manually programmed procedures, for example IEC-61131 function
blocks.

The architecture from Figure 5.3 was implemented in the SkillPro project. At
runtime, every SEE is represented by an OPC UA server that provides a uniform

5.4 Assisted Generation of Executable Actions 139

interface. Clients can connect to the OPC UA server and discover the current state
of the component, as well as the available actions. So from the perspective of a
higher-level control system, the SEE are all uniform. Even if they represent very
different types of production equipment. If coordination between components
for an action is required (for example the time-synchronization beginning of
a procedure), they can also use OPC UA or rely some other communication
technology in the background. The latter is rather disapproved of, since this
adds technically rigid solution where tool-support for quick adaptations in the
sense of Plug & Work do not have as much tool-support.

6 Conclusion

Automated production systems face a tradeoff between efficiency and flexibility.
This thesis aims to improve the flexibility of automated production systems by
the use of a unified model representation on all levels of the control hierarchy.
Recall the postulate from the outset of Chapter 2:

The same set of modeling principles can represent the relevant prop-
erties of production systems on all levels of the control hierarchy.

The thesis developed modeling principles that are able to represent both contin-
uous and discrete production on all levels of the control hierarchy, including
concurrency, i.e. parallel operations and the synchronization of system compo-
nents, as well as uncertainty in stochastic scenarios. To our knowledge, no prior
approach was able to encompass all of these properties. In order to make use of
such a model for planning and runtime control appropriate decisions need to be
derived. Chapter 3 started with the following postulate:

The same algorithm can be used for planning and runtime control
on all levels of the control hierarchy – ranging from continuous
dynamics of a physical system to global supply-chain operations –
and for both continuous and discrete production.

Accordingly, an algorithm for optimal sequential decision making was developed
based on forward-simulation of the model from Chapter 2. Now that a model
for all levels of the control hierarchy and a matching planning algorithm exist,
the remaining challenge is to speed up planning for production operations at an
industrial scale. A range of measures were developed in this thesis to speed up
planning.

• Pruning action sequences that are equivalent in a precise sense (Sec-
tion 3.1).

142 6 Conclusion

• The use of Monte-Carlo Tree Search and Optimistic Optimisation to
replace trivial tree search and Branch & Bound methods (Section 3.2 and
Section 3.3).

• The relaxation of an important special case of the planning problem to a
Mixed-Integer Linear Program (Section 3.4).

A way to speed up planning that is orthogonal to the techniques just mentioned
is to decompose the planning problem into smaller subproblems to be solved
by independent agents. For this, the algorithm from Chapter 3 is extended for
multi-agent coordination. The chapter sets out to achieve the following target
result:

Independent agents can jointly perform planning in a production
scenario where every agent only has a simulation model of the
system part in his visible scope.

The core idea of the developed planning algorithm is to use “utility propagation”
for the agent coordination similar to “belief propagation” in probabilistic
graphical models. The decomposition into independent agent not only reduces
the planning complexity. Companies in a supply-chain can jointly optimize their
actions without a central entity that has access to all private information.

But in order to optimise production with planning algorithms, the model
representations of the production system need to be accurate. Furthermore, if the
resulting plans shall be used for automated control, then the action abstractions
used in the model need to available as automated procedures on the actual
machines and equipment. Keeping the model and the physical production
system synchronized can become quite resource-intensive when the production
is flexible and changes over time. It is therefore preferable to automate much
of the configuration work as well. The beginning of Chapter 5 postulates the
following.

Executable actions for planning and runtime control in a production
systems can be generated from higher-level descriptions of the
production system and the requirements.

We put forward a framework to describe the skills of production equipment
based on Description Logic (i.e. semantic modeling). The framework also

143

encompasses the description of product transformations and the manufacturing
processes involved. These descriptions are then used to match production steps
with machines and equipment capable of performaing than. Then, executable
actions are generated and deployed for use by the runtime control systems. This
is relevant for to achieve flexible production. Instead of manually programming
a PLC, higher-level abstractions can be used to generate and parameterized the
required control code.

The thesis has answered all four postulates in the affirmative. Example from
different production scenarios and from all levels of the control hierarchy have
been used to substantiate the claim. But surely this work can only be a stepping
stone towards future automated production systems that are both efficient and
flexible. To realize this goal, a large research programme is necessary that goes
beyond the scope of a single thesis. We now enumerate open research questions
and some of the key results that need to be obtained future for the work from
different domains to coalesce into a coherent whole.

Derive existing models for production and logistics from a common core
The production and logistics domain has developed numerous approaches for
modeling operations with varying degree of detail. This text has proposed a high-
fidelity model as the common basis for all such models used in production and
logistics. To support that claim, examples from several production domains and
on several levels of the automation hierarchy have been used for the exposition.

But a more comprehensive treatment is required next to mere examples.
It is an open research question which limiting assumptions need to be made
on top of the high-fidelity model to recover more coarse-grained models that
are already in productive use today. Such an investigation is the basis for
an automated treatment of interfaces where subsystems that are controlled by
different modeling approaches connect.

Using Machine Learning to Guide Exploration Monte-Carlo Tree Search
(MCTS) as a planning algorithm is essentially blind once it reaches a point
in the scenario tree that was never visited before. Machine Learning methods
can be used to enable MCTS to “learn to see”. The Q-value of the system
state (or a belief distribution for the system state) can be approximated from

144 6 Conclusion

similar experiences in the past that were (reached with a different sequence of
actions). In that sense, the model structure is not explicitly represented a-priori
but learned from the interaction with the scenario over a series of plays. This
has becomes known as Approximate Dynamic Programming [Ber+05; Pow07].
The combination of MCTS with neural networks as function approximators has
famously been used in the Deepmind AlphaGo system [Sil+16]. The expectation
is that a further reduction of the sample complexity for simulation-based planning
with concurrent production system model can be achieved.

There is currently an active community working on Multi-Agent Reinforce-
ment Learning (MARL) [BBD08]. Recent advances in deep learning are now
being integrated with MARL. Recent work also lets the agents learn how to
communicate instead of predefining the information flow [Foe+16]. “Utility
propagation” as used in Chapter 4 could be combined with recent MARL
techniques. For example by sending neural networks for Q-value estimation as
messages instead of an explicit Q-value representations on a search-tree.

Explicit representation of product attributes The model from Chapter 2
assumes that products are interchangeable. Instead of representing them
individually, only a count of products of the same type at the possible locations
is considered. But there are of course differences between products of the same
product type. This becomes apparent for example when quality issues come
up. Quality (for which different the definition depends on the case at hand) is
then conditionally dependent on the attributes of incoming raw material and
semi-finished products, process settings and the state of the physical process. A
complete “theory of production” should therefore encompass product attributes
as well.

Open systems with agents entering and leaving at runtime The decentralized
planning approach proposed in Chapter 4 allows for agents to enter and leave
the system at runtime. Such changes do not have to be communicated within the
entire system and only neighboring agents have to be informed. A remaining
question is to see how fast the overall system can adjust to the changes.

145

Domain-specific action generation The generation of executable actions
from skill definitions requires domain-specific tool support. In some domains,
commercial products are already available that can transform higher-level
descriptions to executable definitions. Notably in the robotics domain where
clear categories of equipment exist (cf. https://www.artiminds.com and
https://www.keba.com). Another example is the standardized “G-code” for
numerically controlled machine tools [ISO82]. G-code can be exported by
virtually CAD/CAM tools that target product design. The control synthesis
solutions for the individual application domains then have to be integrated.
For example to assist the integration of systems that combine robotics for
loading and unloading into a machine tool that transforms the work piece and
visual inspection for quality control. To us, high-level descriptions based on
skill-definitions are the most promising inroad for control synthesis in domains
with more variety in the types of machines and equipment as well as a larger
range of products to consider.

https://www.artiminds.com
https://www.keba.com

Bibliography

[Abe+06] E Abele et al. “Globalization and decentralization of manufac-
turing”. In: Reconfigurable Manufacturing Systems and Trans-
formable Factories. Springer, 2006, pp. 3–13.

[ABZ88] Joseph Adams, Egon Balas, and Daniel Zawack. “The shifting
bottleneck procedure for job shop scheduling”. In: Management
science 34.3 (1988), pp. 391–401.

[ACF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. “Finite-time
analysis of the multiarmed bandit problem”. In: Machine learning
47.2-3 (2002), pp. 235–256.

[Agn+14] Alessandro Agnetis et al. Multiagent scheduling. Springer, 2014.

[Ali05] Knut Alicke. Planung und Betrieb von Logistiknetzwerken. Springer,
2005.

[AM00] Srinivas M Aji and Robert J McEliece. “The generalized dis-
tributive law”. In: IEEE Transactions on Information Theory 46.2
(2000), pp. 325–343.

[AO15] Christopher Amato and Frans A Oliehoek. “Scalable Planning
and Learning for Multiagent POMDPs”. In: Twenty-Ninth AAAI
Conference on Artificial Intelligence. 2015, pp. 1995–2002.

[Ara+00] T Arai et al. “Agile assembly system by ’plug and produce’”. In:
CIRP Annals-Manufacturing Technology 49.1 (2000), pp. 1–4.

[Aza+16] Selma Azaiez et al. “Towards Flexibility in Future Industrial
Manufacturing: A Global Framework for Self-organization of
Production Cells”. In: Procedia Computer Science 83 (2016),
pp. 1268–1273.

[Baa03] Franz Baader. The description logic handbook: Theory, implemen-
tation and applications. Cambridge university press, 2003.

148 Bibliography

[Bac+92] François Baccelli et al. “Synchronization and linearity: an algebra
for discrete event systems”. In: (1992).

[Bad11] Iman Badr. “Agent-based dynamic scheduling for flexible manu-
facturing systems”. PhD thesis. University of Stuttgart, 2011.

[Bas+75] Forest Baskett et al. “Open, closed, and mixed networks of queues
with different classes of customers”. In: Journal of the ACM
(JACM) 22.2 (1975), pp. 248–260.

[BBD08] Lucian Busoniu, Robert Babuska, and Bart De Schutter. “A com-
prehensive survey of multiagent reinforcement learning”. In: IEEE
Transactions on Systems, Man, And Cybernetics-Part C: Applica-
tions and Reviews, 38 (2), 2008 (2008).

[BCG07] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood.
Developing multi-agent systems with JADE. Vol. 7. John Wiley &
Sons, 2007.

[BD08] Ronen I Brafman and Carmel Domshlak. “From One to Many:
Planning for Loosely Coupled Multi-Agent Systems.” In: ICAPS.
2008, pp. 28–35.

[BDH99] Craig Boutilier, Thomas Dean, and Steve Hanks. “Decision-
theoretic planning: Structural assumptions and computational
leverage”. In: Journal of Artificial Intelligence Research 11.1
(1999), p. 94.

[Bel57] Richard Ernest Bellman. “Dynamic Programming”. In: (1957).

[Ben93] Stuart Bennett. “Development of the PID controller”. In: IEEE
control systems 13.6 (1993), pp. 58–62.

[Ber+05] Dimitri P Bertsekas et al. Dynamic programming and optimal
control. Vol. 1. 3. Athena scientific Belmont, MA, 2005.

[Ber+95] Dimitri P Bertsekas et al. Dynamic programming and optimal
control. Vol. 1. 2. Athena scientific Belmont, MA, 1995.

[Ber38] Daniel Bernoulli. Hydrodynamica. Dulsecker, 1738.

[BG01] Blai Bonet and Héctor Geffner. “Planning and control in artificial
intelligence: A unifying perspective”. In: Applied Intelligence 14.3
(2001), pp. 237–252.

Bibliography 149

[BH91] Franz Baader and Philipp Hanschke. “A Scheme for Integrating
Concrete Domains into Concept Languages”. In: Proceedings of
the 12th International Joint Conference on Artificial Intelligence -
Volume 1. IJCAI’91. Sydney, New South Wales, Australia: Morgan
Kaufmann Publishers Inc., 1991, pp. 452–457. isbn: 1-55860-160-
0. url: http://dl.acm.org/citation.cfm?id=1631171.
1631239.

[Bjö+12] Anders Björkelund et al. “Knowledge for Intelligent Industrial
Robots.” In: AAAI Spring Symposium: Designing Intelligent Robots.
2012.

[BPM18] Lucian Buşoniu, Előd Páll, and Rémi Munos. “Continuous-action
planning for discounted infinite-horizon nonlinear optimal control
with Lipschitz values”. In: Automatica 92 (2018), pp. 100–108.

[BR15] J Backhaus and G Reinhart. “Adaptive and Device Independent
Planning Module for Task-Oriented Programming of Assembly
Systems”. In: Procedia CIRP 33 (2015), pp. 545–550.

[Bri03] Douglas Brinkley. Wheels for the world: Henry Ford, his company,
and a century of progress, 1903-2003. Viking Press, 2003.

[Bro+12] Cameron B Browne et al. “A survey of monte carlo tree search
methods”. In: IEEE Transactions on Computational Intelligence
and AI in Games 4.1 (2012), pp. 1–43.

[Bro+84] Jim Browne et al. “Classification of flexible manufacturing sys-
tems”. In: The FMS magazine 2.2 (1984), pp. 114–117.

[BS88] MIRYAM BARAD and Daniel Sipper. “Flexibility in manufactur-
ing systems: definitions and Petri net modelling”. In: International
Journal of Production Research 26.2 (1988), pp. 237–248.

[BUR14] Julian Backhaus, Marco Ulrich, and Gunther Reinhart. “Classifi-
cation, Modelling and Mapping of Skills in Automated Production
Systems”. In: Enabling Manufacturing Competitiveness and Eco-
nomic Sustainability. Springer, 2014, pp. 85–89.

http://dl.acm.org/citation.cfm?id=1631171.1631239
http://dl.acm.org/citation.cfm?id=1631171.1631239

150 Bibliography

[Bus+13] Lucian Busoniu et al. “Optimistic planning for continuous-action
deterministic systems”. In: Adaptive Dynamic Programming And
Reinforcement Learning (ADPRL), 2013 IEEE Symposium on.
IEEE. 2013, pp. 69–76.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

[BW05] Dimitris Bertsimas and Robert Weismantel. Optimization over
integers. Dynamic Ideas, Belmont, 2005.

[BZI00] Daniel S Bernstein, Shlomo Zilberstein, and Neil Immerman. “The
complexity of decentralized control of Markov decision processes”.
In: Proceedings of the Sixteenth conference on Uncertainty in
artificial intelligence. Morgan Kaufmann Publishers Inc. 2000,
pp. 32–37.

[Cân+11] Gonçalo Cândido et al. “Service-oriented infrastructure to support
the deployment of evolvable production systems”. In: Industrial
Informatics, IEEE Transactions on 7.4 (2011), pp. 759–767.

[Car84] Nancy Cartwright. How the laws of physics lie. Oxford University
Press, 1984.

[CF69] Pierre Cartier and Dominique Foata. Problemes combinatoires
de commutation et réarrangements. Vol. 85. Lecture Notes in
Mathematics. Springer, 1969.

[Cha+08] Guillaume Chaslot et al. “Monte-Carlo Tree Search: A New
Framework for Game AI.” In: Proceedings of the Fourth Artificial
Intelligence and Interactive Digital Entertainment Conference.
2008.

[Chr00] Martin Christopher. “The agile supply chain: competing in volatile
markets”. In: Industrial marketing management 29.1 (2000),
pp. 37–44.

[CM15] Felipe Caro and Victor Martínez-de-Albéniz. “Fast fashion: busi-
ness model overview and research opportunities”. In: Retail Supply
Chain Management. Springer, 2015, pp. 237–264.

Bibliography 151

[Coa37] Ronald H Coase. “The nature of the firm”. In: Economica 4.16
(1937), pp. 386–405.

[Com93] International Electrotechnical Commission. IEC 61131-3: Pro-
grammable Controllers. Tech. rep. 1993.

[Cow+99] Robert G Cowell et al. “Probabilistic Networks and Expert Sys-
tems”. In: (1999).

[Dan66] Sven Danø. Industrial production models: A theoretical study.
Springer, 1966.

[Das+18] Abhishek Das et al. “Joining technologies for automotive battery
systems manufacturing”. In: World Electric Vehicle Journal 9.2
(2018), p. 22.

[De +08] Luciana Moreira Sá De Souza et al. “Socrades: A web service
based shop floor integration infrastructure”. In: The internet of
things. Springer, 2008, pp. 50–67.

[De 70] Morris H De Groot. “Optimal statistical decisions”. In: (1970).

[Dep+16] Torben Deppe et al. “Bidirektionale Kommunikation mit OPC
Unified Architecture”. In: Kommunikation in der Automation -
KommA 2016. Lemgo, Germany, Nov. 2016.

[DF04] David S Dummit and Richard M Foote. Abstract Algebra. John
Wiley and Sons, 2004.

[Dim15] Todor Dimitrov. “Permanente Optimierung dynamischer Probleme
der Fertigungssteuerung unter Einbeziehung von Benutzerinterak-
tionen”. PhD thesis. Karlsruhe Institute of Technology, 2015.

[DIN18] DIN. DIN SPEC 16593-1: RM-SA - Reference Model for Industrie
4.0 Service Architectures - Part 1: Basic Concepts of an Interaction-
based Architecture. Tech. rep. 2018.

[DIN8580] DIN8580: Manufacturing processes - Terms and definitions, divi-
sion. Standard. Deutsches Institut für Normung, 2003.

[DM97a] Volker Diekert and Yves Métivier. “Partial commutation and
traces”. In: Handbook of formal languages 3 (1997), pp. 457–533.

152 Bibliography

[DM97b] Donald Dragomatz and Stephen Mann. “A classified bibliography
of literature on NC milling path generation”. In: Computer-Aided
Design 29.3 (1997), pp. 239–247.

[Dor+17] Kirill Dorofeev et al. “Device adapter concept towards enabling
plug&produce production environments”. In: Emerging Technolo-
gies and Factory Automation (ETFA), 2017 22nd IEEE Interna-
tional Conference on. IEEE. 2017, pp. 1–8.

[DP87] Neil A Duffie and Rex S Piper. “Non-hierarchical control of a
flexible manufacturing cell”. In: Robotics and computer-integrated
manufacturing 3.2 (1987), pp. 175–179.

[DT98] Alberto De Toni and Stefano Tonchia. “Manufacturing flexibility: a
literature review”. In: International journal of production research
36.6 (1998), pp. 1587–1617.

[Dür+12] Lars Dürkop et al. “Towards autoconfiguration of industrial au-
tomation systems: A case study using Profinet IO”. In: Emerging
Technologies & Factory Automation (ETFA), 2012 IEEE 17th
Conference on. IEEE. 2012, pp. 1–8.

[Dür+14] Lars Dürkop et al. “A field level architecture for reconfigurable real-
time automation systems”. In: Factory Communication Systems
(WFCS), 2014 10th IEEE Workshop on. IEEE. 2014, pp. 1–10.

[DW91] Thomas L Dean and Michael P Wellman. Planning and control.
Morgan Kaufmann Publishers Inc., 1991.

[Dyc03] Harald Dyckhoff. “Neukonzeption der Produktionstheorie”. In:
Zeitschrift für Betriebswirtschaft 73.7 (2003), pp. 705–732.

[Dyc06] Harald Dyckhoff. Produktionstheorie: Grundzüge industrieller
Produktionswirtschaft. Springer-Verlag, 2006.

[ElM93] Hoda A ElMaraghy. “Evolution and future perspectives of CAPP”.
In: CIRP Annals-Manufacturing Technology 42.2 (1993), pp. 739–
751.

[Fär88] Rolf Färe. Fundamentals of production theory. Springer, 1988.

Bibliography 153

[FB10] Christian Frese and Jürgen Beyerer. “Planning cooperative motions
of cognitive automobiles using tree search algorithms”. In: Annual
Conference on Artificial Intelligence. Springer. 2010, pp. 91–98.

[FD16] Pascal Faure and Philippe Darmayan. “Le plan français «Industrie
du futur»”. In: Annales des Mines-Réalités industrielles. 4. FFE.
2016, pp. 57–60.

[FFW07] Victor Fung, William Fung, and Yoram Jerry Wind. Competing in
a flat world: building enterprises for a borderless world. Wharton
School Publishing, 2007.

[Fis99] Klaus Fisher. “Agent-based design of holonic manufacturing
systems”. In: Robotics and autonomous Systems 27.1-2 (1999),
pp. 3–13.

[Foe+16] Jakob Foerster et al. “Learning to communicate with deep multi-
agent reinforcement learning”. In: Advances in Neural Information
Processing Systems. 2016, pp. 2137–2145.

[FRD98] Holger Friedrich, Oliver Rogalla, and Rüdiger Dillmann. “Inte-
grating skills into multi-agent systems”. In: Journal of Intelligent
Manufacturing 9.2 (1998), pp. 119–127.

[FT63] H. Fisher and G.L. Thompson. “Probabilistic learning combina-
tions of local job-shop scheduling rules”. In: Industrial Scheduling.
Ed. by J.F. Muth and G.L. Thompson. Prentice Hall, 1963, pp. 225–
251.

[Fuj98] Richard M Fujimoto. “Time management in the high level archi-
tecture”. In: Simulation 71.6 (1998), pp. 388–400.

[Fur18] Kai Furmans. Material Handling and Production Systems Modelling-
Based on Queuing Models. Springer, 2018.

[FYK92] Katsuhisa Furuta, M Yamakita, and S Kobayashi. “Swing-up
control of inverted pendulum using pseudo-state feedback”. In:
Proceedings of the Institution of Mechanical Engineers, Part I:
Journal of Systems and Control Engineering 206.4 (1992), pp. 263–
269.

154 Bibliography

[Gar18] Gartner. Market Share Analysis: ERP Software, Worldwide, 2017.
Tech. rep. 2018. url: https://www.gartner.com/doc/
3879510/market-share-analysis-erp-software.

[Ger93] Donald Gerwin. “Manufacturing flexibility: a strategic perspec-
tive”. In: Management science 39.4 (1993), pp. 395–410.

[Ger99] Gary Gereffi. “International trade and industrial upgrading in the
apparel commodity chain”. In: Journal of international economics
48.1 (1999), pp. 37–70.

[GF08] Harald Gleißner and J Christian Femerling. IT in der Logistik.
Springer, 2008.

[GFB94] Vijaykumar Gullapalli, Judy A Franklin, and Hamid Benbrahim.
“Acquiring robot skills via reinforcement learning”. In: IEEE
Control Systems 14.1 (1994), pp. 13–24.

[GG89] Yash P Gupta and Sameer Goyal. “Flexibility of manufacturing
systems: concepts and measurements”. In: European journal of
operational research 43.2 (1989), pp. 119–135.

[Gie04] Ronald N Giere. “How models are used to represent reality”. In:
Philosophy of science 71.5 (2004), pp. 742–752.

[GJS76] Michael R Garey, David S Johnson, and Ravi Sethi. “The com-
plexity of flowshop and jobshop scheduling”. In: Mathematics of
operations research 1.2 (1976), pp. 117–129.

[GLK98] Ling Gou, Peter B Luh, and Yuji Kyoya. “Holonic manufacturing
scheduling: architecture, cooperation mechanism, and implemen-
tation”. In: Computers in Industry 37.3 (1998), pp. 213–231.

[Gol99] Jonathan S Golan. Semirings and their applications. Kluwer
Academic Publishers, 1999.

[GPP15] Sten Grüner, Julius Pfrommer, and Florian Palm. “A RESTful
extension of OPC UA”. In: Factory Communication Systems
(WFCS), 2015 IEEE World Conference on. IEEE, 2015, pp. 1–4.

[GPP16] Sten Grüner, Julius Pfrommer, and Florian Palm. “RESTful Indus-
trial Communication With OPC UA”. In: IEEE Transactions on
Industrial Informatics 12.5 (2016), pp. 1832–1841.

https://www.gartner.com/doc/3879510/market-share-analysis-erp-software
https://www.gartner.com/doc/3879510/market-share-analysis-erp-software

Bibliography 155

[Gro05] Ignacio Grossmann. “Enterprise-wide optimization: A new frontier
in process systems engineering”. In: AIChE Journal 51.7 (2005),
pp. 1846–1857.

[Gro08] Donald Gross. Fundamentals of queueing theory. John Wiley &
Sons, 2008.

[GT60] Bernard Giffler and Gerald Luther Thompson. “Algorithms for
solving production-scheduling problems”. In: Operations research
8.4 (1960), pp. 487–503.

[Gur16] Gurobi Optimization, Inc. Gurobi Optimizer Reference Manual.
2016. url: http://www.gurobi.com.

[GVM16] Jean-Bastien Grill, Michal Valko, and Rémi Munos. “Blazing
the trails before beating the path: Sample-efficient Monte-Carlo
planning”. In: Advances in Neural Information Processing Systems.
2016, pp. 4680–4688.

[HC12] Jacob Huckaby and Henrik I Christensen. “A taxonomic frame-
work for task modeling and knowledge transfer in manufacturing
robotics”. In: Workshops at 26th AAAI Conference on Artificial
Intelligence. 2012.

[Hem66] J Hemelrijk. “Underlining random variables”. In: Statistica Neer-
landica 20.1 (1966), pp. 1–7.

[HL05] Willy Herroelen and Roel Leus. “Project scheduling under uncer-
tainty: Survey and research potentials”. In: European journal of
operational research 165.2 (2005), pp. 289–306.

[Hou85] David Hounshell. From the American system to mass production,
1800-1932: The development of manufacturing technology in the
United States. 4. JHU Press, 1985.

[HU79] John E Hopcroft and Jeffrey D Ullman. Introduction to Automata
Theory, Languages and Computation. Addison-Wesley, 1979.

[ISO82] ISO. ISO 6983-1: Automation systems and integration – Numerical
control of machines – Program format and definitions of address
words – Part 1: Data format for positioning, line motion and
contouring control systems. 1982.

http://www.gurobi.com

156 Bibliography

[Jac+07] F Robert Jacobs et al. “Enterprise resource planning (ERP)—A
brief history”. In: Journal of Operations Management 25.2 (2007),
pp. 357–363.

[Jar+11] E Jarvenpaa et al. “Presenting capabilities of resources and re-
source combinations to support production system adaptation”. In:
Assembly and Manufacturing (ISAM), 2011 IEEE International
Symposium on. IEEE. 2011, pp. 1–6.

[Jär+18] Eeva Järvenpää et al. “Utilizing SPIN rules to infer the parameters
for combined capabilities of aggregated manufacturing resources”.
In: IFAC-PapersOnLine 51.11 (2018), pp. 84–89.

[Jay03] Edwin T Jaynes. Probability theory: The logic of science. Cam-
bridge university press, 2003.

[Jel06] Mohieddine Jelali. “An overview of control performance assess-
ment technology and industrial applications”. In: Control engi-
neering practice 14.5 (2006), pp. 441–466.

[JM98] Anant Singh Jain and Sheik Meeran. A state-of-the-art review of
job-shop scheduling techniques. Tech. rep. Department of Applied
Physics, Electronic and Mechanical Engineering, University of
Dundee, Dundee, Scotland, 1998.

[Joh87] David G Johnson. Programmable controllers for factory automa-
tion. Marcel Dekker, Inc., 1987.

[JPS93] Donald R Jones, Cary D Perttunen, and Bruce E Stuckman. “Lips-
chitzian optimization without the Lipschitz constant”. In: Journal
of Optimization Theory and Applications 79.1 (1993), pp. 157–
181.

[JS05] François Jammes and Harm Smit. “Service-oriented paradigms in
industrial automation”. In: Industrial Informatics, IEEE Transac-
tions on 1.1 (2005), pp. 62–70.

[Jun+17] Jieun Jung et al. “Design of smart factory web services based
on the industrial internet of things”. In: Proceedings of the 50th
Hawaii International Conference on System Sciences. 2017.

Bibliography 157

[KBT17] Ilya Kovalenko, Kira Barton, and Dawn Tilbury. “Design and
implementation of an intelligent product agent architecture in
manufacturing systems”. In: Emerging Technologies & Factory
Automation (ETFA). IEEE, 2017, pp. 1–8.

[Ken15] Scott Kennedy. “Made in China 2025”. In: Center for Strategic
and International Studies (2015).

[KF09] Daphne Koller and Nir Friedman. Probabilistic graphical models:
principles and techniques. MIT press, 2009.

[KFL01] Frank R Kschischang, Brendan J Frey, and H-A Loeliger. “Factor
graphs and the sum-product algorithm”. In: Information Theory,
IEEE Transactions on 47.2 (2001), pp. 498–519.

[KHL08] Hanna Kurniawati, David Hsu, and Wee Sun Lee. “SARSOP:
Efficient Point-Based POMDP Planning by Approximating Opti-
mally Reachable Belief Spaces.” In: Robotics: Science and systems.
Vol. 2008. 2008.

[Kir95] Dimitris Kiritsis. “A review of knowledge-based expert systems for
process planning. Methods and problems”. In: The International
Journal of Advanced Manufacturing Technology 10.4 (1995),
pp. 240–262.

[KKS14] Yevgeny Kazakov, Markus Krötzsch, and František Simančık.
“The incredible ELK”. In: Journal of automated reasoning 53.1
(2014), pp. 1–61.

[KKZ14] Nadine Keddis, Gerd Kainz, and Alois Zoitl. “Capability-based
planning and scheduling for adaptable manufacturing systems”.
In: Emerging Technology and Factory Automation (ETFA), 2014
IEEE. IEEE. 2014, pp. 1–8.

[KLC98] Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cas-
sandra. “Planning and acting in partially observable stochastic
domains”. In: Artificial intelligence 101.1 (1998), pp. 99–134.

[Klu11] Stefan Kluge. “Methodik zur fähigkeitsbasierten Planung modu-
larer Montagesysteme”. PhD thesis. Universität Stuttgart, 2011.

158 Bibliography

[KMN02] Michael Kearns, Yishay Mansour, and Andrew Y Ng. “A sparse
sampling algorithm for near-optimal planning in large Markov
decision processes”. In: Machine learning 49.2-3 (2002), pp. 193–
208.

[Koe68] Arthur Koestler. “The ghost in the machine.” In: (1968).

[KS06] Levente Kocsis and Csaba Szepesvári. “Bandit based monte-carlo
planning”. In: European conference on machine learning. Springer.
2006, pp. 282–293.

[Kuh62] Thomas S Kuhn. The structure of scientific revolutions. University
of Chicago Press, 1962.

[KV05] Jelle R Kok and Nikos Vlassis. “Using the max-plus algorithm
for multiagent decision making in coordination graphs”. In: Robot
Soccer World Cup. Springer. 2005, pp. 1–12.

[KWH13] H Kagermann, W Wahlster, and J Helbig. “Umsetzungsempfehlun-
gen für das Zukunftsprojekt Industrie 4.0–Abschlussbericht des
Arbeitskreises Industrie 4.0”. In: Forschungsunion im Stifterver-
band für die Deutsche Wissenschaft. Berlin (2013).

[Lam78] Leslie Lamport. “Time, clocks, and the ordering of events in a
distributed system”. In: Communications of the ACM 21.7 (1978),
pp. 558–565.

[LaV06] Steven M LaValle. Planning algorithms. Cambridge university
press, 2006.

[Lei09] Paulo Leitão. “Agent-based distributed manufacturing control: A
state-of-the-art survey”. In: Engineering Applications of Artificial
Intelligence 22.7 (2009), pp. 979–991.

[Lep+11] Wilfried Lepuschitz et al. “Toward self-reconfiguration of manu-
facturing systems using automation agents”. In: Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE Transactions
on 41.1 (2011), pp. 52–69.

[Lib11] Daniel Liberzon. Calculus of variations and optimal control theory:
a concise introduction. Princeton University Press, 2011.

Bibliography 159

[Lim15] Li&Fung Limited. Li&Fung Annual Report 2015. 2015. url:
https://www.lifung.com/investors/financial-reports-

presentations/2015/.

[Lit+63] John DC Little et al. “An algorithm for the traveling salesman
problem”. In: Operations research 11.6 (1963), pp. 972–989.

[LK08] J-H Lee and C-O Kim. “Multi-agent systems applications in
manufacturing systems and supply chain management: a review
paper”. In: International Journal of Production Research 46.1
(2008), pp. 233–265.

[LK15] Paulo Leitão and Stamatis Karnouskos. Industrial Agents: Emerg-
ing Applications of Software Agents in Industry. Morgan Kaufmann,
2015.

[LKK16] David Lenz, Tobias Kessler, and Alois Knoll. “Tactical cooperative
planning for autonomous highway driving using Monte-Carlo Tree
Search”. In: Intelligent Vehicles Symposium (IV), 2016 IEEE. IEEE.
2016, pp. 447–453.

[LL94] Tim C Lueth and Thomas Laengle. “Task description, decom-
position, and allocation in a distributed autonomous multi-agent
robot system”. In: Intelligent Robots and Systems’ 94.’Advanced
Robotic Systems and the Real World’, IROS’94. Proceedings of the
IEEE/RSJ/GI International Conference on. Vol. 3. IEEE. 1994,
pp. 1516–1523.

[LMV13] Paulo Leitão, Vladimír Mařík, and Pavel Vrba. “Past, present, and
future of industrial agent applications”. In: IEEE Transactions on
Industrial Informatics 9.4 (2013), pp. 2360–2372.

[Los+11] Matthias Loskyll et al. “Semantic service discovery and orchestra-
tion for manufacturing processes”. In: Emerging Technologies &
Factory Automation (ETFA). IEEE. 2011, pp. 1–8.

[Los+12] Matthias Loskyll et al. “Context-based orchestration for control of
resource-efficient manufacturing processes”. In: Future Internet
4.3 (2012), pp. 737–761.

https://www.lifung.com/investors/financial-reports-presentations/2015/
https://www.lifung.com/investors/financial-reports-presentations/2015/

160 Bibliography

[LP12] Gisela Lanza and Steven Peters. “Integrated capacity planning
over highly volatile horizons”. In: CIRP Annals-Manufacturing
Technology 61.1 (2012), pp. 395–398.

[LPW97] Hau L Lee, Venkata Padmanabhan, and Seungjin Whang. “In-
formation distortion in a supply chain: The bullwhip effect”. In:
Management science 43.4 (1997), pp. 546–558.

[LS92] Grace Yuh-jiun Lin and James J Solberg. “Integrated shop floor
control using autonomous agents”. In: IIE transactions 24.3 (1992),
pp. 57–71.

[LSV14] Christoph Legat, Daniel Schütz, and Birgit Vogel-Heuser. “Au-
tomatic generation of field control strategies for supporting (re-)
engineering of manufacturing systems”. In: Journal of Intelligent
Manufacturing 25.5 (2014), pp. 1101–1111.

[Lue69] David G Luenberger. Optimization by vector space methods. John
Wiley & Sons, 1969.

[LV15] Christoph Legat and Birgit Vogel-Heuser. “An Orchestration
Engine for Services-Oriented Field Level Automation Software”.
In: Service Orientation in Holonic and Multi-agent Manufacturing.
Ed. by Theodor Borangiu, André Thomas, and Damien Trentesaux.
Vol. 594. Springer International Publishing, 2015, pp. 71–80.

[Mac+06] C Matthew MacKenzie et al. OASIS Reference model for service
oriented architecture 1.0. Tech. rep. 2006.

[Mac02] Jan Marian Maciejowski. Predictive control: with constraints.
Pearson education, 2002.

[Mal+07] J. Malec et al. “Knowledge-Based Reconfiguration of Automation
Systems”. In: Automation Science and Engineering, 2007. CASE
2007. IEEE International Conference on. 2007, pp. 170–175.

[Mal+18] Somayeh Malakuti et al. “Challenges in Skill-based Engineering of
Industrial Automation Systems”. In: 2018 IEEE 23rd International
Conference on Emerging Technologies and Factory Automation
(ETFA). Vol. 1. IEEE. 2018, pp. 67–74.

Bibliography 161

[Maz77] Antoni Mazurkiewicz. “Concurrent program schemes and their
interpretations”. In: DAIMI Report Series 6.78 (1977).

[MB00] Duncan C McFarlane and Stefan Bussmann. “Developments in
holonic production planning and control”. In: Production Planning
& Control 11.6 (2000), pp. 522–536.

[Mes13] VDI/VDE - Gesellschaft für Mess und Automatisierungstechnik
(GMA). Cyber-Physical Systems: Chancen und Nutzen aus Sicht
der Automation. Tech. rep. 2013.

[MF70] Burton G Malkiel and Eugene F Fama. “Efficient capital markets:
A review of theory and empirical work”. In: The journal of Finance
25.2 (1970), pp. 383–417.

[Mit+05] S Mitsi et al. “Off-line programming of an industrial robot for
manufacturing”. In: The International Journal of Advanced Man-
ufacturing Technology 26.3 (2005), pp. 262–267.

[MK97] J Daniel Morrow and Pradeep K Khosla. “Manipulation task
primitives for composing robot skills”. In: Robotics and Automa-
tion, 1997. Proceedings., 1997 IEEE International Conference on.
Vol. 4. IEEE. 1997, pp. 3354–3359.

[ML99] Manfred Morari and Jay H Lee. “Model predictive control: past,
present and future”. In: Computers & Chemical Engineering 23.4
(1999), pp. 667–682.

[MLD09] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm.
OPC Unified Architecture. Springer, 2009.

[Mon14] László Monostori. “Cyber-physical production systems: Roots,
expectations and R&D challenges”. In: Procedia Cirp 17 (2014),
pp. 9–13.

[MOW01] Swee M Mok, Kenlip Ong, and Chi-haur Wu. “Automatic gen-
eration of assembly instructions using STEP”. In: Robotics and
Automation, 2001. Proceedings 2001 ICRA. IEEE International
Conference on. Vol. 1. IEEE. 2001, pp. 313–318.

162 Bibliography

[Mun+14] Rémi Munos et al. “From Bandits to Monte-Carlo Tree Search:
The Optimistic Principle Applied to Optimization and Planning”.
In: Foundations and Trends in Machine Learning 7.1 (2014),
pp. 1–129.

[Mun11] Rémi Munos. “Optimistic optimization of a deterministic function
without the knowledge of its smoothness”. In: Advances in neural
information processing systems. 2011, pp. 783–791.

[MVK06] László Monostori, József Váncza, and Soundar RT Kumara.
“Agent-based systems for manufacturing”. In: CIRP Annals-
Manufacturing Technology 55.2 (2006), pp. 697–720.

[MW59] Born Max and Emil Wolf. Principles of optics. Pergamon Press,
1959.

[MWL11] Christopher R Mansley, Ari Weinstein, and Michael L Littman.
“Sample-Based Planning for Continuous Action Markov Decision
Processes.” In: ICAPS. 2011.

[Nas51] John Nash. “Non-cooperative games”. In: Annals of mathematics
(1951), pp. 286–295.

[Neu55] John von Neumann. The impact of recent developments in science
on the economy and on economics. Speech to the National Plan-
ning Association, Washington D.C., reprinted in Collected Works
(Pergamon Press, 1963). 1955.

[NHR99] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invari-
ance under reward transformations: Theory and application to
reward shaping”. In: ICML. Vol. 99. 1999, pp. 278–287.

[NW10] Peter Nyhuis and Hans-Peter Wiendahl. “Ansatz zu einer Theorie
der Produktionstechnik”. In: ZWF Zeitschrift für wirtschaftlichen
Fabrikbetrieb 105.1-2 (2010), pp. 15–20.

[NWS07] Martin Naumann, Kai Wegener, and Rolf Dieter Schraft. “Control
architecture for robot cells to enable Plug’n’Produce”. In: Robotics
and Automation, 2007 IEEE International Conference on. IEEE.
2007, pp. 287–292.

Bibliography 163

[OHN14] Jens Otto, Steffen Henning, and Oliver Niggemann. “Why cyber-
physical production systems need a descriptive engineering
approach–a case study in plug & produce”. In: Procedia Technol-
ogy 15 (2014), pp. 295–302.

[Ohn88] Taiichi Ohno. Toyota production system: beyond large-scale pro-
duction. CRC Press, 1988.

[ON15] Jens Otto and Oliver Niggemann. “Automatic Parameterization
of Automation Software for Plug-and-Produce”. In: The AAAI-15
Workshop on Algorithm Configuration (AlgoConf 2015), Austin,
Texas (2015).

[Ono+12] Mauro Onori et al. “The IDEAS project: plug & produce at shop-
floor level”. In: Assembly automation 32.2 (2012), pp. 124–134.

[Oue+99] Djamila Ouelhadj et al. “A multi-contract net protocol for dynamic
scheduling in flexible manufacturing systems (FMS)”. In: Robotics
and Automation, 1999. Proceedings. 1999 IEEE International
Conference on. Vol. 2. IEEE. 1999, pp. 1114–1119.

[Pal+14] Florian Palm et al. “open62541 - der offene OPC UA-Stack”. In:
Lemgo, Nov. 2014.

[Par87] H Van Dyke Parunak. “Manufacturing experience with the contract
net”. In: Distributed Artificial Intelligence, Volume I. Elsevier,
1987, pp. 285–310.

[Pea84] Judea Pearl. “Heuristics: intelligent search strategies for computer
problem solving”. In: (1984).

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Net-
works of Plausible Inference. Morgan Kaufmann Publishers Inc.,
1988.

[Pfr+14a] Julius Pfrommer et al. “Begrifflichkeiten um Industrie 4.0 – Ord-
nung im Sprachwirrwarr”. In: Tagungsband zu Entwurf komplexer
Automatisierungssysteme (EKA) 2014. Ed. by Ulrich Jumar and
Christian Diedrich. Magdeburg, May 2014.

164 Bibliography

[Pfr+14b] Julius Pfrommer et al. “Dynamic vehicle redistribution and online
price incentives in shared mobility systems”. In: IEEE Transactions
on Intelligent Transportation Systems 15.4 (2014), pp. 1567–1578.

[Pfr+14c] Julius Pfrommer et al. “Modelling and Orchestration of Service-
Based Manufacturing Systems via Skills”. In: Emerging Technolo-
gies & Factory Automation (ETFA), 2014 IEEE 19th Conference
on. Barcelona, Spain, Sept. 2014.

[Pfr+15a] Julius Pfrommer et al. “Plug & Produce by Modelling Skills and
Service-Oriented Orchestration of Reconfigurable Manufacturing
Systems”. In: at Automatisierungstechnik 10.63 (2015).

[Pfr+15b] Julius Pfrommer et al. “Plug & produce by modelling skills and
service-oriented orchestration of reconfigurable manufacturing
systems”. In: at-Automatisierungstechnik 63.10 (2015), pp. 790–
800.

[Pfr+16a] Julius Pfrommer et al. “A common core for information modeling
in the Industrial Internet of Things”. In: at-Automatisierungstechnik
64.9 (2016), pp. 729–741.

[Pfr+16b] Julius Pfrommer et al. “Deploying software functionality to manu-
facturing resources safely at runtime”. In: Emerging Technologies
and Factory Automation (ETFA), 2016 IEEE 21st International
Conference on. Berlin, Germany: IEEE, Sept. 2016, pp. 1–7.

[Pfr+18] Julius Pfrommer et al. “Optimisation of manufacturing process
parameters using deep neural networks as surrogate models”.
In: Proceedings of the 51st CIRP Conference on Manufacturing
Systems. Stockholm: CIRP, 2018.

[Pfr14] Julius Pfrommer. Information and Control in Cyber-Physical
Production Systems. Tech. rep. 2014, pp. 61–74.

[Pfr15] Julius Pfrommer. Distributed Constraint Optimization over Con-
strained Communication Topologies. Tech. rep. 2015, pp. 77–
87.

Bibliography 165

[Pfr16a] Julius Pfrommer. “Graphical Partially Observable Monte-Carlo
Planning”. In: Workshop on Learning, Inference and Control of
Multi-Agent Systems, Conference on Neural Information Process-
ing Systems (NIPS). Dec. 2016.

[Pfr16b] Julius Pfrommer. “Semantic Interoperability at Big-Data Scale with
the open62541 OPC UA Implementation”. In: 2nd International
Workshop on Interoperability and Open-Source Solutions for the
Internet of Things (InterOSS-IoT). Stuttgart, Germany, Nov. 2016.

[Pfr16c] Julius Pfrommer. Towards Graphical Partially Observable Monte-
Carlo Planning. Tech. rep. 2016, pp. 113–125.

[PGP16] Julius Pfrommer, Sten Grüner, and Florian Palm. “Hybrid OPC
UA and DDS: Combining architectural styles for the industrial
internet”. In: Factory Communication Systems (WFCS), 2016
IEEE World Conference on. Aveiro, Portugal: IEEE, May 2016,
pp. 1–7.

[Pin08] Michael L Pinedo. “Scheduling: Theory, Algorithms, and Systems”.
In: (2008).

[PLM13] Jani Puttonen, Andrei Lobov, and Jose L Martinez Lastra.
“Semantics-based composition of factory automation processes
encapsulated by web services”. In: Industrial Informatics, IEEE
Transactions on 9.4 (2013), pp. 2349–2359.

[Pow07] Warren B Powell. Approximate Dynamic Programming: Solving
the curses of dimensionality. Vol. 703. John Wiley & Sons, 2007.

[Pro+17] Stefan Profanter et al. “OPC UA for plug & produce: Automatic
device discovery using LDS-ME”. In: Proceedings of the IEEE
International Conference on Emerging Technologies And Factory
Automation (ETFA). IEEE. 2017.

[PSB13a] Julius Pfrommer, Miriam Schleipen, and Jürgen Beyerer. “Fähigkeiten
adaptiver Produktionsanlagen”. In: atp-edition 55 (11) (2013).

166 Bibliography

[PSB13b] Julius Pfrommer, Miriam Schleipen, and Jürgen Beyerer. “PPRS:
Production skills and their relation to product, process, and re-
source”. In: Proceedings of the 2013 IEEE 18th Conference on
Emerging Technologies & Factory Automation (ETFA). IEEE.
Cagliari, Italy, 2013.

[Put94] Martin L Puterman. Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming. John Wiley & Sons, Inc., 1994.

[RD05] Paul Renteln and Alan Dundes. “Foolproof: A sampling of mathe-
matical folk humor”. In: Notices of the AMS 52.1 (2005), pp. 24–
34.

[Rei+10] G Reinhart et al. “Automatic configuration (plug & produce) of
industrial ethernet networks”. In: Industry Applications (INDUS-
CON), 2010 9th IEEE/IAS International Conference on. IEEE.
2010, pp. 1–6.

[Rei91] J Francis Reintjes. Numerical control: making a new technology.
Oxford University Press, Inc., 1991.

[Ros+08] Stéphane Ross et al. “Online planning algorithms for POMDPs”.
In: Journal of Artificial Intelligence Research 32 (2008), pp. 663–
704.

[Sal+10] Yves Sallez et al. “The lifecycle of active and intelligent products:
The augmentation concept”. In: International Journal of Computer
Integrated Manufacturing 23.10 (2010), pp. 905–924.

[Sch+11] Günther Schuh et al. “Developing a production engineering based
theory of production”. In: Concurrent Enterprising (ICE), 2011
17th International Conference on. IEEE. 2011, pp. 1–9.

[Sch+15a] Miriam Schleipen et al. “Requirements and concept for plug-and-
work”. In: at-Automatisierungstechnik 63.10 (2015), pp. 801–
820.

[Sch+15b] Günther Schuh et al. “Hypotheses for a Theory of Production in the
Context of Industrie 4.0”. In: Advances in Production Technology.
Springer, 2015, pp. 11–23.

Bibliography 167

[Sch+16] Miriam Schleipen et al. “OPC UA & Industrie 4.0 - enabling
technology with high diversity and variability”. In: 49th CIRP Con-
ference on Manufacturing Systems (CIRP-CMS 2016). Stuttgart,
Germany: CIRP, May 2016.

[Sch+17] Günther Schuh et al. “Towards a technology-oriented theory of
production”. In: Integrative Production Technology. Springer,
2017, pp. 1047–1079.

[Sch04] Christoph Schneeweiß. “On the empirical validity of production
theory”. In: Central European Journal of Operations Research
12.2 (2004), p. 107.

[Sch34] Erich Schneider. Theorie der Produktion. J. Springer, 1934.

[Sch86] Christoph Schneeweiß. Einführung in die Produktionswirtschaft.
Springer, 1986.

[She+07] Weiming Shen et al. “An agent-based service-oriented integra-
tion architecture for collaborative intelligent manufacturing”. In:
Robotics and Computer-Integrated Manufacturing 23.3 (2007),
pp. 315–325.

[She03] Khalid Sheikh. Manufacturing resource planning (MRP II): with
introduction to ERP, SCM and CRM. McGraw-Hill New York,
NY, 2003.

[She71] Ronald William Shepherd. Theory of cost and production functions.
Princeton University Press, 1971.

[Sil+16] David Silver et al. “Mastering the game of Go with deep neural
networks and tree search”. In: nature 529.7587 (2016), p. 484.

[Sil+17] David Silver et al. “Mastering the game of Go without human
knowledge”. In: Nature 550.7676 (2017), p. 354.

[SKB97] Ashraf Saad, Kazuhiko Kawamura, and Gautam Biswas. “Perfor-
mance evaluation of contract net-based heterarchical scheduling
for flexible manufacturing systems”. In: Intelligent Automation &
Soft Computing 3.3 (1997), pp. 229–247.

168 Bibliography

[Sko04] Sigurd Skogestad. “Control structure design for complete chemical
plants”. In: Computers & Chemical Engineering 28.1 (2004),
pp. 219–234.

[Smi80] Reid G Smith. “The contract net protocol: High-level commu-
nication and control in a distributed problem solver”. In: IEEE
Transactions on computers 12 (1980), pp. 1104–1113.

[SP97] Rainer Storn and Kenneth Price. “Differential evolution–a simple
and efficient heuristic for global optimization over continuous
spaces”. In: Journal of global optimization 11.4 (1997), pp. 341–
359.

[SS73] Richard D Smallwood and Edward J Sondik. “The optimal control
of partially observable Markov processes over a finite horizon”.
In: Operations research 21.5 (1973), pp. 1071–1088.

[SS90] Andrea Krasa Sethi and Suresh Pal Sethi. “Flexibility in manufac-
turing: a survey”. In: International journal of flexible manufactur-
ing systems 2.4 (1990), pp. 289–328.

[Sus73] Gerald J Sussman. “A computational model of skill acquisition”.
PhD thesis. 1973.

[SV10] David Silver and Joel Veness. “Monte-Carlo planning in large
POMDPs”. In: Advances in neural information processing systems.
2010, pp. 2164–2172.

[SWH06] Weiming Shen, Lihui Wang, and Qi Hao. “Agent-based distributed
manufacturing process planning and scheduling: a state-of-the-art
survey”. In: Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on 36.4 (2006), pp. 563–577.

[SZW17] Jan-Philipp Schmidt, Andreas Zeller, and Michael Weyrich. “Mod-
ellgetriebene Entwicklung serviceorientierter Anlagensteuerun-
gen”. In: at-Automatisierungstechnik 65.1 (2017), pp. 26–36.

[TB09] Moritz Tenorth and Michael Beetz. “KnowRob: knowledge pro-
cessing for autonomous personal robots”. In: Intelligent Robots and
Systems, 2009. IROS 2009. IEEE/RSJ International Conference
on. IEEE. 2009, pp. 4261–4266.

Bibliography 169

[TMP92] HK Tönshoff, E Menzel, and HS Park. “A knowledge-based
system for automated assembly planning”. In: CIRP Annals-
Manufacturing Technology 41.1 (1992), pp. 19–24.

[UPS14] Thomas Usländer, Julius Pfrommer, and Miriam Schleipen. “Das
Internet der Dinge in der Automation - Anforderungen und Tech-
nologien”. In: 5. Jahreskolloquium "Kommunikation in der Au-
tomation" (KommA 2014). Lemgo, 2014.

[Van+98] Hendrik Van Brussel et al. “Reference architecture for holonic
manufacturing systems: PROSA”. In: Computers in industry 37.3
(1998), pp. 255–274.

[VCM13] Michal Valko, Alexandra Carpentier, and Rémi Munos. “Stochastic
simultaneous optimistic optimization”. In: Proceedings of the 30th
International Conference on Machine Learning (ICML-13). 2013,
pp. 19–27.

[VHL03] Guilherme E Vieira, Jeffrey W Herrmann, and Edward Lin.
“Rescheduling manufacturing systems: a framework of strate-
gies, policies, and methods”. In: Journal of scheduling 6.1 (2003),
pp. 39–62.

[Von52] Kurt Vonnegut. Player Piano. Charles Scribner’s Sons, 1952.

[VWK05] Birgit Vogel-Heuser, Daniel Witsch, and Uwe Katzke. “Automatic
code generation from a UML model to IEC 61131-3 and system
configuration tools”. In: Control and Automation, 2005. ICCA’05.
International Conference on. Vol. 2. IEEE. 2005, pp. 1034–1039.

[Vya11] Valeriy Vyatkin. “IEC 61499 as enabler of distributed and intelli-
gent automation: State-of-the-art review”. In: IEEE transactions
on Industrial Informatics 7.4 (2011), pp. 768–781.

[Wai+11] M. Waibel et al. “RoboEarth”. In: IEEE Robotics Automation
Magazine 18.2 (2011), pp. 69–82.

[Wal12] Mark John Walker. “The programmable logic controller: its prehis-
tory, emergence and application”. PhD thesis. The Open University,
2012.

170 Bibliography

[War93] Hans-Jürgen Warnecke. The Fractal Company—A Revolution in
Corporate Culture. Springer, 1993.

[WD51] Marshal K. Wood and George B. Dantzig. “The programming of
interdependent activities: general discussion”. In: Activity analysis
of production and allocation. Ed. by Tjalling C. Koopmans. John
Wiley & Sons, Inc., 1951.

[Wel03] Lloyd R Welch. “Hidden Markov models and the Baum-Welch
algorithm”. In: IEEE Information Theory Society Newsletter 53.4
(2003), pp. 10–13.

[Wey+14] Michael Weyrich et al. “Flexibilisierung von Automatisierungssys-
temen - Systematisierung der Flexibilitätsanforderungen von In-
dustrie 4.0”. In: wt Werkstattstechnik online 104.3 (2014), pp. 106–
111.

[Wie+07] H-P Wiendahl et al. “Changeable manufacturing-classification, de-
sign and operation”. In: CIRP Annals–Manufacturing Technology
56.2 (2007), pp. 783–809.

[Wie48] Norbert Wiener. “Cybernetics; or control and communication in
the animal and the machine”. In: (1948).

[Wig81] Oliver W Wight. MRP II: Unlocking America’s productivity po-
tential. Omneo, 1981.

[WJ+08] Martin J Wainwright, Michael I Jordan, et al. “Graphical models,
exponential families, and variational inference”. In: Foundations
and Trends® in Machine Learning 1.1–2 (2008), pp. 1–305.

[WNH10] H-P Wiendahl, P Nyhuis, and W Hartmann. “Should CIRP develop
a Production Theory? Motivation, Development Path, Framework”.
In: 43rd CIRP International Conference on Manufactoring Systems.
CIRP. 2010.

[Woo95] Robert Simpson Woodward. “An Historical Survey of the Science
of Mechanics”. In: Science 1.6 (1895), pp. 141–157.

[WS11] Stephan M Wagner and Victor Silveira-Camargos. “Decision
model for the application of just-in-sequence”. In: International
Journal of Production Research 49.19 (2011), pp. 5713–5736.

Bibliography 171

[WS15] Stephanie Wong and Paula Sailes. “Wal-Mart Takes Back Some
Goods Sourcing From Li & Fung”. In: (2015). url: https://www.
bloomberg.com/news/articles/2015-05-22/wal-mart-

takes-back-some-goods-sourcing-business-from-li-

fung.

[XL08] Wei Xiang and Heow Pueh Lee. “Ant colony intelligence in
multi-agent dynamic manufacturing scheduling”. In: Engineering
Applications of Artificial Intelligence 21.1 (2008), pp. 73–85.

[YFW01] Jonathan S Yedidia, William T Freeman, and Yair Weiss. “Bethe
free energy, Kikuchi approximations, and belief propagation algo-
rithms”. In: Advances in neural information processing systems
13 (2001).

[ZR89] Gilad Zlotkin and Jeffrey S Rosenschein. “Negotiation and task
sharing among autonomous agents in cooperative domains”. In:
Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI). Morgan Kaufmann Publishers Inc. 1989,
pp. 912–917.

[Zur14] Richard Zurawski. Industrial communication technology handbook.
CRC Press, 2014.

https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung
https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung
https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung
https://www.bloomberg.com/news/articles/2015-05-22/wal-mart-takes-back-some-goods-sourcing-business-from-li-fung

	Kurzfassung
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Symbols
	List of Acronyms
	Introduction
	Production and Logistics in a Global Economy
	The Structure of Automated Production Systems
	Approaches for Flexible Production Systems
	The Missing Hierarchy of Production Theories
	Scientific Contributions and Thesis Organization

	A Model of Concurrent Production Systems
	State, Actions and Action Sequences
	Parameterized Actions
	Uncertainty and Observations
	Reward and Policies

	Simulation-Based Planning for Concurrent Production Systems
	Tree Search with Backtracking
	Background: Trace Theory
	Tree-Search with Trace-Based Pruning
	Evaluation

	Planning for Discrete Action Sequences
	Background: Monte-Carlo Tree Search
	Monte-Carlo Tree Search for Discrete Action Sequences
	Evaluation

	Planning with Uncertainty and Continuous Action Parameters
	Background: MCTS under Uncertainty
	Background: Optimistic Optimization
	Planning for Parameterized Action Sequences
	Evaluation

	Planning with Linear Actions
	Linear Actions and Action Repetition
	MILP Relaxation of the Planning Problem
	Evaluation

	Distributed Planning for Self-Organizing Production Systems
	Background: The Generalized Distributive Law
	A Model of Distributed Concurrent Production Systems
	Distributed Planning for Deterministic Action Sequences
	Distributed Planning under Uncertainty
	Evaluation

	Modeling of Production Skills
	Background: Skill Models for Production
	Background: Description Logics
	The PPRS Model for Production Skills
	Assisted Generation of Executable Actions

	Conclusion
	Bibliography

