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Abstract
Authigenic minerals formed during diagenesis in conjunction with compaction by burial have long been known to lead to 
porosity-loss of sandstones, and a subsequent deterioration in reservoir quality. The diagenetic impact on reservoir quality 
and permeability heterogeneity measured horizontal and vertical to bedding was characterized in three fluvio-eolian Lower 
Permian Rotliegend outcrops from the Flechtingen High, the northern Hesse Basin (both Germany) and the Vale of Eden 
(UK) using point-counting, polarized light-microscopy, helium pycnometry and permeability measurements. Results show 
significant porosity (10 to 35%) and permeability (0.01 to 10,000 mD) ranges largely independent of depositional environ-
ment. The major control on reservoir quality in Cornberg Sandstones are dolomite and siderite cementation in conjunction 
with illitization and illite and kaolinite cementation, leading together with quartz cementation to a mostly cemented IGV 
and poorest reservoir quality (avg. horizontal permeability: 0.96 mD). Flechtingen Sandstones are most intensely compacted 
due to the lack of significant early diagenetic cement phases and continuous illitic grain-to-grain coatings, which inhibited 
intense quartz cementation but enhanced chemical compaction at quartz grain contacts, resulting in intermediate reservoir 
quality (avg. horizontal permeability: 34.9 mD). Penrith Sandstones lack significant authigenic phases besides quartz due 
to carbonate dissolution during uplift. They show the least amount of detrital feldspars and clay minerals, leading to no 
major reservoir quality reduction by burial diagenetic clay mineral alterations, resulting in the highest reservoir quality (avg. 
horizontal permeability: 5900 mD). Additional results highlight higher horizontal to vertical permeability ratios kh/kv in 
less homogeneous sandstones of < 10 mD of 10, and in more homogenous, higher permeable sandstones > 1000 mD of 1. 
Although detrital and authigenic sample compositions vary throughout the studied areas, the general effect of grain coatings 
coverages on syntaxial cement inhibition and chemical compaction can be delineated. This study increases the understanding 
of porosity reduction in sandstones, as it confirms the necessity to differentiate between the illitic grain-to-grain coatings 
and illitic grain-to-IGV coatings. As a result, the enhancing effect of illite on chemical compaction on quartz grain-grain 
boundaries can be better constrained, as well as the effect of grain coatings on quartz cementation. This is relevant for res-
ervoir quality and risk assessment in hydrocarbon and geothermal plays as well as in storage.
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Introduction

Siliciclastic sandstone reservoirs are hosting about 60% of 
the world’s hydrocarbons (Bjørlykke and Jahren 2010) and 
are thus of significant economic interest. The utilization of 
such reservoirs have been extended beyond hydrocarbon 

extraction in the past two decades, being used for geothermal 
energy exploration (Caulk and Tomac 2017; Heap et al. 2017), 
hydrogen storage (Henkel et al. 2013; Pfeiffer et al. 2017), or 
CO2 sequestration (Ambrose et al. 2008; Barnes et al. 2009; 
Benson and Cole 2008; Heinemann et al. 2012). After depo-
sition as sand, mechanical and chemical compaction induce 
the consolidation process to sandstone during diagenesis over 
geological timescales (Greene et al. 2009; Houseknecht 1987; 
Kristiansen et al. 2011; Lundegard 1992). Diagenesis affects 
the rock’s porosity and permeability, and its viability as a res-
ervoir (Morad et al. 2010; Taylor et al. 2010; Wadsworth et al. 
2016). Sandstones experience diagenetic alterations during 
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burial; these are related to the initial detrital composition and 
grain coating minerals (Aagaard et al. 2000; Busch et al. 2020; 
Monsees et al. 2020a), fluid type, -chemistry and -pressure 
(Bjørlykke and Høeg 1997; Gaupp et al. 1993), thermal expo-
sure over time (Becker et al. 2019; Busch et al. 2018; Lander 
et al. 2008), and faults controlling temperature-overprint by 
hydrothermal fluid circulation (Farrell and Healy 2017; Farrell 
et al. 2014; Wüstefeld et al. 2017).

Monsees et al. (2020a) proposed grain-coatings to be a 
controlling factor on cementational and compactional behav-
ior of Lower Permian Rotliegend sandstones natural gas res-
ervoir in the North German Basin. The aim of this study is 
to test if the observed controls on chemical compaction by 
grain-to-grain coatings and of grain-to-intergranular volume 
coatings on quartz cementation can also be delineated in 
similar settings with variable source areas and burial paths. 
Therefore, study areas have been constrained to depositional 
parameters (terrestrial, fluvio-eolian sandstones) and ages 
(Rotliegend, Lower Permian) similar to the boundary con-
ditions presented by Monsees et al. (2020a). Samples were 
collected from the Cornberg Formation in Cornberg, Hesse, 
Germany, the Mirow and Parchim Formations in Bebertal, 
Saxony-Anhalt, Germany, and the Penrith Sandstone Forma-
tion near Penrith, Cumbria, UK. Results may highlight, that 
in addition to vertical effective stresses during burial, the 
presence of (a) mechanical, and (b) chemical compaction-
enhancing illite controls the compactive behavior of reser-
voir sandstones. This case study is highlighting the hetero-
geneous effect of diagenetic overprint on the petrophysical 
parameters porosity and permeability of three exhumed 
Permian sandstone lithologies located in Germany and the 
UK, which were deposited in similar fluvio-eolian depo-
sitional environments, while source areas and depositional 
ages vary. The complex relationship between cementation 
and compaction will be assessed and its impact on reservoir 
quality will be determined. Heterogeneities from permeabil-
ity measurements conducted parallel to bedding compared 
to permeability normal to bedding will be quantitatively 
constrained. Insights gained from this study will help to 
assess the variability of diagenetic alterations in sandstones 
of similar depositional settings and might improve quanti-
tative constraints applicable in subsurface reservoir quality 
assessment for hydrocarbon exploration, geothermal energy, 
hydrogen storage, and CO2 sequestration.

Geological setting

Cornberg Sandstones

Cornberg Sandstones (CS) belong to the uppermost Rotli-
egend (Lower Permian) lithostratigraphic unit (Kowalczyk 
et al. 2012), which is also referred to as the Weißliegend 

(Paul 2012). The Cornberg Formation crops out in Cornberg 
quarry (Quarry A) in the Nentershäuser Basin, which is a 
sub-basin of the Hesse Basin in central Germany (Kulick 
et al. 1984) (Fig. 1). The Nentershäuser Basin has been inter-
preted as a pull-apart basin due to its thickness increase of 
Rotliegend deposits from tens to hundreds of meter over 
lateral distances < 10 km (Kowalczyk et al. 2012; Kulick 
et al. 1984). Based on meter-scale cross-bedded strata, the 
depositional system of the sandstones have been controver-
sially discussed (Gast 1994; Pryor 1971; Schumacher 1985). 
Recent studies interpret them to be of eolian origin due to 
the distinct cross-bedding and tetrapod tracks (Gast 1994; 
Haubold et al. 1995; Kowalczyk et al. 2012). The thickness 
of the formation in the outcrop is up to 20 m (Kowalczyk 
et al. 2012), being conformably overlain by the Kupfer-
schiefer claystone marking the onset of the Zechstein trans-
gression (Kowalczyk et al. 2012), and underlain by gray, 
sandy conglomerates and red conglomeratic sandstones and 
pelites (Aehnelt and Katzung 2007). Therefore, Cornberg 
Sandstones represent the uppermost Rotliegend below the 
Zechstein base (Fig. 2), which is defined by the Kupfer-
schiefer claystone (Menning et al. 2011; Paul 2012). A pub-
lished burial model for Cornberg Sandstones is not available, 
however, Rotliegend burial models 170 km further north 
show burial to more than 4–5 km maximum burial depth 
(Fig. 1d, burial curve i) until the Upper Cretaceous inver-
sion (Schwarzer and Littke 2007). Inversion likely took place 
from Late Cretaceous onwards, as described for other Per-
mian exposures in Central Germany (Kley and Voigt 2008).

Flechtingen Sandstones

Upper Rotliegend fluvio-eolian Flechtingen Sandstones 
(FS) are exposed in the Schwentesius quarry (Quarry B) 
1 km north of Bebertal, Saxony-Anhalt, Germany, and in 
a decommissioned quarry 1 km southwest of Bebertal, 
(Quarry C, Fig. 1), located on the margins of the Flechtin-
gen High (Gaitzsch et al. 2004). The Flechtingen High is a 
NW–SE striking structural high uplifted during the Upper 
Cretaceous inversion (Kley and Voigt 2008; Otto 2003). 
The extent of the Flechtingen High is limited by the Hal-
densleben thrust fault to the NE and the Aller lineament to 
the SW, which belongs to the Elbe-Fault zone. Rotliegend 
sedimentary rocks exposed around Bebertal are commonly 
used as analogs for the North German Rotliegend hosted 
hydrocarbon reservoirs (Gast et al. 2010; Schröder et al. 
1995). The Rotliegend sandstones exposed near Bebertal 
are equivalent to the Mirow Formation and Parchim For-
mation of the Havel Subgroup based on regional strati-
graphic correlations (Gaitzsch et al. 2004; Schneider and 
Gebhardt 1993). Therefore, their absolute sedimentation age 
is 266 to 262 Ma (Menning 1995). The total thickness of 
the Havel subgroup equivalent exposed on the Flechtingen 
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High amounts to roughly 160 m (Gaitzsch et al. 1995). The 
Havel subgroup is unconformably underlain by the Müritz 
subgroup and the Altmark subgroup and unconformably 
overlain by dominantly fluvio-eolian sandstones of the Elbe 
subgroup (Gaitzsch et al. 2004) (Fig. 2). For Flechtingen 
Sandstones, a burial model based on thermal data proposed 
by Fischer et al. (2012) shows a rapid burial reaching over 
200° C in the early Triassic. Their resulting burial depth of 
approximately 6 km assumes a normal geothermal gradi-
ent of 35° C/km (Fig. 1d, burial curve ii). Inversion was 
initiated in the late Cretaceous (Fischer et al. 2012). The 
burial model proposed by Kohlhepp (2012) (well Peckensen 
7 80 km NNE of Bebertal) agrees with rapid initial subsid-
ence during the Upper Permian, with maximum burial depth 
for Upper Rotliegend proposed to be at 3 km for Rotliegend 

deposits at the basin margin (Fig. 1d, burial curve iii) or 
5 km at the basin center (Fig. 1d, burial curve iv) before 
upper Cretaceous inversion (Kohlhepp 2012).

Penrith Sandstones

Permian Penrith Sandstones (PS) crop out in the Vale of 
Eden half graben, Cumbria, UK (Fig. 1), covering an area 
of approximately 48 × 6 km (Busch et al. 2017; Macchi 
1981; Turner et al. 1995). Penrith Sandstones were stud-
ied in Bowscar quarry (Quarry D) 3 km north of Penrith, 
in the Salter Hill outcrop (Quarry E) 5 km southeast of 
Penrith, and in Penrith Beacon outcrop (Quarry F) 1 km 
northeast of Penrith (Fig. 1). The extent of the Vale of 

Fig. 1   Schematic geological maps of the vicinity of the studied quar-
ries. a Extent of Rotliegend deposits in the northern Hesse Basin, 
redrawn from Kowalczyk et al. (2012). Fault orientation and kinemat-
ics based on Motzka-Nöring et  al. (1987). b Present-day geology 
of the Vale of Eden highlighting the extent of Rotliegend deposits, 
redrawn from Turner et  al. (1995) and modified with fault kinemat-
ics and orientations taken from Underhill et al. (1988) and Woodcock 
et al. (2008). c Geology of the Flechtingen High, showing the loca-
tion of fluvio-eolian Rotliegend marginal deposits. Surface geology 

redrawn from Fischer et al. (2012) and modified with fault orientation 
and kinematics adapted from Kley and Voigt (2008), Otto (2003) and 
Scheck et al. (2002). The Aller Lineament is not indicated as a nor-
mal fault, as it consists of several graben faults with a strike-slip com-
ponent (Lohr et  al. 2007). d Burial models for the respective study 
areas, compiled from published research. i: Northern German Basin 
(Schwarzer and Littke 2007), ii: Flechtingen High (Fischer et  al. 
2012), iii: Altmark basin margin (Kohlhepp 2012), iv: Altmark basin 
center (Kohlhepp 2012), v: Penrith Formation (Turner et al. 1995)
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Eden is limited by the Pennine Mountains to the east, the 
Dent fault system to the south, and the Lake District com-
plex to the west (Fig. 1). The Appleby Group consists of 
the eolian Penrith Formation and basal alluvial deposits 
locally referred to as the Brockram facies (Macchi 1981) 
and is time—equivalent to the Central European Rotlieg-
end (Jackson et al. 1997) (Fig. 2). The total thickness of 
the Penrith Sandstone is discussed to reach between 100 m 
(BGS 2020) and up to 1 km in the subsurface towards the 
East Irish Sea (Turner et al. 1995). Upper Carboniferous 
siliciclastic rocks in the northern Vale of Eden and Lower 
Carboniferous limestones in the south are unconformably 
overlain by the Appleby Group (Arthurton and Wadge 
1981; Macchi 1981; Turner et al. 1995). The Appleby 
Group is conformably overlain by shales, evaporites and 
dolomite of the Zechstein, which are combined in the Eden 
Shales Formation (Arthurton and Wadge 1981). Penrith 
Sandstones were buried during the late Paleozoic, reaching 
a thermal maximum of 120° C in the early Cretaceous at 
approximately 3–4 km burial depth (Fig. 1d, burial curve 
v), before upper Cretaceous inversion took place (Turner 
et al. 1995).

Materials and methods

Rock samples were taken from quarries and plugs were 
drilled parallel to bedding for petrographic analysis, as well 
as normal and parallel to bedding for petrophysical analy-
sis. A total of 41 thin-sections originating from each of the 
three main studied sandstones Cornberg Sandstone (n = 9, 1 
outcrop, Fig. 1, Table 1), Flechtingen Sandstone (n = 15, 2 
outcrops, Fig. 1, Table 1), and Penrith Sandstone (n = 17, 3 
outcrops, Fig. 1, Table 1) were analyzed. The thin sections 
were impregnated with a blue-dyed epoxy resin to highlight 
porosity. Thin-sections are prepared to a thickness of 30 µm 
and in some cases stained with a combined Alizarin Red S 
and potassium ferricyanate solution in 0.5% HCl to aid the 
identification of carbonate minerals.

Grain sizes were determined on 100 grains with image 
analysis using ImageJ (Becker et al. 2017). Skewness and 
sorting were determined based on grain size measurements 
after Trask (1930). Point-counting (300 counts) was per-
formed on a grid adjusted to the maximum grain size with 
a semi-automated Pelcon Point Counter installed on a Leitz 
Aristomet microscope. The statistical error of point-counting 
data was determined population-based by dividing the stand-
ard deviation by the square root of the number of samples 
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(Becker et al. 2017). Average occurrence rates below 0.3% 
were referred to as in traces. Sandstone compositions were 
classified after Folk (1980). The intergranular volume (IGV) 
was classified according to Paxton et al. (2002) as the sum 
of the intergranular pore space, intergranular cement, and 
detrital matrix. Compactional porosity loss, cementational 
porosity loss, and compactional indices were calculated after 
Lundegard (1992). The value for the compactional index 
ranges between zero (porosity lost exclusively to cemen-
tation) and one (porosity lost exclusively to compaction). 
The percentage of clay mineral coatings on grain-to-IGV 
(GTI) interfaces was assessed on at least 50 grains per sam-
ple (Busch et al. 2020). Percentages of illite coatings on 
grain-to-grain (GTG) detrital quartz interfaces were evalu-
ated after Monsees et  al. (2020a) by microscopy-aided 
image analysis. Microporosity in clays was estimated based 
on quantitative electron microscopy data on different clay 
mineral data sets (Hurst and Nadeau 1995). The abundance 
of clay minerals was multiplied with the amount of micropo-
rosity as determined by Hurst and Nadeau (1995) for illite 
(63 ± 10%), kaolinite (43 ± 11%) and clay clasts (10 ± 3%).

Petrophysical measurements were performed on cylin-
drical plugs (2.54 cm diameter, 4 cm length), and therefore 
are within the guidelines for petrophysical measurements 
on sandstones recommended by Heap (2019). In total, 75 
plugs were prepared: 19 plugs for the Cornberg Sandstone, 
25 plugs for the Flechtingen sandstone, and 31 plugs for the 
Penrith Sandstone (Table 1). In total 30 horizontal plugs 
directly correspond to thin sections (Table 1). Samples 
were dried in a vacuum oven at 40° C and 0.1 bar for at 
least 72 h prior to the petrophysical measurements. Helium 
porosity (φ) was measured with an AccuPyc II 1340 pyc-
nometer, measuring the connected porosity (Becker et al. 
2017). The porosity values given here are the average of 

ten measurement cycles per sample. Permeability (κ) was 
measured on 75 plugs with an air permeameter (measure-
ment range 0.001 to 10,000 mD, 1 mD ≙ 9.869*10–16 m2 ≈ 
10–15 m2) manufactured by Westphal Mechanik using oil-
free lab air as the permeant (80% N2, 20% O2). Laminar-
flow conditions are determined during the measurement by 
the software used to operate the permeability cell, ensuring 
that all measurements were taken under laminar-flow con-
ditions and thus do not require a Forchheimer correction 
(Whitaker 1996). A constant confining pressure of 1.2 MPa 
was applied to the samples throughout the measurement, 
which was applied two minutes before the measurement was 
conducted at ambient laboratory temperature (T = 22 °C) and 
until steady-state flow conditions were achieved. Permeabil-
ity values are Klinkenberg-corrected (Klinkenberg 1941).

Results

Petrography

Texture

Eolian Cornberg Sandstones are deposited as decime-
ter thick, cross-bedded dunes (Fig.  3a), partly show-
ing Liesegang rings in outcrops. On the plug scale, they 
show bed-size-dependent grain-size variations from fine 
to medium sand (Fig.  3b) (avg.: 0.32 ± 0.2  mm, range: 
0.24–0.48 mm) with well rounded and moderately well to 
very well sorting (Fig. 3c, supplementary material).

Fluvio-eolian Flechtingen Sandstones are deposited as 
stacked fluvial channels, and eolian dunes intercalating 
with sheet sands (Fig. 3d). Their bedding planes on the plug 
scale are not very clearly pronounced (Fig. 3e), showing 

Table 1   Sample overview, listing quarry or outcrop names, their abbreviations used in the text, latitude and longitude, their study area, and the 
respective sample quantity and sample type

Values in brackets in row “n Thin sections” represent the amount of available horizontal plugs directly corresponding to these individual thin-
sections

Quarry/outcrop name Quarry 
abbreviation

Quarry location [°] Study area n
Thin-sections

n
Total plugs

n
Horizon-
tal plugs

n
Vertical plugs

Cornberg quarry A 51.042386 9.865660 Cornberg 9 (8) 19 10 9
Schwentesius quarry B 52.254338 11.337711 Flechtingen 8 (2) 3 2 1
Decommissioned quarry C 52.231433 11.319722 Flechtingen 7 (6) 22 11 11
Bowscar quarry D 54.701049

− 2.746095
Penrith 13 (12) 22 13 9

Salter Hill outcrop E 54.630138
− 2.647602

Penrith 2 (1) 7 4 3

Penrith Beacon outcrop F 54.675278
− 2.735556

Penrith 2 (1) 2 1 1

Total – – – 41 (30) 75 41 34
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subrounded to rounded grains (Fig. 3f). Their median grain 
size ranges from fine to medium sand, averaged to fine-
medium sand (avg.: 0.29 ± 0.02 mm, range: 0.17–0.43 mm), 
and their sorting is moderately well to very well (supple-
mentary material).

Eolian Penrith Sandstones are very homogenous dune 
deposits, characterized by cross-bedded red sandstones on 
the outcrop scale (Fig. 3g) and pronounced cm-thick beds 
with seemingly repeating grain-size variations. On the plug 
scale, the bedding planes are barely recognizable due to 
homogeneity within one of the grain size classes (Fig. 3h). 
The grain size ranges from fine-medium sand to fine coarse 
sand, and averages to medium sand (avg.: 0.42 ± 0.02 mm, 
range: 0.28–0.55 mm) (supplementary material). The grains 
are subrounded (Fig. 3i), and the sorting of the detrital 
grains is well to extremely well in quarries D and E, and 
moderately well in quarry F (supplementary material).

Detrital composition

The sandstone classification results in three groups based 
on the three study areas (Fig. 4). Cornberg Sandstones are 

classified as quartzarenites to sublitharenites, Flechtingen 
Sandstones show a less mature composition of lithic arko-
ses, feldspathic litharenites and subarkoses, while Penrith 
Sandstones are similarly mature as Cornberg Sandstones, 
however showing a larger quantity of feldspars compared 
to rock fragments, resulting in the classification as quart-
zarenites to subarkoses (Fig. 4). There are no differences in 
compositions for samples originating from the same study 
area, but from different quarries (Fig. 4).

The most abundant detrital mineral in all samples 
and study areas is detrital quartz (Fig. 5a). The sum of 
monocrystalline (Fig. 5a), polycrystalline (Fig. 5b, d) and 
undulose detrital quartz ranges from 54.0 to 67.0% in Corn-
berg Sandstones (avg.: 62.8 ± 1.4%), from 42.0 to 60.7% in 
Flechtingen Sandstones (avg.: 51.7 ± 1.3%) and from 53.0 
to 74.3% in Penrith Sandstones (avg.: 62.0 ± 1.4%). Rock 
fragments (RF) were classified as metamorphic RF (Fig. 5c, 
d) sedimentary RF (Fig. 5e), volcanic RF (Fig. 5), plutonic 
RF, undifferentiated RF, and chert (Fig. 5b). Rock fragments 
are the second most abundant detrital constituent in Corn-
berg Sandstones ranging from 4.7 to 8.7% (avg.: 6.4 ± 0.2%), 
while rock fragments are the third most abundant detrital 

Fig. 3   Overview over the studied sandstones by study location from 
meter scale (a, d, g) over cm scale (b, e, h) to µm scale (c, f, i), sorted 
in rows by location. Here, Cornberg sandstone is shown in quarry A 

(images a–c), Flechtingen sandstone is shown in quarry C (images 
d–f), and Penrith sandstone is shown in quarry D (images g–i)
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constituent in Flechtingen Sandstones ranging from 15.3 to 
31.7% (avg.: 20.3 ± 1.1%) and in Penrith Sandstones ranging 
from 1.0 to 4.3% (avg.: 2.5 ± 0.2%) (supplementary mate-
rial). Potassium feldspars (Fig. 5a) and plagioclases (Fig. 5b) 
are the third most abundant detrital constituent in Cornberg 
Sandstones with a range of 2.0 to 4.7% (avg.: 3.1 ± 0.2%), 
while feldspars are the second most abundant detrital con-
stituent in Flechtingen Sandstones ranging from 15.7 to 
27.0% (avg.: 20.9 ± 0.7%) and Penrith Sandstones with a 
range of 4.0 to 12.0% (avg.: 8.6 ± 0.7%). The fourth group 
of detrital constituents is the accessory minerals and matrix, 
including mica, zircon and hornblende. Accessories were 
encountered consistently in Cornberg Sandstones (avg.: 
1.1 ± 0.1%), while they are very rare in Flechtingen Sand-
stones (avg.: 0.5 ± 0.2%), and only found in traces in some 
Penrith Sandstone samples (avg.: 0.1 ± 0.0%).

Authigenic composition

Cornberg Sandstone  The most abundant authigenic min-
eral in Cornberg Sandstones are quartz cements (avg.: 
8.1 ± 0.6%) ranging from 6.0 to 11.3%. The second most 
abundant authigenic minerals are carbonates, comprised of 
dolomite and siderite (avg. 5.8 ± 1.4%), showing a high sam-
ple variability in occurrence from 0.7 to 15.0%. The third 
most common authigenic component is pore-filling illite 
(avg.: 5.7 ± 1.1%), ranging from 2.3 to 12.3%. Additional 
authigenic phases include illite replacements of potassium 
feldspars (avg.: 2.6 ± 0.4%), iron hydroxides and oxides 
(avg.: 1.8 ± 0.3%), pore-filling kaolinite (avg.: 1.4 ± 0.4%), 

authigenic rutile (avg.: 1.3 ± 0.3%), dolomite replacements 
of potassium feldspar (avg.: 1.0 ± 0.2%), kaolinite replace-
ments of potassium feldspar (avg.: 0.9 ± 0.3%), pore-lining 
illite (avg.: 0.7 ± 0.2%), and pore-lining iron oxides (avg.: 
0.3 ± 0.1%). Illite replacements of potassium feldspar were 
encountered in traces (supplementary material).

In Cornberg Sandstones, detrital grains are occasionally 
covered by tangential illitic grain coatings (Fig. 6a). The 
detrital grains, which are predominately quartz, are com-
monly overgrown by syntaxial quartz cements (Fig. 6a), 
and in contact with siderite, pore-filling illite (Fig. 6a), and 
dolomite. Detrital grains show long to concavo-convex grain 
contacts (Fig. 5d, e). Rhombohedral siderite was observed to 
overgrow quartz cements (Fig. 6a), while dolomite encom-
passed several detrital grains directly in a patchy, poikilo-
topic texture maintaining floating to point contacts (Fig. 6b). 
Pore-filling illite was observed to overgrow dolomite, sider-
ite and quartz cements (Fig. 6a), also encompassing authi-
genic rutile (Fig. 6c). Kaolinite was observed to overgrow 
quartz cements (Fig. 6c). Amorphous iron hydroxides were 
observed in relatively large patches, overgrowing quartz 
and dolomite cements and clay mineral cements (Fig. 6c). 
The majority of detrital feldspar was observed to have been 
replaced by illite (Fig. 6d).

Flechtingen Sandstone  In Flechtingen Sandstones, quartz 
cements (avg.: 6.6 ± 0.7%) ranging from 4.0 to 15.7% are 
the most common authigenic mineral. The second most 
abundant authigenic mineral is pore-lining-illite (avg. 
5.0 ± 0.5%), showing sample variability in occurrence from 

Fig. 4   Ternary sandstone clas-
sification after Folk (1980). 
F: feldspar, Q: quartz, R: rock 
fragments. Quarries: A—Corn-
berg, B and C—Flechtingen, D 
to F—Penrith

Q
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2.0 to 11.3%. The third most common authigenic compo-
nent are illite replacements of potassium feldspar (avg.: 
1.5 ± 0.2%), ranging from 0.0 to 4.0%. Additional authigenic 
phases include feldspar cements (avg.: 1.4 ± 0.2%), sample-
specific occurring calcite (avg.: 1.2 ± 0.5%), pore-lining iron 
oxides (avg.: 0.8 ± 0.1%), iron hydroxides and oxides (avg.: 
0.9 ± 0.2%) and pore-filling illite (avg.: 0.4 ± 0.1%). Calcite 
replacements of feldspars, pore-filling kaolinite, kaolinite 
replacements of feldspars, radial illite, barite and authigenic 
rutile were encountered in traces (supplementary material).

Detrital grains in Flechtingen Sandstones are encased 
by illitic grain coatings, occasionally stained red by hema-
tite (Fig. 6e), mostly showing concavo-convex to sutured 
grain contacts (Fig. 5b, c, f). Rarely, pigmented pore-lin-
ing iron oxide grain coatings occur instead of pore-lining 
illitic grain coatings. Pigmented iron oxide coatings show 
the same textural relationships like illite coatings with the 
exception of being directly overgrown by quartz cements. In 
absence of illite or iron oxide grain coatings or at sites with 

an incomplete grain coating coverages, detrital quartz grains 
are overgrown by euhedral quartz cements (Fig. 6e). Calcite 
cements occur only in some samples as patchy poikilotopic 
phase, encompassing detrital grains independent of their 
composition maintaining floating to point contacts (Fig. 6f). 
Detrital feldspars, if not encompassed by illite coatings, are 
overgrown by syntaxial feldspar cements (Fig. 6g). Two feld-
spar cement phases can be identified based on textural rela-
tions; phase I encompasses the detrital feldspar, while phase 
II encompasses phase I feldspar cements (Fig. 6g). A second 
calcite phase overgrowing quartz and feldspar overgrowth 
cements rarely occurs in individual samples (Fig. 6h).

Penrith Sandstone  The most abundant authigenic mineral 
in Penrith Sandstones is quartz cements (avg.: 12.8 ± 1.0%) 
ranging from 5.0 to 19.3%. The second most abundant authi-
genic mineral is pore-lining illite (avg. 1.7 ± 0.2%), ranging 
from 0.7 to 3.7%. The third most common authigenic com-
ponent are pore-lining iron oxides (avg.: 0.7 ± 0.1%), rang-

Fig. 5   Thin-section images in cross-polarized light of detrital components encountered in the studied samples. qtz quartz, Kfs potassium feld-
spar, Pl Plagioclase, poly qtz polycrystalline quartz, VRF volcanic rock fragment
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ing from 0.0 to 2.0%. Additional authigenic phases include 
illite replacements of potassium feldspars (avg.: 0.5 ± 0.1%), 
pore-filling iron hydroxides and oxides (avg.: 0.4 ± 0.1%), 
pore-filling illite (avg.: 0.3 ± 0.2%), and authigenic rutile 
(avg.: 0.3 ± 0.1%). Kaolinite replacements of feldspar, pore-
filling kaolinite, feldspar cements, and illite replacements of 
kaolinite were encountered in traces (supplementary mate-
rial).

The detrital grains of Penrith Sandstones are mostly 
encompassed by iron oxide grain coatings (Fig. 6i) or pore-
lining illitic grain coatings (Fig. 6j). Grain contacts range 
from floating to point contacts (Fig. 3i) to point to long con-
tacts (Fig. 5i). Similar to the Flechtingen Sandstones, detri-
tal quartz coated in pigmented iron oxides are overgrown 
by quartz cements, which have reached or are approaching 
euhedral form (Fig. 6i, j), while continuous illitic grain coat-
ings inhibited quartz cementation (Fig. 6j). Rhombohedral 
husks in quartz cements can be encountered occasionally 
(Fig. 6i), which hints the occurrence of a cement phase, that 
has been dissolved and now occurs as porosity.

Optical porosity  Optical porosities are generally lowest in 
Cornberg Sandstones (Fig. 3c, avg.: 1.5%), and highest in 
Penrith Sandstones (Fig.  3i, avg.: 15.1%), while Flechtin-
gen Sandstones show lower to intermediate optical porosi-
ties (Fig. 3f, avg.: 4.8%). Intergranular porosity is the largest 
contributor to optical porosity in all study areas, however 
with different relative fractions; roughly 90% of optical 
porosities in Penrith Sandstones are due to intergranular 
porosities (supplementary material). In Cornberg Sand-
stones, intergranular porosities account for roughly 75% of 
all optical porosity, while intergranular porosity in Flecht-
ingen Sandstones contributes only about 60% to optical 
porosity (supplementary material). The remainder of optical 
porosity is due to isolated intragranular or intracrystalline 
porosity (Fig.  5b, Fig.  6i) in altered feldspars, rock frag-
ments or dissolved cement phases.

Compaction  Cornberg Sandstones experienced a nearly 
complete loss of their initial porosity due to intense pore-
filling cementation and compaction, with compaction 
being the slightly more important factor (Fig. 7a). Flecht-
ingen Sandstones show a compaction-induced porosity loss 
leading to a porosity reduction of about 5% (Fig. 7a), with 
quarries B and C showing a comparable range of values. 
Porosity loss in Penrith Sandstone was the least severe 
and was slightly dominated by compactional porosity loss 
(Fig.  7a). Quarry F seems to be an exception for Penrith 
Sandstones, showing higher compaction and less porosity 
(Fig. 7a). These results are also reflected in the Houseknecht 
diagram, showing almost all of the IGV in Cornberg Sand-
stones being occupied by cement, generally smaller IGVs 
in Flechtingen Sandstones with lower cement volumes and 

higher porosities than in Cornberg Sandstones, and highest 
IGVs and porosities in Penrith Sandstones (Fig. 7b).

Grain coatings  The dominant grain-coating phase in the 
studied sandstones is illite (Fig. 6a, f, j, supplementary mate-
rial). Generally, Cornberg sandstones show the lowest grain-
to-IGV (GTI) coating coverage of illite (avg.: 24.0 ± 2.6%), 
followed by Penrith Sandstones, (avg.: 28.3 ± 3.3%) while 
Flechtingen Sandstones show the largest average GTI coating 
coverage (avg.: 54.3 ± 3.6%) (Fig. 8a, supplementary mate-
rial). Samples with higher GTI coating coverages show less 
authigenic quartz, while samples with less GTI coating cov-
erage show larger amounts of quartz cements (Fig. 8a). This 
negative correlation (R2 = 0.55) seems to be more clearly 
demonstrated in Penrith and Flechtingen Sandstones than in 
Cornberg Sandstones (Fig. 8a). Quarry F shows higher GTI 
coating coverages than the other Penrith Sandstone samples 
(Fig.  8a). The grain-to-grain (GTG) coating coverage is 
highest in Flechtingen Sandstones (avg.: 35.9 ± 2.4%) and 
lowest in Penrith Sandstones (avg.: 15.5 ± 1.7%) (Fig. 8b). 
Higher amounts of GTG coatings coincide with generally 
lower intergranular volumes (R2 = 0.56, Fig. 8b).

Petrophysics

Helium porosity ranges from 3.9 to 36.2% (avg.: 19.3%) for 
all samples, while permeability of all samples ranges from 
0.002 to > 10,000 mD (avg.: 2155 mD) (Fig. 9, supplemen-
tary material).

Separated by study area, Cornberg and Flechtingen Sand-
stones show comparable average porosities of 14.4% (range: 
9.1 to 19.9%) and 14.3%, respectively (range: 7.7 to 21.3%), 
while Penrith Sandstones show the highest average porosi-
ties of 26.4% (range: 19.6 to 36.2%) (Fig. 9). Permeabilities 
of Cornberg Sandstones are lowest (avg.: 0.52 mD, range: 
0.002 to 8.6 mD), Flechtingen Sandstones have intermedi-
ate permeabilities (avg.: 27.9 mD, range: 0.03 to 190 mD), 
and Penrith Sandstones have very high permeabilities (avg.: 
5192 mD, range: 48 to > 10,000 mD) (Fig. 9a). Generally, 
higher helium porosity correlates with higher permeability 
(Fig. 9a). Outliers from this are Cornberg Sandstones and 
samples with permeabilities above 10,000 mD (Fig. 9a).

Grouped by the studied quarry, an apparently differ-
ent porosity–permeability relationship from quarry B to 
quarry C in Flechtingen Sandstones is identified (Fig. 9a). 
Sandstones in quarry B show comparable permeabilities to 
sandstones in quarry C, although their porosities are 6 to 
8% lower (Fig. 9a). The porosity–permeability relationship 
in quarries D-F follows the same gradient, however quarry 
E represents only the higher range of observed values and 
quarry F only the lower range, while quarry D shows the 
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whole range of measured porosity and permeability data in 
Penrith Sandstones (Fig. 9a).

The depositional system does not exhibit a consistent con-
trol on the porosity and permeability of the studied sand-
stones (Fig. 9b). Both the highest and lowest porosities and 
permeabilities were measured in dune sandstones, with per-
meabilities ranging from 0.002 to > 10,000 mD and helium 
porosities ranging from 9 to 39% (Fig. 9). Fluvial sand-
stones, encountered only in quarry C, range from 0.03 to 100 
mD in permeability and 8 to 22% in porosity (Fig. 9b). Sheet 
sands show the narrowest permeability range and porosity 
range from 0.05 to 4 mD and 7 to 12%, however, they were 
also the least abundant depositional system (N = 5, Fig. 9b).

Permeabilities of plugs drilled parallel to bedding are 
almost exclusively higher than vertical permeabilities 
(Fig. 10). The offset between the permeability difference 
is smaller for higher permeabilities. Plugs with horizontal 
permeabilities above 100 mD consistently show a reduction 
in vertical permeability of less than a factor of 5 (Fig. 10). 
If horizontal permeabilities are below 100 mD, vertical per-
meabilities are reduced by a factor of 5 or larger (Fig. 10).

Influence of petrographic properties 
on petrophysical parameters

Grain size and sorting

The effect of detrital grain size on permeability and helium 
porosity is indistinct when considering all data points, with 
grain sizes around 0.3 to 0.4 mm showing permeabilities 
ranging from 0.01 to over 1000 mD and helium porosi-
ties ranging from below 10 to 25% (Fig. 11a). Consider-
ing the study areas individually, Cornberg Sandstones show 
larger grain sizes of 0.3 to 0.4 mm in less porous (< 15% 
He porosity) and less permeable (< 0.1 mD) samples, while 
grain sizes of 0.2 to 0.3 mm coincide with helium porosi-
ties above 15% and permeabilities above 0.1 mD (Fig. 11a). 
Flechtingen Sandstones show no correlation between grain 
size and porosity or permeability (Fig. 11a). Larger grain 
sizes in Penrith Sandstones above 0.5 mm coincide with 
permeabilities above 10,000 mD and porosities around 30%, 
however, smaller grain sizes also feature comparably perme-
able samples up to 10,000 mD (Fig. 11a). The permeability 
and porosity range in Penrith Sandstones around or below 

1000 mD and 25% is exclusively showing grain sizes below 
0.4 mm (Fig. 11a).

Better sorted sandstones seem to show a tendency 
towards higher porosities and permeabilities (Fig. 11b). This 
relationship is clearest in Penrith Sandstones, where better 
sorting of 1.3 or below results in permeabilities of at least 
1000 mD, while all samples below 1000 mD show sort-
ing around 1.4 or higher (Fig. 11b). The effect of sorting in 
Cornberg Sandstones on permeability and porosity is indis-
tinct, as there is only one data point with slightly worse than 
average sorting in the lower permeability ranges (Fig. 11b). 
Flechtingen Sandstones show no consistent correlation 
between sorting and permeability or porosity (Fig. 11b).

Optical porosity, IGV and compaction

Optical porosity shows a positive correlation with perme-
ability and helium porosity (Fig. 11c). In all samples, optical 
porosity is much lower than helium porosity. This contrast 
is particularly obvious in Cornberg Sandstones with opti-
cal porosities as low as 10% of their corresponding helium 
porosity, while optical porosities in Flechtingen Sandstones 
amount to approximately 30% of helium porosity, whereas 
optical porosities in Penrith Sandstones are approximately 
50% of helium porosity (Fig. 11c). Flechtingen Sandstones 
and Cornberg Sandstones show similar helium porosity, but 
Flechtingen Sandstones show higher optical porosity, also 
showing a consistent trend with the less porous samples of 
Penrith Sandstones, which have the highest optical porosity 
(Fig. 11c).

Intergranular volume (IGV) shows no correlation with 
neither permeability nor helium porosity (Fig. 11d). IGV 
has no distinct relation to helium porosity or permeability 
in Cornberg and Flechtingen Sandstones. Most of the lowest 
IGVs in Penrith Sandstones occur in the least porous and 
least permeable samples, however, there are also samples 
with permeabilities around 10,000 mD with similarly low 
IGVs for Penrith Sandstones (Fig. 11d). The compactional 
index shows no consistent correlation regarding porosity or 
permeability, neither for all samples nor study area-based 
(Fig. 11e).

Clay mineral coatings

Illitic grain-to-IGV (GTI) coatings show no correlation to 
helium porosity or permeability (Fig. 11f). There are no 
clear correlations visible within the Cornberg and Flecht-
ingen Sandstones either, however, GTI coatings coverage 
seems to be generally higher in less permeable and less 
porous samples of Penrith Sandstones, barring one outlier 
(Fig. 11f).

Illitic grain-to-grain (GTG) coatings are the least abun-
dant in highly permeable and porous samples (Fig. 11g). 

Fig. 6   Thin-section images under cross-polarized light (xpl, images 
a–h, j) and plain-polarized light (ppl, image i) of authigenic miner-
als encountered in the study areas. Porosity is colored in blue in ppl 
images and very dark blue in xpl images. a–d: Cornberg Sandstones, 
e–h: Flechtingen Sandstones, i–j: Penrith Sandstones. pl pore-lin-
ing, pf pore filing, Sd siderite, Qtz quartz, Dol dolomite, FeOH iron 
hydroxides, Rtl rutile, Kln kaolinite, Ill illite, Kfs potassium feldspar, 
Cal calcite, Fsp feldspar, RF rock fragment, FeOx iron oxides, Sec 
poro secondary porosity due to dolomite dissolution

◂
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Cornberg Sandstones show a slight increase in the abun-
dance of GTG coatings towards less permeable and less 
porous specimen (Fig. 11g). This trend cannot be observed 
in Flechtingen Sandstones, where no correlation between 
GTG coatings and permeability or porosity is apparent 
(Fig. 11g). Penrith Sandstones show no correlation either, 
however lowest GTG coatings are often coinciding with 
higher permeabilities and porosity specimen (Fig. 11g).

Cements and clay microporosity

Considering all data points, samples with higher abundances 
in quartz cement show higher permeability and helium 
porosity (Fig. 11h). In Cornberg Sandstones, this trend 
cannot be observed. Instead, the specimen with the highest 
amount of quartz cement shows among the lowest perme-
abilities and porosities (Fig. 11h). Flechtingen Sandstones 
show no correlation between quartz cements and perme-
ability or porosity (Fig. 11h), while the highly porous and 
permeable specimen in Penrith Sandstones show a tendency 
towards higher quartz cements abundance (Fig. 11h).

Carbonate cements only occur in a limited number of 
samples, mostly within Cornberg Sandstones and some 
Flechtingen Sandstones, which show lower permeabilities 
and porosities than the samples with less or no carbonate 
cements (Fig. 11i).

The abundance of all clay minerals (sum of all authigenic 
clay minerals, clay mineral replacements, detrital matrix and 
shale rock fragments) shows a negative correlation with per-
meability and helium porosity over the whole population 
(Fig. 11j), being lowest in the most permeable/porous speci-
men. Study area based, however, there is no distinguishable 
trend (Fig. 11j). The impact on permeability and porosity is 
clearer when clays and carbonate cements are considered 
together (Fig. 11k).

Microporosity was calculated based on the point-counted 
amount of all clay minerals. As these are of predominately 
illitic composition (supplementary material), a micropo-
rosity of illite of 60% (Hurst and Nadeau 1995) was used 
to quantify the total amount of microporosity in clays and 
their impact on permeability and helium porosity (Fig. 11l). 
Microporosities are lower in higher permeable and more 
porous samples (Fig. 11l), and vice-versa. There are no clear 
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Fig. 7   a Porosity loss diagram after Lundegard (1992), illustrat-
ing the relative amount of relative porosity caused by cementation 
(abscissa) and compaction (ordinate). The data shows no clear dis-
tinction for the porosity loss process by study area. Almost no poros-
ity was preserved in Cornberg sandstones, intermediate amounts 
of porosity were preserved in Flechtingen sandstones, and highest 
amounts of porosity were preserved in Penrith sandstones. b House-
knecht diagram Houseknecht (1987), plotting the cement volume 

on the abscissa versus the intergranular volume (IGV, as defined by 
Paxton et al. (2002)) on the ordinate. Cornberg sandstones show high 
IGV and high cements, and low porosity, Flechtingen sandstones 
show less IGV, less cements and slightly higher porosity, and Pen-
rith sandstones show the highest IGVs and intermediate cement vol-
umes with the highest porosities. Quarries: A—Cornberg, B and C—
Flechtingen, D to F—Penrith
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Fig. 8   a Grain-to-IGV (GTI) coating coverage on the abscissa ver-
sus quartz cements on the ordinate. Flechtingen sandstones show 
highest GTI coating coverage and lowest quartz cements, while Pen-
rith sandstones show lowest GTI coating coverage, but the highest 
amount of quartz cements. Cornberg sandstones show intermediate 
quartz cements and GTI coating coverage. b Grain-to-grain (GTG) 

coating coverage on the abscissa versus intergranular volume (IGV). 
Flechtingen sandstones show highest GTG coatings and lowest IGVs, 
Cornberg sandstones show intermediate GTG coatings and IGVs, 
and Penrith sandstones show lowest GTG coatings but highest IGVs. 
Quarries: A—Cornberg, B and C—Flechtingen, D to F—Penrith

Fig. 9   Porosity determined by helium pycnometry (abscissa) versus 
Klinkenberg-corrected air permeability at 1.2  MPa confining pres-
sure (ordinate) plotted on logarithmic scaling. The upper measure-
ment limit of the permeability cell is 10000 mD (= 9.869e−12 m2). 
Cornberg sandstones show the lowest porosities and permeabilities, 

Flechtingen sandstones show intermediate porosities and permeabili-
ties, and Penrith sandstones show the highest porosities and perme-
abilities. Helium porosity (abscissa) and permeability (ordinate) 
categorized by quarry (a) and by depositional system (b). Quarries: 
A—Cornberg, B and C—Flechtingen, D to F—Penrith
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correlations within the individual populations of Cornberg, 
Flechtingen or Penrith Sandstones (Fig. 11l).

Discussion

Paragenesis

Early diagenesis

Mechanical compaction  Mechanical compaction com-
menced after initial deposition due to burial. Due to ongo-
ing consolidation, both by compaction and cementation, the 
effect on porosity reduction by mechanical compaction in 
clean sandstones typically begins to approach equilibrium at 
burial depths exceeding 2 km (Paxton et al. 2002).

Clay mineral and iron oxide grain coatings  Tangential clay 
mineral or iron oxide grain coatings have been encountered 
in all three study areas (Fig. 6a, f, i, j), encompassing detri-
tal grains and present at grain contacts, thus predating any 
other authigenic mineral. Pigmented and continuous iron 
oxides coatings (Fig.  6i) are interpreted to be formed by 
sediment redding, sourced by weathering of iron-bearing 

minerals e.g. biotite and hornblende (Walker and Honea 
1969). Grain coatings are a well-described occurrence in 
arid fluvio-eolian depositional environments (Esch et  al. 
2008; van Houten 1973), and have been previously related 
to be formed by clay infiltration (Matlack et al. 1989; Mole-
naar and Felder 2018), as well as surface and soil forma-
tion processes (Walker and Honea 1969). Grain coatings 
are apparently not linked to the depositional environment 
in arid continental systems (Busch 2020; Busch et al. 2020), 
while the distribution of grain coatings can be correlated 
to depositional environments in modern estuarine sedi-
ments (Woolridge et  al. 2017). Grain coatings are shown 
as inferred smectite coatings in Fig.  12, which serve as 
precursors for tangential illite coatings in arid Rotliegend 
sandstone systems (Molenaar and Felder 2018). The vary-
ing distribution of clay mineral grain coatings in Penrith 
Sandstones could be caused by clay abrasion caused by 
grain migration (Ajdukiewicz et al. 2010), where only the 
smaller grains were able to retain their clay coats, which 
would be in agreement with our observation, showing pre-
served clay coatings primarily on smaller grains (Fig. 6j). 
A further potential control on grain coatings might be the 
climate due to an increasing/decreasing amounts of humid-
ity (Mader and Yardley 1985).

Fig. 10   Klinkenberg-corrected permeability measured on plugs 
drilled parallel to bedding (abscissa) versus the corresponding plugs 
drilled normal to bedding (ordinate). Both axis are plotted in logarith-
mic scale. The red line shows a logarithmic correlation (R2 = 0.92). 
The black line is a 1:1 line encompassed by a dotted factor 5 and divi-

sor 5 envelope of the 1:1 line, demonstrating larger permeability dif-
ferences from horizontal to vertical measurements in less permeable 
samples. Quarries: A–Cornberg, B and C—Flechtingen, D to F—
Penrith
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Fig. 11   Matrix-scatter plotter with helium porosity on the abscissa 
and horizontal permeability on the ordinate in log-scale. Each dia-
gram is labeled a to l in its upper left corner. Bubble sizes indicate a 
variable specific to the respective diagram in relation to the porosity 
and permeability. The variable is given with scale bar in the lower 

right of the respective diagram. Color coding refers to the three study 
areas. Three specific Flechtingen Sandstone specimen were indicated 
with an x (dune) or + (sheet sands), while fluvial Flechtingen Sand-
stones have not been marked. GTG​ grain-to-grain, GTI grain-to-IGV, 
IGV intergranular volume
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Feldspar dissolution  As feldspars are not stable under pH 
conditions encountered in meteoric waters (Lanson et  al. 
2002; Yuan et al. 2015), dissolution processes leading to the 
formation of intragranular feldspar porosity (Fig. 5b) may 
have started pre-deposition already, and likely commenced 
throughout early diagenesis until the influence of meteoric 
waters seized during burial diagenesis.

Kaolinite  As kaolinite was illitized in some samples from 
Cornberg and Penrith Sandstones (Fig.  6c) it must have 
formed prior to illitization in these samples, likely during 
early diagenesis as described also by Becker et al. (2017). 
Early diagenetic processes include the dissolution of feld-
spar and subsequent formation of kaolinite (Ketzer et  al. 
2003; Lanson et al. 2002) in the presence of undersaturated 
meteoric waters (Lanson et al. 2002). Kaolinite formed dur-

Early
diagenesis

Mechanical compaction

Smectite (inferred)

Iron oxides, pore-lining

Fsp/ RF dissolution

Dolomite

Calcite I  

Kaolinite

Illitization of Kln & Sme

Fsp/ RF replacements

Feldspar cements

Quartz cements

Siderite

Calcite II

Illite, pore-filling

Rutile

Iron oxides & hydroxides

Carbonate dissolution

Burial
diagenesis

Uplift 
diagenesis

Cornberg Sandstones         Flechtingen Sandstones Penrith SandstonesColor coding:

Line coding: most abundant group / >80 % of occurence rate of most abundant group 

 30-79 % of occurence rate of most abundant group 

 <30 % of occurence rate of most abundant group 

Fig. 12   Paragenetic sequence determined from textural and spatial 
relations of authigenic minerals. The left line is giving the respec-
tive diagenetic alteration sorted by relative first occurrence. Diage-
netic alterations are subsequently interpreted to have been formed 
during early, burial, and/or uplift diagenesis. Color coding relates to 

the three study areas. Line thickness coding relates to the abundance 
of the respective diagenetic alterations based on the average petro-
graphic parameter for the study area (data in supplementary mate-
rial). Fsp Feldspar, RF rock fragment, Kln kaolinite, Sme smectite



International Journal of Earth Sciences	

1 3

ing early diagenesis is replaced during subsequent burial 
by kaolinite/dickite assemblages and can form illite in geo-
chemically open system if a K+ source is available (Berger 
et al. 1997; Lanson et al. 2002).

Carbonate cements  Calcite cements in Flechtingen Sand-
stones are showing poikilotopic textures encasing grains 
with floating to point grain contacts (Fig.  6 f), indicating 
early diagenetic cementation prior to significant mechanical 
compaction (Morad 1998; Walderhaug 1990), likely formed 
during an evaporative stage typical for arid fluvio-eolian sys-
tems (Morad 1998). Similar poikilotopic textures of dolo-
mite with floating to point grain contacts can be observed in 
Cornberg Sandstones (Fig. 6b) and may be related to marine 
ingressions (Morad 1998; Vincent et al. 2018), for instance 
the Zechstein Sea ingression in the late Permian (Legler and 
Schneider 2008; Stollhofen et al. 2008).

Burial diagenesis

Illitization of  clays and  feldspars, and  feldspar replace‑
ments  As illitic grain coatings are present at grain con-
tacts, they or a precursor mineral phase must have been 
present prior to mechanical compaction. The recrystalliza-
tion of tangential illite was also inferred from K/Ar dating 
of illite in other Rotliegend deposits (Liewig and Clauer 
2000) supporting the burial diagenetic recrystallization 
or replacement of a precursor clay mineral grain coating. 
For other Rotliegend deposits in northern Germany, Busch 
et al. (2020) derived a smectitic-chloritic clay mineral grain 
coating phase, interpreted to form via the recrystallization 
of a smectitic precursor phase. However, illitic and illite/
smectite mixed-layer clays as grain coatings have also been 
reported as a detrital to eo-diagenetic component in active 
eolian depositional systems (Busch 2020).

Two phases of feldspar cements were observed in Flecht-
ingen Sandstones; a potassium feldspar cement (Fsp I) 
encompassing detrital feldspar grains, and an albite cement 
(Fsp II) encompassing Fsp I (Fig. 6g). Albite was also 
observed to partially replace detrital feldspars (Fig. 6g) 
in Flechtingen Sandstones. Additionally, feldspars were 
replaced by illite, which was encountered in all study areas 
(Fig. 6d). The two feldspar overgrowth generations are in 
agreement with the results of Fischer et al. (2012). Also 
considering feldspar cement ages in Flechtingen Sandstones 
determined by earlier studies (Fischer et al. 2012) as well as 
textural relations (Fig. 6g), we interpret feldspar cementation 
to be related to burial diagenetic processes pre to syn-dating 
quartz cementation.

Illite was observed to replace early diagenetic kaolinite in 
minor quantities (Fig. 6c) in Cornberg Sandstones. Partial 
illitization of kaolinite has been reported in previous stud-
ies on sample origination from below the Kupferschiefer 

and elsewhere (Becker et al. 2017; Ehrenberg and Nadeau 
1989; Lanson et al. 2002). A limited source of K+ driv-
ing the reaction to form illite from kaolinite constrained by 
reaction kinetics and the K+/H ratio was identified as a con-
trol on illitization in previous studies (Huang et al. 1993). 
Based on the kinetic constraints illustrated by Lander and 
Bonnell (2010), we interpret the partial illitization of early 
diagenetic kaolinite to be due to a limited K+ supply. Previ-
ous studies on the timing of illite replacements and cements 
in the Northern German Basin suggest a wide time-range 
from 210 to 140 Ma (Liewig and Clauer 2000; Ziegler 2006; 
Zwingmann et al. 1998), however, they all relate feldspar 
overgrowths and illitization to burial diagenetic processes 
(Ziegler 2006). A paragenetic interpretation of feldspar 
cements based on textural relations only is not straight-
forward due to small volumes of feldspar cements. Based 
on textural evidence, Fsp II must have formed after Fsp I, 
and also in temperature settings likely exceeding 145° C 
based on the dissolution kinetics of feldspars compared to 
albite growth rates (Aagaard et al. 1990). Illite in parts of 
the Northern German Basin was interpreted to be associ-
ated with Carboniferous fluids, driving feldspar dissolution 
and subsequent illitization (Gaupp et al. 1993). Two major 
phases of illites were reported in the Northern German Basin 
and Dutch Basin dated to 200–180 Ma and around 90 Ma 
(Gaupp et al. 1993; Gaupp and Okkerman 2011), which 
coincide with the opening of the Atlantic ocean and the Late 
Cretaceous basin inversion (Kley and Voigt 2008; Ziegler 
1990). The tectonic activity was interpreted to have enabled 
the reactivation of old Permo-Carboniferous fault systems, 
on which acidic fluids were able to circulate (Gaupp et al. 
1993). We interpret feldspar cementation and replacements 
as well as illitization of kaolinite to be possible throughout 
the entire burial diagenesis, however likely prevalent in an 
early phase (Fsp I) and a later phase (Fsp II) (Fig. 12), which 
could be linked to increased fluid migration during Early 
Jurassic Atlantic opening.

Quartz cements  The formation of quartz cements gener-
ally requires temperature exceeding 75–80° C (Walderhaug 
1994). Assuming a geothermal gradient of 35° C/km, this 
would result in minimum burial depths of 2 km. Possible 
early diagenetic silica cement may have formed in an arid 
depositional system (Folk and Pittman 1971) and has been 
interpreted to be present as poikilotopic textures in Flecht-
ingen Sandstone samples by Fischer et al. (2012). However, 
these poikilotopic quartz cements are frequently observed 
to encase both phases of feldspar cement (Fig. 6g), which 
in turn are related to burial diagenesis. Thus, a burial diage-
netic origin of quartz cements based on textural relations is 
favored. Although it contradicts other interpretations in the 
same study area (Fischer et al. 2012; Heidsiek et al. 2020), 
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it is in accordance with observed petrographic textures from 
different outcrops (Figs. 1c, 6g).

Early diagenetic chalcedony cementation was proposed 
by (Waugh 1970b) for Penrith sandstone samples. In their 
model, siliceous dust was remobilized by highly alkaline 
evaporitic groundwaters and finally recrystallized to quartz 
during burial diagenesis. However, cathodoluminescence 
studies show at least two discrete growth events and no 
petrographic evidence for recrystallization, implying the 
primary origin of the quartz cements (Turner et al. 1995). 
Furthermore, fluid-inclusion data suggest a precipitation 
temperature of at least 95° C for quartz cements in Pen-
rith Sandstones (Turner et al. 1995). Quartz cementation is 
dependent on silica availability, which can be sourced by the 
autochthonous illitization of smectite (Lanson et al. 2002), 
from dissolution seams (Walderhaug and Bjørkum 2003) 
or allochthonous hydrothermal fluid circulation (Gaupp 
et al. 1993) during burial. Silica in Cornberg Sandstones 
is interpreted to be mainly sourced by the autochthonous 
illitization of smectite (Lanson et al. 2002) due to the large 
amount of illite and feldspars replacements (Fig. 6 a, c-d). 
The silica origin of the Northern German Basin Rotliegend 
and potentially also Flechtingen Sandstones might be related 
to hydrothermal fluid circulation (Gaupp et al. 1993) in addi-
tion to autochthonous processes.

Due to the small abundance of feldspars in Penrith Sand-
stones, an allochthonous source for silica for the abundant 
quartz cements is implied. Turner et al. (1995) discussed the 
underlying Carboniferous shales to be a minor contributor 
via pressure dissolution of silt-sized quartz in mudstones 
(Milliken 1992). Quartz cementation is more easily facili-
tated on a quartz grain or rock fragment containing quartz, 
as a result reduced substrate areas by clay coatings result in 
a reduced abundance of quartz cements (Ajdukiewicz and 
Larese 2012; Busch et al. 2017; Monsees et al. 2020a; Pitt-
man et al. 1992). Grain sizes and mono- or polycrystallinity 
of quartz substrates also affect overgrowth cement volumes 
(Lander et al. 2008; Waugh 1970a). Smaller volumes of syn-
taxial overgrowth cements are formed on smaller grains as 
opposed to coarser grains, when subject to the same condi-
tions during diagenesis (Lander et al. 2008; Prajapati et al. 
2018). Monocrystalline grains form larger volumes of syn-
taxial quartz cement as opposed to polycrystalline grains of 
the same size when subject to the same conditions during 
burial (Lander et al. 2008; Prajapati et al. 2020). Growth 
rates of quartz cements are also increasing with grain size 
(Lander et al. 2008; Walderhaug et al. 2000), and are signifi-
cantly higher prior to reaching euhedral shape, and signifi-
cantly lower after the euhedral shape was reached (Lander 
et al. 2008; Prajapati et al. 2020). This is reflected by Penrith 
Sandstone samples showing the largest volumes of quartz 
cements and lowest GTI coating coverages, while Cornberg 
and Flechtingen Sandstones show smaller quartz cement 

volumes (Fig. 8b). However, illite GTI coatings in Corn-
berg Sandstones are almost as low as in Penrith Sandstones.

Additionally, the occurrence and preservation of early 
diagenetic carbonates in Cornberg Sandstones is inter-
preted to have reduced the reactive surface area of quartz 
grains, resulting in a smaller substrate area. The smaller 
grain sizes in Flechtingen and Cornberg Sandstones, there-
fore, are interpreted to be an additional controlling factor 
resulting in smaller quartz cement abundances. As a result, 
silica provided by the illitization of feldspar, smectite and 
kaolinite (McKinley et al. 1999), potentially enhanced by 
hydrothermal fluids enriched in silica (Gaupp et al. 1993) 
in conjunction with silica mobilized by quartz dissolution 
during chemical compaction (Kristiansen et al. 2011), are 
interpreted to be responsible for in-situ formation of quartz 
cements throughout burial diagenesis (Fig. 12).

Carbonate cements  As siderites in Cornberg Sandstones 
are partly overgrowing quartz cements (Fig.  6a, b), they 
are interpreted to be syn- to postdating quartz precipitation 
(Fig. 12). Similarly, the rare second calcite phase in Flecht-
ingen Sandstones was observed to overgrow both quartz and 
feldspar cements (Fig.  6h) and is therefore interpreted to 
postdate quartz and feldspar cementation (Fig. 12). Quartz 
solubility increases under alkaline conditions (Knauss and 
Wolery 1988), while carbonate solubility generally increases 
under acidic conditions (Morad 1998). The contemporane-
ous formation of quartz and siderite would be geochemi-
cally plausible under relatively neutral pH systems. Burial 
diagenetic siderite in the Dutch part of the Southern Per-
mian Basin has been discussed to be linked to a shift in fluid 
chemistry to a predominately alkaline pH during Jurassic-
Cretaceous uplift (Gaupp and Okkerman 2011).

Pore‑filling illite  Due to the overgrowth of pore-filling illite 
on siderite and all previously discussed cement phases in 
Cornberg Sandstones, they are interpreted to have formed 
after the burial diagenetic siderites in Cornberg Sandstones, 
respectively quartz cements in Flechtingen and Penrith 
Sandstones (Fig.  12). The formation of illite is generally 
favored in acidic pH conditions (Gaupp et al. 1993; Gaupp 
and Okkerman 2011), and dependent on the process of for-
mation, temperatures ranging from 70 to 140° C (Worden 
and Morad 2003). Pore-filing illite in Cornberg Sandstones 
being more abundant than in the other study areas is inter-
preted due to the close proximity to a fault zone (Motzka-
Nöring et  al. 1987), which has been identified to be the 
main driver of pore-filling meshwork illite cementation in 
the Northern German Basin (Gaupp and Okkerman 2011). 
Based on the textural relationships in combination with the 
timing of pore-filling meshwork illite in the Northern Ger-
man and Dutch Basin (Gaupp et al. 1993; Gaupp and Okker-
man 2011), pore-filling illite is interpreted to have formed 
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during burial diagenesis postdating the onset of quartz 
cementation, but predating the late Cretaceous inversion. 
Previous studies determined illite ages in Rotliegend sand-
stones with K–Ar dating, demonstrating that illite formed 
between 180 and 210 Ma in the German part of the South-
ern Permian Basin (Clauer et al. 2012; Liewig and Clauer 
2000; Zwingmann et al. 1998). Illite ages become younger 
towards the Dutch and UK sector with ages ranges from 100 
to 190 Ma (Clauer et al. 2012). Textural observations sug-
gest that diagenetic rutiles postdate pore-filling illites and 
kaolinites in Cornberg Sandstone (Fig. 6c), supporting the 
episodic growth of illite during burial diagenesis (Fig. 12). 
Therefore, we interpret illite growth to be episodic in the 
early Jurassic as proposed in previous studies, likely related 
to a hyperthermal plate tectonic event, e. g. the opening of 
the Atlantic ocean (Liewig and Clauer 2000; Zwingmann 
et al. 1999).

Chemical compaction  Long grain contacts between quartz 
grains encasing illitic grain coatings form quartz–illite–
quartz interfaces, which enhance chemical compaction by 
electrochemical potential differences (Greene et  al. 2009; 
Kristiansen et al. 2011). Therefore, intense chemical com-
paction should require mostly continuous illite GTG coat-
ings, as well as an absence of major pore-filling early dia-
genetic cements, which would inhibit the development of 
long, concavo-convex or sutured grain-to-grain contacts. 
Chemical compaction appears to correlate with GTG coat-
ings, where higher grain coating coverages coincide with 
smaller IGVs in this study (Fig. 8b), which is in agreement 
with Monsees et al. (2020a). Previously the amount of pres-
sure dissolution was related to the total amount of clay in the 
sandstones (Tada and Siever 1989), but these results in con-
junction with previous results from Monsees et al. (2020a) 
highlight that the local abundance of illitic clay minerals at 
grain contacts may aid in extending such a model. Flechtin-
gen Sandstones lacking major pore-filling cements, showing 
the most continuous illite coatings, and lowest IGVs, there-
fore, are interpreted to have experienced the highest degree 
of chemical compaction. Mechanical compaction in clean 
sands like Cornberg and Penrith Sandstones did not reduce 
IGVs below the theoretical minimum of 26% (Paxton 
et al. 2002), however, IGVs in Flechtingen Sandstones are 
reduced down to 15%. Considering burial histories for study 
areas where they are available (Kohlhepp 2012; Turner et al. 
1995), burial depths are interpreted to be sufficient to lead 
to a maximum mechanical compaction under the bound-
ary conditions proposed by Paxton et al. (2002). Chemical 
compaction has been discussed to be mainly controlled by 
thermal boundary conditions in burial depths exceeding 
2 to 3 km, and only to a lesser extent by effective stresses 
(Bjørlykke 2006). Large IGV reductions therefore might not 
require extreme burial, but can also be observed in the same 

well, only several meters apart (Monsees et al. 2020a). This 
is interpreted to be due to a combination of chemical com-
paction as shown by partly sutured grain contacts (Fig. 5b, 
c), and the poorest average sorting (supplementary mate-
rial). The presented correlation of illitic GTG grain coating 
coverages and IGV (Fig. 8b) also implies that the variabil-
ity of burial scenarios, i.e. variability in effective vertical 
stresses, does not appear to be the main control on the pro-
cess of chemical compaction. Consequently, intense early 
diagenetic dolomite cementation in Cornberg Sandstones 
and intense quartz cementation in Penrith Sandstones not 
inhibited by intense clay coatings are interpreted to mitigate 
major effects of chemical compaction in these study areas.

Uplift diagenesis

Kaolinite and feldspar dissolution  Kaolinite was observed 
to overgrow quartz cements in Cornberg Sandstones 
(Fig.  6c), thus postdating quartz cements formed during 
burial diagenesis. Kaolinite however is typically formed 
during early diagenesis, favoring lower temperatures and 
meteoric waters compared to its burial diagenetic products 
dickite, illite and chlorite (Lanson et al. 2002; Worden and 
Morad 2003). However, textural evidence suggests only 
minor amounts of early diagenetic kaolinite, possibly due to 
very acidic fluids (Lanson et al. 2002). Possible K+ sources 
during diagenesis are dissolving K-feldspars (Ehrenberg and 
Nadeau 1989). Early diagenetic kaolinite was subsequently 
partly illitized during burial diagenesis (Lanson et al. 2002). 
Early diagenetic carbonates are preserved (Fig. 6 b), suggest-
ing a limited exposure to very acidic fluids. Therefore, kao-
linite in Cornberg Sandstones is interpreted to have formed 
during early diagenesis and uplift diagenesis (Fig. 11) under 
the influence of meteoric waters and below earliest illitiza-
tion temperatures of 60° C (Lanson et al. 2002; Worden and 
Morad 2003). A later phase of feldspar dissolution is inter-
preted to have occurred during uplift and exposure at the 
surface due to interactions with meteoric waters.

Iron hydroxides  Textural relations imply a formation of 
iron hydroxides in Cornberg Sandstones syn- to postdating 
uplift related kaolinite cement (Fig. 6c), as well as postdat-
ing quartz cement formation in Flechtingen and Penrith 
Sandstones. Detrital or early diagenetic goethite would have 
been altered to hematite under burial diagenetic conditions 
(Berner 1969), therefore it is more plausible for iron hydrox-
ides to have been transported under oxic conditions along 
with fractures, also explaining observed Liesegang rings on 
outcrop scale (Chan et al. 2000). Due to textural relations of 
iron hydroxides with burial diagenetic minerals in all stud-
ied samples, iron hydroxides are interpreted to have formed 
during the latest stages of uplift diagenesis (Fig. 12) under 
the influence of humid conditions in the UK and Germany.
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Carbonate dissolution  Carbonate dissolution in Penrith 
Sandstones is apparent by the rhombohedral secondary 
porosity engulfed by quartz cements (Fig. 6i), implying the 
dissolution process took place after quartz cementation. The 
occurrence of dolomite cements in Penrith Sandstone sam-
ples from the subsurface (Turner et al. 1995), in combina-
tion with the solubility of carbonate minerals by meteoric 
waters (Morad 1998) support the theory of dolomite dis-
solution during uplift diagenesis (Fig. 12). The significantly 
higher permeabilities in Penrith Sandstones are interpreted 
to have catalyzed carbonate dissolution additionally, while 
low permeability Cornberg Sandstones were able to retain 
significant carbonate cement volumes up to 15%.

Vertical permeability heterogeneity

Results demonstrate a larger offset between horizontal (kH) 
and vertical permeability (kV) in less permeable sandstones 
(Fig. 10), which carries implication for permeability-related 
modelling approaches in sandstones. Industry practice 
assumes vertical (normal to bedding) permeabilities to be 
10% of horizontal (parallel to bedding) permeabilities (Can-
non 2018; Gibbons et al. 1993). Recent outcrop analog stud-
ies also demonstrated heterogeneity in lateral permeability 
in Triassic Buntsandstein of up to two orders of magnitude 
in a single bed several meters apart (Schmidt et al. 2020b). 
Upper Carboniferous sandstones also show lateral perme-
ability variations by two orders of magnitude over 150 m 
lateral distance in a 3 m bed (Becker et al. 2019, 2017). 
However, it is commonly assumed to not vary significantly 
in the lateral direction in reservoir modelling approaches 
(Cannon 2018; Gibbons et al. 1993). Minimal reduction 
from kH to kV for sandstones exceeding permeabilities of 
100 mD is interpreted to be an effect of sample homogene-
ity, having no significantly less permeable laminae normal 
to bedding. This in agreement with previous experimental 
studies on homogenous sandstones over 100 mD (Iheana-
cho et al. 2012; Meyer 2002). Micro-computer tomography-
based permeability simulations of Penrith Sandstones also 
show insignificant variations from horizontal to vertical 
permeability from 1500 to 800 mD (Monsees et al. 2020b). 
Sandstones with permeabilities below 10 mD show larger 
permeability reduction from kH to kV (this study, Iheana-
cho et al. 2012), which are interpreted as a heterogeneity 
imposed by depositional environment, grain size and diage-
netic alteration. There seems to be no direct control of the 
depositional environment on permeability in this data set 
(Fig. 10), rather the vertical permeability seems to be linked 
to horizontal permeability, which is mostly controlled by 
diagenetic alterations (this study, Becker et al. 2017; Busch 
et al. 2020). The depositional environment and grain size 
should be of larger importance in shallow and thus not heav-
ily diagenetically overprinted settings, while diagenetically 

induced permeability reduction in sandstones will increase 
with burial depth (Paxton et  al. 2002) and temperature 
exposure (Busch et al. 2018; Lander et al. 2008; Walder-
haug et al. 2000). In summary, low permeability samples 
are either heavily compacted (Flechtingen Sandstones) or 
heavily cemented (Cornberg Sandstones, also forming planar 
dissolution seams due to chemical compaction), which may 
impede fluid flow and thus permeability (Fossen et al. 2011).

Impact on reservoir quality

Depositional parameters

The detrital composition is interpreted to have no effect on 
reservoir quality, as both Cornberg Sandstones and Penrith 
Sandstones show a predominantly mature, quartz-dominated 
detrital composition (Fig. 4), but significant permeability 
and porosity contrasts (Fig. 9a). The impact of depositional 
environments is not straightforward, as both the best and 
worst reservoir qualities were observed in eolian dunes, 
and intermediate reservoir qualities in fluvial sandstones 
(Fig. 9 b). Depositional systems are discussed to be one of 
the main or the main controlling factors on reservoir qual-
ity in literature (dos Anjos et al. 2000; Griffiths et al. 2019; 
Morad et al. 2010). It is further developed towards an inte-
grated approach of depositional systems overprinted by 
diagenesis during burial (Becker et al. 2019; Busch et al. 
2020; Ehrenberg 1990; Gaupp and Okkerman 2011; Taylor 
et al. 2010). This study comprises of fluvio-eolian sand-
stones only, consequently a population bias against a strong 
control depositional control due to the lack of depositional 
system variety is introduced into the data set. As opposed to 
Heidsiek et al. (2020) a facies dependent reservoir control 
on plug-scale reservoir quality analyses cannot be delineated 
in Flechtingen Sandstones, as is also supported by previous 
studies in similar arid or semi-arid fluvio-eolian deposits 
(Busch et al. 2019, 2020; Kunkel et al. 2018; Monsees et al. 
2020a). The effect of grain size on permeability is also inter-
preted to be partly caused by a population bias, which is 
also discussed by Wadsworth et al. (2016). Larger grain size 
generally results in higher permeability (Shepherd 1989), 
which is also evident in Penrith Sandstones, however, no 
such distinctions can be made for Flechtingen and Cornberg 
Sandstones (Fig. 11a). Better sorting is discussed to have 
a positive effect on reservoir quality due to larger packing 
induced porosities (McKinley et al. 2011), however, no such 
effect can be observed in this data set (Fig. 11b). The lack 
of clear correlations of depositional parameters with reser-
voir quality is interpreted as significant diagenetic overprint 
superimposed on reservoir quality controlling parameters 
during deposition, particularly in Cornberg and Flechtin-
gen Sandstones. Consequently, reservoir quality assessment 
should always include the analysis of diagenetic alteration.
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Mechanical compaction and early diagenetic blocky 
cements

Mechanical compaction generally is considered the most sig-
nificant factor in porosity loss of clean sandstones during 
early and burial diagenesis due to the reduction of potential 
porosity (IGV) from approximately 45 to 26% (Lundegard 
1992; Paxton et al. 2002). However, mechanical stresses 
alone do not explain observed IGVs of up to 40% in Penrith 
Sandstones, which have been buried to approximately 3 km 
depth (Turner et al. 1995), resulting in an expected IGV 
below 30% (Paxton et al. 2002). Furthermore, high porosi-
ties and IGVs in hydrocarbon reservoirs also make a purely 
stress-dependent porosity reduction unlikely (Salem et al. 
2000; Taylor et al. 2010). Outcrop analog studies on Lower 
Triassic Buntsandstein sandstones demonstrated differences 
in the porosity reduction process from mainly compactional 
to mainly cementational control over lateral distances of 
only several meters (Schmidt et al. 2020a, b). This IGV 
loss might be counteracted by grain-stabilizing early diage-
netic cementation of carbonate minerals, anhydrite or halite 
(Ajdukiewicz et al. 2010; Mahmic et al. 2018), which are 
discussed to positively contribute to reservoir quality due to 
the possible dissolution and formation of secondary inter-
granular porosity during burial (Taylor et al. 2010; Worden 
et al. 2018). High IGVs and dissolved dolomite rhombs 
in Penrith Sandstones are interpreted to indicate an early 
diagenetic cement phase, however, the total amount of dis-
solved carbonates or other phases is unclear. The identified 
amounts of carbonate dissolution porosity in Penrith Sand-
stones encased in quartz overgrowths are too small to be of 
significant impact on overall permeability.

Grain coatings and chemical compaction

Grain coatings, quantified by the grain coating coverage, 
can inhibit quartz cementation (Fig. 8a) (Ajdukiewicz and 
Larese 2012; Esch et  al. 2008), showing similar trends 
reported in previous works (Busch et al. 2017; Monsees 
et al. 2020a). Cornberg Sandstones show a different trend 
than Flechtingen and Penrith Sandstones due to early diage-
netic carbonate precipitation, which is independent of grain 
coating coverage in siliciclastic sandstones (Ajdukiewicz 
et al. 2010; Esch et al. 2008). Early diagenetic carbonate 
cementation in Cornberg Sandstones is interpreted to have 
reduced the effective surface area of detrital quartz grains, 
leading to comparable amounts of quartz cement as Flecht-
ingen Sandstones, although the grain coating coverage in 
Flechtingen Sandstones is much higher (Fig. 8a). The direct 
impact of GTI grain coatings on reservoir quality however 
remains indistinct (Fig. 11f).

Grain-to-grain (GTG) coatings deliver the same trend 
as originally described by Monsees et al. (2020a), showing 

smaller IGVs weakly correlating with larger GTG coatings 
due to catalyzed chemical compaction by electrochemi-
cal potential differences on quartz-illite-quartz interfaces 
(Greene et al. 2009; Kristiansen et al. 2011). The ambiva-
lent effect of illite clay coatings potentially inhibiting quartz 
cementation but driving chemical compaction has led some 
authors to the conclusion, that contrary to chlorite coatings, 
illite coatings mostly have a deteriorating effect on reservoir 
quality (Gaupp and Okkerman 2011; Storvoll et al. 2002). 
Thus, a differentiation between GTI and GTG coatings is 
necessary to fully address the variable effect of illitic grain 
coatings on reservoir quality based on our results and recent 
studies (Busch et al. 2020; Monsees et al. 2020a). The effect 
of GTG coatings on chemical compaction is interpreted to 
be reduced by the early diagenetic blocky cements in Corn-
berg Sandstones but shows a trend in systems without early 
diagenetic blocky cements towards better reservoir quality 
with less GTG coverage (Fig. 11g).

Clay minerals and microporosity

An increased amount of clay minerals has been observed 
to coincide with a reduction in reservoir quality (Fig. 11j), 
which is the expected result (Ajdukiewicz et  al. 2010; 
Worden et al. 2018). As microporosity was derived from 
the abundance of clay minerals, it consequently also shows 
a negative correlation with reservoir quality (Fig. 11l). Per-
meability is driven by the interconnectivity of the larger 
pores (Klinkenberg 1941), therefore the increased amount 
of porosity due to microporosity should have a minor impact 
on overall permeability. If petrographically derived micropo-
rosities after Hurst and Nadeau (1995) are subtracted from 
the helium porosity, a better fit with permeability is gener-
ated (Fig. 13). This effective helium porosity (ϕE) is inter-
preted as a closer representation of the well-connected pore 
volume, as the better fit suggests that microporosity in clays 
contributes only to a minor degree to overall permeability 
in the studied sample set. Effective helium porosity shows a 
positive correlation of R2 = 0.93 with helium porosity, which 
is closer to a 1:1 fit in more porous samples (Fig. 13a). This 
is interpreted as the higher offset between ϕ and ϕE due to 
the increased abundance of clay minerals in the less porous 
samples. The derived scatter plot between permeability and 
ϕE (Fig. 13b) shows an improved correlation coefficient of 
R2 = 0.78 compared to regular helium porosity (Fig. 9a). 
Excluding the dune facies from Flechtingen Sandstones, 
which clearly show a different porosity–permeability rela-
tionship seemingly independent of porosity variation from 
all other data points (Fig. 13b) would result in an even better 
correlation coefficient of R = 0.91. Overall, clay minerals are 
interpreted to be one of the main controls on a deterioration 
of reservoir quality, as they might retain porosity in form of 
microporosity but contribute to a loss of effective porosity, 
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resulting in reduced permeabilities, which is in line with the 
results of previous studies (Becker et al. 2019; Ehrenberg 
1990; Gaupp and Okkerman 2011).

Burial diagenetic blocky and clay mineral cementation

Quartz cement volumes show a positive correlation with 
permeability (Fig. 11h), although in fact the opposite would 
be expected (Ajdukiewicz et al. 2010; Becker et al. 2019; 
Busch et al. 2018; Ehrenberg 1990; Gaupp and Okkerman 
2011). Because quartz cements are most abundant in Penrith 
Sandstones, other preserved cements are lacking (Fig. 6i, 
j), and have been compacted the least amount (Fig. 7). The 
large quartz cement volumes and IGVs imply a stabiliza-
tion effect on the grain framework commonly observed for 
early diagenetic carbonates (Paxton et al. 2002). As a result, 
quartz cementation in Penrith Sandstones is interpreted to 
have a positive effect on reservoir quality by framework sta-
bilization and inhibiting further compaction.

An increased amount of carbonate and clay minerals was 
also observed to be an important factor in reservoir qual-
ity deterioration in Cornberg and Flechtingen Sandstones 
(Fig. 11i, j). Considered individually, the effect on reser-
voir quality does not result in a good correlation (Fig. 11i, 
j), however previous studies in Triassic red bed sandstones 
reported a combined control of carbonates and clay min-
erals on reservoir quality (Schmid et al. 2004), which can 
also be observed here (Fig. 11 k). Pore-filling burial diage-
netic illite cementation has been discussed as a reservoir 
quality deterioration factor in Northern German and Dutch 

Rotliegend reservoir rocks, showing a significant reduction 
in permeability (Gaupp et al. 1993; Gaupp and Okkerman 
2011) while retaining porosity (Hurst and Nadeau 1995). 
Pore-filling illites are interpreted to be a significant factor in 
reservoir quality deterioration based on their highest abun-
dance in barely permeable Cornberg Sandstones.

Uplift diagenesis

Diagenetic alterations attributed to uplift diagenesis are 
interpreted to be of minor importance to reservoir quality 
due to the small volumetric abundance of iron hydroxides 
and kaolinites, which is largest in Cornberg Sandstones 
with around 3%, and much lower in Flechtingen and Pen-
rith Sandstones. Secondary porosity caused by carbonate 
dissolution in Penrith Sandstones (avg.: 0.1%) is also negli-
gible compared to their total porosity (avg. ϕ: 25.9%). The 
uplift diagenetic dissolution of other pore-filling mineral 
phases can only be speculated since characteristic dissolu-
tion molds as in Penrith Sandstones are absent. Meanwhile, 
the uplift diagenetic dissolution of feldspars and rock frag-
ments contributing to up to 40% of the total optical porosity 
in Flechtingen Sandstones and up to 25% in Cornberg Sand-
stones represent a major part of optical porosity. Feldspars 
are chemically unstable under meteoric waters (Aagaard 
et al. 1990; Yuan et al. 2015). While microporosity in feld-
spar is considered a negligible contribution to permeability 
(Walker et al. 1995), intense formation of secondary poros-
ity has been discussed to decrease overall reservoir qual-
ity if coinciding with pore-filling clay mineral cementation 

Fig. 13   a Scatter plot of porosity (abscissa) against effective poros-
ity (ordinate) with a linear line of best fit (red) and 1:1 line (black). b 
Effective Helium porosity (abscissa) against horizontal permeability 

(ordinate) with linear line of best fit (red). Facies outliers in Flecht-
ingen Sandstones are indicated by red x (dunes) and + (sheet sands) 
symbols
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(Ehrenberg 1990). Mahmic et al. (2018) interpret feldspar 
dissolution to contribute positively to reservoir quality if 
the dissolved grains are connected to intergranular porosity, 
thus contributing to the effective porosity. This is in agree-
ment with Flechtingen Sandstones showing higher perme-
ability than Cornberg Sandstones, but comparable porosity. 
Feldspar dissolution coinciding with intense pore-filling clay 
mineral cementation (Fig. 6c) in Cornberg Sandstones is 
interpreted to represent a case as described by Ehrenberg 
(1990), resulting in a negative impact on reservoir quality. 
In contrast, secondary porosity in Flechtingen Sandstones is 
commonly connected to the intergranular porosity (Fig. 5b). 
In combination with overall higher intergranular porosity in 
Flechtingen Sandstones, feldspar dissolution is interpreted 
to positively contribute to reservoir quality in Flechtingen 
Sandstones.

Reservoir quality controls

The reservoir quality controls have been compiled to a sche-
matic diagram illustrating reservoir quality development 
during diagenesis (Fig. 14). The studied sandstones were 
deposited as unconsolidated sands with different composi-
tions, which affects their compactive behavior and diagen-
esis. Early diagenetic carbonate cementation in Cornberg 
Sandstones reduced compaction and is interpreted to have 
partly inhibited quartz cementation by encompassing detrital 
quartz grains (Fig. 14).

During burial diagenesis, intense illitic grain coatings in 
conjunction with the largest amounts of ductile rock frag-
ments led to highest compaction in Flechtingen Sandstones, 
while their absence led to the lowest compaction in Penrith 
Sandstones (Fig. 14). Reservoir quality was reduced by pore-
filling quartz, illite and siderite cements (Fig. 14). Due to the 
large intergranular volumes in Penrith Sandstones, intense 
quartz cementation is interpreted to have improved reser-
voir quality due to the prevention of further compaction. 
Reservoir quality in Flechtingen Sandstones was primarily 
reduced by chemical compaction, while reservoir quality 
in Cornberg Sandstones was reduced by intense cementa-
tion of illite, quartz and carbonates during early and burial 
diagenesis (Fig. 14). Published burial scenarios show peak 
subsidence of 3.4 km (Penrith, (Turner et al. 1995)), and var-
ies between modeled 5–6 km (Flechtingen, Bebertal outcrop 
(Fischer et al. 2012)) and 2.5 km (well Peckensen 7 80 km 
NNE of Bebertal outcrop (Kohlhepp 2012)). As chemical 
compaction is mostly dependent on temperature and only to 
a lesser extent on effective stresses (Bjørlykke 2006), lower 
maximum temperatures are interpreted to have favored 
a preservation of porosity in Penrith Sandstones. This is 
also reflected by the lowest IGVs in Flechtingen Sand-
stones at Bebertal and highest IGVs in Penrith Sandstones 
(Fig. 11d). While no thermal data for Cornberg Sandstones 

is available, the intermediate IGVs in Cornberg Sandstones 
still match with modeled peak subsidence of 5 km further 
north (Schwarzer and Littke 2007) due to the preserved 
early diagenetic cementation inhibiting further mechanical 
compaction.

Uplift is interpreted to have had only a minor improv-
ing impact on reservoir quality as the volume of dissolved 
dolomite rhombs is negligible compared to the intergranu-
lar porosity in Penrith Sandstones (Fig. 14). Uplift-related 
feldspar dissolution is interpreted to positively contribute to 
reservoir quality due to the lack of pore-filling clay miner-
als in Flechtingen Sandstones but negatively contribute to 
reservoir quality in Cornberg Sandstones because of addi-
tional kaolinite precipitation (Fig. 14). No clear indicators 
for carbonate dissolution in Cornberg Sandstones were iden-
tified, and reservoir quality was deteriorated even more by 
the formation of pore-filling iron hydroxides (Fig. 14). These 
diagenetic controls are interpreted to have resulted in poor 
reservoir quality in Cornberg Sandstones with intermediate 
porosity and low permeability, intermediate reservoir qual-
ity with intermediate porosity and permeability in Flecht-
ingen Sandstones, and large porosity and high permeability 
in Penrith Sandstones (Fig. 14). Nevertheless, plug-based 
reservoir quality analyses do not consider fractures, which 
are necessary for upscaling of reservoir properties (Busch 
et al. 2019; Kushnir et al. 2018).

Conclusions

Compaction is mechanical during early diagenesis and 
includes chemical compaction during burial diagenesis 
being highest in Flechtingen Sandstones. Several phases of 
pore-filling cementation were identified: quartz, feldspar, 
dolomite, calcite, siderite, illite, kaolinite and iron hydrox-
ides. While early carbonate cementation is most intense in 
Cornberg Sandstones, cements in highly compacted Flecht-
ingen Sandstone were mostly formed during burial diagen-
esis. Uplift resulted only in minor amounts of cementation 
and secondary porosity development by dissolution.

Grain-to-grain (GTG) clay mineral grain coatings show 
an enhancing effect on chemical compaction in all studied 
settings. Differences in the degree of compaction can be 
related to the relative timing of framework stabilization by 
early blocky cementation, and by the continuity of GTG-
coating processes, highlighting the necessity for detailed 
diagenetic studies in reservoir quality assessments.

Depositional parameters such as depositional environ-
ments, grain size and sorting are shown not to be the main 
governing factors for reservoir quality in the studied fluvio-
eolian Permian Rotliegend sandstones. Reservoir quality 
is interpreted to mainly depend on a combination of ini-
tial composition, early diagenetic framework stabilizing 
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cementation, illitic GTI grain coatings which prevent quartz 
cementation, illitic GTG coatings which enhance chemi-
cal compaction, and burial diagenetic porosity-reducing 
cementation.

Poorest reservoir quality (avg. horizontal permeability: 
0.96 mD) was encountered in Cornberg Sandstones linked to 
intense cementation (avg. cement volume: 24.9%) and inter-
mediate compaction (avg. intergranular volume: 26.4%). 
Intermediate reservoir quality (avg. horizontal permeability: 
34.9 mD) in Flechtingen Sandstones is controlled by intense 
mechanical and chemical compaction (avg. intergranular 
volume: 19.6%) in conjunction with intermediate cemen-
tation (avg. cement volume: 16.7%). Penrith Sandstones 
showed best reservoir quality (avg. horizontal permeabil-
ity: 5906 mD) due to the lowest compaction (avg. intergran-
ular volume: 30.0%) supported by framework-stabilizing 

quartz cements (avg. cement volume: 16.4%), resulting in a 
large and well-connected pore system with high permeabil-
ity. These contrasts in reservoir quality are interpreted to be 
the result of diagenesis, which is controlled by the combined 
effect of depositional composition, fluid flow, burial history 
and thermal exposure.

The ratio between vertical (normal to bedding) and hor-
izontal (parallel to bedding) permeability is close to 1 in 
higher permeable samples (> 1000 mD), and lower in low 
permeable samples. Samples over 100 mD show ratios above 
0.2, while only samples below 10 mD showed ratios of 0.1 or 
below, which is the standard industry assumption for perme-
ability modelling in the subsurface. Additional research on a 
larger data set may aid in better statistical constraining hori-
zontal and vertical permeability in fluvio-eolian sandstones.
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Fig. 14   Schematic illustration showing the process of reservoir qual-
ity reduction for Cornberg Sandstones, Flechtingen Sandstones and 
Penrith Sandstones during deposition, early diagenesis, burial diagen-
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