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Abstract: This work continues the development of a numerical model to simulate transient tritium
transport on the breeder zone (BZ) level for the EU helium-cooled pebble bed (HCPB) concept for
DEMO. The basis of the model is the open-source field operation and manipulation framework,
OpenFOAM. The key output quantities of the model are the tritium concentration in the purge
gas and in the coolant and the tritium inventory inside the BZ structure. New model features are
briefly summarized. As a first relevant application a simulation of tritium transport for a single
pin out of the KIT HCPB design for DEMO is presented. A variety of scenarios investigates the
impact of the permeation regime (diffusion-limited vs. surface-limited), of an additional hydrogen
content of 300 Pa H2 in the purge gas, of the released species (HT vs. T2), and of the choice of
species-specific rate constants (recombination constant of HT set twice as for H2 and T2). The results
indicate that the released species plays a minor role for permeation. Both permeation and inventory
show a considerable dependence on a possible hydrogen addition in the purge gas. An enhanced HT
recombination constant reduces steel T inventories and, in the diffusion-limited case, also permeation
significantly. Scenarios with 80 bar vs. 2 bar purge gas pressure indicate that purge gas volumetric
flow is decisive for permeation.

Keywords: tritium transport; hydrogen permeation; safety; OpenFOAM; DEMO; HCPB

1. Introduction

Tritium, as one of the two necessary fuels for the currently technically pursued D-T
fusion process, will have to be produced inside the fusion plant blanket itself—e.g., starting
from lithium making use of the fusion neutrons. For the so-called breeding of tritium,
one European concept for DEMO, called the helium-cooled pebble bed (HCPB) uses a
pebble bed of an advanced lithium ceramic breeder (ACB), namely Li4SiO4 with 35%
mol Li2TiO3 [1,2]. A beryllide (Be12Ti) block is foreseen as neutron multiplier to gain the
required breeding neutrons at suitable energies to breed tritium in the neighboring ACB
bed. High-pressure helium serves as coolant; a separated stream of low-pressure helium,
usually called the purge gas, is used to transport the bred tritium out of the breeder to
the tritium extraction system (TES). Often, hydrogen is added to the purge gas to support
tritium removal. A breeder blanket typically is built of several identical or at least very
similar components. These components represent a practicable level for computational
fluid dynamics (CFD) modeling.

The attenuation of nuclear interaction processes with increasing distance from the first
wall (FW) and the cooling configuration will result in considerable temperature spreads,
tritium generation profiles, and different grades of radiation damage to the structure
material (Eurofer-97), as well as to the breeder ceramics (ACB), and neutron multiplier
material (Be12Ti) inside a breeder zone (BZ). Transport parameters and tritium retention
properties are known to depend considerably on these quantities.
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The design of a BZ has to take into account these parameters with regard to the
breeding efficiency and the self-sufficiency of the reactor with fuel. The tritium inventory
in the components plays a role with regard to safety and decommissioning requirements.

The above conditions obviously ask for multiple physics capabilities when analyses
are to be done. Multiphysics component-level simulations are done for several breeder
concepts using different codes, e.g., for water-cooled lithium leads (WCLL) [3,4], water-
cooled ceramic breeders (WCCB) [5], and helium-cooled ceramic reflectors (HCCR) [6]. For
HCPB, several system-level analyses exist [7–9].

This work continues the development of a tritium transport model on the BZ level
based on the open source CFD framework OpenFOAM [10]. The model is intended to
become a direct support of the KIT HCPB design activities. As a first step in this work
the model is applied to tritium transport inside a single pin of the KIT HCPB DEMO
pin design.

2. OpenFOAM Tritium Transport Model Upgrades

Below, new model features and changes to the previous model as described in [10] are
summarized. The current model cannot handle the not-permeating triatomic hydrogen
species like tritiated water (HTO) yet. Therefore, the below simulations are restricted to
diatomic species H2, HT, and T2.

2.1. Boundary Condition (BC)Formalism

In the first version, mass conservation for interface mass transfer was guaranteed by a
source term formalism that deviated from the standard formulation of a region interface
boundary condition (BC) in OpenFOAM. Practical consequences were, e.g., difficulties
with parallelization. Therefore, the BC model was modified to a “fixed gradient” BC that
represents the OpenFOAM equivalent of a von Neumann BC. The modified BC guarantees
mass conservation also in inner iterations inside a time-step and on application of the BC
on the second side of the interface patch.

2.2. Two Species BC Correlation

For two hydrogen species—A, B—the rate equations are
:

JA = ∆sA(Cs,0_A − Cs_A) =
(
Cg_AkT

)
Kd_A − C2

s,0_AKr_A +
1
2
(
Cg_ABkTKd_AB − Cs,0_ACs,0_BKr_AB

)
(1)

JB = ∆sB(Cs,0_B − Cs_B) =
(
Cg_BkT

)
Kd_B − C2

s,0_BKr_B +
1
2
(
Cg_ABkTKd_AB − Cs,0_ACs,0_BKr_AB

)
(2)

Cs_A(B) solid species A (B) interface cell center concentration (atoms/m3)
Cs_0,A(B) solid species A (B) fluid to solid interface concentration (atoms/m3)
Cg_A(B) fluid species A2 (B2) interface cell center concentration (molecules/m3)
Cg_AB fluid species AB interface cell center concentration (molecules/m3)
Kd_A(B) dissociation rate constant of A2 (B2) (molecules/m2/Pa/s) = (molecules ×

s/kg/m)
Kr_A(B) recombination rate constant for A2 (B2) (m4/s/molecules)
Kd_AB dissociation rate constant of AB (molecules/m2/Pa/s)
Kr_AB recombination rate constant for AB (m4/s/molecules)

∆sA(B) =
DA(B)

2L =
diffusion constant of species A(B) in solid (m2 /s)

2 × distance from solid side cell center to interface (m)
(the factor of 2 takes

into account molecules vs. atoms).
In the first version of the model, this system of two equations was transformed to a

fourth order polynomial and solved for Cs_0,A(B) with a quartic solver [10]. However, the
stability and accuracy of the results turned out to be unsatisfactory in practice. Therefore,
Equations (1) and (2) are now iterated alternately by a Newton–Raphson formalism. In
practice, the very first problem’s time-step will often require numerous iterations, especially
for rate constants of large numeric values, which typically are used to simulate diffusion-
limited cases. Nevertheless, this method turned out quite practicable in transients when
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the results for the species interface concentrations of the previous time-step served as initial
values for the next step. The key advantage is that an external numeric solver for a system
of equations is not required.

The updated two-species model had been verified with the TMAP [11] code in “rat-
edep” mode (similarly as in Section 5.2 of [10]). The results of OpenFOAM and TMAP
were basically identical. It turned out that OpenFOAM can handle higher absolute nu-
meric values of the rate constants in the first time-step than TMAP, which is a hint of the
robustness of the OpenFOAM numerical model.

2.3. Porosity Model

Many CFD codes, including OpenFOAM, use porosity when the presence of two
phases is to be simplified to a description in the frame of single-phase equations. In our
case, helium purge flow through a ceramic breeder pebble bed is regarded as porous
flow. Typical literature descriptions of porous flows, e.g., the terms of Darcy (slow/creep
flow) or Forchheimer (basically this is the Darcy term + an inertia term) are based on the
“apparent” velocity, i.e., a “Darcy velocity” vd and a “seepage velocity” v = vd/εwhere ε is
the fluid fraction or porosity. Seepage velocity and also the density are averaged data over
the complete cell volume. OpenFOAM includes a model like this (to be activated by the
“fvOptions” mechanism), too. Nevertheless, it is not suitable for our application for the
following reasons:

1. As the seepage velocity v is not a physical speed, things happening at the begin of
the porous zone will affect the end of the zone due to downstream advective transport only
retarded by a factor of ε.

2. The total inventory of the purge gas—including a possible tritium inventory— will
be overestimated by a factor of ε if the fluid density and the carried tritium concentrations
are not corrected.

3. The tortuosity δ =
effective path
cell dimension quantifies the deviation from the straight path

of a particle moving through, e.g., a packed bed. The true particle velocity is enhanced
by a factor of the tortuosity δ; however, the direction of this particle velocity will be the
flow direction only as a mean value (because the particles are forced to meander, e.g.,
around the pebbles). Another effect of this elongated meander path is that the fluid
diffusivity—already reduced by the porosity factor of ε–will be additionally reduced by
the inverse tortuosity factor of 1/δ.

A general solution of these porosity-related transport and inventory issues will require
quite different transport equations and new variables. If, however, the porosity and
tortuosity are assumed to be isotropic and constant inside a region, there is a quite simple
and practicable solution.

The variable of the fluid concentration of hydrogen in each fluid region cell contains
the actual hydrogen concentration in the fluid part of the porous fluid region cell and is no
average value over the cell that contains a fluid and solid fraction. This way the system
variables always contain the correct absolute concentration or partial pressure numeric
values as they are required for the evaluation of key data like diffusion coefficients or
interface transport. Obviously, this is achieved at the cost that the total region hydrogen
species inventory is overestimated by a factor of the porosity ε. Furthermore, a tortuosity
δ is introduced, which is set by default to δ = 1/ε (which is justified in this case because
(1) the path elongation along a half-sphere circumference compared to its diameter as the
hypothetical direct flow path is approximately Π/2 = 1/0.64 while (2) a typical packing
factor of a bed of spherical pebbles is close to 0.64). These model presumptions require that:

• all volumetric source terms for hydrogen have to be divided by a factor of ε.
• the interface mass transfer has to be corrected by a factor of 1/ε on the fluid side.
• advective transport enhances by a factor of 1/ε.
• diffusive transport reduces by a factor of ε/δ.
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Taking all this into account, porosity and tortuosity change the original fluid regions
transport equation to:

∂c
∂t
− ∆

( ε

δ
Dc

)
+∇(vc/ε)− q/ε = 0 (3)

In summary, this simplified model will describe transients with diffusive and ad-
vective transport correctly. Concentration changes in the fluid from interface transfer to
neighboring solid regions (i.e., permeation) or from volumetric sources (i.e., pebbles) will
be correct. The total fluid region inventory needs to be corrected with the porosity factor
of ε.

The porosity model includes also a solid fraction of (1−ε) with a solid hydrogen
species concentration. As for the fluid part, numeric values are actual local values and
need to be corrected by the volume fraction for inventory calculations.

2.4. Residence Time Release Model

The previously described porosity model is a prerequisite for the following release
model. The release model simulates the release of tritium from the solid fraction (i.e., the
pebble bed) to the fluid fraction (i.e., the purge gas) of the same cell of a porous fluid region.

The tritium concentration in the solid fraction is given by a simple residence time
equation:

∂c
∂t

= Q− c
τ

(4)

The tritium concentration in the solid fraction is c, Q is a tritium source term due to
neutronic radiation, and τ is the residence time—a quantity that usually is determined from
tritium release experiments (e.g., EXOTIC [12]). Equation (4) contains no transport terms
and may be either solved easily element by element or in the frame of the OpenFOAM
equation formalism. We selected the latter option, though in this case the matrix formalism
would not be required.

The release term c/τ has to appear in the fluid equation as an additional source term
in Equation (3). A factor of (1−ε)/2ε takes into account the solid vs. fluid volume fractions
and the factor two corrects for atoms vs. molecules in the case that release is done in
the form of the pure species molecule T2. The model may alternatively release to the
mixed-species molecule. In this case, the user has to make sure that enough of the second
species (H2) is present to avoid negative concentrations (which is usually no issue for a
H2-doped purge gas).

2.5. Integration of Model Upgrades

The patch region interface hydrogen species mass flow was made accessible as tran-
sient output data. Then, the above model changes and upgrades were tested and verified
with simple TMAP cases. Furthermore, the code would also be able to simulate pulsed
operation of a pebble bed source term. At this point there was enough confidence for a first
meaningful application of the model to a realistic and relevant breeder zone simulation
scenario with two hydrogen species.

3. DEMO HCPB Single Pin Simulation Setup

KIT proposes a HCPB design for DEMO with the breeder zone built up from pin-like
components [1,2]. A single pin may be regarded as the smallest meaningful representative
unit cell for tritium transport simulation inside the BZ. Due to the cylindrical symmetry of
the pins a 2D model seems appropriate for this very first model approach with OpenFOAM.

3.1. HCPB Pin Design

The below description of a DEMO HCPB fuel pin is a brief selection from [1], where
more details may be found. Figure 1 shows a HCPB fuel pin mounted in the BZ.
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Figure 1. DEMO helium-cooled pebble bed (HCPB) fuel pin with purge gas loop.

3.2. OpenFOAM Model

The OpenFOAM model was set up to calculate temperature, velocity, and tritium
concentration fields consistently in a multiphysics simulation frame. On the other hand,
existing results should be integrated as far as possible with regard to, e.g., validation
questions. Therefore, the model uses the mesh as well as the temperature fields of the
designers’ 3D CFD simulations, see Figure 2. However, the below OpenFOAM simulation
is 2D and uses only a 1◦ slice of this mesh. The mesh had to be modified as it did not
contain a breeder purge gas return channel. Import of the coolant velocity flow field (via
the CGNS file format) to OpenFOAM basically worked, too; however, density and other
data turned out incomplete in such a way that advective transport in OpenFOAM did not
come out properly. Therefore, both the purge flow and the coolant flow fields are calculated
first with OpenFOAM with the original thermal field as constant background field until
steady state flow is achieved.

During the transient, the OpenFOAM flow fields and the original thermal field remain
constant background fields, i.e., thermal and kinetic equations are switched off. Further
simplifications are that (a) the neutron multiplier, and (b) the trapping are disregarded,
and (c) no pulsed operation is taken into account (this allows interesting steady-state mass
balances). The most interesting output quantities are tritium permeation to the coolant
flow and tritium inventories in the structures.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 20 
 

 
Figure 2. 3D temperature field in a 60° sector of a DEMO HCPB fuel pin [1]. 

Figure 3 shows the 2D OpenFOAM mesh with about 8000 cells. This (half) 
cross-section of a single pin also indicates the purge and coolant flow characteristics. 
Note that the actual shape of the breeder part “nose” towards the first wall side has 
meanwhile changed compared to Figure 1. 

 
Figure 3. 2D OpenFOAM mesh with boundary conditions (BCs) of helium purge and coolant flow 
fields. 

Figure 4 indicates the 1D tritium generation rate as expected from MCNP (Monte 
Carlo N-Particle code) calculations [13]. This 1D behavior is mapped to the breeder zone 
region. The corresponding total tritium generation rate for a single pin is 4.38 × 10−8 g/s, 
which would extrapolate to about 340 g/day for the entire DEMO reactor (disregarding 
the neutron multiplier contribution).  

Figure 2. 3D temperature field in a 60◦ sector of a DEMO HCPB fuel pin [1].

Figure 3 shows the 2D OpenFOAM mesh with about 8000 cells. This (half) cross-
section of a single pin also indicates the purge and coolant flow characteristics. Note that
the actual shape of the breeder part “nose” towards the first wall side has meanwhile
changed compared to Figure 1.
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Figure 3. 2D OpenFOAM mesh with boundary conditions (BCs) of helium purge and coolant flow
fields.

Figure 4 indicates the 1D tritium generation rate as expected from MCNP (Monte
Carlo N-Particle code) calculations [13]. This 1D behavior is mapped to the breeder zone
region. The corresponding total tritium generation rate for a single pin is 4.38 × 10−8 g/s,
which would extrapolate to about 340 g/day for the entire DEMO reactor (disregarding
the neutron multiplier contribution).
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Table 1 summarizes the key numeric parameters used in the below simulations. The
purge flow field is laminar flow through a porous media. The fvOptions mechanism of
OpenFOAM is used to insert an explicit porosity source to the equations. An isotropic
Darcy coefficient of 7 × 106 m−2 was selected to receive a homogenous flow field over the
breeder cross section. An average purge flow speed of 1 cm/s is assumed as a typical value.

The coolant flow field is simulated as turbulent flow using the RANS k-ω−SST model,
which was also used by the designers [1]. Due to the considerable diffusivity of T in the
coolant (about 2 × 10−6 m2/s) the precise flow field is not that important. The coolant
gas mass flow rate for a single pin is 2.4 × 10−2 kg/s, i.e., about a factor of about 1 × 104

higher than the purge gas mass flow rate (which explains why the purge gas typically is
neglected in designers’ thermal analyses).

With regard to a leak-tolerant design for DEMO HCPB it is under discussion to
raise the purge gas pressure level to the coolant gas pressure level of 80 bar. Therefore,
additional simulations with 80 bar purge gas pressure are performed for a first estimate of
consequences to permeation and inventories. Geometry and temperature fields are kept
the same for comparability; however, this is not intended to suggest that the current DEMO
HCPB breeder pin design is operable at 80 bar purge gas pressure, too.
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Table 1. OpenFOAM simulation parameters.

Hydrogen Species H, T, H2, T2, HT

operating temperature imported CFX temperature field [1]

pebble bed porosity (void fraction) 0.36

coolant 80 bar He, inlet speed 20 m/s,
pin coolant mass flow = 2.405 × 10−2 kg/s

purge gas

2 bar He, inlet speed 1 cm/s
pin purge gas mass flow = 2.75 × 10−6 kg/s

isotropic Darcy parameter for porous flow in flow
equations = 7 × 10 6 m−2

H2, HT, T2 purge + coolant inlet BC and
initial conditions

1 × 10−3 Pa (sometimes named “no/low” H2
content in text)

H+T initial concentration in
steel/EUROFER before prerun

4.4 × 10 19 atoms/m3 (Sieverts equilibrium for
around 800K vs. 1 × 10−3 Pa T2 for EUROFER)

tritium generation rate 1D-MCNP simulation (figure 3.4) [13]

tritium residence time [14] τ(T) = 4.608 × 10−2 exp
(

9729
T

)
(s) (note that this

is not yet ACB but still Li4OSi4 pebbles data!)

H+T Sieverts constant [15] KS = 0.0225 exp
(
−15.1 kJ/mol

RT

)(
mol

m3
√

Pa

)
H+T rate constants [16] in surface-

limited cases

Kd or σK1 = 2.998 ×
10−8 exp

(
−29.3kJ/mol

RT

) (
mol

m2sPa

)
; Kr or σK2 =

σK1/K2
S

H+T rate constants in diffusion- limited
cases Surface-limited rate constants × 105 with same Ks

tritium diffusion coefficient [15] D = 4.57 × 10−7
√

3
exp

(
−22.3kJ/mol

RT

)(
m2

s

)
4. OpenFOAM Simulation Results for a Single DEMO HCPB Fuel Pin

Pin geometry and temperature field are common in all simulations shown below. The
numerous scenarios are distinguished by:

1. permeation regime (diffusion-limited vs. surface-limited)
2. single- vs. two-species scenarios
3. purge gas composition (with and without additional 300 Pa H2 in purge gas)
4. purge gas pressure (2 bar vs. 80 bar)
5. species-specific rate constants (different recombination constant for mixed species

molecule HT)

Besides showing the impact of these parameters to tritium permeation inside a HCPB
pin, the verification of the OpenFOAM two-species model vs. the single species model is
also a topic of this work. In the scenarios, several interesting aspects of the interdependence
of parameters and model assumptions are also highlighted. The most relevant information
on tritium permeation and inventories for the different cases may be found summarized in
a table in Section 5.

The simulations are performed with steady-state thermal and flow fields. As no
pulsed operation is simulated, an asymptotic approach to a steady state is expected. These
steady-state results are used to compare the different scenarios. For all scenarios, prerun
simulations without tritium generation were carried out until the solid concentrations and
outlet partial pressures did not change significantly any more. Note that these asymptotic
steady states without tritium generation can differ for different scenarios. All the simula-
tions below start from their corresponding asymptotic initial state when at t = 0, tritium
generation in the breeder zone solid part is switched on. These simulations run until again
an asymptotic steady state—but now with tritium generation switched on—is reached.
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4.1. Diffusion-Limited Cases

The permeation regime typically distinguishes between the surface-limited case, where
adsorption and recombination processes are decisive for the kinetics, and the diffusion-
limited case, where surface processes are so fast that Sieverts equilibrium is always reached
regardless of net mass flows and that diffusion in the solid is the limiting kinetic parameter.
E.g., [17] provides a description and a synthesis of both permeation regimes. Section 4.1
investigates several diffusion-limited cases.

4.1.1. Low/No H2 System, Diffusion-Limited, Low H2 in Purge Gas, Single- vs.
Two-Species Correlation

This simulation with no/1 × 10−3 Pa H2 in the purge gas compares the single-species
vs. the two-species correlation in the diffusion-limited case. The presence of even only
1 × 10−3 Pa of H2 in purge gas and coolant already gives rise to a visible HT signal (via the
corresponding Cs,0_H in the recombination flow JHT,reco = Cs,0_H Cs,0_T Kr_HT) in Figure 5.
Quantitatively, the HT signal just compensates the difference between the respective T2
data for the single-species and two-species models. The HT result may be explained by
the fact that 3D diffusion with strong thermal gradients is relevant and local Sieverts
equilibrium differs over the surfaces of the pin.
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Figure 5. Transient T2 and HT partial pressure at coolant outlet for single- vs. two-species model
with no/1 × 10−3 Pa H2 in the purge gas.

In Figure 6 the transient mass flow over the patch interfaces is provided as a fraction
of the total tritium generation rate in the ceramic breeder pebbles. The narrow peak in the
upper/blue curve indicates that the previously tritium-free breeder steel wall is filled up
quickly in the early phase. The bottom curve illustrates how the transfer to the coolant
is retarded by tritium diffusion through the wall. Both curves approach each other with
time to a steady-state permeation behavior, while a steady-state concentration gradient in
the steel wall builds up. Regardless of the distribution of T between HT and T2, the patch
interface flow rates for the single- and two-species correlations are so close that they would
be indistinguishable in Figure 6. A steady state is approached after several hours and the
tritium permeation rate to the coolant reaches about 5% of the tritium generation rate. The
tritium inventory in the steel walls between breeder and coolant of a single pin reaches
about 1.1 µg.
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4.1.2. HT System, Diffusion-Limited, 300 Pa H2 in Purge Gas

Figure 7 shows diffusion-limited case results with 300 Pa H2 in the purge gas together
with the previous low H2 content results. In the prerun before the start of tritium release,
H-permeation from the purge gas to the (undoped) coolant already approached a steady
state. The initial HT and T2 partial pressure levels (i.e., the prerun results) are very different.
Quantitative permeation results are best read from the patch interface mass flows—see
Figure 8. With 300Pa H2 in the purge gas, the permeation steady-state level is significantly
lower and is approached faster than for 1 × 10−3 Pa H2. H co-permeation seems to reduce
tritium permeation by close to an order of magnitude (to about 0.6% of the T-generation
rate) in this case. The tritium inventories in the regions of a single pin approach steady-state
levels of about 6.4 × 10−10 g in the coolant, 0.17 µg in the steel wall, and 0.1 mg in the
ceramic breeder region. In summary about 10 g of tritium are expected to be present inside
the entire DEMO reactor breeder zone (disregarding the neutron multiplier inventory).
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Figure 8. Transient tritium flow through patch interfaces breeder to and from steel, and steel to and
from coolant for 1 × 10−3 Pa vs. 300 Pa H2 in the purge gas.

4.1.3. HT System, Diffusion-Limited, 300 Pa H2 in Purge Gas, HT vs. T2 as the Released Species

In the diffusion-limited case, the purge gas outlet composition is mostly HT with very
low T2, regardless of whether HT or T2 is released in the breeder zone in the presence of
300 Pa H2. However, Figure 9 shows that the local T2 concentrations in the breeder zone
considerably depend on the released tritium species. Obviously, the high numeric values of
rate constants imply an isotopic exchange downstream in the purge outlet channel where
no pebbles are present and, therefore, no release takes place. In summary, permeation
and wall inventories are not visibly affected from the local chemical form of tritium of HT
vs. T2.
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4.1.4. HT System, Diffusion-Limited, 300 Pa H2 in Purge, New “Low” Level: 1 × 10−4 Pa

The prerun results for the initial (t = 0) coolant outlet partial pressures in Figure 7
differ considerably, while the subsequent increase during the transient with tritium release
switched on is comparatively low. Due to the known high sensitivity of permeation to
the counter pressure and the visible sign change from a small steady-state initial flow
in opposite directions in the bottom curve in Figure 8, the simulation of Section 4.1.2 is
repeated with a new initial “low” concentration of 1 × 10−4 Pa instead of 1 × 10−3 Pa for
all H2, HT, and T2 species except the 300 Pa H2 at the purge gas inlet. Figure 10 shows
that now (compared to Figure 7) all initial tritium-related partial (counter) pressures are
well-below 1 × 10−3 Pa.

Figure 11 shows a visible counter pressure impact from the initial “low” level that
makes permeation increase by about 20%. Nevertheless, this effect is still small compared
to the hydrogen co-permeation effect from adding 300 Pa H2 to the purge gas indicated in
Figure 8. The steel wall tritium inventory steady-state level reduces from about 0.17 µg to
about 0.15 µg for lower counter-pressures.
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4.1.5. HT System, Diffusion-Limited, 300 Pa H2 in Purge Gas, New “Low” Level:
1 × 10−4 Pa, Kr_HT × 2

According to [11] the equilibrium composition of the reaction 1
2 H2 +

1
2 T2 ⇔ HT un-

der some simplifying assumptions is characterized by an equilibrium constant
K = CHT√

CH2 CT2
= 2.

One may set up a simple scenario of arbitrary mixtures of H2, HT, and T2 in a volume
with contact to a surface. At the surface hydrogen reactions, according to the right sides of
Equations (1) and (2), take place. After some time, species’ partial pressures reach a steady
state independent of the initial distribution of H and T over the species, i.e., something like
“equilibration” takes place. If all species’ rate constants are taken as equal (as has been done
above), the asymptotic result could be described as an equilibrium with an equilibrium
constant of K = 1. By trying this out, one finds that with all species’ rate constants equal,
except when the H-T recombination constant Kr_HT is multiplied by two, the equilibrium
composition for K = 2 is received. However, there are several other parameter sets of
rate-constant ratios that provide the same result. According to [11], the mixed-molecule
HT formation by hopping processes should be twice as probable as the formation of pure
molecules H2 and T2, respectively; which, however is still no proof to prefer this set of
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parameters. Such proof would be possible, e.g., from the direct measurement of H and T
interface concentrations.

A scenario with Kr_HT × 2 was set up as an example case to investigate the sensitivity
of permeation and inventories on possible species-specific differences of the rate constants.

Figure 12 indicates that this choice of the rate constants (K = 2) in the diffusion-limited
case reduces tritium permeation by about a factor of two compared to all species’ rate
constants being equal (K = 1), respectively. Similarly, the tritium inventory in the steel wall
between breeder zone and coolant channel reduces from about 0.15 µg to about 0.075 µg
for each pin.
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4.1.6. Purge Gas 80 Bar with Equal Mass Flow, Diffusion-Limited

This simulation investigates the consequences with regard to permeation if the purge
gas mass flow for 80 bar would be kept the same as for 2 bar. It compares directly to the
case and conditions in Section 4.1.1. The volumetric purge gas flow per pin reduces by
a factor of 40 from 2.2 × 10−5 m3/s to 5.5 × 10−7 m3/s. Figure 13 shows that the purge
gas outlet tritium partial pressure increases from about 2 Pa to about 57 Pa due to the now
significantly lower purge gas flow speed. Note the visible delay of the initial raise of the
outlet pressure signal.
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Figure 14 shows that permeation to the coolant increases significantly up to a level of
about 30% of the total generated tritium. The tritium inventory in the steel wall between
breeder zone and coolant channel rises to a level of about 6.6 µg/pin.
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4.1.7. Purge Gas 80 Bar with Equal Volumetric Flow, Diffusion-Limited

In this simulation, the 80-bar purge gas volumetric flow is the same as in the original
2-bar scenario in Section 4.1.1 (2.2 × 10−5 m3). Therefore, the mass flow is enhanced by a
factor of about 40 from 2.75 × 10−6 kg/s to 1.1 × 10−4 kg/s. The purge gas tritium partial
pressure is basically the same again as for 2 bar (not shown, both are very close to the green
curve in Figure 20 in Section 4.2.3 below). Figure 15 compares permeation to the coolant
with equal volumetric purge gas flow for 2 vs. 80 bar. Obviously, the results are very
similar (4.85% vs. 5%), which indicates that purge gas speed is the decisive quantity with
regard to permeation issues. The tritium inventory in the steel wall between breeder zone
and coolant channel rises to a quite similar level as for the 2-bar case of about 1.1 µg/pin.
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4.2. Surface-Limited Cases

Section 4.2 investigates several surface-limited cases. Most cases compare directly to
the diffusion-limited cases of the previous Section 4.1.
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4.2.1. No/Low H2 System, Surface-Limited, No/Low H2 in Purge Gas, Single- vs. Two-
Species Correlation

This simulation is set up with no (which actually means 1× 10−3 Pa) H2 in the purge gas.
It serves as a verification scenario for the new two-species model, too. Figure 16 shows the HT
and T2 partial pressures at the coolant gas outlet over time. After tritium release to the breeder is
switched on at t = 0 s, permeation achieves 90% of the steady-state level value within about 10
hours. The partial pressure of T2 rises very similarly for the single- and two-species correlations
as expected. In contrast to the corresponding diffusion-limited case (shown in Section 4.1.1),
there is only a small peak in the HT-signal. Formally the recombination flow JHT,reco = Cs,0_H
Cs,0_T Kr_HT rises together with a rising tritium concentration Cs,0_T in the coolant wall compared
to the previous steady state without tritium generation. This means that temporarily some H is
removed out of the wall until a new, H–T equilibrium state with lower Cs,0_H is reached and the
peak in HT (or JHT,reco) vanishes again. It was verified that the HT peak does not appear when
the rate constants for HT, Kr/d_HT, are reduced to a value close to zero.
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The steady-state permeation level shown in Figure 17 reflects about 0.2% of the total
tritium generation rate. The results of the single-species and two-species models obviously
match. The tritium inventory in the steel wall between breeder and coolant approaches a
steady state value of 1.52 µg/pin.
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4.2.2. HT System, Surface-Limited, 300 Pa H2 in Purge Gas

In the next simulation, the purge gas contains 300 Pa H2. In the prerun before the
start of tritium release, this H-permeation from the purge gas to the (undoped) coolant had
already reached a steady state. Figure 18 compares the results with 1 × 10−3 Pa H2 and
300 Pa H2 in the purge gas. Now the dominant species in the coolant is HT while the T2
partial pressure rises only very slightly. HT obviously contributes lower than twice the T2
contribution in both the single-species and the 1 × 10−3 Pa H2 two-species cases.
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Again, the quantitative result may be read better from the patch mass flows, see
Figure 19. Compared to the low hydrogen purge gas case, now (1) the steady state tritium
permeation level is about 25% lower and (2) is achieved significantly faster.
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Figure 19. Transient tritium flow through patch interfaces breeder to and from steel, and steel to and
fromcoolant for surface- limited conditions for 1 × 10−3 Pa vs. 300 Pa H2 in purge gas.

The transient tritium inventory in the steel wall that separates breeder and coolant
approaches a steady-state value of 0.19 µg/pin. All observations might be compiled
together with the following description: the mixed-molecule species (which is negligible
in the low H2 case) opens an additional dissociation + recombination path in parallel that
basically should already accelerate surface exchange processes. Moreover, the H2, HT, and
H concentrations enter the rate equations of this path. In the 300Pa H2 purge gas scenario,
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these concentrations are significantly higher than the T2 and T concentrations. Therefore,
from the rate equations, significantly lower tritium levels are expected in the solid wall
(asymptotic level now is 0.19 µg/pin while it was 1.52 µg/pin with 1 × 10−3 Pa H2) that
overcompensate for the possibly higher recombination rate on the coolant side of the wall.
In summary, the key finding is that co-permeation of a major species (H) reduces wall
inventory as well as permeation flow of the minor species (T).

4.2.3. HT System, Surface-Limited, 300 Pa H2 in Purge Gas, HT vs. T2 as the
Released Species

So far, the release of tritium from the pebble bed had been done to T2 exclusively,
even in the 300 Pa H2 case. In an additional simulation, the same amount of tritium was
released to the purge gas with 300 Pa H2 exclusively as HT. Unlike in the corresponding
diffusion-limited Section 4.1.3 where high rate-constants had already equalized the purge
gas outlet composition, the released species in this simulation at the purge gas outlet had
twice the partial pressure of T2 as HT, but close to zero T2 were found. The transient
behavior is not visibly affected—see Figure 20. Steel inventories and coolant gas results
can hardly be distinguished from the corresponding above results in Section 4.2.2 (and
therefore they are not shown here). Probably this is a consequence of all species’ rate
constants being taken as equal.
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4.2.4. HT System, Surface-Limited, 300 Pa H2 in Purge Gas, Kr_HT × 2

For completeness, the enhanced recombination constant scenario (Section 4.1.5) is also
simulated for the surface-limited case. Figure 21 shows that permeation is reduced by
about 15% with the enhanced HT recombination rate constant. The inventory in the steel
wall between the breeder zone and the coolant channel reduces by a factor of about two
from about 0.19 µg/pin to about 0.095 µg/pin.

4.2.5. Purge Gas 80 Bar with Equal Mass Flow, Surface-Limited

This simulation result may help to estimate how much more pumping power is
required for an 80-bar purge gas system in practice with regard to permeation to the
coolant. Figure 22 shows that the expected asymptotic permeation rate is a factor of
about 30 higher than for the corresponding 2-bar scenario with equal purge gas mass flow
(Section 4.2.1). Compared to the corresponding diffusion-limited regime case (Section 4.1.6)
permeation reduces to about 6%, i.e., to a factor of 5 lower. The expected inventory in
the steel wall between the breeder zone and the coolant channel is 9.5 µg/pin. This is the
highest value of all simulations in this study.
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5. Summary

The OpenFOAM model was upgraded until the first meaningful 2D simulations
of a (simplified) DEMO HCPB pin were possible. The results for cases that had been
simulated with the single-species and the two-species correlations did show close to
perfect coincidence. Different permeation regimes (diffusion-limited vs. surface-limited),
different purge gas hydrogen preloads (1 × 10−4 Pa/1 × 10−3 Pa/300 Pa), two purge
gas pressures (2 bar and 80 bar) and species-dependent rate constants were investigated.
Table 2 summarizes the above results with regard to tritium permeation and pin steel wall
tritium inventories.

In H-T co-permeation scenarios, the results showed a visible sensitivity already on
partial pressures of 1 × 10−3 Pa of the minor species, as well as on species-specific rate
constants. While one cannot extract a general rule for the tritium inventories in the steel
walls, the highest tritium permeation rates are found for the diffusion-limited cases and
those with low hydrogen content in the purge gas. In practice, however, the release of the
(not-permeating) species HTO will play a considerable role; and perfect, clean surfaces
and the absence of additional H in purge gas seem unrealistic operation conditions. This
means that the above results come close to worst-case scenarios with regard to permeation,
and probably significantly overestimate permeation in technical practice. Additional
simulations investigated a purge gas pressure level raised to the coolant gas pressure level
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of 80 bar with regard to a leak-tolerant design. These results—although probably also an
overestimation—suggest that the current HCPB pin design and operating concept should
be reviewed with regard to tritium permeation to the coolant.

Table 2. Summary of permeation rates (% of T generation rate) and steel tritium inventories (µg/single pin) results for all
cases of this study.

Permeation
Regime Purge Gas Permeation to

Coolant
Pin Wall T
Inventory Case/Section Comment

diffusion-limited 1 × 10−3 Pa H2
2 bar He

5% of g.r. 1.1 g Section 4.1.1 single- vs. two-species model
verification

diffusion-limited 300 Pa H2 2 bar He 0.55% of g.r. 0.17 g Section 4.1.2
(Section 4.1.3) Section 4.1.3: T2 vs. HT release

diffusion-limited 300 Pa H2
2 bar He 0.64% of g.r. 0.15 g Section 4.1.4 low level = 1 × 10−4 Pa

diffusion-limited 300 Pa H2
2 bar He 0.32% of g.r. 0.075 g Section 4.1.5 Kr_HT × 2,

low level = 1 × 10−4 Pa

diffusion-limited 1 × 10−3 Pa H2
80 bar He

30% of g.r. 6.6 g Section 4.1.6 equal mass flow like 2 bar
Section 4.1.1

diffusion-limited 1 × 10−3 Pa H2
80 bar He

4.85% of g.r. 1.1 g Section 4.1.7 equal volumetric flow like 2 bar
Section 4.1.1

surface-limited 1 × 10−3 Pa H2
2 bar He

0.2% of g.r. 0.15 g Section 4.2.1 single- vs. two-species model
verification

surface-limited 300 Pa H2
2 bar He 0.15% of g.r. 0.19 g Section 4.2.2

(Section 4.2.3) Section 4.2.3: T2 vs. HT release

surface-limited 300 Pa H2
2 bar He 0.12% of g.r. 0.095 g Section 4.2.4 Kr_HT × 2

surface-limited 1 × 10−3 Pa H2
80 bar He

6% of g.r. 9.5 g Section 4.2.5 equal mass flow like 2 bar
Section 4.2.1
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