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ABSTRACT Today’s drivers of battery electric vehicles must deal with limited driving range in a sparse
charging infrastructure. An accurate prediction of energy demand and driving range is therefore important
and enables reliable routing and charge planning applications. Predictions of energy demand entail uncer-
tainty, which can be considered directly with the use of probabilistic prediction algorithms. Machine learning
algorithms are frequently applied in this context, but data used to train these algorithms are often distributed
over a fleet of connected vehicles. Federated learning can be applied in this setting, but predictive uncertainty
is typically not considered. We apply an extension of the federated averaging algorithm to learn probabilistic
neural networks and linear regression models in a communication-efficient and privacy-preserving manner.
We demonstrate the performance advantage of probabilistic prediction models over deterministic prediction
models using proper scoring rules. Furthermore, we show that federated learning can improve the standard,
driver-individual learning. Using probabilistic predictions, variable safety margins based on destination

attainability can be applied, leading to increased effective driving range and reduced travel time.

INDEX TERMS Electric vehicles, energy demand prediction, probabilistic predictions, range estimation.

I. INTRODUCTION

The call for low or zero emissions vehicles, along with im-
proved battery technology, makes the battery electric vehicle
(BEV) a serious candidate for the replacement of internal
combustion engine powered vehicles (ICEVs). Despite the
advantages of such vehicles, they have not gained significant
popularity among the general public. Due to limited charging-
infrastructure and the inevitably shorter driving range, BEV
drivers may experience range anxiety, which is the fear that
the energy storage will run out before reaching the desti-
nation [1]. In order to eliminate range anxiety and increase
the usability of BEVs, there is a need for applications that
help drivers in arriving safely at their destinations without
excessive time or cost. The primary goals of such applications
are to maximize the effective driving range and to accurately
predict this range. Drivers tend to reserve up to 20% of the

battery capacity as a safety margin [2], i.e., the utilization
of the available battery energy is poor. The utilization of the
battery strongly depends on the calibration of the driving
range prediction [3]. A central challenge in this context is
the prediction of future energy demand. The energy demand
prediction (EDP) is not only used to display remaining driving
range [4], but also for other purposes such as the estimation of
adestination’s attainability [5], time or energy optimal routing
with charge planning [6], [7], energy optimal control [8], [9],
BEV fleet management systems [10] and charging infrastruc-
ture planning [11].

The EDP and driving range estimation rests upon infor-
mation about the driver, vehicle, route, traffic and other en-
vironmental factors. Frequently, machine learning (ML) al-
gorithms are used to compute the predictions [12]. Because
of the high number of influence factors, large amounts of
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predictive data are required for an accurate prediction. Few
researchers have addressed the issue of uncertainty of these
predictions [5]. Probabilistic predictions compute probability
densities for the target variable, so that uncertainty is directly
taken into account. The required predictive data come from
different sources in a distributed system, which comprises
a network of connected vehicles and backend infrastructure
in the cloud. A prediction algorithm utilizing data from this
network must guarantee the privacy of the users and be able to
function without excessive computation and communication
overhead. To this end, we can apply federated learning (FL),
which is a ML scheme where each end device learns from
local data. A centralized server creates a global model by
aggregating the model weights received from the devices at
regular intervals [13]. The global model is then sent back to
the devices where the learning continues. federated learning
(FL) algorithms, such as federated averaging (FedAvg), are
typically applied when a large dataset is desired, but shar-
ing data between devices is not possible or too expensive.
Recently, an extension of FedAvg with predictive uncertainty
was presented, called FedAvg-Gaussian (FedAG). There, un-
certainty is introduced in the aggregation step of the algorithm
by treating the set of local weights as a posterior distribution
for the weights of the global model [14].

This paper presents the application of FedAvg and FedAG
to the prediction of the energy demand of a BEV on a planned
route. We show an efficient way to learn probabilistic ML
models, evaluate and accentuate the advantages of proba-
bilistic EDPs and demonstrate their effect on battery utiliza-
tion and travel time. The paper is organized as follows: An
overview of related work is given in Section II. In Section III,
the system architecture and available predictive data are pre-
sented. The EDP algorithms and federated learning schemes
are described in Section I'V and the validation of the prediction
is shown in Section V. The benefit in safety margin and travel
time is discussed in Section VI before the paper is concluded
in Section VII.

Il. BACKGROUND AND RELATED WORK

Current practice in energy demand prediction (EDP) is to use
information from the vehicle, such as driving speed, accelera-
tion, and historic energy consumption together with predictive
information about the planned route from a traffic and routing
database (TRDB). TRDB information comprises static map
data, e.g., road slope, legal speed limit, and dynamic data
such as live traffic. The prediction itself is typically performed
using mechanistic models based on physical principles [6],
[15]-[17]. In recent years, ML algorithms have been trained to
find the relation between the available predictive information
and the resulting energy consumption [18]-[20]. The main
advantage of ML algorithms is that an exact modeling of
the mathematical relation between a feature and the target
variable is not necessary, or rather, the ML algorithm au-
tomatically creates this model. Additionally, hybrid models,
combining a mechanistic model and ML, can be applied [5],
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In the context of driving range, energy demand and BEV
routing, few articles have addressed predictive uncertainty.
Oliva et al. describe remaining driving range as a random
variable, where the remaining battery energy is estimated with
an unscented Kalman filter and the driving profile is pre-
dicted with a Markov chain. With that, a probability density
function for the remaining driving range is computed [21].
Ondruska and Posner trained linear models to describe the
mean and the variance of the energy consumption based on
road segment features. Thereby, two deterministic models are
used to calculate the parameters of a normal distribution for
the prediction of energy consumption [22]. Scheubner et al.
used a multi-linear regression (MLR) model to compute a
stochastic velocity prediction, which is then used to predict
a probability distribution for the energy consumption using a
physical model and a sequential Monte Carlo simulation [5].
Furthermore, the uncertainty of EDPs has been considered in
BEV routing applications [23]-[26].

Data-driven predictions such as with ML algorithms benefit
from a rich training dataset [27]. A few articles have proposed
sharing data between vehicles and the cloud, so that a user
can benefit from the experience of other users, ultimately
leading to more accurate predictions. Grubwinkler et al. pro-
posed an energetic road map created through crowd-sourcing
by collecting information on energy consumption of BEVs
while driving a road segment [28]. Tseng and Chau applied
the concept of participatory sensing to gather crowd-sourced
data for the prediction of vehicle energy demand [29]. Straub
et al. presented another approach for creating an energetic
road map, by collecting crowd-sourced driving profiles where
the gaps in data coverage were eliminated using ML meth-
ods [30].

By applying FedAG to the EDP problem, the advantages
of crowd-sourcing can be extended to probabilistic models
in an efficient and privacy preserving manner. Recent pub-
lications showed the application of FL in vehicle-to-vehicle
(V2V) communications [31], in autonomous driving [32], and
in traffic flow prediction [33]. To the best of our knowledge,
FL has not yet been applied in EDP for BEVs.

IIl. SYSTEM DESIGN AND DATA
The digital ecosystem in which the EDP operates is a dis-
tributed system of connected vehicles and backend infrastruc-
tures in the cloud. In this distributed system, large amounts of
data can be used to learn ML models, which typically have
high computational requirements. The central challenge is to
make use of information in the distributed system to enable ac-
curate and robust probabilistic predictions, while considering
aspects such as privacy protection and lean communications.
In our previous work [34], we demonstrated the impor-
tance of system architecture and module placement for the
performance and user experience of driving range prediction
and charge planning software. By placing the prediction al-
gorithm parts intelligently across the vehicle and cloud, the
performance can be increased. Following that, the prediction
algorithm presented in this work can be implemented in an
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FIG. 1. Schematic overview of the distributed system.
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FIG. 2. Powertrain model with input variables v, F, and output variable E,.
The red arrows indicate simulated component losses.

efficient system architecture. The learning of the models is
performed in the vehicle, so that training data remains in
the vehicle. Thereby, the communication between the vehicle
and the cloud covers only the transfer of the model weights.
Furthermore, the predictions are computed in the cloud, so
that the transmission of predictive data from the cloud to the
vehicle is reduced to the final predictions. In that way, the
amount of data transferred between the vehicles and the cloud
is minimized. Fig. 1 shows an overview of the distributed
system. The ego vehicle and the vehicle fleet share their model
weights W in a central backend in the cloud, where a proba-
bilistic neural network (NN) is built. When a destination D
is entered in the ego vehicle’s navigation system, the route
and predictive information is queried in the TRDB and a
probabilistic EDP E, is computed with a NN.

A. MEASUREMENT DRIVES AND POWERTRAIN MODEL

In this work, we use a dataset first presented in [5]. The dataset
includes 20 real world measurement drives performed by 10
different drivers. All relevant data is logged in the vehicle
with a sampling rate of 10 Hz. To generate unified driving
data from the pool of measurements with different vehicles, a
simulation model for the powertrain of an electric vehicle is
used. The simulation model calculates the power P and energy
E. drawn from the battery based on velocity v and driving
resistance F;. Fig. 2 shows a schematic overview of the power-
train model. Based on efficiency maps for components such as
the gearbox (GB), electric motor (EM), and power electronics
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TABLE 1. Test Run Data

Number of drivers 10
Number of drives 20
Number of segments 1 x 10%
Total distance 1896 km
Total duration 22.2h
Mean velocity 23.7ms!

(PE), component losses are computed. These losses are de-
noted by red arrows in Fig. 2. For a complete description of
the model, we refer the reader to [5]. An overview of the test
run data is shown in Table 1.

B. MAP AND TRAFFIC DATA

To complement the driving data measured in the vehicles, map
and traffic data are acquired to match the driven routes. Using
the GPS traces from the measurement drives, the measured
data can be matched to a map. Using the IDs of the road seg-
ments that form the driven route, the TRDB can be queried to
obtain static map data as well as real-time traffic information.
The TRDB includes a list of properties such as road slope «,
street class A, mean traffic speed %, road curvature «, legal
speed limit vy, segment length / etc. The TRDB does not
only report the mean traffic speed but also information on
its distribution, such as standard deviation o, and percentile
values P;(u) in steps of 5% [35]. A further aspect of traffic is
the traffic phase. The three-phase traffic theory divides traffic
into free flow, synchronized flow, and wide moving jam [36]. A
method to classify the traffic phase directly in the vehicle was
presented in [5]. Using this method, the estimated traffic phase
is included in the dataset. Contrary to the measured driving
data, map and traffic have a much lower spatial resolution,
where a typical segment length is 200 m.

C. VELOCITY PERCENTILE ESTIMATION
An important factor in the energy consumption pattern is the
driving speed. In this work, we rely on the velocity reported by
the TRDB. As different drivers may exhibit different driving
styles and cruise at different speeds in free flowing traffic,
we individualize the velocity predictions. To this end, we
observe to which percentile of the velocity distribution the
driver belongs on a complete trip. By minimizing the squared
error between ego vehicle speed and percentile values of the
traffic speed distribution, the best matching percentile can be
found:
pa = argmin (v — P(u))” , (1)
l

where p, is the percentile that best matches driver d, v is the
speed of the ego vehicle, and P;(u) is the i-th percentile of the
traffic speed distribution u. As the traffic speed distribution
is very narrow in the case of a traffic jam, we only look at
synchronized flow and free flow to determine the best fitting
percentile.

For each of the drives, (1) is used to find the best fitting per-
centile. Fig. 3 presents the results of the velocity prediction.
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FIG. 3. Velocity percentile observation and velocity prediction error. (a)
Observed velocity percentiles of 10 drivers during trip 1 and trip 2. (b)
Velocity prediction error for all drivers.

Fig. 3(a) shows the observed velocity percentiles p, for all 10
drivers. The drivers tend to drive faster than the median traffic
speed. Most drivers tend to drive consistently, i.e., the velocity
percentiles of trips 1 (x) and 2 (o) are close to each other.
However, drivers 2 and 10 have significant inconsistencies
between trips 1 and 2. Fig. 3(b) shows a histogram of the
velocity prediction error e = v — P,(u). The mean value of
the error distribution is 0 ms ™! and the prediction is therefore
unbiased.

IV. ENERGY DEMAND PREDICTION ALGORITHM

The task of the EDP algorithm is to predict the energy demand
for a planned route from start to destination. The route consists
of multiple road segments and for each of the segments, the
energy demand is predicted based on the features correspond-
ing to the segment. In the probabilistic approach, the EDP
algorithm computes a probability density for each of the seg-
ments. The total EDP is the sum of the EDPs for the individual
segments. The sum of random variables y and § is defined as
the convolution of their probability density functions:

Py+s(x) = / FyOfsx =y)dy = (fy * fo)(x). (2)

lior a_route with segments Sp, Sz, ..., Sy and predictions
E.1,Eq», ..., E.n the probability density for the total EDP

1S
PE, () = (Pg. | ¥ PE , * -+ - ¥ PE_, J(X). 3)

According to the central limit theorem, the sum of indepen-
dent random variables tends toward a normal distribution and
the total EDP is

PE. () = N(ug,, 07 ), (4)

where pp is the mean value and o]% is the variance of the

normal distribution [5]. To describe the energy demand on a
road segment as a function of the available data, we apply two
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FIG. 4. Block diagram showing a schematic overview of the training
process of the two-scale regression model.

types of regression models, a linear regression (LR) and a neu-
ral network (NN). Both models can be used as probabilistic
models with random weights p(w).

The length of the road segments is not uniform. Further-
more, the training data measured in the vehicle is measured
with a high sampling frequency (10-100 Hz). Therefore, the
data exhibit certain irregularities. To make the most out of the
available data, we propose a learning scheme operating on two
scales. One part of the model is updated with the sampling fre-
quency of the vehicle measurement data while a second part is
updated in accordance to the lower, event based frequency of
road segment changes. In the following, the two-scale method
and the application of FedAG are presented.

A. TWO-SCALE REGRESSION

To optimally learn the regression model using unstructured
data, two regression models are applied. The first model (M)
is learned continuously with a data stream (10 Hz) to describe
the current energy consumption. The second model (M) is
learned based on the road segments and tries to correct the
prediction of the first model. Fig. 4 displays a block diagram
of the ML process. E. ; is the vehicle’s measured energy con-
sumption at time i and is the target variable for M. Feature
vector x; includes the variables measured by the vehicle at
time i. Thereby, model weights W are learned. Simultane-
ously, the mean values of features x; on segment k are calcu-
lated

Xick = % inli» &)
ick
where [, is the length of segment k and /; is the distance driven
from time i — 1 to time i. Using the updated weights W; and
features X;cx, M1’s estimation of the energy consumption on
segment k, EC, r 1s computed. The difference of the true energy
consumption E, ; and the estimation Ec,k delivers the target
variable for M. Based on the feature vector z;, weights W,
are learned. The first model’s features x; are:
® v vehicle speed,
®  road slope,
®  road curvature,
® ¢ traffic phase,
® 1y, historic mean traffic speed,
® 1, current mean traffic speed.
The second model’s features z; are X;<; and additionally:
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Algorithm 1: FedAvg-Gaussian (FedAG). C is the
fraction of devices used in each round, K is the total
number of devices, Dy, is the data observed by device
k, B is the batch size, E is the number of local epochs,
7 is the learning rate, and [ is the squared loss function.

Server executes:
initialize wyg
for each round t = 1,2, ... do
m < max(C - K, 1)
St < (random set of m clients)
for each client k € S; do
‘ w,@l + ClientUpdate(k, p(w¢|D))
end
p(wi1[D) ¢ N(up(wth), oh(wi)))
return p(w;41|D) to clients

end

ClientUpdate(k, p(w|D)): // Run on client k
B < (split Dy, into batches of size B)
w « E(p(w:|D))
for each local epoch i =1 to F do

for batch b € B do

| w < w—nVIl(w;b)

end
end
return w to server

* v, — Ux_1 segment speed difference,

° o,f"> segment speed standard deviation,

® [, segment length.

The predictions step is limited to the road segments, as the
predictive data is only reported on that scale. The final EDP is
the sum of the predictions computed with M| and M;:

~ (1 =2
E..=E} +E?. ()

B. FEDERATED LEARNING WITH PREDICTIVE
UNCERTAINTY

To learn the proposed regression models including predictive
uncertainty, we apply FedAG, which is shown in Algorithm 1
[14].

The central part of the algorithm is the aggregation step,
where a Gaussian is fitted to the set of client weights w. In
this work, the posterior distributions are found by calculating
the mean value py and variance o of weights wX). Subse-
quently, the posterior distributions for the weights p(w|D) are
returned to the clients. The clients use the expected value [ty
of the weight posterior distributions for further training, but
the predictive distributions are computed with

p(yIx, D) = /p(ylx, D, w)p(w|D)dw . (7

Since the integral is typically intractable in non-linear mod-
els, Markov chain Monte Carlo (MCMC) is used to compute
an approximation. In summary, with FedAG, a probabilistic
prediction model can be created in an efficient manner, which
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benefits from a rich data basis of a vehicle fleet, while mini-
mizing communication overhead and preserving the privacy
of the users. In case of an unstable internet connection, a
client cannot send and receive updates from the server until
a stable connection is restored, i.e., the federated learning
becomes asynchronous [37]. In this work, we assume a stable
connection between the vehicles and the server at all times.

C. FEDERATED LEARNING WITH CLUSTERING
Not all drivers and vehicles exhibit the same driving behavior
and energy consumption patterns. Therefore, a single, global
model might not be the best choice for the EDP. An alternative
is to generate several federated models, each of which acts as a
global model for a subset of drivers. A cluster analysis can be
executed to divide the set of drivers into subsets. Drivers can
then be assigned to these subsets by observing their driving
behavior and properties of their vehicles. In this work, we use
aggregated data from the drivers to create two driver clusters
with k-means clustering [38]. The features used in the cluster-
ing are:

e observed velocity percentile p,

e relative positive acceleration [39],

e relative velocity in free flowing traffic v/vjip,

e distribution of observed traffic phases.

The following driver subsets are generated by the cluster
analysis:

S$1=1{2,4,7,8,9},
82 =1{1,3,5,6,10} .

The drivers in 8| can cooperate in learning one model and the
drivers in 8, learn a separate model. FedAG with clustering
is denoted by FedAG-Clustering (FedAGC) with FedAvg-
Clustering (FedAvgC) as the deterministic counterpart. With
the availability of a larger dataset with more variety, additional
features, e.g., the type of vehicle, geographical region, or the
distribution of observed temperature, could be included.

V. PREDICTION VALIDATION

To validate the algorithms presented in (IV), the data pre-
sented in (IIT) is used. We apply a leave-one-out cross vali-
dation where the scheme depends on the learning algorithm.
FL algorithms effectively have access to training data from
the entire vehicle fleet, whereas conventional ML algorithms,
e.g., stochastic gradient descent (SGD), can typically only
access data observed by the respective vehicle. In the follow-
ing, we validate and compare the learning algorithms FedAG,
FedAGC, FedAvg, and conventional driver-individual SGD.
The algorithms are applied to a linear regression (LR) and a
NN. FedAGC is not applied to the NN, as a NN is able to learn
more sophistic dependencies than a linear model and benefits
from a larger data basis. The NN has two hidden layers, each
containing 50 hidden units. £ = 40 passes over the available
training data are done. In FedAG, K = 10 devices denote the
10 drivers, each of which with C = 1 and batch size B = 1.
The training of a the NN is a non-convex optimization and
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TABLE 2. Performance Evaluation All Algorithms on All Drives With Mean
CRPS and RMSE

MCRPS [kW h] RMSE [kW h]
LR NN LR NN
SGD | 1.2019  1.2078  1.6791 1.5048
FedAvg | 0.9594  0.8088  1.1978 0.9811
FedAvgC | 0.9333 - 1.1578 -
FedAG | 0.6750 0.5628 1.1978 0.9811
FedAGC | 0.6594 - 1.1578 -

t > 1 rounds are usually required to ensure convergence. We
report the results after + = 5 rounds, but further rounds do
not improve the results significantly. The training of the LR
is a convex optimization and no more than = 1 rounds are
needed for the training to converge. For FedAG, appropriate
precision parameters for the variance of the target variable are
estimated using the variance of the training data.

A. PROPER SCORING RULES

To evaluate the performance of the prediction algorithms,
proper scoring rules are required. Scoring rules assess the
quality of probabilistic predictions by comparing the predic-
tive distribution and the true observation. A scoring rule S is
proper if the expected score is optimized by issuing the true
distribution of observations as the prediction. In this work, we
regard scores as negatively oriented, i.e., a better prediction
leads to a lower score. The requirement for a scoring rule S to
be proper is thus

IE:y’\‘P [S(Pv y)] S ]Ey"“P [S(Q7 )7)] ’ (8)

where y is the true observation of the target variable, P is the
true distribution of y and Q is a predictive distribution. The
equality in (8) only applies when Q = P [40]. The continuous
ranked probability score (CRPS) is a proper scoring rule for
density predictions of continuous variables

CRPS(Q, y) =/ (Q(x) — H(x — y))*dx, €))

where H is the Heaviside step function. CRPS can be directly
compared with the mean absolute error (MAE) of determin-
istic predictions. Futhermore, CRPS is expressed in the unit
of the target variable, e.g., [KW h]. In the following, CRPS is
used as the main performance indicator in the evaluation of
the prediction algorithms.

B. PREDICTION PERFORMANCE EVALUATION

Table 2 shows the mean CRPS (MCRPS) and root mean
square error (RMSE) for all algorithms on all drives. Boxplots
for distribution of the CRPS on all drives for the algorithms
are shown in Fig. 5. The performance of the algorithms in
terms of CRPS and RMSE increases with increasing algo-
rithm complexity and the NN trained using FedAG achieves
the best performance. For the LR, FedAGC slightly improves
the results of FedAG. Generally, the application of FL in-
creases the performance significantly. Finally yet importantly,
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FIG. 5. Boxplots showing the distribution of the CRPS on all test drives for
the prediction algorithms.
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FIG. 6. Mean values and confidence intervals of the predictions computed
with a NN and a LR trained using FedAG and FedAGC, respectively,
normalized by the true energy consumption.

the probabilistic prediction algorithms achieve a much smaller
CRPS than their deterministic counterparts.

A further visualization of the results of the two best per-
forming algorithms is shown in Fig. 6. The figure shows the
mean values and 95% confidence intervals of the predictions
computed with a NN and a LR trained using FedAG and
FedAGC, respectively. The predictions are normalized with
the true energy consumption of the respective drive. The ob-
served energy consumption rarely matches the mean value
exactly, but falls within the confidence intervals in all drives.

The prediction for an exemplary drive (Nr. 18) using the
best algorithm, NN-FedAG is shown in Fig. 7. The green
band represents a 95% confidence interval for the accumulated
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FIG. 7. Predicted and observed velocity profile and predicted and observed
accumulated energy consumption of drive 18, computed with NN - FedAG.
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FIG. 8. Boxplots showing the distribution of the DS of the probabilistic
EDP algorithms.

energy consumption at each point in the drive. The measured
energy consumption is shown in purple. Additionally, the pre-
dicted traffic speed percentile value is shown in yellow and the
observed driving speed is shown in blue. In Fig. 3(a), driver
9 displayed a moderate inconsistency in driving speed (55th
and 70th percentiles). In Fig. 7, the velocity prediction fails
to predict high driving speed of up to more than 50 ms™!
at around 80 km. Nevertheless, the measured driving speed
deviates a little from the predicted velocity and the observed
energy consumption always lies within the confidence interval
of the prediction.

C. SHARPNESS

The sharpness of a prediction is a measure for the concentra-
tion of the predictive distribution. One way to measure sharp-
ness of normally distributed predictions is the determinant
sharpness (DS) defined as

DS = det (£)!/2¢ | (10)

where ¥ is the covariance matrix of the predictive distri-
bution of dimension d x d. The EDP is univariate (d = 1)
and the DS therefore reduces to the standard deviation of
the predictive distribution. Fig. 8 shows boxplots displaying
the distribution of the determinant sharpness of the predic-
tions on all drives for the three probabilistic algorithms. The
NN computes significantly sharper predictive distributions
than the LRs in all drives. The clustering in FedAGC brings
a marginally significant benefit in sharpness compared to
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FIG. 9. Destination attainability p(a) over the course of all drives based on
the EDP computed with a NN trained using FedAG.

FedAG when tested with a two-sample Kolmogorov-Smirnov
test.

D. DESTINATION ATTAINABILITY

With a probabilistic EDP and a known available battery en-
ergy, the probability of reaching a destination, i.e., destina-
tion attainability p(a), can be calculated [5]. However, this is
not possible with a deterministic EDP. The available battery
energy is a variable that cannot be measured directly, but is
estimated with some uncertainty [41]. The attainability can
thus be calculated with

pla) = p(Ey > E.) = p(Ey — E. > 0), (11)

where Eh is the estimated available battery energy. Addition-
ally, the amount of energy needed to achieve p(a) = 0.99
can be calculated using the inverse of the normal cumulative
distribution function ®:

Ecp=pug +o507'(p). (12)

With (12), the amount of energy to be charged in order to
reach a destination can be computed. An important feature
of the prediction and attainability estimation is that the des-
tination is ultimately reached. To analyze this, we compute
the energy needed for p(a) = 0.99 with (12) for each drive,
set the initial battery energy Eb to this value and observe the
attainability p(a) during the trip. Fig. 9 shows the progression
of the destination attainability over the course of all drives.
In some drives, the attainability exhibits fluctuation, e.g., in
drives 12 and 19, p(a) is significantly lower than 0.99 at times.
The gradient of a sharp prediction’s cumulative distribution is
proportionally large, so that a single maneuver, e.g., strong
acceleration during overtaking, can have a significant impact
on the attainability. However, the attainability converges to
1 when the destination is approached and the destination is
reached in all drives. The linear models trained using FedAG
and FedAGC are also able to accurately estimate the attain-
ability.
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TABLE 3. Calibration Error Measures for the Destination Attainability With
Probabilistic EDP Algorithms

‘ ECE MCE RMSCE
LR-FedAG 0.0426  0.1323  0.0520
LR-FedAGC | 0.0322 0.0965  0.0396
NN-FedAG 0.0446  0.1576  0.0576

E. CALIBRATION

The value p(a) can also be called the confidence of the
attainability estimation and the observed ratio of drives in
which the destination is reached can be denoted as accuracy.
If the confidence always matches the accuracy, the prediction
is well calibrated [42]. A measure for the calibration of the
attainability decision is the difference in expectation between
confidence and accuracy

E[[PY =YIP=p)-p|], (13)

where the accuracy term PY =Y|P = p) is the probability
of the prediction Y being equal to observation Y given the
estimated confidence P = p of the predictor. A perfect cali-
bration, although impossible, is when the expected difference
is zero [43]. Using (12) and the observed energy consumption,
the accuracy for different p-values can be computed. In our
application, accuracy f is the empirical frequency of success-
ful trips given EDP E, , and confidence p

1 ~ .
b= 21 () = £D)
J
where Np is the total number of drives. The expected cal-

ibration error (ECE) is defined as mean difference between
accuracy and confidence

(14)

1
ECE = — Y "[8(p)) — pil , (15)
Np -
where N, is the number of confidence levels p tested. The
maximum calibration error (MCE) is the maximum difference

ECE = max [6(pi) — pil - (16)
Finally, the idealized root mean square calibration error (RM-
SCE) is defined as

1
RMSCE = /]7 > (1B —pil).
L

Table 3 shows the ECE, MCE and RMSCE values for
the probabilistic prediction algorithms. The LR trained with
FedAGC has the lowest calibration errors, followed by the LR
and NN trained with FedAG. The ranking of the algorithms is
thus not the same as according to the prediction performance
in terms of CRPS and RMSE. Fig. 10 shows a reliability
diagram visualizing the expected sample accuracy of the at-
tainability estimation as a function of the confidence of the
prediction. The black, straight line with slope 1 is the ideal
calibration. NN-FedAG tends to be slightly under-confident
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FIG. 10. Reliability diagram for the destination attainability estimation
using the probabilistic EDP algorithms.

for p < 0.5 but slightly over-confident for p > 0.5. Guo et al.
discovered that modern NN are often poorly calibrated [42].
A poorly calibrated prediction can not only lead to a driver be-
ing stranded with an empty battery, but also to a significantly
higher travel time if the prediction tends to be under-confident.
Nonetheless, all three probabilistic EDP algorithms exhibit a
sufficient calibration.

VI. SAFETY MARGIN AND TRAVEL TIME

A central task of the EDP is to enable certain decision making
for attainability and charge planning. The requirement is to
predict the energy demand so that a destination can be reached
safely without an unnecessary large safety margin Abg. A
safety margin is the proportion of battery energy reserved in
case of an inaccurate prediction. A robust EDP should thus
maximize the probability of attaining the destination while
minimizing the safety margin, which in turn maximizes the
effective driving range of the vehicle. The user primarily ex-
periences how far he can drive without charging and how fast
he can travel from A to B. Hence, the user experience is pos-
itively influenced by an appropriate safety margin. The safety
margin is closely related to the sharpness of the prediction
and a sharp prediction leads to a smaller safety margin than a
less sharp prediction. In the following, we analyze the safety
margins resulting from the EDPs and their impact on travel
time.

A. SAFETY MARGIN

With probabilistic predictions, the safety margin can be di-
rectly derived from the predictive distribution. The difference
between the mean value and the p = 0.99 value of the predic-
tive distribution can be seen as a safety margin. Using (12),
these values can be calculated and the safety margin Abg’) is

AbY =1 — Leos (18)
Ec099
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FIG. 11. Empirical cumulative probability distributions of safety margins
Abg of the EDP algorithms.

where the superscripted (p) denotes that the safety margin
is based on a probabilistic prediction. A deterministic pre-
diction includes no information about the uncertainty of the
prediction and a safety margin can not be derived directly.
In a previous publication, we suggested calculating the safety
margin Ab;:d) based on the maximum probable error

dE./d !
Abg)z(£+l> :

€max

where dE./ds is the mean consumption, e, is the maxi-
mum probable error in terms of energy per distance and the
superscripted (d) denotes that the safety margin is based on a
deterministic prediction. We observe that when (19) is applied
to the mean values of the probabilistic EDPs, a safety margin
similar to the maximum value of the probabilistic safety mar-
gins is found:

19)

AbE ~ max | AbL] (20)

Fig. 11 shows empirical cumulative probability distributions
for the resulting safety margins of the EDP algorithms. The
ranking of the algorithms is the same as according to CRPS.
Predictions with a NN lead to lower safety margins than with
a LR and the probabilistic FedAG leads to lower safety mar-
gins than FedAvg and SGD. A disadvantage of a constant,
deterministic safety margin is that is frequently too large. An
unnecessarily large safety margin reduces the effective driving
range and reduces the possibilities for feasible routing and
charge planning strategies [26].

B. INFLUENCE ON TRAVEL TIME

The safety margin determines the amount of reserved battery
energy. The smaller the safety margin, the further a BEV can
drive before a charging stop needs to be planned. Thereby,
a faster charging point might be attainable. Additionally, a
planned charging stop may be shorter, since with a smaller

VOLUME 2, 2021

TABLE 4. Simulation Data Overview

Number of trips 452
Mean trip distance 438.3km
Total distance 220891 km
Total number of charging stops 900
Mean velocity 27.5ms™!
Battery capacity 90kW h
Mean consumption 214Whkm™!
Start SoC 50 %

TABLE 5. Safety Margin and Charging Time Results

| Abg Charging time
LR - SGD 0.1497 100 %
NN - SGD 0.1253 95.1%
LR - FedAvg 0.1230 94.6 %
LR - FedAveC 0.1214 94.2%
LR - FedAG N(0.1078,0.00842) 90.7%
LR - FedAGC | MN(0.1066,0.00802%) 90.5 %
NN - FedAvg 0.0823 86.4%
NN - FedAG N(0.0743,0.00472) 84.7%

safety margin, the energy needed for the continuation of the
trip may be smaller. Additionally, the driving time may be
reduced as well, if a more convenient charging point (CP)
is attainable with greater effective driving range. The safety
margin has therefore a direct influence on charging and travel
time. To quantify this, a stochastic framework was devel-
oped to analyse the influence of different vehicle parame-
ters [3]. The framework includes the real road and charging
infrastructure, in which virtual routes can be defined based
on mobility patterns and population data. Using traffic data,
speed profiles for the routes are generated. BEV powertrain
and battery models are included to allow a calculation of the
energy demand for the routes. With route planning, EDP and
charge planning, the fastest route is computed. In turn, driving
time and charging time can be measured. For a more detailed
description of the paper, we refer the reader to [3]. Using this
same stochastic framework, we simulate 452 random long-
distance trips in Europe and North America and use the total
time spent charging as a performance indicator. Table 4 shows
an overview of the simulation data.

Table 5 shows the simulated safety margins Abg based on
Fig. 11 and the resulting total charging time as a percentage
of a benchmark algorithm LR-SGD. With probabilistic pre-
dictions, the safety margins follow a normal distribution. The
results for charging time in Table 5 show that a decreased
safety margin Abg leads to a decrease in charging time. The
advantage of a probabilistic EDP, such as with FedAG, over a
deterministic EDP can be seen as well. A further analysis of
the charging time benefit of probabilistic EDPs can be seen
in Fig. 12, where the distribution of difference in charging
time over the complete route collective is shown. In the case
of LR, the mean reduction in charging time is approximately
4.7% when predictive uncertainty is considered. For a NN,
including predictive uncertainty leads to a mean charging time
reduction of 2.3%. The predictions with NNs are generally
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FIG. 12. Proportional charging time reduction between probabilistic and
deterministic EDP algorithms.

significantly sharper than those performed with LRs. Further-
more, the variance of sharpness and Abg is lower. This leads
to the somewhat smaller charging time reduction. Neverthe-
less, considering predictive uncertainty explicitly improves
charging and travel time, especially in regions with sparse
charging infrastructure.

VII. CONCLUSIONS AND FURTHER WORK

A network of connected BEVs and backend infrastructure in
the cloud constitute a distributed system with various sources
of information relevant for the energy demand prediction.
By applying federated learning and computing a probabilistic
prediction, the uncertainty of the distributed data is considered
in a communication efficient and privacy preserving manner.
With a multi-scale regression, the prediction models can be
trained using data measured in the vehicles while the pre-
dictions are computed with data from TRDB directly in the
cloud. The energy demand predictions are validated with real
driving data and the performance is measured with proper
scoring rules. The performance of the probabilistic predictions
is superior to conventional deterministic predictions. Further-
more, a non-linear model (NN) achieves higher performance
in terms of CRPS and RMSE than a linear model (LR). A
probabilistic prediction allows the estimation of destination
attainability, i.e., the probability of reaching a destination us-
ing the available battery energy. The calibration of this esti-
mation is sufficient and the error between accuracy and confi-
dence is low for all algorithms. A further advantage of an ac-
curate, probabilistic energy demand prediction is the variable
safety margin. This leads to a better utilization of the battery
energy and increases the effective driving range. Additionally,
this translates into a shorter travel and charging time on long
distance trips. Our further work includes more research on
how global, federated models can be personalized for the par-
ticipating drivers. The analysis of system design, network us-
age, and transmission time might prove an important area for
future research [44]. Moreover, an ever-expanding database
of real driving data can be used to confirm the presented

160

advantages of federated learning and probabilistic models for
BEV driving.
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