
Aeroacoustic Coupling Effect during the Ascent of Space
Transportation Systems

Dominik Saile ∗ and Ali Gülhan †

Institute of Aerodynamics and Flow Technology, Supersonic and Hypersonic Technologies Department, Linder Hoehe,
51147 Cologne, Germany.

After the failure of the maiden flight 157 of Ariane 5 ECA, the inquiry board responsible

for the investigation reported as one of the probable causes the ’non-exhaustive definition of

the loads to which the Vulcain 2 engine is subjected during flight’. As a result, many research

activities were set up with the objective to isolate the driving mechanisms. Driving mechanisms

such as pumping, flapping or swinging were found to excite oscillations in the base region.

Despite this finding, the question why the pressure fluctuations and base flow excitations are

especially pronounced in the subsonic to transonic flow regime remained unclear. This question

is addressed in the study at hand. Results from literature are combinedwith recent wind tunnel

measurements on the base model of a space transportation system. The measurement data

were acquired by means of particle image velocimetry, pressure transducers and high-speed

schlieren imaging. The results suggest that an aeroacoustic coupling takes place between a

jet noise generation mechanism called screeching and the near-wake dynamics. Due to the

nature of both effects, they are likely to reach a resonating frequency during the ascent. The

resonant frequency appears to increase unfavorable fluctuations in the base region, which are

held responsible for the amplified unsteady loads. A schematic model concept is proposed,

which describes the underlying governing mechanism. It provides an explanation for question

why buffeting effects are especially amplified in the high subsonic ambient flow regime.

Nomenclature

0∞ = ambient speed of sound

21, 22 = nozzle shape dependent parameters for the Prandtl-Glauert correlation

5 = near-wake dynamics frequency

5( = jet screeching frequency

5 · �=>A<( 5 ) = premultiplied normalized pressure spectrum

5 · ��(( ( 5 ) = premultiplied normalized high-speed schlieren spectrum
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3=>II;4 = nozzle exit diameter

� = base diameter

:B3 = kernel smoothing density

!24;; = shock cell length of the jet

!' = shear layer reattachment lengt

"0 = Mach number of the ambient flow field

"0 9 = fully-expanded jet Mach number

?0 = chamber reservoir pressure

?∞ = ambient pressure

?′ = base pressure fluctuation

A = coordinate in the radial direction

(A� = diameter D based Strouhal number

D, E = streamwise, radial mean velocity component

D′, E′ = streamwise, radial velocity fluctuation component

< D′D′ > = average axial turbulence intensity

*�>=E = convection velocity of the shear layer

*� = Wind tunnel nozzle exit velocity / reference velocity

* 9 = fully-expanded jet velocity

*∞ = ambient flow velocity

G = coordinate in the axial direction

GE2 = axial position of the vortex center location

U = phase angle for the description of a POD mode cycle

Z:,BC3 = standard deviation of the time varying coefficient of the k-th mode

^ = heat capacity ratio

Ψ: = POD basis function of the k-th mode

I. Introduction

After the failure of the maiden flight 157 of Ariane 5 ECA, the inquiry board responsible for the investigation

reported as one of the probable causes the ’non-exhaustive definition of the loads to which the Vulcain 2 engine

is subjected during flight’. As a result, many research activities were set up with the objective to isolate the driving

mechanisms.

However, before getting into the details of various base flow excitation mechanisms, the typical mean flow features of
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Fig. 1 Mean base flow topology and flow features in the subsonic wake of space launcher configuration with
jet [1].

a generic base configuration exposed to a high subsonic ambient flow are introduced in context of fig. 1. This schematic

sketch [1] features an over-expanded, supersonic exhaust jet. It can be seen that the incoming flow separates at the

shoulder of the wind tunnel model. From there, a free shear layer evolves, which impinges (for these conditions) farther

downstream on the exhaust jet. As a result, the shear layer, the wall of the base, the wall of the nozzle surface and the jet

enclose a recirculation region. On average, the recirculation region is dominated by a large vortex. Furthermore, a small

corner/secondary vortex can usually be found between the base plate and the nozzle. Depending on configuration, the

shear layer reattachment takes place exclusively on the jet (as shown in fig. 1), exclusively on the solid nozzle wall or is

alternating between both options. In literature [2], the latter is referred to as a hybrid reattachment.

Turning now to the nature of the dominant motions, which is important regarding the induction of loads. The

relevance of the buffeting issue for Ariane 5 is shown by in-flight measurements in the study by David and Radulovic

[3]. A strong amplification of the pressure oscillations and interrelated loads on the actuator acting on the nozzle gimbal

occur for an ambient flow at Mach 0.8. These oscillations act with a diameter-based reduced frequency of (A� ≈ 0.2.

Schwane [4] reports of pressure fluctuations with increasing amplitude in the first 37 s of the Ariane 5 Flight A501

ascent, meaning these fluctuations occur in the transonic flow regime of Ariane 5. Note that the definition of the reduced
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frequency, or Strouhal number (A , is based on the frequency 5 of a near-wake excitation, the base diameter �, and the

ambient flow velocity*∞. The equation is provided in eq. (1).

(A� ≡
5 · �
*∞

(1)

On the search for the origin of the excitations, Statnikov et al. [5] focused on the identification of modes by means of

a dynamic mode decomposition (DMD) for a space launcher configuration with ambient flow and jet. The study reveals

mainly four different interacting phenomena: Cross-pumping, vortex shedding, cross-flapping and shear layer swinging.

The term cross refers to the three-dimensional distribution of the corresponding mode, e.g. a wavy pattern in the cross

direction as the azimuthal or spanwise direction [6]. A schematic visualization of the motions is provided in fig. 2. This

is the schematic sketch synthesized from the results in Statnikov et al. [6] and the POD analysis of the comparable data

set presented in Saile [1]. It shows that cross-pumping captures an overall growth and decay process of the recirculation

bubble, cross-flapping the overall flapping motion of the shear layer, while swinging reflects the intrinsic twist of the

shear layer and vortex shedding the shedding of a vortex from the rear end of the nozzle.

In the work by Statnikov et al. [5], more details are attributed to the nature of the modes. There, cross-pumping

describes a harmonic antisymmetric oscillation of the main recirculation vortex taking place with a reduced frequency

of (A� ≈ 0.1. Vortex shedding is interrelated with the former cross-pumping motion. The antisymmetric growth and

decay process of the recirculation bubble triggers in-phase and twice per cross-pumping cycle the shedding of a vortical

structure from the nozzle end, meaning it happens twice as often with a reduced frequency of (A� ≈ 0.2. The vortex

shedding process in turn causes or is connected with the in-phase cross-flapping motion of the shear layer, which equally

features a periodicity of (A� ≈ 0.2. Last, shear layer swinging is the result of a higher harmonic of the vortex shedding

mode acting with (A� ≈ 0.35.

Note that the work by Statnikov et al. [5] represents one of the latest publications. Before, the studies by Deprés et al.

[7], Nguyen et al. [8], Wolf [9], or Schrĳer et al. [10] contributed significantly to the issue of modal decompositions of

base flows. Meanwhile, due its generic similarity to the European Ariane 5 launcher, the investigated configuration

can be considered as standardized test case. This or similar test cases were used in a couple of programs such as in

the frame of the FESTIP: Future European Space Transportation Investigation Programme of the ESA-TRP Unsteady

Subscale Force Measurements within a Launch Vehicle Base Buffeting Environment [11] and of the DFG-TRR40

Fundamental Technologies for the Development of Future Space-Transport-System Components under High Thermal

and Mechanical Loads [12] project resulting in a solid number of publications. The publications listed next are limited

to the ones focusing on subsonic ambient flows investigating (pseudo-)axisymmetric base configurations. Among others,

corresponding experimental work was executed by Saile [1], van Gent et al. [2], Deprés et al. [7], Wolf [9], Schrĳer et al.

[10], Lê [13], Schrĳer et al. [14], Gentile et al. [15, 16], van Gent et al. [17], Saile et al. [18, 19, 20] without or with

4



Fig. 2 Schematic of the dominant base flow modes based on a reconstruction of the first POD mode (synthesis
of the experimental results by Saile [1] with numerical results by Statnikov et al. [5]). Depicted are the mean
flow topology (mid) and the two reversal points of a hypothetical POD cycle (top/bottom).
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cold exhaust jet. The impact of a hot jet has lately been addressed by Kirchheck et al. [21]. Insights from the numerical

point of view is provided Deck and Thorigny [22], Weiss et al. [23], Weiss and Deck [24], Pain et al. [25, 26].

The activity here obviously targets the transfer of the findings to a large scale application, thus similarity aspects

must be considered. For the configuration at hand, this was already addressed in previous publications of that series

[1, 18–20]. In short, it was found that the effect of the wind tunnel environment appears to be negligible with respect to

the mean and turbulent velocity flow field [1, 18]. CFD simulation on that issue under comparable conditions come to

the same conclusion Banuti [27]. Reynolds number effects appear to be small for the investigated (diameter-based,

free-stream) Reynolds number range between 0.8×106 and 1.6×106. This seems reasonable, since, on the one hand, this

regime falls into the category of trans-/postcritical near-wake flows with similar effects according to the categorization

of Morkovin [28]. On the other hand, for flows over a backward-facing step, similar flow fields are expected [29–33] as

long as the boundary layer can be considered as ’thin’, meaning that the ratio between the boundary layer thickness and

the step is smaller than 0.4. This is the case for the experiments at hand (≈ 0.07) as well as for Ariane 5 (≈ 0.09)[19].

Other similarity parameters concern the exhaust jet. Here, similarity with respect to the displacement effects controlled

by the plume topology can be approximated. Ariane 5 as well as the current test case feature an overexpanded nozzle

flow due to a reasonably comparable pressure ratio between the nozzle exit and the ambient flow of 0.25 and 0.36 (e.g.

for the Mach 0.8-case), respectively. Nevertheless, the jet poses the largest deviation to a real-flight configuration mostly

due to the temperature difference and the usage of air, which is interrelated with many other properties such as the exit

velocity, density, viscosity, ratio of specific heats. To compensate for the latter, Goethert and Barnes [34] suggested to

keep ^"02/
√
"02 − 1 similar between the test configuration and the full-scale application for the nozzle flow. Here,

this corresponds to 5.2 vs. 5.6, respectively. More difficulties arise with the other properties since they significantly

influence the evolution of the shear layer, and in that sense, the cold and hot cases differ. As impact, one would expect a

smaller recirculation region due to a pressure drop induced by an increased entrainment of mass from the ambient flow

field into the shear layer. However, this was not necessarily observed in Kirchheck et al. [21], and thus, it is still under

investigation.

Next, the counterpart for the hypothesized aeroacoustic feed-back mechanism is introduced, namely the jet generation

mechanism called screeching [35–37]. A schematic sketch is depicted in fig. 3. It shows the essential four screeching

elements as found by Powell [38, 39]: (1) The growth of instability wave in the supersonic shear layer of the jet, (2) the

interaction of the turbulent coherent structures with the shock-cells, (3) the upstream propagation of acoustic waves and

(4) the closure of the feedback loop by converting acoustic waves to instability waves at the nozzle tip region. Tam

et al. [40] suggested the nozzle tip as especially receptive for excitation and it is therefore considered as weakest link for

the feedback of information in the screech loop. Obviously, the receptivity of the acoustic waves is essential for the

aeroacoustic coupling.

In a screech cycle, the interaction between turbulent coherent structures and the shock-cell (2) is responsible for
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Fig. 3 Schematic of the screeching jet noise generation mechanism (extracted from reference [1] and based on
the visualization of Suzuki and Lele [42])

noise generation process. In numerical simulations, Manning and Lele [41] found an unsteady refraction of the incident

shock of the shock-cells in the shear layer in between the passage of vortices, which results shock leakage (from the jet).

Thus, Manning and Lele [41] suggest shock leakage as source for the release of high amplitude waves.

The frequency 5( of the high amplitude waves resulting from the passage of vortices in the shear layer through

quasi-periodic shock-cells can be determined by means of eq. (2) as extracted from Wolf [9]. It can be seen that the

shock cell length !24;; , as visualized in fig. 3, is one of the defining parameters. Furthermore, the screeching frequency

must be compensated for the current in-flight conditions. On the one hand, this is done by reducing the speed of sound

0∞ (responsible for upstream propagation of the acoustic disturbance) by the ambient flow velocity*∞. On the other

hand, it must also be incorporated for the downstream convection velocity of the instability in the shear layer*�>=E as

done in eq. (3) [9, 43]. The quantity* 9 reflects the fully-expanded jet velocity.

5( =
*�>=E

!24;; (1 + *�>=E
0∞−*∞ )

(2)

*�>=E = 0.7 · (* 9 −*∞) +*∞ (3)

Another fully-expanded quantity, the Mach number " 9 , is used to determine the shock-cell length !24;; as ratio

to the nozzle exit diameter 3=>II;4. According to Seiner and Norum [44], the shock cell length can be empirically

determined by means of the Prandtl-Glauert correlation as given in eq. (4). The empirical parameters 21 and 22 are
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dependent on the individual nozzle shape. The fully-expanded Mach number " 9 in eq. (5) is computed by means of the

reservoir pressure of the chamber ?0, the ambient pressure ?∞, and the heat capacity ratio ^. Note that these equations

are used later for comparisons with the measured frequencies (fig. 11) and for the prediction in context of Ariane 5

(fig. 16).

!24;;

3=>II;4
= 22 ·

(√
"02

9
− 1

)0.5·21
(4)

"0 9 =

√√√
2

^ − 1

((
?∞
?0

) 1−^
^

− 1
)

(5)

In flight-screeching is a sparsely treated topic. More details can be found in Wolf [9], Hay and Rose [45], Bryce and

Pinker [46], Adrian [47], which is from where the current information was extracted. More details to screeching or jet

noise and the progress made over the years are documented in the review papers of Raman [37] and Jordan and Colonius

[48]. Further, remarkable videos on the screeching issue can be found in the scientific films shot by Poldervaart et al.

[49] and Poldervaart et al. [50].

II. Methods
The current study is treated as summarizing review on the hypothesis of an aeroacoustic coupling effect reported in

the doctoral thesis in Saile [1]. This hypothesis was developed in the frame of wind tunnel experiments in the Vertical

Test Section Cologne (VMK) [51, 52] by means of particle image velocimetry, base pressure transducers and high-speed

schlieren imaging. Parts of the doctoral thesis have been extracted and published separately in Saile [1], Saile et al.

[18, 19, 20]. Thus, it is recommended to take further technical details either from the corresponding publication or the

doctoral thesis.

Nevertheless, the key parameters are provided in the following. For particle image velocimetry, a classical 2D-2C

setup was applied, while the flow was seeded with titan dioxide particles. Particle images of an overall size of

134 × 100mm2 were captured with a recording frequency of 15Hz. The evaluation was executed with an interrogation

window of the size 32 × 16 px (2.68 × 1.34mm2) with an overlap of 4 × 4 px. On average, the 95% confidence level was

in the range of ±2% including the uncertainties related to the equipment, to the particle dynamics and to sampling.

The base pressure was acquired with a recording frequency of 17.0 kHz by means of flush-mounted XCQ-080 Kulite

transducers. This type of sensor exhibits an error of ±0.1% for a best fit straight line. The density gradients were

captured with the same recording frequency by means of a Photron FASTCAM-APX RS camera. For that purpose, a

Z-type schlieren path setup [53] is available in VMK.

The temporally highly-resolved schlieren recordings are used to assess the mean and unsteady properties in the
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density gradient field. To deduce information about the spectral content, each pixel is treated as individual sensor on

which a spectral analysis according to Welch [54] is applied. Afterwards, the spectrum is averaged over the complete

field of view. The spectral analysis for the pressure signal is also based on the approach by Welch [54].

The subsonic tests ranging from Mach 0.5 to 0.9 were executed in VMK, which features an open test section.

Correspondingly, the free-stream pressure is equal to the ambient pressure and the reservoir pressure must be set

accordingly to reach the desired Mach number. Further, the tests were run unheated, meaning the reservoir temperature

corresponds to the ambient temperature. The wind tunnel model is a generic representation of the base geometry of the

main core of Ariane 5 (e.g. fig. 1). In other words, the outer geometry resembles two cylinders stacked on top of each

other while the cylinder with the larger diameter (� = 66.7mm) mimics the main core and the attached smaller cylinder

(3 = 26.8mm) contains a conical nozzle contour on the inside with an expansion ratio of n = 7.37. The length of the

nozzle (outer geometry) was varied for some tests between !/� = 0.45 to !/� = 1.2 [20]. However, typically it is set

to !/� = 1.2 to resemble the main outer features of Ariane 5. For the jet:off -case, the nozzle is plugged, while for the

jet:on-case, it is fed with a reservoir pressure of 3.3MPa from a reservoir staying at ambient temperature.

The publications mentioned above have base flow issues of a blunt rocket base in common. However, the various

publications focus on different aspects. In detail, the series can be differentiated as following: Reference [18] considers

base flows without an exhaust jet for a subsonic ambient flow; then, reference [19] introduces a cold, overexpanded,

supersonic exhaust jet for subsonic ambient flows; reference [20] investigates the impact of a nozzle length reduction

for Mach 0.8; reference [1] contains a POD decomposition (as shown in the references [8–10, 55]) on the previously

acquired velocity fields and the fluctuations of the pressure and high-speed schlieren recordings with focus on their

spectral content is also evaluated there.

III. Results
This section first reviews elements of previously published findings (section III.A) of this series [1, 18–20] for

completeness and as background information before moving on to the new contributions (section III.B).

A. Review

In the current series, the base flows without an exhaust jet for a subsonic ambient flow was investigated in Saile

et al. [18]. There, self-similar features were found in the velocity and velocity fluctuations distribution for the current

configuration if scaled with the reattachment length of the shear layer. For a backward-facing step and for blunt base

configurations, self-similar features have already been observed by Roshko and Lau [29], Westphal et al. [30], Merz

et al. [31], Adams and Johnston [32], Nadge and Govardhan [33], Uberoi and Freymuth [56].

In Saile et al. [19], the same configuration was addressed with a supersonic exhaust jet. It was found that the mean

velocity distribution scales reasonably well with the reattachment length for all Mach numbers. No peculiarities were
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Fig. 4 Contour plot with streamlines of the mean velocity field for "0 ∼ 0.8 [19]. The point ’P1’ marks a
velocity probe location used in context of the reattachment location (see fig. 7); ’PT’ denotes the location of the
pressure transducer used for the spectra in fig. 11.

observed in that quantity as it can be seen in the mean velocity field in fig. 4 acquired by means of PIV for the Mach

0.8-case. The mean flow field exhibits the typical features of a base flow of a space transportation system. The incoming

flow separates from the main body at the shoulder from where a free shear layer evolves. Here, the free shear layer

reattaches on average on the nozzle and encloses a recirculation bubble. Farther downstream, the overexpanded jet

entrains air from the ambient flow. Regarding the mean flow field, there appears to be no significant difference to the

base flows for higher or lower subsonic Mach numbers [19].

In contrast to the mean flow field, an outstanding deviation to the other Mach numbers was found for the turbulence

intensity distribution at Mach 0.8, which is visualized in fig. 5. As expected, the distribution shows areas of increased

turbulence intensity in the shear layer, but also another strong area inside the recirculation bubble in the vicinity of the

vortex center. The origin of the latter was attributed to the unsteady ’dancing’ motion of the vortex center [19].

The radial profile slices in fig. 6 through that high turbulence intensity region at G/!A = 0.61 show that this

Mach 0.8-case appears to be special indeed. While the turbulence intensity profiles (scaled with the reattachment length)

agree for all Mach numbers with a reasonable degree, a totally different behavior manifests for Mach 0.8: For this case,

exceptionally strong fluctuations can be observed inside the recirculation bubble (denoted here as anomaly) leading to

the question why this condition is special.

The probability density distribution of the axial velocity component just at the tip of the nozzle (fig. 7; sampling

location marked as ’P1’ in fig. 4) evidences first clues on why the Mach 0.8-case is special and behaves differently.
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Fig. 5 Contour plot of the normalized axial turbulence intensity field for "0 ∼ 0.8 [19]. The center of the
main vortex and the reattachment location are plotted as cross × and as triangle O, respectively. The dotted line
labeled as ’profile’ marks the profile location used in fig. 6. The box labeled with excl. referring to ’excluded’ is
to be ignored due to errors induced by laser light reflections.

Fig. 6 Normalized axial turbulence intensity profiles for the downstream location G/!A = 0.61 (see fig. 5). The
shading reflects the uncertainty [19].
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Fig. 7 Probability density estimate (as kernel smoothing density ksd) of the axial normalized velocity sampled
upstream from the nozzle exit at point P1 at [G, A]/� = [1.19, 0.22] (see fig. 4) [19]. Diamond �markers denote
the normalized mean axial velocity; the thin continuous line the median velocity.

For Mach numbers ≤ 0.7, the axial velocity component only takes positive values, meaning that the reattachment

predominantly takes place on the nozzle wall. For Mach 0.8, a broadening of the distribution can be detected. On the

one hand, this indicates fluctuations over a wider velocity range, and on the other hand the values close to zero suggest

that the recirculation bubble is temporally connected with the jet. The recirculation bubble and the jet can now directly

interact, meaning the reattachment process is of hybrid nature. A hybrid reattachment becomes certain for Mach 0.9:

Up- and downstream pointing axial flow velocity can both be found in the distribution.

NOte that for the proposed and discussed resonant case between near-wake dynamics and screeching, the effect

of the reattachment process on the turbulence intensity was investigated systematically in reference [19] by means of

shortening the nozzle length for the Mach 0.8-case. Under these circumstances, it was found the turbulence along the

shear layer is the strongest when the mean reattachment length is just at tip of the nozzle.

B. Current Contributions

The unusually high turbulence intensity already presented above is now scrutinized in context of the pressure-time

series taken with transducers on the base plate of the model, which is shown in fig. 8. A stark contrast of the pressure

series characteristics for the various configurations can be observed. For the near-wake flow case without jet [18],

periodic pressure oscillations can be found to a small degree. However, these oscillations seem to be negligible and
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Fig. 8 Pressure time series of a selected pressure transducer on the base (data extracted from reference [1]).
Data is provided for Mach 0.7, 0.8 and 0.8 with jet (jet:on), and additionally for Mach 0.8 without jet (jet:off).
The location of the pressure transducer is marked as ’PT’ in fig. 4.

the pressure-time series appears to be dominated by stochastic fluctuations. When the jet is turned on, this changes

drastically for an ambient flow at Mach 0.8: The results show highly coherent periodic oscillations fluctuating with

seemingly one dominant frequency. For incrementally decreased and increased Mach numbers, this periodicity is not as

prevalent anymore.

As last measurement method apart from PIV and pressure measurements, high-speed schlieren measurements were

conducted focusing on the exhaust of the cold, overexpanded, supersonic jet. Figure 9 shows such a schlieren image

at one instance in time. It shows the typical features of an overexpanded jet such as shock structures or the turbulent

shear layer at the boundary of the jet. However, what is more interesting in the context of this study is the shock-like

structure/acoustic upstream-traveling wave (UW) marked as yellow dotted line. This wave is observable on both sides of

the nozzle, meaning in that case, this effect is axially symmetric. Further, when a sequence of images is considered, one

can see that this shock-like structure travels periodically upstream towards the base. Such upstream traveling waves

evidence a possible jet noise screechingmechanism. Keep in mind that screeching can also exhibit other than symmetric

modes [38, 57].

The instantaneous high-speed schlieren sequence shown in fig. 10 reveals further remarkable aspects. First, the

previously described upstream traveling wave can be detected for that Mach 0.8-case with exhaust jet. Next, this feature

seems to be related to a downstream-transported feature denoted as VS1 and VS2. Taking into account that vortex

shedding is a commonly described effect in turbulent near-wake flows [28], that the observed patches appear periodically

just as observed for shear layer flapping and vortex shedding [5], these density gradient patches presumably reflect a
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Fig. 9 Instantaneous high-speed schlieren image with focus on the visualization of the occurring upstream
traveling wave (UW), which is highlighted as yellow, dotted line.

vortical structure (VS) resulting from the vortex shedding process of the shear layer. In other words, this sequence

suggests a coupling between the upstream-traveling wave induced by screeching and downstream-traveling vortex. The

latter appears to be shed from the near-wake, or more specific, from the shear layer.

Watching the high-speed schlieren video, this process appears to be periodic. The pressure time-series above in

fig. 8 also evidence periodicity. Thus, both measurement results are analysed with respect to their spectral content to

extract the dominant frequencies. The result of which is shown in fig. 11 for the transducer on the base plate and the

high-speed schlieren signal (HSS). Note that the focus of this graph lies on the frequency and not on the amplitude

which is the reason why the amplitude of the peak at (A� = 0.18 is not fully resolved.

Oscillations are notable at a non-dimensional frequency of (A� = 0.11, 0.18 and 0.35, which are typically associated

with the base flow modes of pumping, flapping and swinging [5]. When the jet is turned on, one can detect a large peak

at the frequency attributed to the latter mode. This peak is notable in both signals, the pressure and the high-speed

schlieren signal. Further, the investigations on the impact of various relative nozzle lengths !/� [1, 20] showed that

this peak appears to stay at about the same frequency as long as !/� is larger than 0.45. For !/� = 0.45, the separated

shear layer overshoots the nozzle completely, meaning it exclusively reattaches on the jet. In other words, an oscillation

at this frequency is only present for the investigated configurations with !/� ≥ 0.6, which are the configurations for

which a hybrid reattachment can be found.

Additionally, the spectra appear to exhibit peaks at higher harmonics as it often can be found for screeching. For this

reason, the calculated in-flight screeching frequency is plotted for three different shock cell lengths. Unfortunately,
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Fig. 10 Sequence of false-colored, instantaneous high-speed schlieren images highlighting the downstream
transportation and shedding two vortical structures (VS1 and VS2, respectively) in combination with an up-
stream traveling wave (UW). The time interval between the images is equivalent to the recording frequency of
17 kHz.

due to the restricted field of view, only the first shock cell of the jet could actually be determined from the high-speed

schlieren recordings [1]. This shock cell exhibited a length of 52mm. Nevertheless, it is assumed that the successive

shock cells have a shorter length since the incident shock of the jet shock train (see fig. 8) is reflected as expansion

wave at the shear layer at a smaller radial distance due the growth of the jet shear layer in the downstream direction.

Additional measurements with Mach numbers in the range between 0.5 and 0.9 in reference [1] showed the same

tendency, meaning a good prediction for in-flight screeching frequency on the basis of the measured shock-cell length.

Consequently, the graph suggests that the swinging mode as part of the near-wake dynamics oscillates with the same

frequency as predicted for screeching. Thus, this appears to be a resonating case, and is consequently seen as one of the

possible reasons for the previously found anomalies.

One interesting question now is how the dynamics of the near-wake flow changes with the presence of a jet. This

question is assessed in reference [1] with a proper orthogonal decomposition (POD) [8–10, 55]. An excerpt of the most

dominant (first) POD mode is shown for the case without and with jet in fig. 12 and fig. 13, respectively, for an ambient

flow at Mach 0.8.

For the case without jet (fig. 12), the first POD mode is dominated by a large coherent structure that causes an

acceleration of the mean flow ’downstream-towards the axis’ or in the reverse direction, which is ’upstream-in the radial

direction’. This POD mode is responsible for about 13% of the near-wake energy; for the second POD mode, it is about
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Fig. 12 First POD-decomposed velocity mode (basis functionΨ1 scaled with the standard deviation of the time
varying coefficient Z1,BC3) for the configuration without jet (!/� = 1.2) for an ambient flow at Mach 0.8 [1].
The vector field and the scalar field show the components of the POD-decomposed velocity fluctuation and their
absolute value, respectively.

8% [1]. Further, it is shown in reference [1] that this coherent structure persists as first POD mode over the Mach number

range from 0.5 to 0.9. The most prevalent influence of increasing Mach numbers is a general downstream shift of that

coherent structure, meaning a downstream shift of the region where the most dominant velocity fluctuations take place.

When the jet is turned on, the dynamics in the near-wake does not significantly change for most Mach number cases

[1]. In fact, a similar large coherent structure can also be found that moves downstream with increasing ambient flow

Mach number. This is true for all Mach numbers except for Mach 0.8. For Mach 0.8, the dynamics change completely

with running jet as it is shown in fig. 13. The long coherent structure described above appears to be broken up in several

counteracting, more confined coherent structures.

For the applied sign convention, the most dominant coherent structure CS1 reflects downstream fluctuations in the

reattachment region close to the nozzle exit. This is the same location where the large-scale, clockwise-rotating vortex

is typically found, meaning that coherent structure describes in part its dynamic behavior. Further, the same mode

captures coherent and interrelated upstream-directed structures along the surface of the nozzle (marked as CS2) and

along the initial evolution range of the shear layer (marked as CS3). The latter conveys fluctuations in the shear layer. In

other words, the interrelated character between each of the described confined structures suggests a feed-back loop

between a large-scale vortex and the excitation of the shear layer. Note that this first POD mode contains about 16% of

the fluctuation energy, while the energy for the second mode still contains 11% [1].

The decomposition of the velocity field in its modes reveals the most dominant dynamics in the flow field. However,

it is sometimes challenging to imagine the impact of a single decomposed mode on the mean velocity field. For this

reason, a reduced-order reconstruction of the normalized velocity distribution based on the first POD mode, denoted as

(* +
√
2B8=(U)Z1,BC3Ψ1)/*� , is presented for the outstanding Mach 0.8-case with jet for one presumed periodic cycle

in fig. 14. The reconstruction was executed with a representative temporal coefficient of Z =
√
2B8=(U)ZBC3 . The angle

U describes the phase of a POD cycle with U = 90◦ and 270◦ being the first and second reversal points from the mean
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Fig. 13 First POD-decomposed velocity modes (basis function Ψ1 scaled with the standard deviation of the
time varying coefficient Z1,BC3) for the supersonic exhaust jet configuration with a relative nozzle length !/�
of 1.2 at an ambient Mach flow at 0.8 [1]. The vector field and the scalar field show the components of the
POD-decomposed velocity fluctuation and their absolute value, respectively.

velocity distribution at U = 0◦ and U = 180◦. One POD cycle is completed when U = 360◦ = 0◦ is reached. Further

configurations and Mach numbers are discussed in reference [1].

During the first phase (0◦ < U ≤ 180◦), the recirculation bubble retracts axially and widens in the radial direction.

Then in the second phase (180◦ ≤ U < 360◦), the movement is reversed, meaning the bubble is elongated and stretched

in the axial direction. As previously indicated by the high-speed schlieren sequence in fig. 10, this appears to result

in a vortex shedding mechanism in the phase between 225◦ ≤ U < 315◦. The strongest evidence for that is found for

U = 270◦. At this point of the cycle, the reconstruction appears to describe the roll-up of a separating vortex. This

presumable roll-up and vortex shedding mechanism is also notable to a certain extent for other Mach numbers between

0.5 and 0.9 [1]. Here however, it appears to be substantially amplified. Thus, it raises the question if and how this

mechanism plays a role leading to the outstanding turbulence intensity level found above.

IV. Summary and Discussion
To assess the question how the roll-up and vortex shedding might influence the turbulence intensity, a schematic

model concept is proposed. It is a synthesis of the observation attributed to the near-wake dynamics and the jet noise

generation mechanism. In detail, it is a synthesis of the findings for the most energetic mode as a result of the POD

analysis, the jet screech concept and the finding regarding the symmetry of the incoming pressure waves in combination

with the results from literature by Statnikov et al. [5]. First however, a summary of the selected anomalies of the

Mach 0.8-case with running jet is given below.

Anomalies can be found in various quantities:

• The base pressure-series in fig. 8 provide the most convincing argument for the presence of special conditions at

Mach 0.8 with running jet: There, a distinct sinusoidal-like oscillation can be found which is not observable when

the jet is turned off, for higher or for lower Mach numbers.
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Fig. 14 Scalar field and streamlines of the reconstructed oscillation cycle based on the first POD mode for the
supersonic exhaust jet configuration with a relative nozzle length !/� of 1.2 at an ambient Mach number of 0.8
(V163) [1].
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• Methodologically independent from the base pressure measurements are the velocimetry measurements. They

revealed unusually strong (relatively seen) fluctuations in the back flow region of the recirculation bubble (figs. 5

and 6). This correlates with the finding that the shear layer reattachment process becomes hybrid for that Mach

number (fig. 7).

• The POD analysis of the PIV data offered insights from a different perspective. A distinguishing redistribution of

the fluctuating energy in favor for the first modes is reported in Saile [1] for the Mach 0.8-case with jet. Further,

the corresponding first POD seems to be outstanding in comparison between the jet-off and jet-on configuration

(fig. 12 vs. fig. 13) and in context to the runs at the other Mach numbers between 0.5 and 0.9 [1]. Next, for

the jet-on configuration, the low-order reconstructed cycle (fig. 14) evidences an unusually pronounced roll-up

and vortex shedding from the end of the nozzle surface. Last, the probability density function of the temporal

coefficients indicated characteristic features for a periodic motion [1]. In summary, the base flow dynamics

appears completely altered and amplified when the jet is turned on at Mach 0.8.

• The roll-up and vortex shedding can also be observed in the sequence of the high-speed schlieren measurements

in fig. 10. It appears that this phenomenon is interrelated with an upstream traveling acoustic wave (fig. 9), which

is typically associated with the screeching jet noise generation mechanism.

• The spectral analysis performed for both temporally resolving measurements, namely for the pressure and schlieren

measurements, revealed matching frequencies peaks (fig. 11). Noteworthy here is the strong pressure amplitude

increase when the jet is turned on. This power spectral density peak is about an order of a magnitude larger than

for the other Mach-number-cases. Further, the pressure coefficients can be found at a significantly higher level [1].

These anomalies are accompanied with two peculiarities:

• First, the near-wake dynamics without jet features a peak in the spectrum at (A� = 0.35 (fig. 11). Additionally,

in-flight screeching for the same ambient conditions now with a running jet predicts a dominant frequency

oscillating with the same frequency, which was then confirmed by measurements. Thus, it was suggested above

and it is argued here that the near-wake flow is in resonance with the aeroacoustics of the jet. In detail, there

is a positive feed-back loop between the swinging motion of the shear layer and the jet screech both acting at

(A� = 0.35 − 0.36 for the case at hand.

• Second, for the case without jet [1], the mean reattachment length is located just at the dummy nozzle end. For the

case with jet, the shear layer reattachment is still taking place in the vicinity of the nozzle exit and it is shown in

fig. 7 that the shear layer is temporary interacting with the jet. The reattachment of the shear layer in the vicinity

of the nozzle exit close to the jet appears to promote a pronounced vortex shedding mechanism as evidenced by

the schlieren and POD results in fig. 10 and fig. 14, respectively.

Based on these observations, a schematic model concept is suggested in the following. Please note that no claims are

raised that the presented schematic is accurate with respect to the temporal sequence between the near-wake dynamics
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and the jet noise generation mechanism. For instance, what is proposed in the following, however cannot be confirmed

with the given data set, is the shedding of the vortex in the moment when the pressure wave arrives at the base. Thus,

the graph introduced next intends to visualize key elements instead which are believed to play an important role for the

anomaly.

The model concept is shown in fig. 15. It depicts a self-exciting cycle, which is divided into four interdependent

phases. The sound wave generation phase (1) corresponds to the mechanism as found for screeching. A turbulent

structure in the shear-layer generates a pressure wave while passing by the shock-cells. The pressure wave radiates in all

directions. Relevant for the cycle is the upstream propagating wave front (2). The pressure wave triggers an excitation in

the shear layer such that the recirculation bubble grows until a vortex is shed from the nozzle end (3). The vortex is then

fed as turbulent structure in the shear layer of the jet (4). This idea is essential for the coupling of the near-wake and

screech dynamics, ergo for the closure of the feed-back loop, since the same turbulent structure finally generates the new

pressure wave (1). In other words, this self-sustaining feedback loop is similar to the screech tone excitation mechanism,

but instead of an aeroacoustic feed-back at the tip of the nozzle, the vortex shed from the recirculation bubble is fed back

as disturbance into the cycle.

The upstream traveling pressure waves are sketched as symmetrically arriving disturbance at the base plate to

correspond to the findings regarding the non-existent phase difference for the screech tone [1]. Note that the symmetry

of the upstream traveling wave was found for the conditions at hand. Nevertheless, depending on the conditions, the

excitation might also take place as an anti-symmetric mode as it can occur for the two suggested driving mechanism,

namely screeching [38, 57] and the near-wake dynamics.

The results above indicate that two criteria must be given for a corresponding amplification of the base flow dynamics.

The first is the matching resonance frequency, and the second, is the nature of the shear layer reattachment. It appears

that the nozzle must be long enough to enable a hybrid shear layer reattachment process. Remember that no such

excitation was found for the overshooting shear layer flow with the short (!/� = 0.45) nozzle [1].

The question now is if this can also occur in flight for Ariane 5. This question was approached with system

analysis-based trajectory data as provided by the DLR Institute of Space Systems. The frequencies for base flow modes

swinging, flapping and pumping for the wake flow excitation are simply computed by means of the definition of Strouhal

number (eq. (1)). Further, the in-flight screeching frequency during the ascent is given by eq. (2) with the convective

velocity based on eq. (3) and the velocity of the jet of 4324ms−1. The latter is calculated for the Ariane 5+Vulcain 2

configuration by means of Ponomarenko [58]. The only parameter left is the shock cell length. This property is not

known to the authors. Instead, the shock cell length for the various altitudes is approximated with eq. (4) for nozzle

shape parameters given by Seiner and Norum [44], Wolf [9] and as found for the nozzle applied here. Note that all of

the corresponding nozzle shape parameters are for cold nozzle flows.

The evolution of the near-wake flow and screeching frequency during the ascent of Ariane 5 is plotted in fig. 16
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Fig. 15 Synthesis of the current results for the visualization of the hypothetical aeroacoustic coupling between
jet screech and the near-wake dynamics [1].
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as function of the Mach number. The near-wake flow frequencies scale with the ambient flow velocity, and thus

increase continuously. On the other hand, the screeching frequency continuously decreases since the upstream traveling

disturbance has to move against an accelerating ambient velocity (eq. (2)) until finally at Mach 1 no disturbance from

downstream reaches the base anymore. As a result, both mechanisms must exhibit the same frequency at one point in

the subsonic flow range, which is true for all near-wake modes. These are the resonance points where an amplifying

interaction is hypothesized.

Interestingly, the current simple approach predicts resonance in the ambient Mach number range for which David

and Radulovic [3] reports of very strong rms loads on the actuators during the ascent of Ariane 5. The dominant

excitation is described to oscillate with a dominant Strouhal number of 0.2. They arise and disappear in the vicinity of

Mach 0.8. Further, the actuator is just one element for which strong oscillations were detected. For instance, they are

also present in the base pressure measurements [3]. In conclusion, the aeroacoustic interaction hypothesis between the

near-wake flow and screeching as suggested in context of fig. 15 provides a plausible explanation for the strong buffeting

effects detected for Ariane 5 in the vicinity of Mach 0.8.

V. Conclusion
The current study reviews the hypothesis on an aeroacoustic coupling phenomenon between the near-wake dynamics

and the jet screech of space transportation system as reported in Saile [1] or follow-up publications [18–20]. This

hypothesis is deduced from anomalies found in wind tunnel tests. In detail, they were found in the data of the

various measurement techniques for a space transportation configuration with jet exposed to an ambient Mach-0.8-flow.

Anomalies such as the described periodically oscillating base pressure signal, the pronounced turbulence in the base

region, or the evidenced shedding mechanism are found by means of a POD decomposition and high-speed schlieren

measurements. Further, it is shown that the jet screeching frequency for the configuration with jet occurs at a comparable

spectral range as the near-wake flow excitation attributed to swinging for the configuration without jet. The latter

observation is taken as an evidence for a resonating case. This resonating case, on the one hand, and the hybrid

reattachment process, on the other hand, are assumed as prerequisite for the suggested self-exciting aeroacoustic coupling

phenomenon. The corresponding approach was applied on an Ariane 5 ascent, and despite its simplicity, a surprisingly

good correlation was found with flight data, in particular with respect the excitations in the base region. Furthermore,

it is shown that resonance between the near-wake dynamics and screeching must occur during the ascent of space

transportation systems. Thus, the study aims to contribute to the question why dynamic loads are strongly amplified in

the high subsonic flow regime.

In the future, it is planned to execute dedicated experiments to further support or falsify the proposed hypothesis. In

that context, key features of the two mechanisms in question are in the focus such as the shock cell length, the origin

of the aeroacoustic wave and its upstream propagation, the vortex shedding process and the seeding of the turbulent

23



0 0.2 0.4 0.6 0.8 1

Ma [-]

0

5

10

15

20

25

30

f 
[H

z
]

Tool: Relevanz_Ariane5Aufstieg_FrequencyOverMa_Vs04

Folder: N:\SaileDominik\Zentralkoerper2\Dokumentation\Diss\A_Dissertation\Bilder\Relevanz_Ariane5Aufstieg\

screeching

excitation

aerodynamic

near-wake

excitation
flapping

pumping

swinging

resonance

Sr
D

=0.2

Sr
D

=0.1

Sr
D

=0.35

← c1=1.59, c2=0.76

c1=1.93, c2=0.546 →

c1=2.9, c2=0.11 →

David et al.

rms actuator loads

↓

curr. noz.

Wolf et al.

Seiner et al.

Sr
D

 = 0.35

Sr
D

 = 0.2

Sr
D

 = 0.1

Fig. 16 Evolution of the aerodynamic and screeching excitation frequencies as function of the Mach number
in the subsonic flow regime during a representative Ariane 5 ascent and complementary color-coded flight
measurements of the Ariane 5 rms actuator loads as given by David and Radulovic [3].

24



structure in the shear layer. In short, the hypothesized cycle and the spatio-temporal dependency between screeching

and near-wake dynamics will be scrutinized. Further, it is foreseen to investigate the influence of a flight-realistic,

meaning hot jet on that cycle.
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