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Abstract

In this study, I evaluate the performance of
diagonal Confidence-Weighted (CW) online
linear classification on the KDD Cup 1999
dataset for network intrusion detection sys-
tems (NIDS). This is a compatible relation-
ship due to the large number of instances
in NIDS datasets, as well as the constantly
changing feature distributions. CW learn-
ing achieves approximately 92% accuracy on
the KDD dataset when optimized, which is
higher than both Perceptron and the Passive-
Aggressive algorithm. CW learning also
achieves faster convergence rates than both
of these algorithms. Moreover, the accu-
racy of CW learning on the KDD dataset
is comparable to several batch-learning algo-
rithms. This challenges the assumption that
batch learning should always be used when
feasible. Due to shortcomings of the KDD
dataset, a full generalization of CW learning
to additional NIDS environments cannot yet
be made. Nonetheless, this study shows that
there is great promise to applying CW learn-
ing to future NIDS research.

1 Introduction

My objective is to evaluate the accuracy of diago-
nal Confidence-Weighted (CW) online linear classi-
fication to the KDD Cup 1999 dataset for network
intrusion detection systems (NIDS). The motivation
and prerequisite background information for this are
given below.

1.1 Batch Learning

One of the most fundamental classifications in
machine-learning taxonomy is that of batch versus
online learning. In the training phase of batch learn-
ing, the algorithm considers all training instances at
once to form the parameters of the learned model.
After training is complete, the model can make pre-
dictions on previously unobserved and potentially
unlabeled instances.

Training as such makes implicit assumptions
about the data. First, batch learning assumes the data
is generated from an independent and identical dis-
tribution (IID). That is, each instance is generated
from the same distribution and is independent of all
other instances. This is done to simplify the like-
lihood equations. Furthermore, batch learning as-
sumes that each instance is generated with the same
optimal hypothesis.

These properties have practical implications that
influence the performance of batch learning. Be-
cause all training instances must be considered at
once, generally there must be enough system mem-
ory to store the entire training dataset. This size con-
straint can limit how much training data the system
can handle. This is especially problematic because
the size of the training data and the subsequent accu-
racy of the learned model are often directly propor-
tional. In addition, once the model parameters are
set, the model cannot malleably adapt to distribution
changes without expensive re-training.

1.2 Online Learning

Nonetheless, it is commonly held that batch learn-
ing offers higher accuracy than online learning when



batch learning can be applied (Dredze, 2008). Re-
cent advances in online learning, however, question
this theory.

One of the main advantages of online learning is
that it avoids the assumptions made by batch learn-
ing (Dredze, 2010). Rather than having a clear dis-
tinction between training and testing phases (and
separate datasets for each), an online learner is
only given access to continuous stream of instances.
These instances are not necessarily generated from
an IID and are not required to be generated from a
single hypothesis.

In online learning, the learner considers each in-
stance individually, makes a prediction using the
model it has learned up to that point, receives the
true label, and then updates its model parameters ac-
cordingly. That instance is not recorded and is never
used again; all that remains are the updates to the
model parameters for future use.

This strategy offers many benefits in performance
and applicability. Because only one instance is con-
sidered at a time, there are no resource constraints on
the amount of data from which the model can learn.
Similarly, the model can be updated easily without
an expensive re-training phase. The removal of the
assumptions of batch learning also enables online
learning to be applied to a wider variety of environ-
ments.

1.3 Confidence-Weighted Linear Classification

Confidence-Weighted (CW) linear classifica-
tion (Dredze, 2008) is a recently developed
online-learning algorithm that provides these ad-
vantages. In addition, recent research has shown
that CW learning outperforms batch learning with
certain datasets (Ma, 2009).

1.3.1 Overview of Online Learning
To understand CW learning, it is necessary to re-

view online learning for linear classification. The
following tutorial is based on that given by Dredze
et al. (2008).

An online learner receives one instance at a time.
Label that instance xi ∈ Rd since our instance xi is
a d-dimensional vector with real-valued coefficients.
These d dimensions are the features of our model.
The learner then uses its current model parameters
to generate a prediction ŷi ∈ {−1,+1} (i.e., binary

classification) for the label of instance xi. Next, the
learner receives the true label yi ∈ {−1,+1} of xi.
Based on the loss suffered between the predicted la-
bel ŷi and the true label yi (determined by the loss
function used in the model), the learner updates its
model parameters.

The objective of linear classification is to find
the hyperplane that optimally separates the d-
dimensional space into two spaces, where one space
contains only instances of label −1 and the other
contains only instances of label +1. If the data is lin-
early separable, then such a hyperplane exists. This
hyperplane can be represented by the following lin-
ear equation:

fw(x) = w · x

Here w is a d-dimensional weight vector that is
used for classification by representing the decision
boundary between −1 and +1 labels. Each compo-
nent i in w represents the weight associated with the
i-th feature of the model (where d is the total number
of features). These weights wi are the parameters of
the model.

Given an instance x ∈ Rd, the online learner gen-
erates its prediction ŷ by taking the sign of the dot
product of x and w (thus the prediction will be either
−1 or +1):

ŷ = sign(w · x)

The final step is to update the weight vector w
based on the loss suffered after receiving the true
label y. How w is updated depends on the classifier
being used.

1.3.2 Specifics of CW Learning
In CW learning, each of the weight values wi

is assigned confidence information that represents
the certainty of that value. Confidence is quanti-
fied using a multivariate Gaussian distribution with
real-valued means and standard deviations. Each
weight value wi has its own Gaussian with mean
µi and standard deviation σi. The covariance ma-
trix Σ ∈ Rd×d is represented differently in the CW
variants (to be discussed in Section 4.4.3). For each
feature i, the mean µi is the weight value wi, and the
standard deviation σi is the confidence of that weight

2



value, where standard deviation and confidence are
inversely proportional.

During the update phase (which occurs after each
new instance), the Gaussian distribution for each
feature is updated. This in turn updates both the
weight value and the associated confidence for each
feature. Rather than applying updates equivalently,
weight values with higher standard deviations (thus
lower confidences) are updated more aggressively.
After the update, the new Gaussian distribution
across all features must predict the true label for the
current instance with probability greater than a pre-
specified confidence level.

The optimization objective and constraint used for
CW learning differ for each variant. The details for
each are given in Section 4.4.3.

1.3.3 Applications of CW Learning
Because of the confidence scores associated with

each feature, CW learning often shows higher ac-
curacies than other online algorithms. This is most
acute with datasets containing large numbers of bi-
nary features that are usually zero. Many online al-
gorithms have problems with these datasets because
the algorithms only update their weight values when
the corresponding feature values are non-zero.

Consequently, weight values of more frequent
features receive more updates, leading to models in
which only frequent features have accurate represen-
tations. This can in turn decrease the convergence
rate because more iterations are needed to determine
the weight values of the rarer features. Ironically, the
same property that enables online learning to handle
large datasets quickly (the fact that it only needs to
remember one instance at any time), also prevents it
from understanding all features quickly (especially
the less frequent ones) (Dredze, 2008).

CW learning addresses this by maintaining a con-
fidence score for each of its weight values. These
scores influence the rate at which a given weight
value is updated, where weight values with lower
confidences are updated more aggressively.

Ma et al. (2009) demonstrate that this approach is
highly effective in classifying a URL as either be-
nign or malicious from the properties of the URL
string. These properties include such features as
hostname, primary domain, geographic information,
and connection speed, but not that actual web-page

content. The authors observe that their corpus of la-
beled URLs is appropriate for online learning be-
cause the corpus is large (much larger than batch al-
gorithms can handle) and because the feature distri-
bution changes considerably over time.

In the study by Ma et al. (2009), online algo-
rithms produce higher accuracies than batch algo-
rithms because the number of instances on which
batch algorithms can train is limited by system re-
sources. Although other online algorithms such as
Perceptron (Rosenblatt, 1958), Logistic Regression
with Stochastic Gradient Descent, and the Passive-
Aggressive Algorithm (Crammer, 2006) classify the
dataset well, CW learning achieves the highest accu-
racy (up to 99%). The authors believe this is because
CW adjusts the rate of learning on a per-feature ba-
sis, which addresses the constantly changing feature
distribution in their data. The authors further note
that continuous re-training of the model is necessary
in order to account for the regularly changing and
newly created features.

The motivation for my project came after reading
this paper. I noticed that the authors’ rationale for
using online learning (and specifically CW learn-
ing) for malicious-URL detection also applied to
network intrusion detection systems. I discuss this
link further in the next section.

2 Network Intrusion Detection Systems

First, I discuss the fundamental properties of net-
work intrusion detection systems (NIDS). My tax-
onomy largely comes from established divisions in
the field, but I am also loosely following the classi-
fication scheme given by Small (2010).

2.1 Fundamentals

The goal of NIDS as it pertains to this study is to
properly characterize network traffic as benign or
malicious. In this sense, it can be reduced to a
binary-classification problem. From a high level,
NIDS tactics fall into two categories: 1) signatures;
2) statistical anomalies.

Signatures are patterns that are mostly found in
malicious activity, but rarely found in benign activ-
ity. For example, this might be a succession of sys-
tem calls; a string of opcode bytes in shellcode; or
a series of queries made in an application, service,
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or networking protocol. Network traffic is examined
against these patterns, and if a match is found, that
traffic is labeled malicious. If the traffic does not
match one of the patterns, the traffic is labeled be-
nign. Signatures are usually written manually after
the detailed steps of an attack are determined, and as
such, do not involve many components of machine
learning. Consequently, I will not discuss them fur-
ther in this study.

On the other hand, NIDS based on statistical
anomalies borrows heavily from machine learning.
In the typical setting, anomaly detection is based on
a signal-to-noise ratio in a given network. First, a
baseline of normal network activity is established. It
is realistically quite challenging to maintain a fully
functional network that is free of attacks for estab-
lishing this baseline (if this could be done, there
would be no need for further security measures).
However, it is assumed that a reasonable attack-free
yet completely functional network can be measured
to form a baseline.

After this step, all network traffic is compared
against the baseline. If the traffic being evaluated
falls within baseline parameters, the traffic is labeled
benign; otherwise, it is labeled malicious. The base-
line serves as the noise floor, and effectively sets
the rate of false alarms. If the baseline is set to be
too large, then malicious traffic might fall within the
baseline parameters and thus wrongly labeled as be-
nign (false negative). If the baseline is set to be too
small, then normal traffic might fall outside and thus
wrongly labeled as malicious (false positive).

2.2 Machine Learning and NIDS
There is much overlap between anomaly-based de-
tection for NIDS and recent advances in machine
learning. Accordingly, there exists a large body of
research on applying machine-learning algorithms
to the NIDS problem (Zhang, 2001; Hu, 2003; Sin-
clair, 1999).

I was motivated to apply CW learning to NIDS
data because the two main justifications given by
Ma et al. (2009) (discussed in Section 1.3.3) for
malicious URLs also apply to NIDS. First, the size
of training data for NIDS classification can be very
large. The modern network consists of many work-
stations, servers, and mobile devices (e.g., smart
phones), each of which generates its own network

traffic. Logs of this traffic can easily exceed giga-
bytes per day. In addition, these devices usually run
multiple applications that generate their own net-
work traffic. This leads to very large datasets.

Second, the distribution and number of features
is constantly changing. The modern network is
a highly dynamic environment that is constantly
in flux. Between dynamic forms of host address-
ing (e.g., Dynamic Host Configuration Protocol, or
DHCP), wireless and remote workers (which have
broken the standard perimeter model of network se-
curity), and the recent increase in mobile devices ca-
pable of standard networking, the shape of the mod-
ern network is constantly changing. On top of that,
these devices and workstations are communicating
over a multitude of different application protocols,
each with its own language and specifications.

Because of these similarities with the study by Ma
et al. (2009), I hypothesized that CW learning would
also be effective with NIDS datasets.

3 DARPA Intrusion Detection Evaluation
Datasets

In 1998, the Defense Advanced Research Projects
Agency (DARPA) and the Air Force Research Lab-
oratory funded the first official dataset specifically
designed for intrusion detection systems (Lippmann,
2000). The actual implementation and data col-
lection was carried out by the Information Systems
Technology Group (ISTG) of MIT Lincoln Labora-
tory. Another dataset of the same objective was col-
lected in 1999 as well.

To create the dataset, Lincoln Labs simulated a
local area network of the U.S. Air Force. Simula-
tions were preferred over real networks due to pri-
vacy concerns. Lincoln Labs subjected the network
to multiple, diverse attacks whose traffic instances
were later labeled. The result was seven weeks of
network traffic for training data and two weeks for
testing data. The data was stored in compressed
tcpdump format, and totaled 5 million connection
records for training data and 2 million connection
records for testing data (Tavallaee, 2009).

Since then, these datasets have been used by many
researchers to evaluate their NIDS methods. They
have come to be quite ubiquitous in the intersec-
tion between machine learning and NIDS. Although
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some researchers have criticized their applicability
to NIDS research (see Section 6), they have been
heavily analyzed and discussed in the years that fol-
lowed their release. It was for these reasons that I
chose to use a distillation of these datasets, the KDD
Cup 1999 dataset, for my project.

4 Evaluation Procedures

This section describes the procedures I followed to
evaluate CW learning and other online algorithms
on the KDD Cup 1999 dataset.

4.1 Data Collection
The Association of Computing Machinery (ACM)
Special Interest Group on Knowledge Discovery and
Data Mining (KDD) organizes an annual competi-
tion for practitioners of this field. Each year a dataset
from a diverse subject (e.g., breast cancer, con-
sumer recommendations, or particle physics) and
a machine-learning task based on that dataset are
made publicly available. Researchers develop their
algorithms to solve this task and then submit their
solutions. These solutions are evaluated by the KDD
group, and the winners are announced afterward.

In 1999, the KDD Cup datasets were distillations
of the 1998 DARPA Intrusion Detection Evalua-
tion datasets discussed in Section 3. The original
DARPA datasets were still in the file formats used by
their passive collection devices (e.g., tcpdump, ufs-
dump, and Windows NT audit event logs). As such,
they were not immediately conducive to machine-
learning algorithms. Some of these datasets were
converted into machine-readable form to serve as the
KDD Cup 1999 datasets.

4.2 Data Formatting
The format used by the KDD Cup 1999 was not
SVM, which is my preferred format. I therefore
wrote a Python script to convert the existing train-
ing and testing KDD datasets to SVM. In addition,
the dataset was originally comma-separated and did
not list feature numbers. I converted it to use fea-
tures numbers followed by colons, as in the SVM
format.

The original labels were either “normal” or the
name of the attack corresponding to that instance.
There were a total of 22 attacks in the dataset. I
converted this labeling system to a binary scheme

so that I could use the linear classification tools de-
scribed in this paper. Moreover, the conversion to
binary classification allowed me to run the Passive-
Aggressive (PA) Algorithm (Crammer, 2006) on the
data. I used PA to better compare my results with
that of Ma et al. (2009).

To perform the binary conversion, I configured
my Python script to replace a “normal” label with
+1 and any other label with −1. This is valid be-
cause the objective of most NIDS implementations
is to detect any malicious activity. Granularly clas-
sifying the malicious activity by type is usually not
a priority. Tavallaee et al. (2009) also performed the
same binary conversion in their analysis on the KDD
dataset.

Next, the original data contained zeroes for fea-
ture values. To improve efficiency, I converted this
into a sparse-vector scheme in which features with
zero values were omitted from the data (their omis-
sion implied a zero value). The software I used was
capable of properly interacting with sparse vectors.

Lastly, three of the original features were sym-
bolic, but non-binary. For example, the “proto-
col type” feature value could be one of the follow-
ing: “tcp”, “udp”, or “icmp.” For all such non-binary
symbolic features, I created new binary features for
each of the possible options. For a given instance,
all of these new features would be zero except for
the new feature that represented the instance’s orig-
inal feature value. For example, the original Feature
2 was the “protocol type” feature discussed above.
I configured my Python script to create new binary
features 2 (“tcp”), 3 (“udp”), and 4 (“icmp”). If the
protocol type of a given instance were “icmp,” that
would be represented in my new scheme as zeroes
for Features 2 and 3, and one for Feature 41.

This is similar to the high-feature space, sparse-
vector datasets for which CW learning is well suited.
It is interesting to note that many of the services
used in the KDD dataset are not commonly seen in
network traffic today. This shows how dynamic the
feature distributions of NIDS datasets are.

1The “service” feature had 71 possible options. This in turn
created 70 new binary features. 70 of these 71 features were
thus always zero for every instance. The large number of ser-
vices in today’s networks indicates that the features of NIDS
datasets will continue to grow and become increasingly sparse.
These are two excellent criteria for using CW learning.
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4.3 Dataset Properties

As described by Tavallaee et al. (2009), the fea-
tures of the KDD dataset belong to the following
four groups: 1) Features that can be extracted from
a TCP/IP connection; 2) Features from connections
in the past two seconds that share a destination host
with the connection of the current instance (labeled
“same host” features); 3) Features from connections
in the past two seconds that share a service with the
connection of the current instance (labeled “same
service” features); 4) Features that are based on con-
tent, such as the number of failed login attempts.

Furthermore, the training and testing datasets are
not generated from the same probability distribution.
The testing dataset also contains attack vectors that
are not included in the training dataset. The pur-
pose is to provide a realistic challenge to NIDS de-
velopers. As discussed in Section 2.2, both the fea-
ture distribution and attack vectors of NIDS data are
constantly changing, so it is possible that the dis-
tribution of an earlier dataset will be different from
that of a dataset collected later. Online learning is
particularly attractive to NIDS research because on-
line learning does not make assumptions about the
distribution of the data (see Section 1.2).

Finally, the statistics on the KDD datasets are as
follows:

• Number of training instances: 4,898,431

• Number of testing instances: 311,029

• Number of features: 122

• Number of labels: 2 (+1 for normal traffic and
-1 for malicious traffic)

A disadvantage to this dataset is the low num-
ber of features (122). Ma et al. (2009) state that
CW learning is beneficial in their dataset because
their total number of features (3,231,961) is large
and constantly growing. This is one of the parallels I
see between malicious URL detection and NIDS re-
search. It is thus disappointing that I cannot test CW
learning on a NIDS dataset with a large number of
features, but I leave this for future work. My belief
is that CW learning will show high performance on
this type of data.

4.4 Evaluation of CW Learning on the KDD
Datasets

The final step was to run CW learning on the KDD
datasets. As did Ma et al. (2009), I compared the
results of CW learning against other online algo-
rithms. I discuss each algorithm I use in the next
sections.

4.4.1 Perceptron

Perceptron (Rosenblatt, 1958) is a linear classi-
fier that follows the description of online algorithms
given in Section 1.3.1. The update rule to the weight
values of Perceptron is applied when the classifier
makes a mistake, and is as follows:

wi+1 ← wi + yixi

where i is a given instance. As noted in Ma et
al. (2009), the update rule in Perceptron is fixed and
thus cannot adapt its adjustments of the weight val-
ues to the degree of the mistake.

4.4.2 Passive-Aggressive Algorithm

The Passive-Aggressive (PA) Algorithm (Cram-
mer, 2006) is the binary-classification form of the
multiclass algorithm named the Margin Infused Re-
laxed Algorithm (MIRA) (Crammer, 2003). After
receiving an instance, MIRA computes a similarity-
score between each possible label and the instance
given. The prediction is the label that has the highest
similarity-score. MIRA is an ultraconservative al-
gorithm in that it only updates labels with similarity-
scores that were higher than the similarity-score of
the correct label for the current instance.

When limited to binary classification, MIRA is
the basic PA algorithm. The main difference be-
tween MIRA and PA is that MIRA is designed
for separable data, whereas PA can be applied to
nonseparable data. In addition, the loss bounds
of PA are more general and effective than that of
MIRA (Crammer, 2006).

To understand PA, it is first necessary to review
the concept of the margin in binary classification.
Building on the definitions of online learning given
in Section 1.3.1, the margin m is defined as follows:

m = y(w · x)
6



If the binary classifier correctly predicts the true
label y, the sign of the margin will be positive; oth-
erwise, it will be negative. The margin is the dis-
tance between the instance x and the classification
decision-boundary defined by the weight vector w.
The goal of the classifier is to maximize the margin,
as this increases the distance between the instances
and the decision boundary. Doing so ensures that the
decision boundary does not run too close to the in-
stances, thereby risking being on the wrong side of
future data points. This is why the absolute value of
the margin is labeled the confidence (not to be con-
fused with the confidences of CW learning), where
a higher positive value means greater confidence.

Rather than using a fixed update as does Percep-
tron, PA adapts its updates to the severity of the mis-
take by taking the margin into account. Specifically,
PA updates force the margin of the current instance
xi to be greater than or equal to one.

The PA update rule of instance xi is as follows. li
is the loss suffered at round i after receiving the true
label y. τi is the update factor at round i.

li = max{0, 1− yi(wi · xi)}

τi = li
|xi|2

update : wi+1 = wi + τiyixi

If the margin mi = yi(wi · xi) >= 1, then
the decision boundary is far enough away from the
instance xi for us to be confident in our predic-
tion. li will then be zero, thus τi will be zero, thus
wi+1 = wi. This means no update is made, and is
referred to as the passive element of the algorithm
(i.e., change the classifier as little as possible).

If the margin is less than one, this means the de-
cision boundary is too close to the instance to be
confident in the prediction, or the instance is on the
wrong side of the decision boundary completely. In
this case, PA forces the size of the update to wi+1

to be proportional to the margin, regardless of how
large the update might be. This is the aggressive
component.

4.4.3 Confidence-Weighted Learning
A description of Confidence-Weighted (CW)

learning can be found in Section 1.3.2. There are

multiple variants of CW learning that address the
inherent accuracy-versus-efficiency tradeoff in any
learning algorithm. These variants differ in how they
represent the covariance matrix of the multivariate
Gaussian across all features.

As discussed by Ma et al. (2010), using the full
covariance matrix is quadratic in the number of fea-
tures, which is computationally expensive. A viable
alternative is to use only the diagonal elements of
the covariance matrix. This approximation is lin-
ear in the number of features, which is much more
tractable. The disadvantage is that diagonal approx-
imations lose information about the correlation be-
tween features, which can be used to decrease con-
vergence rates.

The variants used in this study implement the
diagonal approximation of the covariance matrix.
They differ based on whether the optimization con-
straint is based on the variance or standard deviation,
as well as how the covariance matrix is diagonal-
ized. Similar to PA, the optimization constraint in
CW is the value to which the margin yi(w ·xi) must
be greater than or equal. The original form of CW,
named CW-Var (Dredze, 2008) uses the variance in
the optimization constraint because using the stan-
dard deviation would not be convex in the covari-
ance matrix. The second form of CW, named CW-
Stdev (Crammer, 2008), uses the standard deviation
and maintains convexity with the covariance matrix
by replacing the covariance matrix with an equiva-
lent quantity that uses its eigenvalues.

Below are the variants of diagonal CW that I use
in this study.

1) Diagonal Standard Deviation Drop (Cram-
mer, 2008). The matrix is made diagonal by simply
dropping off the off-diagonal elements after the up-
date to the covariance matrix.

2) Diagonal Standard Deviation Exact (Cram-
mer, 2008). The elements of the covariance matrix
are projected onto the diagonal with an exact solu-
tion after the update. As specified in version 1.4 of
the CW library (Dredze, 2010), the details of this al-
gorithm are not given in the study by Crammer et
al. (2008), so I cannot provide further details.

3) Diagonal Standard Deviation Project (Cram-
mer, 2008). The full covariance matrix is projected
onto the diagonal elements of the matrix after the
update. This projection is performed by incorporat-
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ing into the update a diagonal matrix diag2(xi), in
which the diagonal elements are the squares of the
elements of instance xi.

4) Diagonal Variance Drop (Dredze, 2008).
Same as 1), except the optimization constraint is
based on the variance.

5) Diagonal Variance Exact (Dredze, 2008).
Same as 2), except the optimization constraint is
based the variance.

6) Diagonal Variance Project (Dredze, 2008).
Same as 3), except the optimization constraint is
based on the variance, and the diagonal matrix of
the projection is diag(xi), not diag2(xi).

4.4.4 Optimizations
Version 1.4 of the CW Library (Dredze,

2010) includes two command-line parameters
for optimizations, “optimize iterations” and “opti-
mize parameters.” The iteration optimizer deter-
mines the optimal number of iterations using the
following algorithm: 1) Create random splits of the
data; 2) Make the first split the training data and the
second split the testing data; 3) Train and test for the
default number of iterations, which is 10; 4) Com-
pute the accuracy on the testing data after each it-
eration; 5) Return the iteration number that had the
highest accuracy.

The parameter optimizer uses a similar algorithm
to determine the optimal parameter values for a
given algorithm and update type. More on the pa-
rameter values used for the tests in this study is given
in Section 5.2.

I evaluated each online algorithm with optimiza-
tions enabled and disabled to observe the effect of
the optimizations.

4.4.5 Additional Considerations
The CW Library (Dredze, 2010) has two main op-

tions: RunStreamTest and RunTrainTest. According
to the code comments, RunStreamTest reads in the
data as a stream. This prevents the data from being
loaded into memory, which can be a problem if the
training data is too large for system resources.

Conversely, RunTrainTest loads the data into
memory. Additional features of RunTrainTest in-
clude k-way cross validation, parameter optimiza-
tion, loss output, and prediction output. I chose to
use RunTrainTest to take advantage of the parameter

optimization.
Of course, using RunTrainTest meant the data had

to be loaded into memory. The training data was
470MB in size, which was too large for the original
configuration of my Java Virtual Machine (JVM).
When I first began running the code, I received JVM
errors stating that the JVM did not have sufficient
heap space. I resolved this problem by increas-
ing the maximum memory available to the JVM to
1.5GB using the -Xmx1536m command line pa-
rameter.

My workstation only had 2GB of system memory,
so this slowed it down considerably. Nonetheless,
I was able to run all tests successfully (albeit very
slowly, especially for the CW variants with expen-
sive update types).

I redirected the output from these tests to text
files stored on my local hard drive. After study-
ing the output for relevant information, I wrote a
Python script to parse these files and format them
for easy analysis. I have synthesized the output of
this Python script into the tables and figures shown
in the next section.

5 Results and Analysis

The results of my tests are given in Tables 1 - 8.
An “N/A” entry in an “Optimized” column means
the optimal number of iterations comes before the
iteration of that row. For example, iterations 2 - 10
are “N/A” in Table 1 because the optimal number of
iterations for that test was 1.

There are a number of observations to draw about
these results, as discussed below.
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Iteration Non-optimized Optimized
1 0.862376177141 0.923032900469
2 0.862376177141 N/A
3 0.862376177141 N/A
4 0.862376177141 N/A
5 0.862376177141 N/A
6 0.862376177141 N/A
7 0.862376177141 N/A
8 0.862376177141 N/A
9 0.862376177141 N/A
10 0.862376177141 N/A

Table 1: Diagonal CW with std dev drop updates.

Iteration Non-optimized Optimized
1 0.825456790202 0.921901173202
2 0.825411778322 N/A
3 0.825395702651 N/A
4 0.825392487517 N/A
5 0.825392487517 N/A
6 0.825395702651 N/A
7 0.825402132920 N/A
8 0.825395702651 N/A
9 0.825395702651 N/A
10 0.825395702651 N/A

Table 2: Diagonal CW with std dev exact updates.

Iteration Non-optimized Optimized
1 0.385230959171 0.921306373360
2 0.385224528902 N/A
3 0.385224528902 N/A
4 0.385224528902 N/A
5 0.385224528902 N/A
6 0.385224528902 N/A
7 0.385224528902 N/A
8 0.385224528902 N/A
9 0.385224528902 N/A
10 0.385224528902 N/A

Table 3: Diagonal CW with std dev project up-
dates.

Iteration Non-optimized Optimized
1 0.920309681733 0.918628166505
2 0.919882068874 0.918856441039
3 0.920319327136 0.919271193361
4 0.920669776773 N/A
5 0.920615119490 N/A
6 0.920200367168 N/A
7 0.919830626726 N/A
8 0.919538049506 N/A
9 0.919264763092 N/A
10 0.919187599870 N/A

Table 4: Diagonal CW with variance drop updates.

Iteration Non-optimized Optimized
1 0.809850528407 0.918653887579
2 0.807953599182 0.918239135257
3 0.807497050114 0.918390246568
4 0.807474544174 0.918721405399
5 0.807474544174 0.918814644293
6 0.807487404711 N/A
7 0.807487404711 N/A
8 0.807487404711 N/A
9 0.807487404711 N/A
10 0.807487404711 N/A

Table 5: Diagonal CW with variance exact up-
dates.

Iteration Non-optimized Optimized
1 0.78789759154 0.918981831276
2 0.78787187046 0.918200553646
3 0.78846667031 0.918338804420
4 0.78846345517 0.918502776268
5 0.78846345517 0.919190815004
6 0.78846345517 N/A
7 0.78846345517 N/A
8 0.78846345517 N/A
9 0.78846345517 N/A
10 0.78844416437 N/A

Table 6: Diagonal CW with variance project up-
dates.
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Iteration Non-optimized Optimized
1 0.809072465911 0.809194641014
2 0.809004948091 0.809667265753
3 0.809062820508 0.809940552167
4 0.809426130682 0.810364949892
5 0.809570811724 0.810583579023
6 0.809734783573 0.810911522719
7 0.810040221329 0.811014407016
8 0.810117384552 0.811094785373
9 0.810098093746 0.811178378864
10 0.810127029955 0.811133366985

Table 7: Accuracies for PA.

Iteration Non-optimized Optimized
1 0.715078015233 0.715078015233
2 0.721865163698 N/A
3 0.756537171774 N/A
4 0.772024473602 N/A
5 0.771159602480 N/A
6 0.772944002006 N/A
7 0.776361689745 N/A
8 0.778200746554 N/A
9 0.779779377485 N/A
10 0.781917441781 N/A

Table 8: Accuracies for Perceptron.

5.1 General Accuracies

As expected, the accuracies from best to worst are:
1) CW; 2) PA; 3) Perceptron. The highest accura-
cies attained by each of these three algorithms are
shown in Figure 1. These results mirror that of Ma
et al. (2009).

Perceptron is the simplest algorithm because it ap-
plies a fixed update rule. As such, it cannot adjust
its weight values to the degree of the mistake. As
stated by Ma et al. (2009), Perceptron is unable to
make fine-grained updates because: 1) it makes no
updates after correct predictions; 2) it applies up-
dates equally among all features. This is most likely
why Perceptron has the lowest accuracy of the three
algorithms.

PA improves upon Perceptron because PA’s up-
date considers the size of the margin. This avoids
fixed updates by taking into account the severity of
an incorrect prediction. It therefore makes sense that
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Figure 1: The highest accuracies achieved by each of the
three online algorithms tested in this study.

PA’s accuracy is higher than that of Perceptron.
However, both Perceptron and PA update individ-

ual features equally, regardless of how the features
differ from each other with respect to the dataset.
Only CW adapts its feature updates to the confi-
dence it has in its weight values. This is presum-
ably why CW has higher accuracies than both Per-
ceptron and PA. These results are quite similar to
those shown by Ma et al. (2009).

5.2 Optimizations

As discussed in Section 4.4.4, I ran all tests with op-
timizations enabled and disabled. The results shown
in Tables 1 - 8 show the optimized number of iter-
ations for each test. The optimized parameters for
each test are shown in Table 9. Note that if the test
was not optimized, the parameter values would be
the defaults, which was 1.0 for both φ (CW) and C
(PA).

The parameter φ for CW represents the confi-
dence parameter, which is defined as:

φ = Φ−1(η)

Here Φ represents the cumulative function of the
standard normal distribution and η represents the
confidence hyperparameter, defined in
η ∈ [0, 1] (Dredze, 2008).

The parameter C represents the aggressiveness
parameter in the PA-I variant of PA (Crammer,
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Algorithm Parameter Value
CW St. Dev. Drop φ 0.1281
CW St. Dev. Exact φ 0.0803
CW St. Dev. Project φ 0.1351
CW Var. Drop φ 0.0100
CW Var. Exact φ 0.0055
CW Var. Project φ 0.0055
PA C 0.00325
Perceptron N/A N/A

Table 9: The optimized parameter values for each test.
Note that if optimizations were not enabled, the default
values for these parameters would be used. The default
value was 1.0 for both φ and C.

2006). This parameter governs how aggressive the
aggressive update step of PA should be (see Section
4.4.2).

The results shown in Tables 1 - 6 for CW tests
show that both iteration and parameter optimization
greatly improve CW’s accuracies. This might be be-
cause the optimized φ values of the CW tests are all
much smaller than the default value of 1.0.

Interestingly, when optimizations are enabled, all
three CW std dev update types display the same
behavior, which is 1 iteration yielding an accuracy
around 0.92. Similarly, with optimizations enabled,
all three CW variance updates types display the
same behavior, which is 3-5 iterations yielding ac-
curacies around 0.919. When viewed together, all
forms of CW with optimizations enabled yield an
accuracy around 0.92. This is surprising because the
optimized φ values among the CW tests vary widely,
from 0.0055 to 0.1351. I interpret this to mean there
is strong consistency and similarity in how the CW
variants behave when each is optimized to its fullest
extent.

Conversely, optimizations do not improve the ac-
curacies of PA or Perceptron. With PA, this makes
partial sense because the non-optimized and opti-
mized number of iterations is the same, with roughly
equivalent accuracies for each. However, it is unex-
pected that the accuracies would be so similar with
such different parameter values for C (1.0 for non-
optimized and 0.00325 for optimized). It appears
that C did not much influence how PA classified the
KDD dataset. With Perceptron, there are no param-
eters to optimize because the update rule is fixed.

This is why the first iteration of the optimized and
non-optimized tests have the same accuracy. Conse-
quently, there is nothing to optimize for Perceptron.

My interpretation is that the granularity by which
an algorithm can adjust its updates governs how well
optimization can improve it. Perceptron has by far
the least scalable updates, as its updates are fixed.
This is why there is nothing to optimize with Percep-
tron. PA improves upon this by adjusting its updates
proportionally to the margin, or confidence of pre-
diction. This might explain why it is the middle of
the road between Perceptron and CW with respect to
optimization benefits. Lastly, CW is by far the best
in terms of granularly adjusting its updates, thus it
shows the highest optimization benefit.

5.3 Convergence Rates

For this study, I define convergence rate as the num-
ber of iterations required before the accuracy stops
changing. This represents the time at which the
weight values no longer get updated after further it-
erations. Faster convergence rates are desirable for
increased efficiency.

My hypothesis was that CW would demonstrate
faster convergence than both PA and Perceptron be-
cause of CW’s ability to selectively update its model.
The data seems to support this. Neither PA nor
Perceptron converges within 10 iterations. Con-
versely, 4 of the 6 CW variants (std dev drop,
std dev exact, std dev project, and
variance exact) converge within 10 iterations.
Of those 4, std dev drop converges after the
first iteration and std dev project converges
after the second iteration. In general, all of the
std dev variants converge, with two of them
converging immediately. However, only 1 of
the 3 variance variants converges. Strangely,
variance project seems to converge after the
fourth iteration, but then its accuracy changes on the
tenth and final iteration.

The conclusion that CW converges faster than
other online algorithms matches that found by
Dredze et al. (2008). In their study, they find that
multiple CW variants converge faster than PA on
three popular datasets for Natural Language Pro-
cessing.
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5.4 CW Variants

I tested all six variants of diagonal CW, as described
in Section 4.4.3. Tables 1 to 6 show several interest-
ing trends.

Overall, accuracies for the diagonalization meth-
ods from highest to lowest were drop, exact,
and project. A true diagonal covariance matrix
for a multivariate Gaussian distribution signifies that
the distribution is actually composed of independent
Gaussians in each dimension, all of which are in-
dependent of each other. For CW, a diagonal co-
variance matrix means that each feature’s Gaussian
is completely independent from all other features’
Gaussians. As discussed in Section 4.4.3, the use of
the diagonal covariance matrix is an approximation
designed for efficiency, but at the risk of losing in-
formation (thus accuracy) about the correlation be-
tween different features. The three different diag-
onalization methods differ in where they fall in the
accuracy-versus-efficiency tradeoff.

Because drop updates have the highest accura-
cies, it appears there was not much correlation be-
tween features. Rather, the features appear to be
independent of each other. This is because drop
simply eliminates all off-diagonal elements of the
covariance matrix. That is, the off-diagonal ele-
ments in drop have no influence on the model. The
fact that drop still has the highest accuracies might
mean the off-diagonal elements were not meaning-
ful to the data. This would in turn mean the features
were not highly correlated with each other2.
project updates show the lowest accuracies. It

appears that the projection method of diagonaliza-
tion (see Section 4.4.3) is not appropriate for this
dataset.

In general, variance updates show higher ac-
curacies than std dev updates. This confuses me
because std dev updates outperform variance
updates in the study conducted by Crammer et
al. (2008). It appears that for this dataset, constraints

2The counterargument would be that several of my features
are binary-feature representations of the same multiclass sym-
bolic feature, as described in Section 4.2. That is, if a feature
was originally represented by more than two discrete values,
I represented them by creating binary features for all possible
values, then for each instance one of those features would be
one and the rest would be zero. These features would not be
independent of each other as a result of this expansion.

on the margin based on variance, as well as based on
the covariance matrix in its original form, provide
more accurate weight values during updates.

Finally, I am perplexed as to why the non-
optimized accuracies of std dev project are
so low. Perhaps it is because the default value of φ
(1.0) was not appropriate for this dataset. The weak-
ness of this theory is that the φ value of std dev
project is closer to the default value than any
other CW variant. The most plausible argument is
that std dev performed worse than variance,
and project performed worse than drop and
exact, so it would make sense that their combi-
nation would produce low accuracies. This might
also explain why variance drop has the highest
accuracies when both optimized and non-optimized
iterations are considered, as variance and drop
have the highest accuracies in their respective fami-
lies.

I attempted to step through the code with a de-
bugger to determine why std dev projectwas
performing so poorly, but I ran into a number of
problems. Because the training and testing datasets
were so large, I had to increase the maximum avail-
able memory to the Java Virtual Machine (JVM) to
1.5GB in order to begin running my tests. Despite
many repeated efforts and querying of Internet re-
sources, I could not get my Eclipse Integrated Devel-
opment Environment to increase its maximum JVM
memory. This is why I had to run my Java appli-
cations from the command line. However, I was
not savvy enough with debugging Java applications
from the command line (e.g., jdb) to make progress
with this approach in the time I had remaining to
complete the project. I could not debug the full data
in Eclipse because I could not expand the maximum
available memory to the Eclipse JVM.

I also attempted to debug the data in Eclipse
with RunStreamTest (see Section 4.4.5) so that
I would not have to load all of the data into mem-
ory. However, I received error messages that I had
not seen when running RunTrainTest, to which
there did not appear to be an immediate solution.

Rather than debug these errors, I chose to divide
the data into smaller random splits, and then run the
debugger in Eclipse on these smaller datasets using
RunTrainTest. The downside to this was that I
would be changing the statistical properties of the
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data. I proceeded anyway because it was one of my
few remaining options.

I noticed a large number of messages that stated,
”Making no update because of invalid alpha,” where
alpha was infinity or Not a Number (NaN). These
seemed like a good place to start in debugging the
low accuracies for std dev project. Unfortu-
nately, I found it very difficult to precisely examine
the properties of sample instances that generated this
error because there were many instances that did not
generate the error. I am confident that I could de-
duce more information on this given more time, but
time did not fully permit in this study.

5.5 Comparison to Batch Algorithms
In their study, Ma et al. (2009) show that recently
developed online algorithms such as CW can be
equally as accurate as batch algorithms. This con-
tradicts the general advice to use batch algorithms
whenever possible (Dredze, 2008).

It would be quite insightful to see if the results of
this study support or reject this finding by Ma et al..
I did not have enough time to run several batch algo-
rithms on the KDD datasets, but fortunately Taval-
laee et al. (2009) ran these tests already, so I can
compare accuracies with their results.

It should be noted that a direct comparison be-
tween the results of Tavallaee et al. (2009) and this
study cannot be made. Tavallaee et al. randomly di-
vided the KDD training dataset into three subsets,
each of 50,000 instances. Their batch algorithms
were then trained on all of these subsets. Presum-
ably the authors did this because their batch algo-
rithms would not have been able to process the en-
tire KDD training dataset (which is one of the main
advantages of using online learning). Even though
Tavallaee et al. and I were not training on exactly the
same training data, in theory the training sets were
close enough for a comparison to be valid.

As pointed out by Mark Dredze, I can attempt to
train and test on the same datasets as Tavallaee et
al. (2009) by randomly creating different splits un-
til I observe the same accuracies on the batch algo-
rithms as in their study. This would provide a more
level comparison between CW and the batch algo-
rithms used in their study. I leave this as future work
for my project.

One further point should be made about the study

by Tavallaee et al.. The authors note that the distri-
bution of the KDD testing dataset is skewed, lead-
ing to inflated accuracies that prevent generalization
to a realistic NIDS performance (discussed further
in Section 6). The authors therefore provide an al-
ternate dataset with a modified distribution to cor-
rect these problems. Future work of this study is to
test CW and other online algorithms on the modified
dataset. However, for the purposes of this study, the
fact that my tests and that of Tavallaee et al. use (ap-
proximately) the same training and testing datasets
means that our results can still be compared.

Accordingly, the accuracies for the batch algo-
rithms of Tavallaee et al. and for CW are shown
in Figure 2. Tavallaee et al. implemented their tests
using the Weka (2008) collection, and used the de-
fault values for all parameters. The batch algorithms
they implemented were the following: J48 Decision
Tree (Quinlan, 1993), Naive Bayes (John, 1995),
NBTree (Kohavi, 1996), Random Forest (Breiman,
2001), Random Tree (Aldous, 1991), Multilayer
Perceptron (Ruck, 1990), and Support Vector Ma-
chine (Chang, 2001).

It can be seen from Figure 2 that CW performs
comparably with all batch algorithms used by Taval-
laee et al. This supports the results found by Ma et
al. (2009).

6 Problems with the KDD Cup 1999
Dataset

Since it was made available, several researchers have
criticized the validity of the KDD dataset for NIDS
research. Tavallaee et al. (2009) compile the various
arguments that have been made against it, which I
summarize in this section.

The KDD dataset has many duplicate records.
The training and testing datasets have 78% and
75% duplicate records, respectively. Tavallaee et
al. (2009) state the following on how this affects
training:

This large amount (sic) of redundant
records in the train set will cause learn-
ing algorithms to be biased towards the
more frequent records, and thus prevent
it from learning unfrequent (sic) records
which (sic) are usually more harmful to
network such as U2R attacks.
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Figure 2: Accuracies of the batch algorithms used by Tavallaee et al. (2009) and CW. As shown, CW (an online
algorithm) performs comparably to all batch algorithms used in the Tavallaee et al. study. This supports the results
found by Ma et al. (2009).

It is interesting that this is exactly what CW pre-
vents (see Section 1.3.3). This might explain the
high accuracies that optimized CW shows on the
KDD datasets.

Nonetheless, for algorithms that do not make ad-
justments similar to CW, this large number of du-
plicate records is indeed problematic. Furthermore,
learning algorithms that have better prediction on
the duplicate records will show inflated and mislead-
ing accuracies as a result.

6.1 Criticisms of the 1998 DARPA Intrusion
Detection Evaluation Datasets

The following criticisms (Tavallaee, 2009) pertain
primarily to the NIDS datasets generated in 1998 by
MIT Lincoln Labs on behalf of DARPA (see Section
3).

Realism. The data was generated as a simulation
of network traffic typical of U.S. Air Force bases.
Unfortunately, there has been no substantial valida-
tion that this simulation was realistic. Moreover, the
data is not similar in nature to network traffic from
other production networks.

Overloading. Tcpdump was one of the primary
tools to capture data. Due to the massive size of net-
work traffic (see Section 2.2), capture tools such as

tcpdump often become overloaded and begin drop-
ping packets. However, there was no study con-
ducted as to whether this was a problem during data
collection.

Definitions. What constitutes an attack in net-
work security varies among researchers and across
environments. No rigorous definitions or construc-
tions were made as to the nature of the labeled at-
tacks.

Lastly, Mahoney and Chan (2003) identify sim-
ulation artifacts in the DARPA dataset by compar-
ing its network traffic with real network traffic from
a university departmental server. They show that
these artifacts allow NIDS implementations to de-
tect attacks purely from artifacts of how the simu-
lation was performed, rather than actual character-
istics of real network traffic. This leads to higher
accuracy rates than can be expected in realistic en-
vironments. In addition, the simulated data does
not contain the same level of garbled network traffic
(e.g., IP fragments, bad checksums, and malformed
arguments) that is normally observed in real network
traffic. This would lead to fewer false alarms than
can be expected in most production systems.
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6.2 Criticisms of the KDD Cup 1999 Dataset

As described in Section 4.1, the KDD dataset was a
distillation of the 1999 DARPA dataset. The KDD
dataset inherited some (but not all) of the criticisms
of the DARPA dataset, and earned a few of its own.

One of the main KDD-only criticisms was re-
ported by Portnoy et al. (2001) and Leung and
Leckie (2005). These researchers found that the dis-
tribution of attacks across the datasets was very un-
even. This made their attempts at cross-validation
difficult, as some of their folds would contain only
one type of attack. Furthermore, Leung and Leckie
discovered that 2 of the attacks in the testing data
set, smurf and neptune (both Denial-of-Service
attacks), were responsible for 71% of the entire test-
ing data set. This creates a hugely uneven distribu-
tion during testing.

7 Comparison to Proposal

Overall, most of the hypotheses from my proposal
were correct. CW does indeed perform well on
NIDS datasets. Furthermore, CW outperforms other
online algorithms, and is comparable (if not better)
than many batch algorithms. This supports the find-
ings of Ma et al. (2009).

Due to time constraints, I was unable to perform
the same granular study as do Ma et al.. I wanted
to test continuous versus interval-based training, as
well as variable versus fixed number of features.
However, testing and analyzing the results of all six
diagonal CW variants required a substantial amount
of time. Performing the remaining tests is future
work of this study.

In addition, I wanted to test on other NIDS
datasets to improve the confidence of my results.
Doing so would allow me to generalize them more
convincingly to the NIDS community. This is addi-
tional future work.

Lastly, I wanted to run tests with full and fac-
tored (Ma, 2010) versions of CW (not just diagonal).
Once again, time did not permit, and thus this is left
as future work.

8 Conclusion

The results of this study show a high potential for
applying CW to NIDS research. This is due to large

sizes of NIDS datasets and dynamic feature distri-
butions. CW outperforms two commonly used on-
line algorithms, Perceptron and PA, in both accu-
racy and convergence rates. In addition, CW per-
forms comparably to many batch algorithms. These
results question the general counsel that batch algo-
rithms should always be applied when feasible.

Unfortunately, there are several issues with the
KDD dataset that prevent a wide generalization to
broader NIDS environments. However, the results
from this study justify further inquiry into the appli-
cation of CW to NIDS research.
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