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Sensitivity of Legged Balance Control
to Uncertainties and Sampling Period

Nahuel A. Villa1, Johannes Englsberger2 and Pierre-Brice Wieber1

Abstract—We propose to quantify the effect of sensor and
actuator uncertainties on the control of the center of mass
and center of pressure in legged robots, since this is central
for maintaining their balance with a limited support polygon.
Our approach is based on robust control theory, consider-
ing uncertainties that can take any value between specified
bounds. This provides a principled approach to deciding optimal
feedback gains. Surprisingly, our main observation is that the
sampling period can be as long as 200 ms with literally no
impact on maximum tracking error and, as a result, on the
guarantee that balance can be maintained safely. Our findings
are validated in simulations and experiments with the torque-
controlled humanoid robot Toro developed at DLR. The proposed
mathematical derivations and results apply nevertheless equally
to biped and quadruped robots.

Index Terms—Legged robots, Balance control, Robust control,
Sampling period, Bounded input bounded output.

I. INTRODUCTION

B IPED and quadruped robots are beginning now to mas-
ter the skill of walking dynamically in most standard

situations [2], [4], [9]. This suggests that more widespread
commercial use of such robots will soon be possible. This
requires, however, that guarantees are provided about their
safety and operational performance. In research prototypes,
the risk of failure is usually contained by using very fast and
precise (and therefore very expensive) sensors, actuators and
computers, resulting in robots that are clearly too expensive
for commercial purposes.

The dynamics of the Center of Mass (CoM) of these robots
over the support feet is unstable, and therefore very sensitive
to all sources of uncertainties. But how fast and precise,
and therefore how expensive should the sensors, actuators
and computers be has never been investigated in the existing
scientific literature. A precise quantification of the effect of
uncertainties and sampling period on legged balance control
seems to be missing, and it is the goal of this paper to initiate
this discussion.

The balance of legged robots mostly involves motion of their
CoM with respect to their feet on the ground. We therefore
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Fig. 1. Toro is a torque-controlled humanoid robot developed at DLR [3].

focus our analysis on the motion of the CoM, considering
that other aspects of the motion of the robot, such as precise
whole-body joint motion and contact force control, are handled
separately, as usual in this field of robotics [15].

We introduced in [14] a tube-based Model Predictive Con-
trol (MPC) of walking in order to guarantee that all kinematic
and dynamic constraints are always satisfied, even in the pres-
ence of uncertainties. We considered that uncertainties can take
any value between some bounds, generating some tracking
error which can be bounded accordingly. Here, we propose
to analyse how these bounds are related: how much tracking
error can we expect for a given amount of uncertainty? This
naturally depends not only on the kind of uncertainty (e.g.
on sensors or actuators), but also on the control law and its
sampling period.

Our findings are validated in experiments and simulations
with the torque-controlled humanoid robot Toro developed
at DLR (Fig. 1). The proposed mathematical derivations and
results apply nevertheless indistinctly to biped and quadruped
robots.

Section II introduces basic aspects of the CoM dynamics.
A standard feedback control law is proposed and conditions
for its stability are determined in Section III. The dynamics
of the tracking error is analysed in Section IV and related
to the bounded uncertainties in Section V. Feedback gains
are then optimized to minimize the span of the tracking
error in Section VI. Our theoretical analysis is validated
experimentally and in simulations on the torque-controlled
humanoid robot Toro in Section VII. Finally, we summarize
our conclusions in Section VIII.
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II. WALKING MODEL

Consider a legged robot walking on flat, horizontal ground.
The Center of Pressure (CoP) p of the contact forces with
the ground can be related to the motion of the Center of
Mass (CoM) c of the robot and its angular momentum L as
follows [15]:

px,y = cx,y − mcz c̈x,y − SL̇x,y

m(c̈z + gz)
, (1)

where x and y indicate horizontal coordinates, gz is the vertical
acceleration due to gravity, m the mass of the robot and
S =

[
0 −1
1 0

]
a π

2 rotation matrix. Due to the unilaterality of
contact forces, this CoP is bound to the support polygon P(t),
which varies with time depending on which feet are in contact
with the ground and where:

p ∈ P(t). (2)

This can be reformulated as a dynamics

c̈x,y = ω2(cx,y − px,y + nx,y), (3)

with some constant value ω2 ≈ gz

cz , gathering all non-
linearities in a vector

n =
c̈

ω2
− mcz c̈− SL̇
m(c̈z + gz)

, (4)

which can be bounded efficiently [1], [12]:

n ∈ N . (5)

Since the x and y coordinates appear to be decoupled, we will
consider only the x coordinate in the following.

Assuming that p and n are constant over time intervals of
length τ , we can obtain a discrete-time linear system following
a standard procedure [11]:

x+ = Ax+B(p− n), (6)

with matrices

A =

[
cosh(ωτ) ω−1 sinh(ωτ)
ω sinh(ωτ) cosh(ωτ)

]
, (7)

B =

[
1− cosh(ωτ)
−ω sinh(ωτ)

]
, (8)

and x+ the successor of the state

x =

[
cx

ċx

]
∈ X (t), (9)

where X (t) represents time-varying kinematic constraints on
the CoM motion.

III. STABLE FEEDBACK GAINS

We control the CoP p using a linear feedback with com-
pensation of n:

p = pref +K(x− xref ) + n (10)

with feedback gains of the form

K = k
[
1 λ

]
(11)

in order to track a reference trajectory xref , pref (obtained with
any standard motion generation scheme [15]). If the reference
trajectory follows the dynamics (6) without n:

x+ref = Axref +Bpref , (12)

this leads to a closed-loop dynamics

x̃+ = (A+BK)x̃ (13)

of the tracking error

x̃ = x− xref . (14)

Consider the two poles, q1 and q2, related to this closed-loop
dynamics as follows:

q1q2 = det(A+BK)

= 1− k + k cosh(ωτ)− kλω sinh(ωτ), (15)
q1 + q2 = tr(A+BK)

= k + (2− k) cosh(ωτ)− kλω sinh(ωτ). (16)

Following Jury’s simplified stability criterion [8], this closed-
loop dynamics is stable if and only if:

q1q2 < 1, (17)
(q1 − 1)(q2 − 1) = q1q2 − (q1 + q2) + 1 > 0, (18)
(q1 + 1)(q2 + 1) = q1q2 + (q1 + q2) + 1 > 0, (19)

which corresponds to the following constraints represented in
Fig. 2:

λ >
cosh(ωτ)− 1

ω sinh(ωτ)
, (20)

k > 1, (21)

kλ <
cosh(ωτ) + 1

ω sinh(ωτ)
. (22)

IV. FROM UNCERTAINTIES TO TRACKING ERROR

Consider that the CoP is affected by a bounded additive
uncertainty

v ∈W (23)

coming from actuators, sensors and model errors (a precise
expression will be introduced in Section VI), such that the
CoP in the linear feedback (10) actually is:

p = pref +K(x− xref ) + n+ v. (24)

The closed-loop dynamics (13) becomes

x̃+ = (A+BK)x̃+Bv. (25)

If the closed-loop matrix A+BK is stable, then when time
tends to infinity, the tracking error x̃ converges to a set Z:

x̃→ Z =

∞⊕
i=0

(A+BK)iBW, (26)

where the symbol ⊕ represents a Minkowski sum1. Following
(25) and (26), once the tracking error is in Z, it stays in Z
for every future time [10]:

∀v ∈W, x̃ ∈ Z =⇒ x̃+ ∈ Z. (27)

1Given sets A and B, A⊕B = {a+ b | a ∈ A, b ∈ B}.
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Fig. 2. Following Jury’s simplified stability criterion, the region of feedback
gains k−1 and λ that lead to a stable closed-loop dynamics is a triangle, where
λ varies between cosh(ωτ)−1

ω sinh(ωτ)
and cosh(ωτ)+1

ω sinh(ωτ)
while k−1 varies between

cosh(ωτ)−1
cosh(ωτ)+1

and 1. The thin blue lines correspond to having both poles equal,
at least one pole equal to e−ωτ (when λ = ω−1), or at least one pole equal
to zero. The gray area corresponds to having both poles positive real, and at
least one greater or equal to e−ωτ .

We use this robust positive invariance property to ensure a
bounded tracking error

x̃ ∈ Z, (28)

provided that the robot motion starts within these bounds. As
an example, the tube-based MPC scheme proposed in [14]
for biped walking generates the reference motion xref online
under this condition.

This precise bound on the tracking error allows guaranteeing
that the kinematic constraint (9) will always be satisfied, even
with the uncertainty (23), provided that

xref ∈ X (t)	 Z, (29)

where the symbol 	 represents a Pontryagin difference2. In
this case, the corresponding CoP tracking error

p̃ = p− pref − n = Kx̃+ v (30)

is bounded accordingly:

p̃ ∈ KZ ⊕W, (31)

so we can guarantee that the support polygon constraint (2)
will be satisfied as well, provided that

pref ∈ P(t)	N 	KZ 	W. (32)

Feasibility of the reference motion generation and tracking
imposes that the sets in (29) and (32) are non-empty. The
support polygon P(t) constraining the CoP is normally smaller
than the kinematic constraints X (t) on the CoM motion. And
the bound KZ⊕W on the CoP tracking error is larger than the

2Given sets A and B, A	B = {x | x+B ⊆ A}.

bound Z on the CoM tracking error when using stable gains
K, satisfying condition (21). Thus, as usual in the balance of
legged robots, the constraint (32) on the CoP is the limiting
factor, and we look to reduce specifically the bound KZ⊕W
on the CoP tracking error.

V. COP TRACKING ERROR DUE TO UNCERTAINTIES

Using definition (26) of the set Z, the bound (31) on the
CoP tracking error becomes:

p̃ ∈
∞⊕
i=0

K(A+BK)iBW ⊕W. (33)

Considering a real interval

W = [vmin , vmax ], (34)

the maximum and minimum values for p̃ are reached with
opposite sequences of maximum and minimum values vmax

and vmin , depending on the sign of each real coefficient
K(A+BK)iB. This results in

p̃max − p̃min =

( ∞∑
i=0

∣∣K(A+BK)iB
∣∣+ 1

)
(vmax − vmin).

(35)
We can introduce then the spans

p̃span = p̃max − p̃min (36)

and
vspan = vmax − vmin , (37)

and the ratio

r =
p̃span
vspan

=

∞∑
i=0

∣∣K(A+BK)iB
∣∣+ 1 (38)

between the amount of uncertainty and the resulting amount
of CoP tracking error.

The gray area in Fig. 2 corresponds to having both poles q1
and q2 positive real, and at least one greater or equal to e−ωτ .
The extent of this area depends on the product ωτ , but inside
this area, the above ratio is

r =
1

k − 1
+ 2, (39)

as shown in the Appendix, which is surprisingly independent
from λ, ω and τ . It can be observed numerically that this
is actually the minimum possible ratio. Within this area, the
choice λ = ω−1 is particularly interesting since it maximizes
controllability [13]. We consider therefore feedback gains of
the form:

K = k
[
1 ω−1

]
. (40)

In that case, we obtain poles

q1 = e−ωτ , (41)
q2 = 1− (k − 1)(eωτ − 1) (42)

from (15) and (16). Borrowing from the Appendix the refor-
mulation (59) of the infinite sum (38) with coefficients (65)
and (66), we obtain that the above ratio becomes

r =
k(eωτ − 1)

1− |q2|
+ 1. (43)
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Depending on the sign of q2 (positive being inside of the gray
area, negative being outside), we have:

r =


1

k−1 + 2 if eωτ − 1 ≤ 1
k−1 ,

2+(eωτ−1)
2−(k−1)(eωτ−1) if 1

k−1 ≤ eωτ − 1 < 2
k−1 .

(44)

When eωτ−1 ≥ 2
k−1 , the closed loop is unstable and the ratio

r is undefined.

VI. OPTIMAL GAINS AND SAMPLING PERIODS

With feedback gains of the form (40), the linear feedback
with uncertainties (24) can be reformulated as

p = pref + k(ξ − ξref ) + n+ v, (45)

where
ξ = c+ ω−1ċ (46)

is the Capture Point (CP) [15]. Considering an error ξ̂ in the
estimation of the CP ξ and an error n̂ in the model of the robot
(including inaccuracies in the actuation and ground contact),
this linear feedback actually becomes

p = pref + k(ξ + ξ̂ − ξref ) + n+ n̂, (47)

corresponding to an uncertainty v of the form:

v = kξ̂ + n̂. (48)

Using the ratio (38), the resulting span of CoP tracking error
is:

p̃span = rk ξ̂span + r n̂span . (49)

Based on (44), its minimum value

p̃∗span =

(√
ξ̂span +

√
2(ξ̂span + n̂span)

)2

(50)

is obtained using a feedback gain

k∗ = 1 +

√
ξ̂span + n̂span

2ξ̂span
. (51)

Typical values for these sources of uncertainties are n̂span =
ξ̂span = 1 cm [5], resulting in a minimal span of CoP tracking
error p̃∗span = 9 cm, corresponding to Toro’s feet width. In this
case, the optimal gain is k∗ = 2.

But the key observation in (44) is that once a gain k has
been decided, the ratios r and rk don’t depend on the sampling
period τ , as long as it is shorter than

τ0 = ω−1 ln

(
1

k − 1
+ 1

)
. (52)

The maximum CoP tracking error p̃span is not improved by
reducing the sampling period below this value, but it degrades
sharply when τ > τ0, as shown in Fig. 3. When k = 2,
τ0 = ω−1 ln 2 = 216 ms (ω ≈ 3.2 s−1 for Toro).
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Fig. 3. Span of the CoP tracking error p̃span produced by model and
estimation errors with span n̂span = ξ̂span = 1 cm, using the optimal
feedback gains k = 2 and λ = ω−1 (ω ≈ 3.2 s−1 for Toro) for
different sampling periods τ . The tracking error degrades sharply when
τ > ω−1 ln 2 = 216 ms, but it doesn’t improve for sampling periods below
this value.

VII. EXPERIMENTAL RESULTS

The CP linear feedback (45) is implemented in the hu-
manoid robot Toro, with a feedback gain k = 2 as discussed
above, together with a standard Quadratic Program (QP) based
inverse dynamics scheme for Whole-Body Control (WBC) of
joint positions and contact forces [3]. The sampling period of
the QP-based WBC is kept constant at 3 ms while varying the
sampling period τ of the CP feedback (45). The reference
trajectory for a simple sequence of steps is actually not
adapted to the sampling period, making it more difficult to
track precisely at each contact transition with longer sampling
periods (see video).

We can observe in Fig. 4 that in experiments with Toro,
the lateral CP and CoP tracking performances are similar
and satisfactory when τ = 51 ms or 120 ms, as expected
from our theoretical analysis. For longer sampling periods, the
WBC generates larger arm motions in order to compensate
angular momentum variations, which ends up triggering an
emergency stop due to the increased risk of collision (see
video). The resulting failure originates in the QP-based WBC
and not the CP linear feedback (45), so this doesn’t contradict
the proposed theoretical analysis. In simulations, this safety
system is not triggered and we can observe in Fig. 5 that the
tracking performance is maintained at a satisfactory level for
sampling periods up to τ = 216 ms while degrading sharply
afterwards, validating strikingly well the theoretical analysis
proposed above.

VIII. DISCUSSION AND CONCLUSION

We quantify the effect of sensor and actuator uncertainties
on the CoM and CoP tracking error in legged robots, since this
is central for maintaining their balance with a limited support
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Fig. 4. Lateral component of walking experiments with the humanoid robot
Toro using a feedback gain k = 2 and sampling period τ = 51 ms (top) or
τ = 120 ms (bottom). The CP ξ is represented in blue, while the CoP is in
dashed black. The reference values ξref and pref are indicated with dotted
lines.

polygon. Our approach is based on robust control theory,
considering uncertainties that can take any value between some
bounds. The relationships we obtain can be used during the
design stage of a legged robot, when looking for the best com-
promise between sensor, actuator, and CPU performance and
cost. This principled approach also provides the corresponding
optimal feedback gains.

Our main observation is that the sampling period for a
human-sized humanoid robot such as Toro can be as long
as 200 ms with literally no impact on maximum tracking
error and, as a result, on the guarantee that balance can
be maintained safely. Concerning quadruped robots, stable
locomotion has been realized recently with similarly low,
15 Hz control rates [6]. Faster sampling periods might be
useful for other aspects of the motion of the robot, such as
arm or swing leg motion, but not for CoM motion.
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Fig. 5. Lateral component of walking simulations with the humanoid robot
Toro using a feedback gain k = 2 and sampling periods τ = 216 ms (top)
or τ = 232 ms (bottom). The CP ξ is represented in blue, while the CoP is
in dashed black. The reference values ξref and pref are indicated with dotted
lines.

This provides some freedom in the choice of the sampling
period, which helped us achieve a substantial reduction of the
oscillations mentioned in [3] by avoiding structure resonance
modes. This could also help reduce energy consumption,
using lower gains, estimating the state and computing the
control law less often (CPU power consumption has been
observed to represent a significant fraction of the whole power
consumption of the robot Toro [7]).

The proposed analysis doesn’t consider maintaining balance
by actively using angular momentum (whirling limbs in the
air) or modifying the support polygon by making a step.
Investigating how uncertainties relate to the decision to make
steps, when, how and where, is our next goal.
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APPENDIX

If each real coefficient K(A + BK)iB in the infinite
sum (38) is negative, we actually have

r = −Kh+ 1, (53)

where

h =

∞∑
i=0

(A+BK)iB. (54)

By construction, this vector h is the solution of

h = (A+BK)h+B, (55)

which can be easily obtained:

h =

[
1

1−k
0

]
, (56)

resulting in a ratio

r =
1

k − 1
+ 2 (57)

independent from λ, ω and τ .
In order to show that this is the case in the gray area of

Fig. 2, factorize the closed-loop matrix as follows:

A+BK =M

[
q1 0
0 q2

]
M−1, (58)

with an invertible matrix M , so that:

r =

∞∑
i=0

∣∣∣∣KM [
qi1 0
0 qi2

]
M−1B

∣∣∣∣+ 1

=

∞∑
i=0

∣∣α1q
i
1 + α2q

i
2

∣∣+ 1, (59)

with coefficients α1 and α2 obtained directly from the matrices
KM and M−1B. Reorganize each of these terms:

α1q
i
1 + α2q

i
2 = (α1 + α2)q

i
1 + α2(q

i
2 − qi1), (60)

considering that the two poles are positive real and ordered as
follows:

0 ≤ q1 ≤ q2 < 1. (61)

The first element is negative since we can observe from (38)
and (59), and then from (16) that

α1 + α2 = KB (62)
= k − k cosh(ωτ)− kλω sinh(ωτ) (63)
= q1 + q2 − 2 cosh(ωτ) < 0. (64)

With the help of a computer algebra system, we can actually
obtain that

α1 =
1− q1

(k − 1)(q1 − q2)
(q1q2 − 1 + k(1− q1)), (65)

α2 =
1− q2

(k − 1)(q2 − q1)
(q1q2 − 1 + k(1− q2)). (66)

Having α2 also negative would complete the proof. The
fraction on the left is positive, so α2 has the same sign as
the term on the right. When λ ≥ ω−1, this term can be
reformulated, using (15), as

k(cosh(ωτ)− λω sinh(ωτ)− q2) ≤ k
(
e−ωτ − q2

)
. (67)

When λ ≤ ω−1, the gray area satisfies k ≤ 1 + e−ωτ , so

q1q2 − 1 + k(1− q2) ≤ q22 − 1 + k(1− q2) (68)
≤ (1− q2)(k − 1− q2) (69)
≤ (1− q2)(e−ωτ − q2). (70)

In both cases, this term is negative since at least one pole is
greater or equal to e−ωτ in the gray area, so q2 ≥ e−ωτ .
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