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PREFACE.

IN the present treatise I have attempted to give an exposition
of the Theory of Determinants and their more important appli-
cations. In every case where it was possible I have consulted
the original works and memoirs on the subject; a list of those
I have been able to see is appended as it may i)e useful to others
pursuing the same line of study. At one time I hoped to make
this list exhaustive, supplementing my own researches from- the
literary notices in foreign mathematical journals, but even with
this aid I found that it would be necessarily incomplete. In
consequence of this the list has been restricted to those memoirs
which I have seen, the leading results of which are incorporated
either in the body of the text or in the examples.

The principal novelty of the treatise lies in the systematic
use of Grassmann's alternate units, by means of which the study
of determinants is, I believe, much simplified.

I have to thank my friend Mr Jas. BARNARD, MLA. of St John’s
College and Mathematical Master at the Proprietary School,
Blackheath, for the care he has bestowed on correcting the proofs

and for many valuable suggestions.

R. F. SCOTT.
Feb. 1880.

s. D. 3
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THEORY OF DETERMINANTS.

CHAPTER I

Introduction.

1. THE object of the theory of Determinants is to obtain
compendious and simple methods of dealing with large numbers
of quantities. In the words of Professor Sylvester, “It is an
algebra upon an algebra; a calculus which enables us to combine
and foretell the results of algebraical operations in the same way
as algebra itself enables us to dispense with the performance of
the special operations of arithmetic.”

It will be found that the advantages and success of the
method depend in great measure upon the notations which have
been employed.

2. To indicate concisely the quantities discussed different
notations have been used. The numbers belonging to the same
class being denoted by the same letter, the different numbers of
that class are distinguished by affixing numbers or letters, e.g.
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We have frequently to deal with a series of such classes, each
containing the same number of elements; these when written
one under the other in rows form a rectangular array, the
class being denoted by the letter while the suffix indicates the
position of the element in the class.

E.g. By Qs Ty veruvs
by By B wse
Gl Goy Oy v oo

3. In the theory of determinants we have frequently to deal
with several such arrays, and it will be found that the most con-
venient notation is the following :

Tayy Gygs Qgs ooe Oy

Goys Goggy Uggy v Bopy

Ginis Bpgs Bpg +os Oy

where there are m horizontal and p vertical rows of elements.

Then a,, is that element in the array of o’s which is situated
at the intersection of the &™ horizontal and s® vertical rows.

The first suffix tells us the horizontal and the second suffix
the vertical row in which the element stands..

In the present work these horizontal and vertical rows will be
called rows and columns; a, therefore stands in the k™ row and
s™ column.

Occasionally when we are dealing with a single array the
letter is omitted, and instead of a,, we write (ks) only. Such
a notation is called an wmbral notation, (ks) being not a quantity,

"+ were, the shadow of one.
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(ks) simply, and the whole set of lines joining the points of the
two groups would be denoted by the array in § 3. At the same
time the meaning of any selected element d, is perceived at once.

5. If we have any n elements a,, a,, ... a,, we may call

Gy gy ons Oy

where the elements are arranged according to the magnitude
of the numbers forming the suffixes, the natural or original
order of the letters. Any other order is called a permutation
of the elements. One element is said to be higher than another
when it has the greater suffix. When in any permutation an
element with a higher suffix precedes another with a lower we
have an inversion.

Thus the permutation a,, a,, a,, a,, of four letters, contains the
following four inversions,

a4a2’ a4a1’ a4a3’ a’zal’

where we compare each element with all that follow it.

Following Cramer it is usual to divide the permutations of
a given set of elements into two classes ; the first class contains
those permutations which have an even number of inversions, the
second those which have an odd number.

6. By permutating the elements a,, a,,...a, we obtain all
possible ways in which they can be written. The same result is
arrived at by writing down all the permutations of the suffixes
1, 2,...n and then putting o’s above them.

By repeated interchange of two suffixes we can get every
permutation of the given elements from their original order.

For if we start with two suffixes 1, 2, they have but two
arrangements,
1, 2, 2, 1,
of which the second is got from the first by a simple interchange.
Taking three elements 1, 2, 8 out of these we can select the duad
2, 8, whose pe1mutat10ns are 2, 3; 8, 2. Prefixing 1 to each of
these we get 1,2, 3; 1, 3, 2, which are two permutations of the
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given elements. Proceeding in like manner with the other duads
1, 3; 1, 2, we get the six arrangements of three figures

128 1382 231
213 312 821

Next take four numbers 1, 2, 3, 4. We get four triplets by leaving
out one number, viz.

123, 12 4, 134 2 3 4.
For each triplet we can write down six arrangements by the rule

just given for three numbers, then adding on the missing number
we get twenty-four arrangements of four numbers, viz.

1234 1243 1342 2341
2134 2143 3142 3241
1324 1423 1432 2431
3124 4123 4132 4231
2314 2418 3412 3421
3214 4213 4312 4321

And so we could go on to write down the arrangements of any set
of elements.

The number of arrangements of n letters is 1.2.3...n or n!
an even number.

7. If in a given permutation two elements be interéhanged
while all the others remain unaltered in position, the two resulting
permutations belong to different classes. This will be proved’ if
we can shew that the difference between the number of inversions
in the two permutations is an odd number.

We can represent any permutation of a group of elements by

where d and ¢ are the two elements to be presently interchanged,
A the group of elements which precede d, B the group between
d and e and C the group which follows e. The permutation we
obtain is
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The number of inversions in the two permutations (1) and (2) due
to the elements contained in the groups 4, B and C is in each
case the same. And since the elements of 4 precede d and ¢ in
both, permutations we get no new inversions in (2) from these; the
elements of ¢ follow both d and ¢, and therefore give rise to no
new inversions. We have therefore only to consider the changes
in the two permutations

d B e and e B d.usesseismssenios (3).

Suppose that ¢ is higher than d; let B contain & elements of
which b, are higher than d and b, higher than e. Then in the
permutation d B e we have, independently of the inversions con-
tained in B itself, b—/blq-\;‘»z inversions, because there are b —b,
elements lower than-d-and b, higher than e. ‘

In ¢ B d we have b\— b, inversions on account of e, b, on account
of d, and one because e is higher than d; thus, without counting
the inversions in B, we have b —b,+ b,+ 1. The difference between
the number of inversions in the permutations (3), and therefore
in (1) and (2), is thus

b—b,+b,+1—(0b—05,+0b)=2(0,—b,)+1,

which is an odd number, shewing that the permutations belong to
ditferent classe/s/a

. 8. The same result may be arrived at as follows.. If there be
n quantities whose natural order is

Qs Qgyeea by,

and if in any arrangement we subtract each suffix from all that
follow it and multiply these differences together, we shall have a
product whose sign will depend on the number of inversions in
the given arrangement, the sign being positive if the number of
inversions is even and negative if the number of inversions is odd.
If then 4, & be any two suffixes chosen arbitrarily which are to be
interchanged, 7 preceding & in the given arrangeiment, the product
of the differences will consist of four parts.

(i) The factor & — 2.

(il) and (iii) A set of factors such as r—%, and 7 —7<,
where 7 is some number of the series 1...n excluding ¢ and %.
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(iv) A set of factors such as 7 — s, where 7, s are any two
numbers of the series 1, 2...n excluding ¢ and £.

Then for the given arrangement the product of the differences
will be '
+ (k=) (r—5) (@ —kIFr—s),
where the symbol II stands for “the product of all such factors.”
If now we interchange 7 and %, the signs of all factors such as
(r —k) (r—1), (r —s) remain unchanged, while £ — 17 changes sign.

Thus on interchanging two elements the product of the differ-
ences changes: sign, i.e. by interchanging two suffixes we have
introduced an odd number of negative factors and therefore of
inversions, hence the two arrangements considered belong to dif-

ferent classes.
/ &

9. If in a series of elements each is replaced by the one
which follows it, and the last by the first, we are said to have got
a cyclical permutation of the given arrangement. If the system
of elements

al, greenes s
be considered as forming an endless band, if we cut this band
between a, and a, we have the natural order, cutting it between
a, and a, we have a cyclical permutation of the first order, and so
on.

Such a cyclical permutation is equivalent to »—1 simple
interchanges, viz. we move a, from the first to the last place by
interchanging the first and second elements, then the second and
third, and so on, in all #—1 simple interchanges. Thus a cyclical
permutation of a given arrangement belongs to the same or
opposite class as the given one according as the number of ele-
ments is odd or even.

10.  Every permutation of a given set of elements may be
considered as derived from a fixed permutation by means of cyclical
permutations of groups of the elements.

This is best illustrated by an example. Let the suffixes of two

permutations of nine elemengs be ,

7,63 2 14 8 50
8; 7: 9: 5:"1» 6‘) 4'7 3; 2°
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Here the second permutation is obtained by replacing in the first
7 by 8, 8 by 4, 4 by 6 and 6 by 7, which completes a cycle.. Then
8 is replaced by 9, 9 by 2, 2 by 5 and 5 by 8, which completes
the second cycle. Lastly, 1 forms a cycle by itself.

11. If elements which remain unchanged like 1 in the
preceding example be considered as forming a cycle of one letter,
we may state the following theorem: Two permutations belong
to the same or different classes, according as the difference be-
tween the number of elements and the number of groups by
whose cyclical interchange one permutation is got from the other,
is even or odd.

For if there be n elements altogether, and p cycles of n,
n, ... n, letters, the cyclical interchanges are equivalent to

(n,=1)+m,-1)+...+(n,—-1)=n+mn,... +n,—p
=n—p
simple interchanges, which proves the theorem.
In the example in Art. 10, n=9, p=3, and thus they belong

to the same class.

12. If the number of rows and columns in an array be the
same, we have a square array. Let such an array, containing n*
elements, be

(1 R - Qs
Dy g 3 wovivs s
Wyrs Gy sonoes Crn

The diagonal of elements a,,, a,,...a,, will be called the leading
or principal diagonal.

A certain function, which is called a determinant, can be
formed with the elements of this array as follows: From the array
choose n different elements such that there is one and only one
element from each row and column, multiply these elements to-
gether, the product will be a term of the determinant of = letters.
For example, the set of elements

Gyyy Chyg wneson Qs
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situated in the principal diagonal of the square array, form a term
of the determinant; this will be called the leading term, and to
it we assign the posmve sign. :

The sign of any other term

is determined as follows. From the mode in which the elements
were selected, 1t follows that

fhes, and g, k... ¢

are each of them permutations of 1, 2...n. Let them contain
p and ¢ inversions respectively, then the sign of the term

gy o Gy o ev Oy

is (—1)*% The sum of all the possible terms with their proper
signs is the determinant of the array.

More simple rules may be given for determining the sign of
any, term. If we interchange any two elements o, and a, the
term does not change its sign. For this interchange is equivalent
to the interchange of 4 with & and j with 4 By these two in-
terchanges we increase both p and ¢ by an odd number, and hence
the sign of the term is unaltered. It is therefore usual to give
to one series of suffixes their natural order, when one of the two
numbers p or ¢ is zero, and the sign of the term of the deter-
minant depends solely on the number of inversions in the other
geries, and is the same whether the first or second series of suffixes
retains its natural order.

It is thus clear that all the terms of the determinant will be
obtained from the leading term

Oy g +veree Uy

by keeping the first suffixes fixed in their natural order, and
writing for the second suffixes in succession all possible permuta-
tions of the elements 1, 2...mn, glvmg to the product of the
elements the positive or nedatlve sign according as the number
of inversions is even or odd.

Such a determinant is said to be of the n'™ degree, since each
term is the product of n elements. It has n! terms in all, since
this is the number of permutations of the second suffixes, each
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of which gives a term of the determinant. One half of these
terms have the positive, the other half the negative sign.

13 Various notations are employed for the determinant of a
System of n* elements. Cauchy and Jacobi denoted it by drawing
two vertical lines at the sides of the array, or by writing + before
the leading term and prefixing a summation sign,

112 i & LRE am = 2 —+- a’n“m Aan
Wy s g v eees a,,
@, am ...... a,.,

we may denote it by
| @, Yo 2 i. s | G=1; 2 e

meaning by this tha%" ) 1§ to'take the different values 1, 2 ... n in
succession. Lastly, the determinant with double sufﬁxes may
be denoted by

| @ | (2 B=1, 2 ... n),
‘the bracket at the side telling us what values the suffixes ¢ and
k take. .
This bracket is frequently omitted in practice.

This notation is, I believe, due to Prof. H. J. 8. Smith, who
employs it in his report on the theory of numbers, Brit. dss. Rep.,
1861, p. 504

14. From Art. 6 we know the permutations of a system of
two, three, or four elements. These give us the determinants of
degree two, three, and four, viz.
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= @, 0y, — 00,0

110 Yo 11 12%1
1 a’21’ a22
1 Qs Crgy Qg | = O Uy = O 0y, By + Gy, Ty
Tyys Qg @23 T Oy OByt Oy O Uy — gy 5
Agy5 gy g
gfp Zfly 01)' | = "'a/,lbécédi_ a/2blc3d4,—' a,jbaczd + a’Bbchd4

+aped —abed,—abed, +abed,

8727174 1727478

dl
dZ
39 Z?‘s: ¢ dy| -+ abed, —abed —ab cd, +abed
by ¢y d,

47173 27178 T
1+ abed

—abed, —abed, +abed,:

1787472
@+ asb4c1‘dz - a4bac1d2 - azbac4d1 + asbchdl -~
—+apecd —abed —abed +abod.

T ¢
A useful mnemonical rule for writing down the expansion of
‘any determinant of the third order is the following, due to Sarrus.

Let the determinant be

a, b, c.
| @b s
a,, by, ¢

Alongside of this repeat the first and second columns -in
order -

JoX X N
a, b, ¢, a, b,
and form the product of each set of three elements lying in lines
parallel to the diagonals of the original square. Those which lie
in lines descending from left to right have the positive, the others
the negative sign.

Thus the determinant is

abe. +bea +cab

17278 17278 17278

—¢,b,a, — a,ch, — ba.c,.

In practice it is not necessary actually to repeat the columns,
but only to imagine them repeated.
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It is not difficult to devise similar rules for determinants
of higher order than the third, but we shall obtain methods for
reducing the expansion of a determinant to that of several deter-
minants of lower order, and for reducing the order of a determi-
nant, so that they are unnecessary.

15. If we interchange rows and columns in the determinant
of Art. 13, we get

f

Gyyy Ty voe Upy

Qinsy Wgyy ooe Ay,

This is the same as the original determinant with the suffixes
of each element interchanged. Its expansion is then obtained
from that of the original determinant by interchanging in each
term the suffixes of each element. That is to say, in the term
@, Gy ... @, We keep the second suffixes fixed in their natural
order and write for the first suffixes all possible permutations of
1, 2 ... n. But the reasoning of Art. 12 shews that each term in
the new determinant has the same sign as the corresponding one
in the original determinant.

Thus a determinant remains unchanged in value when its
rows and columns are interchanged.

Alternate Numbers.

16. The magnitudes with which we deal in ordinary or
arithmetical algebra are subject, as regards their addition and
multiplication, to the following principal laws :

(i) The associative law, which states that
(@+b)+c=a+(b+c)=a+b+c,
or that ab.c=a. bc = abe.
(ii) The commutative law, which states that
a+b=0b+a,

ab = ba.
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(iii) The distributive law, which states that
(b+c)a=ba + ca,
a(b+c)=ab + ac.

The researches of modern algebraists have led them to con-
sider quantities for which one or more of these laws ceases to hold,
or for which one or more of these laws assumes a different form.

Numbers, whether real or ideal, which follow the laws of
arithmetical algebra will be called scalar quantities.

We shall find it useful to consider a class of numbers which
have received the name of alternate numbers. These are deter-
mined by means of a system of mdepeﬁ?ﬂmt units given in sets
like the co-ordinates of a point in space; such a set will be -

denoted by e,, e ¢,. A number such as
Ad=ae +ae,+...+ae

nn?

9y ve

formed by adding the units together each multlphed by a scalar,
will be called an alternate number of the n™ order.

Tn combination with scalar quantities and with units of other
sets these units follow the laws of ordinary algebra. In combina-
tion with each other the units of a system follow the associative
law and the commutative law as regards addition, but for multi-
plication we have the new equation

;=€) rrririninrnirrireaeraeniinas (1).

for all values of 7.
17. If A=ae+ag+...+a,e,
B=be +be,+...+be,

be two alternate numbers of the »™ order, We@eﬁn\é\their product
as follows : '

AB=7Zaezbe,
i rd
= Eaiei b,
4,7
= "Z_aib,e,e,. .
o~
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A

G,
Hence, by equations (1) and (2) of Art. 16,{ L L,
AB=(ab,—ab)ee, + (a,b,—ab,)ee, + ... f

- \L’L ’L{ & ( ( E‘ ( { { ' + (aﬂ—lbﬂ' - a’nbn-l) e"—le'n‘
Thus clearly AB=— BA and A®=0, proving that alternate
numbers have the same commutative law of multiplication as the

units.

This kind of multiplication, where 4B = — BA, is called polar
because the product 4B has opposite properties at its two ends.

18. If & be any scalar
(A +kB)B=AB+ kB = AB,
so that the product of two alternate numbers is not altered if one
be increased by a multiple of the other.

If we have a product of more than two numbers

it follows that for one of them, say C, we can write
C+kA+k,B+...+kL,
and the product will still remain unaltered.

The alternate numbers belong to that class of algebraical
magnitudes for which multiplication is a determinate, but division
an indeterminate process. Viz.

AB
‘3—=A +]|’JB,

where £ is an arbitrary scalar.

The continued product ege, ... ¢, of all the units of a set will in
future be assumed to be unity. An explanation of this assumption
will be given later on. . v

19. If now we take a square array of elements ‘such as that in
Art. 12, we can form a system of n alternate numbers of the n®
order by taking the elements of each row to form the coefficients
of the units in the numbers. Let P be the product of all these
numbers, so that

P=(a,6,+ 0,0+ ... +0,0,) (3,0, + 00, + .. + 08,)...

(a6, +a,e,+...+a,e).

[,
nn- R
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On multiplying out the factors on the right,
P=3a,0,...0,8.. ¢

1oyt TnsTpYg t
Ife, e,... e, were ordinary scalars'the product e, ... e, would be
formed by taking m numbers from e,, ¢,...¢e,, and any number
might be repeated 1, 2...n times; but since ¢z, ... ¢,=0 if any
two units are alike, it follows that p, ¢ ... s is to be a permutation
of 1, 2...n. It follows at once from the law of multiplication
(equation 1, Art. 16) that
6,8, 6 =F—1]" a8 .0
where » is the number of inversions in the series ¢, ... e,

Thus P=eg > (—1) a,m,... a,,
but the term under the summation sign is a term of the deter-
minant of the system of elements, with its proper sign. Thus
P=]a,| ee,...q,
= | ag |+

Hence the determinant of a system of n® elements is expressed as
a product of n alternate numbers linear in these elements. From
this it immediately follows that if all the elements of a row are
multiplied by the same number the determinant is multiplied by
that number, and if all the elements of a row vanish the deter-
minant vanishes.

In future we shall write for a determinant of the n'* order
whichever of the forms

laik]} HAJ'; Ei'aa a,

117722 "+ nnd
(4,= aze,+ a6, + ... +a,,e,) is most convenient. The letters 1, &, j
taking all the values 1, 2 ... m. -,
&
20. If the determinant is so constituted that the different
factors of which it is composed do not contain all the units, its
evaluation is frequently readily effected.

For example, the determinant

7SR ) PR | R, 0
(27 A | B 0
sy Mgy Ty o s 0
Oy Dgs g 5+ vans o,
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in which all the clements above the leading diagonal vanish

reduces to the produvct a,,a,, ... a,,.

For it is equal to tLe product of the alternate numbers
allel '

a2161 + a2262

aalel + a82e2 + a’aaes

a6, +a.e,+ a8 + .+ e,

Since the first number contains e, , and e, only, all terms in the
product of the remaining factors which contain e, disappear when
multiplied by this factor, so that as far as we are concerned we
may Suppose @, @, ... &, to vanish. The second number reduces

217 3

to a,e, and the product of the first two to a,ea,6. We may
shew in like manner that a,,, @, ... may vanish, and so on. Finally

322
the product reduces to

a.ea. b, ...a e, =a.

117172272 °° nn- lla

a

g9 ¢ Wppe

By an interchange of rows and columns it follows that the
determinant for which all the elements below the leading diagonal
vanish also reduces to its leading term.

21. As another example let us consider the determinant
0, cos (e, + a,), cos (@, + a,) ..... .
cos (a, + ay), 0, cos (@, + ay)......
c/é.s (¢, + a), cos (a,+ a,), O s

of order 7;,:’ the element in the ¢** row and j* column is cos (@, + a,)
o . 2 o i
unless 7=j, when it vanishes.

& bstitute for the cosines their exponential values and write

JeT — : L &
1 ques ea‘\/-l =a. ) £ Ll Chod 4 1Rl J (N4 @_L_éhc: o
Alike tD is the product of such factors as ' c
r 1 1 Py e
3‘ [—(alaz -+ E) e? + (alas +E> es + ces + <a1a,, +&E) 6":| 2_(;
more nLa1E+§— <“12+a_12>91] ’
8. ) 1 1 v
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where E=ae +ae,+...+ %o
PSS g 45 O
a, aq, a, e y);.« )
' & 1]
L+
Thus if 7 B+ g' =4, 5\

- (3

we see that (—2)"D =TI (2 cos 2a,. ¢,— 4,). v~

izﬂ"“Now observe thé{ since the\él(ﬁantities A, depend only on the
two alternate numbers E and F, the product of more than two of
them must vanish. Hence expanding

ee,... A,

—2)"D=2" —2" cos 2a,... :
(—2)" D=2"cos 2a, cos 2a,...cos 2a,, cos 2a, cos2an2200S %,

ee,...e, , A, A,
4 cos 2%'_1 cos 2a,

+ 2" cos 2a, ... cos 2a, 3,

ya
Now B0, va o By Ay, 58 e B, (anE-}- oT)
|
1 5 _
=—+0a,=2cos2a,.

n

A A= B )
ee,...A, A, ,=e ..o, ( s EF
= )2— 4sin’ (o )
= ( 2 ") =40 (d,— g
, =1)"D _ sin® (@, — a,)
Thos o 2a, cos 24, ... cos 2a, L=n=r cos 2a, vos 2a,°
- n-1 T2 —
or (-1 D 142 sin® (@, — o1,)

cos 2a, ... cos 2a, cos 2a, cos 2a,’

where (7, k) are all duads derived from 1, 2... n.



CHAPTER II.

GENERAL PROPERTIES OF DETERMINANTS.

1. Ir two columns or rows of a determinant be interchanged
the resulting determinant is equal in value to the original, but of
opposite sign.

Let D=II(aze, + ...+ aye+... +aze,+... +a,e,),
then, if 7 is the determinant got by ipterchanging the j* and
k™ columns,

D =TI (aye, +... + a6, + ... + a6, + ... +a,e,);
but since in addition we follow the ordinary commutative law, D’
is got from D by interchanging e, and e, in the product on the

right. This Jeaves the scalar factor unaltered but changes the'

sign of the product of the units, thus

D'=-D.
Interchanging two rows of a determinant, say the * and %, is the
same as interchanging the two factors 4, and 4, on the right: this

is equivalent to an odd number of inversions, and hence by the
rule of multiplication changes the sign of the product.

2. If two rows or columns of a determinant be identical the
determinant vanishes. For by the interchange of the two columns
in question the determinant changes sign, but both columns being
alike the determinant remains the same, thus

D=—D or D=0.
3. If each element of the <™ row consist of the sum of two or
more numbers the determinant splits up into the sum of two or

S. D. 2

FL
ERN
35
G
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more determinants having for elements of the 7 row the separate
terms of the elements of the 4™ row of the given determinant.

For if D=TI4,,

and A‘i = (a’il + bu) 61 + (a/ig + bm) 62 + nee + (ain + bin en
= (a6, + ... + a,e,) + (b e, +... +b,e,)
=A4',+B;;

since A AL A=A .. .4 +B)..4,
=4,..4%.4,+4,..8B,... 4
we have D=D +D,,

where D, and D, are determinants having for elements of the ¢ row
in the 4™ place a,, and b, respectively.

nd

Repeated applications of this reasoning shew that if the
elements of the ¢ row consist each of the sum of p elements, then
the original determinant can be resolved into the sum of p deter-
minants having for their ¢ rows the terms of the elements of the
7™ row of the given determinant.

The same theorem would apply if the elements -of a column
congisted of the sum of elements. In fact whenever a theorem

applies to rows it applies equally to columns, as these can be inter-
changed (1. 15).

In future, when a theorem is stated with regard either to rows
or columns, it is to be understood as applying also to the other.

4. The value of a determinant is not altered if we add to the
elements of any row the corresponding elements of another row,
each multiplied by the same constant factor.

For if we add to the elements of the ™ row those of the & row,
each multiplied by p, the resulting determinant is

Ay (A pAy. Ay A=A, Ay Ay A, +pA,.. A,.. 4, A,
=A,...A.. A,..4,

the latter product vanishing, since it contains two identical factors.

For brevity the operation of adding corresponding elements of
two rows is usually spoken of as adding the rows.
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5. The theorem of the last article is of great importance in
the reduction of determinants. The following are examples of
its application:

(1) If corresponding elements of two rows of a determinant
have a constant ratio the determinant vanishes. For we have only
to multiply the elements of one row by a proper factor and sub-
tract_ them from the elements of the other when all the ele-
ments in that row will vanish, and consequently the determinant
vanishes.

Of a similar nature are the two following theorems, whose proof
presents no difficulty:

(i) 1If the ratio of the differences of corresponding elements
in the p™ and ¢™ rows to the difference of corresponding ele-
ments in the r* and s® rows be constant, then the determinant
vanishes.

(iii) If from the corresponding elements of ¢+ 1 rows we
form the ¢ differences and from the corresponding elements of
m+1 rows the m™ differences (the second set of rows being at
least partially different from the first set); then, if the ratio of
corresponding differences is constant, the determinant vanishes.

@v) Let D=lu,v ...t

.............

Uy Uy v by

Subtract each row from the one which follows it, beginning with
the last but one. Then, if

Avu = u,,, —u,

we have D=| wu, v .. ¢
Au, Av, At
Au,, Av, At,
Au,_,, Av, ... AL,

Repeat the same operation, stopping short at the second row.
2—2
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Then, if APy, = Au,,, — Au,,
D=} u, U, ees By

Au, Av, ... At

A, A%, A%,

2, 2, 2.
A, ,, A%, , ... A%, ,

Proceed in this way, leaving out a row each time, and we see that

D=}| wu, Y, e g
Au, Av, ... A
A, A%, ...A0% |;

Ay, Ay AT
— A”._lui.

Suppose now that u, is a function of degree 0, v, of degree 1, and
so on, then all the elements below the leading diagonal of D
vanish, and

where generally: A=Ay,

D=u . Av . Aw, ...A".
For example, if
m _m(@m—1)...(m—p+1)
? Lo2siajp
m e om, =1.d.d"...d"
(m+d), (m+d), ... (m+d), |= 52

2 m()"= 1 2

(m +rd),, (m+rd), ... (m+rd),

For here A (m + td), = d".
6. In a determinant of the form
0, 1, 1, 1 ...

a a

, @ 120 Qyg ne

1 11’
1, a,, a,, a,...|>
1

every element of which ¢, is a type can be replaced by
A, =a, +h+Ek,

where b, and k, are arbitrary quantities, without altering the value
of the determinant.
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For multiply the first row by %, and add it to the ™ row, then
in this row the first element is still 1, while in place of a_, we have
a,,+ k.. Now multiply the first column by %, and add it to the s™
column; the element in the first row is still unchanged, while the
element under discussion has become a,, +h, +Fk,.

These transformations have left the value of the determinant
unaltered.

7. We are now in a position to solve the system of linear
equations

a, T, +a,x,+ ... + QL = Uy,

a’zlw1+a22x-2+ +a2nxn=u2’

a2 + a2+ ...+a,.x =u,
[or, as they may be more briefly written,

@, %+, + ..o, =u (=1, 2...n)].

in
We have
} e
Oy @y + oy + oo + @2y~ Uy By, Oy, | =0,
Qo Ty F oy + oo+ Oy Xy — Uy, Ay en Oy,
@ 2+ A2+ ..o Fa, 2, =, A, @@,

for each element in the first column vanishes (1. 12).

Since the elements of the first column of this determinant
consist of n+ 1 elements, it can be resolved into the sum of n+ 1
determinants,

The first of these is

a, T, a

111> 12 Q5 "‘am _wllaik|'

@ @yy Gogy gy oo O

21771 2 2n

........................

anl wl’ a’nz’ afns s awn
The last is
— Uy, 1278 Qe e am' = Uy Wyg o oo gy
T Uyy (ggy gy an Uy Oy on
- un ) an!’ ng**" amt un’ anz ann
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‘While any of the others, such as
| Gy, @by,

o R T

Api;y A oo,

ni¥iy n2 nn

vanishes, because the elements of the first column are proportional
to those of the t™ column.

Thus z )] =%, a,...a,

And in general #, is obtained by substituting in the determinant
|a,| for the elements of the «™ column the quantities w,...u,, and
dividing the resulting determinant by |a,|.

8. If p rows of a determinant whose elements are functions
of z become identical when z = a, then the determinant is divi-
sible by (xz —a)*". For, subtract any one of these rows from the
remaining p —1 rows; the determinant remains unchanged, but
now when #=a all the elements of these p—1 new rows vanish,
hence each element divides by # — a, and thus dividing each of
the p — 1 rows by this factor we see that the determinant divides
by (# —a)”™ '

If when #=a the Tows are not equal, but only proportional,
the theorem is still true.

Ex. The value of the determinant

@, @..co.o0| (0 TOWS)
Oy & van s @
@ Wiresio @

is z+n—-1)a}l(x—a)"™

For if z=a the n rows all become identical, thus the deter-
minant divides by (# —a)"".
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Adding all the rows to the first, each element in that row
becomes @ + (n—1)a, this is therefore a factor in the determinant.
Thus the determinant divides by

{4+ (n—1)a} (@ —a)*™

This is of the same degree as the determinant, and as the co-
efficient of 2" in the determinant and in the product is unity the
determinant must be equal to the product.



CHAPTER IIL

ON THE MINORS AND ON THE EXPANSION OF A DETERMINANT.

1. Ir from the n rows of the array

a/u’ am c.bm
Cyyy oy Ay
a‘m’ a’m * a,,‘,,

we select any p rows, and then from the new array which these
form select p columns, these when written in the form of a deter-
minant constitute a minor of the given system. Such a minor is
said to be of the p™ order.

Since we can select p rows from 7 in

nn—1) ... (n——p—l—l):n
1.2...p o

ways, and p columns from n columns in a like number of ways, it
follows that the given system of order » has (n,)* minors of
order p.

2. If out of the n—p rows which remain after the above P
have been selected we take those m—p columns whose column
suffixes are different from those selected in the minor of order P,
we have another determinant of order m» —p said to be comple-
mentary to that of order p.
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For example, in the determinant

a/ll’ a12’ a’l:—}’ a/ld’ a’15

Qs Cog> Uogs - Qos 5
Gisss Doy wwwes vis o @y,
i (ag> Chyys g
a.
w1 and Gagy Qyys Qs
Qyy5 4,
o Csgy Usgs Ay

are complementary minors.

3. If p=1, ie. if we take a single element, the complemen-
tary minor is a determinant of order n— 1, which is called the
complement of the element. This complement is obtained from
the original determinant by omitting the row and column in which
the selected element stands. For example, the complement of the
element a,,, which we denote by 4,, is

Gyp o oo Bt Oy -0 Oy,
.............................
G1 oee Bppss yoagar oor Gy
Ay ore Cyag-15 Biparn Xys1n
Oy oo Cpprs Qpga ooe Ay,

This is sometimes spoken of as a first minor of the given
determinant. In like manner the determinant formed by omit-
ting p rows and p columns would be called a p™ minor; it is
to be observed that a p™ minor is a determinant of order n — p.

4. We may extend the meaning of complementary minors as
follows : From the array in Art. 1 select p rows and p columns,
then from those that remain ¢ rows and ¢ columns, from those
that remain » rows and 7 columns, and so on. With the elements
in thése selected rows and columns form determinants; these will
form a complementary system of minors if

ptgtrtai=a

The number of ways in whieh we can form such a system is

n! 12
plgtri. )"
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It is of course permissible that one or more of the numbers
P, ¢, 7 ... should be unity; the corresponding minor is then a
single element. For the determinants

11 16
............ ;
gy =+ Qg
Rgy ygs Gyg
a“24’ a25 Y . a
a’4z’ a’4a’ Qg | > 51
Ggyr Ugs
a a, a,

a2? 63?2 66

form such a complementary system, and there are 3600 such
systems.

-

5. We have hitherto only considered the product of a set of
alternate numbers equal in number to the number of units. Let
us now consider the product

(2,0, + 0,8, + ... +ay,e,) ... (a6 +a.e+ ... +a,e);

this is equal to

S0, 0oy e Uiy oo €,

where p, ¢ ... 7 consist of all combinations m at a time from
1, 2 ... n, repetitions being allowed.

First, if m > n, we must have repetitions in every term of the
sum, and hence (1. 16, Equation 2) the whole vanishes.

If m=n, we have the case of I. 19, and the sum is the deter-
minant | a, | . '

But if m <mn, the sum is formed by taking for p, q...rall
m-ads from 1, 2 ... » and permutating the elements of each m-ad in
all possible ways.

Namely, the term

O iy 5 oo W8y »ss 8

mrepTe v

is got by taking a,,e, from the first factor of the product, q, .6, from
the second ..., and a,.e, from the last factor. But we should still
get the product of the units ¢, ... ¢, though in a different order,
if we take the p™ term of some other factor than the first, the 7" of
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some other than the second, and so on. The term of the product
which multiplies ey, ... e, is thus got from

O Aoy =+ Ol
by permutating p, ¢ ... 7 in all possible ways, and giving to each
term the sign corresponding to the number of inversions in its
second suffixes, p, ¢ ... r being considered the original order. The
sum of these products is

Crpy Byg --v

)

Q, a

on) 9q"
a’mp: amq e @,

Hence the product of the m factors is equal to

2|y Qg oo Q|00 o Cunnn. . (1)
a’zw aZQ 2r
Wppy Qg +ov Wy

In like manner, if we take the remaining factors necessary to
form the determinant |a,|, we have

(a’m+l 161 + ..t a’m-l—l'tleﬂ) A (anlel +oeot a’nnen)

LY
=2 | Gogs G wvr Bigis | BBy wes g s swun witvns( D)5
am+2u) a’m+2u R a‘m+2fw
a, Q, ver @,

where u, v...w is a combination of n —m numbers selected from
1, 2...n.

Now multiply the equation (2) by the equation (1) and we
obtain
Iaik\ = 2 {(_ 1)!/ alp’ a’lq L alr a’m+1u S am+1’w };

ssesssscscasssvssss || coccssscssnssns

Cmps Vg ++» Cr | | By <=+

where from the nature of the alternate numbers e it follows
that the two determinant factors under the summation_ sign are
complementary minors, and » is the number of inversions in

€, 11+ 6,0,6, .6, OT IN D, ¢ .7, %, V... W
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This theorem, usually called Taplace’s theorem, gives the
expansion of a determinant in the form of a sum of products of
complementary minors.

It is assumed in the above that the complementary minors are
formed from the first m and last n —m rows. Since by a suitable
change of the order of the rows and sign of the determinant any
m rows can be brought into the first m places, this is no real
restriction.

6. For examﬁles we have

Gy By Gy, @, | = (12) (34) +(23) (14) + (31) (24)
b, b, b, b,| +03%)(12)+(14)(23) +(24) (31),
cl’ 02’ cs’ 04
dv da) d3’ d4
where for brevity
a, e, ©
12 34‘ = 1’ 2 . 3 4
az o= | [%

In like manner

@y, @, @, 0, a,| = (123)(45)+(142)(35)+(134)(25)+(243)(15)
b, b, b, b, b,| +(125)(34) 4 (315) (24) + (235) (14)
by B +(145) (28) + (425) (13)
i d, + (345) (12),
€, €...
where
(123) (45) = | a,, a,, o d,, d
b,, b,, b, e, €
Gy Gyy 1C

29

7. If when the determinant is divided into two sets of m and
n — m rows there are n —m columns of zeros in the set of m rows,
the determinant reduces to ‘the product of the minor of the
remaining m columns and its complementary minor.
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This is clear, for with the exception of this single minor of
order m all the others vanish because they contain at least one
column of zero elements.

If the set of m rows contains more than n —m columns of
zeros the determinant vanishes.

Thus, for example :

a,a, 0, 0|=|a, a|lc, ¢,
b,, b,, 0, 0 b,, b,lld, d,
6y €y Cg O
d, d, d, d,
while
a, a, 0, 0, 0[=o0.
b,, b, 0, 0, 0
¢y €, 0, 0, 0
d, d, d, d, d,
G Gy Gy 6,

8. In Art. 5 we resolved a determinant into the sum of
products of pairs of complementary minors. We can however
resolve it into a sum of products of as many complementary minors
as we please.

For we can divide up the n factors whose product is |a,| as
follows : Take the first u, the second v ..., the last w. The product
of the first » factors would be of the form

S| Gy Cug ooe | €60 --- €

aﬂ.ﬂ’ a2q g a21'
a’up) auq a’ur
or 2Deg. .0,

P, q ...  being  numbers taken from 1, 2...n without repetition
and D, a'minor of order u from the first w rows.

In like manner the product of the next v factors would be
2D.g,0, . A &,

D, being a minor of order v chosen from the v rows.
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Lastly, the product of the w factors would be
SDee, ... e
with a similar meaning for the quantities involved.

Now form the product of all the factors, taking care to keep
them in their proper order, and

lo’ikl = 2‘Du‘l)'u ale 'Dw)
where D,, D,, ... D, form a system of complementary minors of
the determinant |a,|.
The sign of the term is determined from the number of inver-
sions in
oty i @ ooy 8ol

o
9. If in Art. 5 we restrict the first product to the single
factor

@i 7 W T sve B @0, o ¢ o wapmmsy v (1),
the second product becomes
A+ A+ oo b BB vsisisss s sovons (2),
where A4, is the complement of @, (Art. 3) and
Eo=ee,..0 8, ..6,.

For we get a term of the product by leaving out each unit
such as ¢ in turn, i.e, by forming a determinant with the remain-
ing n — 1 columns; and since we previously omitted the ¢ row of
the given determinant, this determinant is 4.

Now multiply the # — 1 factors which form (2) by the remain-
ing factor (1); we obtain
(= 1) a,| = a,dy—apdy+ ..+ (= 1) Ya,dy, + .
For ol =0 .0 .. 8.6,..0,
= (1) 7...e,=(-1/7,
¢,F, =0 if j is not equal to %.

The factor (—1)* on the left is accounted for in the same
way.
Thus la,] =2 (-1)"a,d4,
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For example,

@y Gyy Qg @y | =0y | Uy, Qgy Ty | = Cy | By, Gy, @,

by, b, by b, by, by, b, by, by, b,

Cis Gy Cyy G dyy dy, d, i3 By oy
dy, dy, 9y, d,

+c,|a, a,, a | —c|a, a, a,

by» b, b, by By By

d,, d,, d, d,, dy, dy

10. In the final equation of Art. 9 4, is got from |a,| by
srasing the ™ row and j* column and writing the remainder as a
leterminant. It is however more symmetrical, and sometimes
convenient, to give to A, a different form obtained by a series of
syclical permutations of rows and columns.

In 4, remove the first row by a series of interchanges to the
ast place, then move what is now the first row to the last place,
and so on, until we arrive at what was the (¢ — 1)™ row, which we
-emove to the last place. This introduces (¢ —1)(n —2) changes
of sign.

Now remove the first column to the last ylace, and so on, j—1
iimes, necessitating (j—1)(n — 2) changes of sign. In all we have
ntroduced

(=1)—2)+(j=1)(n—2), or (i+jm

shanges of sign (an even number of changes being neglected).
30 that, if the new determinant is called 4’,,, we have

AIU — (_ 1)n(i+j) AU’
wnd [a’ik[ = 2 (_ 1)("+l) (Hﬁav:i A'U’
vhere

ai+1/+1’ ai+lj+2 LR a/i+1n aﬂ-ll b a¢+lj—1

.......................................

.......................................

a’i—lj+l > a{—l/+2 FEE a’i—ln a(—]l e q‘-ll-l
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For example,

Ay gy By =b1 Cyy Cy +b2 Cyy Cy +-bs C, C
b B &, a,, a, a,, a, a,, a,
Oy Gy Gy

In future we shall always write
la,.|= Za, 4,,
and suppose that A4, has its proper sign.

11. We may arrange the complements of the elements of a
determinant in another square array, and then the two arrays

are said to be reciprocal.

If now a sum be formed by multiplying each element of a row
of (1) by the corresponding element of a row of (2), and adding
these products together, the sum is equal to the original deter-
minant or zero, according as the two rows have the same suffix or
not. Namely,

Uy AJI. =3 a’tﬂ AJZ +.o+ ain Jn Ialk[ or O

according as ¢ is or is not equal to J.

For if ¢ is equal to j the sum on the left is the expansion of
the determinant according to the elements of the ¢™ row, but if ¢
is not equal to j the sum on the left is what the expansion of the
determinant would be, if its ¢™ and j® rows were identical, but if
the elements of two rows are identical the determinant vanishes.
In like manner, if we multiply the elements of a column of (1) by
the corresponding elements of a column of (2), we get

ali'Alj & a’ztAz/'I' et a”n.iAqu’
and this sum is equal to |a,| or 0, according as ¢ is or is not equal
to J.

12. If all the elements of a row vanish the determinant
vanighes, as we see at once by expanding the determinant accord-
ing to the elements of that row. If all but one vanish the
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determinant reduces to the product of that element and its com-
plement; viz. if all the elements of the ¢ row vanish except a,,
then the determinant reduces to a, A4,,.

Thus for example,

112 Tzt i 11| Yop on
0) 9o« o gy
0> a32 %9 a_% a’n2 .
O’ Qo= i
Gy Gy Qgees gy | = Ay | Bogy Tggene By,
0, (o oge v+ Aoy, 0y Guyounly,
B, 0, Beoog | | e somase
.................. 0, O.ooat,,
0, O’ O ann

= Oy Qg Oy v+ Ty

13. The theorem of the preceding article is of use in evaluat-
ing a determinant by reducing it to one of lower order. If the
determinant is not of the required form to begin with, it can
sometimes be reduced to it. We may exemplify this by finding
the value of the determinant

D =0, a
b 0, a...a
b, b, 0...a
b, b, b...Ol(r),

the suffixes denoting the order of the determinant. The elements
of the leading diagonal are zero, those to the right of it all equal
to a, and those to the left all equal to b.

S. D. 3
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If we subtract each row from the one which follows it, begin-
ning with the last but one,

D =|0

r ()

The first column contains only one element, hence

==bla, a o a..

b, —a, 0, O...
0: b: - Q,
0, 0, b —a

Regard the elements in the first row as
a+0, 0+a, 0+a...

then (II. 3) we can resolve the determinant into the sum of two.

=—bla, 0, 0, O.. -b|0, ‘a, @, a...
b, —a, 0, O... b, —a, 0,0..
0, b —a, O... 0, b —a0..
0, 0 B —f| ) eeesss camnnien oy (r—1).
........................ (r—1)

In the first of these two determinants all the elements above
the leading diagonal vanish, hence its value is (= 1)y g, The
second determinant is of the same form as that to which we first
reduced D,, hence

'Dr = b‘Dr—l + b(_ a/)r—l.

This is an equation of differences with constant coefficients for
D, its solution is

,- ( 1) _ba’b ( =1 br-l)
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14. In Art.11 we saw how under certain circumstances the order
of a determinant might be reduced. Conversely we are enabled
to increase the order of a determinant without altering its value,
namely, by bordering it with a new row and column in one of
which all the elements vanish except that common to the other.
Thus

[ @y, 1, 0, 0, O

=(=%"10, 0 0 .. 0 1

alZ 3

217 a’zz’ a’za "‘a'zm y

............................

where the quantities «, y ... are any whatever. By adding on to
these a new row and column we can raise the order of the deter-

minant to 7+ 2 and so on.

15. In the determinant D=|a,|, if we suppose only the
element a,, to vary, since on expanding according to the elements

of the ™ row
D=ag A, +a,4,+ ... +a, 4, +...

the only variable term on the right is the product a,, 4,, we see at

once that =
D

g =4

If among the elements of 4, only a,, is variable, we see that

dAd, d'D
da,,  da,da,’
P . . ;
Thus ——— e a,,0,, is the sum of all terms in D which contain the

product aika,,,.
The differential coefficient
d’D
dandaik
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is the determinant obtained by erasing in D the 7 and 7" rows and
the & and s™ columns, it is complementary to

aq:k ’ a/is

Dy oy
In like manner it is plain that
d"D "D
are complementary determinants if
I A O A
T 8 e Uy D vas
are each of them permutations of 1, 2 ... n, i.e. if the product
Ay, 55 Qg s+

is a term of the determinant D.

16. If all the elements of a determinant are functions of a
variable £ we see that
D _ dD da,
dt — “da, dt
If we denote differential coefficients with respect to ¢ by accents
we have

G k=1, 2...n).

D=34,0"+3 4,05+ ...

w s ’
=10y, Qpeee Qg |+ Qs @y enn Oy, [+

4 r B
O pys Ogy ver By, Gy gy we

..................

So that D is the sum of n determinants obtained by substituting
for the elements of each column of D in succession their differen-
tial coefficients with respect to i.

An interesting example of this is to consider the differential
coefficient of
D=|u o, v, ... "
v, o, ¥, ... v®D

’ " (n=1) | ?

accents denoting differential coefficients with respect to ¢.
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Each of the first n—1 determinants obtained by the pre-
ceding rule vanishes because it has two columns alike, the last
alone does not vanish, so that

dD _ | u, o ... u", 4
dt |y, of ... o2 40
w, W ... w™ |

.......................

D=1 1 ..1
by b, e i
15 8 e 8
tl'n.—l t2n—1 t”n_l

D, .
Then dD, is got from D, by substituting for the elements of the

dt,
7 column
0,1, 2, 3% ... (mn—1)¢""
Hence
art D, B 0, 0 . I 1
dtdt, ... dt, 1, 1 e 1, t,
2, 24, 2yt

(n—1)t"7", (n—1)8"" ... (n=1) 83 ¢
=07 (®-1!D,,
. 17. We may use the theorems of Art. 11 of the present
chapter to prove those of Arts. 3 and 4 of Chap. IL

If each element of a row of a determinant is the sum of p
terms, the determinant is equal to the sum of p determinants
having for their elements the separate terms of the sum in
question.

For if G =P+ @+ ... + 1.

Then | ay | =3Za,4,
= EpkAik+ EQkAik +... +344,
=P+Q+..+T,



38 THEORY OF DETERMINANTS. [CHAP. I

where P is the determinant obtained from the given one by W.rit.ir
P,s P, --- P, for the elements of the i* row and Q... T have simil;
meanings.

The value of a determinant is not aftered by adding to tt
elements of any row those of another row multiplied by a constas
factor. For if to the elements of the ™ row we add those
the 5® row, each multiplied by p, the resulting determinant
equal to

Z (%k""}’“jk) A, =Za,4,+ pzajkAﬂ:
= I Dy, I £

The last sum vanishing by Art. 11.

18. If each element of a determinant consists of the sum
p terms, we could by continued application of the first theorem
Art. 17 reduce this determinant to a sum of determinants who
elements are all single terms. But a formula of expansion h
been given by Albeggiani which presents the result in a‘mo
suitable form for applications.

Let W = O F G F v F s

so that each element in the determinant is the sum of p tern
Then each column of the determinant when written at full leng
would consist of p partial columns whose suffixes are the thi
suffixes of the above elements. With these partial columns v
can form p determinants, taking all the partial columns with tl
third suffix 1 to form the first, those with the third suffix

to form the second, and so on. We shall denote these dete
minants by '

D/, D ... D",
so that
(n) __
'D v allu) aﬂu i a’lnu
a21u’ a’?im " aSnu
anlu’ a'?‘ﬂu s a"mm

The first two suffixes tell us the row and column in which t
element stands, the third the determinant to which it belongs. T
original determinant is denoted by D™. The index in bracke
tells us the order of the determinant.
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19. We shall find it necessary to employ the term comple-
mentary minors in the following seénse. From the elements of
D", form a minor D, of order a by selecting a rows and columns.
Then in D select B rows and columns, whose suffixes are
different from those selected to form D,(, these form a determi-
nant D,®), and so on until we take 7 rows and columns from D,",
to form a determinant D, none of which have the same suffix as
any of the preceding. Then if

A+ BHy+ i FT =R eriiiiinininnnnn (1),
D,®, D,®, DW ... D,

b4

shall be called a series of complementary minors. Any one or
more of the numbers «, 8 ... 7 can be unity or zero.

20. We shall now prove that
D" =83D @D,® .. D,=,

where the meanings of the summation signs will be explained
presently. For we have

D"=11 (@6, + ape + ... + ay8,);
and if Uy = Gy 0+ Qb+ .. + 0,0,
DR =TI (g + g+ con F8) ceerierinnnnne (2),
the product containing » factors.

We shall obtain a term of the product on the right if we take
a factors such as w,, B factors such as w, ... factors such as u,,
provided the equation (1) is satisfied.

But from the definition of a determinant this product of
factors is equal to a determinant of order » the first @ of whose
rows come from D", the next 8 from D, ... the last 7 from D",
Ixpand this determinant in the sum of products of complemen-
tary minors of order a, B ... 7 selecting the rows of the minors
from the first «, the next B...the last =, its value is. then
(Art. 8)

3D,@D,8 ... D,",

P

with the notation of Art. 19, and the summation sign means that
we are to take all the possible complementary minors.
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This is only a single term in the expansion of the product (2),
the whole product is obtained by summing this for all values of
@, ... m which satisfy the equation (1).

Thus D"= 85D @D, ... D, .ceoviiininnens (3).
21.  The number of terms in the sum = is
n!
alBl...aw!

Let us compare the expansion (3) with the expansion of the
multinomial ‘

(D, + D, + ... +IL)"
The general term is

ODPDE oui BT ¢ covsnsons vevpvsams oo (4),
where a, B... w satisfy (1) and
n!
~ul Bl..al’

Comparing (3) and (4) we see that in expanding the determi-
nant we replace €' by 2, and «, 8... 7 are no longer exponents, but
merely indicate the order of the determinant.

Hence we may write symbolically for the expansion of our

determinant
(D, +D,+...+D,)",

where in every term of the multinomial expansion we replace
the coefficient by a summation sign, the number of terms in the
sum being given by the multinomial coefficient and the exponents
a, B ... 7 now indicating the orders of the complementary minors.
Thus finally we have the symbolical equation

D"=(D + D,+ ...+ D)
22. Let us make use of this theorem to expand the deter-

minant
D=\a,+z, a, , a

12 g v @

Qyy 5 Ay =+ Z,, Aoy vee @,

Qg 5 Oy 5 Oyt 2.0 @,
0y an2 2 ans b a’nn + zzl

according to products of the quantities z,, 2, ... z,.
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Here we must, write

=ia, ...a

'Dl(n) 11 in Dz(m': 2z, 0...0
, 0, 2,... 0

Wy iis Bl 1 5 sesmwnsns

0, 0...2,

Then by the above theorem
D=(D,+D,y
=D"4+3D""DM+ 3D D" +...+ D
Now clearly all minors of D, vanish except those whose
leading diagonal is part of the leading diagonal of D,

Thus
Bl =u, D¥=eg, .. . DP=¢s .2

»
The corlespondincr minors D", D™ ... are got by erasing in
D, the ¢ row and column, the and lc“‘ rows and columns, &e.

Thus
D=D" 432D/ "+322 D"+ ... +22,...2,
Or if we simply denote D™ by D,,

D=D, +3% D‘+Ez 4'D

g d1 e T 82, cve s
If 2, =2,...=2, we get
CZD 2 d*D, W
D=D,+2% 7 da, T Ed%dakk+...+z.

23. Any determinant can be written in the form

D=|0+4+a, a, .. a,
ail > O + a2" al?‘n
Gy 5 Oy 0+a,,

D=0, a,..¢

and 2z, = ay.
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Then

2

dD d’D -
_D =_D1+ Zafii %1: + Eaﬁakk dauTc: + ... + aua% S ¢
The general term being
Bttt « s G D,

Where D™ is the minor obtained from D, by suppressing
the ¢® &™ ... 7™ rows and columns, m in number.

It is clear that D™ is zero, for a term of D cannot containn—1
terms from the leading diagonal only, if it does it must contain n,

Ex. If

0, a,|=(@12), &
a,, 0
we have
au a’14 =] 11‘1’22 33 44+ auazz (34) +a’11 33 (24!) + an 44 (23)
e + a’22a33 (141} + a22a’44 <13) + a53a44 (12)
Uy =o- Caa |+ g (234) +a,, (134) + a,, (124) + a,, (123)
+ (1234).
As another example we may find the value of the determinant
D=|¢c, a, a, a...a
by ¢, @ Giiet
b, b, ¢, a..a
b, b, b, b c

The general term in the expansion of this determinant is
Zegy - 6, D

when ¢;, ¢, ... ¢, areany m elements of the leading diagonal. But
by Art. 13

w—-m=1__ 77 a’b

D (n—m) _ ( 1)7 ( n—m~1 bn-m—I)

Whence if f(m) = (¢, — &) (c.2 — @) ... (¢, — ),

it is clear that
»_ O =Y @
a—b ’
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'If we write down the similar determinant of order n + 1, for
which ¢,,, =0, after dividing both sides by ab, we get

O @ oo, 1| f(@)—f(b)
b, ¢, ...a, 1 a—>b

b, b ...c,, 1

1, 1..1, 0

If we suppose a=b, we get on evaluating the vanishing
fraction in this latter determinant a determinant expression for
fa).

24. We have seen how to expand a determinant according to
the elements of a row or column. It is frequently useful to be
able to expand a determinant according to the elements of a row
and column. This is effected by means of the following theorem
due to Cauchy, . e
l Qi ] = a’rsArs——za’rka’lsBik’ f’”ﬁ" g‘\:
which expands a determinant according to the products of ele-
ments standing in the ™ row and §* column.

A, is the complement of ¢, and B, is the complement of
a, in 4 _, and is therefore a second minor of the original deter-
minant,.

For every term which does not contain ., must contain some
other element from the 7™ row and some other element from the
s® column, and hence contains such a product as a,,a,, where 7 and
k are different from r and s respectively. The aggregate of all
terms which multiply @, is 4, ; now a,a, differs from o _a, by
the interchange of the suffixes k and s, thus the aggregate of terms
which multiplies a,,a, differs in sign only from that which multi-
plies a a,, that is to say, differs in sign only from the coefficient
of @, in 4,,. Hence — B, is the coefficient in question.

r8?

25, This theorem is useful for expanding a determinant
which has been bordered. For example by this theorem
D= bm? bm' 'bpz

By s 0

112 12 *°*

byyy Qs gy .

—_— !
=by | @y | —20,b,4,,
where A, is the complement of ¢, in | a, | .
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By the selection of a suitable bordering we are often able t
evaluate a determinant by means of this theorem.
For example, let

D=l\z, a, a, A
@y, &y Ug n
g5 Oy Ty ses &,
ali ag! as ,l"n

all the elements in the i® column being a, except that in the ¢
row which is z,.
Then by Art. 14

D=]1,0, 0, 0
1, z, a, a,
1, a, =, a
1, a, a, =z,

Multiply the first column by @,, and subtract it from the ¢
column ; do this for each column, the value of the determinant i
unaltered and

D=|1, -a, -—a, -—a,
1, z,—a, O, 0,
1, O, z,—a, O,
1, O, 0, By — g « v

Here the bordered determinant is
x, —a,, 0, 0
0, T, — s

0, 0, z,—a, .

.................................

for which all first minors vanish except those of diagonal element;
Hence, in the theorem of this article, we must suppose 4=1%;

f= (.56 1) (wz - aa) nen (.'L‘" _a‘n)’
ey =3L
it follows that

D=f+3a,f (z,),

a theorem due to Sardi.



CHAPTER IV.
ON THE MULTIPLICATION OF DETERMINANTS.

1. IF we have two arrays

a/u’ alz ™ b1v b12 e bm
(1‘21’ azz e azn (1>, b21 s b22 o bzn (2>»
aml’ amz se amn bml’ bmz L bmn

and form a new set of elements ¢, by multiplying each element in
the 5 row of (1) by the corresponding element in the &* row of
(2) and adding the products, these elements form a new square
array of m* elements where

c‘lk = a’ﬂbkl + a"i2bkﬁ + re + ainb;cn'
This array is said to be compounded of the arrays (1) and (2).

2. We shall now shew that the determinant |¢, | is equal to
zero if the two arrays (1) and (2) are redundant (m > n); is equal
to the product of the two determinants |a,|, |by|if m=n; and
if the arrays are defective (m<mn) is equal to the sum of the
n,, products of determinants got by taking any m columns from
(1) to form a determinant and multiplying it by the determinant
of the corresponding m columns of (2).

Let C,=cpe,+ oy + oo +Cinrns
then |c, | =1IC,. L% l— e ey
Now Ci=(a,b, +a,b,+... +a,b,)e
+ (@ by + B bt oo+ 0,00
4= 4y

+ (a’ilbmx + a’i2bmﬂ + YL + ain bmn> .em
=a,B, +a,B,+ ... + a,,B,,
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where B,=bye, + bye,+ ... +b,.e,
form a system of alternate numbers of the m™ order.
Thus |, |=1I (@uB, + apB,+ ... + 6, B,)- L= §y =er

(i) If m>n the product on the right vanishes, for on multi-.
plying it out, in each term some one of the B's is repeated and the
product vanishes.

(i) If m=mn since by I.17 the B’s follow the same law as
the units e,
Icikl=‘a1k‘-HBi (i=1,2...n)

=‘a¢kl'\b‘ik|°
(iii) If m <n the product on the right is the sum of such

terms as
O, win | By BB, 5

...................

a aQ,

mp? Pmgs Oy =

when p, ¢, 7 ... are m numbers taken from 1, 2 ... n (11L. 5).
But

B BB, v..=|by b, b, 6,6, by w0 By
bzp’ 29° 2r
bmp b bmq ,' bmr
Thus
loﬂcl_z al:n’ al arr blp’ 1g? b1r
Dops Dogs Gy, bzp’ bzq’ bzr
Giings Lings: Dgonne s Oings B, s

where for p, ¢, ... we are to write all possible m - ads from the
n numbers 1,2 ... n

3. The second case of Art. 2 gives us the rule for multi-
plying two determmants We see also that the product of two
determinants of the n™ order is also a determinant of the n®
order. Thus
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where the quantiﬁes ¢, are given by
o =0y b+ apby+ ... +a,b,,.

But since in either, or both of the determinants |a,,|, | b, | we may
interchange rows and columns without affecting their value, we see
that the product of two determinants can be obtained in the form
of a determinant. in four different ways, viz. the element c,, has one
of the four forms :

Ol + a5b,+ ... +a,b

in T kno

by + b, + ... +a b

in - nk)
ayb, + b, + ... +a,b,,
! a’ubu + a’m'bkz +.+ a"niblm)

where we multiply the elements of a row of | a,, | by the correspond-
ing elements of a row or column of |b,|; or the elements of a
column of |a,| by the corresponding elements of a column or row
of |b,|. There are really only two essentially distinct cases:
multiplying by rows, when we multiply corresponding elements of
two rows together; and multiplying by rows and columns, where
we multiply the elements of a row by the corresponding elements
of a column.

4. We can only compound two arrays when they have the same
number of rows and columns, but we can always form the product
of two determinants, for by 11L. 14 the order of one of them can be
increased until it is equal to that of the other without altering
the value of the determinant. So that the product of two
determinants of orders n and m (n>m) is a determinant of
order n.

5. Ezamples. Compounding the two systems

ay by 0 Pu @ Ty
a4y by, ¢, Do 9o T

we get the theorem

alel + bl ql + 017‘1’ a2.p1 + b2Q1 + 027'1

@, Py + bl 9, + CiTar @Dy + szz + CTy

Dy 44

Dar G,

b

23

b

ay, b1 a;, 6 ¢

C

Dy 7y

P 7o

1

9 7y ‘

Qs 7

,, b2 @y, Cy 2 Cy
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while if we compound the systems

a, Gy, Py, Py
bys b, % Os
cl’ 02 Tl’ T?

we get
ap, +a,p, @,q, +a,q,, a1 +a,7r,|=0
b,p,+b,p, b, +0b,q, br +br,
C, P+ €y €,y CQ,, O+ C,Ty

Again, the product of the two determinants

a, by, ¢ P G Ty
0/2‘, bZ’ C2 p2’ Q27 ,rz
a’a’ bB’ CB .p 37 QS’ 7"3

is the determinant
a1p1+b1q1+clT17 a1p2+bIQ2+CIT2’ a1p3+bIQS+clr3
a2p1+b2QI+CZT1’ a2p2+bZ‘Q2 +027‘2’ a2p3+bégs+ozrs =
aﬁ.p1+bBQI+03rl’ a3p2+b3QZ+CBTZ’ a3p3+beS+GBT3
‘While

B By B A, .(pl, 9. |=la, b, ¢, d]| |p,q 0,0
U by Gy dy | 1Py G| @y by, 0 dy| | Py g, 0, 0
&, b, ¢, d, a, b, ¢, d |10 0, 1,0
a, b, c, d, a, b, c, d|[0 0 01

(forming the product by rows and columns)
=|a,p,+b,p, a,q,+b,q, ¢, d,
0P, +b,p, 4,9, 40,9, ¢, d,
Py + 0Py 039+ 0, 0 d
@, py+0,py @, g+, % Cy d,
Multiplying by rows we have
c, d _ ac+ bd, — ad’ + bc
—d, d| |=Ve+dd, bd+4dd|

Now if a, b, ¢, d are the complex. numbers

=71,

a, b

i
-b, a

a=a+1y b=u+1w
c=p+1q d=7r+1s
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and o', b, ¢, d' their conjugates, o' == — 4y, &c. On multiplying
out the three determinants we have Euler’s theorem concerning
the product of two numbers each the sum of four squares, viz.
(* +y2+u2+v2) (p2+q2+qﬂ2+82)’
= (pz—qy +ru—sv)’ + (py + gz + v+ su)®
+ (pu+ qv—rx — sy’ + (pv — qu — ry + sz)"

6. We may compound an array with itself, thus if we com-
pound the first array in Art. 1 with itself, the resulting determinant
has for ‘elements

Cyp = Ol T By &+ o + Cilln = Cpa

and
2

leal =2

Qipy Pagy Qg v

Doy Pogs Qg vee | ?

or the determinant is the sum of n,, squares. If then the elements
a, are all real the determinant |c,| can only vanish when the
determinant under the summation sign on the right vanishes for
all values of p, ¢, 7...

Thus compounding

a, b, c
a’?’ b?’ 02
with itself we see that
2 2 2 2 2 [ %
@+ b1 iel e+ b1b2 +oc, _ @5 b1 b1’ C; @ €
2 2 I ’
a,a,+bb, +cc,, a+0" +¢, a,, b, b,, c, Ty C,

or
(@l +02+0¢?) (a7 + 0+ ¢’) — (2,0, + b.b, +0,6)°
= (a,b,— a,b,)" + (b,c,— be,)* + (a,c,— ac,)”
Again
a, b, ¢ |® |’ +b° + ¢, aa,+0bb,+cc, aa,+bb,+cc,
a,, b, ¢, |= a,a,+bb,+ce,, af +b7 +e, a0, +bb +epe,.
b a,@, + b,b, + .65, .0, + Dby +cxcy, a’ +b° +¢

7. Prof. Sylvester has shewn how, by the artifice of bordering
the determinants as in 111 14, the product of two determinants of
order n can be represented in m+1 distinct forms. We shall

j, illustrate this for the case n=3.
S. D.

aa’ 3’ CB

4
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The product of the two determinants

a5 by 0 Pis G Ty
(279 bg, C, Py 9o Ty |2
CLS, ba’ 03 Pa' qy 7‘3

is the determinant of order 3 :
alpl + lel + 017‘1, 1p2 + b1Q2 + 617'2’ alps + blgs + 017‘3
a,p, + bz% + 07y, 4P, + byg, F oy, Pyt b.gs+ Cl's | .
@, P, + bsQl + 6Ty Agp, bst + 05y GyPyt bsq.s 0

But if before forming their product we write the determinants in
the respective forms

Q5 bv Cp» 0 — | P v O’ 7y
Oex by 64 0, Do o 0y 7,
g5 by, €5 0 Das G 0, 75 ’
0,0,0,1 0,0,1,0

their product by rows is the determinant of order 4:

alpl + bIQI’ a1p2 + le2’ a'lpa + leS’ 01
a2p1 + b2‘11’ a2p2 + b2Q2’ azps + b2Q3’ 02 ¥
WP, + 5,9, @y P, +Dygys a5pg+ by

T, 5 5 s 7, ;0

Again writing the original determinants in the forms

a, b,e¢, 0,0 », 0,0, q, 7,
a b2’ C 7 O .pz’ 0’ O’ 92’ 'rz.
Q) bs: ¢ 0, 0> Py 0, 0, e 75 |,
0,0,0,1,0 0,10, 0,0
0,0,0,0,1 0,0,1,0,0
their product-is now the determinant of order 5 :

alpl’ alprn” alpﬂ’ bl’ cl

a2p1’ a2p2’ a2p8’ b2’ c?

A3 P1s APyy APy, by G|,

o G 95, 0,0

Tow T T 0,0
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While writing the determinants in the forms

&, by, ¢, 0, 0, 0 1,0,0,0,0,0
B By 05,0, 0 O 0,1,0,0,0,0
g, byy € 0, 0, 0 0,0,1,0,0,0
0,0,0,1,0,0/ 0,0,0, p, ¢, n|’
10,0,0,0, 1,0 0,0, 0, poy Gy 7
0,0,0,0,01 0, 0,0, ps, s> 73

their product is the determinant, of the sixth order

a, b, c, 0,0,0
@, by, €, 0,0, 0
@ by, ¢, 0,0, 0
0,0,0,p, q,7n )
0.0,0, p, ¢ 7,
0,0,0, ps, g5 75

This rule is interesting as giving us a complete scale whereby
we may represent the product of two determinants of order n by a
determinant of any order from n to 2n inclusive; it is also frequently
useful in applications of the theory.

8. The fundamental theorem of Art. 2 regarding the deter-
minant formed by compounding two arrays can be deduced as
follows from Laplace’s theorem, 111, 5.

‘We can write the determinant |c, |in the form of the deter-
minant of order (n + m), 1. 14.

.........................

where ¢, has the value ascribed to it in Art. 1.



(1 8
o

THEORY OF DETERMINANTS. [CHAP. IV.

Now from the ¢® column subtract the last n columns multiplied
respectively by @y, ... then from the value of ¢, it follows
that

leal=] 0 . O , Byl
O 0 ¥ bml 'bmn

-y, . G, 1 ... 0

— Qe — @y, 0 ..o 1

In the determinant on the right multiply the first m columns
by — 1 and then move the second m rows to the beginning, then
(after m + m* changes of sign) our determinant is equal to

Gy O >, L ... 0, O 0
Gy Qs » O oo 1, 0 0
0 0 ) bu -y blm % blm+1 bl’n
O 0 b bml .. bmm) bmm+1 v bmzn
By +++ Bz O 0, 1 0
Bog o G o O w0 05 O . d

Now expand this by Laplace’s theorem according to minors
of the first m columns. Let us find the complement of the minor

By Wy wos

For this purpose we move the rows of &’s having the suffixes
/> g... up to the beginning; then move those columns of &’s which
have the suffixes £, g... into the (m+1)%, (m+2)™... places. This
does not alter the value or sign of the determinant, and in every
place where a 1 stood before, will now again stand 1. Hence the
required complement is

by, byeri0 0 =] by, by, ..
bys by-.0 0| | By, B,
0 0 10
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Hence
|26l =2 Gy Bygoes |« | B

w}}en f g... is an m-ad from 1, 2...n. This agrees with our
former result.

9. The value of any minor of order g of the determinant
lc, |, the product of two determinants |a,, | and |5,],

Say; CM = Cfl’ 2 ch s cfs
ng, qu s Cys

s, Olgomse By
can be expressed as the sum of products of corresponding minors
of order u of the determinants |a, | and |b,|.

‘For the elements of O, are got by compounding the two arrays

Qris Ogges Oy By By ena By
(0 A bas byaeenby
Dy g w6 by, by...0,,.

And since these arrayé have more columns than rows, it follows
that C, is the sum of n, products of determinants of order u,
formed by selecting p columns from the two arrays. Thus

Co=2|ay, Oy..tty | | by byennby,

------------------------------

when 7, j...7 is any p- ad from 1, 2...7.

One particular case of this we shall find presently of import-
ance; namely, when the two systems @ and b are identical, and
when moreover f=p, g=gq...k=s, so that the leading diagonal
of C, consists of elements from the leading diagonal of |c,,|.

Then we see that
Cu=3|0y y...0,

...............

is a sum of n, squares.



54 THEORY OF DETERMINANTS. [cHAP. 1V.

10. The differential coefficients of a determinant C, elements
¢y, Which is the product of two determinants 4, B, elements ay,
b,, can be represented. as the sum of products of differential
coefficients of these determinants.

We have AB="Csvuass vxes e @,
and Cp= Oy + G by + oo+ @by
Differentiate (1) with regard to a,,; remembering that ¢, ¢;,...c,,
are functions of this, we get '

dd _dC dC’ ac
G AU L LR L
Multiply this equation by
dB
'@ — .ka

and add together all the equations which can be obtained from it
by writing for p the values 1, 2...n. Thus we get

dA dB _dC
da,, " db,, dcﬂ

£72) kp T <
But by 1. 11 all the sums on the right vanish except 3B, 5,
which is equal to B, hence

ac _sd4 dA dB
de, ~ da, db,,

Bs 2% PB4 s OSBka

(p=1, 2...n).

kp
Similarly we can prove the equations,

azC _ 1 24 dzA
dcﬂadc;fl-_22 da,,da,, db,, db, (®g=1, 2.
d*C _ 1 2 d*A4 d&*B .
degdo,,do,, — 1.2.8 ™ dayday,da,, ” dby,db,,db,,

(u, v, w=1, 2...n),

whence the general law is obvious.



CHAPTER V.

ON DETERMINANTS OF COMPOUND SYSTEMS.

1. TIr the elements of a determinant are not simple quantities
but themselves determinants, the determinant is called a compound
determinant. *

Compound determinants are usually formed from the minors
of one or more determinants.

2. The number of all possible minors of order m of a given
determinant is {n,}* (L. 1). We can form a square array with
these minors, writing in the same row all those which proceed
from the same selection of rows of the given determinant, and
similarly for the columns. '

If n,= w and we give to the combinations of rows and columns
taken to form minors the suffixes 1, 2... u, we may denote that
minor whose elements belong to the ¢ combination of rows and j*

combination of columns, by p,;, and the whole system of minors
will be

Py "pl,m\I
........... o (1),
Puy o+ DupJ

Corresponding to each element in this array, which is a minor
of the original determinant, we have a complementary minor of
order n —m. We shall denote the complement of p,; by g, then
these form a new array,
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The arrays (1) and (2) are called reciprocal arrays of the m™
order. Minors of these arrays formed from the same selection of
rows and columns in each are called conjugate minors. The
simplest instance of two such arrays is the original system and
its gystem of first minors, viz.

a, A4, ... 4,

a n 11

11

.......................

Ay A

3. If we multiply the elements of the ™ row of the array
(1) by the corresponding elements of the &* row of (2) the sum
of the products is equal to 4 or zero according as ¢ is or is not
equal to k&, viz.

Pl t Puin + -+ + DinQrn = 4 or 0.

For if ¢ is equal to & this is nothing else than the expansion
of the given determinant A4 according to products of minors of
order m and n —m by Laplace’s theorem. If ¢ is not equal to %
the sum represents the expansion of the determinant when the 7*
selection of rows is replaced by the &™; the rows of this deter-
minant are not all different, hence it vanishes. The particular
case

Q,

ml *ee

(27

nn

@y dy+and,+ ... +a,d, =4 or0
according as ¢ is or is not equal to % is considered in 11L. 11.

4. Let A=la,|, B=|b,|
be two determinants each of order n for which we have formed
the systems of u® elements discussed in Art. 2; the systems for the
determinant 4 being denoted by p,,, ¢, , those for the determinant
By plas ¢

We can form two new systems each of u* elements as follows.,
In the determinant 4 replace each combination of the rows m at a
time by the fixed selection of rows marked 7 in the determinant
B, this will give us u determinants which we shall denote by
ty, ty... tiw. In the determinant B replace the fixed selection of
rows marked & by each combination from 4 in turn; these deter-
minants are called u,,, %, ... ur,. We have then two new systems

Gi - B Uy «en Uy

U

it v 1 T

(s
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Then by Laplace’s theorem we have the two sets of equations:

4= P+ Praia + -+ B = p'hlq’hl g .p’mq,hz + ...
ity =.pl1'1qu_ +p,e*zg1z 4 e Uy = Pngim + plzq,m +
by = P'alley + Pofos + - Uig =Py @y + Posas +

Whence by Art. 3,
taPyy FtapPy .o = p,ﬂA,
laProt Do+ - =p,i2A-

And hence
by (P F Pl at o) F o (P0G + Pt ) + ...
or ottt =AW D T
That is to say by compounding the ¢* and £™ rows of the new

arrays the sum 1s 4B or 0 according as ¢ is or is not equal to %.

5. We now proceed to investigate properties of determinants
of the elements of reciprocal systems, and first we shall examine
the system of the first order.

Let A=l|a,|, D=|4,|
Forming the product of these two,
4D=icy).
where C,=a,4, +a,d,+...+a,4,,
and hence C, = 4 or 0 according as ¢ is or is not equal to k. Thus
AD=|4, 0, 0..|=4";
0, 4, 0
0, 0, 4
D= An—l

6. Any minor of order p in the system 4, is equal to the
complementary minor of its conjugate in 4 multiplied by A7,

Let
’ . 2 + a’fl gk *

=|ay,, a,k...l
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and 3+ 4,4, ...be two conjugate minors in the two systéms
each of order p, and let 3 +a,0, ... be the complement of
S taq, ... So that

A=lay; ap . @ps Gpone| =F & 05 vo0 G
(.Z”“ G;gk . (ZW, a,g,,
........................... (1).
Dy e *°° Qpys Oy
a’xi > aslz “ ‘aau ) a’sv

We may write % + a,,a,,...=co 3 + a0, ...

Now we may write 2 + 4,4, ... as the determinant of order n,
Mgy By e iy Moo
Agy Agyoon Ayy Ay oo
0, 0 .1, ’
0, 0 0, 1

which consists of four parts. The first square consists of the
elements of 3 + 4,4 . ...; to the right of this is a rectangle of
n—p columns and p rows containing the remaining elements of
the /™, ¢™... rows. The rectangle on the left below of p columns
and n— p rows consists solely of zeros, and the square on the right
of n— p rows and columns contains 1’s in the leading diagonal and
‘zeros elsewhere, Multiply this by the determinant 4 written in
the form (1) above. Then (111. 11) we have

AS+ 4,4, ..=|4, 0 ...q,, a,..

0, 4...a,, a,

b aru,! afw

¥ a.m’ a’av
=A"3 +a,a

U e

If we resolve the determinant on the right into products of
minors of the first p and last n — p columns,

LESEAA, . = AT 02 aa, ..
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From this it follows that the ratio of two minors of the same
order of the system A, is the same as the ratio of the comple-
mentary minors of their conjugates.

2444, ... c2taa,
A . . oS + Ay,

7. As examples of the theorem in Art. 6, we have

All ""AIZ’ Ap_l l P*l-l p+HL " aﬂ“—ly’ﬂz
---------------------------------- ',
- T Bpgg o By "
Ap+1 g wom By, 1= 4 a, Ay ’411“, = 4 &
Ay oA, ' 1 i°0’ k.
The relation
.Azk) Au {|=4dcojay, a,
4., 4, Qs G

may also be written

d4  d4 _dd d4d _ , d’4

da, ’ da,, da, da, da,da,,’
1n particular '
dA d4  d4 dd 4 A4
da"n.—l n—1 da'rm dan—ln ' da’vm—l h . da’n—l.n—l dann

If 4 =0, we see that
A, A
s
A, _4,
4, A

3

or

That is to say, if the determinant vanishes, the minors of the
elements of any row are proportional to the corresponding minors
of the elements of any other row. \

8. Asan example of the use of the method of Arts. 20 and
21 of Chap. 111, let us discuss the value of the determinant
S = I xa’ik+ /“’bik I
@y, and b being elements of two determlnants of the n™ order

A= a1, = by
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Symbolically we can write

P=(4d+puB)"
— /L)
_43(3 2.

Now let 4,”, B be two determinants of order n, whose
elements are

1 d A(n) 1 dB(n)
AR Jay PeT g gy
then by Art. 5
(n) — I A - | L
‘Al ( _A(n))n A
i X
80 Bl‘ U= = Zm
Or, symbolically,
1 ;1
Al = Z' 3 Bl = E .
Thus P=A"B"(AB,+ud)"

But (AB,+ pAd,)" is the symbolical expression for a determi-
nant of order n with binomial elements of the form

ABy + pay,.
Hence, passing from symbohc to real expressions, we have the
determinant equation :
[ Ayt by | =] au | [ ba]. [ MBs+pay | .
Numerous other transformations of the determinant on the
left can be effected.

9. Next let us consider reciprocal arrays of order m. (Axt. 2.)

Let A=|p,|, A=]g,].

The product AA’ is a determinant of order u whose general
element is -
Pudu T PuGet oo T P,
which is equal to 4 or 0 according as ¢ is or is not equal to k.
(Art. 3.) Hence in the product determinant all the elements
vanish except those in the principal diagonal.

Thus AN = 4,
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It follows therefore that A is a divisor of A, Now 4 isa
linear function of one of its elements, say a,, hence A can only
differ from a power of 4 by a coefficient independent of the
elements of 4. Among the combinations m at a time of the
numbers 1, 2 ... n there are

A= (n—1)
which contain 1. Hence there are A elements of A, which contain
a,,, such for example as p,;, Py, -+« Par-

Hence A =zA*,

‘where # does not depend on the elements of 4.

m-1?

To determine the value of , let @, =0 except when 7=k, and
let @,=1. The same will be the case with the elements p,;
Ad=1, A=1, and 5 a=1

Thus A= A0,
and AI = _A(n"l)m
for n,— (n—1), = @m—1),.

10. A minor of order  of the system ¢, is equal to the com-
plement of its conjugate multiplied by 4.

For if we multiply the determinant = + ¢,q,, ... by the deter-
minant A in the same manner as we did in Art. 6 for systems of
the first order, we get:

CAS E g e = A0S+ PP s
oSk g e = AT 00Z £ Dy e
And in like manner
3t PP e = AT Dmeo3 & gug, o

11. Let 4, be a minor of 4, with % rows and columns. From
this let us form the determinant whose elements are all the minors
of order m of A,. These last are minors of order m of 4, and are
hence elements of A. On the other hand, those among them
which arise from the same rows or columns of 4, and are hence in
the same row or column of A, also arise from elements belonging
to the same row or column of A,, which is a minor of 4; al-
together they form a minor M of A, which has h, rows and
columns. While by Art. 9 we have

M= A4,
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which gives a representation of the minors of A by means of |
powers of minors of 4.

12. Ifin the determinant A we select a minor 4, of order A,
and form all the minors of order m in A (m > k), which contain
néither all the A rows nor all the & columns of 4,, we shall form a
minor of A withn,, — (n — h)m_,, rows and columns, which is equal to

A(’ﬂ h-1),, A{" Dma—(n— h)m-—h}-’

n—h

where 4,_, is the »complement of 4,1in A.

Let us suppose that, as in Art. 11, we have formed the minor
M in A" with (n — R),,_, rows and columns, which is equal to

A(’"'—h"l)m—h

and let us consider the conjugate minor @, in A, ie. that determi-
nant whose elements are the complementary minors in 4 of the
elements of M.

From the law of formation of M this minor has for elements all
the minors of A of order m, which have 4, as a minor.

If « is the complement of a, in A, it follows from Art. 10 that
o M A("'_l)m—l —( =ty

Substituting for M its value we have

o= AS::h_l)m_h ) A(n—l)m_l—(n—lz)m_?,.

The theorem is therefore proved, if we can shew that « is
formed as prescribed. For this purpose we must remember that
a, has for elements all minors of 4 which have 4, for one of their
minors; to get a we have then to suppress among the combinations
m at a time of the rows and columns of 4 all those which contain
all the rows or columns of 4,; thus a has for its elements all the
minors of 4 with m rows and columns, such that they do not
contain all the & rows or columns of 4,.

13. Next let us consider the determinant of the system of
elements #, in Art. 4, calling this determinant 7', so that

T= ] by, ] .
Since t,= p’ugm +p,az%cﬂ F inay
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it follows that 7' is the product of the two determinants
[p’iklalnd I gik{’
that is, by Art. 9,
T: _A(n_l)'m. . B(n-l)m-—L.

The value of the determinant of the elements w, is obtained by
interchanging 4 and B, and at the same time writing n —m for
m. Thus

U= A1y . B-Dm,

14, The ratio of complementary minors of T'and U is a power
of A multiplied by a power of B.

For if
Th = tu wln|s Zf#—h = | Uppant1 oo Unsap
b voe by Unza1 U
Since T 5 = tu tun t1h+1 tw- |
T Vins Limpq woov B

0..0 1..0

we have by the theorem of Art. 4
UT,=|AB, 0 ...0,

0, 0 O Upsappres e Bppye
0, 0 0, Uupyy ovv Uy
= (4B)". Up
which gives when we substitute for U
Uus_ gn, pr

13

where rM=@-1),,—h N=m@m-1),-h
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15. If the determinants 4 and B of Art. 4 had not been of
the same order we must have increased the order of one of them,
as in 111, 14, until they were both of order n. We shall make use
of this to investigate some further properties of the minors of 4
and compound determinants formed with them.

16. If A,is a minor of order & of 4, and if we border it
in all possﬂole ways with m of the remaining rows and columns of
A, we get the elements of a new determinant M, of order (n — A),,

whose value is
.A ("_h_l)m A(’n_h_l)m—l

h
For we have

4,=a

(23 o @,

nh?

Now let us write 4, and 4 for A and B in the theorem of Art. 13
and combine columns instead of rows (m is supposed less than h).

Each combination m at a time of the first & columns of 4 will
give a row of 7, of which only a single element does not vanish;
the value of that element is 4,, and it will lie in the leading
diagonal. The number of such rows is 4,. Each combination m
at a time of the columns of 4 taken from ~—1 of the first
columns, the last being replaced by one of the other columns, will
give a row of T, in which, besides %, elements of order % which
have no influence, there will be n — h elements of order % + 1 which
will be the minor 4,, bordered with a row and column of 4.

The first A —1 columns of this combination remaining fixed
while the last varies among the last n — % columns of 4, we shall
get n — h analogous rows in 7', which will give in the diagonal of
T a square of elements consisting of 4, with the simple border,
The same will be the case for each combination # —1 at a time of
the first 2 columns of 4, and the determinant of elements with
simple border will appear h,,_, times. Similarly we should have
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the determinant of elements with a border of % rows and columns
repeated £,,_, times, and hence

T= Ahhm . Mlhm—z . Mghm—z . Mmho (1)’
while, by Art. 18,

T=4,"0m, g0t 2).
Hence, if we admit the law,
Mk—1 — Ah(n‘h‘l)k—l . A—h-li

(which is true for k=1, for then M,=A4,). Substituting for
M, M,...M,_, the exponent of 4, is

m—1?

h,+n—h—=1) .k, +m—h—1). k4 ...+ (n—L-1)

‘m—1 kl 5
if we add (n—h—1),, to this, by a known property of binomial

coefficients it becomes (n — 1),,.

m~1"*

Similarly the exponent of 4 is ;
by +m—bh=1) .k, ,+(n—h—=1),. 0, 4 ...+(n—h—=1),,.h

I Y R

m-1°

Thus from (1) and (2)
M = Ah(n—h—l)m' A (n—h~1)m-1‘

17. Another way of stating the theorem of Art. 16 is the
following : * If A, is a minor of order & of A4, and we form all the
minors of 4 with m rows and columns which have it as a minor,
we get the elements of a new determinant of order (n—h),_,,

whose value is
A (n—h—1)m—n A (n—nh~1)m-p—1
o . :

18. The particular case of m=1 is so easily stated that it is
of advantage to give it here.

The elements of the new determinant are of the form

Co =y s Oy Oy (e, k=1, 2...n—h),
ahl aEE ahh > ahh-i—i
Qppra + o pgan> Argrnga
~h-1
and | op ] =47, 4.

This theorem and the theorem of Art. 16 are due to Prof.
Sylvester, the proofs here given are due to M. Picquet.

O

S. D.
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19. Another modification of the theorem of Art. 16 can be
obtained as follows: Let us return to the determinants A, A" of
Art. 9, and form a determinant M, with the minors of 4,
of order m —m; this is a minor of A’ of order (n—Ah),,.
The conjugate minor in A has for elements those minors of 4
of order m complementary to those of M,, and hence all those
which have A, as a minor. This is precisely the determinant
of Art. 17. Whence the theorem can be stated as follows:
If 4, , is a minor of 4 of order n—h, and if we form a deter-
minant M, with all the minors of order n—m of 4, ,, and then
replace each element by its complement in 4, we get a new deter-

minant, whose value is
M=A4 n—h=1)m-n A(n"h_l)m—h—l
=4, . .

20. If now we form all minors of A of order n—m (m> k)
such that neither all their rows nor all their columns belong to
A,_,, which in A therefore overlap A _, or belong altogether to
4,, these form a determinant N of order n,— (n— £), , which
is equal to

_Ah(n—h—l)m—h. A(’I’b—l)m—(n—h—l)m—h.
First notice that this is essentially different from the theorem of
Art. 12, applied to 4,. There the determinant is formed with all
the minors of the same order of A4 with more elements than 4,,
and which do not admit all the rows and columns of A4,. Here
the determinant is formed with minors of the same order of A4
with fewer elements than 4, and which do not admit all the rows
and columns 4

n—h?
n—h*

To prove the theorem it is sufficient to consider in A’ the minor
N complementary to «, in A or to M in A’. For N is exactly
formed with regard to 4, as the enunciation prescribes; it has
N,,— (n—h),,_, rows, apply to it the theorem of Axt. 10,

T A'(n—-l)m—x—'/bm—vh(n—-IL)m-h’

o (n=1)m—@0=R)m—p,
N=g 4" sl

or, replacing o, by its value, from Art. 17,

N= Ah(n—h—l)m—h'A(n"l)m—(n—h—l)m-—h.



CHAPTER VI
DETERMINANTS OF SPECIAL FORMS.

1. WHEN a square array is written down, it is natural to
inquire what simplifications arise in the determinant of the array
when special relations are supposed to exist between the elements.
And looking at the figure the relations which naturally suggest
themselves are those which depend on the geometrical form
which the array assumes. Hence we have various forms of deter-
minants obtained by supposing relationships, of equality or other-
wise, to exist between elements situated symmetrically in the
figure; this shews how the notation employed has influenced the
development of the theory.

The most important of these special forms are symmetrical and
skew symmetrical determinants. Here the special form of geo-
metrical symmetry considered is with regard to the diagonal.
Elements which are situated in regard to the diagonal in the
position of a point and its image with respect to a mirror coin-
ciding with the diagonal, have been called conjugate: two such
elements are denoted by a,, and a,,.

2. If a,=a,, the determinant is called symmetrical.

The square of any determinant is a symmetrical determinant.

For ] g, |"= ] Car I
where Cp = Wy + Qs+ o
= Cki'

Tt follows from this that every even power of a determinant is

a symmetrical determinant.
5—2
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8. We may also suppose the determinant to be symmetrical
with respect to the centre of the square formed by the elements of
the determinant. ;

Two cases arise, according as the determinant is of even or odd
order.

First, if the order of the determinant is 2r, we may write it in
the form :

_D=

o O € eomy, my, v, By e Yy B 8

...................................................

Uys By Wy eer Bgr Vg Mgy M. €y, by,
U5 By Yy ower fhys Vs Tops Mysen Cpy By

In this determinant add the last column to the first, the last
but one to the second, the (r +1)* to the 7™, then it becomes

D=|a+a, b+B, ...0.+v, v, g, ... B, &

a,+a, b+B,...n+v, v, g, ... B, 4,

....................................................

ar+dr, b+8,...n+v, v, ... B
a.+a, b+8, ...n+v, n,m...b, a/|

a,+ oy, b+ B, .o, 4y, 0y, my ... b
a,+a, b+B ..o +v, n,m..b

Now subtract the first row from the last, the second from the
last but one, the 7 from the (r+1)%, then
D=|a,+a, b+8, ..o, tv, v » g .. B, a
@ty b+ By Yy, Y, e B, g

G4, b+ B, Bt l B s B e B, &

0, 0 .. 0 m—v, m—p, ..b—5, a,—a,
0, 0 0, my—w, my—up,..0b, B, a,—a
0, 0 0,77 ny—v, m —p b, b @ —a
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Hence (111, 7),

.....................

& +a, ..ty | (N —v ...0—0
But if the order of the determinant is 2r + 1, it may be written
in the form
D=la

17 e

ToNT Uy, My oen b

By proceeding exactly as in the former case, we can shew
that
=la,ta ...n+v, u

M=V, vor G, —

2v,, p

So that when a determinant is symmetrical with respect to the
centre of the square formed by its elements, it reduces to the
product of two other determinants. !

4. If in a determinant the conjugate elements are equal in
magnitude but opposite in sign, i.e. if
By = = Gy
the determinant is called a skew determinant. If, moreover,
a,;=0,
the determinant is called a skew symmetrical determinant.

5. It will be useful to notice the connexion between two
minors of these systems, such that the rows and columns sup-
pressed to obtain the one minor correspond to the columns and
rows suppressed to obtain the other. Two such minors may be
lenoted by

P=la,a,..|, Q=|a,, a,...

Gopy gy ooe I ¢ A
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6. If the determinant is symmetrical,

Le. if By = By
clearly ‘ P =g,
A special case of this is, that in a symmetrical determinant
A=

for A, is got by suppressing the ¢™ row and %™ column, while
A, is got by suppressing the %™ row and 7™ column, thus these
.determinants are of the same nature as P and ¢, and are therefore
equal. Thus the determinant of the reciprocal system is also
symmetrical. If 4 is the determinant of the system

dA da,
c@ - Aik et Am da’ik
‘e = 2Aik '
d4
But J(;” = Aﬁ.

In a symmetrical determinant A, and the like are still sym-
metrical determinants.

7. Ifin Art. 5 @y = — 0,
we see that
—1 7 p— —_ m
P=la, a, ..|=|-a,, —a, ...|=(=1"Q,
Qgpr Qg Qpys — Uy

m being the order of the minors. Thus if m is even
P=g,
but if m is odd P=—q.

8. The calculation of skew determinants reduces to that of
skew symmetrical determinants, which we shall therefore now
consider. A skew symmetrical determinant of odd order vanishes,
for if we multiply each row by —1, since @, =—a,, this changes
the rows into columns, which does not alter the value of the deter-
minant.

Hence, if » be its order,
A=(-1)"4;
and hence 4 =0 if n is odd.
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. The minor 4, differs from A4, by the sign of every element ;
ence

4,= 1y .
Thus 4,,= 4, if n is odd, but =— A4, if n is even,

Thus the reciprocal system is skew if n is even, but symmetri-
cal if n is odd.

A, is a skew symmetrical determinant of order »—1, and
hence vanishes if # is even.

‘We have
d4 da,,
EZ_CZ;; - Aik = Am d%.-
= Ans = AH
=24, if n is even
=0 if n is odd.

9. A skew symmetrical determinant of even order is a com-
plete square.

For if A= |a,|

is the determinant, since 4, is a skew symmetrical determinant of
odd order it vanishes. Hence (v. 7), if @, is the complement

of g,in 4.,

— . B
Gy Uy | = 07 OT a0, = qy,

%> Oy
since a, = a,, (Art. 8).
‘Now by (L. 24) if we expand according to productsof elements

in the first row and first column, since 4, =0
A=—3aa a

107 ELTiRD

where %, & take the values 2, 3 ... n;
or A= zau Ay, "/aii %
= (Sa, Vo)

Thus A is the squarg of a linear function of the elements of a
row. Now a, is a detgrminant of order n — 2, which is even if »
's even. Thus a skey symmetrical determinant of order n will
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be the square of a rational function of its elements if one of
order n — 2 is so. But when n=2,

0, a
0

Thus skew symmetrical determinants of orders 4, 6...2r are
squares of rational functions of their elements.

2
12| Qg -

a/ﬁl 2

10. Since if n=2 1;he square root contains one term, when
n=4 the square root will contain 3, when n =6 it will contain
5.3 terms, and so on. Hence a skew symmetrical determinant of
even order n is the square of an aggregate of

1.3.5...0—1

terms, each consisting of the product of $7n terms of 4.
In particular a, a,,...q,_,, is a term of J4, for

a
= (= 1 00y con Oy Oy Oy oee O

(a a, & 'n—1n ~’21 ““43 nn—1"°

127784 *° n—1in

"11. This function /4 is of importance in émalysis, and has
been called a Pfaffian by Prof. Cayley on account of the use made
of it by Jacobi in his discussion of Pfaff’s problem.

That value of /A which contains Uiy e e O, ag first term

. n—1n
with positive sign will be denoted by
P=[1, 2,::n];
The remaining terms of P are got from the first term,

Wy Agy -1,

n—1n’

by interchanging all the suffixes 2, 3...n in all possible ways, and
giving a sign corresponding to the number of inversions. Since
a, = — ay, it is possible to effect the interchange in such a way that

all the terms are positive.

The Pfaffian changes sign on interchanging only two suffixes
7 and k. TFor if we interchange ¢ and £ in the determinant, this
interchanges the ¢™ and £™ rows as well as the 7* and &* columns,
thus the value of the determinant remains unchanged. If P, is
the new value of P, ,
Pr=P,
Hence Po=t P,
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To determine which sign we are to take, let us consider the aggre-
gate of terms @, p,, which contain a,. Then p, only contains terms
whose suffixes are independent of ¢ and k. The corresponding
aggregate for P, is ,
aki pik"
which, in consequence of the relation a,,= —a,, , proves that
P == P,

12. The minor «, is also a skew symmetrical determinant.

We shall shew that

Ja, =(=1y[2,...i= 1,5 +1,...1],
or with ¢ — 2 cyclical interchanges
Jag=[i+1,...m,2...5—1].

Since a,

2.
o %

Kk >
it follows that the terms of the product /a,\/a,, are either equal
to those of a,; or equal with opposite signs.
Now the product
(—1"*2...¢—-1,¢+1..0][2...k =1, k+1...0]
and the determinant

itk
By = | Gy oses gy Ogygvevsns (= 1)™%
...............................
Biggeee By pogs By g oo
% LS a’i+1 k12 (T

\ +12
by the same number of interchanges of two suffixes, become respect-
ively - )
[k, P q, T 8oath, U] [P; @575 810 U; 1]

and
Gips Ty Gipoves By
Uypy gy Ggs vos Uiy
a’vp’ a’ug’ aur * avi |
And the term
Qo gy v+ By + B By o+ Qg

of the product agreesin sign with the first term of the determinant
@y Oy By + v+ Wit

whence the theorem follows.
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13. Since we have shewn in Art. 9 that

‘\/Z'=a’12;’\/a22 + alB )\/a33+ i +a/1n ’\/amw
it follows that
[1,2..0]=a,[3...0] +a,[4...0, 2] +...+0a,[2...n—1];

a relation which enables us to determine Pfaffians of order n from
those of order n — 2.

Observe that after we have selected the suffix 1, the others are
written cyclically. Hence
[1, 2] =gqa,
[1, 2, 3, 4] = a,ay + a0, + a,,0,

[1,2,8,4,5 6]=0a,[3,4,5,6]+a,[45,6,2]+a,[5,6,2, 3]
+a,[6,2,8,4]+a,[238, 4, 5]

== alZCLS‘ia/EG + a’12 a35a64 + a12 a36a45

+ alB 0/45 aGZ + alﬂ a4.6 a25 + “13 a42 aéG

+ a'14 a56 a23 + a14= a52 aﬁﬁ + a14 a/53 aG2

+ a15 a62 a34 + a15 a’GB a42 £a alﬁ CL64 CLi.’a

+ alG a23 a’45 + alﬁ a24 aﬁ?} + (1'16 a25 a34 o

In particular

0, a —b, ¢ |=(ad+be+cf).
—a, 0, f e

b, —f, 0, d
—c¢, —e —d, 0

14. In a skew symmetrical determinant of even order, 4,
vanishes, being a skew symmetrical determinant of odd order.

But (Art. 8), A
A£k=—é—daﬂc
d
1, 2
=3 dam[l,2...n]
=[1, 2 1 i[l 2 1
=[l, ...nd% ) 2. W]
Now

P=[1,2..0]=(-1)"[41..7—1,2+1...n]
=-D"Yau[2...i =L i+1...n]+...
+ap (-1 L 2. i-L i+ 1 E~-1k+1...n]+...};
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=

hence A, =(=1y"[1,2...n] [k},
where {i%} is the Pfaffian got by omitting ¢ and % in [1, 2 ... n].
15. In a skew symmetrical determinant of odd order A4, is a

skew symmetrical determinant of even order, and is hence the
square of a Pfaffian ;

Viz. A,=[1..7c=1¢4+1...n],
NA,=(—=1)"[1...e—1,2+1...n]
=[+1...m 1...2-1].
Also, since A4 =0,
A4=A4.4,,.
Hence A,=[F+1..n 1...¢=1][k+1...m, 1...k—1].

16. The result of bordering a skew symmetrical determinant
is also of interest. The result assumes different forms accord-
ing as the determinant which we border is of odd or even order.

Let the original skew symmetrical determinant be

Ad=]ae,

ik I’

and let the bordered determinant be

a. a.

g, @ gy iy i

D= g, Gay, Uz, Qo -+
112

Aogy Qyyy Qop,

23
g8y Qgyy Agyy Ggg oo

By Cauchy’s theorem (111. 24)
D=a,A4 —Zas,mgd,.
Now, if A is of odd order it vanishes, and
A,=[+1..0 1...0—1][k+1...n,1...k~1];
hence, if we suppose that ag = — s, '
A=Sagap[t+1..n, 1...¢c=1][k+1.. n 1. .k-1]
=(0a[2 3...0]+...) (@m[2, 3 ...n] +...)
=[a,1,2...0][8, 1, 2...0],
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where in the Pfaffians such expressions.as i, Qg which do not
occur in the determinant are supposed to mean — dg;, — Ceg-

\

But if 4 is of even order,
D=aull, 2 ... 0] + Sam ag, (— 1) b} [1,2...n] (Art. 14)
=[1,2...0][%,8,1,2...0]
17. We have hitherto treated of skew symmetrical determi-

nants: it is easy to reduce to these the calculation of skew deter-
minants. Namely, by 111. 23,

D' =D+ 3a,D,+3a,a,D

where D is what D" becomes when all the diagonal elements vanish.
D, is what the coefficient of @, in D’ becomes when the diagonal
elements vanish ; D, the coefficient of @, @, in D" with the elements
in the leading diagonal zeros, and so on.

e O g 5 5 B

ik

If all the elements in the leading diagonal are equal to = we
can write this

D'=o"+a"3D,+2"* 3D, +... +a" ™ 2D, + ...

Where D, is a minor of order m got by suppressing n—m rows
and columns which meet in a diagonal element, the other diagonal
elements being put zero, the summation extends to all m-ads in n.

If m is odd, D vanishes, and if m is even it is a complete
square.

Thus, the elements being skew,

s gy Qg | = 7 +a (“212 + a21a ¥ “223)
a0 & Oy
315 (ggr T
Ly gy Ohygy Oy | = a* + o (a'212 + @213 + a214 + CL223 1 GEM + “234)
s &' Qygy oy + (arz gy o g a’42+ a’ma‘za) .
gys gy T, gy
gy Qggs Ay T

18. 'We can apply this last theorem to prove Euler'’s theorem
concerning the product of two numbers, each of which is the sum
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of four squares. Namely, we have
a, b, ¢ d|=@+++d),
—-b a —-d ¢
-¢ d, a —b
—d, —¢, b a
_p’ q-’ T’ s = (p2+qz+r2+82)2'
-9 p -8 T
-7, 8 p—gq
=% =" ¢ p
Now multiply these two determinants by rows, then if we
write

A =ap+bg + cr+ds, B=—aq+bp —os+dr,
C=—ar+bs+cp—dg, D=—as—br+cq+dp,
we get a skew determinant of the same form as the other two,
whose value is 7
(4° + B*+ C*+ D7,
whence
(@+b0++d) PP+ +7r+ ") =4+ B+ C*+ D
If we were to effect the multiplication by rows and columns we
should get another form of the same theorem; by permutating the
rows and columns we get still further representations of the way
in which the product of two numbers, each of which is the sum of
four squares, can be represented as the sum of four squares. The
total number of different ways is 48. The product of » numbers,
each of which consists of the sum of four squares, can be repre-
sented as the sum of four squares in 48" different ways.

19. We have seen that the square of any determinant is a
symmetrical determinant (Art. 2). Cayley and Brioschi have
shewn independently that the square of a determinant of even
order can be represented by a skew symmetrical determinant of
even order.

The process of the latter is as follows : We have

4= Quys Qg ooee Ay gy Ay | T gy ™ Qyp eee By — Qg y
azl’ a'Z‘Z SIEid a/2n—17 a’Zn azz’ af&l > a2n7 a2n—1
a’nl’ anﬁ ann-—l’ a’nn a’nz’ - a’m a’rm’ ann,—l



78 THEORY OF DETERMINANTS. [CHAP. VL.

Multiply these two equal determinants together by rows, and we
.obtain :

4= O’ llz’ 13" lm
lm’ O: 23 lzu
l 0

n1? “m2? ‘ngtt”t
where
lra = a’a-la‘m - a/ma’sl + a’rﬁa’ﬂ - a’r4asa +o Tt a’rn—la’m - arna’si:.—l’
then l,=0, [ +1 =0
Thus A? is represented as a skew symmetrical determinant.

Tt follows that A can be represented as a Pfaffian of the functions /.
If n =4, for example,

Qg oo @y | =00+ 10, + 1,

13742 14723°

The sign is determined by making the sign of a single term in the
determinant and Pfaffian agree. <

If instead of interchanging columns, we interchanged rows, we
should get another independent representation of the determinant
ag a Pfaffian,

20. A third class of determinants are those of the form

D=la,; @, G .0,
2 gy Oy Wy
3 @y w2 |,
an’ a’n+1’ a’n+2"' a’2n—1

where all the elements in a line at right angles to the leading
diagonal are the same. If the elements had been written with
double suffixes we should have had the relation

Apg = Wptkgtic-

Such determinants have been called orthosymmetrical. Their

most important property is that we can replace the elements by
differences of a,.
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For if we operate on the rows as we did in Chap. 11. 5 (iv), if

Ag, =0, —a, &c
D=| a, @, .. a,
Aa,, Aaq, ...Aq,
2 2 2
A’a,, A, A'g,
n—1 71 n-1
A", A" a,, ... A" g,

Now repeat the same series of operations on the columns,
beginning at the last, then

D=| a, A, .. A g,
Ady, Ao .. A
Aa, Na, ...

n=1 n 2n—2
A%, Atg,; w0 AM g,

An important example of this class of determinants is that
where a, is a function of % of the m!™ degree in &, whose highest
term has coefficient unity, the quantities @, a,... form an arith-
metic series of the m™ order. If m=n—1 all the elements
below the second diagonal vanish, while all those in it are equal
to (n — 1)1, whence the value of the determinant is

n(n—1)

-1 * {=-D"

If m is less than n— 1 the determinant vanishes.

21. The determinant of order » + 1,

My, My My, ot My ]
(m+1),, (m+ 1)pys (M4 Dy o (mF1),,,
(m+2),, (M4 2)py, (M+ 2y, oo (M+2),,, |

(m+ 1)y, (M+ 1)y (MAT)py e (MA 1),

—1D...(m—p+1
where mp——:m(m 1) 3 (W; pt ),

though not orthosymmetrical, is of a similar nature; let us call it

7

n,op*
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Divide its first row by m, the second by m 1, ... its (r + 1) by
m + . Then multiply the first column by p, the second by p+1,...
the last by p +7. Then

=m(m+'1) cee (m+17)
™2 p(p+1) ... (p+7)

(m—1),,, (m—1), v (m=1),,,
Mep_y» my, ‘ ml’-l—r—l 5

(m+r—-1),, m+r—1),.. (m+r-1)

P+r-1
or, if we multiply numerator and denominator of the fraction by
(r+1)4
_(m4m), i
m, P (p + 7.)T+l m—1, p-1°
Thus we obtain a series of equations by giving to m and p
different values in this ,
14 = (m +r— ]')'r+l
m—1, P-1 (p + - 1)7'“ m—2, P—-2

A :(m+1ﬂ—p+]‘)r+l

¥ m-pi1, 1 (7. o+ 1)7.“ 171'1—1:, 0
Now V., , 18 the value of the last determinant in II. 5, when we
write m — p for m and 1 for d. Hence its value is unity, which

gives, when we multiply the above equations together and cancel
like factors,

o= {m + 0 (b — D s 4 P—p+ 1),
e (_p + 7")r+1 (_p +Ir - 1)r+1 tee (’)" + ]‘)a‘+1 )

Another expression can be obtained for the determinant by
dividing the first row by m,,, the second by (m +1),, ... the last by
(m+7),. Then multiply the first column by p, the second by
(p +1),, the last by (p +7),; the transformation gives

_my(m+1),(m+2),..(m+7),
TP PP 1) (P2 (P,
A remarkable special case of the first form is when p=1, the value

of the determinant being (m + 7),,,, 1.e. the last element in its lead-
ing diagonal.




21—23.] DETERMINANTS OF SPECIAL FORMS. 81

22. 1If in the determinant of Art. 20

Gy = (i i), TR ot et 1) won (i bR T)

1.2...m'
then if m =n—1, A""q, =1, and we have
(c+n-1),,, (+n),, o (e+20-2), | _1@
(c+m),,, (c+n+1),, ...(c+2n—1)_, '
(c+2n—2),,, c+2n—1),_ ...(c+8n—3)_,

23. Another class of determinants are those of the form

‘D s | al’ a’2 7
an’ C61 n-1
a’n—l’ a’n n—2 2
Q a . Q

where the element in the leading diagc;nal is always a,, and the
rest of the row is filled up with a, ... @, in cyelical order.
The peculiar property of this determinant is that it divides by
a+a,0+a,0"+...+a, 0",
where  is a root of the equation " = 1.
Forif 4, 4,...4, are the complements of the elements of
the first row of this determinant we have (1ir. 11)
ad y+a,d,+...+a,d =D
ad,+a,d,+...+a,4 =0 (1).

..................................... ¥

Now consider the product
(@, + g0 + 0,0+ ... + ¢, 0"") (4, + A0 + A 0™ + ... + 4, 0™,
The coefficient of & is

Ao +4,0,,+...+4,0

2 kHL n k-1t
If & 1s equal to unity this is equal to D, by the first of equations
(1), but if & is not unity it vanishes by one of the other equations.
Thus D divides by

a,+ a0+ ... +a,0"

7"
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Hence
D=(a,+a,...+a) I (a,+a,0+a,0" +..4+a,0""),
where o is.one of the roots of the equation z"—1=0, unity
excepted.
‘24.  Another elegant demonstration of the theorem of the

preceding article is the following. If w,, ®, ... @, are the n roots
of unity let

- 2 n—1
=1, o, ... 0
2 n—1
1, 0, o, w,
2 n—1
L, o, .. 0

Then if we write
a,+ a0+ 0,0+ ... +a,0"" = ¢ (w),
and remember that " =1,

DP=| ¢(w), b (,)
'w1¢ (w1)’ w2¢ (("2)
o’¢ (@), ©'¢ (o)

0" (@), 07 (@,) ...
=P (@) $(@,) ... $ (2,),

whence D=¢ (0) ¢ (w,) ... } ().

25. Mr Glaisher has shewn that a determinant, such as that
in Art. 23, of order 2n, can be expressed as a similar determinant
of order n. Namely

Ay O Qo | = Al’ Az "‘A'n
a2n’ a, oo Qypy An’ Al "An—l

2
B o B, wnn g | | TEE29 e SERRS
..................... 4, 4,.. 4
a, a, .

where
A1= a, al—a/zna’z'i_a‘u—l Qg eer — A, Q
4,=a,0, —a,0,+a,a, ... —a,aq

..............................................
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For the first determinant
=1I (0, +a,0 + @, 0" +... + a, &™),

o being a 2n™ root of unity ; and since for every root w there is a
root — w, this

=II(4,+ Azco2 + Aaa)'i + ..+ 40",

which product is equal to the second determinant. For the 2™
roots of unity being denoted by +1, tw,, + ,... + w,_,, the n®

L: 2 2 2
roots of unity are 1, o?, »,> ... , >

For example if n=2

a, b, oc d =\A,B
d, a, b, c B A4
¢, d, a, b
b, ¢, d, a

where A =a*+ ¢ —2bd,

B=—0b"—d* + 2ac,
and the value of the determinant is

G — b 4ot — d* — 207" + 20°d® — 4a?bd + 4b%ac — 4c’bd + dd’ac.

26. If in the determinant of Art. 23 we suppose

= 2n+r=1
x?‘ %, m‘n-’-’r‘-'l x "

a'=(7'—1)1+(n+r—1)1+(2n+r—-1)!+

—~1
D=¢1Tl (g, +a,0 + a,0° + ... + 0,0™)
— G’JHEww
= e (1+w,+wst..+on-1)

= .l

97. Determinants whose elements are binomial coefficients
have been discussed with great minuteness by v. Zeipel, who has
given an immense number of theorems relating to this class of
determinants. One or two of these we shall now consider.

| 6—2
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The value of the determinant

My, , pm, q M, I
(m+1),, n+1, (p +1)(m +1),, (g+1) (m+1),... ¢+ 1) (m +1), |

(m+2),, n+ 2, (p+2) (m~+2),, (g+2)(m+2),... ¢+ 2)(m+2),,

.................................................................................

(m+k),, n+k (p+E)(m+k), (qg+k)(m+k),...t+ k) (m+k),_,
is (m=mn)(m—p=1)(m—q=2)...(m—t—k+1).
We must first shew that the determinant vanishes when m is equal
to any one of the quantities
n,p+l, ¢g+2 ... t+k—1.
First let m =n, then the determinant is

m,, m, pmy, qm,
(m+1),, m+1, (p+1)(m+1), (g+1)(m+1),...

..................................................................

(m+k), m+k (p+k) (m+k), (g+k (m+k),...

If we subtract the second column, multiplied by p, from the third
we see that the determinant is independent of p. Do this, and
divide the first row by m, the second by m 4+ 1, the third by
m+2 ..., then multiply the first column by k&, the fourth by 2, the
fifth by 3 ..., then the determinant reduces to the product of

m{m+1)(m+2)...(m+k)

1.2...k
and the determinant
(m=1),,, 1,0, g(m-1), r(m—1),
m,_,, 1, 1, (g+ 1) m,, (r+1)m,

................................................................................

m+k—1), L k (g+k) (m+k=1),, r+k) (m+Ek—1),...
Multiply the second column by ¢ (m —1),, the third by
g(m=1)+1.m,

and subtract their sum from the fourth column, and we' get the new
determinant
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(m—1),_, 1, 0, 0, r{m—1),

mhhl’ 1’ 1: O: (7'+1) m2

(m+1)k—1’ 1’ 2’ 1) (’r+2) (m+1)2
(m+k=1),,, 1, ky, by, (r+ %) (m + k—1),...

In this determinant multiply the second column by r (m — 1),, the
third by » (m—1), +1.m,, the fourth by »(m—1),+2.m,, and
subtract the sum of their elements so multiplied from the elements
of the fifth column, and proceed in a similar way with the altered
determinant., Finally we reduce the determinant to the product of
a finite number of factors and

(m-1),,, 1,0, 0..0, 0

In this determinant multiply the second column by (m —1),,,
the third by (m —1),_,, the fourth by (m —1),_,, &c., and subtract
their sum from the elements of the first column, then each element
of the first column, and consequently the determinant vanishes.
Hence our determinant divides by m—mnm. Similarly we can
shew that it divides by each of the other factors, hence it is
equal to

Cm—n)(m—p—1)(m—qg—2)... (m—t—Fk+1).
To find the value of € put
n=p=g=..=t=0;
then we get

17 (m+1)1’ (m+1)2 -
2, 2(m+2),, 2(m+2), ...
3, 83(m+3), 3(m+3),...

-------------- R R R N

ky k(m+k), k(m+k),...
=Cm(m—1)...(m—Fk+1).
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But the determinant =% ! as we sce by putting d =1 in the last
determinant of 11. 5. Hence

0=1;
thus the theorem is proved.
28. The determinant
m, L pm, e My, ST, U,y
(m+1), n+1, (p+1)(m—+1), .c. covininnininns (w+1) (m+1)
(m+k), nthk (p+k)(m+k), ... coovvvinrinnins (w+k) (m+k),,
(m+7), n+r, (P+7r)m+7), cvv covriiiininnnis (w+r) (m+r),,

is equal to the product of
k+1)(k+2) ...7
and
m,, m, pmy, e qmy,_
(m+1), n+1, (p+1)(m+1), ... (g+1)(m+1),,

..................................................................

@
(m+7ﬂ)k> ntk, (p+k)(m+k), ... (q+k)0m+E),,
That is to say, is independent of the » — k quantities s, ... u.

To this determinant apply the operations of 1. 5.iv. Then
in place of any element P in the j* row we must write

AP,

Then in the first column every element after the (% + 1)* vanishes,
while in each of the others every element below the leading
diagonal vanishes, the element in the leading diagonal of the 7™
column being (z—1).

Hence if we expand the determinant by Laplace’s theorem,
according to minors of the first & columns it reduces to

kE+1)k+2)...7| m,, n, pm, v qmy_,
m,_, 1, [pm,+(m+1)] ...
k-2 0) 2 (m + 1)0

m,
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which proves the theorem. For the last determinant is the result of
operating, as in II. 5.iv., on the determinant (1). The determinant
(1) is known by Art. 27, and hence we know the value of the new
determinant.

29. Next let us consider

M Mg, pm,,, T UMy,
(m+1),, (n+1).(m+1),, (p+1)(m+1),, ...

(m+1), (04 7) (m+1)gy (P+7) (M4 1)y ...
where % has any value from d to d +7 — 1 inclusive.
Divide the rows by
' My, (m+ 1), .0 (mt1),
respectively, and multiply the columns by
ks 1, (d+1), (d+2),...
Then our determinant is equal to

my (m+ 1), (m=+2), ... (m+1), (1)
]Gk_d(d+1)l (d+2)2 o (d_l_/,-_l);_l ............

multiplied by the determinant

(m— d)k—d? n, P (m_ d)1
(m—d+1), ,n+1, (p+1)(m—d+1), ...

........................................................

(m—Ad+7)gpntr(ptr)(m—d+r), ...

which by the preceding articles is equal to

(k—d+1)(k—d+2)...v(m—d—n)(m—d—p—1)
(m—d—g—2)... (2),

being independent of the last r — k +d, of the quantities n, p ... u.

The determinant we started with is equal to the product of (1)
and (2).
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30. In the determinant of the last article let
n=p=..=u=} k=d=1;
then if we multiply both sides by 2

my, m,, m, m,
(m+1),, 3(m+1), Sm+1), .. 8(m+1),
(m+2),, 5(m+2), 5(m+2), .. B5(m+2),

..................................................................................

(m+r), @r+1)(m+7), 2r+1)(m+r),... 2r+1)(m+r),
=2"m (m+1)... (m+r).
Divide both sides by m (m+ 1) ... (m+ r), and then multiply both
sides by = !, thus :
1,1, (m-1),..(m=-1)_,
1,3 3m, ..3(m)_

=2.4.6...2r
1, 5, 5(m+1),... 5 (m+1) "
Hence, changing m — 1 into m, if we write
w,=|11 m, m, ... m,

L1, (m+1), (m+1),.. (m+1)
141 (m+2), m+2),... m+2), |

we have by Wallis’ theorem

~

o aT
Lim. 2r+1)_ = g

when 7, and therefore the order of the determinant, is infinite.



CHAPTER VII.

ON CUBIC DETERMINANTS AND DETERMINANTS WITH MULTIPLE
SUFFIXES.

1. JusT as when »* elements are given we can arrange them
in the form of a square, so when 7’ elements are given we can
arrange them in the form of a cube. Then we can indicate the
position of the elements by means of three suffixes. The elements
will lie in three sets of parallel planes; supposing the cube contain-
ing the elements to stand on a table with one face towards us, we
may for cenvenience call those planes parallel to the face on which
the cube rests strata, those parallel to the face in front of wus
planes, and the perpendicular planes sections.

2. An element of such an array will be denoted by a,,
where the suffixes mean that it stands in the ¢® stratum, j* plane,

and &™ section.
The set of elements in the leading diagonal will be

a111a222 s a’mm'

From this we can form a function analogous to a determinant, and
hence called a cubic determinant, by the following process.

From the leading term @0, ... @,,, We form n! terms by
writing for the series of third suffixes all possible permutations of
1, 2 ... n, giving to each of these terms a sign corresponding to
the class of the permutation. Then from each of the terms so
obtained we derive m! new terms by writing for the series of
second suffixes all possible permutationsof 1, 2 ... n, giving to each

new term, relatively to the term from which it is derived, the sign
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corresponding to the class of the permutation. The sum of all
these {n!}* terms is called a cubic determinant, and is denoted by

2 i_ C511165222 =l amm’

or by [ | (6 J, =1, 2 .. W)

ik

3. Just as an ordinary determinant can be represented as the
product of n alternate numbers, so a cubic determinant can be
represented as the product of n factors lineo-linear in two sets of
alternate units. '

Ife,e,...0,; €, ¢,... ¢ are two independent sets of alternate

units, then the determinant of Art. 2 is equal to the product
H {aillelel + a’il2€192 + A + ailneleﬂ
+ a121€2el + a’i22€262 + i + ai2n€2eﬂ (’L’ — 1, 2 . n).

+ 6,6 + €0+ 0,60}

nl "1 mnon %

Tor if we consider any term of the product, it will vanish if it
contains two €’s or two ¢'s with the same suffix, ie. if two a’s with
like second or third suffix occur in the term, which ensures that
all terms which do not belong to the determinant vanish. Thus
every term which does not vanish contains some permutation of
the units e, ¢, ... €, and ¢, ¢, ... ¢, as a factor, and if the units
be brought to this order the sign of the term will be (—1)***;
where u is the number of inversions in the €, ie.in the second
suffixes of the term, and v the like number for the ¢'s or third
suffixes. That is to say each term of the produet is a term of the,
determinant with its proper sign. Thus the determinant is cor-
rectly represented by the product.

Just as an ordinary determinant is the product of linear
functions of the elements of a row, a cubic determinant is the
product of linear factors of the elements of a stratum.

By means of this representation we can deduce the properties
of cubic determinants.

4. The sign of the determinant is changed if we interchange
two planes or sections.

For interchanging two planes is the same thing as interchang-
ing two €’s, and interchanging two sections the same as inter-
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changing two ¢’s. Either of these changes alters the sign of every
term, and therefore of the whole determinant.

5. Interchanging two strata does not alter the sign of the
determinant.

For we can represent the determinant by either of the two
products

II (b, +b.6,+ ... +b,e,)

n n

II (¢, + Coe, + oo +Ce,)

n n

(f=1, 2 ... n)

where b,=06 + a6+ ... +a,

mken

=06 +a.6+ .. +a,e

itnn®

From the first form we see that the determinant, on inter-
changing two strata, suffers a change of sign as being the product
of alternate numbers belonging to the system e; from the second
we see that it also suffers a change of sign as being the product of
alternate numbers belonging to the system e. Thus on inter-
changing two strata the determinant undergoes two changes of
sign, and hence remains unaltered.

6. A cubic determinant of order n is the sum of n! ordinary
determinants, each of order n.

For as in Art. 5
A=1II(ce +c.e,+ ... +¢,e,)

171 22 in-n

where ¢, has the same meaning as in Art. 5. Hence, by 1. 19,

A=[Cik['

Thus the cubic determinant is equal to an ordinary determi-
nant of the same order, whose elements are alternate numbers.
To split up this determinant into others with simple elements we
must take a partial column from each column of the determinant,
but if we take a partial column in the p™ place from one column
we cannot take a partial column in the p™ place from any other
column, for then ¢, would occur twice, and the corresponding deter-
minant must vanish. Hence each selection of partial columns
must be a permutation of 1, 2 ... n, there are n! such selections,
and as many determinants with simple elements.

4
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Thus A =2ay,l,
where the determinant on the right is an ordinary determinant;
k is put in brackets to remind us that though it varies from one
column to another, in the same determinant it remains fixed.
This theorem is also an obvious consequence of Art. 2.

7. If in the preceding article we suppose all the first suffixes
to be the same, all the determinants on the right would become
alike, only their columns being permutated, and each determinant
would have the sign corresponding to that permutation, hence
suppressing the first suffixes altogether, the cubic determinant is
now equal to

(n)]a,| (5, k=1,2 ... n).

This then is the value of the cubic determinant whose strata
consist of the determinant

repeated # times.

8. The product of two ordinary determinants, each of order =,
is a cubic determinant of order .

Let A=|a =44 .. 4,
B=|b,|= BB, ... B,
where A, =a.e+ae+ ... +ae,
B, =be +be,+..+0b.e,

the systems of units e and e being independent,.
Then AB=1II4.0B,
= H (ailbilelel + aixbﬁ2€162 + R e + ailb'i'luele"f

+agb.e0 +ab.ee,+ ... +ab ce

U2 e

+a,b.e.e,+a,bee,+ ... +ab ee).

W

Now if Con = Qybys

the product on the right is the cubic determinant of the elements
¢s Thus the theorem is proved.



6—10.] DETERMINANTS WITH MULTIPLE SUFFIXES. 93

By multiplying 4, and B, together we avoided any inversion
of the 4’s and B's among themselves. If we allow for the conse-
quent changes of sign we can have as many such inversions as we
please, and so vary the form of the cubic determinant which
represents the product.

9. The product of a cubic determinant A4, whose elements
are a,, and of an ordinary determinant B, whose elements are

b,

> 1s & cubic determinant C, whose elements are ¢,,, where

€5 = by @yy + bjzaikZ +... bjn @,
Or we treat each stratum of A as if it were an ordinary determinant
to be multiplied by B, the resulting strata give C.

ikn *

For C=1 (c e +cp,ee,+ ... +¢,,ee,
+ c‘i‘216261 + ci226262 + gl + cizn 62671
+ s
+ ciﬂ.l e‘"el-l- Cini »€7L62+ SxE + Ginn eﬂ.eﬁ>

=1II (a’illBlel + ai12Ble2 + ... a'ilnBlen
+a,Be +a,Be+...

22

where B =b,e +bye,+ ... +bye,.

Since the alternate numbers B; follow the same laws as units,
this last product is a representation of the cubic determinant 4 by
means of the units ¢ and B. Thus

C=ud .8 .85 B, w:B,
=AB.

10. It is now an obvious step to consider those functions
formed of letters with more than three suffixes analogously to
determinants, though when we take elements with more than
three suffixes we cease to be able to picture to ourselves their
arrangement topographically as we can in the case of elements
with one, two or three suffixes. We can, however, conceive a set
of elements with p suffixes such as

a’ijk...l’
77 in number, to be arranged in p sets of rectangular planes in

a space of p dimensions, and forming a rectangular parallelo-



94 THEORY OF DETERMINANTS. [CHAP. VIL

schemon of p dimensions. (Cf. Schlafli, Quarterly Jour. 11. p. 278.)
The elements which have all suffixes the same, except 7, lie in
the same line, those which have all suffixes the same, with the
exception of ¢ and j, lie in the same plane, ... those Which have
only I in common lie in a rectangular paralleloschemon of p—1
dimensions.

The product of the elements

e m

Qpyinig Aoy g ve0 @,

is called the leading term of the determinant of the p™ class,
which is formed by keeping the first suffixes unaltered, and writ-
ing for each set of the other suffixes all possible permutations of
1,2...n. To each term so obtained we give the sign corresponding
to the sum of the number of inversions in the p —1 sets of variable
suffixes.

The whole number of terms is {n !}’

11. The determinant of the p™ class can be represented as a

product of linear factors of the elements which lie in the same
paralleloschemon of p— 1 dimensions.

If [ N
€y € ov0 €,
771) 7’2"‘7791

be p —1 sets of alternate units ; it is plain from reasoning similar

to that in Art. 3, that the function -
A=T13Za, ,¢e...

(where the sum is formed by giving to each of the suffixes j, k...1

all values from 1 to n, and then forming the product of such sums

for the values 1, 2... n of ¢) is a determinant of the p™ class and

»n™ order, such as we have defined in Art. 10.

12. This definition is strictly analogous to those for deter-
minants of the second and third class. A determinant of the
second class is the product of linear functions of the elements of a
row, one of the third class the product of n factors linear in the
elements of a stratum. Here the determinant of the p™ class is
the product of n factors linear in the elements of a parallelo-
schemon of p — 1 dimensions.
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13. It is clear that by the interchange of any two suffixes,
except the first, the determinant changes sign. Also since the
factors of the determinant can be written as linear expressions of
each of the p — 1 sets of alternate units, %t follows by the inter-
change of two first suffixes the determinant undergoes p —1
changes of sign. Thus the determinant remains unaltered or
changes sign according as its class is odd or even.

14. We have kept the first suffixes in their natural order. It
is however indifferent which set of suffixes is retained fixed. If
the class of the determinant is odd, it is perhaps more symmetrical
to keep the middle suffix unaltered; the determinant is however
not the same as before. '

15. The product of a cubic determinant 4, whose elements
are a,,, and of an ordinary determinant B, whose elements are b,,
can be represented as a determinant of the fourth class C, whose

elements c,,, are given by

Coa = a’m:bu'
For A=1I(a,¢ee +a,ee,+...+a,c¢ee,
S ol L )

B=1I (bﬂ"h + by, + oo+ b,7m,)
Thus clearly
(InZ 4,k 1=1,2...n)
AB=TEeusem) i1, 9...n)

which proves the theorem.

16. The product of two cubic determinants A and B, whose
elements are a,, and b,,, both of order =, can be represented either
as a determinant of the fifth class, whose elements are

ipqrs = a’ipq birs ¥

c
or as a determinant of the fourth class, whose elements are
given by ’

G 2l Doy (p=1,2...n);
the order of both determinants being 7.

The first part of the theorem is proved as follows:
A =TIZg,

irq

(In % pg=L2..n; n Il i=1,2..n)

€64
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B =H2biﬂrs.7'r ks‘
(In3 rs=12..n;inIl ¢=12..n)
Thus AB=1%a,,b,, ¢ ¢k,

=1I% ¢, €805, K-
(In3 pgrs=1,2.n; nIl i=1,2..2)
Which by definition proves the theorem.
Tor the second part of the theorem we have
C =T3¢ 8¢, 1.
Now the sum under the product sign
=3¢ {a, B, +0,B,+ ... + a;B,} (y=1,2...n),

‘in " m.
where B,= By ® Ty by €y Db wa + bpm € M
o Dy Gy T B € W e F By % W
L S

and if we write
A =a,6 + 0,8+ ...+a,.0,
the sum becomes
B A4, +B?z‘il,i2 +...+B,4,.

The product of this has to be taken for all values of 7. It
must always be taken so that in each term we have the
product B, B,...B,; for if two B’s are repeated the term van-
ishes. The value of this product is B.

The remaining factors in the term are
A A e A

1w
where p, ¢ ... r is a permutation of 1, 2 ... n. This is an ordinary
determinant of class 2. Comparing this with Art. 6, we see that
it is a term in the expansion of the cubic determinant 4 in a sum
of determinants of class 2. All these terms occur in our product.
Thus

C=4.8B

17. The following theorem regarding the product of two

determinants of any class can be proved by the preceding
methods.
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The product of two determinants of classes p and ¢, whose
elements are a,; , and b, , respectively, can be represented either
as a determinant of class p+ ¢ — 1, whose elements are

cii...luu...a = a’ii...l b

20 .. 82

or as a determinant of class p+ g — 2, whose elements are
C T ., -8 Ea’dl . 8(2’_1 2 )
all the determlnants belng of order 7.

18. Tt is not difficult to see how the theorems with regard to
determinants of the second class (i.e. ordinary determinants) can
be extended to determinants of any other class. It is probable
that determinants of higher class possess many properties peculiar
to themselves, though as yet not many of these have been investi-
gated. The complement of any element of a determinant is a deter-
minant of the same class and next lower order. The extension of
Laplace’s theorem would shew how a determinant of class p and
order n could be expanded in a series of products of pairs of deter-
minants of class p and orders m and n — m.

19. There is no difficulty in writing down the expansions of
determinants of any required class or order. The number of terms
however increases very rapidly.

The following are the expansions of determinants of the second
order, and classes 3 and 4 respectively :

S + (111)(222) = (111) (222)— (121)(212) +(122)(211) — (112)(221)
S, + (1111) (2222) = (1111) (2222) — (1112) (2221) + (1212) (2121)
— (1211) (2122) + (1122) (2211) — (1121) (2212)
+ (1221) (2112) — (1222) (2111),
while for the determinant of class 3 and order 3,
3+ (111) (‘722) (333) = (111) (222) (333) — (121) (212) (333)
—(111) (232) (323) + (131) (212) (323)
+ (121) (232) (313) — (131) (222) (313)
— (112) (221) (333)+ (122) (211) (333)
+(112) (231) (323) — (132) (211) (323)
— (122) (231) (313) + (132) (221) (313)
— (111) (223) (332) + (121) (213)(332)
1 (111) (233) (322) — (131) (213) (322)
— (121) (233) (312) + (131) (223) (312)
£ (113) (221) (332) — (123) (211) (332)

S. D. 7
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— (118) (231) (322) + (133) (211) (322)
+(123) (231) (312) — (133) (221) (312)
+ (112) (223) (331) — (122)(213) (331)
—(112) (233) (321) + (132)(213) (321)
4+ (122) (233) (311) — (132) (223) (311)
—(113) (222) (331) + (123)(212) (331)
+(113) (232) (321) — (133) (212) (321)
— (123) (232) (311) + (133) (222) (311).
20. We shall conclude this chapter with the following general
theorems. ‘
A determinant of any class, all of whose elements are equal to
a, except those in the leading diagonal which are equa.l to @, is
equal to .
o+ (n—1)d] (e—a)™,
n being the order of the determinant.
We shall prove this for a cubic determlnant but the method is
perfectly general.
D =TI (aee, +aee,+ ...
+ aece, +aee, + ...
e Fzee + ..
= H{aEE’ + (2 —a)ee),
where E=e +e,+. E=¢+e+...+¢,.
Hence, since £ and L' are alternate numbers any.term in
which they occur more than once vanishes. -
Hence D=(x—a)"+a(x—a)""2 {EETee}
- k=1, 2... 2—1, ¢+1... n);
s D= (x—a)" +na(z—a)"
— {a: +(n— 1) a} (x —a)"™*;

for : Ee ¢ € yq o0 6, = €0« et—leﬂ-l e €,
-1
_ =(— 1) v B3
y _ i Mg
and so e, ... € i€y o € =(-1) . €.

The last theorem of IIL 25 can also be extended to determl-
nants of higher class, for a cubic determmant we may state it as
follows : If all the elements in the ¢* stratum are equal to a,, with
the exceptlo‘n of that which lies in the leading diagonal, Whose
value is @, then the value of the determinant is

I+ 2af ()

with the notation given in 111, 25.



CHAPTER VIIL

APPLICATIONS TO THE THEORY OF EQUATIONS AND OF
ELIMINATION.
1. Ir we have n linear equations between n quantities
z,, ©;... x,, namely,

&t G Tyt oo+ 0, 8, =4,

Oy T+ Oy B+ oo+ 0, T, =, D).

21 71 22 72 2n " n

0%+ 2, + oo t+a,, 2, =4,

n1 1 n22 nn " n
the determinant A = | @, | is called the determinant of the
system. If A4 does not vanish we can at once determine the
variables. For if we multiply the above equations by 4,,, 4,,...4,,
respectively and add, then all the terms on the left vanish, with
the exception of those multiplying #,, which together give 4 (IIL
11). Hence
Ao, =u A, +u, A, + ... +u, 4, B=1,2 . m)

The expression on the right is the expansion of the determinant,
obtained by writing u,, w, ... u, for the elements of the A™
column.

2. It is interesting to compare with this the solution by
alternate numbers.
Multiply the given system (1) by e,, ¢, ... e, and add; then if
e a,+ea,+...+tea, =4,
e u, +eu, +...+eu, =0,

we have
Az +A,0,+ ...+ A,z =U



100 THEORY OF DETERMINANTS. [cHAP. VIIL

Multiply both sides of this equation by A, ... 4, 4, .4,
and we get

WA A, . AAz=A .. 4 A, .. AT,

=17 Tek1

or 1...A,-.sck=Al...A,‘_IUA,M...An,

and writing the products of alternate numbers as determinants we
get the same solution as before:

3. If in the equations (1) the quantities u on the right
vanish, we have the system of » homogeneous linear equations

a, o+, + ... 0,2, =u,=0 E=1,2...n).

{3 R § 2772

By By Ty
Taking any n— 1 of the equations, by Art.1 we can determine

the ratios. These values, if the equations are consistent, must

satisfy the remaining equation, This condition is

We may regard these as equations to find —

A =0,
For if we multiply the equations by Aw A4, ... 4, as before and
add, we get ‘
z, | a,|=0.

If then the equations are to be satisfied by other than zero
values of the variables we must have

A=0.

If this be true any one of the equations is a consequerce of all
the rest, viz. we have

ul'Alk + u2A2k T + unAmc -

Where the %’s now stand for the linear functio"ﬁw's':‘that is to say,
any one of the 's is expressible linearly in terms of the remaining
ones, provided the quantities 4, do not all vanish.

4. If the condition of the preceding paragraph holds we

have
x @, z

1= 2 —

A =7 ==7

k1l k2 Ten

For if we substitute the values #,=2\4,, all the equations except
the %™ are satisfied by L 11, and the k™ is also true since
A =10,
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5. Returning again to the equations of Art. 1. -Any new
linear function v of the #’s can be expressed linearly in terms of

the s,

For if v=bx +b,z,+:...+0,x,,
U= a, v+, 2+ ...+ a, T,

..................................

U= O @, + Qo Ty F oov + @, T,
we may regard these as n -+ 1 equations between the n+1 quan-
tities -1, », &,... B,.

n

Hence, by Art. 3, we must have

v, b, b, b, |=0,
Uy Qs Oy 1,
un; a’ma a’nz amL
or —Av=| 0, b, b, b,
4
Uys Gy Uy o Gy,
uﬂ’ aul’ anz amz

6. If we have between n variables «,, =, ... #,, the m equations

Oy B, + 0@y + oo + a2, =0

in"n

a z+a #+...+a _xz=0

“ml 1 m2 2 mn N
where m is greater than n. Then if these equations are to be true
for other than zero values of the variables, if we take any n of
them their determinant must vanish by Axrt. 3.

This condition is represented by

Bys By ses Oy || =05
gy ~Coy .
aml’ amZ e amn

which means that each of the system of m, determinants, got by
selecting any n rows of elements from the array and forming
o determinant with them, is to vanish. The expression on the left
is frequently called a matrix.
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7. 'The system of linear congruences
a,x, + ..+ 0,0, = U

........................... (mod. p),
am.z‘1+ 28X + a’vmmn = _%'n )
first considered by Gauss, has been solved as follows by Studnicka,
Let J 4= l aﬂa }’
and let g, be the greatest common measure of the numbers
) o 'Aw’ Azk Ank:
Then, as in Art. 1, we have for all values of k from 1 to n,
A 1 ‘
9— Z,= 97 (u1A17c oF ”zAzk + et unAm) (mOd' P)-
& k
The advantage of the rule is that if we observe that one of the
minors of a column is unity, or if two of them are prime to each
other, then, for that column, g, =1.

8. The solution of the system in Art. 1 assumes different
forms according to the nature of the coefficients a,. If
a,=—a, and a,=0,
so.that the determinant of the system is skew symmetrical ; first,
if » is even, if we multiply the equations by
[2...k—1, k+1...n], [8...k=1, kE+1...m,1] ...
[1...k=1, k+1..0-1],
and add, the coefficient of #, is
a,[2...k—1, k+1...0]+e,[3...—1, k+1..n,1]
‘ toeta, [l k=1, k+1..n-1]
=—[k1...k=1, k+1..0]=(—1)"[1,2...n],
while the coefficient of z, is
{1 kb=1,k+1...0]=0.
Thus
(—1)’z,(1,2...0]=u[2..k=1, k+1...0]
+u, (3. k=1, k+1..n,1]...4w [1...k—1, k+1...n—1]}
But if n is odd, then 4 =0 (v1. 8) and #,, , ... , in general
are infinite, but bear fixed ratios to each other. If however
wd,+ud, +.. +ud, =0,
or w[2...n]+u[3...n1]+...+u[1,2...0-1]=0

(VL. 15), one equation of the system is superfluous, and the system
of the remaining equations can be solved as above.
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9. In Art. 3 we have the first example of the process of
elimination; namely, we have found a condition, independent of the
variables, which must hold if a certain-given number of equations
are to exist between these variables. When » homogeneous equa-
tions hold between 7 variable quantities, (or what is the same
thing,. » non-homogeneous equations between  — 1 quantities) it
is always possible to establish an equation.R =0 between the co-
efficients of these equations alone. Then R is called the resultant
or eliminant of the system of equations.

‘When the equations are two in number the most direct process
is Sylvester’s dialytic method. Let the two equations be
0=a,+az+a,2+...+a,z" } )
O0—b + botda+..+ba | SO :
If we multiply the first equation by 1, @, & ... 2" we get n — 1 new
equations, and from the second by multiplying by 1, z, 2*... 2™
we get m — 1 new equations, viz. we have now the system

0=a,+az+as’+ ...

0= ax +ax + ...
0= as’ + ...
0=0,+ bx+ba"+ ...
0= b+ b+ ...
0 = bt ;e

of m + n equations satisfied by the same values of = as the glven
equations (1) and linear and homogeneous in the m + » quantities

mtn—1

1, 2 a... ™

Hence, by Art. 3, the determinant of the system must
vanish, or

R=|a, a, @ «oevvs = 0.
gy My swsinsss
R
bys By By eaness
By By envann
By o swsn
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‘A determinant of order m+n. Since there are n rows of a’s,
and m of b’s, the resultant is of order » in the coefficients of the
first equation, and of order m in the coefficients of the second.

10. If the coefficients «,,, @, ,, @y -+ by b, 4, b, ... ave
functions of y and z of degrees 0, 1, 2 ..., it can be proved that
the resultant is of order mn in y and z. This will be the case if

every term in R has the sum of the complements of the suffixes
equal to mn.

If we change y and z into y¢ and 2¢ respectively, the value of
R is now -
£ =g el 0" v |
at", ait" ...

Observe that the separate elements and therefore each term of &'
is multiplied by a power of ¢ equal to the complement of the suffix.
Now, multiply the first n rows by
il S B
and the last m by '
' L RN A B
" Then R is multiplied by a power of #, whose exponent is.
mm—1) nn-1
(n=1)  nlo=1)
But now the first column of R’ divides by ¢, the second by
tm'ML—‘Z

, and so on. Thus R + R is equal to a power of £ whose
exponent is

(m+n)(m+n—-1) mm—-1) n(r-1)
9 = o) — g =mn.

Thus every term in R’ must divide by ¢, which proves the
theorem. Functions, such that the sum of the suffixes, or of their
complements, of the elements in each term is constant, are some-
times called 7sobaric, and the constant sum is called the weight.

11. We may consider the question in another way.
If ¢ (x)=by+bx+ba®+ ... +ba"

=b, (x.—B)(x—25,) ... (.1~Bn)(1)
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is an equation whose roots are 8,, .8, ... B,, the function
| Ff@) =u=0,4 0z + e+ o + 0,8 rcererinn @)

has n values corresponding to the different values of = given by (1).
These n values are the roots of an equation of the n™ degree,
which we now proceed to find. Multiply the equations (1) and (2)

by the same powers of x as in Art. 9, and we have the m4n
equations

O=a,—u+az+ax’+ ...
0= (a,—w)ax+as’+ ...
(@, —u) 2+ ...

0= b,+bzx+ba”+...
0= b+ bat+ ...

Eliminating between these the quantities

g™t e, 1,

we get
ay—u, @, @ ...|=0,
Gy =%, Oy ...
y — %
bo’ bl’ b2
bo} bl

an equation of the n™ degree to find u, the roots of which are

(B, f(B) - S (B
“The product of the roots being equal to the constant term
(1 B2f (B (B - S B)= (-1 R
where R bas the meaning in Art. 9. Thus
R=0;f(B)f(By) - S (B.):
In the same way we may shew that
R= (= 1) (@) b (@) 6 () - & (3,)

if o, ... a,, are the roots of (2).
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.12, If the two functions ¢ and f of the preceding article are
a function and its differential coefficient, then R is called the dis-
criminant of the function, and its vanishing is the condition that
the function should have equal roots. If
f@=a+ax+ax’+ ... +aa"
=, (w_al) (18—012) CoZ (.%-— n)
S @)= a+2z+ ... +na2"?
R=ar f(a)f (@) oo f(@)
e, ve

=|a, 2a s

2

....................

having n rows of the first, and n — 1 of the second kind.

If we multiply the last row by n, and subtract it from the n®,
this becomes

0..0, —nay, —(n—1)a, ... —a,,, 0.

_Thus the determinant reduces into the product of a, by a
determinant of order 2n— 2, which we shall call A,

AlSO f ’ (a1) = a, (al - 0(2) (a1 - aa) e (ar_ aﬂ)
f, (02) = (0{2 . 0!1) @y (0'2 - 013) w3 (0{2 i an)

...................................................

Sle)=(1,—a) (0,—a) (a,—a) ... a,;
s f@)f) o flla)=(=1) % o, ¢(2,q,..0,)
where §(a, ... a,) means the product. of the squares of the differ-
ences of all the roots. Thus

nin—1)

A= (— 1)—2_“721,”—2 é‘ (au OF2 oo an)'

13. The artifice employed in eliminating = between two equa-
tions may sometimes be employed for the case of more equations
than two, as in the following examples due to Prof, Cayley.
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Let zty+z=0 2*=q, y¥=0b, F=c;
nultiply the first equation by 1, yz, 2@, @y, and reduce by means
f the other three, then we get
z+y + 2=0
@yz +oy+bz=0
xyz + cx +az=0
zyz+ br + ay =0,
whence, eliminating zyz, , y, 2, we get
, 1,1, 1|=0.
1, .,¢c b
1, ¢ .,al
1, b a

Or if we multiply the equation by =, , 2, #yz, and eliminate
1, yz, 2z, Yy, we get )
! o b c
B w5 Ly L
b, 1, 1
¢, 1, 1,
Again, if we are given the equations

= (.

3

z+y+2=0, #=a, =0, =g,
f we multiply the first equation by
‘@, y, 7, Yy, T, Y, Yz yem, 2y,
and reduce by the last three we can eliminate
o 0, 2 ye, 2z, @y, my’L, yi e, 2y’
between the resulting equations, giving

L, oy s =y 1L L = 4% ¢[=
I VR (N P I
AT T P T
, ¢, b, s s A )
¢, , W, o, T
b, a, -, o #p 5y 5y L
s , y @, vy . iy ].,
4 O¢ , b, -, 1, -,
L wg By sy B, 4, L

Other forms of the resultant can also be obtained.
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14. The resultant of the quadric

i

u=a, 2+ . + 20,20, + . =00 (1),

.and of the n —1 linear equations

0, =0, % + C @, 4+ ... + ¢, 2, =0

in"n

Vpy= Cpn @y + 0By +on + 6,0, 2,=0

n=in"'n

can be readily expressed by determinants,

By Euler’s theorem for homogeneous functions we can write
the first equation in the form
du du " du
&t o, 5+, —=2u=0 ... e (3).
Yde, " " da, dz, @)
Then if in equation (3) we do not ‘consider the variables implicitly
contained in the differential coefficients, (1) and (2) being =
equations, between @, ... z,, (3) must be identical with

Ay A A 0, =0 (4)
by Art. 3. Equating coefficients in (3) and (4) we must have
allwl + a12x2-+ b + aln'mn == xlcll + A'2021 + s + xﬂz-lcn—ll

Ay %y + q’zzmz + .. + Qg Xy, = 7~1012 35 7\‘2022_'_ et 7\‘71,—10%-12 (5)’

...................................................................

@&+ G+ o+ a,x, =N+ AC, e A0,

nn 171n ‘27 en
the equations (5) together with (2) form a system of 2n— 1 equa-
tions between ,, @,...#,, A, A,... A, hence their determinant
must vanish by Art. 3. Thus

a’ll a’l'z ’ cu 6n—ll = O’
..............................
n1 * a’mt’ cm * Gn—-ln
011 cln
C'n—ll St Cn—ln

the blank space being filled with zeros. This result is due to

Versluijs. a, and a,, mean the same thing, viz. half the coefficient
of 2z,
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15. If we seek to solve the system of equations
rty=a & +y=">,
we do so by establishing the new linear equation
z—y=+= V28— d’.

Following up this idea Baur has solved the non-homogeneous
system of an n-ary quadric and n» — 1 linear equations between the
variables; viz. let the system be

Gty 1 oe T 2008, F 0o = U ronsevsesswnns 1),
c;lw1+... +e,.%,=Y
Co @, + oee +0,, 2, =1,
.................................................... (2)-
Gy @yt e +C 1 = Ypqr
Then we wish to establish a new linear equatioﬁ
I CE T T IR—— (3),

so that if we determine the values of @, ... x, in terms of y, ... y,
from (2) and (3), and substitute their values in (1), the result shall
only contain ¥, in the form z,%. We are to have then

u=9"+2b,,, (Ghk=1,2...0—1)cerrenn. (4).
Now if O=] ¢
we have Co =0 5%+ Ol 4 o+ Ol s omane voms cwmens (5).
Hence, differentiating (4) partially with respect to v,, we get
_du da,  du da, du dw,
Qy“—d_xl d_y,n-,_d_mz %*-l'... + d;n « dyn,
du
or, by aid of (5), if U=%=,
r, by aid of (5), i ? Iz,
Oyn:‘ulcfnl_i- u261112+ L + unOnn
=| Cu» Cp Cra
G O o] P (6)
017,—11’ cn—l? it c’ll—ln
u, U, u,
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Substituting for the differential coefficients their values we
determine the form of the equation (3). We have still to determine
the value of y,. To do this we introduce the n (n— 1) quantities

in
62_1’ 622 E eZ'IL
en—ll’ en—12 Shu _en—lﬂ’
such that €0y Tty + ... te,0,=c;
and hence A = cr;A“ +edy+..t0c,4,,
where d=]wl,
Thus
4 Cus  Opg wee €, | =] 0y ¢, =0y, ... (M
_6Wr-11’ en—12 tee en—ln Crr11 Citn
Ty By e @, Uy e U,

Now from the product of (6) and (N,
Cyl=Ale, ..e. |.]|ec

¢ 'Bn-ln—l’ yn—-l
Yo Yo v Ynas>
where B,=c.e,+c.e,+ ..+ Crnonr

AB:-& = Crl (GalAl‘l + 082A12 +.. ')
+ Cra (CxlAM + cazAzz + )

Cem’ anp ang s @,

nn
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Omthe right-hand side of (8) all the quantities are known from
(1) and (2). Thus Oy, is known; substitute its value in the left of
(6) and we have the required equation (3), which with the equations
(2) forms a system of n linear equations sufficient to determine
the quantities «, ... «,.

16. The equation

=N QG Oy Wy =l
Py s a’22—7\" Qyg Lon
Drigs Dpgr Oy vos Bpp— N

(where @, =a,) formed by taking A from each of the leading
elements of a symmetrical determinant is of considerable im-
portance in analysis. The following proof that its roots are real is
due to Sylvester. If we denote the left-hand side of the equation

by ¢ (A) we have.

(=N =] ay+N @, .. oy,
a’il’ a22+ A‘ it am
3
aﬂ,l ) ans ann+ x
and hence
—_— 2
‘i)o")(l)(—)\’)_ 011—7\" Cp eee Opy
2
c21 ’ 022 A = czn
2
L N
where Cy =0 0+ OO+ o+ @, 0,

the A disappears, because @, =a,.. Hence, expanding the right-
hand side by Art. 22 of Chap. 111, :
dN) (=N =0 =NZC, + N0, — ... + (=N

NOW, by 1v. 9, C,, C, ... are all sums of squares, the coefficient of each
power of A being the sum of squares is positive. Hence, if we equate
the right-hand side of this last equation to zero by Des Cartes’
rule it cannot have a mnegative root. Thus A cannot be of the
form 8,/—1. In order to shew that it cannot have the form
o+ BJ—-—I we have only to write a,, —a=a,’, &c., and the case
is reduced to the preceding.
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17. The proof might also be conducted symbolically as
follows.

Putting A= | a, | D =N
in the result of 111, 21,
() =4 -\
¢ (=N =UA+N)";
i (&) dl— A = (A =W wons vons camna s w5 (1)

where the indices within the brackets mean actual powers.

On expanding (1) the coefficients of the powers of A are even
powers of 4, or, passing from the symbolic to the real expansion,
are the sums of squares of minors, and are hence positive. The
remainder of the proof is as before. A

18. We shall conclude this chapter by giving Fiirstenau’s
method of approximating to the least roots of equations, following
Baltzer’'s modification of it.

Let the equation be

Cf@=ataztaa’tt .. +a,2" =0 (1.
We shall suppose that all the roots are real and unequal.
The system of p equations

F@=0, af(@=0 ... f(@)=0uorerrrrrenn(2)
is linear wviith respect to 1, z, 2" ... "7 hence we can eliminate
any p — 1 successive quantities, say

+1 2 Jetp—1
& gL

For this purpose we multiply the p equations (2) by the com-
plements of the elements in the first column of

R a, a

T+1? a/c+2 T X

a’k+1 tre

2T (2]

a

-1 @

1724

The suffixes of R mean that the determinant (which is ortho-
symmetrical) begins with a,, and is of order p. If » is greater
than n, or negative, @, = 0. Adding the equations so multiplied we
get

0=, (2) +b,a" 4+ b,a"" 4 4 b _omt 3),
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which is satisﬁed by a root of (1). Here
¢I»(w) = a’o+ a,z + “2x2+ coe ahxk’ ak+1’ a’k+2 e
Q& + a@P s ...+ 4O, @, a,,, ...

...................................................

w17 Qpag oo | T &) Qg Qg Cppy oo
0’ ak’ alH-l Qs s (U
+ o+, @, ..
Wy gy Gy wve | woeeer (4).
If now z,,,, =,,,... %, be roots of the equation (1) we have the

n —k identical equations
0=, (@) + b,2if + byl ™ + - +0, 2087

0= 4,0) +0,8 + b7 4 b7

From these, by aid of (3), eliminating b, ... b,_, we get
0= dufm), o™, ., 2"
k+p+1 nt+p-1

' ¢k(wk+1)’ mlli:f: L oor Tpi1

n
Or 0= x _
B 1y
&, (z,.,) e
3 (k+7;+1 , 1’ @, m;tf 1
L1

...............................

Expand according to the elements of the first eolumn and then
-multiply up by «**7, and we get

0=6$,@) + o (2) o) # 0 (2) T hle)

where ¢, ... are independent of p.

This equation is satisfied by all the roats of (1), and if 2, ...,
be the n — [ roots of greatest absolute magnitude, when p increases
indefinitely the remaining roots of (1) are by the last equation

those of
¢, (x)=0.

s. D.
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Hence, if =, is the least root of (1), x,, =, the two least roots,
@,, @, ... @, the & least in absolute magnitude, then

. R \
= —q, lim. (1—”“1
= tim ()
_ o (B, p_1>
z,x, = a, lim, <R2, ;

Tk, p

To establish this rule eompletely as one of practical utility it
would be necessary to shew, for instance, that z, lies between two
successive convergents, obtained by taking two successive values
of p, and that these convergents approached #,, and did not recede
from it. The method has been extended by Fiirstenau and
Nigelshach to the case where the roots are not all unequal, and
also to the case of imaginary roots, but the discussion of these
points must be omitted here. '



CHAPTER IX.
RATIONAL FUNCTIONAL DETERMINANTS,

1. IF we have a series of n quantities @, ¥, #...u, t we shall
denote the product of all the § n (n —1), differences obtained by
subtracting from each number all that follow it, by

By 2. u i

So that
é-‘%(m,y, zo.out)=(z—y) (z—2) ... (=1
(H—2)... (y=1)
(w—1)

This function ¢ (z, y, 2... u, &) is an alternating function of all
the quantities #, g, # ... ¢; viz. on interchanging any two of these
it changes its sign, but not its absolute magnitude. It is thus of
the nature of a square root, having two values equal in absolute
magnitude, but opposite in sign. This is conveniently indicated
by the index 4. The .product of the squares of the differences
will be denoted by ¢ (=, v, z... %, t), and is a symmetrical function,
This notation is Sylvester’s.

2. We have

For.the determinant on the left vanishes if any two of the quanti-

ties @, ... t become equal, because then two rows become identical.

Thus the determinant divides by the difference between each
8§—2
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pair of the letters, being a rational function. THence it contains
¢k (x, y ... t) as a factor. But the A_leadin.g term in the determinant
is 2" y”"2 ...w.1l, which is also a term in ¢} (x...17) with its
proper sign. Thus the theorem follows.

3. Every alternating function of « ... ¢ dividesby g (... 1), for
on interchanging two variables the function changes sign, and
hence vanishes if they become equal, thus it divides by their

difference, and therefore by &* (z ... ).

4. TIf £,(#) be a function of the 4™ degree in =, the coefficient
of whose highest term is unity, we have

fn—1( ) f"_2’(.'1:) f1(w =§% (56, Y .- t).
f el (y) f;l—z (J) f A (?/) 1

f e (t), fH fl(t)

For if we subtract the last column, multiplied by a proper number,
from the last but one, the elements in this column become , y ... %
Now multiply the last two columns by the proper numbers, and
subtract their sum from the last column but two, the elements of
that column now become *, *... ¢ . Proceed in this way and we
reduce the determinant on the right to that in Art. 2.

If the.coefficients of the hlghest powers of @ were not unity,

the determinant is equal ‘to ¢ (e, ... multiplied by the product
of the highest coefficients®in the separate functions.

For example, if
zlxz—1)... (x—72+1)

.fi(w) = 1:1 =xi'
By B ves By X tw, y . )
yn—-l’ yn—2 * :/1’ (TL'— 1)' (’/b 2)'
tﬂ—l’ tﬂ—2 it tl’ 1

The denominator can also be written

270, 87, (n—2)%. (n—1).
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5. If Ji@) =a,x"+ a2+ ... +a

we see by the theorem for multiplying two determinants (xv. 3)
that

fi@), fi@) oo fu@) | =] y ... a,
Jow), ful@y) ... f(,)

...........................

S, (@) o [ () |
=|a,| é"}(xl, 8 e v B
It fil=)=(z—-y)™
| @ | =] I, o,{—9) o (—g* - 9™
A G AT A C /AR Cl A L

1, 01(_ ?/n)i cz(_'.?/n)2 sie (_ yn)n—l
=G§%(3/1! Yo ooe Ya)s »
where O is the product of all the binomial coefficients of order
n—1.
For the elements in each column of the determinant are multi-
plied by that power of — 1, which is introduced by moving the
column from its place in &* to the place it occupies.

Thus
(x1 - y1)n-1: (‘”1 - yz)”—l since (‘7”1 - yn)n.ﬂ- )
(wz - %)n_l’ (wz . yz)n_l L (wz - yn)n_l

(wn - yl)n—li (mn - yz)ﬂ_l L (xn = yn)
=08 (@, 2y 2) (Y, g, .o )
If @, = y, this gives us ¢ (z, ... ,) in the form of a determinant.

n=1

6. We may also give still further determinant forms to the

product ¢t (z, @, ... 2,) E (s Yy o U)-
Thus
o, a, .. 2) Wy 9y =& 1 y 1
wﬂn—l 1 ynn—l 1

= l Cix I‘;
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where if we multiply by rows
Oy = wsn_l y}:n-l + m{n—n ykn—’ +.oo 2y, + 1

_(my) -1
2Y,— 1

Or if we multiply by columns
6= xln—i yln—k + xzn-o‘ yzn—k i 4 e o mﬂn—d ”n—k.

If we put =y, and s,=a'+a’+...+, we get

é‘ (wly xz s mﬂ) == ‘9271—2’ Sﬁn—a b sﬁ—l
San—gs Son-g ** sn—z
Sp-10 Sug .5'9
== So’ Sl Sn—-l
Sl»‘ S2 . Sn
------------------ %
Sm—l’ S;p = Sﬁn—a

an orthosymmetrical determinant.

7. A more general theorem is the following. Consider the
array

mlm-'l, m}m—g mp 1
m—1 m—2

@, @, 5 @y L
m=1 m=2

® Ty & s 1

where n is greater than m. Compound it with itself, we get a
determinant of the m™ order which is- equal to the sum of the
squares of the n, determinants, obtained by taking any m different
rows in the array. The determinant has for elements

R o e - i-1,, k=1
C,=o, & +..txlx,

= Siinar

Hence, by aid of Art. 6, we get
PR CTETID) L I ST P

&)

it By 518 8

2m-2

where ,, @, ... are any m of the n quantities z,, oy 0 g 018

we
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8. We have clearly by Art. 2
oy @ Loz, 1=, .. 0) F @)

......................

where  f(z)=(x—a,) (x— ) o (—a,)

=a" — bz n-l- a5 "=t ('— l)n_‘l%-am‘ +
Equate coefficients of #° on both sides and we get

n o 8 —1- 1

a" .o a1 | =8 ...0,) P
n 1 -1

L L ...1

..........................

o .. a1

n

P, is the sum of the products n —¢ at a time, without repetition,
of the quantities o, ... a

9. We may write the first equation of the preceding article in
the form

0’ o .. g’ & 0|=(=1r¢(a, 4, ... a,) f (@),
aln_l, az‘n—l . ann_l, mﬂ"l, O

al’ az an? Z,

1, 1 1 1,0

0, 0 .. 0, O

a’ o ..oa” 0, ¥ [=(- l)nﬂé}z (@ ... ) f (@)

.................................

00 0 .. 0 1,0

Form the product of these two determinants by rows, and we
have :

Szn’ szn—l e Spy AR C(dl, Ay oo U.“)f(x) -f(?/)’

2n—1? 821-1—-2 R Sﬂ-l’ @

............................
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from which by equating coefficients of the powers of x and.y we
get a number of theorems. s, is now the sum of the 7* powers of
the roots of the equation f(z) = 0.

10. We may extend the theorem of Art. 8 as follows: the
value of the determinant

ntr=1 ntr—2

&, By z, 1

...........................
ntr=1 tr—2

z, x, L@, 1
atr—1 ntr=2-

am", a; La, 1
“mAr=1 =2

o, o Oy, 1

which is of the form of that in Art. 2, consists of three parts.

First the product of all the differences of all pairs of the

quantities , ... z,, i.e. é’% (@, ... ,), which by Art. 2 is a deter-
minant. Secondly, the difference of all pairs of the quantities

B ven Oy 1.8 & 3 (a, ... @,). And, lastly, the product of all such
quantities as

f(m@) E= (wi - al) (wd - 0(2) aed (wi - an)
=gl =t o, 4= 10, Y .,

Henee its value is

e =2
& 2w, B

Multiply the ™ row by f(x), and then equate coefficients of
@ 2l 2 ..., and we get the-theorem :

If D,,,, . is the determinant of order n formed by suppressing
the columns containing the u®, +*®, w™ ....powers-in the array

ntr=1 wr=2
o ay) e By L
ntr—1 ntr-2
- SR Ea NN S
then

D

%o w. pn*“v“‘—l’ pn—u+7'—2 Gl Pn-u gé-(an 0!2 Lo dn)',
_pn—u+r—1’ pn—vh‘—ﬁ e pn—v

..............................
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where p, is the sum of the products % at a time of g, ... a,.
If % is negative or greater than », p,= 0, p,=1.

11. Let us consider the determinant

D=| 1 1 1
. —a’' x—a x-—a,
1 1 1
z,—oa, w—a, " x,—oa,|*
¥ 1 1
z,—a,’ x,—a, = x,—a,

Multiply the ¢ row by
f(wa)—u—(‘m (m—a)"'(xi-—an))

we get

w—a

upl

The determinant on the right is an integral and alternating
function both of the quantities #, ... =, and of a, ... a,. Hence
by Art. 8 it divides by

g (w a: : n)g (@ By ver &)

Comparing the orders of the determinant and this product we
see they are the same, hence the additional factor is numerical
only. To determine it, put =, «, ... z, equal to a,, a, ... @,
Tespectively, all the elements except those in the leading diagonal
vanish, and

u{

pr— = (2, —a,) (7, — a,) oo (0, — a,,) (@ —a,,) . (@, — a,)

= (‘"’ l)i_L (“1»_ ai) (ai-l - a,,) (“0" al+1) (“i - an)
when z,=a,,
thus the determinant reduces to-

nln=1)

(=1) % E(ap oo )y

which determines the factor. Hence

= l)n(nﬂ_ é”( N é‘é(al, a,...a,) .

uu vee U

"
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in the determinant

1
12. If D, is the’ complement of .
i %
D, then D, is equal to the determinant obtained by omitting g,
and o, on the right, multiplied by (—1)***,

} Y
! ~( 1)1+L ( 1) g (7’ Ly 1+1 n)g (0( * 1—1 a0 S a)

Vs oen

n-1

where
U Uy Uy . Uy Uy
Zy—a, T,—a, Tpg = &y Ty — Z,—a

VVy ven ?,

179 -1

Now if we write
g (e) = (Z—-’L‘l) (Z—mg) v (2—a,)
é‘é (w Liaipy oo x") E% ( o @Oy oe a'n)

( 1)“’“§ (2, ... x,) § 8 o)
9’ @)f" (o)

<w1 - a") (mz - ak) X (wi—l - ak) (mH-i ((Eﬂ —a ) (_ l)n Q‘Z(Tai;

D fleg) 1
then D f/ (ak) .ql (wz) ) Z, —a, .

13. The preceding article enables us to solve the system of
equations

pos B | SRR S

V a‘n_ al wﬂ - aZ ) mﬂ - an &
1 s i .g (ak) .f (xl) 1’”1 - f(mn) U,
Ve NS T @) {gm PRI s ey

In particular if u, =, ... =u,. Since by the rule for resolving
a rational fraction into partla] fmctlons

f(x (‘T - 0(1) (‘E - az) (CL‘—— an)
9@ w—=z)(@—g) ... (z—a,

flx) 1
-1+Eg <m()‘7/' @’
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we see by putting #=a_in this, that
L) 1 f@) 1

f 3 o gl<xn) Ty —a,

g (w1) L=y
g (4,)

Hence if », =1, Y, =—"% .
VAN
14. If in the determinant D of Art. 11 we expand each term

in a series as follows
1 1 a, o
mi— ak'—gi_‘-;iz-l_ s +x‘.1]+1+ LR
we see that the term in the expansion of the determinant which
wﬂﬁl)—l iS

) PG P gH
multiplies (™. z," ...
o7,

q ['4 ['4
af, af o0l

b P
B s 0

To expand the right-hand side we have

1 1

ui_ (‘Ti - 0(1) (xi - 012) (x.' - an)
1 H H

=F+x‘7‘:}.‘l+...+m‘an vea

i

. Here H_ is the sum of all the homogeneous powers and
products of order 7, which can be formed from the quantities

G5 Gy wen Ol

Now
n=1 72
Cé (.701, Z, .’L‘”) =& X e &y 1
—1 -
mzn ! mzn wz)
n—-1 n2
Z ’ xﬂ wn’ 1

Multiply the ¢® row of this determinant by the expansion of
u,”, the coefficient of (@™ . ™ ... &7 is

‘H_g-ﬂ Hp_l R H}‘Hl—n
Hy, By, oo By, |
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whence we get the final equation

a? al...q’ ( 1)n(n2—1) Hn, H, .. H, -5%(%--- @),
a? al...q, H,, .,H,_, ..H,_
when r is negative, H =0, H =1.
15. As an example of Art. 14,
(1;4, @, 1 == HU ‘H;’ ‘Ho a/ex" a, 1
b b, 1 H,H, 0||b 01
¢, ¢ 1 H, 0, 0| ¢ 1

=—(+ b0+ F+bc+ca+ab) (b—c)(c—a)(@a=b).

We may make use either of the résults of Arts. 14 or 10 to:
evaluate determinants whose elements are sines and cosines..

For example take

X=| 1, 1, 1, 1
cos 4, cosB, cosC, cosD
sin 4, sinB, sinC, sinD
sin 34, sin 3B, sin 3C, sin 3D
‘Write for the sines and cosines theit exponential values, and sup-

pose ¢ =a, & Then writing only the first column of the deter-
minant

x=_2x| 1 L |
T gaat|  2(abed)’| gag g
a—a’t o'—a*|
a’—a® |a®—1

Add the second row to the third, divide by 2 and subtract the
third row from the second, thus

1 a®
R
ot
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Thus

4 (abed)* X=|a? |+ 1
a? a?
at at |’
a® at

the first determinant
=a’b’’d®| 1 | = a’V’e’d*® (@ —b)(a —¢) (@=d)(@+b+c+d)

@ (b—0c)(0—d)
a? (e—d)
a4 .

by Art. 8. And the second, in like manner, is equal to
(@=10) (@ —c) (a—d) (bed + acd + abd + abe)

®-0) 6
(c —d).
Hence
_(a=b)(a—c)(a—d) (b—c)(b—d)(c—d)
= 4 P d? %
[aV’¢*d* (a+ b+ ¢ +d) + abed (a7 + 07 + ¢ +d7)]
1 a—-> S , 1 ¢s1 . 1 1 1
=Z-J&Z--- [Jabcol(a+b+c+d)+m(&+g+g+a>:].
Hence if 28=A4 + B+ 0+ D
X=-2°.TIsin} (4 — B) [cos (S+ A) + cos (8 + B)

+ cos (S + C) + cos (S+ D)].

16. . If we differentiate the determinant of Art. 11 with
respect to ,, the elements of the 4™ row become
-1 -1 |
.<‘T¢ - al)“ (‘T-‘_ a2)2 o (mi_ an)z '

And thus
. an _ , 1
(=1 dz,dz,...ds, | (z,—a,)
=B.
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We shall now shew that

B 1 1 1
D~ z, —a,’ & — 0, r,—a
1 1 1
V\oy—a, wy—a,  @—a,

1 1 1
\z,—a, ®,—a @,—a

Where { } means that the function on the right is to be formed
like a determinant, only all the signs are positive instead of
alternating.

Multiply the ¢* row of B by uf, then

u‘Z
()

(1),

(w,ty +oo )" B

The determinant on the right is an integral and alternating
function, both of #,, @, ... @, and of &, a, ... a,, hence it divides by

e, @, ... ,) £ (... ).
If the quotient is ¢ (,, «, ... @), this is symmetrical with regard
to each of the variables, and of order n—1. Thus

E (_1)n(nT—1)¢<w1!m2"'xn)‘-

U WUy oes Y,

D 3

Now, by repeated use of the rule for resolving a fraction into
partial fractions

d@..2) s ¢(..2)
/ <w1) ¢ f(‘)(” —ai)

b oty @) s b (o re)
Fa) i@’

..........................................

we get finally
¢ (z,, ... 2,

Uythy von U

n

¢ (o, o ... &)
z_f’ @) F (@) o () (z, = o) (2, — o) - (@ — aﬂ).....(z).
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Now, in the first place, in the combinstion %, k...p, no repetition
can occur, for in the product
B (4, v0i 0,
& (z, ... z,) 8% (a,...a,)’
{f (@)

not only B, but also o — g Vonishes if z, and z, both coincide
— ,

with «,. Hence on the right of (2) we must write for 4, ... pall
permutations of 1, 2 ... n,

Now if we write a,, «, ... a, for z,, #, ... x, respectively, only
a single term of (u, .:. »,)* B remains, viz.
* [f, (ai)’ f, (ak) ""fl (ap)]z)
while
B,z ... 2)= & (e, @, ... ay)
=+t (a, o, ... a,),
the ambiguous sign being the same for both. Thus
’ / ! 2
b0y a) =L Q) @) o f ()]
& (a, a,...a,)
‘ n{n-1j ,
= (— 1) ? f/ (a‘)f’ (ak) f (a»)'
B_s L
D (x1_ a«) (.’172—- ak) L ((Eﬂ - ak) ’
where %, k£ ... p is to be a permutation of 1, 2 ... n. This proves
the theorem as stated at the beginning.

Thus

17. The coefficients in the expansion of the rational fraction

1+bz+b,a+...
1+a,o+a,a+..."

in ascending powers of # can be represented as determinants, Viz.
if the expansion is
2
1+ P ax+FPa’+..

we have
(1+ba+ba+..)=(A+Pa+Pa+..)(l+ax+a2"+...),
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and hence equating coefficients

P, =b —a,
a1P1+P,2 '=b:2'—a2
a,P, +aP,+ P, =b,—a,

..........................................

a, P+a P+ +P—b—-a

n-2

[CHAP. 1X.

a system of equations to find P,. The determinant of the system is
unity. Hence, if after solving by VIIL 1 we move the last column

to the first place, and change the.sign of this column

P=-1a -3, 1
,afz'_bz’ s ‘1

a,—b, a, a, 1

.................. R T |

R T T N a,
= (=1L L .

b @ L, s5

1oy, @, a, 1, )

b

as we see by subtracting the first column from the second in the

latter determinant.



CHAPTER X.
ON JACOBIANS AND HESSIANS,

L. Ify, y,...y, be n functions of the n independent va-

riables #,, @, ... #,, and if

~ 2,
® dw,’
then the determinant | @, | is called the Jacobian of the functions
Y, - ¥, With respect to the variables , ... #,. Thename was given

by Prof. Sylvester after Jacobi, who first studied these functions.

a,

The notations .

fl(?/l:yz-'-yn). J(y Y y)
’ 10 Yo vee I

d (2, @, o0 )
have been employed for Jacobians, each of which has its advan-
tages. The first renders evident the remarkable analogy between
Jacobians and ordinary differential coefficients. The second is

useful when there is no doubt as to the independent variables.

If the y's are explicit functions, the Jacobian is formed by
direct differentiation.

2. If the functions v, ... g, are not independent, but are con-
nected by an equation
¢ (f‘/v Yo, oo ?/ﬂ) =0,
the Jacobian vanishes. For if we differentiate this equation with
respect to @,, we get '
do dy, ¢ dy, I D
dy, dz, " dy, dw, " dy,dz,
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where k=1, 2 ... n. Eliminating
d¢ d¢  db
dy,’ dy, """ dy.’
from these equations we get (VIIL 3)

(Y Y - 9 _
d(a, @ .. 8y

8. If the functions y are fractions with the same denominator,
0 that

o
T
dew,” "z, s,
Thus b ) ]
o E0y oo 9) In) _ | du , du du ° du
d(xl xn) W, Y —t — y — U —L —y ==
v Vde,  tda dz, ‘dz,
7:6. ...... ’ndu ......... du” ...... @
w B ndz, " "V dz,  da,
Add the first column multiplied by % to the (¢4 1)* column,
and we get ‘
d, ...y, du du
antl 1 o el i
u Tl o) u, udxl udwﬂ
du, . du,
7111, u EZZ . u % ;
u %‘ U fzi”
” udw1 du,

whence dividing each of the last n columns by u

Ay, oy _ 1|, ~du  du
d@ ...2,) w™|" dw ' duo,
. u P du,

‘/1 ) dml e ﬁ; | 3
u:} du, du,
nd d%'l LR R (’rmn
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4. The determinant on the right has been denoted by
K (u, u, ...-u,). It has interesting properties of its own. For
example, since the Jacobian vanishes if the quantities ¥, ... ¥, are
related by an equation, it follows that

K (u, u, ... u,) =0

if a homogeneous relation exists between u, w, ... w

n®

-
If ui_.t’

it is readily shewn that
K (u, ul...un)=%ff_(v, Yy sww Ul

5. 1If the functions 7, ... ¥, possess a common factor, so that

Yi=uy
dy, . y) 1w 0 0
—d(z..m) v du, du du, du
Uys utﬁl—i—uld_xl a5 + 1%;
Yo ¥ o, T g, Y da, T ",

d
In this determinant multiply the first column by d:" and

(3

subtract it from the (¢ +1)* column, then

d(yl "'yn>__ n—1 _@_ —ﬂ
d(wl...wn)—u e de, " dx,|

du, du,

Uy, %l Ve dxﬂ

dLLﬁy %L

U, & ',

=" M—u—") —u K (u, Uy ... U,).

d (&, wee 8,)
6. If the functions g, ... ¥, are given only as implicit functions
of z, ... z, by means of the n equations

1
F @y eue Yoo @y oee ) =0 0o T (% oe Yoo @ o 2) =0,
9—2
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then

A Yy o Ya) _ - 1)"d (&, ...'F,,)+d(F1 Fn).
d@ ...z) d (@ ..m) A, Y
For if we differentiate the ™ of the given equations with
respect to z, we get
aF, 4y, AF,dy,  dF, dy,__dF,

dy, dz, " dy, dz, dy,  dz,  dm,’
Thus by the rule for multiplying two determinants (1v. 3)
(_ l)n EZE _ id_li'i dyz
de, | | dy, | " | dw,|’
or (__l)nd(F1 Fn)=d(F1'Ez) R d(?/x "'yn)‘
» d@, ...w) d ..y,) d .. a,)°

which proves the theorem.

(1) If F, does not contain &, ... «,_,, then in the determinant
d(F, ... I,
d(z, ...z,
all elements below the leading diagonal vanish, and it reduces to
dF, dF, dF,
de, " dz, " dz,’
() It Fi=—y,+f.(5, ... 3,
a(F, .. F)
o it AL | A 13
Ty ) Y

Ay, e y) _d(fy - 1)
and d@ .x,) d(m, ...z)

then

(iii) If from the given system we deduce by elimination

Y=, (“"1! Ly -en m,,)
V=9, (yv Ly oo ,)
y3=¢3(y17 ys’ xa e ww,)

.?/’n=¢n (:lj1 e .%,_.1: wﬂ)-

% %+ a4, %+C&‘=%
o dw,  de, T day
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we have
dp, dd, dg, =] 1L, 0, 0..|d(..gz)
dw,’ dw,’ dzx, _dé, " d(@, ...o)
o, Zh 4%, .
da,’ da, dé,  de,
0, 0, f@a dy,’  dy,’
A, " | s e s sewseng s v e v

It follows then that

d(yl "'-’l/n):é?ﬁ d_¢'z %
d(x, ...w,) de, ' de,’" dz,’

n

. dy, ..y, _
thus lf d (ml . wﬂ) = 07
d¢1 d¢2 d¢7'- P
we must have d_m: L—Z_zvz &F " 0,
1.e. we must have A =0,
dz,

3

where ¢ is some number between 1 and n. Hence ¢, does nof
contain #,. That is to say, we have

Y=, (Y, oor Yy Tpyy -+ B,)

now Ty = Dig Ty s 00 Wi By o H)-
Eliminate «,,, between these, and we obtain
Yorr =W (Y1 -+ Yo Bz -+~ ),

so that 7,,, does not contain @,,. Similarly we can shew that y,,
does not contain z,,,, and so on ; finally y, is independent of z, or

yn: 1P‘n (:1/1 e yn—l)'

So that if the Jacobian of g, ... 7, vanishes these functions are not
independent. This is the converse of the theorem of Art. 2.

7. Ifz,...z,are functions of ¥, ... y,, and these again functions
of  ...®,; then

6 R )
d(z ...2)_d(z .. 2) d{y, ...y,
d(wl"'xn) d(yl"'yn) ) d(wl ver Ty '
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For since
dz, _ dz, d?/1+dz E’ﬁ o dz, dy,
dw T dy, dm, ' dy,” da: dy, " dz,
we have
dz, | | de, dy,
do,| | dy,|” | da,

which proves the theorem.

In like manner, if 2, ... 2, are given as functions of y, ... y,,

and these given as functions of , ... «,,; then
——‘Z(Z S TR
d (..

Butif m<an

( ) Ed(zl! 32---zm)_d<yuy_u, %)
d (.56' ) d(yt’ yu’ yv "') d(wl’ mz "‘_wm) ’

where for ¢, u, v ... we take all m-ads in n (1v. 2).

8. If f,...f, are independent functions of =z, ... z,, then
x, ... @, are independent functions of f; ... f,, and we have

d(f,...[f,) d=z ..z, -1

din . wt) d{fivnf)
For differentiating 7, with respect to f, we must consider #, ... », to
be functions of £, ... f,. Thus

2, ., dw df, de
R
is equal to unity or zero, according as % is or is not equal to 7. Hence
df dz, ~1
df, '

For in the product only the elements in the leading diagonal do not
vanish, and these are all equal to unity.

9. If O(g B= fl—ji
and 4., B, are the complements of dﬁk and =2 7 f: , in these two deter-
minants we have
A%_4, pY_p,

df, w de,
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d(ml...a:m) d(fm+1f”)
Also Ad S A A T

d(f,.. f) _d@,,...z)

d(w d(fm+1"'bfn)'
For we have just seen that

df, dw, df, da, af, da,
do, &, o, @ Vo, af
df, de,  df, dr, - df, do,_
de, " df, ~ dz, " df, dz, " df,
df:n. 1 df @‘A dfn dxn —
do, af, do, @, Ve, T

Multiply these equations by. 4,,, 4,,... 4,, respectively and add,.

then (111 11),

dw,
A——FE=A4,.
af,
Similarly we can shew that
Y _
B e B
Again we have (v. 6)
Ay owes A
A | (fo oo S
Ay... 4, @@ @)

Substitute in the left for 4, the value just found, and we get

w A (@2 _ s @ oy £
TG T T )’

which on dividing by 4™ gives the result requlred.

The last equation is proved in a similar way.

10, If we suppose the functions f,...f, to depend on ?, we

have by (11I 16)
234,

(@ k=1,2..n),

dt
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and A4,=A El%‘;

- 43 (d‘iﬁ; G, )
¥,

df. (dt)

or g gd= Edf<f)

A similar relation holds for B.

d4
dt

= A%,

11. The relations between Jacobians present great resemblance
to the ordinary formule in the differential calculus.

Thus the formula

dz ...z, =0l (2, ... 2) dly, ...y,ﬁ)

A ..n) d@ ..y) d@...2)°

d(f,...[) .d(ml‘ s} _1

A ..o d(fif)

are the analogues of

dz _dz dy dy dz
This analogy, which was perceived by J acobi,yled Bertrand to
devise a new definition of a Jacobian. Let f,...f, be n functions
of the variables , ... z,. Now if we give to the variables n dis-

n

tinct series of increments
dx, de,.. d=

LAY

d,z,, dz, ... d,x (1),

21’ 7

=1,

;o ..dnwn'

n*'1? n'y

let the corresponding increments of the functions be

& fp dufy o dif,
d,fy of, ... df. ).

dn.f‘l’ d“']l; ki dnfn

Then just as the differential coefficient of a single function of asingle
variable is defined to be the limiting ratio of corresponding incre-


file:///dtdx
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ments of the function and variable; the Jacobian of the functions
£, -.. . of the n variables #, ...z, is defined to be the limiting ratio
of the determinants of the systems of increments (2) and (1).
That this leads to the same Jacobian as before is plain from the
equation

dkﬁ=gf b+ Lda .. +%d_m
1 2 n

d 0
which gives (1v. 3)
df,
Idlcf;izl dL@l’&%"

ldfil _d(fy- /o)
| d, | dz,...s,)’

£

or

according to our former definition.

Using this new definition we can prove all our former
theorems. Let us use it to prove the first of the above equations,
viz. the theorem of Art. 7. If the system of increments given to
@, ...z, be

dw, . dm,
d.z ... d.2,,
let the corresponding systems for g, ... y, and z, ... 2, be
ay, - a9, d,z...dz,
.y, - 4,9, d.2,...4,2,

Then we have identica]ly
| dz \__ ‘ d’izlﬁ l i d‘llyk , .

Tk

| diwh |_ l diyk’ ’ I dimk l ’

or by definition,

d(z, ...2,) _d(z .. z) dy, ...u.)
d@ ...z) dy,...y) d@ .. .2)

12. We can also, using alternate numbers, obtain a symbolic
expression for the Jacobian, from which the ordinary results follow.
Viz., y, ... ¥,, being n functions of z, ... z,, let

y= €Y + €Y, +_, + €,
z=ex +er+..162,
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Then

dy _ dy,  dy
T iy T gy Tl

dy,
dez,’

whence (1. 19)
dy dy .dy _|dy, gy,

d—z.—d_xg.'.’dmn dml-..dxn

d’L » d—yn
dTUI “dz,
d (/L 1° y'n)
d (wl - wn) ................ (]‘)‘
But now
o d~_f9
e

Thus the above equation (1) becomes

AR —?

From which symbolical equation we can deduce our former
theorems.

For example the equation
dy\" rde
(@) (dy> !
d(yl"’yn) d(wl'“w;r)_

d('ml "'a}n) . d(yl"' yn)_

13. Jacobians occur in changing the variables in a multiple
definite integral. Let us transform the integral

I= ff Fy, ...y, dy, ... dy,

to an integral with respect to @, ... #,, the functions ¥, ... y, being
supposed given functions of #, ... @

e

gives at once

We proceed in the manner used by Lagrange to transform a
triple integral. Beginning with ¥, we have to find the sum of the
quantities Fdy,,
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while ¥,, 9, ... 9, remain constant. This gives us

2 iy +dJ‘d oo+ B g,

dw dz,
O—d%dm +d—y"’dx+ +dy2dw
d da, *
d_y‘n d.’l/n dyn
dy,, dwld‘+3@d2+ +d~‘£‘da:,,
Solving this to find dz, we get (VIIL 1)
g dy,=J, dz,,
d (Y Ys--- )
where J, __#
d (@ @, ... )

Hence we must replace dy, by jf 2 dw,, and

n—1
I=f... Py, oo dyﬂ=f...Ft~;7ﬂ dy, ... dy,_ dz,,
n—1
the limits of #, being determined from those of ¥,.

In this integral begin by integrating with respect to v, ..
We have to find the sum of the quantities F. Jff—"dyn_l, while

n—1

Yy v+ Ypoy» &, Temain constant, so that

d + +de1 dw"“l‘

="

_ d@/z dy,
0=z d de, + .. +dln—lclw

which gives

dyn—l - J dw’ﬂ-l °

n-2

J,
Thus dy,, is to be replaced by J"‘l dz,_,, and F " dy,

n—2 a1
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by F. JJ" . ?”“1 dz,,. Hence the limits being properly deter-
n-1 n—2
mined I= f e - dy, .. dy, , da., do,.

Similarly if we began by integrating with respect to v, _, we
should get a system of equations which would give us
J ¢
dyn—iz = Jﬂ—Z dx

n—2?
n—3

and

I= f 7 S g ol B G il

11,—3

Proceeding in this way we should finally obtain
I,
I=/... Fdy,da, .. do

Then we integrate with respect to y,, subject to the equations

do, =0, dz,=0 ... dz, =0,

s0 that we must replace dy, by 1 dx Le. J, dx,.
Thus  I= f . B, du, da, ... du,

_f Jl' Yaove Tud gy i ., i,
2 ° "Lw)

F'(2) being the result of substltuting in F for v, ...y, their values in
terms of z, ... 2

n*

14. As an example let us consider the following determinant
of definite integrals due to Tissot, we shall however follow Enneper’s
proof.

Let a,, a,... a, be n constant quantities in ascending order of
magnitude, and let

¢m (‘z'm) = <wm - a1)p1 (‘/L‘m - a2)7’2 e <wm - am)pm
(a’m+1 - xm) Pt e (a/n - wm)pn’

where p,, p,...p, are either positive proper fractions or any real
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negative numbers. The determinant to be considered is then

D = J;l B2 e]-171
Jood,
where
Q41 o 41 " Th
&€, €
J — k d«/B
ik p
- ax ¢I: (mk) ’
(an+1 =®0 )
Thus

n(n-1) fa, O3 ] C% (a:l = .‘-Z‘n) exp. (—' Ly e — m")
D= 5 [T, [ e [ de

(exp. u= €*).

Now let us introduce in place of #,, , ... #, the n new variables
v, ... 9,, given by the equations

yl + y2 +“'+ by'n

T, =, ®—a, z, —a,
?/1 + y2 + . + y’ll — 1
"L‘n_al 'm'n_ a‘a x’n_a'u
Then by 1X. 13,
__9()
=@y’
and hence

ay, Y
de, »,—a,

Thus by 1x. 11,

d(y -4 _
g (, ves B SroeYn

z,—a,

ntn-1) gy ..oy, 8z, 3,) & (a,... an).

=(—1) 2 fle)f(x,)...f(z,)
Now yl...ynzw(_l)ﬁmz_m;

tla, ...,

Ay, 9)_ L@ ...a)
i@, 2) Ba,..a)
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Hence in the integral we replace dz, ... dz, é’]z: (®, .. 2,)
dy, ... dy, g2 Gy os 0,)s
Now if we write

F (z)=(2—a)...(2—a,) (a,,—2) ... (@, —2)

we have
' A R C)) ¢>2 (w ) oo G (2,)
yxpl yzp ree :I/np F (al) Pl Pz Fn/ (an) D

Hence

— Ly L d
NORNCH
is replaced by
dy, ... dy, &a,...a)
ylp)"'ynpn 1?1' (a’l)pl oot F:z., (an)pn ‘

Again @, ... @, can be regarded as the roots of the equation

yl + y + + y — 1, *

z—a, 2—a, z—a,

the roots of which lie between a, and a,; @, and g, ... @, and «.

Hence 9, ... y, take all positive real values. Also we have
@, +x,+ .+, =y +y,+ ... +y, o+ .. +a,.

And our integral reduces to

n('n—l)
(—-1) * § (@,...a,)exp.(~a, —...~ a,) «
F/ (@) ... F/ (a)en -
* eXp' (— J %)
fo . : ypn dy, ... dy,.
(—-1) s I'l—-p)T'( - : 1"(1 D) e —

(@)=t .. F) (w )Zp” o

15. If u be a function of » variables @, a, ..., and 7, .

its differential coefficients with respect to these variables, since
dy. _ 2 (f?ﬁ) L3

dw,  dz,\dz,)  dz,dw,

% uki «

by

S yn’
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The Jacobian of y, ... ¥, is a symmetrical determinant formed
from the second differential coefficients of w. This determinant is

called the Hessian of u after Hesse, and is denoted by H (u),
so that

H@)=]u,].
The Hessian of % will vanish if the first differential coefficients
of w are not independent (Art. 2).
For example, if
v=’v + o’z + .. +talz’+ ..+ 2k

du . . . .
d—w2=2 (P4 ... +a,+2,+ .+,
5

du
dada,~ 7%
S H@w=|2@+z’+...+2)), 4 1z,

4o 2, V2@ 4w+ o +3)) .. |
Or dividing the ¢™ row by 2z, and the " column by 2z,

Hw)=12"sm,...2)" |2’ + 2} ... + .2

zwlz > 1
1 o ra’+ . 4w}
3 2x 2

This is a determinant of the form of that in 1I1. 25. If we write

2 2
8o=a’+2"... + o,

v=(c—2% (c—a]) .. (c—2a)

= A% 3 xiz
H (u) = 6™ {”’3‘-'0_9;2}'

If u= o’y + 2" + 2",
this gives
H (u) =24 9%’ — («" + y* + 2°) u}.

16. Jacobians and Hessians belong to that class of functions
known as covariants. That is to say, if these functions are trans-
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formed by means of a linear substitution, the Jacobian of the
transformed functions is equal to the Jacobian of the original
function multiplied by the modulus of the substitution, and the
Hessian of the transformed function equal to that of the original
function multiplied by the square of the modulus.

Namely, if the variables be transformed by the substitution
z=0.&+a,5+ ... +a,f (G=1 2..n),

the determinant | a, | is called the determinant, or modulus, of
the transformation.

If the functions y, ... 7, of #, ... #, when transformed by this
substitution become the functions y/, y," ... 5, of £ ... £,. Since

i/_q_ _ dy, daz, + % dy, dz, 4. dy, dz,
dg, da, d‘g’k dz, dE, dw, d?k
— dyt dy’L
_%aw+ +dwna”"

it follows from the multiplication theorem that

dly, ...y _dy, .- I e
dE ... £) d ...

which proves the theorem for J. acoblans.

The theorem for Hessians follows from this, viz. if » be the
original and w’ the transformed function, Since the Hessian of u
du

is the Jacobian of d_u ... — we have
de, "~ da

dv  du  du
H(u,)j(%? & &)
IE E - B

du  du
d(—— L
dz ...x,) * =7
d*uw’ d*u
Now dndE,~ TE s,
du du
CH W)= L

TE g |l



16, 17.] ON JACOBIANS AND HESSIANS. 145

dn du
d(dw dx>l .
= ay | %l
=H (W |a,*

17. If we have n linear functions

Y, =bm + . +bx(z=12..n),

i1t ' n
d(y, ..
clearly , W———n) | b, | -
If u is a quadric function

w=>bz’*+ ... +2b,22 + ...,

1171

then H(uy=2"]b,|,(b;=5,).

The symmetrical determinant on the right, which is called the
discriminant of the quadric, is therefore an invariant which on
transformation is multiplied by the square of the modulus,

10



CHAPTER XI.
'APPLICATIONS TO QUADRICS.

1. Tue general quadric function in = variables ... &, is
denoted by
W= zaﬂnwi Z,,

the coefficient of 2} being a,, that of 2x,%,, a,, and we suppose

1A

O = Qe

By X. 17 the symmetrical determinant 4 = | a,, | is propor-

tional to the Hessian of «, and is hence an invariant, it is called the

discriminant. - On transformation it is multiplied by the square
of the modulus of transformation.

Let us write

IS

u
L.
(1

Il
o=

I

=a, % + Q% Tt @ T

2. If we form a new quadric whose coefficients are the com-
plements of @, in 4, viz. '
U= zAikyiyk’
U is called the reciprocal of the given quadric. We may also
write it in the form (111 25)

U=-10, y, ...y,
yl’a'll"'aln .

Y Cppyove Ay,
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Since | 4, | = 4", and if a, is the complement of A% in this
determinant «, =a, 4" (v. 6), we see that we can write » in the
form

A y=—10, =z ...,
wﬂ Au * in
By Ay woncigy
We have also
A 0y Uy wen U
u’l’ all 2 a’m,
STOC T oTEn e
Upy Q) oen O

as we see by multiplying the last n rows by «, ..., and subtract-
ing their sum from the first.

3. If A =0, since then

A'y=4,4,,
it follows that
U=24,yy,

=3 \/AiiAlmyiyk
=3 (/4y}

is a complete square, and that the lineo-linear function

....................

= E'Atkytmk
=2\/Z~'uyzz‘\/'A—'k;cmk

is the product of two linear factors.

4, The reciprocal quadric U is the first of a series of co-
variant quantics. If the variables ...z, are transformed by a
linear substitution '

B,= 0y @, 4 Cu, F oer A OBy v (1) (t=1,2...n),

10—2
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then the function
w1y1+ $2y2+ L +$nyn

becomes
+'1;il (cliyx-*_cmyz +ot cnrﬂi‘/n) +..

Hence, if we have a series of quantities ..., given by
Y =0 Y, Cy Yyt e F O Yprrnrennanen (2) (¢t=1,2...n),

the function 2y, on transformation becomes changed to 3y,
and so is absolutely unchanged in form by the transformation.

Now observe that in the substitutions (1) and (2) the deter-
minants of the transformation are identical; only the -columns of the
determinant of (2) coincide with the rows of the determinant of (1).
Also in (1) the old variables are given in terms of the new, in (2)
the new variables are given in terms of the old. The variables
X, oen @y, Y, .. Y, are said to be contragredient. Any function of
the coefficients of w and the quantities ¥, ...y, whose value on
transformation is equal to its original value multiplied by a
power of the modulus of transformation is called a contra-
variant. -

The semi-differential coefficients wu, ... u, are contragredient to

1 n*

5. If the p sets of n variables

yil * ynl
y12 * ynz
y_lp s ynp

are contragredient to the variables -, ...a,, then the series of
determinants

Rp= Gy ven Cypy Yy oor Yoy

are contravariants.
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For, let us consider the quadric function
V=3a,22,+ 2t (0,9, + ... +2,9,)
+ 28, (@, Y+ oo + B Y ) + oo+ 28, (@Y, + o+ 2,9,

where the variables @, ... »,, ¢, ... ¢, are cogredient (i.e. transformed
by the same substitution), while y, afe contragredient to these.

If we regard V as a quadric in n+ p variables @, ... z,, ¢, ... &,
R, is its discriminant. Let us transform it by means of the sub-
stitutions '

-’B‘ = cilw; + e + Cin?‘"n’} (Zz 1 2 n)
yi’: cliyl + LR +cm.ll/'_n. ’
.=t k=1, 2., p,
Then the determinant of the transformation for z, £ is
u=]cy .. 0y 0...0|=]c,].
[ Gy Q 5. O
0 0, 1 0
0 0, 0...1

In the transformed function V, the terms multiplying ¢, are
unaltered in form. Hence, by Art. 1,

R =R,

P

Thus R, is a contravariant. Since on transformation it is
multiplied by the square of the modulus, it does not change its
sign.

6. If p=1 so that we have only one system of y’s, then R, is
the reciprocal quadric. If for uniformity we denote the diseri-
minant by R,, we have (1L 25)

_ <dR,
'Rl == damyiyk'
And in general we have

n dR

‘P+1 1) P41 T ky P+1
da’,'k ’ )
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Clearly

Rn_= (— 1)" Ya -+ Y

Yus =+ Yom +
while R, vanishes identically if p is greater than n, as we see by
resolving it into the sum of products of complementary minors of
order n and p. Thus we have the series of functions

R, R,...R,

containing 0, 1, 2 ... n series of variables y, and of orders
n, n—1...1, 0 in the coefficients of the quadric w.

7. The determinants I, are of great importance in the dis-
cussion of the properties of a quadric, and especially in the reso-
lution of the quadric into.the sum of squares of functions linear in
the variables «, ... z,.

If w, ... u, are the semi-differential coefficients of w, let us
write

Uy=| @ v Qs Yy oo Yipp U

anl Lo amn ynl L ynp) ,u'n‘

Yig oo Um
ylp "'vynp
W, s Uy,

We must remember that U, = 0 identically.

Also let X, be the determinant obtained from U, by erasing the
(n+ p +1)* column and (n+ p)® row; or the (n +p+ 1)* row and
(n + p)™ column, ‘

Since in any determinant of order m, we have (v. 7)

D . . dD dD dD dD
da,. da "da

m~1m~1 da'mf—l m=1 mm da'm-l m da’m m=1

we get by applying this to T, (m=n+p)

RPU;’—I—‘Xﬂﬂz B, U,

or
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In this equation write p=mn, n—1,,. 1, 0, and remembering

that U,=0, U,=—Ryu,
we get the series of equations
Z]n—l — X n2
R _1._ Rm,—l'Rn
Vs — X + U_”“
Rn—2 B Rﬂ.—2R —1 'Rn—l
Vo Xas U,

v_ X G
0 '-RORI 3
Thus
X* X! by
“=TR,R,EF, E_R,

Now the quantities X, ... X, are linear functions of %, ... u,,
ie. of z, .,. ,; hence we have resolved the given quadric into the
sum of the squares of » linear functions of the variables , ... z,.

Also the number of positive squares in this sum is the number
of variations in sign in the series

R, R, ... R,

and these being unaltered in sign by a linear transformation we
have the important theorem, that if a quadric be linearly trans-
formed to the sum of n squares, the number of positive and negative
squares is always the same. This theorem, due to Sylvester,
has been called by him the law of inertia of quadratic forms.

8. The discussion of the preceding article, due to Darboux,
requires modification in certain cases. For example, if the minors
of order p —1 of the discriminant vanish, then all the functions
R, ... R,  inclusive vanish. In this case Darboux has shewn that
u can be resolved into the sum of » — p squares, viz.

e B, B
'R o 'Rn—l"RYL—2 Ru—l 'R" )

g

U= —

P41
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9. If a quadric, by means of a linear transformation, has been
reduced to the sum of n squares,

u = 2“‘[1;
= Ay + Ay + .+ A0

the discriminant of the right-hand side being 4,4, ... 4, if u is

the modulus of transformation,

AA, ... A,=p| a,).

2,

Two given quadrics
u= S‘a’ikwixk’ v= Zbikm‘iwk

can by a simultaneous linear transformation
@, =Y+ Clfy T er F CnYn (75:17 2. 'n’)

be reduced, each to the sum of n squares of the same linear func-
“tions, viz. ( ¢

Ui ‘4'1y12 = 14'2y22 + .. i 'Anyu2

v=sdy’+ s Ay’ + ...+ 54,9
for in- order to determine the n* constants, c,, we have first
n(n—1) equations from the fact that the coefficients of the
products 7y, must vanish, and n additional equations from the

condition that the ratio of the coefficients of %2 is to be s, in all
n’ equations.

If we form the discriminant of su—v, its value for the original
quadrics is

I Sa/ﬂ‘_bik | ..... R A I R y .(].),

and for the transformed quadrics

A, o A, (5=8) (5= 8) cer (8= 8)vreneevrunnns (2).

The ratio of the quantities (1) and (2) is u’; hence s, ... s, are
the Toots of the equation

L R RS T (] | ST S p— (3).

10. The following resolution is due to Darboux,

If we write

F'=su—v, X:%d—f=sui—vi: .............. (4),

i
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we have identically by Art. 2

Fosu—p—— 1 sam—b11 vosa,—b,, X,
A (,g) ............................... . _
sa,,—b, ... sa4,,—b,, X,| " &)
B X

The determinant on the right is a function of s of order n —1;
resolve the fraction into partial fractions, and we get

su—q):...z_’_l—__ Sian_bu oo 80y, — by le
A (Si) (S—Si) FEER FERPE AR § BV K 8 RRREs (6)
80— Dy ove 80— by, X, |V
‘Yl X

The determinants on the right are all perfect squares by
Art, 3, for they are obtained by bordering the vanishing determi-
nant A (s). Whence

UVZ
A'(s)(s—s)’
where U, is a linear function of the form

U,=d,X +..+d,X,.

If in the determinant (6) we replace X, by its value from (4),
and subtract from the last column the first n multiplied by Wy wrn B

* Yo

and do the same for the rows, the value of the determinant is

su—v=3,

unaltered, but X; is repiaced by % (s—s) O%l;u :

A term is also introduced in the principal diagonal in the last
place, but since its minor vanishes by (3) we may replace it by
zero. Thus U, is replaced by

du
U 8) < il l v +di'/zdhx“>
=(s—5) 7V,
where V, is independent of s;
_s 17 (5=9)
SU —V = 2 W .
Equating coefficients of s we get
) V2 s, '[7'2
VIR TR

which is the required resolution.
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11. An important branch of the theory of quadﬁcs is that of
their linear automorphic transformation. That is to say, as the

do not alter the outward appearance of the quadric. So that if
Z, :.. o, are the original, and y, ... y, the new variables,
za'ikwi'xk ’b ecomes z%ﬁ%—&’ E*
Without entering into a discussion of the general case we shall
study that particular one which gave rise to the whole theory.

In the transformation from one set of rectangular axes in space
to another with the same origin, the distance of a point from the
origin is the same, expressing this for the two systems

P+ =a+yt 42"
such a transformation is linear and automorphie, and is known as
an orthogonal transformation.

12. The general case of an orthogonal transformation is to
determine those linear transformations which give us
‘7"12 + (L‘;-i— e ¥ + $“2 = y12 +y22 + ... +».’l/nz'
The theory is due to Cayley, but we shall here give it as modi-
fied by Veltmann, 5
Let us consider the following equations

b Z. +b12w2 i ey +blnmn:.bn?/1+b21yz+ nee +bnlyn

171

b, + b, 4 oo Fhym, = By A bty + oo+ B9 (1)

...............................................................

bn1w1 + bnzwz + 20 L + b?m'zn = blny1 + bmyg + LG + bnn,l n

where the system b, is skew, so that,

bo=—by, By= 2 creriienniernennss 2).
The rows of coefficients on the right coincide with the columns on
the left.

Let B:lbth'lzlbkilr

o that B is a skew determinant, let B, be the system of first
minors. Solving the system of equations (1) we get

y‘ = cila;l + c‘lﬂ.x.a + e + cv’,uxn

T, = dk1y1+ e R L



11—13] APPLICATIONS TO QUADRICS, 155

The coefficient of =, in ¥, is given by
Bey, = Bby, + Byby+ ... +B,b,,.

If s=Byb,+ Byb,+ ... + Bb,,,
then Be, +s=2B,b,,.
Now s=B or 0 according as ¢ is or is not equal to %, thus
2B, 2B,z —B
Ca="F s Ca= -

In the same way
Thus O =
and we may write
Yi=c %+ 0,2, + ...+, m,
T, =CuY, + CuYfyF oo + 0, Y,

445=MB_¥?-

Substitute for @, ... 2, from the second of these systems in the first
and equate coefficients of 7, and 7, on both sides, thus
c¢12 o+ ci22+ <o F sz = 1}
Cilckl gl ci2ck2 + e + cinclm: 0 '

If we substitute from the first system in the second, we get
i+ +... +ei=1
€yl CoCop oo T+ Gyl = 0} '
Whence we see at once that .
zltal+ .. txl=y 4ty .+l
and thus the coefficients ¢, are those of an orthogonal sub-
stitution,

13. By the preceding article we are able to express the n*

coefficients of an orthogonal transformation by means of the
in (n—1) quantities

bxz’ bxs : bln
by, +-v by
bn—ln’

by forming a skew determinant with these, the elements of whose
leading diagonal are equal to .
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For the case n=2, let

B;\ L A =142
-1
the system of first minors is
1,
- L

Hence the coefficients of a binary orthogonal transformation
are

1-2 2\
140 1427
-2 1=\

T+A 142
For a ternary orthogonal transformation
B=| 1, v,—p|=1+N+p'+;
-y, 1, A
m—A, 1
the system of first minors is
142, »+dp, — g+,
—v+rg, 144, ANty
pEM, = N4py, 1407

Hence the coefficients of the ternary orthogonal transformation
are

14+N—p’ =2 21}—}-7&;/, g T MM
B ’ B’ B
g "V HMp e g Mt py
B B ’ B
2,u,+7w 2——7\—!—/“/ 1+ =N =y
B B B '
If we write

A= cosftan {0, u=cosgtanif, »=cosh tan 16,
where cos’ f+ cos’ g +cos’ h =1,
and S B=gec’}0,

we get Rodrigues’ formulee.


file://-/-Xfi
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For the quaternary orthogonal transformation
B= 1, o b,

c
-a, 1, h—yg
—-b -h 1 f|
- ¢ —-f, 1
Then
B=1+a"+0++ 2+ + 1+,
where 0 = af + by + ch.

And the system of first minors is

B,= 1+f*+g+PF, B,= a+f0—0bh+cy,
B, =—a—f0+cg—bh, B,= 1+f°+0+¢,
B,=—-b—cf —g0+ ah, B,=-h+fg—ab—cb,
B, =—c+0bf —ag-1Fo, B, =

12 g +fh+ b0 —ca,

B,= b+4g0—cf+ah, B,= c¢+h0—ag+bf,
B,= h+fg+c0—ab, B, = —g+hf —ac—b0,
B,= 1+g°+c+d, B,= f+gh+al-Dbe,
B,=~f+gh—bc—ab, B,= 1+ +d +0b

Thus the coefficients of the quaternary orthogonal transforma-
tion are

Bcu=1——02—|—f2—a2+g2—'b2+hz—c”,
Bo,,=2 (a+f0 —bh+cg),
Be,,=2 (b + g0 —cof + ah),
Be,=2 (¢ + h8 — ag+bf),
&e.

14. The square of the determinant of an orthogonal substitu-
tion is unity, for

l C(h i2= ' dﬂ. |’
where d, = 0,0, % 600 F +1+ T 000
ie, d,=0, d,=1;
| ¢ I°=1, or | ca | =¢

where ¢ means + 1.

15. If C, is the complement of ¢, in C, then

0 =50,
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For we have the system of equations
T R 0.

.........................

Clli, b wve 6,00 = O,
Multiply these equations by C,, C,... C,, and add, the co-
efficient of ¢, is ¢, the others vanish, thus
Oik = €Cy.
16. Any minor of the system ¢, is equal to its complementary

minor.

2L

For 011 2 Olp = Corrps =+ Cpain
............................. ,
0171 * CPP 07zp+1 Con
by v.7. But
r
Cyovo Op|=€|Cy .00y
0171 = OPP c}’l cP.P
by the theorem just proved. Hence
€Cy voe Cip | = | Cppipiy o+ Cpam
Gy vos Cp Cupsr *+* Cun

17. If A"=|a, | B”=|b, | be two determinants of ortho-
gonal substitutions of order n, then the determinant

PO, )= N, + ub, |
is. not altered by interchanging A and u. '
For the symbolical expression for P (A, p) is
P\ p)=AA4+pB)"
— AW pm (% T ﬁ)n’
asin V. 8. And as there proved

AB,  pd,
B(n) A ()

P, p)=A"B"
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Or, if 4" =1= B™, we have by Art. 15,
P, p)= I Ab,, + pcty, l
=P, \).

From this we see, that if from the coefficients of an orthogonal
substitution of order n we subtract the corresponding coefficients of
another orthogonal substitution of the same order, the determinant
formed with these differences vanishes if n is odd.

18. If we take n quadrics in n variables we may conveniently
represent them by the system of equations

U, = 2, X, 0, (4,7, k=1,2 ... n).

With the coefficients @, we can form a cubic determinant of
order » which will be an invariant of the system of quadrics , ... u,.
Zehfuss has pointed out that for three ternary quadrics this gives
Aronhold’s invariant, while the auxiliary expressions he gives for

its calculation are the cubic minors of the second order.
For the two binary quadrics
az® + 2bzy + 6y’
aa’+ 20 wy+ ¢y’
it is the harmonic invariant
aa’ — 2bb" + cd'.
The general theorem is that for n, n-ary p"* the determinant of
class (p+1), which can be formed with their coefficients, is an
invariant of the system. By allowing all the quantics to become

identical we- get an invariant of a single quantic when it is of even
order,



CHAPTER XIL
DETERMINANTS OF FUNCTIONS OF THE SAME VARTABLE.

1. IFy, y, ... ¥, are functions of a variable #, and if

%
b — dJ i
gt 4 dz"’
the determinant

) (il

Ziylyz tttdn 1 Y 5 Y coo Un
yxu) ’ yzm e Yn

=) (n—1)

W Y
is called the determinant of the functions y,,, ... ¥,, and is denoted
by D (yx’ Yq ons .?/n)'

2. If y is any function of #, and we multiply the above deter-
minant by

y » 0 3 0 0 = y",
ym , y , O 0
y(ﬁ)v 2y(1) , Y 0

¥ (n=1), 4", (n—-1), 5" ..y
combining the columns of D with the rows of the latter, we obtain
D ¥y 99, - 99 =9 D @0> %o - y.)-

In particular if we put yy, =1 in the determinant on the left,
all the elements in the first column vanish, except the first, which
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is unity, and the determinant reduces to the determinant of the
n— 1 functions

a <@>=D(yl, ¥) 4 (J/_) D(%, EA
dw \y, y' T dw\y, 7

If therefore we put
Dy 9)=4" - Dy 9=y,

¢ ! - 1 ’ 7 r
then Dy, v, ...‘y,,,);FzD{g/Z, Yy eoe Y )
1

3. If the functions g, ...y, are connected by any linear
relation
ey, +ey,+ ... +¢4,=0,
it is plain by differentiating this n—1 times, and eliminating
¢, ... ¢, between the original and these n—1 new equations that
we get -
D> 92 9 =0
Conversely if the determinant of the functions ¢, ... %, vanishes,
then they are connected by a linear equation with constant co-
efficients, We shall prove this by induction; we shall assume
that if the determinant of n — 1 functions vanishes, these functions
are linearly connected, and we shall shew that the same is true
for n functions. If y, does not vanish, which would be equivalent
to a linear relation among the functions, it follows from the pre-
ceding article that since-
D@y 90 9)=
we must also have :
D (3/2'; yal s yn,) =0. )
Hence by hypothesis the n—1 functions , ... ,’ are linearly
connected, i.e. we have
czy'z, + Psysl +oet Uﬁyn' =0."

Dividing by »,* we get

AV AN
%L(%)“%(g;)*“'“"(Tx(y‘,)—o’

da \y,

or integrating
CY FCYyt e F Y= 0.

s. D. 11
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Thus if the theorem is true for » — 1 functions, it is true for n,
but it is clearly true for two functions, and lience generally.

4. TFrom the formula

‘D(_yl’ y2 HE yn) - n—2D(./u ../3 * '_yn,)r
it follows that

D(%’ Yas ./s) _D(yw ’l/ﬁ)

1 5
D (g 9o 9a) = DG’ 0)-
The same formula also gives
! 7 ! 1 ’ 4 F ’ ; ; i £
D (yys y5 - z/n)=y—mD{D s, ¥ D5 ) o D@5 )l
Combining these formulz, wé obtain the equation
L :
DYy Yy Yu) = msp (D (%15 Yor Yy
D (s o 9 -+ D (g 4> 9}
By repeated application of thls method we should obtain the
theorem.
Ifu, w ..., v,09,... 0,befunctions of z, and if
wy=D (W, oie w0, 9) B=1, 2 .0on)

Dw, w,..w,

8 "Uz""y")ZUu,u T
1 m

V.

then D (u,, »

2 "t Tm?

5. A special case of this theorem is
D (Y o Year Yenr oo Yoy Yoo H)

DD, oo Yoy Yoa ++ Ys ¥6) DGy - Yoss Y o 90> Y}
D (91 « Yrcrs Y - B ’
which we may write in the form

DYy Yo DD, o Yiss Y-8 & DG Y Vi 9)
D ( e ,./11) "l)( ,l/n) d"c -L) (yl e ,_7/”‘)1- '
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Assuming now that the functions g, ... 7, are independent, let
us write

2, = ( 1)+ D(J1 s Vs Yirs ==+ Yo

'D(../l' Jn

D(%y v Yn)

P@)=(-1r 1 o Yn

W=D 5
-_-D > 1. ® k—1) 7r+1 *t Jdn

then the above equation can be Writteu

; d
5l (y) =2 Py 2).
6. The determinant

Yoo Yo o Un
(1) (1) (1)
Y e

(%)

%" 9" e g
vanishes if k <n—1, but if k=n—1 its value is D (y,, ¥, «-- #.)-
Expanding it according to the elements of the last row we get the
system of equations

ylzl + -?/222 + ot Y2, = 0 ]
yl(l)zl + yZ(l)Zz +.ot+ ,yn(l)zn =0
..............(.;2.) ............... (.n._.z; ....... ..".“(A).
(n_ﬂzl"*'yzn Zyt ety 2, =0
yltn—l)zl ol ',yz('n—l).,%.2 +oeen + '%(n—l)z _ 1
If we write S = yl(p)zltq) +y2(p)zz(q) .4y, (o), (q)
we can write these moye briefly
50=0, 8,=0...5,4=0, s, 5,=1
Now we have

d’s ;
dw:o =8t ks nt ESwt ..o + Sy

11—2
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"If k< n—1, it follows from these equations that
sp=0, if &+ B<n—L

If k=n—1, it follows since

A-1y=1—r+r,— ...+ (=1y=0
that 8, s, S,_n .. are alternately equal to 4+ 1-and — 1.
If k =n, we conclude in the same way that
S =80 =8 = +e. =(—1)78,.

Hence we get the following theorem: The expression s, is
equal to zero when p+g¢g<n—1, and equal to (—1)? when
p+g=n—1

7. Among the relations just established we have

2y, + 22y2+..+ zy, = 0
Sy, b 2Py bt 2y, = O
, o n

n—Z):l/l + Z2(n_2)y2 + . + 2 (n-Z):q’ﬂ = 0
(" ”.7/ + z\z(ﬂ—l)yz + otz (ﬂ_l)Z/n = (— 1)’"_
If D (2, 2, ... 2,)=0 vanished, it would follow that since
50=0, 8,=0...'8,,=0,

then s,,_, would also vanish, while its value is (—1)*. Thus the
functions z,, 2, ... z, are not linearly connected with each other.
Comparing the systems (A) and (B) it appears that the relation
between y, ... 7, and 2, ... 2, is a reciprocal one, if we neglect the
sign when 7 is even. From each relation between these systems
we deduce a new one by interchanging

. Yo Y oo Yy 25 %y 0 2,
with 1", (=), ... (=1)"z,, Pis Yo w55 Ve
Thus from the equation

Dy oo Yorss Yoy .. )
z =(— 1 n+k /1 k—12 k+1 yn
=0 Dy, yy o 9.)

we deduce

1 k"l 'zk—l’ zk+1 ix)
=5 D (zl, Zyues2,)

In consequence of this we shall call , ... z, the conjugates of
Py wnn Y
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8. If we form the product by rows of the two following deter-
minants

(k=1) (&=1)

o
yl Ldid .y 2 ] ./k+l ®8 y'n
() (k) ® |’
B e g/,. 8 Wiz i T

.................................

|, 1) w1 ey )
Y4 oo Y s Y e Yn

1 ... 0, 0 .. 0
0 . 0
)
zl Zk’ Zk+1 n
Zl(,n—k_l) . Zk(ﬂ, k“l) Z(’n 70—1) z (n—%—1)
the first of which is D (y, ... v,), the second D(z,, ... 2,) we get
i Yo o Sonmit
(&—1) (~1)
yl * yk ¥ Sk-—lO E=1n—k—1
® ) *
yl yh 2 SkD skn—k—l
(n-1) (n=1) ,
y 1 b y k ’ Sn—lo T Sn—ln—k—l

In this determinant the block of elements common to the first
k rows and last n — k columns all vanish, whence it reduces to

Z/ 1 y % SI;O Slm—h—l
(1) (&-1)
Y k] oy yk 877'—10 o Sn—ln—-k—l

The first of these =D (y, ... 7,), in the second all the elements
to the left of the second diagonal vanish, whence its value is

=k (n~E+1)
(-1 2 Sp 108

n-10
=1,
_Thus we have
'D(yl"'yﬂ-)’D(zk+l"'z’n) =D(y,-.. y.)
If k=0 we have
D@y,..0)D(2,...2,)=1.

n-21 *°* Slm—k-l
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9. From this last equation we get

W=7 D (y, y1 <)

D(Yy, Yoo Yu)
= (— 1)11 ( yn) ‘D (zl’ 2 * 'n)'
Or
P(:‘/)=(—1)” Y Yoo Yn 1, 0 .. 0
J‘” g/ . yn‘” 0, 2, wo B2
) y(n) ?/ (n) .. y (n) 0’ zl(n—l) _ -Zn(n—l)
= (_ 1>n‘ Y Soo> Sox +* Son-1
y(l), S160 S1x e v Stnma

Y™ 88y e B

Similarly we should get

P@E)=(-D1"| 2 M ..

Soos Sor v S

S,

n—10? S

ot e B

n—1n

10. These determinants occur in the theory of linear differ-
ential equations. Thus, if we have the equation

ay+ o,y +...+a,y"=0

where the quantities a,, @, ... a, do not contain y. Then if y, ...y,
are n particular integrals, we have the n equations

ay,+ .y + ... +a,y=0 fi=1; B nl,
eliminating the a’s we get

y, y‘l) e 3/(") = O»
Yy yl(l) . yl'(n)

yn)uln(l)"':l/ &
(e 'D(Z/’ ?/1"’3/72):0
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If we solve the equations for [Z—”“ we get

n

........................

(n)

> Yn

(1) . (n~2)

yn) yn "'yn

. d
Le. - (%logD(yu y2"'yn)=_

'D (:l/l’ -2/2 B yn) = eXP' ("f%dw) ..

n

11. Though not immediately connected with the subject of
the present chapter we shall give Hesse’s solution of Jacobi’s
differential equation.

This equation is

_Ald" +A2dg +As (Edﬂ - ﬂdf) =0,

where A,=a,E+a,m+a, =1, 2, 38).
We can write the equation in the form of the determinant
£ n 1 |=0
d§, dn, 0
A, A4, 4,

Now let §=a—;, n= %, and the equation becomes

@, Y, z2|=0.
2a — 2w, 2y —yZ, 0
4 4, 4
Multiply the first row by 2 and add it to the second, this
divides by 2z, and we get

1 3

|2 y 2 |=0.
%, y, 2

A A

Now let us multiply this equation by
a, By %
oy B Y
45 By Vs
and let - p,=02+By+vz

J




168 THEORY OF DETERMINANTS. [cHAP. XIL

Also assume that :
A'LZ)'( = Alai + A28i+ AS'Y".

Then
P Po Ps 1=0,
dp,, dp,, dp,
lel’ xﬂjpz’ x3p3
iLe.
dp, dp; dp,|=0, or |log p,, log p,, log p,|=C,
P Py Py 1, 1, 1
1, 1, 1 N
Ay A, A .

or, as we may write it
Pl g o
Since we assumed that
A+ 4,8+ Ay, =N\p,.
Equating coefficients of z, y, 2
a, (@, —N)+Ba, +v,a,=0,
o, @y + B, (@, — N) + ,0,,=0,
a,a, + B a,+vy, (@,—1)=0.
-Hence eliminating a,, B,, v, we see that A, A, A, are the
roots of the equation

Q=N @y, Qg =
oy gy A, Qyg
gy Uggy Ugg— N



CHAPTER XIIL

APPLICATIONS TO THE THEORY OF CONTINUED FRACTIONS.

1. THE application of the theory of determinants to continued
fractions is one of its latest developments, and gives great facility
in the discussion of these functions.

As usual in English mathematical works we shall denote the
continued fraction

bl
a1+zz+ll?r_
? as+...+@
by b, b, by b,

BTt B R
Such a fraction is called a descending continued fraction.

In addition to these we shall discuss a less known form of
continued fractions, which, however, is historically the older form
of the two, namely, the ascending continued fraction

 pg
01+ai:*: )

. 2
al

which, in an analogous manner, will be denoted by

bot b+ 4D,

Our object is to establish a determinant expression for the
convergents to these two forms,
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2. If we write down the system of equations
bx =aux + ,
mel = a2w2 + ma

bz, = ax, + z,

Cesesesnrasssannas

we see that’

x @’ @ &,
a,+ —= @ =
wl .7/'2

Hence =t is the continued fraction
@

b by
@+ g+
8. If we are to determine the #* convergent, i.e. the value of

the fraction when we stop at %, we must suppose that x,,, and

ki3

all succeeding «’s vanish, whence we have the system of equations
blw = q®, + , ‘ .
O0=—bz, +ax,+x,
= —=bz+ax,+a,

................................

=3 ,' - bnw-n—l + a/nxn‘
Solving this set of equations for o, we get :
Gy kg0 ap % = |ba 1,0
— By, My, d s " 0, a ,1.
0 ,—-0,a,. 0, =0, q,.
0 > 0’ 0 Ay 5 1 O; 0 ;) 0 —bnl a,
0, 0,0. b, a,
Thus
@ _p| %>l .. 0,0+ @a, 1,0..0,0
£ l=b,a .. 0,0 b, a,,1 .. 0,0
.'O.‘..;.B ------ a-/ ,-l._;\,.--]: O 5 ba’ as. O ” 0
0,0 ...-b,q, 0, 0,0 ..a.,1
0, 0,0..=b, a,
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Or Z, Pu

E:—n- say.
Where
p,=b|a, 1 ,0,0.. 0,0
-b, a, 1,0... 0,0
0,-b,0a,1... 0,0

...................................

0, 0,0 0. —b,q,l

= dnpn-—l + bnpn-—-z'!
if we expand (III. 24) according to the elements of the last row
-and column.

Similarly
g.=| a,, 1,0,0.. 0,0
-b, a,1,0... 0,0
0, —b, 0,1 050

.....................................

-0, 0,0,0..-0, ¢
P ann—z'

Since p,=0 A , We can write the convergent in the form

tda,
d
b g, (08 )
4. The determinants of the form .¢g, have been called con-

tinuants by Mr Muir. Since
q'n = a’nq'rvz—lr—l_ ann—Z)
if u, is the number of terms in the continuant of order n
Uy, = Uy g+ Uy gy

an equation of differences which gives
AN L= 5)“
w=d(555) +3(55)

Since u, =1, u, =2, we have

un: {(1 + )\/5)n+1_ (1 - /\/5)1&1} s, 2n+1 )\/5-
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Tt is easy to shew by the binomial theorem that this number is
an integer. Prof. Sylvester obtains this number in the form of the
series

(n=2)(n=3) (r=3)(n—4 (n=5)

1+(n—1)+ 1.2 1.2.3 + ...

5. The value of the continuant Aqn is the same as that of the

determinant )
q,=la, ¢,0 .0
|d,, a, ¢, ... 0

0, d,, a, ... ’

provided only
ed,,==b, .(r=1,2..0n-1).
This is clear if we expand by 111 24, according to the elements
which stand in the last row and column. For then

gn’ = ng"r"t—l - dncn—lg’n.—ﬂ
= a’nqln—l + bnqln—ﬂl ‘

while ¢,'=g¢,, ¢, =¢,. Hence ¢, =g,, the equation of differences
being linear.

Thus we can also write

qﬂ,= Grl,'—]., O) 0

-\ b, a@,,—1, 0 .
0, b, a,, —1..
0, 0,0, a

6. The value of the continued fraction is not altered if we
replace
br’ th, br+1

by kb,, ka,, kb,,,.
For the quotient % is unaltered if we multiply numerator

and denominator by any the same number. If we multiply both
by k, the row
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in each is replaced by

cie b, ka, & o
and by Art. 5, in place of the last &, we can write unity if we
replace b,,, by kb,,,.
Since then we can wrij:e the continued fraction
bl bz Ez
¥ a’l+a'2+ .“+a'n
in the form
) 2 2 2
g & g B g &
a’l ala2 a’2a3 a’ﬂ,—la’n 3

F+ k+ B+ U4 B

g, can be written in the form of the skew determinant

B, e 0,0 ..,
—a, k, a,,0..
0 s—ay & ;o !?
0, 0,—a,k.

¥ ; 2
where o, = \/ <M> ;
< a’ra'r-H
Thus the convergents to a continued fraction can always be
represented by the quotient of two skew determinants.

7. In any determinant D we have
. &D _dD dD _dD dD

dada,, da, da, da, da,

For D take the continuant g, (Art. 5), then

D

m = 171 + Pr-1> da,, = Gn-1> da, = blp,,,
dD dD -
= e e 1 " 1.
da/ln b2b3 b‘" ’ da’nl» ( )
ThU.S gnpn-—l - Qn—lpn == ('_ 1/“ blbz - bn'
8. In the case of the ascending continued fraction
b+ b+
=

1 2
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it is clear that if the 2™ convergent be Pn ihe scale of relation is

n

Ba_ Obey T
gn a’ﬂQn—l

Hence 9. =00, .. O,

To determine p, we have the system of equations :

VA = b1
i aépl +p2 = bz
= UgP,+ Py = bg

- a”l—lpnj—t’ +,pn—1 = bn—l

- a'npn—l +pn = bn'

The determinant of this system is unity, all the elements to
the right of the leading diagonal vanishing ;

“p,=|1,0 0.. 0, b
1, 0... 0, b

Multiply all the columns except the last by — 1, and move the
last column to the first place ; the determinant is unchanged, thus

b,, a,,
by 05 g .0, 0
b,, 0, 0 ...0,a,

The n™ convergent to the fraction is

.p’ﬂ

Oylly <o @,

The number of terms in p, is n.
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9. By means of these determinant expressions for the conver-
gents we can transform an ascending continued fraction into a
descending continued fraction.

In the determinant p, of the preceding article multiply the 7
row, beginning with the last, by &,_,, and subtract from it the
(r—1)* row multiplied by b,, and do this for all the rows. The
determinant is altered by the factor

T=(bb, ... b7
and
Pn:k bl’ -1 % 0

0, ab+b,, -0,

O) - agbg ’ d3b2+b8---

O 3 0 H] 0 i a/n—zbn—3+ brn,—z’ - bn—:i ? 0

O’ 0 ’ 0 R0 - an—~2bn—1 '! an—lbn-2+ bn~1)_ - bv;—é

0’ 0 3 O cee O » - a’,,,..j[bn > Aanbn—l+ bw.

Similarly, since
gﬂ = al“? a"
— (]/1, = ]., 0 . O 3 O
O) az y = l 0 ’ 0
0, 0, a, 0, 0
?
O, 0 ’ 0 aql—l’ 1
0, O B 0 2 O ? an
9n = k ay > = 1 1 0
- a1b_27 a’zbl + b2’ - bl
0 , —apb,, ab,+b, ...
0 3 0 ) 0 o Gl an—lbn7 anbn—l + bm

Now on inspection it is clear _that these determinants p, and
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q, are continuants as defined in Art. 3, whose 2", 8% ... (n =1}
rows have been multiplied by b,, b, ... b,_, respectively, also

dq,
pn:bldzl *
1

Whence by Arts. 3 and 6

E’n — _Z_)L ale_ﬁ a‘zblbs . va'n—2bn—-3bn—1 Eﬂ—lbu—2bn
¢, @, — agbl + b2 - a3b2 + ba o an—lbn—2 + bn—l - anbﬂ—l + bn ’

which gives us a rule for transforming an ascending continued
fraction into a descending continued fraction, the number of
quotients in each being the same.

10. We can make immediate use of this theorem to deduce a
formula of Euler’s, by means of which a series can be converted
into a continued fraction.

Take the series

S=A,—A,+A,—A,+..+(-1)"4,
A,1,0,0..0
4,,1,1,0...0
4,,0,1,1..0]|
A4,,0,0,0..1

nd

as we see by subtracting from each row the one below it, beginning
with the last, when the determinant reduces to its principal term.
Multiplying each column after the first by — 1, we reduce the de-
terminant to the continuant for an ascending continued fraction.
Thus the above series.is equal to.:

n-1 Al + ‘A2+ An—-l+ An
(_1) —;1‘— —1 s —-]: —,

f—t

and transforming this by the rule just obtained to a descending
continued fraction '

S| A A A A
= (— n-1 1 2 __ 178 At p-ady |
f={-1) 1-4,-A,+A, -4+ " 4,—4,_,
Al A? ‘AIASI An—2An

:ﬁ Al—' Az+ As_,An"I' .“-Au—l—‘A‘n.
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If the original series is
1 1 1

S=4, 4,74,

we can obtain its form as a continued fraction by altering the con-
tinuant to S in accordance with Art. 6, when we get
1 A2 A
A+ A- A + 4, A +°
11 Various generalisations of continued fractions have been
devised by Jacobi and others. The following generalisation, due
to Fiirstenau, is taken from a review of his memoir by Giinther.

§=

Ife and y are any two real numbers, and we write

Yy=a +2 n=a +& y—a-i-
Cyl Tty Ys
1 1 1
z=b+—, »=b+—, z,=b+—.
yT Tt T w Ys
where o and b are the greatest integers contained in # and y,

then. on substituting we have :

1
b | +— i
b, +a——
a, | + b“
% +_4__
.7/=“o+ R :
b, | +— 5
a, +_4___
, a
o, & . 14
b, +T—_
a, | + — e
aa +_4_.__.._
4
and
1
z=b,| +
b\ +— 5.3
s +a+
a, | +— 14 .
b, | +
3
@, | +— Z4+
a, +&5
4

S. D. 12
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If now all that stands to the left of one of the vertical lines be
called a first, second ... convergent, and if we denote the numera-
tors of z and y by X,, Y,, while the denominator, which is clearly
the same for both, is called N,, we shall have
(Y X’ ‘N)J’-I-I P+1<YXMP+6P+1(Y X ‘N)P-l+(Y X 'Z\)p—‘l

Thus the equamons have four instead of three terms, and
we get

Yo =] @y By 100 e O
-1, a,,b,,1...0
0,-1.a,5b,..0

..........................

X,=|56,1,0,0..0
-1, a,0,,1...0
0 1, @, b,... 0

R R R I R R

N, =|@a,b,1,0..0
1, a,b, 1..0
0.-1,a, b 0

Corresponding to the theorem of Art. 7 we have now

Ypu’ Y Y st |
Xowy Xp» Xy |
va N l\T v

12. If ordinary continued fractions be called fractions of the
first class, those in Art. 11 may be called fractions of the second
class.

Fiirstenau extends the idea still further, and summing up his -
results we may state them as follows: If we seek to determine
7 quantities @,, @, ... =, as fractions of the form’
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é;ch such fraction can be written as a continued fraction of the
(n—1)" class. The p™ convergents to these continued fractions
take the form

and if

a/n+]_'l O an+1n+1

are the quotients entering into the continued fractions, then
X=X g+ 0 Xy gt oo + O, X s
NP = awN + a’szp—z +..+ a'n+le

r-1 p—n-1*

The quotients X and N are always connected by the equation

— (e NP
‘Ym’ Xp—u’ Xp—zl X;:—nl - ( 1/ g
Xm: Xp;m’ X;:—zz 00 Xp—rﬂ
7 v
Azm’ P—1n? ‘Xp-zn b Xp—wn
N,N,,,N,,...N,,

The author also shews that the real roots of an equation of the

n™ order can be represented as periodic continued fractions of the
(n —1)* class.

12—2



CHAPTER XIV.
APPLICATIONS TO GEOMETRY.

1. THE axes being rectangular let the co-ordinates of the
angular points of a triangle ABC be (z,, ,) (#,, v,) (#,, y,). Then
if A is the area of the triangle it is plain from the figure that

.
Y 5

A

0 N AL ua X
A = trap. BN — trap. BL — trap. CL
=3 (.1/2 +ya) (xz— ms) =g (?/z"'!/l) (wz_ m1) ~§ (,y3+?/1) (‘1;1_ ws)’

or 2A=3/3$2—y2123+w3"l/1 — &, Yyt Y, — B, .
=|1.1 1|=|1, =, v,
Ty Lyy Ty 1, =, ¥,

Y Yoo Ys 1, Zgs Yy
If the axes were oblique this would have to be multiplied by
the sine of the angle between the axes. Thus

2A=sin(XY)| 1, 1, 1
@y Fyy By 13

y_l’ :l/2’ ya
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where (XY) is the angle between the axes. This form is however
not often used, and unless the fact is specially mentioned the axes
are supposed to be rectangular.

If we multiply the first row by », and subtract it from
the second, then the first row by v, and subtract it from the third,
we get

2A =

Ty— Ty, Ty— X,
Y™ Yo ys;y1 '

Tt must be noticed that the area of a triangle changes sign if
we alter the cyclical order of the letters. Thus ABC and 4 OB are

equal triangles, whose areas are opposite in sign; 4BC and BCA
are equal in magnitude and agree in sign.

2. Let the co-ordinates of the angular points of a tetrahedron
ABCD be (#,, y,, 2,) ... (#,, ¥,5 2,). Let V be its volume.
Let A be the area of the triangle BCD, and let the equation of
its plane be
(@ —a,) cos a +(y — y,) cos B+ (z —2,) cos y = 0.
The projection of the triangle BCD on the plane of zy is
A cos v, and the co-ordinates of its angular points are

(@, 92) (@ Ys) (@0 9
thus, by Art. 1,
20 cosy=|a, —x,, ©,—2,

Yo = Yor Y — Y, .

Similarly we get

‘2Acos B=|2,- 2, 2,— 2

2

2A COS A=Yy =Yy Y™ Y,

By — 2y 2,78

b
.cs z,, &,—,

If p is the perpendicular from 4 on the plane BCD,
—p=(2,—,) cos a+ (y,—¥,) cos B+ (z,—2,) cosry.
Hence

— 6V =-2Ap
= 2A cos z (z, —w)+2AcosB(y1—y2)+2Acos-y(zl—z2)‘
=(x1_w2) Y= Yo Ys— Y +(J1 2 — %y 2,74,
2, — 2y, Z,— %, ws—wz’ Ty T,

+ (zl_ z'z) Ly — Tyy Xy~ T

Yo=Y Ys— Y
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= |2 — &y, By— Ly T— Ty | = 1, L, 1 1
Yo~ Yo Yo~ Y Ys— Yo Ly — @y, 0, ws—wzf Ly, — X,
2y T2y Gy 2y BT Y= Yos 0, Yo=Y Y™ Ys

B, — 2, 0, 2,—z, 2,2

Or if in this last determinant we multiply the first row by
z,, ¥, % and add it to the second, third and fourth rows re-
spectively, '
6V=|1, 1, 1, 1

Ty, X,, Xy, T,

Yis Yo Yss Ya

z, 4, %, %

1’ 4

8. If the tetrahedron be referred to oblique axes through the
same origin, and if the cosines of the angles these make with the
rectangular axes be given by the scheme

XY z
a |l 1, 1,

y ml qn2 ma
z|n, m, m,
; e=Xl+YIl,+ 7], &
‘Whence

1, 1, 1, 1]=1, 1, 1, 1|1, 0 0, 0
@y By By W X, X, X, X,| |0, I, m, n
Yo Yo Yo Y Y, ¥, ¥, B0, L, o n
By %y By 2 Z,. Z, Zy, Z,\ |0, l, m, n

Now let- v

D=\|l, m, n
l,, my, n,
L, m, n

Then remembering that
1’ o mr+nl=1,
Ll + mm, +nmn,=cos XV, &ec.,
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we have
D= 1, cos XY, cos XZ
cos YX, 1, cos YZ|.
cos ZX, cos ZY, 1

This determinant is usually called the square of the sine of the
solid angle, contained by the oblique axes in analogy with the
determinant

gin® XY = 1, cosXY
cos YX, 1

in a plane. Thus
D*=sin* (XYZ).

And in oblique co-ordinates

6V=|1, 1, 1, 1 |sin(XY2).
X‘l’ 'X2’ XS’ 274
Yy Xy Xy X,

4. From the determinant expressions in Arts. 1 and 2 we can
at once write down a number of geometrical relations.

If the distances # be measured along a straight line from a
fixed point, we see that .
I Z, | = (xh_wi) = (I”)

1, @,

is the distance betweén the two points marked % and 7. The
determinant

1, =, 1, o
1, =, 1, o
L, z, 1, =z
1, 2, 1, o,

U T )

vanishes identically, because it has several columns alike. Ex-
panding it by 1L 6 according to products of minors from the first
two and last two columns, we get

(12) (34) +(18) (42)+(14) (28) = 0.
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Or, if we call the points 4, B, C, D, this is the well-known relafmon
between the segments formed by four collinear points
AB.CD+ AC.DB+ AD.BO=0.
If we expand the vanishing determinant )
| L, 2, 9,1, 2,9, | (¢=1,2...6)

according to minors from the first three and last three columns, we
get no geometrical relation, the terms cancelling each other in pairs.

But if we expand the determinant

L &5 25 2 Lo, 95, 2,)=0 (:=1,2...8)

according to the products of minors from the first and last four

columns we get an identical relation of thirty-five terms between
the volumes of the tetrahedra, formed by eight points.

5. Again, for five points
1L 1, 1, 1 1|=0.
1, L, 1, L, 1
By Wy, By By, &,
Yo Yoo Yor Yoo Ys

Biy By By Py 2

1) “22 5

If v, = volume of tetrahedron (2345) and we expand the deter-
minant according to the elements of the first row, by 1. 10,

we get
v, +v, +,+9,+v,=0.

6. By the theorem V. 4,

1, 1, 1 1,1, 1|=|1, 1, 1 1, 1, 1

Ly Ty Ys & s fs g, . & Es &
Yoo Yos Ys ! | T Tar Ty Yo M Mo | | Mg Yo Ys
#11, 1, 1|11, L, 1(+|1,1,1(]1, 1,1
@ £ Bl | & By 7, oy &, §1 o gy 1B,
Yir Mos Mg | | Mis Yor Ys Yo Mg Ml | o> Yar Ys

Or if the two sets of three points be called ABC, DEF,
ABC X DEF =ADE x FBO+ AEF x DBC + AFD x BCE

is a relation between triangles.
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The product of the two determinants

1,1,1;1 1, 1, 1; L)
By By By @, b &0 & &
Yo Yoo Yss Ys N Mes My Ny
% Za_» %y 2, & &G & &

can be represented either as a sum of four terms

1,1, 1,1 1,1,1,1 [+...,
Ly Ly, Xy, 51 Ez’ Es: 54’ Zz
Yo Yoo Ys» i Mes My Mo Ys

§2’ é‘s) 34’ z-l

zl’ z2’ zS’ é‘1
or as the sum of six terms

1,1,1, 1 1,1, 1, 1 14 o
wl’ "'U2’ Ex’ Ez fa’ fu wa’ w«;
y1> yz’ Ms5 B Mg My ya’ y4

é‘s’ ;;: 23: Z4

Or calling the two sets of points ABCD, EF GH, we have the
identical relations between the volumes of tetrahedra :

ABCD x EFGH=ABCE x FGHD — ABCF x GHED
+ ABCG x HEFD — ABCH x FGED
ABCD x EFGH = ABEF x GHOD + ABGH x EFCD
+ ABEG x HFCD + ABHF x EGCD
+ ABEH x FGCD + ABFG x EHCD.

Zl’ zz’ gl) ;2

Application of Alternate Numbers in Geometry.

7. In applying alternate numbers to geometry, a number
stands for a point in a flat space whose dimensions are one less
than the number of units.

To begin with a plane, the units e, e, e, stand for the
vertices of a fundamental triangle ABC. Any other number

P=ze, + ye, + ze,
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stands for some point in the plane of the triangle. It is generally
convenient to assume that

z+y+z=1,
so that @, v, # may be taken to mean the ratios of the trlangles
PBC, PCA, PAB to the triangle ABC, though this is not neces-
sary.
If Pand Qare two points, then
mP +nQ
m+n
is a point in the line P, dividing P@ .in the ratio m : n. Thus
% (P+ Q) is the middle point, and P— @ the. point at infinity of
Pa.
Similar definitions hold for a space of three dimensions.
Four points ABCD being taken and represented by the units
€,, €, €, ¢, any other point in the space is represented by

P= ze, + ye, + ze, + we,,

19

where if we choose we may write
c+y+z+w=1,
@ being the ratio of the tetrahedron PBOD to A BCD.

And-so on for a space of any number of dimensions.

Then a binary product ee, is a unit length measured on the
line joining the points e , e, or the distance between the points
e, e,

A ternary product eep, is a unit area measured on the plane
of the points e, e,, e,, or the area of the triangle formed by the
points e, ¢, ¢, And so on.

In a space of two dimensions the product of three points is
the area of the triangle they form referred to the fundamental
triangle.

Now if P=zxp tye, +2e,
Q=uaze+ ...
R=azg + ...
PQR= |z, ¥, 2, |epege,
xZ’ yZ’ zﬂ

1 %y Yg 24
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And egee, = ABC = A, the area of the fundamental triangle, so
that in areal co-ordinates '

PQR ==, y,, 2, | A.

1
1'2, yz’ z2

.%‘?, ,.%> 2y
Similarly in a flat space of three dimensions if

eeeo =V

is the volume of the fundamental tetrahedron, the volume of the
tetrahedron formed by four points is

PQES=|m, ¥y, 2, w,| V.
Loy Yy 295 Wy
Ly Ygr %5 Wy

mu 3/4’ %y w4

Similar definitions may be stated with reference to flat spaces
of more than three dimensions.

The assumption which has been made throughout the present
work, that the product of all the units of a system is unity,
receives here its justification and explanation. For, geometrically
speaking, the product of the units is the measure of the funda-
mental figure of the space considered, which is our unit of
measure. In a plane, for example, it is the area of the triangle
»f reference, in ordinary space of three dimensions the volume of
the tetrahedron of reference. It is no part of the plan of the
oresent treatise to develop the geometrical applications of alter-
1ate numbers ; for these we must refer to the memoirs and works

»f Grassmann and Schlegel.

Angles between straight lines. Solid angles. Spherical figures.

8. With rectangular axes let
Zl’ my, Ty >”1’ L

Zg’ mrp nz >“2' /"2’ Vn
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‘be the direction cosines of two sets of straight lines, then if
cos (tk) = I\, + mu, +np,

is the cosine of the angle between the +" line of the first and %™
of the second system ; if we compound the two arrays, we get the
determinant

| cos (k)| .

Hence by 1v. 2, if there are two sets of four straight lines
we get
cos (11) ... cos (14)

cos (41) ... cos (44)

S coeneli)s

If there are two sets of three straight lines @, b, ¢; f, g, &,

cos af, cosag, cosah |=|l, m, n, Ay By Yy
cos bf, cosbg, cos bk l,, m,, n, Nos Moy ¥y
cos ¢f;, coscg, cos ch L, mg, n, Nys gy Y,
= sin (abe) sin (fgh)..cucennen.. (ii).
If there are only two straight lines in each set
cos (11), cos (12) | = | I,, m, Noo fty | F wow s
cos (21), cos (22) l,, m, Nys iy

Now if n, v be the directions of the shortest distances between
the lines of each pair, f, ¢, the angles between the pairs

l,, m, | = sin @ cos (nz), &c.

lz’ mz
cos (11), cos (12) | =sin 0 sin ¢ cos (n) ...... (iii).
cos (21), cos (22)

9. Ifin the relation (i) of Art. 8 the two sets of straight lines
coincide with omeset of straight lines a, b, ¢, d, we have
1 , cos(ab), cos (ac), cos(ad)|=0.
cos (ba), 1 , cos (be), cos (bd)
cos (ca), cos (cb), 1 , cos(cd)
cos (da), cos (db), cos (dc), 1
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This is the identical relation between the mutual inclination
of four straight lines in space; or also the relation between the
sides and diagonals of a spherical quadrilateral.

If we write — cos (A B) for cos (ab), or what comes to the same
thing change the signs of the elements in the leading diagonal, it
becomes the identical relation between the cosines of the dihedral
angles of a tetrahedron formed by four planes 4, B, C, D perpen-
dicular to the lines a, b, ¢, d.

10. If the two si:ra,ight lines marked 1 coincide with two
straight lines w, v; while those marked 2, 3, 4 coincide with a
set of oblique axes z, ¥, 2,

cOs uv, Cosuw, cosuy, cosuz | =0,
coszv, 1 , coszy, coszz
cosyv, cosyx, 1 , cosyz

cos zv, €os zx, coszy, 1

which gives the cosine of the angle between two straight lines u, »,
referred to a set of oblique axes @, y, 2z in terms of their direction
-cosines.

11. As another example of the use of the same formula, let
ABC, A'B' (' be two spherical triangles, O, O" the centres of the
small circles circumscribing them. For our two sets of straight
lines take the lines joining the centre to O’ABC, OA'B'C’. Then
if 00'=¢, and R, ' are the radii of the circumscribing circles,
we get _ _

cos¢, cosk cos R, cos R |=0.
‘| cos R, cos(44), cos(4B), cos(AC)

cos R, cos (BA’), cos(BB'), cos (BC)

cos R, cos(CA’), cos (OB'), cos (CC)

‘We can write this

cos¢psin(ABC)sin(4'B'C")=—cosRcosR' [0, 1 ... 1
1, cosAA’...cos(4C")

...........................

1, cos(CA’)...cos(CC)
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If the angle at which the small circles cut is
cos ¢ =cos R cos B’ —sin R sin B’ cosr;
and the above formula can be written
(1 —tan B tan B’ cos y) sin (4BC) sin (4'B'C") =
| o 1 . 1
- 1, cos (44’) ... cos (A0") |

1, cos (04" ... cos (CC)
" If the two systems coincide yr=1, and we get
|sec* R, 1, 1, "1 =0,
1, 1, cose, cosbd
1, cose, 1, cosa
1, cosb, cosa, 1

a, b, ¢ being the sides of the spherical triangle.

12. Similar relations can be developed in the same way for a
plane.

In a plane we can shew that for two sets of three straight lines
cos (11), cos (12), cos (13) | =0,
cos (21), cos (22), cos (23)
cos (31), cos (32), cos (33)
and then deduce

1, cosC, cos B| =0, | cos (wy), cos (za), cos (ab)|=0,
cosC, 1, cosd ' cos (ay), 1, cos(ab)
cosB, cosd, 1 cos (by), cos (ba), 1

similar to the equations of 9 and 10.

13. Next, let us compound two arrays
L, ll’ my. ny 1, —A, - By — ¥4
1,2, m, n, 1, =N = gy — v,
We get the determinant

| 1—cos (ik) | = | 2sin®% (ik) |.
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Hence, by 1v. 2, for two sets of five straight lines

sin?} (11) ... sin*% (15) |=0
som 3 s 1 w4k o0 i 4 L2 RO Q).
-sin® L (51) ... sin®$(55)
For two sets of four straight lines @, b, ¢, d; «, 0, ¢, d,
16| sin*}(aa’)...sin’} (ad) | = ~|1, L, m,, o, | x| 1, Ny i, 2,
Ceiessastesarresrasenseanens ($= 1, 2, 3’ 4!) ........... (11)
sin®2(da)...sin’} (dd’)

Exzpanding the determinants on the right according to the
elements of their first column, our determinant

= {sin (bed) + sin (cad) + sin (abd) — sin (abc)}
x {sin (b'¢'d’) + sin (¢'a’d") + sin (a'b'd’) — sin (a'b'eH}.
For two sets of three straight lines, our determinant is

1—cos(11) ... 1 —cos(13)

.................................

1—cos(31) ... 1 —cos(33) |

J

or
, 0 .. 0 -1, -1, .. =1
1, 1 —cos(11)... 1 —cos (13) 1, —cos (11) ..: —cos (13)
Ly eereere e, , '

1, 1—cos (31)...1—cos(33)| |1, —cos(31) ... — cos (33)

This is equal to the sum of the products of determinants of
the third order taken from the two arrays. Omitting the term

L, my, m | | =N, —py, —v,|=]|—cos (11) ... —cos (13)
l2’ mz’ Inz _}\'2, _'/142, —Vz ................... resvesensen s
L, mg, | | =Ny =ty — 7, —cos (31) ... —cos (33) | *
we get *
0, L . 1 =|LlLm|L,npl+ L] |17
1, cos (11) ... cos (13) +|L,mnl||l, vl

1, cos (31) ... cos (33)
If the straight lines be called «, b, ¢; o', ', ¢, and N, NV,, N,



192 THEORY OF DETERMINANTS.- [cmAP. XIV.

are the directions of the- shortest distances between be, ca, ab
we have
11,1, m|=sin (be) cos (N,2) + sin (ca) cos (N,2) +sin (ab) cos (N 2),
| LA )= sin (b'¢) cos (N’ 2) +sin (¢'a’) cos (N 2) +sin (a'b) cos(N',z),
and similarly for the other determinants. In particular,if abe lie in
one plane, and a'b’c¢’ in another, the normals to the two planes
being N, V', the value of the determinant is
{sin (be)+sin(ca) + sin(ab)} {sin(b'¢) +sin(¢'a’) + sin (a''))} cos (NV),
viz. this
=-0, 1 o 1
1, cos (aa’) ... cos (ac) )
1, cos (ca') ... cos (cc’)
For two sets of two straight lines we deduce in the same way,
if B, r are the directions of the external bisectors between them,
% L ! —4sin - o sin 22 . cos (Rr).
1, cos (11), cos (12) 2 2
1, cos (21), cos (22)

14. If we compound the arrays

lmnlO 7\1,%,1’ 0,1

lm’ﬂ]o A’;’/‘L.’VNO]'

0, 0, 0,0,1 0,0, 0,1,0,

we get the determinant

cos (11) ... cos(14), 1

cos (¢1) ... cos (1), 1
1 .. 1, 0

Hence for two sets of five straight lines

cos (11) ... eos (15), 1 |=0.

.........................

cos (51) ... cos (55), 1
1 1
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For two sets of four lines

cos (11)...cos (14), 1 |=— |1, }, m, n| |1, p, X, 7|,

cos (41) ... cos (44), 1
1 ... 1, 0
and so on.

But these are not new theorems. In the first for example, if
we expand by 111. 24, according to products of elements in the last
row and column, each term vanishes by Art. 8.

On Systems of Stratght lines.

15. If b O L (O
) cosa cosfB cosvy

be the equations of a straight line, then
o= CoS a, b=cos f, c=cos vy,
f= q r » 9= v P | h P q I
cos 3, cosy CoS 7y, COS A | cosa, cosf3

are called the co-ordinates of the line. It is plain that
af + bg+ ch = 0.

I

16. If the constants belonging to two straight lines be denoted
by the suffixes 1 and 2, the equation of a plane through the
second line, parallel to the first, is

=P, Y—Gqy 2—17,|=0.
cosa,, cosf3,, cosry,
cosa,, cosf3,, cosv,

If d be the shortest distance between the two straight lines,
and 6 the angle between them, it follows that

dsin § = Pi=Py &= 71— T
cosa,, cosf3, cosqy,

cosa,, cosf,, cosy,

= pl’ QI’ ’rl + p2’ QZ’ r?
cos a,, cos 3,, cosy, cos a,, Cos f3,, cosry,
cos a,, €08 f3,, Cos vy, cos a,, cos /3, cosqy,

= 2fl +bzg1 +F c’zhl + a]fz + bng + C1h2'
8.D. 13
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If the expression on the right vanishes, then either d=0,
i.e. the two straight lines intersect, or sin =0 when they are
parallel, and hence also meet. Tt is convenient to have a name
for the expression on the right. If a unit force acted in one of the
lines its moment about the other would be dsin 9 l.e. in terms of
the co-ordinates of the lines

a/l-](‘; + blg2 + clh2 + a/2f‘1 + bZ-qI + 02]Z1'
Hence we shall call this the moment of the two straight lines.
If two straight lines meet their moment vanishes.

17. Let us take two systems of straight lines whose co-
ordinates are
al’ bl) cl)f;l) gl’ h’l ﬁ,7 gll’ h’l” al’! bl’) cl'
@y by € [ 9o I Jos 80 W, &/, b5 ¢
Then if m,, denotes the moment of the line » of the first and
s of the second system, by compounding the two arrays we get
the determinant
I WZW |

Hence for two sets of seven straight lines

an identical relation between the mutual moments of two sets of
seven straight lines. If the two systems coincide

0, my ... m,|=0.
m,, 0 ...my,
m,, M, 0
For two sets of six stlalght lines
My «on Myg | =] by €4 Jis G |
............ |f;,g,,h'a 1)11 (’L=1,26)
Mgy ver Mg,

If one of the sets of six straight lines—say the first—is met by
a common transversal whose co-ordinates are a, b, ¢, f, g; h, We
have for each of the straight lines of that system

aﬁ+bg(+0ki+fai+gbi+ hc¢=0
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Thus the first of the determinants on the right vanishes, and

is the relation between the mutual moments of the two sets
of six streucrht lines, one set of which is met by a common trans-
versal.

If the two sets coincide we get the identity for a system of six
lines met by a common transversal.

18. 1If the moments of a system of forces about one set of
seven lines be m,, m, ... m_, and about a second set n,, n,... n,, we
can establish an identity among the moments involved.

For if any force P of the system act in a line whose co-ordinates
are a, b, ¢, f; g, b, we have

=3P {afi + bg, + chy + fa, + gb, + he}}
=f,3%Pa+g,5Pb+ h3Pc+ a,3Pf+ b2 Py + ¢, 2 Ph,

and six other equations for m, ... m,. Hence eliminating

2Pua, 2Pb... 3Pk
we get
My Ay, bl’ C1 ,fu 9 }?'1 =0,

m7’ a’7’ b7’ c7’-]"‘7’ 97’ h’l
and a similar equation for the other system. Hence each of the
determinants

' ’ ’ ’ ’ ’
1.0, my; @y, bl) Gy fl’ 9 hl 5 Olfl: 91> hl) Ay, b1; ¢

.......................................................

O’mv’ 7 7’ 77f7’97’ 7 ’)Z.,,Of;,g,,,h' a’7:b7 G
:1, 0, 0,0,0, 0,00 0,10 0, 0, 0, 0,0

’

vanishes. ‘Forming their product we get

My onr Moy, Ny | =0.
My oen Mgy My
m, ...m, 0

g e 73

13—2
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Tetrahedra and Triangles.

19. Let there be two systems of points in space whose co-
ordinates referred to rectangular axes are (%, ¥,, 2,), (€, 7., §). Let
us compound the two arrays

x, .7/1, % 1: 0 - 251) - 2771y = 2;: 0) 1
Ty Y 2y 1, 0 - 221'1 - 2%; - 2;., O) 1
0, 0,0,0,1 o0 0, 0 1,0,
we obtain the determinant
Cia Cos 1
Cy ovv Cys 1y
1 1
where o=—2w & —2ym,— 228,

To the »* row add the last multiplied by #*+y,*+27 and to
the s* column add the last multiplied by £*+ 5.+ £ the deter-
minant is unaltered and its elements are now

&, =@’ +y’+2° 208 ~2ymn, — 225+ £+ + L}
=@ =ES+ @y =)+ (-5
ie. d,, is the square of the distance between the ™ point of the
first and ™ point of the second system. We have then the deter-
minant

d, . d

1 1)

1

d,..d

W2

i R |

If © = 5 the determinant vanishes, hence
s OO ;A (1 [ 0 A ———— (1)

11 *°

1 s 1

is the identical relation which subsists between the lines joining
two sets of five points in space. If the two systems coincide
d,=0, and the determinant, which is then symmetrical, gives the
relation between the lines joining five points in space. The
relation in this form is due to Cayley.
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If 7 =4,
dy oo dy, 1=z, 9, 2, 1, 0 -2, =29, —2§, 0, 1
d41 .o d&, 1 Ly y4, 2y 1, 0 ‘ _254; _2774> _2;4; 0; 1
1..1,0 0, 0, 0,0, 1 0, 0, 0,10

S R (i),
where V, V" are the volumes of the tetrahedra formed by the two
sets of four points.

If the two sets coincide in a single tetrahedron, for which
a,a'; b, 05 ¢, ¢ are pairs of opposite edges,

288V%=|0, ¢* 0% a® 1
¢, 0, ¢, 0,1
82, ¢, 0, 8% 1|,
a? b, a’, 0,1
1,1,1, 1,0
If 1 =3, we have
dyorr iy 1 [=—4lag1] [EmL|=4lma1] [EL1-4l5,a1] nb1],
A
1. 1,0
all the other determinants on the right vanish identically.

Now if A, A’ be the areas of the triangles formed by the two
sets of three points, [, m, n; A, p, v the direction cosines of the
normals to their planes

|2, 3, 1|= 2 projection of A on plane zy = 2An,
and similarly for the others; hence if ¢ is the angle between the
planes of the triangles

dy o By, 1| = = 16AA COS Purenrnennen. (iil).
g won Gy
1..1,0
Lastly, if ¢ =2,
dy, Gy 1|=]2, 1, 0 ~26; 0, 1|
dy, d,, 1 %, 1; 0 —-2£,0, 1
1, 1,0 0, 0,1 0 ,1,0

=2 (2, — wn) (Ex - En) + 2 (yl - ya) (7]1 _7]2) +2 (Zl —'za> (gx - Cﬂ)’



198 THEORY OF DETERMINANTS. [cHAP. XIV,

the other terms vanish. Now if a, b be the lengths of the lines
joining the points of the first and second systems and 6 the angle
between them,

o ——51_22+. +.=cosf.
a b
Hence
dy, Gy 1| =2abcos O.nenivnnnnniiinnnn. (iv).
A |
1, 1,0

20. Ifin case (iii) of Art. 19 we allow the two sets of three
points to coincide with the vertices of a single triangle whose
sides are a, b, c,

—16A%*=]0, ¢, ¥*, 1)
¢, 0,a% 1|
b ad? 0,1
1,1,1,0

Multiply each column by abe, then
—16A%a'b*c*=| 0 , abc®, ab’c, abe
abc®, 0 , a’be, abe
ab’c, a*be, 0 , abe|
' abc, abc , abe, 0O

Divide the first, second, and third rows and columns by
be, ca, ab respectively, then

—16A%*=0, ¢,
¢, 0,
b, a,
a, b,

S

o 8

=|a, b,

(2]
~

o )
QR o © © o =~ 8

, @
, 0
c

&8

(=SS |

)
2
£l

(]

2

by an interchange of columns.
If in the first expression for — 16A* we divide the second and
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third columns by @?, and then multiply the first and last rows by
a’, we get :

—16A%=| 0, ¢ %, o°
¢?, 0,1,1
®,1,0,11
¢, 1,1,0

21. If in case (ii) of Art. 19 one of the sets of four points—
say the first—lies in a plane, V=0, and

dy ... d,,, 1] =0.
dy o d,, 1
1.1

If one of the sets in case (iii) lies in a straight line the cor-
responding triangle vanishes; hence

dy...d, 1|=0.
d,...d,, 1
L 1

By allowing the second system to coincide with the first we
get the identical relations between the lines joining four coplanar
and three collinear points.

22. In the identical relation

dyy verdyyy 1]=0
dy ... dy, 1
1.1

between the squares of the lines joining two sets of five points,
let the fifth point of the first system be the centre of the sphere
sircumseribing the tetrahedron formed by the first four points of
the second system, and the point 5 of the second system the centre
of the sphere circumscribing the first four points- of the first
system. Then

d15=d25=d85=d45=R2
d,=d,=d,=d,= B"
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Also, if ¢ be the angle at which the two circumscribing spheres

intersect, d,=R’'+R"+2RE cos ¢.
Hence with an interchange of rows and columns
d,..d, 1, B|l=0
d, s g L B
1 ...1,0, 1

B® e B 1; dy
Multiply the fifth column by R and subtract it from the last,
and the fifth row by R* and subtract it from the last, then

dy.ody, 1, 0 =0.
yy e Oy 1; 0
I . 1, 0, 1

0 ... 0, 1, 2RR'cos¢
‘Or, resolving according to the elements of the last row and column,
we have by Art. 19 (ii)

576VRV'R' cosp=|d,, ... d

14

g wes

We see from this that so long as the circumscribing spheres
remain fixed the tetrahedra can turn about in them without
altering the value of the determinant on the right. The determi-
nant vanishes if the circumscribing spheres of the two systems

cut orthogonally. This relation is due to Siebeck.
23. If in Art. 22 we allow the two tetrahedra to coincide we
get, since ¢ =,
16 (6VR)"=—| 0, &, 0% c"
a® 0, ¢ b
0% ¢ 0, o
&% B 0
Multiply the second, third and fourth rows and columns by
a®, b%, ¢ respectively, then
16 (6VE) a'b'c* =~ 0, (aa’)’, (B, (cc')
(aa’)?, 0, ¢ a*b’c
b, @', 0, b’
(cc'y?, o™, a’b’c’, 0
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Divide the second, third and fourth rows by (abc)?, then multiply
the first column by the same quantity,
16 (6VR)*=—]| 0, (aa)? (bb'), (cc)?
(aa’)?, O, 1, 1
®v')?, 1, 0, 1
(cch)?, 1, 1, 0
Now if we write
ad’ =kz, Wb =ky, e =k,
then if A is the area of the triangle, whose sides are =, y, 2z, we
have by Art. 20,
(6 VR)® = kA%,
6 VR = I’A.

This triangle, whose sides are proportional to the square roots
of the products of pairs of opposite sides of the tetrahedron, has
many interesting relations to the tetrahedron. It is sometimes
called the conjugate triangle.

Formule relating to the Ellipsord.
24. If (z, v;, z) and (€, n, &) be two sets of points on the
ellipsoid,
2 2 2
“”2+ g +%=1
Then, if d_, denote the square of the distance between the 7
and s® points of the two systems and D,, the square of the parallel
semidiameter, we have

ol WE, WA, z§>
., = l)r‘9 ( a? b? /)
Hence, if we compound the two arrays,
z Y% A _26 % 25,
a 3 b b c 3 3 b 2 c
z Y % 4 28 _ 20 2L 4
a’ b’ ¢’ a’ b ¢’ 7

we get as in the preceding articles.
For two sets of five points situated on the ellipsoid,

a @, | =0

11 °°* Y15

Q. ... 0Q,

51 ° 56
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For two sets of four points forming two tetrahedra of volumes

v, v,

Qg ove By | _ 576VV’
........... a2b262
aél a44

Similar formule can be established for an ellipse in a plane.
If the ellipsoid become a sphere ¢ =b=c= R, and since all
diameters are equal, we can replace a,, by d .. Thus

d,..d, =0

11 15

| d d

51 "** 55

is an identical relation between two sets of five points on a sphere.
This relation is due to Cayley.

The second relation in this case reduces to the result of
Art. 22, when the two tetrahedra have the same circumscribing
sphere.

25. If the points (z, y,, 2) (€, m,, &) are not situated on the
ellipsoid, then since

=l SEES n) (emt)

y’r i % B r
=t Et g g Ty T g Tttt
if we compound the two arrays whose «™ rows are

Jurngfzil

T a’b’
- 251 - 277; 2§ 52 Cz
1) a ) b 3 c b 2 + b2 +
we get the identical relations (1v. 2)
@y e @y | =0
I
Gy ovn Oy
Ay v Ay |
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=% Y %Y g
a2+bZ+c2’al’ b} G’ 1‘
%11 —"2& _277i 24" Ei+ +

b a 2 b y c b2
(i=1,2 ... 5), '
for two systems of six points and five points respectively.

If in the latter equation all the points of the first system lie
on the ellipsoid,

2+ (5 + (5 =

we should have

z 202 2 2rz 2 r?
pa quy - p+g:+2

satisfied for each point of the system. Hence we see by eliminat-
ing

_ _ — 9 2 2
zp) 2q) r: le+q42+_2—m2
a @ @ a b ¢

between these five equations, that the first determinant on the
right vanishes. Hence

a =0

g s

15

By el

if the five points of one of the systems lie on an ellipsoid similar and
similarly situated to the given one. If the ellipsoid reduce to a
sphere, we get

an identical and homogeneous relation between the lines joining
two sets of six points.
And d,..d,|=0

N/

51°° 85

for five points situated on a sphere.
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26. In like manner, if for the same systems of points as in the
last article we compound the arrays

‘ﬁ & ﬁ 1, 0 _2_‘5; _'2_”717 _2_;:0;1
b e’ @ b
% % 4y _2% I 26
a’ b7 ¢’ @ b
0, 0, 0,01, 0, 0, 0, 1,0
we get the determinant
Oy ve Oy 1
Cyp voe Cys 1
1 .1
2z 24 2z
where ., =— af" - ‘/];:78— c;é"_
Multiply the last column by
E 2 g 2
i +
and add it to the s* colmnn and the last row by
~—+‘§J,+f

- and add it to the 7™ row, then the element at the intersection of
the 7 row and s* column is

5+ 5+ (555 =

And hence, (1v. 2),

Gy ey, 1]1=0
Oy wow By 1
1.1

is an identical relation between any two sets of five points in space.
If the ellipsoid becomes a sphere we regain Cayley’s relation (Art.
19, 1).
For 2 =4, we have
w 1| 28877

Ay ver A
s a*b?E
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V, V' being the volumes of the tetrahedra formed by each set of
four points.

27. The polar plane of a point P(z,,7,, 2,) with respect to
the ellipsoid, is

'*+ybzf*+— 1.

The distance of a point Q (£, »,, £,) from this plane is
(P Q)__p< g yﬂ]s'i’ 'ré‘ _1)

2 2 2

If (@, P) and g denote like quantities for the point @,
(P.Q_(QP _, ok yn_ 2t

P q a b
This function has been called by Faure the index of the two
points P and @, denote it by 7,,. Then, by compounding the arrays
whose ¢™ rows are

@ Y %o, & - =&
a’b’c’l’ a’b’c’l’
we obtain
L v dy | =D
Igu g
Iy, |__ 867V
ereeaie PR
Ly wendy

28. It may be remarked that these space relations connected
with an ellipsoid are not really more general than those connected
with a sphere. For they are what the relations in an ordinary
space become when the sphere

w2 + y2 + z2 — R2
becomes changed by a homogeneous pure strain to the ellipsoid
2 2 22

x
stEtas
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Formulee relating to Systems of Spheres.

29. If 7, s be the radii of two spheres, ¢ the angle at which
they intersect, and d the distance between their centres, then
& =7"+5+2rscos ¢..
The function
2rscosp=d’ — 1" —§
is of importance in the study of the mutual relations of spheres ;
it is called the power of the two spheres. We shall denote it
by p,,.

If one of the spheres, say s, becomes a point, the limit of
2rscos ¢ is d’ ~ 7%, i.e. the square of the tangent from the point to
the sphere, or what is known as the power of the sphere at the
point, or the power of the point with respect to the sphere.

If both spheres reduce to points the limit of 2rscos ¢ is d’, the
square of the distance between the points.

If one of the spheres becomes a plane, and p is its distance
from the centre of the other, '

cos¢>=]£.'

If the second sphere become a point, and p is its distance from
the plane, the limit of 7 cos ¢ is p.

30. Let (x,y,2) and (£, n,, {,) be the co-ordinates of the
centres of two spheres of radii r, and p,, then if p, is their mutual
power

pik e dZ - T‘Z — ka
=xl+yl+zl—r}—2mE —2yn, — 228+ EF+ 0+ 8 —p,l
Hence, compounding the two arrays
2,y 2, Lat+yi+ 2P —r?

.....................................

and

— B — Bg, — 28, EF 4w £ —~ pisds
we see by 1v. 2 that for two systems of six spheres
=0
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If cos ¢, is the cosine of the angle at which two spheres cut, we
can also write this

| cos ¢, |=0 (6, k=1,2 ...6).
For two systems, each of five spheres,
pll i plE
e [ (it)
p51 TRl pSS

=l@, ¥, 2 L2+ 4" +2°— 1| x| - 28, — 29, - 28, 4+ + 8 =p, 11
If the five spheres of one of the systems—say the first—have a
common radical centre, taking this for origin we should have
P+ —r =,
where ¢ is the same for all the five spheres. Hence, in the first
determinant on the right of (ii), the fourth and fifth columns are

proportionals and the determinant vanishes.
Thus

pﬁl L p55
when the five spheres of one system have a common radical
centre.

If the five spheres of the first system reduce to points (iii) is
the condition that they should lie on a sphere.

If both systems reduce to points we regain Cayley’s condition,
that the five points of one system should lie on the same sphere.

31. But if neither of the determinants on the right of (ii)
vanish, expand the first determinant with regard to the elements
of the last column.

Then p=wlty’ 427 -1}
is the power of the origin (i.e. any point) with regard to the ™
sphere of the first system. Then if we write 1, 2, 3, 4, 5 for the
centres of the five spheres, and denote by

v, = (2345), v, = (3451), &c,,
the volumes of the tetrahedra formed by the points in brackets,
and if accents denote similar quantities for the second determinant,
we have in place of (ii)

‘plk I =288 (vlpl+v2p2+ "'+ vﬁp-’)) (vll.p1,+"'+v5'p5,)
Gk=1,2...5).
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Now describe about the origin a sphere of radius r, cutting the
spheres 7, ... 7, at angles ¢, ... ¢,.

We have, since (Art. 5)

v+ 0,4+ ... + v, = 0 identically,
VPt FUP =0, (pl - 2) tee T, (ps —~ 3
=2 (v,r, 08 ¢, + ... + V1 COS b,),
and p being a similar sphere for the second system,
| p, | = 288p7Z20,r, cos ¢, 220/ p, cos P, (G, k=1...5).

Thus r320,r, cos ¢, is independent of the particular sphere r,
let this be the orthotomic sphere of the first four, then this sum
reduces to

2u,r, R cos (r.R),
and the second factor, in like manner, becomes
2,0, R’ cos (p R').
Hence
Py e Py | =115200,7,p RE cos (r,R) cos (p, ).
Doy ooe Des

32. For the fifth sphere of each system in thislast equation take’
the orthotomic sphere of the first four spheres in the other system.
Then in the determinant on the left all the elements in the last
row and column vanish except p,., and

P =2RER cos (RR).
Hence we obtain
Py --- Dy, | 2RE cos (RR) = 115200, R’ R" cos® (RR),

Py oo Pus )
or dividing out the common factors and writing 7, V" for v,, v, we
get for two sets of four spheres

Py - Py | =576VV'RR' cos (RR).

DPyy-e-Pu
If the spheres reduce to points we regain Siebeck’s formula
(Art. 22).
The determinant on the left vanishes if the orthotomic spheres
of the two systems of spheres cut orthogonally.



31—34.] APPLICATIONS TO GEOMETRY, 209

33. To determine the meaning of the determinant
|p,| @ k=12 3).

In the determinant of Art. 82, let the fourth sphere of each system
be the plane determined by the centres of the first three spheres
of the other system, then if A, A’ be the areas of the triangles
formed by the centres, ¢ the angle between their planes,

lim. Z, =3A cos¢, lim. ¥_ 3A' cos ¢

7, 7 ,

Also if the radical axis of the spheres of the first system meet
the plane of centres of the second system in P, whose power
with reference to the spheres is p, and P’, p’ denote like quantities
for the other system,

2RR cos (RR)=PP*—p—yp.
Hence
.pu pm = 16AA, 0054) (PPlz _p —pl)'

pal 2 p93
34. If in the relations
d,..d, 1]|=0,
A R |
: 1
d,..d, 1|=—28V7V",
A |
L o 1
of Art. 19, we suppose the sets of points to be the centres of our

spheres.

Then if we multiply the last column by p? and subtract it
from the 4™ column, and the last row by =7 and subtract it from
the & row, we get the relations
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Py v Pos 1]=—2887T,

which give relations between the mutual powers of two sets of five
and four spheres.

35. Another element connected with two spheres is the length
of their common tangent. For two spheres of radii r, s the dis-
tance between whose centres is d and which cut at an angle ¢,
the square of the length of the common tangent is given by

t=d*—(r—s)
= 2rs cos® §¢.
If one sphere reduce to a point, ¢ is the power of that point

with respect to the other sphere. If both spheres reduce to points,
t is the square of the distance between them.

36. Using the same notation as in Art. 80, if ¢, is the square
of the tangent common to the two spheres

ta = (J}i S gk)z + (y'n - ”71.:)2 + (Zi - é’k>2 - (ri - Pk)2
= w.'2+ yc2 o+ Z-'2 - Tﬁz— 2x¢§k— 2% [ 22i§k+ 27‘.'/37:"' E: + "71‘2+ ghz—
Hence, compounding the two arrays

wl’yﬂ zl’ 1’1 x +y1 Z ——/,'1

Ziy Yss Zi Ty 1 ; +J. Z- =T
0, 0, 0, 0, 0,. 1

_"251 _2771’ 2§1’ 2P1’ El +771 +§2"'P1;

- 2Eﬂ 217»’ - 2;: 2pn E + "71 + §2— P‘, ].

o0 0, 0, O 1, 0,
we get for two systems of six spheres the identity

ty oo by 1 =0,

Ty oo By
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For two systems of five spheres we should get

1y wea b, 1| =576 (v, + ... o) @Wp + .o +9.p,),

using the notation of Art, 31.

If ¢, is the angle at which the plane of similitude of the first
four spheres of the first system cuts each of these spheres, and
(rt,) the angle at which it cuts the fifth sphere, and similarly for
the second system, we can reduce this to the form

(R T | - cos (1) cos (p.T

ot o saup, (1~ 08 (1 — oo,
5 b

by vee by 1

1 s 1

Hence the determinant vanishes if one of the systems of five
spheres has a common plane of similitude.

For two sets of four spheres, after some reduction we can
prove that

st = (1- R,
A |
1...1

where ¢ is the angle between the planes of similitude of the two
systems, and f, = the angles at which they cut their sets of
spheres.

87. By compounding the arrays whose " rows are
Ty Yi» Zis To> 1, "”.'2 +Z/.-2 + z‘z - 'raz
and — 2E, — 2n,, — 28, 2p,, E4n’+8—p%1,

we get the homogeneous relation between the sets of tangents
common to two sets of seven spheres

14—2



212 THEORY OF DETERMINANTS. [CHAP. XIV.

38. We may make use of this last relation to solve . the
problem: Determine the equation of the sphere having with five
given spheres tangents of the same length. o '

Let the equations of the five given spheres be

8,=0......8,=0.

5

Take these for the first five of each set.of spheres in Art. 38,
let the sixth sphere be the one required, and the seventh a point on
the sixth.

Then we shall have

t,=0, ¢

=8, =k

(13

and the equation is

O’ tlz’ txs’ t14’ tw’ 11 S =0.

0, 2 b bes 15 8

24 “25)

tﬁl’ t52’ tEB’
L L% 4
8, 8, 8, 8, 8,0, 0

This is apparently of the fourth order, but by means of the sixth
rows and columns ‘we can get rid of the terms of the second degree
in the seventh row and column.

39. All the equations of this section relating to spheres are
capable of numerous and varied applications, some of these will
be found in the examples, and others in the memoirs of Bauer,
Darboux and Frobenius.



EXAMPLES.

ProvE the following relations : 1—5.

L. (B +c), ab ac = 2abe (@ + b + ¢)’,
ab , (c+a), be

uC be , (a+D0)

&+ c)”, e v* =2 (be + ca + ab)’.
¢ , (c + a)’, a’
 , @ , (a+b) ‘
2. 1, 1, 1 =TS W
tand, tanB, tan(
sin 24, sin2B, sin2C
if 4, B, C are the angles of a triangle,
3. 1, 2 (a+z) Jlc+a)]|=0,

L % (a+y) J+y)
1, » (& +2) Jf(c+ 2)

if tan™! \/(a_—_c) + tan™! x/(“—_c) + tan™! &/CZ—_): 0.
c+ c+y c+ 2

4,
1 , cosa ,cos(at+f3), cos(a+f+y), cos(a+B+y+8)|=0.
cosa 5 1 , cosfB , cos(B+7), cos(B+y+d)
cos (a+f) , cos B , 1, cosy , cos(y+3)
cos (a+fB+7) , cos(B+7), cosy , 1 . cosd
cos(a+B+y+90), cos(B+y+d), cos(y+8), cosd 1
5. a+b+c+d, a-b—c+d, a—-b+tc—d

a-b—c+d, a+b+c+d, a+b-—c—d
¢—btc—-d, a+b-c—d, a+b+c+d

=16 (bed + acd + abd + abe).
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6. If @, b, ¢ are the sides of a triangle of area A, 2s=a+b+¢,
then

G+¢)?, ab , ac , o |=-=16sA(a’r,+b%r,+c,),
ab , (c+a), be , b
ac be , (a+bd) ¢
a , o c

7., T,, 7, being the radii of the escribed circles.
If the elements in the principal diagonal are (b—c)?, &c., the other
elements being as before, the value of the determinant is

3 ra? 2
._16§A_(_+b_+c_2>,
8 7'1

7‘2 7‘3

(6 +¢), ab ae y @ |==16sA(ar +br,+cr,),
ab , (c+a)’, be , b
ac , be , (a+b)° ¢

1 1, 1
(b +¢), ab ac , 1 |=16A°—20abes.
ab , (c+a), be , 1
ac be , (@+0)y, 1
1, 1, 1

7. IfS=a+a+...+a, 4,=8—a, prove the following theorems :

=4, a .. a |=z@-8)""
a 5, -4, a,
a, 5, a, .x—4,
z—a,, A4, ... A  |={e+@n-2)8} (x-8)""
Al 2 & - aﬂ Aﬂ
4, 5 A x—a,

a b b, b....
a b, a a.....
b, b, @ b......

(the diagonal consisting of ¢ and & alternately and each row being filled
up with the other letter) is equal to

(- 1) (n—1)(a—b)™.

The determinant is supposed to have 2n rows.
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9. If in a determinant all the minors of the second order are

divisible by the same quantlty 7, then the minors of the m® order are
divisible by p™,

10.  If in a determinant of the n™ order there be a block of p by q

elements all of which are divisible by a, the determinant is divisible
by a?*em,

11. Prove the theorems :

a, b, c, d, ... |=,
@ a+b, a+b +c a+ b + ¢ +d,
a, 2a+b, 3a+2b+c, 40+ 30+ 2¢+ d,
a, 3a+b, 6a+3b+c, 10a+6b+3c+d,

a,. b, e, d..|=a"1""" 2% 3" %, (n-1),
a, a+bd, a+2b+c, a+ 3b+3c+d ...
a, 2a+b, 4a+4b+c, 8a+12b+6¢+d ...
@, 3a+b, 9a+6b+c, 27a+27b+9¢+d ...

where a, b, ¢, d ... are any quantities whatever, and = is the order of
the determinant. In the first determinant each row after the figst is
obtained from the preceding by the rule that the +* element of any
row is the sum of the first » elements of the preceding row. In the
second determinant the #** element of any row is the sum of the first r
elements of the preceding row multiplied respectively by the coefficients
in the expansion of (1+)

12. If D=| @ b ¢ d (n rows),
—a, b: P, q -
-a, -0, g
-a, —b, —e¢ d

then D=2""abcd ...

The elements of the first row and leading diagonal are a, b, ¢, d ... ;
in each column the elements below the leading diagonal are equal to the
element in the first row but of opposite sign, the others are any what-
sver.

13. If D=]| cosma, cos(n—1)a,..cosa, 1
cosna,, cos(n—1)a, ...cosa, 1

cosna,, cos(n—1)a, .. cosa, 1
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D =] cos"a,, cos" 'a, ... cosa 1
09 0?

0
cos’a,, cos"'a ...cosa, 1

cos"a_...cosa, 1

,.: n u
D,=| sin (n+1) a,, sinneg,...sina,
sin(n+1)a, sinna, .. sina

sin (R +1)a,, sinno, ...sine,

then

D n(n-1) D n(n+1)
L gt - i ;
o 5 yi =2 sina;sina, ... sina_

1 1

14 If b, =(a, +ay+ ... + a,) — a,, then

......................

But if by=(ay+ay,+ ... +a,)— 20,

n

b_...b I

in nn

15. Prove that every power of a symmetrical determinant is again
a symmetrical determinant.

16. If for each element @, of a determinant 4 we write in turn
a, + ¢, we get n’° new determinants, If these be taken as the ele_:m.ents
of another determinant its value will be
(Ae)*™ (c+ 8),
where S is the sum of all the elements of 4.
17. If u=(X,-ab)(X,-apb,) ... X,~-ap,),
prove that the value of the determinant v
X, ab, apb, ...ab
ab, X, ap, ...ab,

aby, ab, X, .. ab

ab,, ap, apb, .. X

. ab, . a,b
X -ab X —abn}’

is v {1
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and the value of

0, a, a ... a,

2
b, X, apb ... ab
b,, ab,, X, ... ab,
b, ab,, ab, ... X,
1 _u{iﬁ-.}_ +ib"_}
* Xl _‘a’lbl X —mh, )

18. If w=(z-2a) (#-2a,) ... (x— 2a,), prove the following
theorems:

2 2 2 2
(z-a),) a , a} .. :m“‘u{m+2w aiza}
2 2 ] 2
a’® ,(x-a), a, x d
2 2 2
a® , o} ,(@-a)...
1, 1, 1 e du
?
3 a8 dw

2
(r-a), ao, , ao, .. =aa"“u{a:+2 a. }
aw, , (x—a), aa

2
0, a, , a, , a, - auS f%
2 —2a,
ay) (-’D - a’]) ’ 44y @,y ¢
az’ ala’s ’ (w a’z) ’ a’g“a
2
) @, @y (x—a’a)
And if
2 ] 3
D=|(x—a)’, a Sl
F 2 2
a® , (t—a,) a’ 50,1
2
a® , o (x~wa.) b, 1|°
b, , b, 6.
.1 1
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(1 1}{61’++b,f}
mﬁ"“”&—{w—2ax+"'+w—2aﬂ x—2a, " x-—2a,

b, - b, }”
_{x—Zal T e—2a,f "

19. Prove that, if S=x+y+2z+u,
(F-wf, = ., ¢, # :2;6'5:26‘1/zu{%+}/+l+1 4}

2 z uw S

then

w o, (S—2)? ¥, z
v, ', (S- y)g’ &
ut z ¥, (§-2)°

9, 1 + 1 5, 1L ;5 1 =8y +r+u)+ ¥ (x+z2+u)
I, (S—-wy, =2, o , 2 +2* (e +y +u) + o’ (T +2+7y)

L « ,8-9, ¥y , & + 2mwyz + 2wz + 2yau + 2eyu

1, « , & ,( -y 2 —a' -yt -2 -’

L, « , &, 3, -2

20. If X=cnadnz, &c. prove that
sna, sn'z, X |=sn(y—z)sn(z—x)sn (v—y)sn(x+y+2)H,
sny, sn’y, ¥
snz, sn’%, Z
where
M=1-F{sn’ysn’z + sn’zsn’x + sn’z sn’y}
+ & (1+F) sn’esn’y sn*2— Fsnwsny snz (YZsnw+ ZX sny + XY snz).
21. If snzenazdnax=X, &e. prove that
1, sn’z, sn*z, X |=0,
1, sn’y, sn'y, ¥
1, sn’z, sn'z, Z
1, sn’u, sn'w, U

provided
z+y+2+u=2pK + 29K,

P, ¢ being integers.

22. If Sy= O+ Cppyin— Gy — Gy,
then
Sy By oom &y
Do g oor Sy

.......................

SA-M: Sk—u i Sh—hk—h
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is the sum of all the minors of order %-4% of the determinant
4=|a,|; excepting always in such sum those determinants and their
complements of order % which in their formation have two row or
column suffixes congruent with regard to the modulus 4.

23. If
D = 0’ 1’ 1’ 11

n

(n rows),

where all elements are zeros, with the exception of the border, and two
lines of elements one on each side of the principal diagonal, prove that
m!n—l + yzn—l
-Dzn:_xf/Dzn—z— W’
wﬂn + y2n _ 2 (_ my)n
z+y z+y

Dyyy=—wy Dy, _,+

b

and hence that

- “ y)}

x+y

kg (94 1) (4 9) (—2y)"
(x+y)

D =le a, ¢ ¢ c...|(nrows),

where all the elements are ¢ with the exception of two lines, one on
either side of the principal diagonal, prove that

Find also the value of D,,.
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95. If
D,=|0, 1, 1,

3 1 (n rows),
3 C, a’ O’

1

O e
, b, ¢, a, O ...

@

(where, with the exception of the border, the elements in the leading
diagonal are ¢, in the lines on either side of it @ and b, the rest are zero),

then

oy T . P~ d
D,—¢D, ,+abD, ,= (—%ci

n—1 n—1

. c w -
Ta+b+ec’ u-—vw

2ab u =™ ®

+ - :
a+b+e U—v

where » and v are the roots of the equation
2P —cx+ab=0. .
Hence shew that
_ wHdt me (W 40"
" (atbte) (a+b+c)(u—v)
2a9bn W+ 0" (—a) + (=b)"

Tarbre (@—oF  (a+b+of

26. The value of the determinant

Uy oy Uy mes W
U, Uy U
un—l’ %, n—2
u? 7 un ul
@ Iwu=a+(r-1)bis
20+ (n— .
_ _“_“’;(%_1_)_[’ (—~nb)*.

(i) If w=a" is (1—2")""
(i) If w,=+" is,

(__ l)u—l (’”‘ s 1)(2177‘2*' l)n”_g{cn 4 2)» _ nu}.
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(iv) If w,=cos{a+(r—-1)b} is
[cos & — cos (@ +nb)]" — [cos (@ — b) — cos {a + (n— 1) B}]"
2 (1 —cos nb) ’

(v) If w =sin{a+(r—1)d} we must change the cosines in the
numerator of (iv) into sines.

(vi) If w,=a '+ 4™ 4 ad inf, is

(1 —a")™
27. The solution of the partial differential equation
D, D,..D, [(u=0,
D, D ..D,_,
D,, D,..D
d
where. D, = &
is u=3F(z,— oz, ©,—o .. z, —o ),

the functions being arbitrary and the summation extending to all
values of o being roots of the equation " — 1=0.

98. If in an orthosymmetrical determinant of order » (vi. 20),

o — (1 — qa.) (]_ — q'a.-i—l) (1 — qa+k—2)
A=) (T= ) o (L= g77h Y

the value of the determinant is equal to
]__qa n=-1 ]__qa.+1\n—-2 l_qa.+n—2
<]__g-y) <]_ _qy+1) <1_qy+n—2>
multiplied by a fraction whose numerator is

afa~1) n@a-1)n—2)

) Tg ° (A=A (1-¢")
x (gt — geyn1 (@r+l—ge)n=2 ... (q+n=1— g%,
and denominator
(L—g7) (1= gr+1)e .. (L= gren-a)=?
x (1 _q'y+n—1)n—1 (1 — grayn=2 . (1 —gvtin-s),

29, The value of the determinant
D= 0 , a+a, o, +a, .. 4(nrows),
g + a,, 0 ; @y*a;
a,+a, a+a, 0
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the elements in the leading diagonal being zero, that in the ¢! row and
Jtb column @, + a,, is given by

n - : (a—a,’
(-1 D=2a,a2...an<1_n_%2_¢a7klc))’

where 7, £ are all duads from 1, 2 ... .

30. The value of the cubic determinant of order », such that

Wy = O+ Ay + Oy @, =0,

is given by
D l-n—23 (@ —a) .
Jaa,...a, g o, q,
And if
o =cos (o+a; +a,), a,=0,
-1 D cos (a, + a,) sin’® (@, — a,
cos 3a, gos ;az ... €08 3a =R A R (cos Sa),‘ cos :ga, ) 2

where ¢, & are all duads from 1, 2 ... n,

31. If 4=|a,|, B=|b,| are two determinants of orders n and m
respectively, we can form a new square array of (mm)® elements as
follows. Repeat the array &, , n times in a row, and take n such rows,
so-that B is repeated like the squares on a chess-board. Then multiply
each of the elements of that block which stands in the R row and
k™ column by a,. The determinant of the resulting array is equal
to A™ B".

Example :

v 8
aa, af}, ba, BB |=A°B.
ay, ad, by, bd
ca, ¢B, da, dfS
¢y, ¢3, dy, dd

32. If a, b...7; a, B...\ are any two sets of n quantities, and
dy=(o,—a) + (b= B) + ... + (},~ )\,‘)'»,
prove that
diy ... d, |=0,if s=n(r-1)+3,
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dy ... dy,, 1|=0,if s=n(r—1)+2
dnl (1] 1
1 1

33. {In this and the next five questions

m _m(m—1)(m—2)... (m—k+1)}
L 1.2.3...% :
The determinant

Tty ’ My mn,
(m+1), , (m+1),,, (m+1),
m+r=1), , (@m+r=1),,, .. (m+r-1),
(m+r), (m +1),,, e (mo), ,
(m+r+s), , (Mm+r+s),,, .. (m+r+s),
(m+r+s+1), (m+r+s+l),,, ... (m+r+s+l),
(m+7r+3+18),, (M+r+s+it)y,, ... (Mm+r+s+i),

where w=p +7+£f+1 (the suffixes p, p+1 ... w of the rows are con-
secutive, but m, m+1...m+7, m+r+s...m+r+s+¢ form two
groups of consecutive numbers), is equal to the product of the two
fractions
m,(m+1), ... (m+7r),(m+r+s),...(m+r+s+i),
p(p+1), ... v,
(r+s),,(r+s+1), ...(r+s+%)

r+1
(r+1),,,+2),,, ... (r+t+1),,
34, The determinant
MMy, My 1y e My, My sise .- My etotu

(m+ ]‘)ﬂ’ <m+ 1)p+1 A (m + ]>p+-’ (m + 1)p+'+v (m+ 1);+n+v+u
(m+2),, (m+ s o (00 4 2)”.’ (m+2),,,,... (m+ D) twiins | 2

(m + r)p’ (m ot ’r)y+1 = R (”" + 7‘),,4,,, <m + T)}:+'+v S (m + T>p+:+v+u

where r=s+u + 1 (the suffixes p, p+1...p+s, p+s+v...p+s+v+u
form two groups of consecutive numbers, while m, m+1 ... m+ 7 are
consecutive), is equal to the product of the two fractions
m, (m+1), ... (m+7),
p,(p+1), ... (p+9),(p+s+), ... (p+s+v+u),

(m—p),,(m—p+1),_, .. (m—p+u),_,'
(-1, v, e+1),_, ... (v+u-1)

*=1 v—1
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35. Prove that )
s Dos P, we Wiy
(+1), (p+ 1), (p+1), ... (p+1),_,
(x+2) (P+2)y (P+2), ... (p+ A

@+r), (p+7)y (P+7), - (10+"“) o,
vanishes if # <7, but is equal to (~1)*n ! if n=2. If n>7 the deter-
minant reduces to a function of x of order 7 —1r. i
36. Prove that
a’ b pl . pr
(z+1) (p+ 1)1 (20+ 1),
(z+2) (p+2), ... (p+2),|7 (@-p)

! (w+7), (p+7), .. (D+7),
for all positive values of  less than 7.
37. Prove that
Doy P, b, n” | =A"
@+1)y (p+1), ... (p+1),_,, (n+1)"
. (p+2), (P+2), .. (P+2),_,, (n+2)"

(p+7)y (P+7), o (P+7),_,, (B+7)"
38. Prove that the value of the determinant
(m —p) m,, My, s q My 05 tmy,
(m=p+1)(m+1),, (n+1)(m+1),,,, (g+1)(m+1),,, (E+1)(m+1),,,...
(m~p+2)(m+2),, (n+2)(m+2),,,, (7+2)(m+2),,,, (t+2)(m+2)ﬂ+s....

(m—p+r)(m+r),,, (n+r)(m+7~.)l’+1’ (q+r)(m+r)1,+2, (t+,r) (’I)L-I-T),,H---

m+1 m+r
n;i((piliz Ep:r)ll( -p)(m—p+1)(m—-p+2).. (m—-p+7),

and so is independent of the quantities », ¢, #

39. If A=|m,|; B=|b,| are two determinants of order », and

f(m)zla’u'*'mbw!;
f(w)f( w)=AB | H,- K" |,

where the quantities 7, X0, satisfy the equations
H E +H,K, +..+H, K =1,

H, K, + UK, +..+HK, 0.

rn s

prove that
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40. With the same notation as in the preceding question, prove
that if

P(}‘; l"): I Aay + pby |,

then
PO\p)=A|pH, +\ pH, .. pH,
pH,, pH,+M niH,,
""‘H;IJJ /Lan pH, +A
=B|AK, +p, MK, .. AK,
AE, ,AK,+p \K,,
MK, , MK, MK, +p
41, If F(z)=ax" +a '+ ... +a,_x+a,
prove that
r
P=| =z, 0, 0..0 % |- @)
a, @,
= o
I, # 0 .0, P
a,
0, -1, = 0, ;;2
0, 0, 0..a 2
aO
0, 0, 0..-1 %4
aD
Q=|1+221g —p 0 0, 0 :%@'
‘f;;z,x, 1, ~x ... 0, 0
Tosg 0, 1 0, 0
Yy 0,0 1, —x
a"
Y g 0, 0 .0, 1
[27

1t P, Q. be the coefficients of homologous elements in 7’ and @,
a,P x+a,Q, =F(x)

a, P,z +a,Q,=0.

n Crs

rsd
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Also, if to the elements of P we add the homologous elements of @
multiplied by y, the resulting determinant is equal to
F () I (y)
aO a"n. ’
42. Prove the formula for the change of the independent variable
in the determinant of » functions
2 o dyz dgyg dn_lyn

Vdp de® T de"t

D Ay By, 27,
(@)~ G T

43. Let a,, @y, a, ... be a series of n positive numbers, and let s, be
the sum of the divisors of 7 selected from the terms of this series, this
sum being supposed to vanish for all values of » which have no divisors
in the above series. Then if '

D, =|s8_,+ 8 , —8, —8, —8 ... 8,
88, _,+8,_,n—1, -8, —8 .. -85,
88, _.+8_ 0,n-2 —s5 ..-s,_, ,
8,8, ,+8, 4 0, 0,n-3 8. s
88 +8 0, 0, O 2

the number of positive integral solutions of the equation
@, x + G,%,+ G L, + ... =1

D

is ol 1
n!

44. 1If g, is the sum of all the divisors of #, then the determinant

Suc1 ™S 9 S ) 3 T
wa— Sy =1, 8, 8, i Bprows B
Sp—a ™ Su—ar 0 ] n"27 By Su_gy Sy
8_ =85 0, 0, n-3 Spgr Sucs
8, = 8,y 0o, 0, O 3, s
8, —5,, o, o0, 0 .. 0 2

is equal to (= 1)*n! when 7 is of the form } (34°=%), but vanishes for
other values of n.
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45. Let (m, n) denote the greatest common divisor of the integral
numbers m and = ; and let  (m) be the number of numbers not sur-
passing m and prime to m ; the symmetrical determinant

D =3=(1,1)(2, 2) ... (m, m)

YW@y 3) i (m).
46. If A isa skew determinant of order n in which the principal

diagonal elements are equal ‘to z, and 4, its system of first minors,
prove that

is equal to

A A, +4 A+ .. +AA

1"l 7

is equal to Aw,, if » is even, and to %w" if n is odd.

47. If f@)=2"+a,5 " +a,a" " +...+a,=0
has for its roots b,, b, ... b,, prove that
% by B by
f@=| b, =z b .00,
bty bucty buy e %y By

1, 1, I 1 1
And if s, is the sum of the 7** powers of the roots

a, 7., 1

’ = (- n° = Z(bpb - b,)f (@)-
8,5 Spy v 8y H
Sy1r S Spr 8y

SZn—U SZn-z G ‘gn’ S'n—l

48, Prove that
Oty Bty A —éf (ay, u, .. .uﬂ)‘H

r—n+1?

§
3
J
o
13
—

H, being the sum of the homogeneous powers and products of order p of

a, @, ... 0.
1
49. If a,, = 1 o, =

r8 > 8

x, —a, S (x,—a)’

prove that the value of the determinant of order 27

Ay Ogq v Ty Oy

@y ony Ly, gueee
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e iyl aa) e o)
[p (@) ¢ (a0) - & (%)]
where ¢ (x)=(x—u) (@—2,) ... (£—12)
~ B0. Prove that the value of the determinant of order 2n + 1 whose
™ row is ’
1, sina, cosa, sin2a,, cos2¢ ... sinng, cosna,

is
2 Wsin 4 (o, — a,),
where 4, k& are all duads from 1, 2 ... n(¢> k).
Also that the value of the determinant of order 2z whose i row is
sing@,, cosa, sin2q, cos2a,...sinng, cosna,,
is
2= 1T sin § (a, — @) S,
where S=3Scosi{a,+a,+...+0a,~a,, ...—a,)
is formed by dividing the 2n angles into two sets of = in all possible
ways and taking the cosine of half the difference of the sums of these

sets.

51. If
4= 1 1 1 1
a-x,  a,—w, Tao-x
1 1 1
7 a0 , 1
Uy — %y Uy— Xy O, — Xy )
1 1 1
; . , 1
L R RN o= By
prove that

(o, 04...0) 0 (x,, Wigs i yn)
b (@) b (%) - b(a) 7
where p@)=(x—z)(®~2,) ... ®—2,,)).
If B is the determinant obtained from A by writing (@, —,)* in
place of (@, —w,), prove that

A=(-1y

4 [ 1 1 1 1
B |a-=z ’ a-x, Ta -z °’ ]
1 1 1 |
, , 1
o, — %, a, -, a,—x, I} >
1 1 1 |
s y
=B G L J




49—52.] EXAMPLES ON THE METHODS OF THE TEXT. 229

the function on the right being formed like a determinant, with all
the signs positive instead of alternating.

52. If o, B...N; o, B ...\ are two sets each of n quantities,
and O, is the product of all the binomial coefficients in the expansion
of (1 + )", prove the following equalities :

a—d), (a=B) ... (a=XN) C 1, o ,
éﬂ_a,))n, éﬁ_ﬁ,)),, _._ﬁﬁ_x;,, =ﬁz%(a,p...x)ga(a,ﬁ...x)z,

A=a), (A=) ... (A=N)

where
I="(a-d, a=f..0-X\)
Jﬁ—a’, B=B . B=N\]
|
¢ w=(x—oay) (z—Py) ... (x—Ay),
v=(z—ay)x—LY) ... (®-Ny)
I=(12)"uw,

using the notation of invariants,

(@=ay ... (@=N), (a—a)* |=(-1)'C.8 (@B ... \) & (o, 8.\ ) v,
(= @) oo (=X, ()
(=) ... (@=-X)",
T S | i d e
(7\ a)n+l A. }\/)nu (A_w)ﬂ+l % Z% (a, 18/ )\./)I. uw,

(m o )n+l (w A./ n+1

where
I=(a—d..a—-X, a.—ac‘] =—(12)"—IWU.
|g-o .. B-X, B-z
o B L
Lk—a' =X, A_mJ
z—a ... x—\
Again,

(@) ... (@=X\)y, 1 |=(=1)""C, 8 (a.N) Z(d..\),
.( o o (A - ')'\:)';," &
R |
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=(-1) i "“ z(a N @ N

L1 ;

dw dv
=121, —,
k2] dx " dx

53. TLet there be two systems of binary n-tics w, ...u_ ; v, ...v
where
U, =g, B + 1,0,y + 00, Y L+ a Y,

71._2 2

v, = by " + 1,0, 2"y + 0 b + .o+ b0

And let (4, %) be the lineo-linear invariant of », and v,, so that

(4 k) = a0, — b, + oy Bygy —eoe %= W0y
Prove that
(1,1) .. (1,n+2) |=0,

(n+2,1)...(n+2,n+2)
1,1 ... (Ln+l) |=0C | o

(rn+1,1)...(n+1,n+1) iz 3¢ By

b

a

on+17 on+1) Yin4l **° Yandl

54. If a;, a,... a, are the roots of the equation

& Hpat T L+ p =0,

prove that
&Py Paor B} 1 vipens
(e, 6y ay " I s 0.
X X x,
55, If uI:;:, uﬂ:w_:"'un-1= mnl'

, given by

x, being a function of x,, ;... z,_
2 2 2
ef+al+ .t frai=1

prove that

dw, w.ou_) 1
d(z,, xz"’xn—l)_ W
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56. If w,=(x+y+z)'+(@—y—2)+(—z+y—2)"+(-2-y+2)",
prove that the Hessian of u, is
u,_, (@ +y*+ 2 — 22%° — 2% — 22°7)" 2
multiplied by a numerical factor.
57. If F=uu,...u,

where v, w,...u, are linear functions of the » variables =, x, ...
prove that

nl

F°H (log F)=(~1) [MT

a (o, @, ... x,)
Also that
dF ar | wmer | @, w)]?
R [_—d(wlmw”)].

de,’  da® " do de,
C_ZE &’F d°’F
dw, dw,de,’ du}

n

58. If u,, u,, w, be three functions of #, y, and if

» _d(u, u,) . d(u,w,) v _d(u, )
bod(y) di@y)’ * d@my)’
_d(y.E’ ’UB)
YTy 0
prove that
W w, w,
w, o, w,

59. If w,, w,, u, w, are four functions of z, y, and if

v=| du, dwu, du,
dz*’  dof’  da?
du, du, du,

dwd;;/’ dedy’ dudy|’
v,  dw, d'u,

dy*’ Ay’ dy’

and v, v,, v, similar determinants formed from w,, w,, w,, &c., then
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from v, v,, v,, v, we can form four new functions w,, w,, w,, w, 1N the
same way as we obtained v, ... v, from u, ... %,. Prove that
w, du, du, dPu, d’u,

w, M Tdr’ A’ A’ ddt
&u,  du, dPu du,

dz*dy’ dx’ dy ? da? dg/ ? dady

d*u, dPu, d*u, d’u,
dudy®’ dady’’ dxdy®’ dudy’
d®u, d’u, d*u, %

d—ya' ’ d_y" 3 d"l/a > dy3
where p is a numerical factor.

60. For the »® functions wu, (¢, k=1, 2 ... n) of the variables
X, %, ... %,, prove that the cubic determinant whose elements are
dat,,
dz

£l

Gy j k=1,2...m)

is a covariant.

61. For the n functions u, ...u, of the variables %, ... z,, prove that
the cubic determinant whose elements are
d’u,
due,dl,

(@4, k=1, 272}
is a covariant.

62. If the function w of the variables x, ..., be transformed by
the linear substitution
= buq VTt bczyz'i' et bin-lyn-x
to a function v of n — 1 variables, prove that
H@w)=-10, B ..B,

_d_d’% , and (—1)'B, is the determinant obtained by suppress-
x,dz,
ing the i row in the array formed by the quantities b, .

where v, =

63. If w=3a,ve, (4, k=1,2..n),
and
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prove that the substitution

wey s LdDy 1 dD,
=Y ’Dr daﬂ.ﬂyﬁx D: d“myn

reduces the given quadric to the sum of the n squares

2

u=3 ! ¥ (r=12..n).

r=1

64. If » and v are two m-ary quadrics and U, V their reciprocals,
prove that we can by the same linear substitution change w into 4V
and v into BU; 4 and B are the discriminants of % and ». The
determinant ¢' of the substitution is the geometric mean between the
discriminants of U'and V. If C be regarded as the discriminant of a
quadric W, we can by the same linear substitution reduce the three
quadrics U,'V, W to the sum of squares. The coefficient of any term
in W so transformed is the geometric mean between the homologous co-
efficients in U and V.

65. If to the leading elements of the determinant of an orthogonal
substitution of order n we add the quantities a,,a,...q,, or the

. 1 . ’ -
quantities 1 i . e the resulting determinants are equal if
1 2 n

aa,..0,=1.

66. If c,are the coefficients of an orthogonal substitution (modulus
unity) of order #, prove that

cnl ’ cnﬂ "t nn
is equal to zero if n is odd; but if n is even its value is
A
where 4 is the skew determinant from which the orthogonal substitution
is derived, and [4] the same determinant with the elements in the lead-

ing diagonal zero.
1f D, is the coefficient of one of the leading terms in D, prove that

when » is even
2D,=~ D,
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67. If | ey |=e
is the determinant of an orthogonal substitution, the equation
e, +w, ¢ ¢, |=
€y .y Og B Con

Co 5 Cpy oer Cpt

is a reciprocal one. If % is odd it has one real root — ¢; if % is even and
e=—1 it has the two real roots = 1. The rest are all imaginary.

68. The maxima and minima values of
V u =S, 2m,
subject to the conditions
v=3b,xx,

T+ ...tc,  2,=0

¢ xl+cﬂ—22 2 n—2n

n=21

are given by the equation

n-21 R cn-2n

69. The values of @, =, ... «, which satisfy the equations

Wy By + By Tyt =

0
e e, x4 .. ta, x =1
0

By @y F g Ly e F X, =

a, o +a,x,+.. +a, x =0
and make .+ #’+ ... +z,* 2 minimum are
1a0 140 1 a0
20 da,,’ 20 da, " 20 da,’
where (' is the determinant whose elements are given by

Ca= Ay + Uyl + .. + G,
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70. The value of the integral

// w,x,do, daw, ... dzx,,

taken for all values of the variables such that
Sa,cm, =<1,

the quadric being' a definite positive form (i.e. incapable of becoming
negative), is
(rd) 4,
T (3n+9) 24%

where 4=|a, | isthe discriminant of the quadric.

71. The value of the integral

n"n,

/ / e “cos (b,w, +b,2,+ ... +b,x,) doe,dw, ... de,,

where
U= 30,5,

is JE&

where

In this question and the next « is supposed to be incapable of becoming
negative.

72. The value of the integral

]m fw ve " dw, du, ... du,,

v=30,2,7,, uzzaihwﬁ’n

™\ S
is \/<Z(a> 59

where S is the sum of the n determinants obtained by substituting for
each column of 4 in succession the corresponding column of the dis-

where

criminant of v,
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73. Let a, 0,... ¢, be 2n+1 real and different numbers in

ascending order of magnitude, and let
P(x)=(x—a) (@—a,) ... (@—dy,)
Q)= (x—ay(x—a)..(e-a,)d
B () =P () Q @),
A being a positive number. Then if
K = %j% P (x) d:x: \ Bk Q,(aer_,) oy P (as)2 dz
g, @ = T ) E () Pty ) ) g, , @@= 0s)' B ()

(these are the complete Abelian integrals of the first and second species),
and if also

ped [ P Jo10(,) [ P
"2 oy, Ta JVE@ T 2 Paa))e, @t R

then
By, By vos By B ]
D= ku, lu knl’ lnl =(z)
........................ 2
l(m: Ll;n A 'Kmu Ln}.
km: lm . kn’n’ Zm.

Prove also that
dD dD
K

D dD _ 3)"-11 D _ dD _ (m\*",
dK,, d "_1“ ( 2‘ -1 d—L; dL,.,_1 - (?) ro~1
dD dD »t

T dD dD o\""?
dk. ~ dk -l__ (_é) Ln—u 'ﬁ" “dl = (E) 'Kn-l.'

ro—~1

74. Prove that the value of the continued fraction

a b ¢
a+1—-b+1—c+1—

ad. inf,
is unity.
75. Prove that the product of the two continued fractions
12 3
+ 5 — e
2(@—1P+ 2(a-1)+

12 32

2(@+1)"+ 2 (@+ 1)+

a—-1

a+1+

is a’.
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76. If w, is the number of terms in a determinant of order =
which do not contain any element from the principal diagonal, prove
that

u, =nu,_y + (= 1)

and hence that % is the coefficient of «" in the expansion of

-z

€
11—z

77. If w,is the number of terms in a symmetrical determinant of
order n, prove that

NS CEC I

u, — WU, _,

Also that Zl; is the coefficient of «" in the expansion of
ERS o
Ja=a)’
78. If [1.3.5...(2n—1)] w, is the number of terms in a skew

determinant of order 2z, prove that
u,=2n-1u,,—(n-1)u,_,.

Shew also that

; is the coeflicient of «" in the expansion of

VS

79. If A is the area of a quadrilateral, the co-ordinates of whose
angular points are (z,, 7,) ... {,, ¥,), then

uﬂ
2"n

1’ O} xl’ y]
94 = 0, 1, Ly Yo | — By =% Y~ Y, l
1) 07 wg] ya wi—wﬂ’ y4—y2

0, 1, =, 9,
The area of a quadrilateral inscribed in a circle in terms of its sides
is given by
' 164 =- - a, b, c, d
b,—a, d, ¢
c, d,—a, b
d, ¢, b.,—-a
80. If the planes
ax+by+ez+d,=0 (6=1,2 8,4,5)
touch the same sphere, then
| @, by, ¢y iy ;| =0 (a=ly 2 ... 5),

where . .
wl=a®+0b>+c’
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8l. A quadric of revolution passes through five points By
The distances of these points from a focus being 7, ... 7.

If ¥, = volume of tetrahedron P, P, P, P,, &c., prove that
Vor + Vyry+ ...+ V,r,=0.

82. Let V, V' be the volumes, 4, B, €, D; a, b, ¢, d the areas of
the faces of two tetrahedra whose angular points are numbered 1, 2, 3, 4.
Also let P, be the perpendicular from the point ¢ of the first tetrahedron
on the face opposite the point % of the second, and p,, a like quantity for
the other tetrahedron. Prove that

(rv:

lPik!lemI:m (¢, k=1, 2, 3, 4).

83. If 4, B, C, D are the directions of four forces in equilibrium,
and if 4B is the moment of the lines 4 and B, &c., prove that
0, B4, C4, DA |=0.
AB, 0, OB, DB
A0, BC, 0, DC
AD, BD, CD, 0
If a, b, ¢, d are the magnitudes of the forces

a=,/(BC.CD.DB), &e.

84. In Siebeck’s determinant, x1v. 22, prove that

dD ,

d——dikz 288w s
where v is the volume of the tetrahedron formed by the face opposite
the point ¢ of the first tetrahedron and the centre of the sphere circum-
scribing the second tetrahedron, and similarly for o'

85. If in a system of five points d, is the square of the line
joining the 4™ and A" points, and = is a sixth point of the system, prove
that

a2 , dd,+d,..d d+d, d,+1|=0.

r1%rg 1
drl drz + dlz’ drzz Wik dﬂ dr5 + dg5s d,.2 +1
d,d,+dg, ddg+dy... dF , dy+l

d,+1 , d,+1 .. d;+1 1
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86. 1If in a system of seven straight lines, m, is the moment of the-
+* and %" lines, and » is an eighth line, prove that

2
m, y MM+ my .om m +my, | =0,
2
m, m,,+my, m,, MM+ T,
2
My Moy + Ty Mg, + My ... W,

87. Having given two tetrahedra whose angular points are
marked 1, 2, 3, 4, let d, denote the square of the distance between
the i* point of the first and %" point of the second tetrahedron. Prove
the following relations :

(i) For two points P, € the distances of P from the angular points
of the first tetrahedron being a,, of @ from those of the second b,, and
d=P Qay

(i) For the point P and a plane, g, being the distances of the
vertices of the second tetrahedron from the plane, p the distance of P
from the plane,

», 0, ¢ ...q, |=0.

.....................

(i) For two planes, p,, ¢ being the perpendiculars from the angular
points of the tetrahedra on them, ¢ the angle between the planes,

_%COSQS; 0, ¢, .- ¢ =0.

88. For a system of six and a second system of five spheres, if
Py, is the power of the ¢* and £™ spheres,

1’ 2711 "'plE :0‘
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89. The equation

S4 % tdl ’ tﬂ ’ t&ﬁ ’ 0

represents two spheres touching the given spheres §,=0...5,=0;
t, is the square of the common tangent to the ¢ and %" spheres.

90. Prove that for any five spheres §,=0... 5,=0,
=0.

91. The index of two points being defined as in x1v. 27, the
index of two planes D, D' is obtained by taking in the planes the points
abe, a'b'c’ and forming the determinant

1 L, Ly, L
2 dabe . dU | 1, 1., I, |;
IcA” ch' ’ Iec'

and the index of two lines y, y" by taking in the lines two points ab, «'d’
and forming the determinant

1

Ly = ab.a’b

I I,

aa’) ab’

Lyy Ay

Prove that for two groups of planes numbered 1 ... 5

Ty o &y | =00,
IooI - L @rr @y
............ (abe)® 24BCD " 24’BCD'’
I, ... 1,

where a, b, ¢ are now the semiaxes of the ellipsoid, 7, ¥’ the volumes,
and 4 ... 4" ... the faces of the tetrahedra formed by the planes.



890—92.] EXAMPLES ON THE METHODS OF THE TEXT, 241

Prove also that for two groups of lines passing through the
points P, 7

In - 1 |=0,
By v L
By s By oo sin (1232)0;11)12(1’2'3') 1.0

92. If between the points of two surfaces we establish the corre-

13
spondence

£:¢'(wa Y, z); "7=¢<x: Y, z): C=X(w’ Y z)’
prove that the ratio of corresponding elements of the surfaces is
given by
do dé  dé dé

—_ e s —, a

ds | dz’ dy’ d»
d d d
T, o, T, B

o’ dy’ ;
¢ d¢ di

dn’ Ay’ e’ Y
e, b, ¢

where (a, b, ¢), (o, B, y) are the direction cosines of the normal to ds
and do.

16
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