

UNIVERSIDADE DE BRASÍLIA -UNB INSTITUTO DE QUÍMICA ENGENHARIA QUÍMICA

PLANTA DE HIDROTRATAMENTO DE GASÓLEOS DIESEL S10

Antônio Pedro de Araújo Chaves, Caio Borges Santos, Daniel Sant'anna Pinheiro de Lemos, Érica de Mendonça Pereira, Fernando Miguel de Amorim Lino, Giovana Salomão Pontes, Iago Barros Arcadepani, João Vitor Braz de Siqueira, Juliana Alves de Jesus, Juliana Santos Silva, Késsia Tayná Azevedo Rodrigues da Silva, Letícia Fulgêncio Ferreira, Lucas José dos Santos, Luisa Vogado Ribeiro, Luiz Fernando Gontijo dos Santos, Marcelo Pinheiro Silva, Maria Clara Daldegan Couto, Mariana Kremer Evangelista, Rafael Ninhaus de Freitas Baptista de Leão, Roberto Pereira Campelo, Samy Stevans Nery Loiola, Talita Apolinário da Silva.

Brasília
Dezembro-2019

UNIVERSIDADE DE BRASÍLIA-UnB INSTITUTO DE QUÍMICA ENGENHARIA QUÍMICA

PLANTA DE HIDROTRATAMENTO DE GASÓLEOS DIESEL S10

Projeto de graduação da disciplina Projeto de Engenharia Química 2 da Divisão de Química Tecnológica do Instituto de Química da Universidade de Brasília como parte dos requisitos necessários para a obtenção do grau de Bacharel em Engenharia Química.

Orientador: Prof. Dr. Jose Joaquín Linares León

Brasília

Dezembro-2019

PLANTA DE HIDROTRATAMENTO DE GASÓLEOS DIESEL S10

Projeto de graduação da disciplina Projeto de Engenharia Química 2 da Divisão de Química Tecnológica do Instituto de Química da Universidade de Brasília como parte dos requisitos necessários para a obtenção do grau de Bacharel em Engenharia Química.

Aprovado em 13 de Dezembro de 2019.

BANCA EXAMINADORA

Professor Dr. Rudy Crisafuli - UnB

Examinador interno

Professor Dr. José Joaquín Linares León - UnB Orientador

AGRADECIMENTOS

A Deus, pela saúde para superar as dificuldades para alcançar este objetivo.

À Universidade de Brasília, por ter nos propiciado um curso de graduação de alta qualidade, depositando grandes investimentos em nossos futuros.

A todo o corpo docente de engenharia química da UnB, pela atenção, paciência e vontade de passar adiante todos os seus conhecimentos. Em especial ao professor doutor José Joaquín Linares León, por ter ministrado essa disciplina e se disposto a nos ajudar prontamente no desenvolvimento das atividades.

Ao quadro de servidores e terceirizados, por garantir o bom funcionamento da Universidade de Brasília, de modo a atender as necessidades dos alunos.

Às nossas famílias, por todo amor, carinho e apoio emocional durante a graduação.

E a todos que fizeram parte, direta ou indiretamente da nossa formação, nossos sinceros agradecimentos.

LISTA DE FIGURAS

Figura 1 – Emissão de SO ₂ ao longo dos anos04
Figura 2.1 – Reações de hidrodessulfurização por via direta06
Figura 2.2 – Reações de hidrodessulfurização por via indireta07
Figura 5.3.2.1 – Diagrama utilizado nas simulações do separador C-380
Figura 5.3.2.2 – Comportamento da pressão do vaso C-3 em malha aberta81
Figura 5.3.2.3 – Comportamento da pressão do separador C-3 em malha fechada81
Figura 5.3.2.4 – Comportamento do nível de hidrocarboneto líquido do separador C-3
em malha aberta82
Figura 5.3.2.5 – Comportamento do nível de hidrocarboneto líquido do separador C-3
em malha fechada83
Figura 5.3.2.6 – Comportamento do nível de águas ácidas do separador C-3 em malha
aberta83
Figura 5.3.2.7 – Comportamento do nível de águas ácidas do separador C-3 em malha
fechada84
Figura 5.3.3.1 – Diagrama utilizado nas simulações do separador C-385
Figura 5.3.3.2 – Comportamento da pressão do separador C-4 em malha aberta85
Figura 5.3.3.3 – Comportamento da pressão do separador C-4 em malha fechada86
Figura 5.3.3.4 - Comportamento do nível de líquido do separador C-4 em malha
aberta86
Figura 5.3.3.5 - Comportamento do nível de líquido do separador C-4 em malha
fechada87
Figura 5.4.2.1 – Diagrama utilizado nas simulações do separador C-587
Figura 5.4.2.2 – Comportamento da pressão do separador C-5 em malha aberta88
Figura 5.4.2.3 – Comportamento da pressão do separador C-5 em malha fechada89
Figura 5.4.2.4 - Comportamento do nível de líquido do separador C-5 em malha
aberta90
Figura 5.4.2.5 – Comportamento do nível de águas ácidas do separador C-5 em malha
aberta90
Figura 5.4.2.6 - Comportamento do nível de líquido do separador C-5 em malha
fechada91
Figura 5.4.2.7 – Comportamento do nível de águas ácidas do separador C-5 em malha
fechada91

Figura 6.1. Estabilização e reforma de nafta	96
Figura 6.2. Colunas de absorção: a) coluna de pratos b) coluna de	e recheio c) coluna
com pulverização	99
Figura 6.3. Processo Claus original	100
Figura 6.4. Processo Claus Modificado	100
Figura 7.1 - Fluxo de caixa acumulado	111
Figura 7.2 - Fluxo de caixa anual	111

LISTA DE TABELAS

Tabela 4.1.1 - Dimensões do vaso pulmão C-116
Tabela 4.2-1. Dados cinéticos da reação17
Tabela 4.2-2. Parâmetros de dimensionamento do Reator C-219
Tabela 4.3.1.1-1. Dados de dimensionamento do corpo principal do vaso C-321
Tabela 4.3.1.1-2. Dados de dimensionamento da bota do vaso C-322
Tabela 4.3.1.1-3 Custos do vaso C-323
Tabela 4.3.1.2-1. Dados de dimensionamento do corpo principal do vaso C-54.2-224
Tabela 4.3.1.2-2. Dados de dimensionamento da bota do vaso C-325
Tabela 4.3.1.2-3. Custos do vaso C-525
Tabela 4.3.2-1. Comprimento das seções do vaso C-427
Tabela 4.3.2-2. Dados obtidos no dimensionamento e o custo do vaso C-428
Tabela 4.4.1-1. Dados obtidos para o dimensionamento da torre de absorção C-629
Tabela 4.4.1-2. Custo da torre de absorção C-630
Tabela 4.4.2-1. Custo da bomba P-3, em R\$ de 2018, da torre de absorção C-631
Tabela 4.4.2-2. Custo total da unidade de absorção, em R\$ de 201832
Tabela 4.5.1-1. Dimensões da torre em função do número de etapas e da razão de
refluxo35
Tabela 4.5.1-2. Custos da coluna em função do número de estágios35
Tabela 4.5.2-1. Dimensões e custo do vaso pulmão em função do número de
estágios37
Tabela 4.61. Parâmetros calculados para o projeto da bomba e seus custos42
Tabela 4.71. Pressões de admissão e impulsão, e razões de compressão utilizadas
no projeto dos compressores43
Tabela 4.7-2. Parâmetros calculados para o projeto dos compressores e seus
custos44
Tabela 4.8.6.1 - Equações do custo básico para os trocadores de calor50
Tabela 4.9.5.1 - Custo do F-2 com relação ao número de estágios das torres60
Tabela 5.1.4.2 Palavras-chave e seus significados63
Tabela 5.1.4.3 Matriz de interações de elementos do forno63
Tabela 5.2.1 Alarmes da planta67
Tabela 5.2.2 Sistemas de encravamento da planta69

Tabela 7.1 - Custo dos equipamentos	95
Tabela 7.2 - Custo dos materiais	96
Tabela 7.3 - Custo da Engenharia de detalhe	96
Tabela 7.4 - Custo da Engenharia de processo	97
Tabela 7.5 - Custo de construção e supervisão	97
Tabela 7.6 - Custo de gastos gerais	98
Tabela 7.7 - Custo imobilizado total	98
Tabela 7.8 - Capital de giro	98
Tabela 7.9 - Investimento total	99
Tabela 7.10 - Vendas	99
Tabela 7.11 - Custos anuais	99
Tabela 7.12 - Custo de eletricidade	101
Tabela 7.13 - Gasto com combustível	101
Tabela 7.14 - Custo de ar de refrigeração	101
Tabela 7.15 - Rentabilidade do projeto	102
Tabela 7.16 - Fluxo de caixa	103

LISTA DE SÍMBOLOS

 H_{torre} Altura da torre

 H_{fundo} Altura de líquido no fundo

 H_{vaso} Altura do vaso

S Área da seção transversal

 $S_{máx}$ Área máxima

 S_{min} Área mínima

H Carga da bomba

Γ Coeficiente de Poisson

L Comprimento do vaso

 L_{min} Comprimento mínimo

 S_c Concentração de enxofre na carga

 S_P Concentração de enxofre no produto

 k_0 Constante de velocidade da reação

R Constante dos gases

C_{bomba} Custo da bomba

 $C_{carcaca}$ Custo da carcaça

C_{compressor} Custo do compressor

 C_F Custo final

C_{motor} Custo do motor

 C_{vratos} Custo dos pratos

 $C_{recheio}$ Custo do recheio anéis de Pall em aço inox 304

 C_{torre} Custo da torre

 $C_{hor.cs}$ Custo do vaso horizontal em aço carbono

 $C_{hor,ss}$ Custo do vaso horizontal em aço inox 304

 $C_{vert,cs}$ Custo do vaso vertical em aço carbono

Custo do vaso vertical em aço inox 304

 $ho_{
m alumina}$ Densidade da alumina

 ρ_{L} Densidade da fase líquida

 $\rho_{\scriptscriptstyle V}$ Densidade da fase vapor

 $ho_{ ext{liquido}}$ Densidade do líquido

 ρ_m Densidade do metal

 $D_{m\acute{a}x}$ Diâmetro máximo

 D_m Diâmetro médio

 D_{min} Diâmetro mínimo

 D_n Diâmetro da partícula

 $D_{nulm\~ao}$ Diâmetro do pulmão

D_{torre} Diâmetro da torre

E Eficiência de solda

 η_{ele} Eficiência Elétrica

 η_{hid} Eficiência Hidráulica

 η_{poli} Eficiência Politrópica

 E_0 Energia de ativação

e Espessura do vaso

 S_t Estresse máximo permitido

Z Fator de compressibilidade

 C_w Fator de correção para o peso de componentes internos

 F_{M} Fator de correção do custo do aço carbono para o aço inox 321

F Fluxo mássico

*NPSH*_d Net Positive Suction Head (NPSH) disponível

*NPSH*_r Net Positive Suction Head (NPSH) requerido

N_{reais} Número de etapas reais

Número de etapas teóricas

n Ordem da reação

 ΔP Perda de carga no leito

 ΔP_{caraa} Perda de carga

 W_{ij} Peso do vaso

 ε Porosidade do catalisador

 W_{abs} Potência absorvida

Pot_a Potência absorvida pelo compressor

 W_{motor} Potência do motor

 W_{hid} Potência Hidráulica

 Pot_r Potência real do compressor

 $P_{alimentação}$ Pressão de alimentação

P_{aspiração} Pressão de aspiração

 $P_{impuls\~ao}$ Pressão de impulsão

 P_{proj} Pressão de projeto

 P_{vapor} Pressão de vapor

 ΔP_{bomba} Pressão diferencial da bomba

 P_{H_2} Pressão parcial de hidrogênio

SEC Sobre-espessura de corrosão

 R_D Razão de refluxo

L/D Relação entre comprimento e diâmetro

T Temperatura

T₁ Temperatura na admissão do compressor

Temperatura na impulsão do compressor

au Tempo de residência

M Vazão mássica de reativos

 $Q_{m\acute{a}ssica}$ Vazão mássica de gás

 $egin{array}{ll} Q_{mlpha x} & ext{Vazão máxima} \ Q_{mlpha n} & ext{Vazão mínima} \end{array}$

 $Q_{entrada}$ Vazão volumétrica de entrada

Q_{destilado} Vazão volumétrica de destilado

*Q*_{líquido} Vazão volumétrica de líquido

 Q_{fundo} Vazão volumétrica de produto de fundo

 Q_v Vazão volumétrica de reativos

 $Q_{refluxo}$ Vazão volumétrica de refluxo

Q_{vavor} Vazão volumétrica de vapor

Q_{vapor,máx} Vazão volumétrica máxima de vapor

VVH Velocidade espacial

 v_{vapor} Velocidade do vapor

 v_{limite} Velocidade limite

 v_0 Velocidade superficial

 μ Viscosidade do gás

 $V_{catalisador}$ Volume de catalisador

 $V_{liauido}$ Volume de líquido

 $V_{nulm\~ao}$ Volume do pulmão

 $V_{recheio}$ Volume de recheio

SUMÁRIO

1 MOTIVAÇÃO	4
2 INTRODUÇÃO TEÓRICA	5
2.1 Hidrotratamento de gasóleo	5
2.2 Dessulfurização	7
2.3 Desnitrificação	8
2.4 Desoxigenação	9
2.5 Saturação de Aromáticos	9
2.6 Craqueamento	9
2.7 Coqueamento	10
2.8 Vasos separadores	10
2.9 Torre de destilação	
2.10 Tratamento do gás de reciclo	12
3 DIAGRAMA SIMPLIFICADO DO PROCESSO	14
4 DIMENSIONAMENTO DE EQUIPAMENTOS	17
4.1 Vaso Pulmão C-1	17
4.2 Reator C-2	19
4.3 Vasos Separadores	
4.3.1 Vasos Separadores Trifásicos	
4.3.2 Separador Bifásico de Alta Pressão C-4	
4.4 Seção da Torre de Absorção	30
4.4.1 Torre de Absorção C-6	
4.4.2 Bomba P-3	
4.5 Seção da Torre de Destilação	34
4.5.1 Torre de Destilação (Stripping) C-7	35
4.5.2 Vaso Pulmão C-8	38
4.5.3 Trocadores de calor associados à torre de destilação	39
4.6 Bombas	40
4.7 Compressores	44
4.8 Trocadores de Calor	47
4.8.1 Taxa de troca térmica	48
4.8.2 Coeficiente global de transmissão de calor	48
4.8.3 Área de Troca Térmica	49
4.8.4 Diferença de temperatura média logarítmica	49
4.8.5 Trocadores de calor da planta	50
4.8.6 Avaliação Econômica	52
4.9 Fornos	56

	4.9.1 - 7	Fipos de forno	56
	4.9.2 - E	Eficiência do forno	56
	4.9.3 Re	egiões do forno	57
	4.9.4 Os	s fornos do projeto	57
	4.9.5 Av	/aliação econômica	60
5.	CONTRO	LE E INSTRUMENTAÇÃO	62
	5.1 Instrur	mentação de controle	62
	5.1.1 Bo	ombas	62
	5.1.2	Trocadores de calor	63
	5.1.3	Forno	63
	5.1.4 Ar	nálise HAZOP do Forno	63
	5.1.5 Re	eator	67
	5.1.6 Cd	olunas	67
	5.1.7 Va	asos	68
	5.2 Alarm	es e Encravamentos	68
	5.2.1	Alarmes	68
	5.2.2	Encravamentos	70
,	5.3 Válvul	as de segurança	72
	5.4 Estrate	égias de controle	73
	5.3.1 C-	-2	73
	5.3.2 C-	-3	74
	5.4.1 C-	-4	78
	5.4.2 C-	-5	81
	5.5 DIAGI	RAMA P&ID	86
6 <i>A</i>	ANÁLISE	DE IMPACTO AMBIENTAL	89
	6.1 Tratan	nento das Águas Ácidas	89
	6.2 Proces	sso de Regeneração de MEA	90
	6.3 Proces	sso de Estabilização de Nafta	91
	6.4 Proces	sso de Recuperação de gases	93
7 /	AVALIAÇ <i>Â</i>	ÃO ECONÔMICA	96
	7.1 Investi	imento total	96
	7.1.1 Ca	apital imobilizado	96
	7.1.1.1	Equipamentos	96
	7.1.1.2	Materiais	98
	7.1.1.3	Engenharia de Detalhe	98
	7.1.1.4	Engenharia de processo	98
	7.1.1.5	Construção e Supervisão	99
		Gastos gerais	
		apital de giro	

7.2. Vendas	101
7.3. Custos anuais	101
7.4 Rentabilidade	104
7.5 Considerações Finais	107
8 REFERÊNCIAS BIBLIOGRÁFICAS	108
Anexo 1: Folhas de Especificação Correntes Materiais	112
Anexo 2: Folha de Especificações dos Alarmes	164
Anexo 3: Folhas de Especificações de Bombas	166
Anexo 4: Folhas de Especificações de Compressores	170
Anexo 5: Folha de Especificações de Pratos	176
Anexo 6: Folha de Especificações dos Encravamentos	178
Anexo 7: Folhas de Especificações de Trocadores de Calor	179
Anexo 8: Folhas de Especificações de Instrumentos de Vazão	193
Anexo 9: Folhas de Especificações de Instrumentos de Nível	194
Anexo 10: Folha Especificações de Instrumentos de Temperatura	195
Anexo 11:Folha de Especificações de Instrumentos de Pressão	197
Anexo 12: Folha de Especificações de Laços de Controle	198
Anexo 13: Folhas de Especificações do Reator	199
Anexo 14: Folha de Especificações de Serviços Auxiliares	203
Anexo 15: Folhas de Especificações Tubulações	205
Anexo16: Folha Especificações Válvulas de Controle	240
Anexo 17: Folha de Especificações de Válvulas de Segurança	241
Anexo 18: Folha de Especificações Vaso	242
Anexo 19: Folha de Especificações Torre	252

1 MOTIVAÇÃO

As preocupações com a qualidade do ar estão em voga devido à diminuição da qualidade do ar no mundo, especialmente em zonas urbanas. Em maio de 2016, a "World Health Organization" declarou que mais de 80% das áreas urbanas apresentam um nível de poluição atmosférica maior que o limite recomendado para a manutenção da saúde respiratória da população (CHEMSTRYWORLD, 2019). Nesses locais a fonte primária de poluição é a queima e evaporação de combustíveis fósseis (MMA, 2019), liberando compostos oxidados de C,N,S,P e Hidrocarbonetos (MMA, 2019).

No intuito de controlar a poluição atmosférica, é proposto o uso de combustíveis com menos "contaminantes" (S,N,P,Metais Pesados, etc.) como forma de controle da qualidade do ar. A emissão de poluentes, como o Dióxido de Enxofre, por exemplo, vem diminuindo na escala global (OURWORLD, 2019) devido a esses esforços. O Dióxido de Enxofre é um composto tóxico, precursor de material particulado e formador de chuvas ácidas ao reagir com água na atmosfera (MMA, 2019).

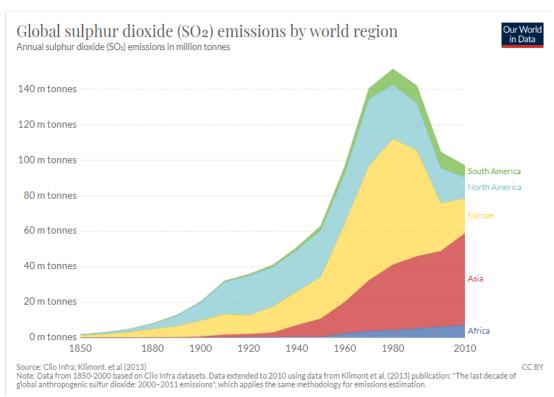


Figura 1 - Emissão de SO2 ao longo dos anos.

Nesse sentido, a legislação é alterada de modo a criar dispositivos legais que exijam que a indústria abasteça o mercado com produtos que seguem os padrões de qualidade necessários. O padrão seguido no Brasil é determinado pela Resolução ANP nº 50/2013, que determina o teor de enxofre em combustíveis do tipo Diesel. Sendo assim, as unidades de dessulfurização de derivados de petróleo possuem um papel crucial nas refinarias e sofrem uma pressão constante ao que a legislação tende a exigir teores cada vez menores de Enxofre nos combustíveis, conforme a tendência mundial observada.

O projeto em questão consiste numa planta de dessulfurização de gasóleo obtido por destilação atmosférica de petróleo. A planta foi projetada com o intuito de ser anexada a uma refinaria já operante, com foco em atender a legislação ambiental, reduzindo o teor de compostos sulfurados a 10 ppm e nitrogenados a 200 ppm.

2 INTRODUÇÃO TEÓRICA

A planta consiste resumidamente em três partes: uma unidade de dessulfurização a partir do hidrotratamento de Gasóleo com reciclo de gás rico em Hidrogênio, uma unidade de reaproveitamento de gás rico em gás Hidrogênio e outra unidade de destilação do gasóleo (stripping), a fim de separá-lo dos componentes leves que estavam a ele misturados.

2.1 HIDROTRATAMENTO DE GASÓLEO

Previamente à unidade de reação ou hidrotratamento, o gasóleo (carga líquida) é misturado com as correntes de aporte e de reciclo de gás hidrogênio comprimido, formando a carga combinada, na qual é adicionado um agente inibidor de polimerização, denominado *anti-fouling* (DIAS, 2016). Essa mistura é bombeada para um trocador de calor, que a aquece passando pelo trocador de calor "carga/efluente" do reator. Após o aquecimento inicial a carga combinada é aquecida em uma fornalha até a temperatura de operação do reator, onde ocorrem as reações de hidrotratamento (HOFF, 2015).

No reator, a principal reação é a conversão do enxofre presente na mistura de hidrocarbonetos em sulfeto de hidrogênio (H₂S). Além da reação principal, podem

ocorrer reações paralelas, como a desnitrificação de compostos azotados, com formação de amônia, e a saturação de hidrocarbonetos oleofínicos e/ou aromáticos. Essas reações são desejadas, visto que a desnitrificação é um dos objetivos do projeto e a saturação promove uma maior estabilidade dos compostos do gasóleo (DIAS, 2016).

Também há reações indesejáveis, como o *cracking* do gasóleo. Essa reação reduz o rendimento da reação, através da degradação da matéria prima. Também promove a deposição de coque sobre o catalisador, reduzindo o tempo de vida útil deste (DIAS, 2016).

A reação de hidrodessulfurização ocorre majoritariamente por duas vias, a direta e a indireta (reações nas figuras 1.2.1 e 1.2.2). A via indireta é assim chamada, pois, previamente à dessulfurização, devem ocorrer reações, como a reação de saturação de compostos aromáticos e a desalquilação cíclica. Dessa forma, além de mais difícil, a via indireta de dessulfuração gasta mais gás Hidrogênio que a via direta (HSU e ROBINSON, 2006).

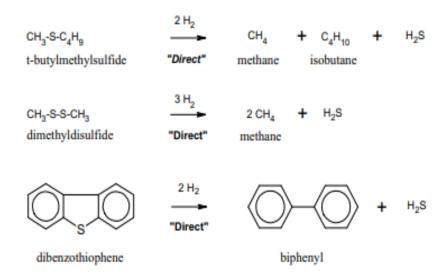


Figura 2.1 Reações de hidrodessulfurização por via direta.

1-(3-ethylcyclohexyl)-3-methylbenzene

Figura 2.2 -Reações de hidrodessulfurização por via indireta.

Após a passagem pelo reator, o gasóleo dessulfurado é resfriado no trocador de calor "carga/efluente" do reator e é bombeado para as unidades de separação e recuperação de gás Hidrogênio.

2.2 DESSULFURIZAÇÃO

A dessulfurização é a reação na qual os compostos orgânicos sulfurados presentes no gasóleo são convertidos em sulfeto de hidrogênio e compostos orgânicos dessulfurados. Há 6 classes de compostos sulfurados presentes no gasóleo: mercaptanas, sulfetos, dissulfetos, tiofenos, benzotiofenos e dibenzotiofenos (DITEZ, 2014). Abaixo estão descritas as reações de dessulfurização dessas classes de compostos.

Mercaptanas:

$$R - SH + H_2 \rightarrow R - H + H_2S \tag{1}$$

Sulfetos:

$$R_1 - S - R_2 + H_2 \rightarrow R_1 - H + R_2 - H + H_2 S$$
 (2)

Dissulfetos:

$$R_1 - S - S - R_2 + 3H_2 \rightarrow R_1 - H + R_2 - H + 2H_2S$$
 (3)

Tiofenos:

$$R \longrightarrow R - CH(CH_3)-CH_2-CH_3 + H_2S$$
(4)

Benzotiofenos:

$$\begin{array}{c|c}
R \\
\hline
CH_2-CH_3 \\
+ H_2S
\end{array}$$
(5)

Dibenzotiofenos:

$$+ 2H_2 \rightarrow + H_2S$$
 (6)

As reações foram citadas de acordo com a sua reatividade, caracterizando as mercaptanas como as classes mais fáceis de dessulfurização e os dibenzotiofenos como as mais difíceis. Como regra, quanto mais pesada é a fração de petróleo, maior é a predominância de benzotiofenos e dibenzotiofenos entre os compostos sulfurados; e quanto mais leve, maior é a de mercaptanas e sulfetos. No caso do gasóleo de destilação, a predominância é de compostos de fácil dessulfurização, ao contrário do gasóleo de coque (DIETZ, 2014).

2.3 DESNITRIFICAÇÃO

A desnitrificação é a reação de remoção de Nitrogênio de hidrocarbonetos azotados, gerando amônia e compostos orgânicos desnitrificados. Essa reação é exotérmica, mais lenta do que a de dessulfurização e fortemente dependente da pressão, necessitando de pressões mais elevadas (DIAS, 2016). Ela exige um maior tempo de residência do reator e gera hidrocarbonetos saturados. No caso de compostos cíclicos, a reação primeiro abre o anel do composto, gerando compostos nitrogenados lineares, para depois eliminar o nitrogênio em forma de amônia. As reações estão representadas abaixo (REFAP, 2009):

$$+3H_2$$
 $+H_2$ $+H_3C-CH_2-CH_2-CH_2-CH_2-NH_2$ (7)

$$H_3C - CH_2 - CH_2 - CH_2 - CH_2 - NH_2 \rightarrow H_3C - CH_2 - CH_2 - CH_2 - CH_3 + NH_3$$
 (8)

2.4 DESOXIGENAÇÃO

Reação de remoção do oxigênio de compostos orgânicos, formando água (DIAS, 2016). É uma reação desejável, pois diminui o potencial de oxidação do gasóleo, aumentando a sua estabilidade (HOFF, 2015). Segue a reação:

$$R - OH + H_2 \rightarrow RH + H_2O$$
 (9)

2.5 SATURAÇÃO DE AROMÁTICOS

Nessa reação, parte dos hidrocarbonetos aromáticos da mistura são convertidos em naftenos (HOFF, 2015). Essa reação é mais lenta do que as outras de hidrogenação (REFAP, 2009). A saturação de aromáticos gera um elevado aumento no consumo de hidrogênio, principalmente se tratando de compostos com múltiplos anéis aromáticos (REFAP, 2009). São reações bastante desejadas, pois aumentam o número de cetanos no combustível (REFAP, 2009).

Os compostos aromáticos encontrados no gasóleo atmosférico são: mono-, di-, tri- e poli-aromáticos. Os compostos mono-aromáticos são os mais difíceis de saturar, pois exigem maior quantidade de energia (SPEIGHT, 2014).

2.6 CRAQUEAMENTO

Craqueamento é uma reação que transforma frações pesadas do petróleo em frações mais leves, através da ruptura da estrutura de moléculas, promovida por calor ou atividade catalítica (VALT, 2012).

No hidrotratamento, o craqueamento deve ser evitado ao máximo, uma vez que consome hidrogênio e produz gases, como metano e etano, diminuindo a pureza do gás de reciclo (DIAS, 2016). No entanto, devido às altas temperaturas do reator, ele inevitavelmente ocorrerá, já que a cinética do craqueamento aumenta consideravelmente com a temperatura (ANCHYETA, 2011).

Ao projetista cabe a escolha de estratégias que busquem a minimização do craqueamento. Deve-se escolher um catalisador com baixa capacidade de *hydrocracking* e alta capacidade de dessulfuração (DIAS, 2016).

2.7 COQUEAMENTO

No reator pode ocorrer a reação indesejada de coqueamento, que promove a deposição de coque nos sítios ativos do catalisador. Essa deposição é considerada uma das principais causas de inativação do catalisador (HSU e ROBINSON, 2006, pág. 275).

O coqueamento é favorecido a baixas vazões e elevadas temperaturas, porém é desfavorecido pela alta presença de hidrogênio na mistura. O hidrogênio reage com o coque, formando metano (HSU, ROBINSON, 2006)

2.8 VASOS SEPARADORES

O efluente do reator de dessulfurização sai a 377,55 °C e passa pelo trocador de calor carga/efluente para ser resfriado, cedendo calor à carga. Em seguida, a mistura recebe uma carga de água de caldeira numa proporção aproximada de 3% do volume total, com o objetivo de evitar a deposição de sais de amônia nas paredes dos tubos do aerorrefrigerante (DIAS, 2016). Se não for injetada água na mistura, o Sulfeto de Hidrogênio e a Amônia, em fase gasosa na saída do reator, podem se combinar de modo a formar o sal Sulfeto de Amônio. Ao que a mistura é resfriada, podem formar depósitos nas tubulações, favorecendo a corrosão (Site ECOLAB, 2019).

Após essa mistura ser resfriada, até a temperatura de 55°C, ela vai para o vaso separador de alta pressão C-3, que opera a uma pressão manométrica de 40,5 kgf/cm2. Esse é um vaso separador horizontal trifásico, no formato de um vaso pulmão, com um acréscimo de um escoadouro, ou "bota", onde a fração de líquido pesado (Águas Ácidas) é separada da fração leve de líquido, pela ação da gravidade.

As "Águas Ácidas" contém principalmente Sulfeto de Hidrogênio (H2S) e Amônia dissolvidos, portanto, devem ser destinadas para o tratamento. A fração líquida de hidrocarbonetos é direcionada para o vaso separador de baixa pressão C-5, antes de ser destilada. A fração de gás é enviada para o vaso separador de alta pressão C-4, antes passando por um condensador para passar os hidrocarbonetos à fase líquida.

No vaso separador de alta pressão C-4, a uma pressão de operação manométrica de 36,8 Kgf/cm2 e 45°C, os hidrocarbonetos são separados dos gases leves. Os gases serão encaminhados para a Coluna de absorção C-6 para tratamento com Monoetanolamina (MEA), visando a retirada de Sulfeto de Hidrogênio. Eles são inseridos na corrente gasosa de refluxo, que alimenta o reator com um gás rico em Hidrogênio. Já a corrente líquida de hidrocarbonetos, obtida pela separação, é enviada para o vaso separador de baixa pressão C-5, para a última separação antes da destilação.

Recebendo as correntes líquidas de Hidrocarbonetos dos vasos separadores C-3 e C-4, o vaso separador de baixa pressão C-5 realiza a última separação de fases antes da destilação. O vaso separador horizontal trifásico de baixa pressão C-5 possui um design igual ao vaso separador C-3, salvo as medidas. Dessa forma, as "Águas Ácidas" remanescentes são separadas pelo escoadouro, sendo encaminhadas para o tratamento; enquanto os hidrocarbonetos são encaminhados para a seção de destilação e os gases obtidos no separador de baixa pressão são destinados ao tratamento com aminas, para retirar o Sulfeto de Hidrogênio remanescente e serem usados como combustível gasoso, pois são em maioria hidrocarbonetos e gás Hidrogênio.

2.9 TORRE DE DESTILAÇÃO

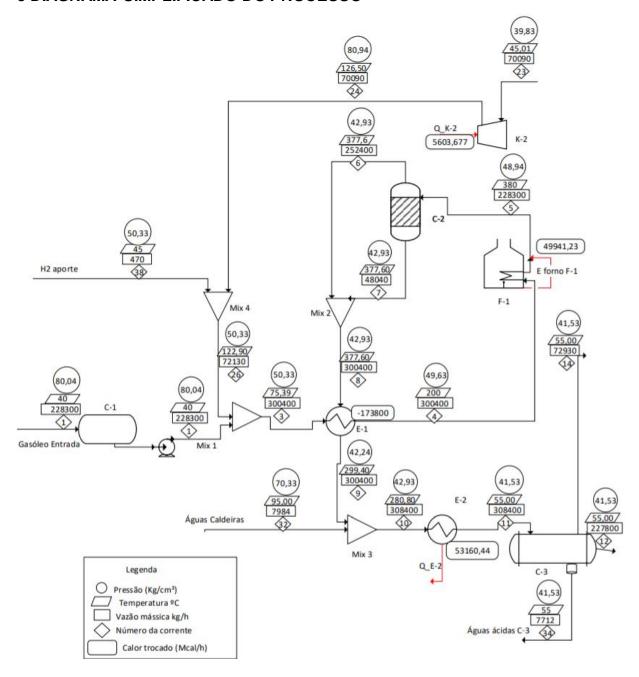
Devido às diversas reações sofridas pelo gasóleo no reator, a mistura de hidrocarbonetos proveniente dos vasos separadores torna-se composta por uma série de frações de hidrocarbonetos. Para que os diversos produtos presentes na mistura sejam separados, eles são bombeados a uma coluna de stripping.

No topo da coluna, é recomendável injetar um inibidor de corrosão, previamente diluído em gasóleo (DIAS, 2016). Isso é importante para evitar a corrosão, devido à acumulação de gás sulfídrico (DIAS, 2016).

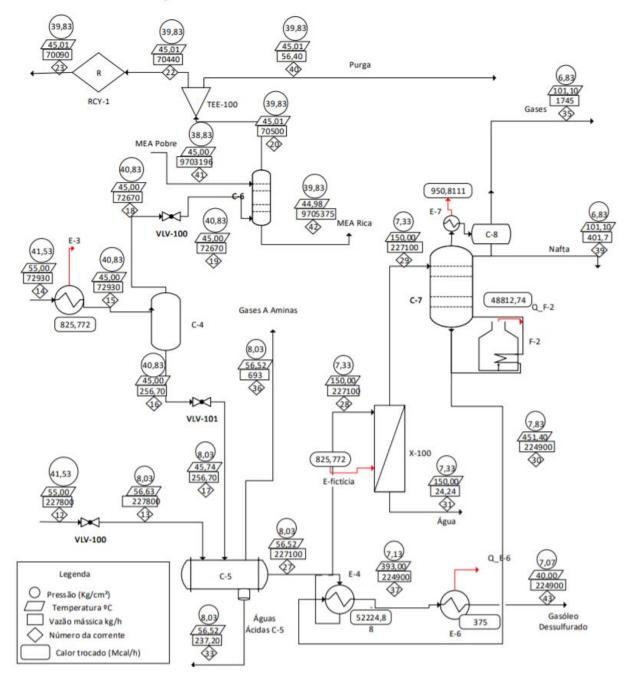
No acumulador de topo da coluna, é separada uma corrente líquida e uma gasosa (DIAS, 2016). A corrente gasosa é composta por hidrocarbonetos leves, típicos do produto GLP, e gás sulfídrico (DIAS, 2016). Essa corrente é enviada a uma unidade de tratamento de aminas, que visa a remoção do H₂S (DIAS, 2016). A corrente líquida é composta por hidrocarbonetos em composição semelhan te a uma nafta, denominada *Wild Nafta* (DIAS, 2016). A *Wild Nafta* é bombeada à coluna de destilação atmosférica da refinaria.

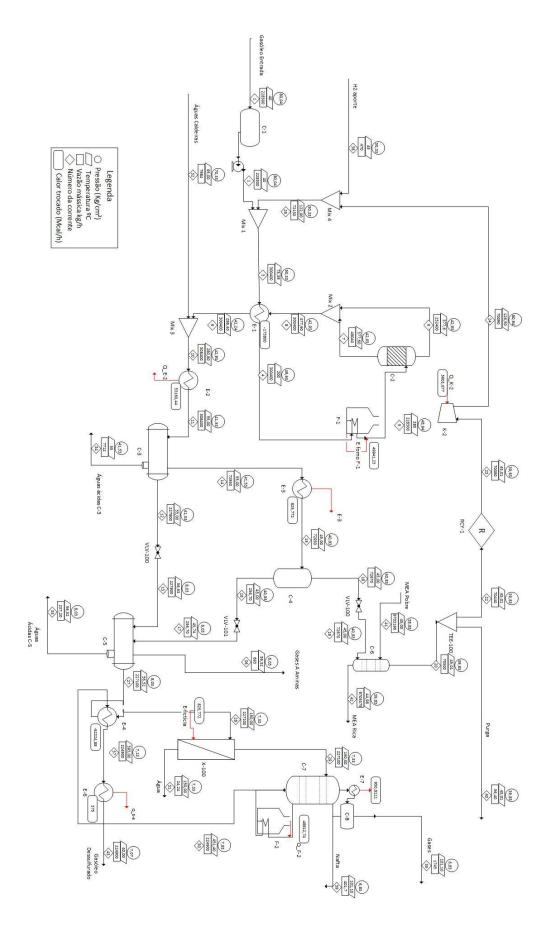
Ao fundo da coluna, separa-se o gasóleo dessulfurado, a uma concentração máxima de 10 ppm de enxofre e 200 ppm de nitrogênio.

2.10 TRATAMENTO DO GÁS DE RECICLO


Após a separação do gás rico em hidrogênio pelos vasos separadores C-3 e C-4, ele é enviado para uma coluna de absorção a alta pressão, que o purifica através de um tratamento com aminas (HOFF, 2015). Esse tratamento visa principalmente a remoção de H₂S resultante da reação de dessulfuração e gases resultantes de craqueamento no reator, como etano e metano (HOFF, 2015). O tratamento é importante para evitar a acumulação progressiva de H₂S na linha de gás, o que causaria uma diminuição da pressão parcial de hidrogênio no reator, prejudicando a conversão da reação (DIAS, 2016). Nesse projeto, é utilizada a monoetanolamina (MEA) no tratamento.

Antes das exigências ambientais de níveis ultrabaixos de enxofre nos combustíveis, raramente era vista uma coluna de absorção de alta pressão com aminas para a remoção de H₂S do gás de reciclo (HSU e ROBINSON, 2006). O excesso de H₂S no gás de reciclo desloca o equilíbrio das reações de dessulfurização para os reagentes, diminuindo a eficiência do reator. Com a necessidade de uma dessulfurização mais profunda do combustível, o tratamento do gás de reciclo com aminas passou a ganhar grande relevância, sendo considerado um processo renovador no hidrotratamento de gasóleos (HSU e ROBINSON, 2006), usado na maioria das plantas de alta dessulfurização (HSU e ROBINSON, 2006).


Após a absorção, a monoetanolamina (MEA) usada no processo, enriquecida de enxofre, é enviada a uma unidade de recuperação. A MEA recuperada retorna à coluna de tratamento e o H₂S extraído dela é enviado à planta de enxofre da refinaria (HSU e ROBINSON, 2006).


O hidrogênio tratado é então comprimido para a linha de hidrogênio de aporte. Essas correntes de hidrogênio são então misturadas à carga líquida de gasóleo, formando a carga combinada, que será injetada no reator (DIAS, 2016).

3 DIAGRAMA SIMPLIFICADO DO PROCESSO

Diagrama Simplificado de Processo

4 DIMENSIONAMENTO DE EQUIPAMENTOS

4.1 VASO PULMÃO C-1

Toda a matéria-prima que será processada na planta passa primeiramente pelo vaso pulmão C-1, que tem como principal função a manutenção da vazão de entrada constante dos equipamentos seguintes.

A partir dos dados obtidos pela simulação, o volume de líquido ($V_{líquido}$) do vaso é obtido em função da vazão de entrada ($Q_{entrada}$) e o tempo de residência (τ) como mostra a equação abaixo.

$$V_{liquido} = Q_{entrada} \cdot \tau \tag{4.1-1}$$

Considerando um tempo de residência de 15 minutos e uma vazão de entrada de 260 m³/h obtida na simulação do projeto, o volume referente ao nível de 50% encontrado foi de 65 m³, equivalendo a um vaso com volume total ($V_{pulmão}$) de 130 m³.

Para o cálculo das dimensões do equipamento, varia-se a razão L/D entre 2 e 5 e a partir desta, calcula-se o diâmetro do pulmão $\left(D_{pulmão}\right)$ e seu comprimento (L) conforme a seguinte equação.

$$D_{pulm\tilde{a}o} = \sqrt[3]{\frac{4 \cdot V_{pulm\tilde{a}o}}{\pi \cdot \frac{L}{D}}}$$
 (4.1-2)

Para calcular a espessura da coluna (e), primeiramente, é necessário conhecer a pressão de projeto (P_{proj}) , 86,9 kg/cm²g; o diâmetro; o estresse máximo permitido (S_t) , considerando o aço carbono como material utilizado para construção do equipamento, seu valor é 1055; a eficiência de solda (E), 0,85; e a sobre-espessura de corrosão (SEC), 3 mm.

$$e = \frac{P_{proj} \cdot \frac{D}{2} \cdot 1000}{S_t \cdot E - 0.6 \cdot P_{proj}} + SEC$$
 (4.1-3)

Com o valor obtido para a espessura, é possível calcular o peso do material (W_v) :

$$W_v = C_w \pi \rho_m D_m (L + 0.8D_m) e \cdot 10^{-3}$$
(4.1-4)

Em que C_w é o fator de correção para o peso dos componentes internos, que é 1,08 para o vaso pulmão por possuir menor complexidade; ρ_m é densidade do metal, que é 7860 kg/m³ para o aço carbono; D_m é o diâmetro médio, soma do diâmetro do vaso e da espessura.

O custo de construção do vaso pulmão, dado em dólares referente ao ano de 2006, é calculado a partir de seu peso, conforme mostrado a seguir, visto que se trata de um vaso horizontal em aço carbono:

$$C_{hor,cs} = -2500 + 200 \cdot W_v^{0,6}$$

$$C_{hor,cs} = -2500 + 200 \cdot (589.581,71)^{0,6}$$

$$C_{hor,cs} = US \$ 577.404 (2006)$$
(4.1-5)

Substituindo o valor encontrado acima na equação geral de custos abaixo e fazendo as devidas correções monetárias, tem-se para um exemplo que:

$$C_F = C_{hor,cs} \frac{603 (CEPCI \ 2018)}{500 (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = US\$ 577.404 \frac{603 (CEPCI \ 2018)}{500 (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = R\$ 2.896.815$$
(4.1-6)

A tabela abaixo compila todos os dados encontrados para o vaso C-1.

Tabela 4.1.1 - Dimensões do vaso pulmão C-1

$\frac{L}{D}$	D (m)	<i>L</i> (m)	e (mm)	W_{v} (kg)	Custo (R\$)
2	5,23	10,46	270,5	589.581	2.896.815
2,5	4,85	12,14	251,4	555.168	2.793.703
3	4,57	13,71	236,7	532.290	2.723.733
3,5	4,34	15,19	225,0	515.998	2.673.172
4	4,15	16,60	215,3	503.820	2.634.959
4,5	3,99	17,96	207,2	494.382	2.605.087
5	3,85	19,27	200,1	486.859	2.581.116

A partir da tabela acima, opta-se, pelo menor custo, pelo emprego do vaso com relação L/D igual a 5. Dessa forma, o custo final do vaso pulmão é de:

$$C_F = R$$
\$ 2.581.116 (4.1-7)

4.2 REATOR C-2

Para a reação de dessulfuração do gasóleo, foi selecionado um reator do tipo leito gotejante onde há um fluxo contínuo de fase líquida e uma fase gasosa através de um leito fixo de catalisador (SATTERFIELD et al., 1975). No caso deste projeto, o leito empacotado do catalisador CoMo suportado em Al $_2$ O $_3$, cuja densidade é $\rho_{alumina}=3,95\frac{g}{cm^3}$, é atravessado por um fluxo da mistura parcialmente vaporizada de gasóleo-hidrogênio, convertendo o enxofre presente em H $_2$ S.

A mistura entra no reator com uma vazão de 9843 kmol/h, pressão de 47,9 kg/cm²·g e temperatura de 380 °C e sai do reator com uma vazão de 182,8 kmol/h de líquido, 9362 kmol/h de vapor, temperatura de 377,6°C e pressão de 41,9 kg/cm²·g

Como critério de segurança, no projeto do reator, foram acrescidos 30°C a temperatura de operação e para pressão foi adotada um valor 10% maior, obtendo-se uma temperatura de desenho de 407,6 °C e uma pressão de projeto de 46,09 kg/cm²-g

Para determinar o volume de leito catalítico, calculou-se primeiramente a velocidade espacial da reação de dessulfuração (VVH) a partir da equação empírica:

$$\frac{1}{VVH} = \left(\frac{1}{n-1}\right) \frac{1}{k_0 exp\left(-\frac{E_0}{RT}\right)} \frac{1}{P_{H_2}} \left(\frac{1}{S_P^{n-1}} - \frac{1}{S_c^{n-1}}\right) \tag{4.2-}$$

A partir dos seguintes dados cinéticos, apresentados na tabela abaixo, foi obtida uma velocidade espacial de 3,239 m³ carga/(h·m³ catalisador).

Tabela 4.2-1. Dados cinéticos da reação

Ordem da reação	n	1,6
Constante de velocidade de reação	k_0	3,0 · 107
Energia de Ativação	E_0 (cal/mol)	26000
Temperatura	<i>T</i> (K)	650,75
Pressão parcial de hidrogênio	P_{H_2} (kg/cm ²)	22,39136

Concentração de enxofre no produto	S_P (ppm)	10
Concentração de enxofre na carga	S_c (ppm)	1000
Constante dos gases	R (cal/K·mol)	1,987

Utilizando a vazão de reativos (Q_v) obtida na simulação de 11070 m³/h, obteve-se a partir da equação a seguir, um volume de leito de 3417,43 m³.

$$V_{catalisador} = \frac{Q_v}{VVH}$$
 (4.2-2)

A seção transversal máxima do reator $(S_{m\acute{a}x})$ é definida a partir da razão entre a vazão mássica de reativos (M) e o fluxo mássico de gás (F). A partir dela, obtém-se o diâmetro máximo $(D_{m\acute{a}x})$ do reator, calculando-se por fim, o comprimento mínimo $(L_{m\acute{n}})$ do reator.

$$S_{m\acute{a}x} = \frac{M}{F} \tag{4.2-}$$

$$D_{m\acute{a}x} = \sqrt{\frac{4 \cdot S_{m\acute{a}x}}{\pi}} \tag{4.2-}$$

$$L_{min} = \frac{4 \cdot V_{catalisador}}{\pi D_{max}^2}$$
 (4.2-

Variando o diâmetro a partir de seu valor máximo e encontrando seus valores respectivos de comprimento e seção transversal, determina-se sua perda de carga (ΔP) a partir da equação de Ergun. Nela, devem ser considerados dados característicos do catalisador, a porosidade (ε) e o diâmetro da partícula (D_p) . Segundo Lloyd (2011), a porosidade do catalisador de CoMo é de 0,5. Já o diâmetro da partícula, é de 0,254cm (ABRADEE, 2017).

$$\Delta P = \frac{150\mu v_0 L}{D_P^2} \frac{(1-\varepsilon)^2}{\varepsilon^3} + \frac{1,75\rho v_0^2 L}{D_n} \frac{(1-\varepsilon)}{\varepsilon^3}$$
(4.2-

Com velocidade superficial mássica (v_0) dada pela equação abaixo:

$$v_0 = \frac{Q_v}{3600 \cdot S}$$
 (4.2-7)

A espessura é determinada a partir da Equação (4.1-3), em que todos os parâmetros são os mesmos valores do vaso pulmão C-1, exceto a pressão de projeto do reator C-2 já citada. O peso do equipamento pode, então, ser estimado pela Equação (4.1-4), em que C_w para este equipamento é 1,15 devido sua complexidade.

Os dados calculados estão apresentados na tabela a seguir. Em posse do peso do material, pode-se calcular o custo do reator, um vaso vertical, para um exemplo, com a seguinte equação:

$$C_{vert,cs} = -400 + 230 \cdot W_v^{0,6} (US\$ 2006)$$

$$C_{vert,cs} = -400 + 230 \cdot (3.647.970)^{0,6} (US\$ 2006)$$

$$C_{vert,cs} = US\$ 1.990.083 (2006)$$

$$(4.2-6)$$

Contudo, tanto o custo quanto o peso do equipamento calculados são referentes ao aço carbono e nesta seção da planta, há a necessidade do uso do aço inox 321, devido às características dos fluidos de processo. Desta forma, a conversão do custo do aço carbono para o valor referente ao novo material é feita pela multiplicação de um fator de correção do material ($F_M = 1,5$) conforme mostrado na equação geral dos custos para um exemplo, a qual já inclui as conversões monetárias necessárias (TOWLER *et al.*, 2013).

$$C_F = C_{vert,cs} \cdot F_M \frac{603 (CEPCI 2018)}{500 (CEPCI 2006)} \frac{4,16 R\$}{1 US\$}$$
(4.2-9)
$$C_F = US\$ 1.990.083 \cdot 1,5 \frac{603 (CEPCI 2018)}{500 (CEPCI 2006)} \frac{4,16 R\$}{1 US\$}$$

$$C_F = R\$ 14.976.256$$

Tabela 4.2-2. Parâmetros de dimensionamento do Reator C-2

D	<i>L</i> (m)	S	v_0	ΔP	e (mm)	W_{v} (kg)	$C_F(R\$)$
(m)	L (III)	(m^2)	(m/s)	(kg/cm ²)	e (IIIII)	w _v (kg)	C _F (N\$)

6,26	111,11	30,8	0,10	0,80	168,9	3.647.970	14.976.256
6,01	120,55	28,3	0,11	1,00	162,3	3.632.152	14.937.251
5,76	131,25	26,0	0,12	1,28	155,7	3.618.029	14.902.368
5,51	143,44	23,8	0,13	1,64	149,0	3.605.571	14.871.553
5,26	157,40	21,7	0,14	2,14	142,4	3.594.756	14.844.766
5,01	173,51	19,7	0,16	2,84	135,8	3.585.567	14.821.982
4,76	192,22	17,8	0,17	3,81	129,2	3.577.998	14.803.197
4,51	214,13	16,0	0,19	5,20	122,5	3.572.055	14.788.436

O ponto ótimo econômico do reator foi então encontrado com as dimensões de 4,51 metros de diâmetro e 214,13 metros de comprimento, obtendo-se uma perda de carga de 5,2 kg/cm² que respeita a condição de operação máxima de 6 kg/cm². Dessa forma, seu custo final se encontra abaixo.

$$C_{\rm F} = R\$ 14.788.436 \tag{4.2-10}$$

Vale ressaltar que devido ao elevado comprimento do reator, recomenda-se que este seja disposto em forma de serpentina para ocupação de um volume menor na planta. Definindo-se uma altura de 10 metros, ter-se-ia um reator com 96,6 metros de comprimento (TOWLER *et al.*, 2013).

4.3 VASOS SEPARADORES

4.3.1 Vasos Separadores Trifásicos

4.3.1.1 Separador de Alta Pressão C-3

Este equipamento tem por função separar o efluente do reator em três fases, sendo no caso deste projeto, água ácida, hidrocarboneto líquido e hidrocarboneto gasoso. Sua estrutura se assemelha a um vaso pulmão, porém com a adição de uma bota ou escoadouro, que controla o nível da interface líquido-vapor.

Na planta simulada, obteve-se uma temperatura de operação de 55 °C e uma pressão de 40,5 kg/cm²·g. Adotando-se os critérios de segurança de adicionar 30 °C a esta temperatura e utilizar uma pressão 10% maior que a simulada, projetou-se o equipamento com 85 °C a 44,55 kg/cm².

O projeto do corpo principal do separador trifásico é similar ao projeto do vaso pulmão, sendo utilizadas novamente as Equações de (4.1-2) a (4.1-4), considerando a pressão de projeto já citada para este equipamento, $S_t=1226,74,\ C_w=1,08,\ \rho_m=8000\ \text{kg/m}^3$, considerando aço inox 304 para sua construção. A partir dos dados de vazão volumétrica do líquido, estimada pela simulação em 273,98 m³/h, e o tempo de residência especificado de 10 minutos, encontrou-se um volume de líquido de 45,66 m³ e consequentemente, um volume total do corpo de 91,326 m³.

Contudo, como há a separação de gás e líquido, deve-se certificar que a velocidade do vapor (v_{vapor}) seja menor que a velocidade limite (v_{limite}) , que é a velocidade máxima linear ascendente permissível para evitar que o gás arraste as gotículas de líquido. O cálculo das velocidades limite e do vapor estão explicitadas nas equações a seguir:

$$v_{lim} = 0.07 \sqrt{\frac{\rho_L - \rho_V}{\rho_V}}$$
 (4.3.1.1-1)

$$v_{vapor} = \frac{Q_{vapor}}{S} \tag{4.3.1.1-2}$$

A velocidade limite encontrada foi de 0,57 m/s. Dessa forma, foram encontrados os seguintes dados de dimensionamento para o corpo do separador:

Tabela 4.3.1.1-1. Dados de dimensionamento do corpo principal do vaso C-3

L/D	D (m)	<i>L</i> (m)	$S(m^2)$	v_{vapor} (m/s)	e (mm)	W_v (kg)
2	6,15	12,30	29,70	0,1099	137,8	407.604
2,5	6,62	16,56	34,47	0,0947	148,2	598.947
3	7,04	21,12	38,92	0,0839	157,3	826.036
3,5	7,41	25,94	43,13	0,0757	165,5	1.088.851
4	7,75	30,99	47,15	0,0692	172,9	1.387.376
4,5	8,06	36,26	51,00	0,0640	179,7	1.721.599
5	8,35	41,73	54,71	0,0597	186,0	2.091.508

Por fim, para o cálculo do custo do corpo principal do separador, para o exemplo, já realizando as devidas conversões monetárias, utiliza-se a seguinte equação:

$$C_{hor,ss} = -15000 + 560 W_v^{0,6} (US\$ 2006)$$

$$C_{hor,ss} = -15000 + 560 (407.604,20)^{0,6}$$

$$C_{hor,ss} = US\$ 1.286.161 (2006)$$

$$C_F = C_{hor,ss} \cdot \frac{603 (CEPCI\ 2018)}{500 (CEPCI\ 2006)} \frac{4,16 R\$}{1 US\$}$$

$$C_F = US\$ 1.286.161 \cdot \frac{603 (CEPCI\ 2018)}{500 (CEPCI\ 2006)} \frac{4,16 R\$}{1 US\$}$$

$$C_F = R\$ 9.678.931$$

A outra parte do separador trifásico é a bota, também projetada em aço inox 304. Nela ocorre o acúmulo das águas ácidas, o líquido mais pesado. Para o seu projeto, foram necessários os valores da vazão volumétrica das águas ácidas, 7,84 m³/h, do tempo de residência de 5 minutos entre os níveis máximo e mínimo de líquido, do volume de líquido entre esses níveis, 0,65 m³, que dividido por 60%, encontra-se o volume da bota, 1,089 m³.

Partindo de seu diâmetro mínimo de 0,25 m, até um terço do diâmetro do corpo principal ótimo (relação $\frac{L}{D}$ igual a 2) e utilizando das Equações de (4.1-2) a (4.1-4) novamente, encontrou-se os seguintes parâmetros de dimensionamento para a bota:

Tabela 4.3.1.1-2. Dados de dimensionamento da bota do vaso C-3

D (m)	<i>L</i> (m)	$\frac{L}{D}$	e (mm)	W_v (kg)
0,25	22,19	88,74	8,5	1.332
0,5	5,55	11,09	14,0	1.160
0,75	2,47	3,29	19,4	1.250
1	1,39	1,39	24,9	1.530
1,25	0,89	0,71	30,4	2.020
1,5	0,62	0,41	35,9	2.760
1,75	0,45	0,26	41,4	3.793
2	0,35	0,17	46,8	5.164

2,05	0,33	0,16	47,9	5.483
•	•	•		

Calculada a espessura (Equação (4.1-3)) e o peso do material (Equação (4.1-4)) utilizado para a construção do equipamento, pode-se calcular o custo da bota, para o exemplo abaixo, da seguinte maneira, já realizando as devidas conversões monetárias:

$$C_{vert,ss} = -10000 + 600W^{0,6} (US\$ 2006)$$

$$C_{vert,ss} = -10000 + 600(1.332,45)^{0,6}$$

$$C_{vert,ss} = US\$ 34.972 (2006)$$

$$C_{F} = C_{vert,ss} \cdot \frac{603 (CEPCI\ 2018)}{500 (CEPCI\ 2006)} \frac{4,16\ R\$}{1\ US\$}$$

$$C_{F} = US\$ 34.972 \cdot \frac{603 (CEPCI\ 2018)}{500 (CEPCI\ 2006)} \frac{4,16\ R\$}{1\ US\$}$$

$$C_{F} = R\$ 263.179$$

Os valores monetários encontrados para este separador trifásico se encontram compilados na tabela abaixo.

Tabela 4.3.1.1-3 Custos do vaso C-3

Corpo Principal		Bota		
$\frac{L}{D}$	Custos (R\$)	D (m)	Custos (R\$)	
2	9.678.931	0,25	263.179	
2,5	12.222.521	0,5	236.245	
3	14.846.699	0,75	250.607	
3,5	17.543.472	1	292.451	
4	20.306.216	1,25	359.176	
4,5	23.129.424	1,5	448.648	
5	26.008.472	1,75	558.753	

-	-	2	- 687.689
-	-	2,05	715.607

A partir da tabela acima nota-se que a bota de diâmetro de 0,5 m é a mais barata dentre todas as opções, optando-se pelo emprego dela. Assim sendo, o custo final do vaso C-3 é dado pela soma dos custos do corpo principal e da bota, como se mostra abaixo:

$$C_F = C_{hor,ss} + C_{vert,ss}$$
 (4.3.1.1-5)
 $C_F = R \$ 9.678.931 + R \$ 236.245$
 $C_F = R \$ 9.942.111$

4.3.1.2 Separador de Baixa Pressão C-5

O procedimento para projeto deste equipamento é idêntico ao separador de alta pressão C3, variando apenas os valores referentes às condições de operação, utilizando-se também o aço inox 304 como o material do equipamento.

Especificado o tempo de residência de 10 minutos e encontrados os valores de vazão volumétrica do líquido de 273,34 m³/h, volume de líquido de 45,56 m³ e volume total do corpo de 91,11 m³, desenhando o equipamento a uma temperatura de 86,52 °C (já corrigida com o acréscimo dos 30 °C) e uma pressão de 7,7 kg/cm², 10% maior que a pressão de operação, obteve-se os seguintes parâmetros:

Tabela 4.3.1.2-1. Dados de dimensionamento do corpo principal do vaso C-5

$\frac{L}{D}$	D (m)	<i>L</i> (m)	S (m ²)	v _{vapor} (m/s)	e (mm)	W_{v} (kg)
2	6,14	12,29	29,66	0,0029	25,8	74.405
2,5	6,62	16,55	34,41	0,0025	27,5	108.676
3	7,03	21,10	38,86	0,0022	29,1	149.181
3,5	7,40	25,92	43,07	0,0020	30,5	195.904
4	7,74	30,97	47,07	0,0018	31,7	248.827
4,5	8,05	36,23	50,92	0,0017	32,9	307.939

5 8,34 41,70 54,63 0,0016 33,9 373.229
--

Já para o dimensionamento da bota deste separador, foi utilizada uma vazão volumétrica de líquido de 0,24 m³/h, tempo de residência de 5 minutos, volume entre nível mínimo e nível máximo de 0,02 m³, volume da bota de 0,03 m³, projetando-se a uma pressão de 7,67 kg/cm² (10% maior que a pressão de operação), obteve-se as seguintes dimensões e valores referentes ao peso e custo do equipamento:

Tabela 4.3.1.2-2. Dados de dimensionamento da bota do vaso C-3

D (m)	<i>L</i> (m)	$\frac{L}{D}$	e (mm)	W_v (kg)
1	0,04	0,04	6,71	155
1,25	0,03	0,02	7,64	269
1,5	0,02	0,01	8,56	429
1,75	0,01	0,01	9,49	644
2	0,01	0,01	10,42	920
2,05	0,01	0,00	10,60	973

Como o modelo de cálculo de custo é igual ao empregado para o separador anterior, opta-se por apresentar apenas os custos finais na tabela a seguir:

Tabela 4.3.1.2-3. Custos do vaso C-5

Corpo Principal		Bota	
$\frac{L}{D}$	Custos (R\$)	D (m)	Custos (R\$)
2	2.400.428	1	12.000
2,5	3.301.153	1,25	36.290
3	4.228.530	1,5	64.267
3,5	5.179.975	1,75	95.726
4	6.153.329	2	130.534
4,5	7.146.786	2,05	136.731
5	8.158.826	-	-

A partir da tabela acima nota-se que a bota de diâmetro de 0,5 m é a mais barata dentre todas as opções, optando-se pelo emprego dela. Assim sendo, o custo final do vaso C-5 é dado pela soma dos custos do corpo principal e da bota, como se mostra abaixo:

$$C_F = C_{hor,ss} + C_{vert,ss} \tag{4.3.1.2-1}$$

$$C_F = R\$\ 2.400.428 + R\$\ 12.000$$

$$C_F = R\$\ 2.412.428$$

4.3.2 Separador Bifásico de Alta Pressão C-4

A separação de uma corrente bifásica feita por um separador vertical tem como principal função separar por gravidade a fase vapor da fase líquida, com uma relação gás/líquido alta.

Este separador recebe a corrente de hidrocarboneto gasoso que sai do separador C-3, com o objetivo de se obter um gás rico em hidrogênio no topo e no fundo é eliminado hidrocarboneto líquido que é enviado para o separador trifásico C-5. Para melhorar o desempenho, frequentemente é usado o demister, uma malha eliminadora de gotículas e, ainda, possibilita a construção de um vaso menor. O separador deve ser dimensionado para fornecer uma velocidade baixa e, assim, obter uma separação eficiente.

Dessa forma, o diâmetro deste equipamento depende da velocidade limite, estimada pela Equação (4.3.1.1-1), em que a densidade do líquido é 990,42 kg/m³ e a densidade de vapor 12,57 kg/m³. O diâmetro mínimo (D_{min}) depende da vazão de vapor (Q_{vapor}), 5782,70 m³/h.

$$D_{min} = \sqrt{\frac{4Q_{vapor}}{\pi v_{limite}}} \tag{4.3.2-1}$$

O nível do líquido no fundo (H_{fundo}) depende do tempo de residência (τ) , normalmente 10 minutos, da vazão de líquido $(Q_{líquido})$, 0,26 m³/h, e do diâmetro mínimo:

$$H_{fundo} = \frac{Q_{liquido} \cdot \tau}{\pi (\frac{D_{min}}{2})^2}$$
(4.3.2-2)

A altura desse vaso separador é dada pela soma dos seguintes comprimentos:

Tabela 4.3.2-1. Comprimento das seções do vaso C-4

Da saída de vapor ao demister (m)	0,3
Demister (m)	0,15
Do demister a entrada da mistura vapor/líquido (m)	D_{min}
Da entrada ao nível de líquido do fundo (m)	$(D_{min}/2)$
Nível do líquido de fundo (m)	H_{fundo}

Dessa forma a altura total, pode ser representada pela equação a seguir:

$$H_{vaso} = 0.3 + 0.15 + D_{min} + (D_{min}/2) + H_{fundo}$$
(4.3.2-3)

Após o cálculo da espessura (Equação (4.1-3)) e do peso do aço inox 304 (Equação (4.1-3)) utilizado para a construção do equipamento, considerando que este é um equipamento simples e $P_{proj}=43,78~{\rm kg/cm^2}$, calcula-se o custo por meio da equação (4.3.2-4), utilizada para vasos verticais em aço inox 304. A atualização monetária foi feita da seguinte maneira.

$$C_{vert,ss} = -10000 + 600(9994,573)^{0.6}$$

$$C_{vert,ss} = US\$ \ 140.664 \ (2006)$$

$$C_F = C_{vert,ss} \cdot \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = US\$ \ 140.664 \cdot \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = R\$ \ 1.058.559$$

Na tabela abaixo estão apresentados os resultados obtidos no dimensionamento do vaso C-4.

Tabela 4.3.2-2. Dados obtidos no dimensionamento e o custo do vaso C-4

v_{lim} (m/s)	0,617
D_{min} (m)	1,820
Nível de líquido (m)	0,017
H (m)	3,197
e (mm)	42,194
W_v (kg)	9994,573
Custo (R\$)	1.058.559
-	

4.4 SEÇÃO DA TORRE DE ABSORÇÃO

As possíveis configurações que atendem às especificações de projeto da torre de absorção são inúmeras. Ou seja, existem diversas configurações com diferentes números de estágios que atendem às especificações desejadas. No entanto o número de etapas teóricas impacta diretamente na vazão de líquido absorvente, nesse caso a monoetanolamina (MEA). Assim, a escolha do ótimo econômico envolve o projeto da torre C-6 e da bomba de MEA.

4.4.1 Torre de Absorção C-6

A absorção é uma operação unitária de transferência de massa que visa retirar um componente solúvel de uma mistura de gases pelo contato direto com um absorvente líquido, para remover principalmente impurezas, contaminantes ou poluentes da corrente de gás.

Na torre simulada, deseja-se eliminar H₂S do gás hidrogênio, que é o gás de reciclo da planta. Dessa forma, o H₂S é denominado soluto e os demais componentes do gás são considerados inertes. O absorvente usado é uma solução aquosa de monoetanolamina (MEA), uma amina primária que reage seletivamente com o H₂S. A

MEA atua como uma base fraca e exibe alta taxa de remoção de gases ácidos. (KHOL e NIELSEN, 1997)

Nesta operação as duas fases, injetadas na torre a uma taxa constante, ficam em contato contínuo em contracorrente com o propósito que ocorra difusão interfacial do componente presente na fase gasosa. A fase aquosa, que entra pelo topo da torre, escoa pela superfície de recheio, oferecendo uma grande área superficial de contato com o gás ascendente. Devido às características corrosivas da mistura de gases, o recheio ideal para a construção desta torre são os anéis de Pall em aço inox 304. Este recheio tem as seções da parede do anel vazadas e encurvadas, oferecendo uma melhor circulação das fases em contato (FOUST *et al.*, 1982).

A torre de absorção é um equipamento vertical simples de formato cilíndrico. Para o seu projeto, foram simulados diferentes estágios e obtidos seus respectivos diâmetros e alturas. Vale ressaltar que neste equipamento as dimensões do vaso, como altura e diâmetro, foram obtidas por meio de ferramentas de design interno do simulador. O diâmetro fornecido na simulação foi sobredimensionado em 120% por motivos de segurança.

O dimensionamento da torre de absorção, dessa forma, se faz com base no número de estágios teóricos do equipamento depende da espessura (Equação (4.1-3)) e do peso (Equação (4.1-4)) da torre, considerando que é um equipamento simples e que $P_{proj} = 43,78 \text{ kg/cm}^2$, e do volume do recheio.

$$V_{recheio} = \frac{H\pi D^2}{4} \tag{4.4.1-1}$$

Tabela 4.4.1-1. Dados obtidos para o dimensionamento da torre de absorção C-6

N° de estágios	D (m)	H (m)	$V_{Recheio}$ (m ³)	e (mm)	W_{ν} (kg)
4	10,16	1,83	148,22	221,8	674.113
6	8,83	2,74	167,82	193,1	501.190
8	8,26	3,66	196,11	180,9	459.706
10	7,96	4,57	227,50	174,4	454.289
16	7,56	7,32	328,15	165,8	499.281
20	7,44	9,14	397,79	163,3	546.582
40	7,25	18,29	755,14	159,1	825.358

80	7,19	36,58	1483,40	157,7	1.421.393
100	7 18	45.82	1853.15	157 5	1.725.912

100 7,18 45,82 1853,15 157,5 1.725.912

Com base nos dados da tabela acima, o custo do recheio pode ser calculado, para um exemplo, com equação a seguir, em dólares de 2006, assim como sua atualização para reais de 2018.

$$C_{recheio} = 4000 \ V_{recheio} \ (US\$\ 2006)$$
 (4.4.1-2)
$$C_{recheio} = 4000 \ .148,22$$

$$C_{recheio} = US\$\ 592.880 \ \frac{603 \ (CEPCI\ 2018)}{500 \ (CEPCI\ 2006)} \ \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_{recheio} = R\$\ 2.974.455$$

Já o custo para a construção deste equipamento é calculado com a equação dos custos para vasos verticais em aço inox 304 (Equação (4.4.1-3)). Abaixo tem-se o exemplo das devidas correções monetárias.

$$C_{vert,ss} = US\$ \ 1.875.346 \ (2006)$$

$$C_F = C_{vert,ss} \cdot \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = US\$ \ 1.875.346 \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = R\$ \ 9.408.539$$

Os resultados da precificação se encontram compilados na tabela a seguir.

Tabela 4.4.1-2. Custo da torre de absorção C-6.

Número de estágios	Custo vaso	Custo recheio	Custo total
	(R\$ 2018)	(R\$ 2018)	(R\$ 2018)
4	9.408.539	2.974.546	12.383.085
6	7.867.433	3.367.784	11.235.217
8	7.467.451	3.935.542	11.402.993
10	7.414.173	4.565.404	11.979.577
16	7.849.323	6.585.256	14.434.579

20	8.290.200	7.982.754	16.272.954
40	10.629.986	15.154.030	25.784.016
80	14.748.423	29.768.729	44.517.152
100	16.576.417	37.188.654	53.765.070

4.4.2 Bomba P-3

Como a bomba P-3 está diretamente ligada à coluna de absorção, se faz necessário projetar e precificar esta bomba para cada configuração da coluna. Os cálculos relativos ao projeto do equipamento estão especificados na seção de Bombas deste trabalho. A seguir, traz-se apenas os resultados encontrados na avaliação econômica, também mostrada na parte do dado equipamento.

Tabela 4.4.2-1. Custo da bomba P-3, em R\$ de 2018, da torre de absorção C-6

Número de estágios	Custo bomba	Custo motor	Custo total bomba	Custo Eletricidade	Custo Total
4	37.405.384	31.150.190	137.243.680	1.271.004.498	1.476.803.752
6	24.824.777	24.513.849	98.772.633	902.375.552	1.050.486.811
8	20.383.384	21.844.654	84.537.713	765.237.555	892.003.306
10	18.210.332	20.450.263	77.395.929	696.354.882	812.411.406
16	15.540.067	18.637.362	68.420.932	609.781.032	712.379.393
20	14.821.362	18.127.601	65.961.622	586.067.325	684.977.910
40	13.670.113	17.288.919	61.977.915	547.673.705	640.610.652
80	13.289.883	17.005.475	60.649.284	534.875.831	625.820.473
100	13.237.835	16.966.413	60.466.888	533.119.260	623.790.396

Na busca do ótimo econômico da unidade, os dados acima mostrados devem ser somados aos dados da Tabela 4.4.1-2 para se ter o investimento total da unidade. Assim, tem-se a seguinte tabela:

Tabela 4.4.2-2. Custo total da unidade de absorção, em R\$ de 2018.

Número	Custo da Bomba		Custo da Colur	Custo da Coluna		
de estágios	Equipamento	Eletricidade	Vaso	Recheio	— Custo Total	
4	137.243.680	1.271.004.498	9.408.539	2.974.546	1.420.631.263	
6	98.772.633	902.375.552	7.867.433	3.367.784	1.012.383.402	
8	84.537.713	765.237.555	7.467.451	3.935.542	861.178.261	
10	77.395.929	696.354.882	7.414.173	4.565.404	785.730.388	
16	68.420.932	609.781.032	7.849.323	6.585.256	692.636.543	
20	65.961.622	586.067.325	8.290.200	7.982.754	635.435.636	
40	61.977.915	547.673.705	10.629.986	15.154.030	668.301.901	
80	60.649.284	534.875.831	14.748.423	29.768.729	640.042.267	
100	60.466.888	533.119.260	16.576.417	37.188.654	647.351.219	

Como se percebe, o ótimo econômico é a configuração de 20 estágios. Assim sendo a coluna fica com o seguinte custo

$$C_F = R$$
\$ 16.272.954

Para a bomba, o preço da eletricidade teve que ser considerado, conforme explicado na sua seção, na avaliação do ótimo econômico. Entretanto, como o preço dos serviços auxiliares entrarão apenas no capítulo de avaliação econômica, o valor mostrado abaixo diz respeito apenas à bomba em si e seu motor.

$$C_F = R$$
\$ 65.961.622

4.5 SEÇÃO DA TORRE DE DESTILAÇÃO

Diferentemente da maioria dos equipamentos deste trabalho, as unidades da seção da torre de destilação devem ser projetadas para vários cenários de número de estágios da torre e deve-se escolher um ótimo econômico global. Em outras palavras, a planta terá uma unidade com todos os equipamentos projetados para cada número de estágios da torre e a configuração escolhida será a que apresentar o menor custo.

Nesse contexto, os equipamentos contemplados nessa otimização econômica são os vasos C-7 e C-8, os trocadores F-2 e E-7 e a bomba de refluxo da torre.

4.5.1 Torre de Destilação (Stripping) C-7

A torre de destilação C-7 é um vaso cilíndrico de diâmetro constante com pratos valvulados cujo objetivo é eliminar os componentes leves misturados ao gasóleo, de modo que as especificações de ponto de fulgor sejam cumpridas. A alimentação da coluna é a fase líquida leve (orgânica) proveniente do separador de baixa pressão C-5, pré-aquecida no trocador de calor E-4.

O gás que sai pelo topo é parcialmente condensado no trocador de calor E-7 e enviado ao vaso pulmão C-8. A corrente gasosa é comprimida no compressor K-3 para ser enviado à refinaria para eliminação de H₂S e recuperação de metano, etano, propano e butano. A corrente líquida, uma nafta sem estabilizar, é em parte enviada de volta a torre como refluxo e o restante é enviada à refinaria para recuperação.

A corrente que se obtém pelo fundo é o gasóleo dessulfurado, o produto de interesse, que é resfriado nos trocadores E-4, onde é feito também o pré-aquecimento da alimentação da coluna, e E-6 para alcançar a temperatura adequada para o armazenamento. Parte dessa corrente de fundo não é resfriada e sim aquecida no forno F-2, onde é vaporizada e retorna à torre como refluxo de fundo.

Como é possível perceber a operação de uma coluna de destilação envolve o funcionamento de vários equipamentos simultaneamente e as possíveis condições de operação são inúmeras. Para o dimensionamento dessa coluna foram simulados cinco casos distintos, com 20, 40, 60, 80 e 100 etapas teóricas (*N*).

O primeiro parâmetro de desenho a ser calculado foi o número de etapas reais (N_{reais}) , considerando uma eficiência de prato de 80%. Todas as etapas de cálculo foram realizadas para os cinco casos em avalição.

$$N_{reais} = \frac{N}{0.8} {(4.5.1-1)}$$

Para a determinação do diâmetro da torre (D_{torre}) , foram calculados a velocidade limite pela Equação (4.3.1.1-1), a área da seção transversal mínima da coluna (S_{min}) , que depende da vazão máxima de vapor $(Q_{vapor,máx})$, obtida no simulador e o diâmetro mínimo (D_{min}) .

$$S_{min} = \frac{Q_{vapor,m\acute{a}x}}{v_{lim}} \tag{4.5.1-2}$$

$$D_{min} = \sqrt{\frac{4 \cdot S_{min}}{\pi}} \tag{4.5.1-3}$$

$$D_{torre} = 1.2 \cdot D_{min} \tag{4.5.1-4}$$

A altura da torre (H_{torre}) foi calculada por meio da equação abaixo:

$$H_{torre} = 0.61(N_{reais} - 1) + 3 \cdot 0.91 + H_{fundo}$$
 (4.5.1-5)

Onde H_{fundo} é a altura de líquido que se acumula no fundo da torre, calculada a partir vazão volumétrica do produto de fundo (Q_{fundo}) , obtida no simulador, e do diâmetro da torre.

$$H_{fundo} = \frac{Q_{fundo}}{\frac{\pi D_{torre}^2}{4}} \tag{4.5.1-6}$$

Dado que a operação da coluna ocorre a uma pressão de 6,8 kg/cm², a pressão de projeto considerada é de 8,6 kg/cm². A partir da pressão de projeto e do diâmetro foi determinada a espessura da carcaça da torre pela Equação (4.1-3), em que a SEC, S_t e E valem respectivamente 3 mm, 1055 e 0,85. A partir da altura, da espessura e do diâmetro determina-se o peso da torre pela Equação (4.1-4), em que a densidade do material utilizado para construção do vaso é o aço carbono, C_w vale 1,15 pelo complexidade dos componentes internos da coluna de destilação.

A partir dos parâmetros obtidos até então é possível calcular o custo dos vasos e dos pratos valvulados, assim como dimensionar os outros equipamentos envolvidos na operação da coluna e seus respectivos custos, possibilitando a escolha de um ótimo econômico dentre os cinco casos analisados. Os custos da carcaça são calculados por meio da equação (4.2-8). Já os custos dos pratos e o custo final da torre, já fazendo as conversões monetárias, são dados pelas seguintes equações:

$$C_{pratos} = N_{reais}(130 + 146D_{torre}^2) (US\$ 2006)$$
 (4.5.1-7)

$$C_F = \left(US\$ \ C_{vert,cs} + C_{pratos}\right) \frac{603 \ (CEPCI\ 2018)}{500 \ (CEPCI\ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$
(4.5.1-8)

Nas tabelas abaixo estão apresentados os custos, já com as devidas correções monetárias realizadas, e as dimensões de cada uma das cinco colunas consideradas nesta análise.

Tabela 4.5.1-1. Dimensões da torre em função do número de etapas e da razão de refluxo.

N	N_{reais}	R_D	D _{torre} (m)	H _{torre} (m)	e(mm)	W_v (kg)
20	25	840875,89	754,88	3643,67	28,9	49896197053
40	50	3734,98	50,84	248,17	39,3	28871285
60	75	109,72	9,61	49,34	65,7	993062
80	100	20,07	7,89	41,04	78,2	781673
100	125	3,37E-01	7,09	37,20	94,0	750996

Tabela 4.5.1-2. Custos da coluna em função do número de estágios.

N	$C_{carcaça}(R\$)$	C_{pratos} (R\$)	$C_F(R\$)$
20	3.026.973.746	10.434.967.626	13.461.941.372
40	34.548.001	94.677.621	129.225.623
60	4.572.606	5.120.264	9.692.871
80	3.960.625	4.623.045	8.583.671
10			
0	3.866.571	4.686.874	8.553.445

4.5.2 Vaso Pulmão C-8

O vaso pulmão, ou vaso regulador, C-8 é responsável pelo acúmulo de líquido proveniente do condensador E-7 e garantir vazão constante de refluxo na coluna de destilação C-7. Esse vaso é projetado para que esteja com metade de seu volume ocupado por líquido considerando um tempo de retenção de 0,25 h. Sendo assim, o volume de líquido ($V_{líquido}$) e o volume total do pulmão ($V_{pulmão}$) são dados por:

$$V_{liquido} = (Q_{destilado} + Q_{refluxo})\tau \tag{4.5.2-1}$$

$$V_{pulm\tilde{a}o} = 2V_{liquido} \tag{4.5.2-2}$$

Na equação, $Q_{destilado}$ é a vazão volumétrica de destilado e $Q_{refluxo}$ é a vazão volumétrica de refluxo, ambas obtidas no simulador para cada caso considerado para a coluna de destilação. Foi escolhida uma relação entre largura e diâmetro do pulmão $\left(\frac{L}{D}\right)$ igual a 5, portanto, o diâmetro do pulmão, que é um vaso cilíndrico, é dado por:

$$D_{pulm\tilde{a}o} = \sqrt[3]{\frac{4V_{pulm\tilde{a}o}}{\pi\left(\frac{L}{D}\right)}}$$
 (4.5.2-3)

A partir do diâmetro, calcula-se a largura (L) do vaso,

$$L = 5D_{mulm\tilde{a}o} \tag{4.5.2-4}$$

A partir da Equação (4.1-3), calcula-se a espessura com os seguintes parâmetros: $P_{proj}=7.6\,\frac{kg}{cm^2},~SEC=3~mm,~S_t=1055~e~E=0.85.$ Por meio da Equação (4.1-4), o peso do vaso é calculado de maneira semelhante à da carcaça da torre de destilação, porém com $C_w=1.08$ visto que não possui muitos componentes internos. E a partir do peso foi calculado o custo do vaso construído em aço carbono, que é horizontal e cilíndrico, utilizando a equação para um vaso horizontal em aço carbono (Equação (4.1-5)). A conversão monetária foi feita conforme a equação abaixo:

$$C_F = US\$ \ C_{vert,cs} \ \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \ \frac{4,16 \ R\$}{1 \ US\$}$$
 (4.5.2-5)

As dimensões e os custos do vaso regulador para cada combinação de número de etapas e razão de refluxo das colunas de destilação aqui consideradas estão na tabela abaixo.

Tabela 4.5.2-1. Dimensões e custo do vaso pulmão em função do número de estágios.

N	R_D	D _{pulmão} (m)	L (m)	e (m)	W_{v} (kg)	$C_F(R\$)$
20	840875,89	41,17	205,84	178,3	1300551	4.664.240
40	3734,98	6,77	33,84	31,8	181550	1.422.512
60	109,72	2,09	10,47	11,9	55900	695.273
80	20,07	1,20	6,02	8,1	32137	495.236
100	3,37E-01	0,48	2,40	5,1	12814	279.936

4.5.3 Trocadores de calor associados à torre de destilação

Existem dois trocadores de calor associados à torre de destilação, a saber, o condensador E-7 e o forno F-2. Ambos foram dimensionados, junto ao número de pratos, de modo a obter o melhor custo-benefício para o projeto.

O trocador E-7 é o cooler que opera por água de refrigeração e é responsável por realizar a condensação parcial do produto de topo da torre de destilação para que este possa ser redirecionado para a coluna e maximizar a troca entre as fases. Esta unidade será abordada mais detalhadamente no item 4.8.5.

O forno F-2 é o forno que aquece e evapora o produto de fundo da torre de *stripping* e envia o fluido volatilizado de volta para a torre, dando continuidade ao processo de destilação. Esta unidade será abordada mais detalhadamente no item 4.9.4.

Para ambos trocadores, foi necessário levar em consideração não somente o preço de fabricação dos equipamentos como também os consumos de água de refrigeração e combustível, dada a grande relevância dos custos operacionais na viabilidade econômica do projeto.

4.6 BOMBAS

Para o projeto das bombas, foi necessário calcular alguns parâmetros como a potência do motor, pressão de aspiração e de impulsão, carga da bomba e NPSH a fim de projetar as bombas P-1, P-2 e P-3 que possuem as seguintes funções: Impulsionar o gasóleo do pulmão C-1, impulsionar a água de caldeiras para o trocador de calor E-2 e impulsionar MEA pobre para a torre de absorção, respectivamente. Para o projeto, utilizaram-se valores obtidos com auxílio da simulação feita no simulador de processos Aspen HYSYS, como altura dos recipientes, densidade do fluido e pressões.

Foram escolhidas bombas centrífugas de fluxo contínuo. Foi necessário a implantação de bombas reservas para cada uma delas, de modo a substituí-las em caso de falhas no funcionando das mesmas.

De maneira geral, o funcionamento de uma bomba centrífuga ocorre quando o líquido ou gás adentra na bomba pelo eixo que atinge o centro do rotor e este lança o fluido através da força centrífuga para periferia, a energia cinética adquirida pelo fluido nesse trajeto se converte em energia de pressão na entrada da voluta e depois é eliminado pela descarga da bomba.

Primeiramente, foi preciso calcular a potência do motor da bomba, para isso, foi necessário calcular a potência absorvida, W_{abs} , e a potência hidráulica, W_{hid} . A potência absorvida é dada pela Equação 4.6-1, em CV.

$$W_{abs} = \frac{Q.\Delta P}{27.4} \tag{4.6-1}$$

Sendo:

ΔP é a diferença de pressão entre a entrada e a saída da bomba em kg/cm² Q é a vazão de impulsão em m³/h.

Como o consumo de energia é maior do que a potência absorvida devido a perdas de calor por atrito e perdas de calor no motor considera-se, então, a eficiência hidráulica da bomba, η_{hid} , na qual os valores variam entre 0,3 e 0,6. Para o cálculo utilizou-se o valor médio de 0,45.

A potência hidráulica, W_{hid} , é dada pela Equação 4.6-2.

$$W_{hid} = \frac{W_{abs}}{\eta_{hid}} \tag{4.6-2}$$

Por fim, para encontrar o valor real da potência é necessário considerar a perda de calor no motor, cuja eficiência η_{ele} , vale de 0,9. A potência do motor, W_{motor} , é dada pela Equação 4.6-3.

$$W_{motor} = \frac{W_{hid}}{\eta_{ele}} \tag{4.6-3}$$

A vazão de projeto mínima e máxima deve ser calculada pelas Equações 4.6-4 e 4.6-5:

$$Q_{min} = 0.6. Q (4.6-4)$$

$$Q_{max} = 1, 2.Q (4.6-5)$$

A pressão de aspiração (P aspiração), calculada pela Equação 4.6-6, depende da pressão na qual o fluido se encontra na unidade anterior, sendo a primeira bomba por exemplo calculada pela pressão de gasóleo nos tanques (P_1), da carga hidrostática devido à altura de líquido ($h_{líquido}$), da aceleração da gravidade (g) e da densidade mássica do fluido ($p_{líquido}$). A altura de líquido corresponde à elevação em relação ao solo da unidade anterior à bomba, que depende da vazão utilizada, admitindo valores de 2,5 a 6 metros.

$$P_{aspirac\tilde{a}o} = P_1 + h_{liquido} \cdot g \cdot \rho_{liquido} - \Delta P_{caraa}$$
 (4.6-6)

A pressão máxima de admissão é obtida a partir da pressão de projeto no recipiente anterior à bomba e do valor máximo da altura de líquido, considerando que o recipiente anterior está completamente preenchido.

A pressão de impulsão ($P_{impulsão}$), calculada pela Equação 4.6-7, depende da pressão na qual o fluido deve se encontrar na unidade seguinte (P_2), da carga

hidrostática devido à altura de líquido ($h_{liquido}$), da aceleração da gravidade (g), da densidade mássica do fluido ($\rho_{liquido}$).

$$P_{impuls\tilde{a}o} = P_2 + h_{liquido} \cdot g \cdot \rho_{liquido} + \Delta P_{carqa}$$
 (4.6-7)

A pressão máxima de impulsão é obtida a partir do valor máximo da variação pressão.

A variação de pressão (ΔP_{bomba}) que a bomba deve fornecerao líquido é dada pela diferença entre as pressões de impulsão e admissão mostrado na Equação 4.6-8.

$$\Delta P_{bomba} = P_{impuls\tilde{a}o} - P_{admiss\tilde{a}o} \tag{4.6-8}$$

Essa variação de pressão foi superdimensionada em 110% para as bombas P-01, P-02 e P-03.

A carga ou head (H) de uma bomba centrífuga é a altura de fluido que esta pode impulsionar e é definida pela razão entre a pressão diferencial e o peso do fluido, como mostrado na Equação 4.6-9.

$$H[m] = \frac{\Delta P[Pa]}{\left(\rho \left[\frac{kg}{m^3}\right], g\left[\frac{m}{c^2}\right]\right)} \tag{4.6-9}$$

A eficiência hidráulica leva em consideração o fato de que o consumo de energia é maior que a potência absorvida devido a perdas de calor por atrito e no motor. Seus valores variam entre 0,45. Já a eficiência elétrica considera a perda de calor no motor e vale 0,9.

NPSH (Net Positive Suction Head) é, traduzindo o termo, Carga Positiva de Sucção da Bomba. Para evitar a cavitação, os fabricantes definem, em função da vazão, qual o valor da energia que deve existir no bocal (flange) de sucção da bomba, para que, na entrada do impelidor, a pressão esteja ainda superior à da vaporização. Esse é o NPSH *requerido*.

NPSH requerido (NPSHr): depende das características da bomba – velocidade de rotação e tamanho do rotor –, sendo fornecido pelo fabricante e determinado por testes de laboratório. Está relacionado à energia necessária para vencer as perdas do bocal de sucção até as pás do rotor. O item c) da Figura 24 é

uma representação típica de uma curva do NPSHr em função da vazão fornecida pelo fabricante.

NPSH disponível (NPSHd): depende das características do sistema e está relacionado à quantidade de energia que o fluido possui ao entrar no bocal de sucção da bomba. Depende unicamente das condições de instalação da tubulação no lado de sucção da bomba. Sendo o NPSHd o valor da diferença entre a energia total absoluta na entrada da bomba e a pressão de vapor do líquido à temperatura de bombeamento, a Equação 4.6-10 representa o cálculo do NPSHd:

$$NPSH_d = \frac{P_{admiss\~ao} - P_{vapor}}{\rho_{fluido} \cdot g}$$
 (4.6-10)

O NPSH requerido depende da bomba e é fornecido pelo fabricante. Para bombas que operam com vazões pequenas, menores que 100 m³/h, pode-se considerar um valor razoável de NPSH disponível de 3 metros. Já para as bombas que operam com vazões maiores que 350 m³/h, pode-se considerar um valor de 6 metros.

O custo da bomba centrífuga depende dos custos do motor e da carcaça. O custo do motor (C_{motor}) é função da potência da bomba em kW, enquanto o custo da carcaça ($C_{carcaça}$) depende da vazão de fluido de entrada, em L/s, como mostrado nas Equações 4.6-11 e 4.6-12.

$$C_{motor} (US\$2006) = (920 + 600.W_m^{0,7})$$
 (4.6-11)

$$C_{carcaca} (US\$2006) = (3300 + 48.Q^{1,2})$$
 (4.6-12)

O custo total da bomba é dado pela soma dos custos do motor e da carcaça. É importante observar que em uma planta química sempre se instalam duas bombas, para que no caso de falha da primeira bomba, a segunda entre em ação e o sistema permaneça em operação normal. Por isso, o custo das bombas é multiplicado por 2, como mostrado na Equação 4.6-13.

$$C_{bombas} (US\$2006) = 2.(C_{motor} + C_{carcaca})$$
 (4.6-13)

O valor obtido refere-se ao custo do equipamento tendo como ano-base o de 2006. Para atualizar esse custo, foram utilizados os valores de CEPCI no ano de 2006 e no ano de 2018, os quais são, respectivamente, iguais a 500 e 603. Para convertê-los para reais, foi utilizada uma cotação de US\$1 para R\$4,16.

A Tabela 4.6-1 apresenta os parâmetros calculados para o projeto das bombas e seus respectivos valores. Ressalta-se, entretanto, que o valor mostrado para a bomba P-3 diz respeito à bomba ótima encontrada para a otimização da unidade da torre de absorção, sendo a do caso de 20 estágios. Os valores encontrados para os demais casos se encontram na seção da torre.

Tabela 4.6.-1. Parâmetros calculados para o projeto da bomba e seus custos.

Bombas	W _{motor} (kW)	H (m)	P _{adm} (kg/cm ²)	P _{imp} (kg/cm ²)	Q (m ³ /h)	NPSH _{disp}	Custo (R\$)
P-1	1419,16	858,58	5	79	264,97	141,70	5.215.448,10
P-2	32,55	559,21	16	69,3	8,38	169,70	534.268,89
P-3	11.800,00	345,13	5	38,8	9.612,00	93.340,00	65.961.622,92

4.7 COMPRESSORES

Tem-se dois compressores presentes para garantir a alimentação de H2 para a corrente oriunda de C-1, K-1 para garantir a alimentação do H2 de aporte e K-2 para aumentar a pressão da corrente de reciclo para devolver ao sistema de reação. Temse também o compressor K-3 para a corrente de topo da coluna para ser transportado para a refinaria para consequentemente eliminar o H2S presente.

De forma similar às bombas, tem-se que os compressores são projetados com uma vazão mínima igual a 60% da vazão de operação e uma vazão de projeto com um sobre dimensionamento de 120% de sua vazão normal. Todos os três compressores são do tipo centrífugo contínuo.

A pressão de admissão pode ser encontrada pela soma das pressões parciais na entrada do compressor menos a perda de carga das tubulações. Logo, tem-se a seguinte Equação 4.7-1:

$$P_{aspiração} = P_{alimentação} + h_{líquido} \cdot g \cdot \rho_{líquido} - \Delta P_{carga}$$
 (4.7-1)

Nesta equação, tem-se que a pressão da corrente a montante do compressor é a pressão equivalente à altura de alimentação ao solo e é a pressão oriunda da perda de carga por atrito nas tubulações.

Para a pressão de impulsão do compressor temos a Equação 4.7-2:

$$P_{impuls\~ao} = P_{C-2} + h_{l\'auido} \cdot g \cdot \rho_{l\'auido} - \Delta P_{carga}$$
 (4.7-2)

Onde é a pressão no reator C-2, é a pressão da alimentação do reator e é a pressão por perda de atrito.

Temos que o fator de compressibilidade é dado pela razão entre a pressão na impulsão e a pressão de aspiração, como demonstrado na Equação 4.7-3.

$$Z = \frac{P_{admiss\tilde{a}o}}{P_{imvuls\tilde{a}o}} \tag{4.7-3}$$

Desta forma, temos a tabela 4.7-1 com os valores de pressões de admissão, pressões de impulsão e as razões de compressão:

Tabela 4.7.-1. Pressões de admissão e impulsão, e razões de compressão utilizadas no projeto dos compressores.

Compressor	P _{admissão} (kg/cm²)	$P_{impuls ilde{a}o}$ (kg/cm²)	Z
K-1	20,00	49,30	2,47
K-2	39,80	79,00	2,04
K-3	5,80	7,00	1,21

Como temos que as razões de compressibilidade para todos os compressores são menores que 4, podemos admitir que são todos compressores de um único estágio.

Temos que a potência absorvida pelo compressor pode ser calculada pela Equação 4.7-4:

$$Pot_{a} = \frac{n}{n-1} \cdot Z_{1} \cdot R \cdot T_{1} \cdot F \cdot \left[\left(\frac{P_{impuls\~ao}}{P_{admiss\~ao}} \right)^{\frac{n}{n-1}} - 1 \right]$$
 (4.7-4)

Onde n é um fator que depende do tipo de compressor escolhido, Z é o fator de compressibilidade, R a constante dos gases (8,314 J/mol.K), T é a temperatura na admissão e F o fluxo molar do gás. Para compressores centrífugos temos que n é dado pela Equação 4.7-5:

$$n = \frac{1}{1 - m} \tag{4.7-5}$$

E a variável m pode ser calculada pela Equação 4.7-6:

$$m = \frac{\gamma}{\gamma, np} \tag{4.7-6}$$

Onde é a eficiência politrópica do compressor (dado por 0,75 para todos os compressores presentes), e é o coeficiente de Poisson. Com estes dados podemos calcular a potência real do compressor dado pela Equação 4.7-7:

$$Potr = \frac{Pot_a}{np} \tag{4.6-7}$$

Temos também que a temperatura de saída do compressor pode ser encontrada pela Equação 4.7-8:

$$T_2 = T_1 \cdot \left[\left(\frac{P_{impuls\tilde{a}o}}{P_{admiss\tilde{a}o}} \right)^{\frac{n}{n-1}} \right]$$
 (4.7-8)

O custo do compressor centrífugo é função da potência real dele em kW, como mostra a Equação 4.7-9.

$$C_{compressor} (US\$2006) = (8400 + 3100.Potr.0,6)$$
 (4.7-9)

É importante observar que não há necessidade de um compressor reserva. Por isso, o custo dos compressores não é multiplicado por 2.

O valor obtido refere-se ao custo do equipamento tendo como ano-base o de 2006. Para atualizar esse custo, foram utilizados os valores de CEPCI no ano de 2006 e no ano de 2018, os quais são, respectivamente, iguais a 500 e 603. Para convertê-los para reais, foi utilizada uma cotação de US\$ 1 para R\$ 4,16.

A Tabela 4.7-2 apresenta os parâmetros calculados para o projeto dos compressores e seus respectivos valores.

Tabela 4.7-2. Parâmetros calculados para o projeto dos compressores e seus custos.

Compressor	$egin{aligned} Pot_r \ ext{(kW)} \end{aligned}$	γ	Q _{mássica} (kg/h)	η _{poli} (kW)	Custo (R\$)
K-1	461,89	1,382	2.035,39	0,75	13.984.109,50
K-2	3.911,28	1,357	43.884,87	0,75	98.402.991,41
K-3	4,90	1,263	1058,00	0,75	554.709,21

4.8 TROCADORES DE CALOR

Os equipamentos onde são realizadas trocas térmicas entre correntes de processo ou entre uma corrente de processo e um fluido auxiliar são genericamente denominados trocadores de calor. Nestes equipamentos, as correntes de processo são aquecidas ou resfriadas através dos mecanismos condução e convecção, podendo haver ou não mudança de fase, de modo a possibilitar ou facilitar sua utilização em um equipamento subsequente ou seu descarte.

Quando ambas as correntes em um trocador de calor são correntes de processo, diz-se que aquele é um trocador de calor integrado. Em um trocador integrado, o aquecimento de uma corrente de processo se dá através do resfriamento de outra, dispensando o fornecimento ou a retirada de energia por meio de fluidos auxiliares. A integração energética da planta é realizada sempre que possível, pois representa uma redução dos custos totais de operação com a economia de serviços auxiliares.

Os trocadores de calor mais comuns são os do tipo casco-tubo. Neste tipo de trocador um dos fluidos circula por tubos que são dispostos dentro de uma carcaça, por onde circula um segundo fluido. Desta maneira, a troca térmica entre os fluidos ocorre através das paredes dos tubos. A decisão sobre qual dos fluidos vai circular pelos tubos depende de vários fatores, os mais importantes deles sendo a tendência de formar crostas (o que tiver maior coeficiente de formação de crostas vai pelos

tubos), a temperatura (fluidos a temperaturas mais altas vão pelos tubos) e corrosividade (fluidos corrosivos vão pelos tubos).

Em situações onde há escassez de água também é possível utilizar ar como fluido refrigerador, situação na qual o trocador é chamado de aerorrefrigerador e utiliza ventiladores para proporcionar a troca térmica. Como o coeficiente de transmissão de calor do ar é muito menor que o da água, a temperatura de saída do ar de resfriamento é entre 50 e 55°C, enquanto nos trocadores comuns esta pode chegar a 40°C. Além disso, pelo mesmo motivo, é necessária uma vazão muito maior de ar que de água para trocar a mesma quantidade de calor, o que torna esse equipamento mais caro que um trocador comum.

4.8.1 Taxa de troca térmica

A taxa com que calor é trocado em um trocador pode ser quantificada de acordo com:

$$\dot{Q} = U \cdot A \cdot F \cdot \Delta T_{ml}$$

Em que:

Q: taxa de troca térmica

U: coeficiente global de transmissão de calor

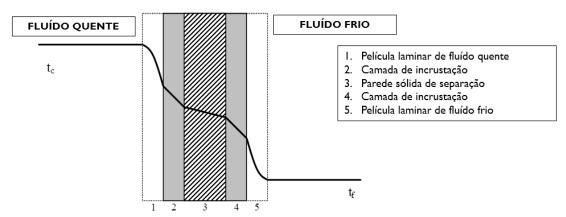
A: área de troca térmica

F: eficiência

 ΔT_{ml} : diferença de temperatura média logarítmica

4.8.2 Coeficiente global de transmissão de calor

O coeficiente global de transmissão de calor, *U*, é construído a partir dos coeficientes individuais de transmissão de calor do fluido frio e do fluido quente e das resistências à transmissão de calor da parede entre esses fluidos e das camadas de deposição presentes em ambos os lados desta parede, de acordo com:


$$\frac{1}{U} = \frac{1}{h_a} + \frac{1}{h_f} + r_q + r_f + \frac{e}{k}$$

Em que:

U é o coeficiente global de transmissão de calor

 h_a é o coeficiente individual de transmissão de calor do fluido quente

 h_f é o coeficiente individual de transmissão de calor do fluido frio r_q é a resistência à transmissão de calor das incrustações do lado quente r_f é a resistência à transmissão de calor das incrustações do lado frio e é a espessura da parede de separação entre os fluidos e é a condutividade térmica do material da parede de separação

Figura 4.8.2.1 - Representação esquemática de um trocador de calor. *Fonte:* Notas de aula de Projeto de Engenharia Química 1, Unidade 3.2.

Geralmente a parede de separação entre o fluido frio e o fluido quente é construída com material metálico e tem baixa espessura; nestes casos, o termo $\frac{e}{k}$ é muito pequeno e pode ser desprezado.

4.8.3 Área de Troca Térmica

A área de troca térmica corresponde à área da superfície de contato entre o fluido frio e o fluido quente dentro do trocador de calor. Ela pode ser aumentada conforme mais tubos são adicionados dentro da carcaça do trocador.

4.8.4 Diferença de temperatura média logarítmica

A diferença de temperatura média logarítmica pode ser calculada da seguinte maneira:

$$\Delta T_{ml} = \frac{\left(T_{q,s} - T_{f.e}\right) - \left(T_{q,e} - T_{f,s}\right)}{\ln \ln \frac{\left(T_{q,s} - T_{f,e}\right)}{\left(T_{q,e} - T_{f,s}\right)}}$$

Em que:

 ΔT_{ml} é a diferença de temperatura média logarítmica

 $T_{a,e}$ é a temperatura de entrada do fluido quente

 $T_{a,s}$ é a temperatura de saída do fluido quente

 $T_{f,e}$ é a temperatura de entrada do fluido frio

 $T_{f,s}$ é a temperatura de saída do fluido frio

4.8.5 Trocadores de calor da planta

Os trocadores de calor do tipo casco-tubo utilizados na planta são E-1, E-3, E-4, E-6 e E-7. O tipo TEMA (*Tubular Exchangers Manufacturers Association*) de cabeçote escolhido para operação destes equipamentos foi o B, pois possibilita uma manutenção adequada sem a remoção dos tubos. O tipo de casco escolhido foi o E por apresentar o melhor custo-benefício. Já cabeçote de retorno adotado foi o tipo U, de modo a mitigar os problemas de vibração dos tubos durante a operação. Todos os trocadores casco-tubo foram projetados como BEUs, exceto pelo E-3, que é um BEM. A diferença deste último trocador explica-se pelo fato de que ele não apresentou problemas de vibração dos tubos, possibilitando uma escolha mais econômica.

Os coeficientes de formação de crosta adotados foram 0,0002 h.m².C.kcal⁻¹ para as correntes de hidrocarbonetos e 0,0004 h.m².C.kcal⁻¹ para as correntes de água de refrigeração.

O E-1 é um trocador BEU que integra a corrente afluente ao forno F-1 e o efluente do reator C-3, atuando, portanto, como pré-aquecimento para a primeira e pré-resfriamento para a segunda. Para prevenir corrosão por hidrogênio e compostos de enxofre, a construção do equipamento foi projetada com aço inoxidável. Sua área de troca é de 64,9 m².

O trocador de calor E-2 tem como objetivo completar o arrefecimento do efluente do reator, que foi parcialmente resfriado pela unidade E-1. Esse trocador de calor é um aerorrefrigerador que irá diminuir a temperatura do efluente de 295,87 °C para 55 °C usando o ar ambiente como material refrigerante. Como há uma grande variação de temperatura e um alto fluxo de efluente, a quantidade de calor retirada será também massiva. Ar é um material gratuito e praticamente infinito, porém ele não é muito eficiente para a troca térmica, sendo assim uma grande quantidade de ar deve de ser usada para resfriar o efluente. Uma vantagem do uso de ar é seu baixo

coeficiente de formação de crosta, que é igual a 0,000116*h.* m^2 . °*C.* $kcal^{-1}$, o fluido dos tubos por sua vez tem este coeficiente igual a 0,0002*h.* m^2 . °*C.* $kcal^{-1}$. Para isso são usados ventiladores que irão forçar o fluxo de ar nos tubos aletados deste trocador de calor. A unidade possui 11 compartimentos, cada um deles contendo dois ventiladores, que por sua vez resfriam cada qual uma seção de tubos. Ao todo, há 22 ventiladores em E-2. O ar entra a pressão atmosférica e 32 °C e sai a quase mesma pressão e 99,7 °C. O efluente sai do trocador a 54,23 °C, o que contribui para a operação do separador C-3. A área total de troca de calor é igual a 1551,1 m², com o superdimensionamento, esta área será igual a 1706,21 m².

O trocador E-3 é um cooler tipo BEM, construído com aço carbono. Possui três carcaças em paralelo e área de troca igual a 578,05m². Seu objetivo é adequar a temperatura do fluido afluente ao separador C-4.

O trocador E-4 integra a corrente afluente à torre de destilação com o seu produto de fundo. É um trocador tipo BEU construído com aço carbono e área de troca igual a 157,74 m². Sua implementação possibilita uma redução no custo da operação do trocador E-6 e dispensa o uso de vapor de caldeira para aquecimento da vazão de entrada da torre.

O trocador E-6 é um cooler que, utilizando água de refrigeração, completa o resfriamento do produto de fundo da torre de destilação até a temperatura desejada de 40°C, de modo a viabilizar o armazenamento do produto em condições adequadas. Dada a grande diferença de temperatura entre a entrada e a saída do fluido quente, o trocador precisou ser projetado com grandes dimensões, possuindo 9 carcaças, 3 séries de 3 em paralelo, e área de troca igual a 4099,92 m². O equipamento utilizado também é construído com aço carbono.

O trocador E-7 é um cooler que opera por água de refrigeração e é responsável por condensar o produto de topo da torre de destilação. É um trocador tipo BEU, construído com aço carbono. Sua área de troca é 7,81 m², valor que pode ser minimizado devido ao número de pratos na torre, que possibilitou a escolha de trocadores mais econômicos e menos custosos. Outro fator que contribuiu para sua pequena área de troca foi o fato de se tratar de um condensador parcial, que requer uma quantidade menor de calor trocado.

4.8.6 Avaliação Econômica

A avaliação econômica dos trocadores de calor E-1, E-3, E-4, E-6 e E-7 foi realizada a partir das folhas de especificações dos equipamentos, seguindo o passo a passo definido por SEIDER (2009) para trocadores casco-tubo. Foram utilizadas as seguintes equações:

$$C_F = C_B \cdot F_M \cdot F_P \cdot F_L$$

$$Fp = 0.9803 + 0.018 \left(\frac{P}{100}\right) + 0.0017 \left(\frac{P}{100}\right)^2$$

$$F_M = a + \left(\frac{A}{100}\right)^b$$

Em que:

 C_F é o custo final;

 C_B é o custo base, que varia de acordo com o design do trocador;

 ${\it F_{\rm M}}$ é o fator de correção para o material utilizado diferente de aço convencional;

 F_p é o fator de correção da pressão de operação do equipamento.

 F_L é o fator de correção para o comprimento dos tubos;

P é a pressão no casco em psig;

A é a área da superfície em pés ao quadro;

a e b são coeficientes que dependem do material para construção do casco e do tubo.

Abaixo estão as equações do custo básico para cada trocador de acordo com o seu design. (SEIDER, 2009)

Tabela 4.8.6.1 - Equações do custo básico para os trocadores de calor.

Cabeçote fixo	$C_B = exp\{11,0545 - 0.9228 [ln(A)] + 0.09861[ln(A)]^2\}$
Cabeçote flutuante	$C_B = exp\{11,667 - 0,8709 [ln(A)] + 0,09005.[ln(A)]^2\}$
Tubos em U	$C_B = exp\{11,147 - 0.9186 [ln(A)] + 0.09790 [ln ln (A)]^2\}$

Para o cálculo do fator de correção do comprimento do tubo, foram utilizados os dados da tabela abaixo para construção do gráfico comprimento versus fator de correção em pés (ft) e a equação obtida nos fornece o fator de correção adequado.

Tabela 4.8.7 correlações entre comprimento do tubo e fator de correção. (SEIDEL, p. 570, 2009).

Tube Length (ft)	F_L
8	1.25
12	1.12
16	1.05
20	1.00

Figura 4.7.6.2 - Tabela de correlação entre comprimento do tubo (ft) e fator de correção. (SEIDEL, p. 570, 2009).

Figura 4.8.6.1: Gráfico do comprimento do tubo em pés versus fator de correção.

Trocador E-1 (design BEU)

$$C_B = exp\{11,147 - 0.9186 [ln(635,07)] + 0.09790[ln ln (635,07)]^2\} = US$ 10.896,56$$

$$F_{M} = 2.7 + \left(\frac{635,07}{100}\right)^{0.07} = 3,836 \ para \ aço \ inox$$

$$Fp = 0.9803 + 0.018 \left(\frac{681,68}{100}\right) + 0.0017 \left(\frac{681,68}{100}\right)^{2} = 1,181$$

$$F_{L} = -0.0205 (19,68) + 1,392 = 0.988$$

$$C_{F} = C_{B}.F_{M}.F_{P}.F_{L} = US\$ \ 48.863,63$$

$$C_{F} = US\$ \ 48.863,63 \ \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_{F} = R\$ \ 245.146,87$$

Trocador E-3 (design BEM)

 $C_B = exp\{11,0545 - 0.9228 [ln(6162,34)] + 0.09861[ln(6162,34)]^2\} = US\$ 36.709,28$

$$F_{M} = 1 + \left(\frac{6162,34}{100}\right)^{0} = 1$$

$$Fp = 0,9803 + 0,018 \left(\frac{43,51}{100}\right) + 0,0017 \left(\frac{43,51}{100}\right)^{2} = 0,988$$

$$F_{L} = -0,0205 (20,01) + 1,392 = 0,9817$$

$$C_{F} = C_{B}.F_{M}.F_{P}.F_{L} = US\$ 35.622,52$$

$$C_{F} = US\$ 35.622,52 \frac{603 (CEPCI 2018)}{500 (CEPCI 2006)} \frac{4,16 R\$}{1 US\$} \times 3$$

$$C_{F} = R\$ 536.150,31$$

Trocador E-4 (design BEU)

$$C_B = exp\{11,147 - 0.9186 [ln(1697,89)] + 0.09790 [ln ln (1697,89)]^2\} = US\$ 16.817,89$$

$$F_M = 1 + \left(\frac{6162,34}{100}\right)^0 = 1$$

$$Fp = 0.9803 + 0.018 \left(\frac{130,53}{100}\right) + 0.0017 \left(\frac{150,53}{100}\right)^2 = 1$$

$$F_{L=} - 0.0205 (20,01) + 1.392 = 0.9817$$

$$C_F = US\$ 16.621,14$$

$$C_F = US\$ 16.621,14$$

$$C_F = R\$ 83.387,58$$

Trocador E-6 (design BEU)

$$C_{B} = exp\{11,147 - 0,9186 \left[\ln(44.131,17)\right] + 0,09790 \left[\ln\ln(44.131,17)\right]^{2}\}$$

$$= US\$ \ 273.916,64$$

$$F_{M} = 1 + \left(\frac{84,06}{100}\right)^{0} = 1$$

$$Fp = 0,9803 + 0,018 \left(\frac{130,53}{100}\right) + 0,0017 \left(\frac{150,53}{100}\right)^{2} = 1$$

$$F_{L} = -0,0205 \left(17,71\right) + 1,392 = 1,02$$

$$C_{F} = C_{B}.F_{M}.F_{P}.F_{L} = US\$ \ 283.694,29$$

$$C_{F} = US\$ \ 8.093,35 \frac{603 \left(CEPCI\ 2018\right)}{500 \left(CEPCI\ 2006\right)} \frac{4,16 \ R\$}{1 \ US\$} \times 9$$

$$C_{F} = R\$ \ 12.809.546,05$$

$$C_B = exp\{11,147 - 0.9186 \left[\ln(84,06)\right] + 0.09790 \left[\ln\ln(84,06)\right]^2\} = US\$ 8.093,35$$

$$F_M = 1 + \left(\frac{84,06}{100}\right)^0 = 1$$

$$Fp = 0.9803 + 0.018 \left(\frac{130,53}{100}\right) + 0.0017 \left(\frac{150,53}{100}\right)^2 = 1$$

$$F_{L=} - 0.0205 (5,90) + 1.392 = 1,27$$

$$C_F = US\$ 10.354,97$$

$$C_F = US\$ 8.093,35 \frac{603 (CEPCI\ 2018)}{500 (CEPCI\ 2006)} \frac{4,16\ R\$}{1\ US\$}$$

$$C_F = R\$ 51.950,47$$

A avaliação econômica do aerorrefrigerador E-2 foi realizada a partir da folha de especificações do aparelho e seguindo o passo a passo definido por SEIDER (2009) para este equipamento.

Fazendo o quociente da vazão mássica de ar (M_{ar}) pela densidade média do ar (ρ_{ar}) e considerando as devidas conversões de unidades, encontra-se a vazão volumétrica (Q_{ar}) , como mostrado abaixo, onde ACFM é *actual cubic feet per minute*, do inglês:

$$Q_{ar} = \frac{M_{ar}}{\rho_{ar}} = \frac{7.159.115 \frac{kg}{h} \frac{1 h}{60 \text{ min}}}{1.2 \frac{kg}{m^3} \frac{1 m^3}{35,32 \text{ ft}^3}} = 3.511.943 \frac{ft^3}{min} \text{ ou ACFM}$$

Dividindo-se a vazão volumétrica encontrada acima pelos 22 ventiladores da unidade, encontra-se a carga unitária de cada ventilador (Q_{un}) :

$$Q_{un.} = \frac{3.511.943 \ ft^3}{22 \ ventiladores} = 159.634 \ \frac{ACFM}{ventilador}$$

Para as condições de operação estabelecidas, os ventiladores do tipo axial e axial com palheta podem ser empregados. Opta-se então pelo emprego do tipo axial simples construído em aço carbono devido ao seu menor custo. (SEIDER, 2009)

Como a diferença de pressão do equipamento (0,2 kPa ou 0,804 in H_20) é menor do que 4 in H_20 , os termos F_M e F_P são iguais a 1. Dessa forma, o custo total do equipamento, já incluindo o motor, pode ser calculado, já fazendo as devidas correções monetárias, substituindo o valor da carga unitária por ventilador encontrado acima nas equações abaixo.

$$C_F = C_B . F_M . F_P$$

$$C_F = C_B = exp\{6,12905 - 0,40254.ln(Q_{un.}) + 0,05787.[ln(Q_{un.})]^2\}$$

$$C_F = exp\{6,12905 - 0,40254.ln(159.634) + 0,05787.[ln(159.634)]^2\}$$

$$C_F = \frac{US\$ \ 14.961}{ventilador} \ 22 \ ventiladores$$

$$= US\$ \ 329.158 \ \frac{603 \ (CEPCI \ 2018)}{500 \ (CEPCI \ 2006)} \ \frac{4,16 \ R\$}{1 \ US\$}$$

$$C_F = R\$ \ 1.651.372$$

4.9 FORNOS

Um forno é um equipamento utilizado para evaporar ou aquecer uma corrente de fluido de processo; em um forno, uma chama é produzida mediante queima de combustível em um espaço confinado, feito de material refratário. O calor é transmitido através de radiação para o fluido que circula por tubos dentro do forno.

4.9.1 - Tipos de forno

Existem dois tipos principais de forno, que são:

Retangular de caixa gêmea: esse tipo de forno é grande e possui grande quantidade de queimadores.

Cilíndrico: esse tipo de forno é menor que o retangular e possui poucos queimadores.

4.9.2 - Eficiência do forno

A eficiência do forno pode ser calculada como segue:

$$\epsilon = \frac{\dot{Q}_{abs}}{\dot{Q}_{lib}}$$

Em que:

 ϵ é a eficiência do forno

 \dot{Q}_{abs} é o calor útil absorvido pelo fluido de processo

 \dot{Q}_{lib} é o calor liberado na queima do combustível

4.9.3 Regiões do forno

Fornos possuem em três regiões distintas. São elas:

Radiante: a região radiante é uma câmara revestida de material refratário onde é realizada a queima do combustível. É na região radiante que se encontram os tubos por onde circula o fluido a ser aquecido pelo forno. A fumaça abandona essa região a cerca de 500°C; se os gases da combustão não fossem aproveitados nas demais regiões, a eficiência do forno seria bastante prejudicada.

Convectiva: a região convectiva consiste em uma bancada de tubos dispostos acima da região radiante de modo que os gases da combustão que saem daquela região cedem energia ao fluido de processo antes que ele entre na região radiante.

Pré-aquecimento. Na região de pré-aquecimento o ar atmosférico que será utilizado na combustão é pré-aquecido en quanto circula no interior de tubos dispostos sobre a saída de gases de combustão da área convectiva, o que aumenta a eficiência da combustão. Quando saem da região de pré-aquecimento, a temperatura dos gases da combustão está em torno de 150°C.

4.9.4 Os fornos do projeto

O forno F-1 é um forno retangular que tem como objetivo transformar toda a mistura de hidrogênio com gás óleo para o estado vapor para que assim este possa entrar no reator C-2 na temperatura necessária para a reação. Como descrito na folha de projeto, o combustível para esse forno deve ser o próprio produto da refinaria, ou seja, metano, que entra a uma temperatura de 32 °C e pressão de 2 bar. O ar para auxiliar na combustão tem sua entrada como natural, a uma temperatura de 32 °C e 1 bar. Como a composição do fluxo dentro dos tubos contém em sua maioria gás hidrogênio e a presença de ácidos, é necessário o uso de um material especial, o aço inoxidável 321, para a formação dos tubos.

Um dos maiores desafios para a construção do forno foi a grande vazão do lado dos tubos. Um forno cilíndrico não era o suficiente para o fluxo de gás óleo, então

foi feito um forno retangular de caixas gêmeas, para que o aquecimento fosse maior e mais eficaz. Como é um hidrocarboneto é que está sendo transportado pelos tubos, será levado em conta a formação de crostas pelo tubo, sendo o coeficiente de formação de crosta deste igual a $0,0002h.m^2.°C.kcal^{-1}$. A necessidade de que uma grande quantidade de calor fosse transferida para o fluido dos tubos fez com que mais tubos fossem postos no forno. No total foram 12 passes de tubos, sendo que cada passe contém 18 tubos, fora os tubos da área de convecção. O total de tubos é 216. Devido ao grande número de tubos, o trocador é extenso, com 36 metros de comprimento, 20 de altura e 10 de largura. Porém com o uso de tantos tubos para conseguir absorver a enorme quantidade de calor, uma notificação mostrou que os tubos eram muitos largos para o fluxo que passava nos tubos, logo o diâmetro destes foi reduzido para 4 polegadas.

A área de troca de calor da parte de radiação é igual a 3008,1 m². Para o superdimensionamento, essa área foi multiplicada por 1,1. Logo a área final adequada é de 3308,91 m².

No caso das caixas de convecção, foi usada uma diretamente acima da parte de radiação e outra logo acima da primeira caixa, sendo está última aletada. A variação da área das caixas e da geometria dos tubos dentro delas causava uma baixa na eficiência do forno e fazia variações mínimas de economia de combustível e diminuição da temperatura do gás de saída, logo não valia a pena alterar essa parte do projeto. Uma melhor explicação a respeito dessas caixas pode ser vista na ficha de especificação.

A área de troca de calor da parte de convecção é igual a 63,9 m² e 2197 m² para as caixas 1 e 2, respectivamente. Para o superdimensionamento, essas áreas foram multiplicadas por 1,1. Logo as áreas finais são iguais a 70,29 m² e 2417,03 m². É fácil ver aqui que pelo fato da caixa 2 ser aletada, a sua área de troca de calor é muito maior.

Para a combustão foram usados 16 bicos de chama, cada um com 960 mm de diâmetro. O forno está elevado a três metros do nível do chão para seja possível colocar as tubulações e os bicos de chama embaixo do forno. O gás de combustão é composto principalmente de nitrogênio, água e dióxido de carbono.

O forno F-2 é o forno que irá aquecer e evaporar o produto de fundo da torre de *stripping* e mandar o conteúdo evaporado de volta para a torre, dando continuidade

ao processo de destilação. Para a construção do forno 2, foi necessário a construção de diferentes tipos de forno, sendo cada um específico para o tipo de torre de *stripping*. A torre de 20 passos era a que tinha o maior fluxo de produto de fundo, sendo assim a mais complexa e cara de se fabricar. A torre de 100 passos é a que possuía a menor vazão de fundo da torre e foi a escolhida como padrão para o projeto. Apesar do fluxo menor em relação aos projetos com menos etapas, a vazão de produto ainda é grande e o fluido viscoso, portanto, a corrente teve que ser partida em três, para que cada uma das três correntes fosse para um forno diferente, assim foi possível planejar um forno que suportasse o este fluxo.

Ainda que o fluxo fosse muito grande, a variação de calor necessária é muito pequena, por isso foi possível projetar um forno cilíndrico para cada partição. Por ser um forno cilíndrico, o planejamento do forno foi facilitado, diferente do forno F-1. Pelo projeto o coeficiente de formação de crosta para o lado dos tubos é igual a $0,0002h.m^2.°C.kcal^{-1}$. Para que houvesse uma melhor eficiência na captação do calor, foram usados longos tubos, fazendo com que o forno possuísse uma altura de 20 metros, porém como a quantidade calor necessária não é tão grande, foram apenas necessários apenas seis passes de tubos com 18 tubos em cada passe, dando um total de 108 tubos. A geometria padrão dos tubos é de 5 polegadas. É válido ressaltar que este é um forno para uma das partições do fluxo de saída da coluna, são necessários três desses fornos para que o projeto seja concluído.

A área de troca de calor da parte de radiação é igual a 920,5 m². Para o superdimensionamento, essa área foi multiplicada por 1,1. Logo a área final adequada é de 1012,55 m².

Para as caixas de convecção, assim como o forno 1, também não havia grandes variações nos parâmetros de quantidade de combustível ou aproveitamento do calor da saída do forno, logo elas não foram alteradas.

A área de troca de calor da parte de convecção é igual a 63,9 m² e 2197 m² para as caixas 1 e 2, respectivamente. Para o superdimensionamento, estas áreas foram multiplicadas por 1,1. Logo as áreas finais são 70,29 m² e 2417,03 m².

Para a combustão foram usados 16 bicos de chama, cada um com 960 mm de diâmetro. Sendo o forno está elevado a três metros do nível do chão para seja possível colocar as tubulações e os bicos de chama embaixo do forno. O gás de combustão é composto principalmente de nitrogênio, água e dióxido de carbono.

4.9.5 Avaliação econômica

A avaliação econômica do forno F-1 foi realizada a partir da folha de especificação do aparelho, seguindo o passo a passo definido por SEIDER (2009) para este equipamento. Realizando a conversão de unidades, temos que a taxa de geração de calor total do forno é como a seguir:

$$\dot{Q}_{tot} = 430.588.348 \frac{kJ}{h} \frac{0.948 \ Btu}{1 \ kJ} = 408.197.754 \frac{Btu}{h}$$

Por se tratar de um forno de duas caixas (twinbox), seu custo será aproximado pelo custo de 2 fornos independentes que fornecem cada um a metade de \dot{Q}_{tot} . Temos:

$$\dot{Q}_{un} = \frac{\dot{Q}_{tot}}{2} = \frac{408.197.754}{2} = 204.098.877 \frac{Btu}{h}$$

O custo base (C_B) do equipamento pode ser calculado da seguinte maneira:

$$C_R = 0.859 \ Q \ calor \ total^{0.81} = 0.859 \ (204.098.877)^{0.81}$$

$$C_B = \frac{US\$ \ 4.623.428}{forno} \ 2 \ fornos = US\$ \ 9.246.855 \ (2006)$$

O fator de correção da pressão (F_p) pode ser calculado como segue:

$$F_{P} = 0.986 - \frac{0.0035 P}{500} + 0.0175 \left(\frac{P}{500}\right)^{2}$$

$$F_{P} = 0.986 - \frac{0.0035.704.01}{500} + 0.0175 \left(\frac{704.01}{500}\right)^{2}$$

$$F_{P} = 1.016$$

Como o material usado nos tubos é aço inox, diferente de aço convencional, o fator de correção de material ($F_M = 1,7$) deve ser aplicado. Por fim, aplicando a equação geral dos custos e fazendo as devidas conversões monetárias, chega-se ao valor final do equipamento.

$$C_F = C_B.F_M.F_P = 9.246.855.1,7.1,016$$

$$C_F = US\$ 15.971.168 \frac{603 (CEPCI 2018)}{500 (CEPCI 2006)} \frac{4,16 R\$}{1 US\$}$$

$$C_F = R\$ 80.126.713$$

A avaliação econômica do forno F-2 foi realizada a partir da folha de especificação do aparelho, seguindo o passo a passo definido por SEIDER (2009) para este equipamento. A tabela 4.9.5.1 traz todos os dados dos fornos com relação ao número de estágios da torre.

Para a precificação, primeiramente, faz-se as devidas conversões de unidade da taxa de geração de calor total pelo equipamento (\dot{Q}_{tot}). Para o forno de 40 estágios, temos:

$$\dot{Q}_{tot} = 8,95.10^9 \frac{kJ}{h} \frac{0,948 \ Btu}{1 \ kI} = 8,48.10^9 \frac{Btu}{h}$$

Por se tratar de 5 unidades, a quantidade de calor gerada por cada fomo corresponde à quinta parte da quantidade de calor total calculada acima. Ou seja:

$$\dot{Q}_{un}. = \frac{\dot{Q}_{tot}}{5} = \frac{8,48.10^9}{5} = 1,70.10^9 \frac{Btu}{h}$$

O custo base (C_B) do equipamento pode ser calculado da seguinte maneira:

$$C_B = 0.859 \ Qun.^{0.81} = 0.859 \ (1.70.10^9)^{0.81} = \frac{US\$ \ 25.705.075}{forno} \times 5$$

$$C_B = US$$
\$ 128.525.374 (2006)

O fator de correção da pressão (F_p) pode ser determinado como segue:

$$F_P = 0.986 - \frac{0.0035 \, P}{500} + 0.0175 \left(\frac{P}{500}\right)^2$$

$$F_P = 0.986 - \frac{0.0035.110.7}{500} + 0.0175 \left(\frac{110.7}{500}\right)^2 = 0.97$$

Por fim, aplicando a equação geral dos custos e fazendo as devidas conversões monetárias, chega-se ao valor final do equipamento:

$$C_F = C_B.F_M.F_P = 128.525.374.0,97$$

$$C_F = US\$ 15.971.168 \frac{603 (CEPCI 2018)}{500 (CEPCI 2006)} \frac{4,16 R\$}{1 US\$}$$

$$C_F = R\$ 635.832.831$$

Tabela 4.9.5.1 - Custo do F-2 com relação ao número de estágios da torre.

N° estágios torre	N° de fornos	Qcalor total $\left(\frac{kJ}{h}\right)$	$P_{in\ tubos}$ (psig)	C_F (R\$)
20	10.000	10,1 E+12	110,7	799.949.004.327
40	5	8,95 E+9	110,4	635.831.191
60	3	8,43 E+7	110,6	13.186.665
80	3	8,30 E+7	110,6	13.021.706
100	3	6,7 E+7	110,5	10.948.002

5. CONTROLE E INSTRUMENTAÇÃO

5.1 INSTRUMENTAÇÃO DE CONTROLE

5.1.1 Bombas

Com o objetivo de que as correntes percorram a planta nas vazões e pressões adequadas, posicionou-se bombas centrífugas aos pares, para que as necessidades energéticas da planta não sejam comprometidas nos casos de falha ou manutenção de uma das bombas, evitando que a operação na planta seja interrompida. Utilizouse as bombas P-1A e P-1B para alimentar a planta com o gasóleo na pressão e vazão adequadas no pulmão, as bombas P-2A e P-2B para alimentar a injeção de água de caldeiras a montante do aerorrefrigerante E-2 e por fim as bombas P-3A e P-3B para alimentar a torre de absorção química C-6 com a solução aquosa de monoetanolamina (MEA).

O monitoramento do sistema de bombeamento é realizado por meio de medidores de pressão na impulsão de cada bomba e medidores de vazão nas correntes de entrada e saída. As bombas de refluxo no topo da coluna de stripping possuem alarmes de baixa e muito baixa vazão que acionam sistemas de encravamento.

5.1.2 Trocadores de calor

Nos trocadores de calor são monitoradas vazão e temperaturas de entrada e saída das correntes em cada equipamento. Para tanto, válvulas de controle estão instaladas na entrada de cada trocador e em todas as correntes instalam-se medidores indicadores de temperatura.

No trocador E-2 é necessário monitorar e controlar a injeção de água de caldeiras que ocorre na corrente que sai do reator, associando o monitoramento da razão efluente/água de caldeiras em torno de 3% (como especificado), medindo a vazão da corrente do reator e baseado neste valor manipular a vazão de entrada da água, sendo este um controle de vazão.

O trocador E-4 realiza o pré-aquecimento da corrente proveniente de C-5 com a corrente de fundo da torre de *stripping* C-7, sendo necessário monitorar e controlar a vazão de entrada das correntes através de válvulas de controle. Como os trocadores E-3 e E-6 utilizam água de refrigeração, não demandam um monitoramento intenso, visto que estes serviços são menos custosos. Já o condensador E-7 é um equipamento fundamental no topo de C-7, portanto estão atrelados a sistemas de controle de fluxo dos serviços auxiliares.

5.1.3 Forno

Como o forno é um equipamento de alta periculosidade, é necessário fazer uma análise HAZOP (*Hazard and Operability Studies*) antes de definir a instrumentação e controle desta seção.

5.1.4 Análise HAZOP do Forno

5.1.4.1 Metodologia

Esta análise é definida como a aplicação de um exame crítico, formal e sistemático a um processo ou projeto de engenharia de nova instalação, para avaliar o riso potencial da operação ou funcionamento incorreto dos componentes individuais, e os conseguintes efeitos sobre a instalação no seu conjunto. Os objetivos desta análise são:

Detectar riscos, suas origens e consequências, mediante análise qualitativa, sistemática e minuciosa, levando em conta os possíveis desvios das variáveis de processo;

Selecionar os riscos que, pelas consequências toleráveis, não justificam a modificação do projeto;

Decidir as soluções que reduzam os riscos não toleráveis, e

Decidir quais riscos devem ser objeto de análise com métodos mais exaustivos, sejam eles semi-quantitativos ou quantitativos.

A planta de hidrotratamento de gasóleo envolve processos de alto risco, submetidos a altas temperaturas e pressões, além do manuseio de substâncias tóxicas e inflamáveis. Os pontos críticos identificados na planta foram: os fornos F-1 e F-2, o reator C-2, os separadores de alta pressão C-3 e C-4 e a torre de absorção química C-6. No entanto, entre estes pontos críticos, os fornos se destacam por possuírem periculosidade muito maior em relação aos outros, portanto serão o alvo da análise.

A partir do ponto de identificação dos pontos de maior risco, são levantados questionamentos sobre os meios pelos quais estes pontos podem se desviar das intenções do projeto. Para isto, verifica-se os parâmetros de cada equipamento, utilizando-se de palavras-chave que, somadas ao parâmetro analisado, caracterizam o desvio para o qual deve-se estar preparado.

Após a computação dos desvios, estes são associados a possíveis causas e consequências. Ainda que a análise HAZOP seja uma descrição qualitativa, fornece uma ferramenta valiosa para que a equipe de segurança sugira e instaure as medidas preventivas e/ou corretivas, unindo produtividade e segurança.

5.1.4.2 Palavras-chave

As palavras-chave utilizadas na análise e seus significados estão listados na Tabela 5.1.4.2.

Tabela 5.1.4.2 Palavras-chave e seus significados.

Palavra-chave	Significado	
NÃO	Ausência do parâmetro analisado	
MAIS	Excesso do parâmetro analisado	
MENOS	Escassez/carência do parâmetro analisado	
INVERSO	Inversão do parâmetro analisado	

5.1.4.3 Considerações prévias à análise

A Tabela 5.1.4.3 apresenta uma análise de cenários potencialmente perigosos.

Tabela 5.1.4.3 Matriz de interações de elementos do forno.

	Meio reacional	Gás natural	Ar	Comentários
Meio reacional	-	-	X	Atmosfera explosiva, tóxica e carcinogênica
Gás natural	-	-	X	Atmosfera explosiva
Ar	-	-	-	-
Temperatura de trabalho	X	X	-	Meio reacional e combustível
Excesso de temperatura	X	X	-	Atmosfera explosiva

5.1.4.4 Análise de desvios – Fornos F-1 e F-2

O forno F-1 recebe a corrente de gasóleo misturada com hidrogênio a 200°C e 48,60 kg/cm² g e a leva a um estado de 380°C e 47,90 kg/cm² g. Já o forno F-2 recebe a corrente no fundo da torre de stripping a 391,3 °C e 6,8 kg/cm² g e a leva a um estado de 442,5 °C e 6,7 kg/cm² g. Ambos fornos operam a altas temperaturas e o forno F-1 opera em alta pressão. Além disso, os fornos estão aquecendo misturas gasosas inflamáveis com chama direta, tornando a análise de segurança primordial.

Parâmetro	Palavra chave	Desvio	Causas	Consequências	Ação Instalar sistema
Temperatura	MAIS	Alta temperatura no interior do forno	Vazão excessiva de gás combustível	Corrente de reagentes gasosos superaquecida, risco de explosão	de encravamento de temperatura do tipo TAHH
Pressão	MAIS	Alta pressão do forno	Vazão excessiva de gás combustível	Risco de explosão do forno	Instalar sistema de encravamento de temperatura do tipo TAHH (controle de temperatura associado ao controle de pressão)
Fluxo de reagente	MENOS	Fluxo deficiente de reagente	Baixa vazão de reagente	Aumento na temperatura do forno, risco de explosão	Instalar sistema de encravamento
reagente	NÃO	Ausência de fluxo de reagente	Obstrução ou ruptura da tubulação	Forno superaquecido, risco de explosão	de vazão do tipo LALL

5.1.4.5 Conclusão da análise

Através da análise, determina-se as ações e instrumentos de controle a serem implementados de modo a garantir a eficiência da produção de forma segura, minimizando o risco de acidentes.

Nos fornos monitora-se e controla-se a temperatura manipulando a alimentação de combustível. Através de um controle em cascata, o controlador de temperatura atua sobre o controlador de pressão na entrada de combustível. Faz-se uso de alarmes de alta e muito alta temperatura, associadas a um sistema de encravamento que controla uma válvula de controle normalmente fechada. Em ambos

os fornos estão instalados alarmes de baixa vazão de combustível e de baixa vazão de reagente.

O sistema de alarmes de alta e muito alta temperatura no forno F-1 aciona o sistema de encravamento SE-1, e no forno F-2 aciona o sistema de encravamento SE-10, atuantes na vazão de alimentação de combustível.

5.1.5 Reator

Considerando que todas as reações ocorridas neste equipamento são exotérmicas, produzindo aumento de temperatura no reator, é necessário instalar um conjunto de medidores indicadores de temperatura, ao longo do leito catalítico, ligado a um controlador diferencial de temperatura. Deste modo, monitora-se o envelhecimento do catalisador através da posição onde ocorre a mais alta temperatura, ao longo do leito. Este sistema está equipado com alarmes de alta e muito alta temperatura, que ativa o sistema de encravamento SE-2. Este sistema de encravamento, por sua vez, está associado a uma válvula de controle na corrente de alimentação do reator e a um sistema de injeção de veneno de reação, para o caso de a temperatura fugir do controle. A injeção de veneno de reação é alimentada no reator através de um compressor.

Além da temperatura ao longo do leito catalítico, é realizado também monitoramento da vazão, pressão e temperatura da corrente de entrada no reator e da composição no fundo do reator, sendo esta última controlada através da manipulação da corrente de entrada.

5.1.6 Colunas

Nas colunas de absorção química e stripping monitora-se o nível através de controladores associados em cascata com os controladores de vazão nas correntes de fundo das torres. A pressão na corrente de topo da torre de absorção química C-6 é monitorada e controlada através do compressor K-2. Já para a torre de stripping C-7 a pressão na corrente de topo é controlada através de uma válvula de controle, que atua sobre o fluxo da corrente que entra no condensador. As duas colunas possuem alarmes de alta e muito alta pressão associados a sistemas de encravamento. Além

disso, monitora-se a temperatura do topo, no fundo e na alimentação com a utilização de um medidor indicador de temperatura.

O refluxo da torre de stripping é monitorado e controlado através do controle da vazão. Monitora-se também a pressão neste ponto.

Para aliviar a pressão, válvulas de segurança são in staladas nas torres.

5.1.7 Vasos

Em todos os vasos e separadores da bomba monitora-se o nível, e são instalados alarmes de alto e baixo nível. Além disso, são instalados sistemas para drenagem e alívio de pressão, respectivamente, no fundo e no topo de cada vaso. Este controle é feito em cascata, onde o controle de nível comanda o controlador de fluxo da corrente de líquido.

O vaso-pulmão C-1 é responsável por garantir uma carga estável à unidade do gasóleo que alimenta a planta no início da operação. Neste ponto, a entrada é considerada como distúrbio e instala-se uma válvula de controle na saída do gasóleo, do tipo porcentagens iguais.

Nos separadores C-3, C-4 e C-5, monitora-se e controla-se a pressão. Nestes, estão instalados alarmes de alta e muito alta pressão, associadas a sistemas de encravamento.

O separador C-8 separa a corrente de condensado advinda da torre de stripping em duas fases, sendo que a fase gasosa é enviada para outra unidade da planta para ser recuperada, e a fase líquida é utilizada parcialmente como refluxo e parcialmente em nafta a ser recuperada na refinaria. Neste equipamento monitora-se as vazões de entrada e saída, e através destas, controla-se o nível. Além disso, monitora-se a razão de refluxo, através de um controlador de nível em cascata com os controladores de vazão na corrente de refluxo. Instala-se também alarmes de baixo e muito baixo nível, associados a um sistema de encravamento.

5.2 ALARMES E ENCRAVAMENTOS

5.2.1 Alarmes

Os alarmes são sinais sonoros e luminosos que se recebem na sala de controle quando uma variável de processo (vazão, nível, pressão, temperatura) alcança um valor anormal, seja ele alto ou baixo. Estes sinais avisam o operador de painel que deve dar atenção e possivelmente adotar alguma ação corretiva. Os alarmes procedem dos medidores do sistema de instrumentação e controle da planta (CABRA et al.).

No código de representação do alarme, a primeira letra está associada ao processo - L para nível, T para temperatura, F para vazão e P para pressão - e a terceira letra está associada à anomalia - L para baixo, LL para muito baixo, H para alto e HH para muito alto (CABRA et al.). A Tabela 5.2.1 relaciona todos os alarmes da planta.

Tabela 5.2.1 Alarmes da planta.

Equipamento associado	Tipo de alarme	Descrição
C-1	LAH LAL	Alerta de níveis alto e baixo no vaso pulmão da entrada de gasóleo
	ТАН ТАНН	Alerta de temperatura alta e muito alta no forno
F-1	FAL	Alerta de baixa vazão na entrada de reagente no forno
	FAL	Alerta de baixa vazão na entrada de combustível no forno
C-2	ТАН ТАНН	Alerta de temperatura alta e muito alta no reator
	LAH LAL	Alerta de níveis alto e baixo no separador
C-3	РАН РАНН	Alerta de alta e muito alta pressão no separador
	LAH LAL	Alerta de níveis alto e baixo no separador
C-4	РАН РАНН	Alerta de alta e muito alta pressão no separador

	LAH	Alerta de níveis alto e baixo no separador
C-5	LAL	Alerta de lilveis alto e balxo no separador
	PAH	Alerta de alta e muito alta pressão no
	РАНН	separador
C 6	РАН	Alerta de alta e muito alta pressão na torre de
C-6	РАНН	absorção química
	ТАН	Alerta de temperatura alta e muito alta no
	ТАНН	forno
F-2	FAL	Alerta de baixa vazão na entrada de reagente no forno
	FAL	Alerta de baixa vazão na entrada de combustível no forno
	РАН	Alerta de alta e muito alta pressão na torre de
a -	РАНН	stripping
C-7	FAL	Alerta de baixa e muito baixa vazão na torre de
	FALL	stripping
	LAL	Alerta de níveis baixo e muito baixo no
	LALL	separador
C-8	PAH	Alerta de alta e muito alta pressão no
	РАНН	separador
	FAL	Alerta de baixa e muito baixa vazão na bomba
P-1	FALL	na alimentação de gasóleo
	FAL	Alerta de baixa e muito baixa vazão na bomba
P-2	FALL	na alimentação da injeção de água de caldeiras a montante do aerorrefrigerante E-2
	FAL	Alerta de baixa e muito baixa vazão na bomba

5.2.2 Encravamentos

Os alarmes requerem ação humana corretiva. Para variáveis cujo caso a segurança seja crucial, incorpora-se um segundo nível de alarme e assim, ativa-se um segundo nível de ação, os encravamentos. Um encravamento é um sistema lógico

comandado por um computador que, ao receber um sinal de muito alto ou muito baixo de uma variável, coloca a parte da planta originária do problema em posição segura, mediante a abertura ou fechamento de uma válvula de controle (às vezes também ligando ou desligando uma bomba ou um compressor) (CABRA et al.). A Tabela 5.2.2 relaciona todos os encravamentos da planta.

Tabela 5.2.2 Sistemas de encravamento da planta.

Equipamento protegido	Alarme associado	Número do encravamento	Sinal associado	Ação associada
F-1	ТАНН	SE-1	Temperatura muito alta no forno	Fechamento da válvula FCV-4, no fornecimento de combustível
C-2	ТАНН	SE-2	Temperatura muito alta no reator	Abertura da válvula de água de resfriamento e injeção de gás de N_2
C-3	РАНН	SE-3	Pressão muito alta no separador	Abertura da válvula FCV-9
U-3	LALL	SE-4	Nível muito baixo no separador	Fechamento da válvula FCV-7
C.4	РАНН	SE-5	Pressão muito alta no separador	Abertura da válvula FCV-10
C-4	LALL	SE-6	Nível muito baixo no separador	Fechamento da válvula FCV-11
0.5	РАНН	SE-7	Pressão muito alta no separador	Abertura da válvula FCV-12
C-5	LALL	SE-8	Nível muito baixo no separador	Fechamento da válvula FCV-13
C-6	РАНН	SE-9	Pressão muito alta na torre de absorção	Fechamento da válvula FCV-19
F-2	ТАНН	SE-10	Temperatura muito alta no forno	Fechamento da válvula FCV-18, no fornecimento de combustível
C-7	РАНН	SE-11	Pressão muito alta	Fechamento da

			na torre de stripping	válvula FCV-20
	FALL	SE-12	Vazão muito baixa no refluxo no topo da torre	Abertura da válvula FCV-20
C-8	LALL	SE-13	Nível muito baixo no separador	Abertura da válvula FCV-19
C-8	РАНН	SE-14	Pressão muito alta no separador	Abertura da válvula FCV-20

5.3 VÁLVULAS DE SEGURANÇA

O sistema de controle e instrumentação representa o nível mais elementar de segurança da planta. Caso esse sistema falhe por algum motivo, o sistema de válvulas de segurança representa o nível superior de proteção contra acidentes (CABRA et al.; BEGA et al., 2006).

As válvulas de segurança impedem que a pressão em um equipamento ultrapasse a pressão de projeto mecânico, circunstância que certamente resultaria no rompimento ou explosão do equipamento, condição que pode surgir como consequência de um fogo, ou por um aporte ou geração de calor descontrolados desde o interior. A tabela abaixo apresenta as válvulas de segurança da planta, os equipamentos protegidos e o cenário que determinou o dimensionamento da válvula. O cenário determinante corresponde à maior vazão mássica que a válvula deve suportar para garantir a segurança do equipamento.

Código da válvula	E	quipamento protegido	Cenários determinantes
PSV-01	C-1	Vaso-pulmão de gasóleo	Bloqueio da válvula de controle
PSV-02	C-2	Reator	Sobrepressão do reator
PSV-03	C-3	Separador de alta pressão	Bloqueio da válvula de controle
PSV-04	C-4	Separador de alta pressão	Bloqueio da válvula de controle
PSV-05	C-5	Separador de baixa pressão	Bloqueio da válvula de controle
PSV-06	C-6	Torre de absorção química	Bloqueio da válvula de controle
PSV-07	C-7	Torre de stripping	Falha no forno F-2

5.4 ESTRATÉGIAS DE CONTROLE

C-8

Todas as estratégias de controle foram descritas simplificadamente na "folha de especificação de laços de controle". Serão descritas a seguir, em detalhes, as estratégias utilizadas nos equipamentos C-2, C-3, C-4 e C-5. Para a implementação do controle (C-3, C-4 e C-5) foram feitas simulações dinâmicas no HYSYS.

Nos equipamentos C-3, C-4 e C-5, foi utilizado o controle de realimentação. O modo pelo qual esses controladores tomam uma decisão é através da solução de uma equação baseada na diferença entre a variável controlada e o *set point* (SMITH e CORRIPIO, 2015). Essa diferença, ou erro, é calculada como

$$E(t) = SP(t) - PV(t)$$
(5.4-1)

onde PV(t) é a variável de saída e SP(t) é o valor de set point. Para um controlador proporcional-integral, a equação de controle é dada por

$$OP(t) = K_c E(t) + \frac{K_c}{T_i} \int E(t) dt$$
 (5.4-2)

onde OP(t) é a saída do controlador, nesse caso, a porcentagem de abertura da válvula de controle.

A desvantagem do controle de realimentação é que ele pode compensar um distúrbio somente depois que a variável controlada se desviou do seu valor de *set point* (SMITH e CORRIPIO, 2015). Pensando nisso, para o reator C-2, foi feita a proposta de Controle Preditivo (*Model Predictive Control* ou MPC). No MPC, com base em informações passadas de entradas e saídas e em uma projeção para as ações de controle futuras, a saída de um modelo do processo é predita ao longo de um horizonte de predição (IZAQUIEL, 2018).

5.3.1 C-2

IZAQUIEL (2018) propõe estratégias de controle preditivo com o objetivo de controlar a concentração de enxofre na saída do reator de leito gotejante manipulandose a vazão de óleo, a temperatura de entrada do reator e a velocidade do gás

hidrogênio. Em cada instante de amostragem, as saídas futuras do controlador são determinadas para que haja a minimização da função objetivo *J*:

$$J = \sum_{i=k+1}^{k+P} \gamma_i (\hat{y} - yset_i)^2 + \sum_{j=k}^{k+m-1} \lambda_j \Delta U_j^2$$
 (5.3.1-1)

onde k é o instante de amostragem, P é o horizonte de predição, m é o horizonte de controle, γ_i é o peso do erro na variável controlada no tempo i, \hat{y} é a saída predita pelo modelo no instante de tempo i, $yset_i$ é o valor do set point no instante i, λ_j é o fator de supressão de movimento da saída de controle no instante de tempo j e ΔU_j é o valor da saída de controle no instante de tempo j.

5.3.2 C-3

Neste separador trifásico de alta pressão, as variáveis controladas foram: pressão do vaso, nível de hidrocarboneto líquido e nível de água ácida. O diagrama utilizado para as simulações pode ser visto na Figura 5.3.2.1.

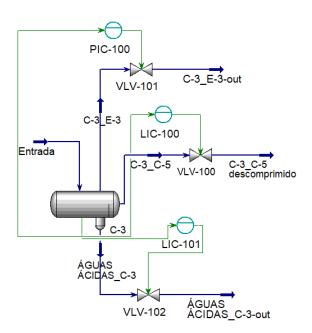


Figura 5.3.2.1 – Diagrama utilizado nas simulações do separador C-3.

Para o controle de pressão, foi manipulada a corrente de hidrocarboneto gasoso **C-3_E-3**. A Figura 5.3.2.2 mostra o comportamento do sistema em malha aberta.

Como pode ser visto, o sistema começa em seu valor de estado estacionário (4073 kPa) e depois dos degraus, atinge novos estados estacionários. A

implementação do controle foi feita no HYSYS, visando ter como set point 4073 kPa. O HYSYS utiliza a resposta de razão de decaimento de um quarto por ganho final para sintonizar os parâmetros do controlador. Os parâmetros do controlador PI obtidos foram $K_c = 0,602$ e $T_i = 4,400$ s. Os resultados da simulação em malha fechada podem ser vistos na Figura 5.3.2.3.

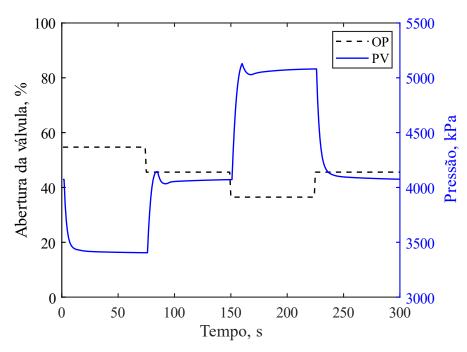


Figura 5.3.2.2 – Comportamento da pressão do vaso C-3 em malha aberta.

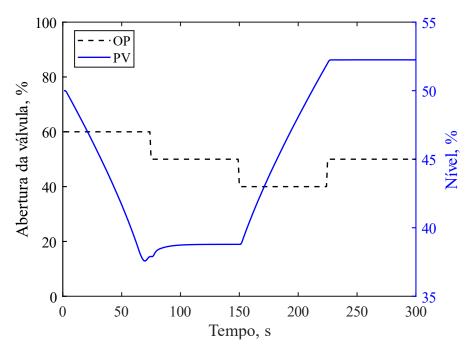



Figura 5.3.2.3 – Comportamento da pressão do separador C-3 em malha fechada.

A Figura 5.3.2.3 mostra que a implementação do controle foi bastante eficiente, chegando aos valores de *set point* rapidamente e sem erro residual.

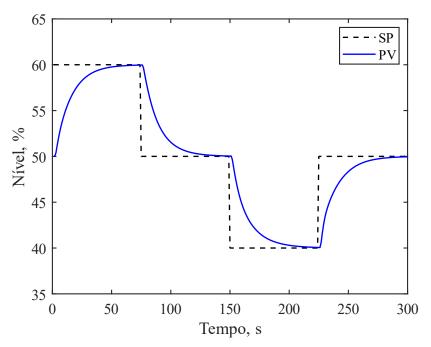

Para o controle de nível de hidrocarboneto líquido, foi manipulada a corrente **C-3_C-5**. A Figura 5.3.2.4 mostra o comportamento do sistema em malha aberta.

Figura 5.3.2.4 – Comportamento do nível de hidrocarboneto líquido do separador C-3 em malha aberta.

Conforme mostra a Figura 5.3.2.4, o sistema só atinge dois estados estacionários. O controle foi implementado com o objetivo de manter o nível em 50%. Os parâmetros do controlador PI obtidos pelo HYSYS foram $K_c=16.9~{\rm e}~T_i=17.60~{\rm s}.$ É possível ver na Figura 5.3.2.5 que a implementação do controle também foi eficiente no intervalo analisado.

Para o controle de nível de águas ácidas, foi manipulada a corrente **ÁGUAS ÁCIDAS_C-3**. A Figura 5.3.2.6 mostra o comportamento do sistema em malha aberta. A maior diferença observada em relação ao sistema anterior é que nas condições de projeto, a porcentagem do nível em regime permanente é de 33,32%. Além disso, após os degraus, o sistema também só atinge dois estados estacionários.

Figura 5.3.2.5 – Comportamento do nível de hidrocarboneto líquido do separador C-3 em malha fechada.

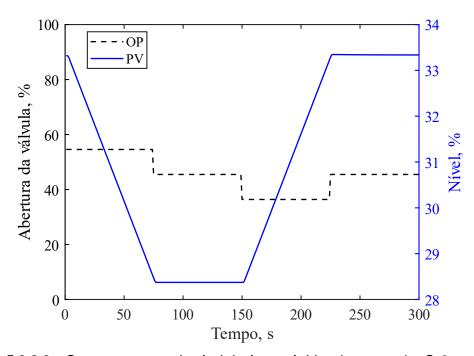


Figura 5.3.2.6 – Comportamento do nível de águas ácidas do separador C-3 em malha aberta.

O set point escolhido foi o valor de 33,32%. Os parâmetros obtidos foram $K_c=15,8$ e $T_i=35,20$ s. Os testes feitos com o controlador podem ser vistos na Figura 7. Observa-se que o nível tem um limite de 33,8%, não conseguindo assim, atingir o

valor de *set point* de 40% mostrado na Figura 5.3.2.7. Para os demais valores, o sistema chega ao valor desejado, mas com um pequeno erro.

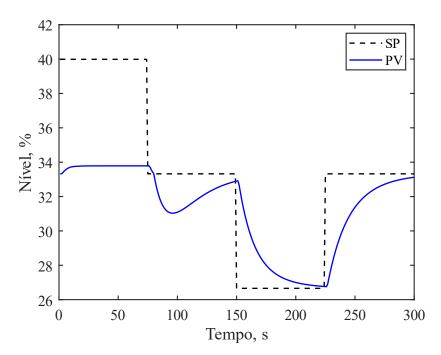


Figura 5.3.2.7 – Comportamento do nível de águas ácidas do separador C-3 em malha fechada.

5.4.1 C-4

Neste separador bifásico de alta pressão as variáveis controladas foram: pressão do vaso e nível de líquido. O diagrama utilizado para as simulações pode ser visto na Figura 5.3.3.1.

O controle de pressão foi feito manipulando-se a corrente de vapor **C-4_C-5**. A Figura 5.3.3.2 mostra os testes em malha aberta. Percebe-se que no intervalo analisado, o sistema não atinge nenhum estado estacionário.

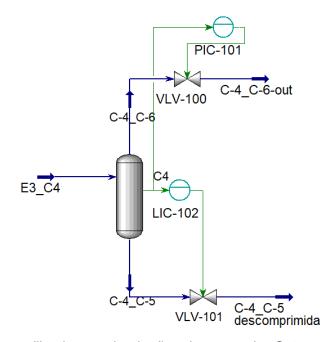


Figura 5.3.3.1 – Diagrama utilizado nas simulações do separador C-3.

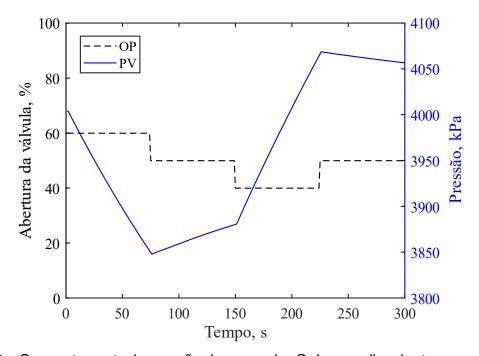


Figura 5.3.3.2 – Comportamento da pressão do separador C-4 em malha aberta.

Os parâmetros obtidos para o controlador PI foram $K_c=16.5~{\rm e}~T_i=17.60~{\rm s}.$ Os testes em malha fechada podem ser vistos na Figura 5.3.3.3. Após a implementação do controle, o sistema consegue atin gir todos os valores de SP sem erro residual.

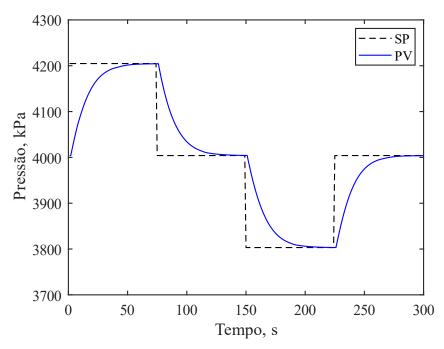


Figura 5.3.3.3 – Comportamento da pressão do separador C-4 em malha fechada.

Os testes em malha aberta para o nível de líquido podem ser vistos na Figura 5.3.3.4. Nota-se que o sistema apresenta instabilidade. Neste caso, não houve sucesso na implementação do controle. Os resultados em malha fechada podem ser vistos na Figura 5.3.3.5.

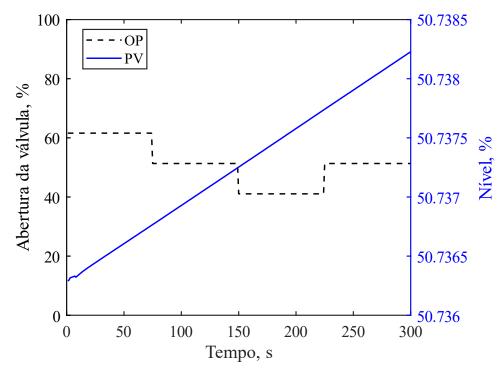


Figura 5.3.3.4 – Comportamento do nível de líquido do separador C-4 em malha aberta.

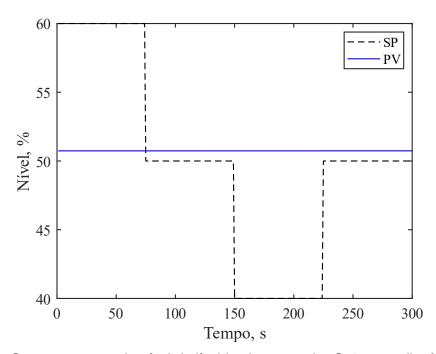


Figura 5.3.3.5 – Comportamento do nível de líquido do separador C-4 em malha fechada.

5.4.2 C-5

Para o controle deste separador trifásico de baixa pressão foi utilizado um procedimento análogo ao descrito para o separador C-3. As variáveis controladas foram pressão do vaso, nível de líquido e nível de água ácida. A Figura 5.4.2.1 mostra o diagrama utilizada nas simulações.

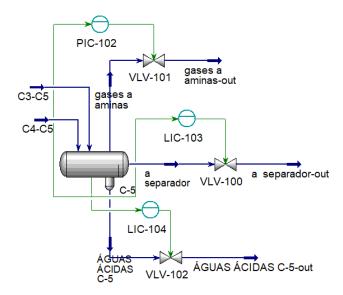


Figura 5.4.2.1 - Diagrama utilizado nas simulações do separador C-5.

Os testes em malha aberta para a pressão do vaso podem ser vistos na Figura 5.4.2.2. No intervalo analisado, o sistema atinge quatro estados estacionários, apresentando estabilidade. Os parâmetros do controlador PI obtidos foram $K_c=0.551$ e $T_i=5.500$ s. Os resultados para o sistema em malha fechada podem ser vistos na Figura 5.4.2.3, observando-se sucesso na implementação do controle.

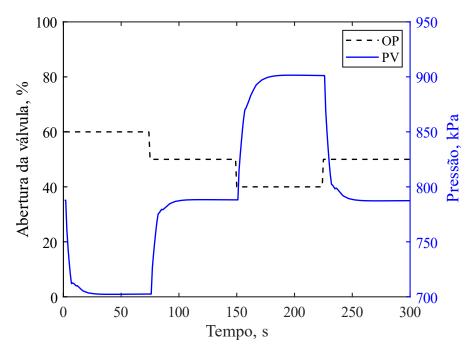


Figura 5.4.2.2 – Comportamento da pressão do separador C-5 em malha aberta.

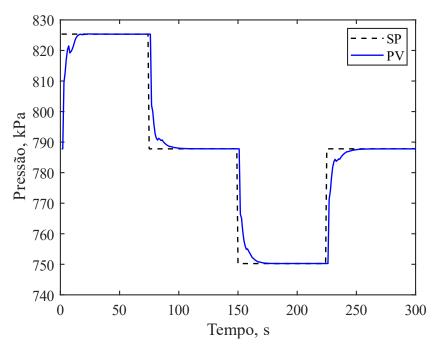


Figura 5.4.2.3 – Comportamento da pressão do separador C-5 em malha fechada.

As respostas dos sistemas em malha aberta para os níveis podem ser vistas nas Figuras 5.4.2.4 e 5.4.2.5. O nível de líquido atinge dois estados estacionários, enquanto o nível de águas ácidas atinge somente um. Os parâmetros obtidos para o controle do nível de líquido foram $K_c = 1,99$ e $T_i = 8,8$ s. Já para o nível de águas ácidas foram $K_c = 19,3$ e $T_i = 35,20$ s. Os testes em malha fechada podem ser vistos nas Figuras 5.4.2.6 e 5.4.2.7.

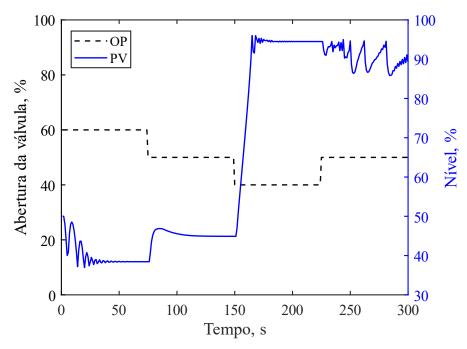


Figura 5.4.2.4 – Comportamento do nível de líquido do separador C-5 em malha aberta.

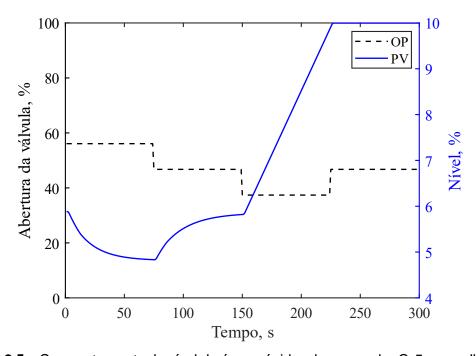
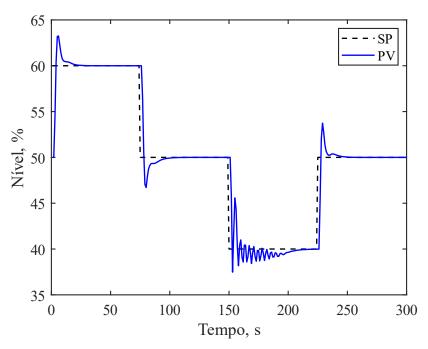
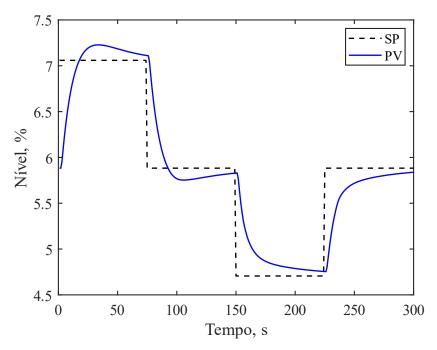
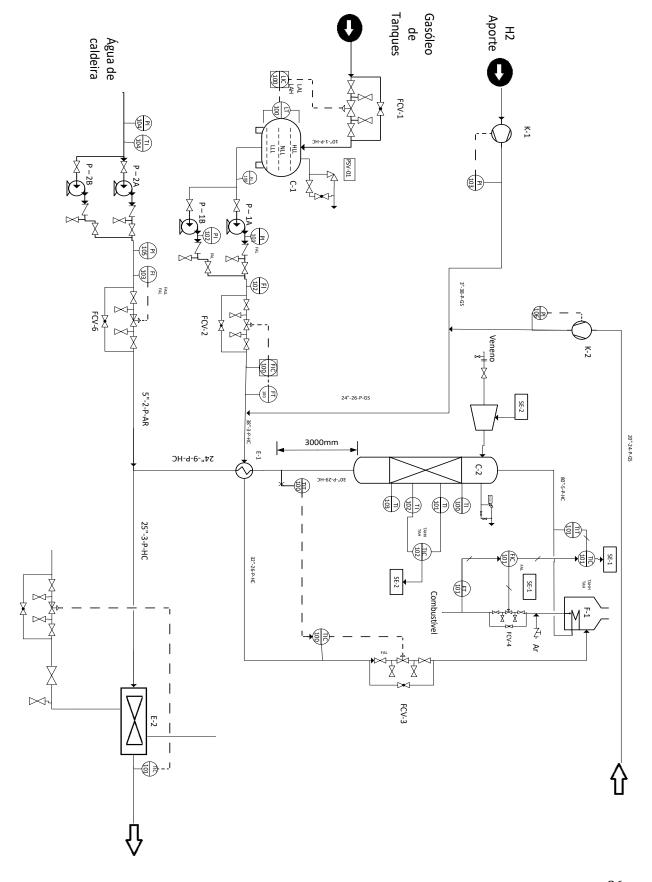
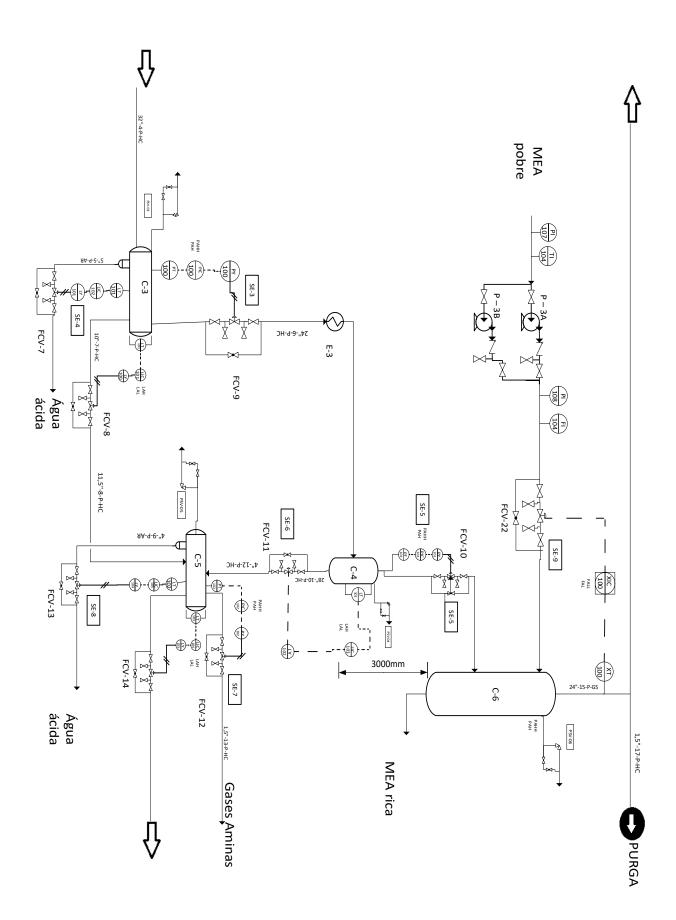
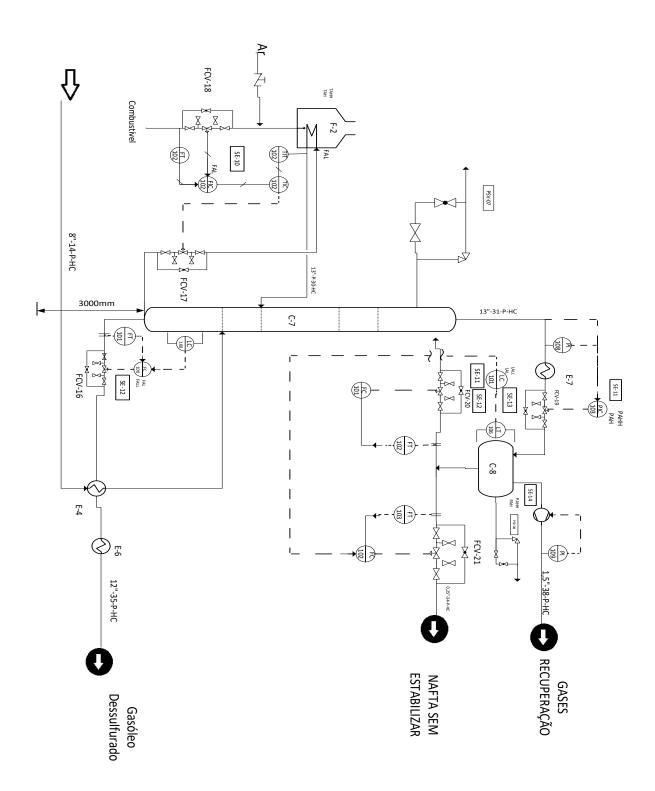


Figura 5.4.2.5 – Comportamento do nível de águas ácidas do separador C-5 em malha aberta.


Figura 5.4.2.6 – Comportamento do nível de líquido do separador C-5 em malha fechada.




Figura 5.4.2.7 – Comportamento do nível de águas ácidas do separador C-5 em malha fechada.

O controle do nível de líquido foi bem mais bem-sucedido. Para o nível de águas ácidas, nota-se um pequeno erro residual.

5.5 DIAGRAMA P&ID

6 ANÁLISE DE IMPACTO AMBIENTAL

6.1 TRATAMENTO DAS ÁGUAS ÁCIDAS

Algumas das correntes oriundas das refinarias devem ser tratadas individualmente, tendo em vista que apresentam características recalcitrantes, podendo ser nociva aos microrganismos presentes no tratamento biológico. Além disso, a mistura dos diferentes tipos de efluentes gerados dificulta o tratamento e, por uma questão de investimento, utilizam-se vários tipos de sistemas de coleta de efluentes. O sistema de águas ácidas, por exemplo, coleta condensados de topo de torres de fracionamento.

Uma das correntes mais preocupantes no processo de tratamentos de efluentes hídricos é a corrente de águas ácidas, por conter compostos orgânicos de difícil biodegradação e elevada toxicidade. Isso se dá devido sua composição, que contém gás sulfídrico, amônia, óleo dissolvido, mercaptanas, fenol e hidrocarbonetos, sólidos suspensos, além de altos teores de carbono orgânico dissolvido e elevada demanda química de oxigênio. Dessa forma, o pré-tratamento das águas ácidas deve ser realizado diretamente na unidade de processo, visando a diminuição da carga poluente e a eficiência do sistema, para posteriormente serem enviadas ao sistema biológico de tratamento de efluentes da refinaria. (SANTO, 2010)

O pré-tratamento tem por objetivo remover sulfeto de hidrogênio (H2S), amônia (NH3) e ácido cianídrico (HCN). Para isso, o processo consiste em submeter a carga de águas ácidas à um sistema de aquecimento e retificação - ou esgotamento -, com vapor d'água. A injeção de vapor na torre retificadora tem dois efeitos, o de fornecer calor necessário à vaporização dos contaminantes e o de reduzir a pressão parcial deles. O gás residual formado é queimado nos fornos e a água retificada é utilizada no processo de dessalgação, para lavagem do petróleo e posteriormente descartada para a estação de tratamento. (COELHO, 2002)

Com a carga poluente diminuída, segue-se para o tratamento biológico, no qual a estabilização é feita por microrganismos que degradam os poluentes restantes, utilizando-os como fonte de carbono necessária à sua sobrevivência.

6.2 PROCESSO DE REGENERAÇÃO DE MEA

As monoetanolaminas (MEA) podem ser utilizadas para tratamento de gases naturais e gás residual de petróleo na absorção do dióxido de carbono. Apesar de muito eficiente e amplamente utilizado, é um processo com alto requerimento energético para que seja possível regenerar as aminas utilizadas.

A exposição da corrente de CO2 do gás de queima à solução de amina gera uma reação de neutralização ácido-base, resultando em um sal carbonatado. Por essa reação ser reversível, é possível liberar o gás carbônico por aquecimento, não havendo consumo das aminas, as quais são utilizadas repetidas vezes.

$$2NH_2 + CO_2 \cdot H_2O \rightarrow (RNH_3)_2CO_3$$
 [7.2.1]

O aquecimento da solução para recuperação das aminas pode ser feito utilizando um reboiler. A energia requerida depende de diversas variáveis de operação, como temperatura, pressão, diâmetro, altura, além do tipo de coluna utilizada. Ainda mais, as características da solução de amina (primárias, secun dárias, terciárias) possuem grande influência no processo. (MORES et al., 2012)

A corrente de amina rica em CO2, ao sair da unidade de absorção é préaquecida em um trocador de calor e posteriormente bombeada até a unidade de regeneração. Um reboiler é utilizado para reaquecer o produto de base da coluna mantendo as condições de regeneração. O vapor de CO2 que sai pelo topo da coluna é recuperado a partir de um condensador e retroalimentado à coluna. A solução de amina que sai da coluna também é resfriada e devolvida à unidade de absorção. (MORES et al., 2012)

É importante ressaltar que o uso repetido das aminas neste ciclo favorece a formação de contaminantes de difícil remoção, gerando uma grande perda de eficiência no processo de absorção do CO2. A degradação da MEA gera subprodutos que podem inclusive implicar em mecanismos de corrosão. Por isso, é necessário remover esses subprodutos a partir da destilação e compensar com a adição de novas aminas. (CARVALHO et al., 2007)

6.3 PROCESSO DE ESTABILIZAÇÃO DE NAFTA

A nafta advinda da torre de *stripping* contém certa quantidade de propano e de butano e, por isso, é dita não estabilizada. No mercado, estes produtos possuem valor econômico e são normalmente comercializados como componentes básicos do GLP (gás liquefeito de petróleo), o gás de cozinha (FOGÁS, 2019). Já a nafta, por sua vez, pode ser utilizada como insumo para produtos e solventes petroquímicos e incluso fazer parte do pool da gasolina, a fim de aumentar sua octanagem (SILVESTRE 2005). Neste trabalho, serão empregadas três seções para o tratamento desses produtos, como mostrado na Figura 7.3.1: a de Pré-Tratamento, a de Reforma Catalítica e a de Estabilização.

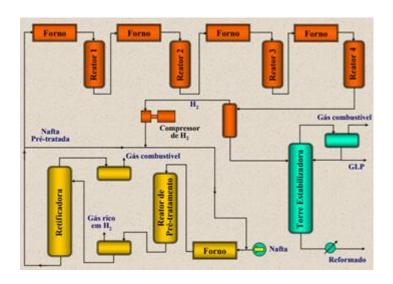


Figura 6.1. Estabilização e reforma de nafta (NUPEG, 2019).

A primeira seção corresponde a uma etapa de pré tratamento que visa à proteção futura do catalisador de reforma contra impurezas presentes na carga, como S, N, O, metais e olefinas, os quais o envenenam. Os metais são eliminados da corrente usando-se catalisadores de pré tratamento, compostos de óxidos de cobalto e molibdênio suportados em alumina, que os retém em sua superfície. Já os derivados de S, N e O e as impurezas voláteis são separados em uma torre retificadora, de onde se obtém a nafta pré tratada. (NUPEG, 2019)

A segunda etapa é a mais importante do processo e tem como objetivo transformar a nafta rica em compostos parafínicos e naftênicos em parafinas ramificadas e em aromáticos, os quais podem ser utilizados para produzir gasolina de

alta octanagem e BTX's de alta pureza (benzeno, tolueno, xileno) para a indústria petroquímica (NUPEG, 2019). A sequência tradicional de quatro reatores e quatro fornos é necessária, segundo Pontes (1997), para manter a temperatura alta da carga (de 470 a 530 °C e de 10 a 40 kgf cm⁻²) já que as reações são predominantemente endotérmicas.

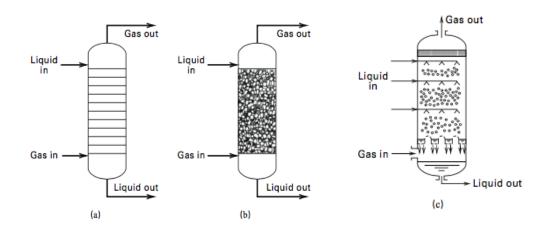
No primeiro reator, ocorrem as reações mais rápidas e endotérmicas do processo: a aromatização (e algo de isomerização exotérmica) dos naftênicos. Essa desidrogenação ocorre em leito catalítico de platina com metal de transição nobre, como rênio ou ródio, suportado em alumina. Devido à baixa temperatura da corrente, o reator possui apenas cerca de 10 % da quantidade total de catalisador do processo, visto que uma maior quantidade de catalisador resultaria inútil. (NUPEG, 2019; PIRES, 2000; PONTES, 1997)

Nos reatores intermediários, ocorrem as reações de desidrociclização (e algo de isomerização exotérmica) de parafínicos que, apesar de também serem altamente endotérmicas, são mais lentas. Dessa forma, eles possuem quantidade semelhante de catalisador que possui o primeiro reator. (PIRES, 2000)

No último reator, se processam as reações de isomerização e de hidrocraqueamento dos parafínicos e dos naftênicos, as quais ocorriam de forma tímida nos reatores anteriores devido a seu caráter fortemente exotérmico. É justamente por este motivo que este reator possui cerca de metade da quantidade total de catalisador do processo (PIRES, 2000; NUPEG, 2019).

O efluente da seção de reforma possui predominância de hidrocarbonetos aromáticos e isoparafínicos, além de subprodutos como GLP, metano, H e coque. Parte da sua fase gasosa é reciclada para a alimentação e parte segue para um compressor que fornece H (75 % em mol) a outras unidades do complexo. A fase líquida, por sua vez, contendo os aromáticos, segue para a unidade de fracionamento e extração (PONTES, 1997).

Por último, a seção de estabilização tem como objetivo promover a separação da nafta dos gases leves, GLP e GC (gás combustível) bem como especificar propriedades químicas dos derivados, como pressão de vapor da nafta leve (gasolina advinda de destilação direta). Quando se deseja retirar da carga o máximo de GLP, e não apenas o necessário para estabilizar a nafta leve, a coluna fracionadora também se conhece como torre debutanizadora (SILVESTRE, 2005).


Abaixando-se a temperatura, consegue-se a separação o GLP e do GC a jusante da torre. Este é utilizado como combustível para os fornos do complexo. Por sua vez, o GLP é tratado para retirar compostos sulfurosos nele presentes, sendo vendido posteriormente como gás de cozinha. Por último, a nafta estabilizada segue para tanques nos quais irá compor a mistura para a formação da gasolina nacional de alta octanagem (SILVA, 2005).

6.4 PROCESSO DE RECUPERAÇÃO DE GASES

O aumento das restrições ambientais tem exigido cada vez mais do setor produtivo, processos mais eficientes com intuito de minimizar a geração de resíduos e recuperar os que foram gerados a fim de diminuir a sua disposição no meio ambiente. Segundo Lou etal. (1993), óxidos sulfurosos (SOx), hidrocarbonetos (HC), partículas em suspensão (PS), monóxido de carbono (CO), óxidos nitrogenados (NOx) são os cinco poluentes primários na atmosfera oriundos, principalmente, das indústrias através dos processos de combustão. As refinarias de petróleo, as fábricas de celulose, de ácido sulfúrico e de fertilizantes, são as principais fontes de emissão, que provocam graves danos ao ser humano, como irritação das mucosas e vias respiratórias, alteração do processo de fotossíntese nos vegetais e que, através das chuvas ácidas, contaminam os corpos de água, causando a morte de animais aquáticos e terrestres (ALMEIDA e RIBEIRO,1993).

O processo de absorção é utilizado para separar mistura de gases; remover impurezas, contaminantes, poluentes, venenos catalíticos de um gás; assim como recuperar químicos valiosos (SEADER, 2009). A principal característica do processo é a transferência de massa que ocorre da fase gasosa para a fase líquida devido à solubilidade ou à diferença de concentração das fases, permitindo assim a sua remoção/recuperação.

O gás comprimido obtido após a sessão de *stripping*, é encaminhado à refinaria onde passará por uma coluna de absorção para recuperação de gases com alto valor comercial como propano e butano, assim como o metano e o etanol que servirão de combustível gasoso. Posteriormente, passará pelo processo de Claus Modificado para recuperação do enxofre.

Figura 6.2. Colunas de absorção: a) coluna de pratos b) coluna de recheio c) coluna com pulverização. Fonte: SEADER, 2009.

A recuperação de enxofre, através do processo Claus, é o padrão da indústria na redução das emissões de SO2 de efluentes ricos em H2S. Basicamente o processo consiste em duas etapas em série: uma térmica e outra catalítica (JOAQUIM FILHO,2004).

Criado em 1883, pelo químico Carl Friedrich Claus, este processo de recuperação é baseado na oxidação do H2S que será convertido em enxofre elementar. A fase cinética do processo é limitada devido à natureza de suas reações que tendem ao equilíbrio, por isto, uma unidade com três reatores catalíticos é capaz de recuperar até 98% do enxofre do gás ácido, já a fase térmica é responsável por 60 a 70% da conversão total em enxofre elementar (JOAQUIM FILHO, 2004).

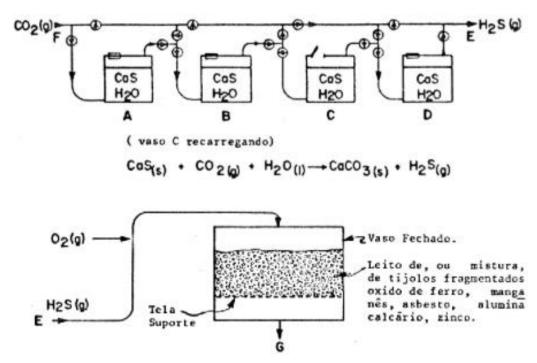


Figura 6.3. Processo Claus original. Fonte: Hardt (1991).

Após grandes modificações que introduziram o conceito de uma etapa de conversão térmica (combustão), seguida por etapas catalíticas, o processo passou a ser conhecido como o Processo de Claus Modificado. E desde então, a recuperação do enxofre vem aumentado significativamente até cerca de 90% na década de 90 (Hyne & Goar, 1996).

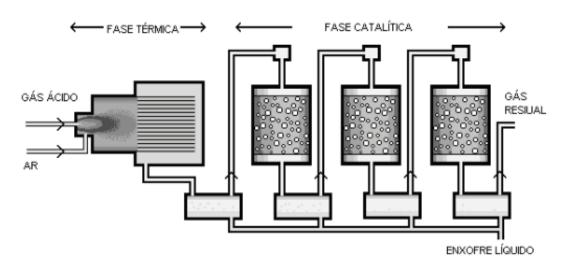


Figura 6.4. Processo Claus Modificado. Fonte: Elliott (1997).

7 AVALIAÇÃO ECONÔMICA

É de suma importância realizar a análise econômica da fábrica, visando a viabilidade dela. A partir dos custos dos equipamentos individuais, do custo de operação e dos gastos gerais, que envolvem promoção e venda, pesquisa e desenvolvimento e serviços técnicos, por exemplo; é possível calcular a rentabilidade. Na avaliação a seguir, estão presentes os custos associados à implementação e operação da planta, o plano financeiro e a relação de lucratividade das vendas do produto.

7.1 INVESTIMENTO TOTAL

O capital consiste no investimento inicial necessário para colocar a planta em funcionamento e mantê-la produzindo. Estão destrinchados o capital imobilizado, que representa o conjunto de terrenos, instalações, maquinários, pagamentos de contratos e licenças exigidos; e o capital de giro, que corresponde ao investimento necessário para dar início às operações, envolvendo o estoque de matérias primas, o estoque de produtos intermédios e terminados e dinheiro para atender aos pagamentos. Por fim, o investimento total é dado pela soma do capital imobilizado e do capital de giro.

7.1.1 Capital imobilizado

7.1.1.1 Equipamentos

O custo específico de cada equipamento está descrito na seção individual do mesmo e estão resumidos na tabela abaixo. As equações utilizadas para obtenção dos custos são defasadas, pois referem-se ao ano de 2006 e estão em dólar. Para obter valores em reais e atualizados para o ano de 2018, utilizou-se o CEPCI (Chemical Engineering Plant Cost Index).

Tabela 7.1 - Custo dos equipamentos.

Custo dos	equipamentos	
Equipamento	Sigla	Custo (R\$) 2018
Bomba de entrada - gasóleo	P-1	R\$ 1.038.559,54
Bomba de entrada - águas de caldeiras	P-2	R\$ 106.389,72
Bombas - torre de absorção	P-3	R\$ 65.961.622,00
Torre de destilação	C-7	R\$ 8.553.445,00
Pulmão acumulador do refluxo	C-8	R\$ 279.936,00
Forno 2	F-2	R\$ 10.948.002,00
Condensador 7	E-7	R\$ 52.543,43
Forno 1	F-1	R\$ 80.126.713,00
Aero refrigerador	E-2	R\$ 1.651.372,00
Pulmão Acumulador Entrada	C-1	R\$ 2.581.116,00
Reator	C-2	R\$ 14.788.436,00
Separador Trifásico HP	C-3	R\$ 9.942.111,00
Separador Trifásico LP	C-5	R\$ 2.636.673,00
Separador Bifásico HP	C-4	R\$ 1.058.559,00
Torre de Absorção	C-6	R\$ 16.272.954,00
Trocador de calor	E-1	R\$ 245.146,87
Trocador de calor	E-3	R\$ 536.150,31
Trocador de calor	E-4	R\$ 83.387,58
Trocador de calor	E-6	R\$ 12.809.546,05
Compressor Entrada	K-1	R\$ 4.007.609,50
Compressor Reciclo - Torre de absorção	K-2	R\$ 13.919.343,41
Compressor - Corrente de saída	K-3	R\$ 448.869,21
Custo total equipamentos		R\$ 248 048 484 63

Custo total equipamentos

R\$ 248.048.484,63

7.1.1.2 Materiais

O custo com materiais, que envolve tubulações, isolamentos, material elétrico, estruturas, instrumentação, entre outros; foi estimado como uma porcentagem dos custos com equipamentos principais, utilizando-se 60%. A tabela a seguir traz a relação dos materiais com as respectivas porcentagens e custos.

Tabela 7.2 - Custo dos materiais.

Material	Porcentagem (%)	Custo
Obra civil e edifícios	28	R\$ 26.566.529,42
Tubulações e infraestrutura	45	R\$ 42.696.208,00
Instrumentação	10	R\$ 9.488.046,22
Eletricidade	10	R\$ 9.488.046,22
Isolamento	5	R\$ 4.744.023,11
Pintura	2	R\$ 1.897.609,24

7.1.1.3 Engenharia de Detalhe

O custo com a engenharia de detalhe depende do tamanho do projeto. Se tratando de um projeto pequeno, o custo pode variar entre 40 e 50% do gasto com equipamentos mais materiais; e, no caso de um projeto grande, o custo varia entre 15 e 20% desse conjunto. Considerou-se projeto grande e assumiu-se um valor de 15%.

Tabela 7.3 - Custo da Engenharia de detalhe.

	Porcentagem (%)	Custo
Equipamentos + Materiais	100	R\$ 253.014.565,95
Engenharia de detalhe	15	R\$ 7.827.638,13

7.1.1.4 Engenharia de processo

O custo da engenharia de processo, que corresponde aos custos de licenças e de engenharia básica, não é avaliável pelo método das porcentagens. Considerouse 2,5 milhões como custo de licença, e 180 mil para engenharia básica.

Tabela 7.4 - Custo da Engenharia de processo.

Engenharia de processo	Custo		
Licença	R\$ 2.500.000,00		
Engenharia básica	R\$ 180.000,00		

7.1.1.5 Construção e Supervisão

O custo de construção é calculado a partir do método das porcentagens, podendo variar entre 50 e 70% do gasto com equipamentos somado ao gasto com materiais. Já o custo de supervisão de construção corresponde à 10% desse conjunto. Ambos os custos estão descritos na tabela a seguir, em que se considerou um valor de 50% para construção.

Tabela 7.5 - Custo de construção e supervisão.

	Porcentagem (%)	Custo
Construção	50	R\$ 126.507.282,98
Supervisão	10	R\$ 25.301.456,60

7.1.1.6 Gastos gerais

Todos os custos da planta calculados até agora são chamados de ISBL (Inside Battery Limits) e correspondem aos custos de aquisição e instalação de todos os equipamentos de processo, os custos de compra e transporte de equipamentos, custos de terrenos, infraestrutura, tubulação, catalisadores e qualquer outro material necessário para a operação final da planta ou para a construção da planta. Os custos do ISBL também incluem quaisquer taxas associadas à construção, como licenças, seguros ou aluguel de equipamentos.

A partir do ISBL, é possível estimar o OSBL (Outside Battery Limits), que são um componente importante do custo da planta, pois lida com o cálculo de custos associados a desenvolvimentos externos para que a planta funcione. Esses custos envolvem: serviços auxiliares, como eletricidade e água, off-sites, que são itens a parte dos limites físicos da planta como estação de tratamento, gastos de arranque e gastos com contingência e imprevistos. Nesse projeto, não se considerou o custo dos serviços auxiliares e off-sites, já que, segundo a especificação do projeto, este será

integrado à uma planta. A tabela a seguir traz a relação desses custos com a respectiva porcentagem.

Tabela 7.6 - Custo de gastos gerais.

Gastos gerais	Porcentagem (%)	Custo
ISBL	100	R\$ 442.775.490,41
Gastos de arranque	3	R\$ 13.283.264,71
Contingências e imprevistos	5	R\$ 22.138.774,52

Por fim, o custo imobilizado total é dado pela soma de todos os custos descritos nessa seção e estão relacionados na tabela abaixo.

Tabela 7.7 - Custo imobilizado total.

	Custo
ISBL	R\$ 442.775.490,41
OSBL	R\$ 35.422.039,23
Capital imobilizado total	R\$ 478.197.529,65

7.1.2 Capital de giro

O capital de giro é o investimento necessário para custear a operação industrial de forma que haja um retorno, ou seja, que a venda dos produtos supere as despesas. Esse investimento é importante para garantir a unidade industrial operando em plenas condições de produção e utilizou-se 15% do custo imobilizado.

Tabela 7.8 - Capital de giro.

	Porcentagem (%)	Custo
Custo Imobilizado	100	R\$ 478.197.529,65
Capital de giro	15	R\$ 71.729.629,45

A partir dos dados acima, é possível estimar o investimento total, apresentado na tabela a seguir.

Tabela 7.9 - Investimento total.

	Custo
Capital imobilizado	R\$ 478.197.529,65
Capital de giro	R\$ 71.729.629,45
Total investimento	R\$ 549.927.159,09

7.2. VENDAS

Para estimar o valor obtido com as vendas, baseou-se na quantidade produzida ao longo de um ano e no preço de venda dele.

Tabela 7.10 - Vendas.

		Quantidade/ano	1
Preço dos produtos por ano	Valor	(ton)	Valor total/ano
			R\$
Gasóleo dessulfurado (R\$/ton)	R\$ 830,00	1.970.422,87	1.635.450.980
Propano e butano comerciais (R\$/ton)	R\$ 780,00	421,04	R\$ 328.410
Nafta de refinaria (R\$/ton)	R\$ 680,00	3.519,03	R\$ 2.392.940

7.3. CUSTOS ANUAIS

Os custos anuais representam os gastos com bens e serviços consumidos para obter o produto de interesse. Estes podem ser matéria-prima e serviços auxiliares, que são consumidos diretamente na atividade produtiva, como também, gastos com manutenção, aluguel, amortização, considerados como custos indiretos. Para o cálculo, algumas considerações foram feitas e estão apresentadas na tabela a seguir.

Tabela 7.11 - Custos anuais.

Custo, Receita ou Imobilizado	Custos	Valor	Quantidade/ano	Valor total/ano
		R\$		
С	Mão de obra (R\$/ano)	180.000,00	1	R\$ 180.000
С	Manutenção e serviços (% inv/ano)	3%	-	R\$ 0
С	Catalisador de hidrodessulfuração (R\$/kg)	R\$ 28,00	13498,8485	R\$ 188.984

		R\$		
1	Licença	2.500.000,00	1	R\$ 2.500.000
		R\$		
1	Engenharia básica	180.000,00	1	R\$ 180.000

Custo, Receita ou			Quantidade/ano	
Imobilizado	Preço dos produtos por ano	Valor	(ton)	Valor total/ano
С	Gasóleo sem dessulfurar (R\$/ton)	R\$ 850,00	2.000.000,00	R\$ 1.700.000.000
R	Gasóleo dessulfurado (R\$/ton)	R\$ 830,00	1.970.422,87	R\$ 1.635.450.980
С	Combustível gasoso de refinaria (R\$/ton)	R\$ 430,00	119.100,15	R\$ 51.213.066
R	Propano e butano comerciais (R\$/ton)	R\$ 780,00	421,04	R\$ 328.410
С	Custo de recuperação do combustível gasoso (R\$/ton)	R\$ 25,00	387,85	R\$ 9.696
С	Custo de recuperação do propano e butano comerciais (R\$/ton)	R\$ 60,00	421,04	R\$ 25.262
R	Nafta de refinaria (R\$/ton)	R\$ 680,00	3.519,03	R\$ 2.392.940
С	Custo de processamento e estabilização da nafta (R\$/ton)	R\$ 35,00	3.519,03	R\$ 123.166
С	Custo de processamento de águas ácidas (R\$/ton)	R\$ 60,00	69.634,94	R\$ 4.178.096
С	Custo de regeneração da amina rica(R\$/ton)	R\$ 38,00	75.297.932,79	R\$ 2.861.321.446
С	Hidrogênio 100% (R\$/ton)	R\$ 1.800,00	17.829,29	R\$ 32.092.722

Custo, Receita ou Imobilizado	Preço das utilidades	Valor	Quantidade/ano	Valor total/ano
С	Água de caldeiras (R\$/ton)	R\$ 5,50	69.938,86	R\$ 384.664
С	Eletricidade (R\$/kwh)	R\$ 0,18	268.358.175,93	R\$ 48.304.472
С	Ar de instrumentos (R\$/Nm3) - 22 VALVULAS, 2M3/H	R\$ 0,04	352.000,00	R\$ 12.320
С	Água de refrigeração (circulante) (R\$/m3)	R\$ 0,14	26.124.832,00	R\$ 3.657.476

Os custos relacionados aos serviços gerais incluem serviços auxiliares de água de refrigeração, combustível e eletricidade; evidenciados a seguir.

Os gastos com eletricidade foram estimados a partir do consumo energético das bombas, dos compressores e do aero refrigerador; considerando que a planta opera 8.000 horas ao ano.

Tabela 7.12 - Custo de eletricidade.

		Gastos com energia	I	
Equipamento	KW	Tempo de operação (h/ano)	KWh	Custo energia (R\$/KWh)
E-2	605,00	8000	4.840.000,00	R\$ 871.200,00
K-1	461,88	8000	3.695.000,00	R\$ 665.100,00
K-2	3.911,28	8000	31.290.240,00	R\$ 5.632.243,20
K-3	4,90	8000	39.200,00	R\$ 7.056,00
P-1	1.429,16	8000	11.433.305,59	R\$ 2.057.995,01
P-2	32,55	8000	260.430,34	R\$ 46.877,46
P-3	27.100,00	8000	216.800.000,00	R\$ 39.024.000,00

Os gastos com combustível dos fornos também foram calculados considerando o tempo de operação durante o ano.

Tabela 7.13 - Gasto com combustível.

Gastos com combustível				
		Tempo de operação		
Equipamento	ton/h	(h/ano)	ton /ano	
F-1	9,82	8000	78592	
F-2	5,11	8000	40896	
Produção in loco	0,05	8000	387,8468658	

Os trocadores de calor E-3 e E-6 e o condensador E-7 utilizam água de refrigeração e os custos foram calculados a partir do consumo de cada equipamento.

Tabela 7.14 - Custo de ar de refrigeração.

_		Gastos com A.R.		
Equipamento	m3/h	Tempo de operação (h/ano)	m3/ano	Custo (R\$/ton)
E-3	264,41	8000	2115280	R\$ 296.139,20
E-6	2287,157	8000	18297256	R\$ 2.561.615,84
E-7	714,037	8000	5712296	R\$ 799.721,44

7.4 RENTABILIDADE

Para que a indústria comece a operar de fato, dinheiro e recursos são necessários. Nesse sentido, pode se dizer que os recursos são investidos no projeto com o objetivo de obter lucros. Portanto, é importante fazer uma estimativa da rentabilidade dos capitais investidos, ou seja, quanto os investimentos irão render. Os fatores que influenciam a rentabilidade do projeto são o custo de venda anual, os custos anuais e o capital requerido. Para uma estimativa mais assertiva, deve-se levar em consideração os impostos, a inflação e o horizonte temporal do projeto. Considerou-se, portanto, três anos de projeto e quinze anos de operação da planta.

Dois indicadores são necessários para essa análise: o Valor Atualizado Líquido (VAL) e a Taxa Interna de Retorno (TIR). A combinação desses dois é uma boa forma de avaliar a rentabilidade de um projeto.

O Valor Líquido Atualizado consiste no somatório de todos os movimentos dos fundos ao longo da vida do projeto, com seu sinal, corrigidos ao ano atual. Caso VAL seja positivo, o projeto é atrativo e economicamente viável; caso VAL seja igual a zero, os fundos gerados se igualamaos fundos investidos, situação desfavorável e, por fim, caso VAL seja negativo, o projeto é economicamente inviável. Assim, quanto maior o valor obtido, maior será a rentabilidade do projeto.

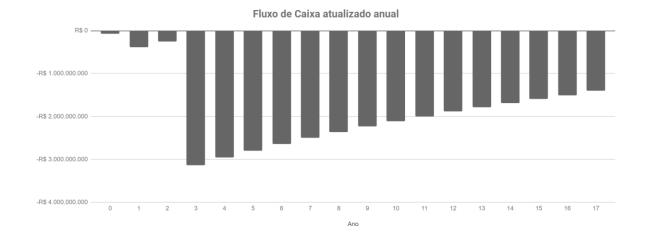
$$VAL = \sum_{n=1}^{n=t} \frac{CF_n}{(1+i)^n}$$
 (7.1)

Tabela 7.15 - Rentabilidade do projeto.

Rentabilidade			
Horizonte temporal	3 anos de construção + 15 anos de operação		
Capital imobilizado	R\$ 697.210.131,42		
Curva de investimento	10% Ano 0 60% Ano 1 30% Ano 3		
Capital de giro	R\$ 53.914.580,70		
Vendas	R\$ 1.638.172.330,31		
Custos	R\$ 4.708.581.549,84		
Amortização	R\$ 69.721.013,14		
Impostos	35%		
Inflação	4%		
Juros de referência	10%		

Tabela 7.16 - Fluxo de caixa.

Anos	0	1	2	3	4	5
Imobilizado	-R\$ 268.000	-R\$ 1.608.000	-R\$ 804.000			
Giro			-R\$ 402.000			
Fundos investidos (FI)	-R\$ 268.000	-R\$ 1.608.000	-R\$ 1.206.000	R\$ 0	R\$ 0	R\$ 0
Vendas				R\$ 1.638.172.330	R\$ 1.703.699.224	R\$ 1.771.847.192
Custos				R\$ 4.701.691.370	R\$ 4.889.759.025	R\$ 5.085.349.386
Amortização				R\$ 268.000	R\$ 268.000	R\$ 268.000
Benefícios antes de impostos (BAI)				-R\$ 3.063.787.040	-R\$ 3.186.327.801	-R\$ 3.313.770.193
Impostos				R\$ 1.072.325.464	R\$ 1.115.214.730	R\$ 1.159.819.568
Benefícios depois de impostos (BDI)				-R\$ 4.136.112.504	-R\$ 4.301.542.532	-R\$ 4.473.589.761
Fundos gerados (FG)= BDI + amortização				-R\$ 4.135.844.504	-R\$ 4.301.274.532	-R\$ 4.473.321.761
Cash Flow (FG+FI)	-R\$ 268.000	-R\$ 1.608.000	-R\$ 1.206.000	-R\$ 4.135.844.504	-R\$ 4.301.274.532	-R\$ 4.473.321.761
Cash Flow atualizados anuais	-R\$ 268.000	-R\$ 1.461.818	-R\$ 996.694	-R\$ 3.107.321.190	-R\$ 2.937.828.380	-R\$ 2.777.580.866
Fluxo de Caixa acumulado	-R\$ 268.000	-R\$ 1.729.818	-R\$ 2.726.512	-R\$ 3.110.047.702	-R\$ 6.047.876.082	-R\$ 8.825.456.949
VAL	-R\$ 32.409.546.044					


6	7	8	9	10	11
R\$ 0					
R\$ 1.842.721.080	R\$ 1.916.429.923	R\$ 1.993.087.120	R\$ 2.072.810.605	R\$ 2.155.723.029	R\$ 2.241.951.950
R\$ 5.288.763.361	R\$ 5.500.313.896	R\$ 5.720.326.451	R\$ 5.949.139.510	R\$ 6.187.105.090	R\$ 6.434.589.293
R\$ 268.000					
-R\$ 3.446.310.281	-R\$ 3.584.151.972	-R\$ 3.727.507.331	-R\$ 3.876.596.904	-R\$ 4.031.650.061	-R\$ 4.192.905.343
R\$ 1.206.208.598	R\$ 1.254.453.190	R\$ 1.304.627.566	R\$ 1.356.808.917	R\$ 1.411.077.521	R\$ 1.467.516.870
-R\$ 4.652.518.879	-R\$ 4.838.605.163	-R\$ 5.032.134.897	-R\$ 5.233.405.821	-R\$ 5.442.727.582	-R\$ 5.660.422.213
-R\$ 4.652.250.879	-R\$ 4.838.337.163	-R\$ 5.031.866.897	-R\$ 5.233.137.821	-R\$ 5.442.459.582	-R\$ 5.660.154.213
-R\$ 4.652.250.879	-R\$ 4.838.337.163	-R\$ 5.031.866.897	-R\$ 5.233.137.821	-R\$ 5.442.459.582	-R\$ 5.660.154.213
-R\$ 2.626.074.337	-R\$ 2.482.831.994	-R\$ 2.347.403.044	-R\$ 2.219.361.286	-R\$ 2.098.303.770	-R\$ 1.983.849.522
-R\$ 11.451.531.286	-R\$ 13.934.363.280	-R\$ 16.281.766.324	-R\$ 18.501.127.610	-R\$ 20.599.431.380	-R\$ 22.583.280.902

12	13	14	15	16	17
					R\$ 402.000
R\$ 0	R\$ 402.000				
R\$ 2.331.630.029	R\$ 2.424.895.230	R\$ 2.521.891.039	R\$ 2.622.766.680	R\$ 2.727.677.348	R\$ 2.836.784.442
R\$ 6.691.972.865	R\$ 6.959.651.780	R\$ 7.238.037.851	R\$ 7.527.559.365	R\$ 7.828.661.740	R\$ 8.141.808.209
R\$ 268.000					
-R\$ 4.360.610.837	-R\$ 4.535.024.550	-R\$ 4.716.414.812	-R\$ 4.905.060.685	-R\$ 5.101.252.392	-R\$ 5.305.291.768
R\$ 1.526.213.793	R\$ 1.587.258.593	R\$ 1.650.745.184	R\$ 1.716.771.240	R\$ 1.785.438.337	R\$ 1.856.852.119
-R\$ 5.886.824.630	-R\$ 6.122.283.143	-R\$ 6.367.159.996	-R\$ 6.621.831.924	-R\$ 6.886.690.729	-R\$ 7.162.143.886
-R\$ 5.886.556.630	-R\$ 6.122.015.143	-R\$ 6.366.891.996	-R\$ 6.621.563.924	-R\$ 6.886.422.729	-R\$ 7.161.875.886
-R\$ 5.886.556.630	-R\$ 6.122.015.143	-R\$ 6.366.891.996	-R\$ 6.621.563.924	-R\$ 6.886.422.729	-R\$ 7.161.473.886
-R\$ 1.875.638.352	-R\$ 1.773.329.719	-R\$ 1.676.601.655	-R\$ 1.585.149.758	-R\$ 1.498.686.227	-R\$ 1.416.859.430
-R\$ 24.458.919.254	-R\$ 26.232.248.973	-R\$ 27.908.850.629	-R\$ 29.494.000.386	-R\$ 30.992.686.614	-R\$ 32.409.546.044

A seguir, estão os gráficos de fluxo de caixa atualizado anual e acumulado.

Figura 7.1 - Fluxo de caixa acumulado.

Figura 7.2 - Fluxo de caixa anual.

Como evidenciado pelo histórico de fluxos de caixa anuais, é possível ver que o investimento não traz retorno e a planta não gera lucros. Os fluxos de caixa atualizados anuais resultaram em um VAL de R\$ 32.409.546.044,00 de prejuízo, o que indica que o projeto não é rentável.

Com relação à TIR, taxa interna de retorno, esta consiste nos juros com que os fundos gerados compensariam os fundos investidos, ou seja, representa a viabilidade do projeto em relação aos juros de referência. Ela pode ser calculada substituindo o valor dos juros de referência até que o VAL seja zero. Caso a TIR seja maior do que o valor dos juros de referência, o projeto é rentável. No projeto em questão, nota-se que o valor de VAL indica prejuízo e por esse motivo, não foi possível calcular a TIR.

Conclui-se, portanto, que o projeto não é rentável.

7.5 CONSIDERAÇÕES FINAIS.

Tendo em vista o custo operacional da planta em comparação com o preço de venda dos produtos, entende-se que não é possível obter lucro analisando apenas a unidade da planta projetada neste trabalho. A viabilidade econômica da operação precisa ser analisada em conjunto com o restante dos produtos a serem gerados em tal indústria, os quais precisam gerar um lucro superior aos 32 bilhões de reais de déficit gerados nesta planta.

8 REFERÊNCIAS BIBLIOGRÁFICAS

ABRADEE - **Associação Brasileira de Distribuidores de Energia Elétrica**. Disponível em http://www.abradee.com.br/, 2017.

ANCHYETA J. Modeling and Simulation of Catalytic Reactors of Petroleum Refining. Nova lorque: Wiley, 2011. Chemstryworld, Nina Notman. City Air. Disponível em: https://www.chemistryworld.com/features/urban-air-pollution/2500224. article#/. Acesso em 03 dez. 2019.

ANP.(2013). **Resolução ANP nº 50, de 24 de dezembro de 2013**. Esta Resolução tem por objetivo regulamentar as especificações do óleo diesel de uso rodoviário, contidas no Regulamento Técnico ANP nº 4/2013, parte integrante desta Resolução, e as obrigações quanto ao controle da qualidade a serem atendidas pelos diversos agentes econômicos que comercializam o produto em todo o território nacional. . Brasília, DF, Disponível em: http://legislacao.anp.gov.br/?path=legislacao-anp/resol-anp/2013/de zembro&item=ranp-50--2013. Acesso em: 10 out. 2019.

BEGA, E. A.; DELMÉE, G.J.; COHN, P.E.; BULGARELLI, R.; KOCH, R.; FINKEL, V.S. GROOVER, M. P. **Instrumentação Industrial**, 2ª Ed., Rio de Janeiro: Interciência: IBP, 2006. xviii, 583 p.

BRITO, Gisele Ferreira de; CHOI, Vania Picanço; ALMEIDA, Andreia de. **Manual ABNT:** regras gerais de estilo e formatação de trabalhos acadêmicos. 4. ed. São Paulo: Fecap Biblioteca Paulo Ernesto Tolle, 2014. 101 p. Disponível em: http://biblioteca.fecap.br/wp-content/uploads/2012/08/Manual-ABNT-regras-gerais-de-estilo-e-formatação-de-trabalhos-acadêmicos.pdf>. Acesso em: 07 dez. 2019.

CABRA, Luis D. / DE LUGAS, Antonio M./ RUIZ, Fernando F./ RAMOS, María J. M. Metodologías del Diseño Aplicado y Gestión de Proyectos para Ingenieros Químicos.

CARVALHO, Luciene Santos de. Estudo da Tecnologia de Separação do CO2 de Gases Industriais por Absorção com Monoetanolamina-MEA. Universidade Salvador, Salvador, BA 2007.

COELHO, Alessandra Diniz. **Tratamento das águas ácidas de refinaria de petróleo pelos processos fenton e foto-fenton**. Tese de mestrado. Universidade Federal do Rio de Janeiro, Faculdade de Engenharia Química, Rio de Janeiro, RJ, 2004.

COELHO, Eloisia B. A. P. **Aspectos ambientais de uma refinaria e respectivas formas de controle**. Curitiba, 2002. Curso de formação de operadores de refinaria da Petrobrás.

DIAS P. Diane. Simulação de Unidades de Hidrotratamento de Gasóleo e de Gasóleo de Vácuo. Dezembro, 2016. Engenharia Química. Técnico Lisboa.

DIETZ A. C. Modelagem e simulação de reatores de Hidrotratamento (HDT) de correntes de diesel. 2014. Dissertação (Mestrado em Engenharia Química) - Universidade Federal do Rio Grande do Sul, Porto Alegre, 2014.

FILHO, Joaquim Marques. Estudo da fase térmica do processo de Claus utilizando fluidinâmica computacional. Tese de mestrado, USP, São Paulo, 2004.

Fogás. **Propriedades do GLP**. Disponível em: https://www.fogas.com.br/residencia/propriedade-glp/. Acesso em 12 outubro 2019.

FOUST, Alan S. et al. **Princípios das Operações Unitárias**. 2. ed. Brasil. Ltc, 1982. 682 p.

HOFF Silvana. Desenvolvimento de modificações em reatores de leito catalítico de planta industrial de Hidrotratamento de Diesel. 2015. Engenharia Química. UFRGS.

HSU Samuel C., ROBINSON R. P. **Practical Advances in Petroleum Processing**. 1. ed. New York, Springer 2006.

KHOL, A. L.; Nielsen, R. B. **Gas purification**. 5 Ed. Texas. Gulf Publishing Company.1997.1414 p.

LLOYD, Lawrie. **Handbook of industrial catalysts**. Springer Science & Business Media, 2011.

MMA. **Poluentes Atmosféricos**. Disponível em: https://www.mma.gov.br/cida dessustentaveis/qualidade-do-ar/poluentes-atmosf%C3%A9ricos.html. Acesso em 03 dez. 2019. Site Ourworldindata, RITCHIE Hannah, ROSER Max. Air Pollution. Disponível em: https://ourworldindata.org/air-pollution . Acesso em 03 dez. 2019.

MORES, Patricia; SCENNA, Nicolás; MUSSATI, Sergio. **CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process**. Energy, v. 45, n. 1, p. 1042-1058, 2012.

NORMAS TÉCNICAS (Brasil). **ANEXOS.** 2019. Disponível em: https://www.normas tecnicas.com/sem-categoria/anexos/>. Acesso em: 07 dez. 2019.

Núcleo de Pesquisa em Petróleo e Gás (NUPEG). Apresentação DEQ0370 – **Refino de Petróleo e Petroquímica** Universidade Federal do Rio Grande do Norte. Disponível em: http://www.nupeg.ufrn.br/downloads.html. Acesso em 09 outubro 2019.

PIRES, Carlos Augusto de Moraes. **Reforma catalítica da nafta: modelagem, simulação e controle do processo**. Tese de doutorado, Universidade Estadual de Campinas, Faculdade de Engenharia Quimica, Campinas, SP. 2000.

PONTES, Luiz Antonio Magalhães. **Reforma catalítica do n-octano visando a produção de aromáticos**. Tese de doutorado, Universidade Estadual de Campinas, Faculdade de Engenharia Química, Campinas, SP. 1997.]

REFAP, HDT. **Manual de operação da unidade de hidrotratamento de Diesel**. Arquivo corporativo Petrobras, 2009. Site ECOLAB. Controle de Corrosão do Reator. Disponível em: https://pt-br.ecolab.com/solutions/react-corrosion-control#f:_@webso lutions=[Controle%20de%20corros%C3%A3o%20do%20reator]&f:@webapplications =[Hidroprocessamento] . Acesso em 03 dez. 2019.

SANTO, Carlos M. E. A indústria de refinação de petróleo: características e tratamento de águas residuais. Universidade do Porto, Departamento de Engenharia Química da Faculdade de Engenharia, Porto, Portugal, 2010.

SATTERFIELD, Charles N. **Trickle-bed reactors**. AlChE Journal, v. 21, n. 2, p. 209-228, 1975.

SEADER, J. D; HENLEY, Ernest J.; ROPER, D. Keith. **Separation Process Principles: chemical and biochemical operations**. 3^a Ed. Estados Unidos da América, 2009.

SILVA, José Izaquiel Santos da. Controle e otimização de uma unidade de hidrodessulfurização de múltiplas correntes de diesel. Rio de Janeiro: UFRJ/COPPE, 2018.

SILVA, Rafael Tobias da. **Aplicações da Teoria de Controle em uma Refinaria de Petróleo**. Estudo de Caso: REVAP. Monografia, Universidade Federal de Santa Catarina, Florianópolis, SC 2005.

SILVESTRE, Diego S. Inferência da Curva de Destilação ASTM da Destilação Atmosférica para Controle Avançado. Monografia, Universidade Federal de Santa Catarina, Florianópolis, SC, 2005.

SMITH, C. A., CORRIPIO, A. B., 2015. **Princípios e prática de controle automático de processo**. 3. ed. Rio de Janeiro, LTC.

SPEIGHT J. G. **The Chemistry and Tecnologyof petroleum** (5 ed.). Nova lorque: CRC Press, 2014.

TOWLER, G. et al. Chemical engineering design: principles, practice, and economics of plant and process design. 2. ed. [S.l.]: Elsevier, 2013.

VALT Renata. 2019 – Regeneração Eletrocinética, Reciclagem e reuso de Catalisadores desativados de FCC na adsorção de Dióxido de Carbono e craqueamento de Petróleo. 2012. Engenharia Química. Universidade Federal do Paraná.

ANEXO 1: FOLHAS DE ESPECIFICAÇÃO CORRENTES MATERIAIS

	CORRENTES MATERIAIS	
Número da corrente	1	
Descrição	Gasóleo à entrada	
Pressão	80,04	Kg/cm ² g
Temperatura	40	°C
Vazão mássica	228300	Kg/h
Vazão molar	840	Kmol/h
Entalpia total	-0,1141	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
•	PRIEDADES DA FASE LÍQUIDA	<u> </u>
Vazão volumétrica @P e T de operação	263,124	m³/h
Peso molecular	271,9	Kg/kmol
Densidade	867,7	Kg/m ³
Viscosidade	6,557	сР
Condutividade térmica	0,1238	W/m·°C
Calor específico	1,832	kJ/kg⋅°C
Tensão superficial	29,19	dinas/cm
PROPF	RIEDADES DA FASE VAPOR/GÁS	<u> </u>
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	cP
Condutividade térmica	-	W/m·°C
Calor específico	-	kJ/kg⋅°C
Fator de compressibilidade	-	
•	COMPOSIÇÃO	•
Componente	Fração molar	Fração mássica
NBP[0]251*	0,3393	0,2998
NBP[0]264*	0,2199	0,2059
NBP[0]279*	0,0913	0,0906
NBP[0]296*	0,1357	0,1469
NBP[0]309*	0,0969	0,1103
NBP[0]324*	0,0655	0,0792
NBP[0]338*	0,0335	0,0426
NBP[0]351*	0,0114	0,0152
NBP[0]368*	0,0045	0,0064
NBP[0]381*	0,0016	0,0023
NBP[0]396*	0,0005	0,0008

CORRENTES MATERIAIS				
Número da corrente	2			
Descrição	Gasóleo após vaso pulmão de entrada			
Pressão	80,04	Kg/cm ² g		
Temperatura	40	°C		
Vazão mássica	228300	Kg/h		
Vazão molar	840	Kmol/h		
Entalpia total	-0,114101338	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	0,000			
F	PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	263,124	m³/h		
Peso molecular	271,9	Kg/kmol		
Densidade	867,7	Kg/m ³		
Viscosidade	6,557	сР		
Condutividade térmica	0,1238	W/m-°C		
Calor específico	1,832	kJ/kg⋅°C		
Tensão superficial	29,19	dinas/cm		
	OPRIEDADES DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular	-	Kg/kmol		
Densidade	-	Kg/m ³		
Viscosidade	-	сР		
Condutividade térmica	-	W/m·°C		
Calor específico	-	kJ/kg⋅°C		
Fator de compressibilidade	-			
	COMPOSIÇÃO			
Componente	Fração molar	Fração mássica		
NBP[0]251*	0,0370	0,0265		
NBP[0]264*	0,0418	0,0317		
NBP[0]279*	0,0329	0,0264		
NBP[0]296*	0,1013	0,0888		
NBP[0]309*	0,1278	0,118		
NBP[0]324*	0,1697	0,1661		
NBP[0]338*	0,1674	0,1728		
NBP[0]351*	0,1103	0,1195		
NBP[0]368*	0,0986	0,1129		
NBP[0]381*	0,0665	0,0791		
NBP[0]396*	0,0468	0,0582		
טפכנטן וטאו	U,U 4 00	0,0002		

CORRENTES MATERIAIS				
Número da corrente	3			
Descrição	Carga combinada (gasóleo + H ₂)			
Pressão	50,33	Kg/cm ² g		
Temperatura	75,39	°C		
Vazão mássica	300400	Kg/h		
Vazão molar	9843	Kmol/h		
Entalpia total	-0,1736	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	0,907			
	PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	274,572	m³/h		
Peso molecular	250,3	Kg/kmol		
Densidade	837,1	Kg/m ³		
Viscosidade	2,49	cР		
Condutividade térmica	0,115	W/m·°C		
Calor específico	1,994	kJ/kg⋅°C		
Tensão superficial	24,39	dinas/cm		
	OPRIEDADES DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T	5331	m ³ /h		
de operação		-		
Peso molecular	7,91	Kg/kmol		
Densidade	13,24	Kg/m ³		
Viscosidade	0,01141	cР		
Condutividade térmica	0,1102	W/m-°C		
Calor específico	4,181	kJ/kg⋅°C		
Fator de compressibilidade	1,017			
	COMPOSIÇÃO			
Componente	Fração molar	Fração mássica		
Metano	0,3514	0,1847		
Etano	0,0095	0,0094		
Propano	0,0043	0,0062		
n-Butano	0,0007	0,0013		
n-Pentano	0,0003	0,0007		
Hidrogênio	0,5461	0,0361		
Água	0,0022	0,0013		
NBP[0]251*	0,0032	0,0201		
NBP[0]264*	0,0036	0,0241		
NBP[0]279*	0,0028	0,0201		
NBP[0]296*	0,0086	0,0675		
NBP[0]309*	0,0109	0,0896		
NBP[0]324*	0,0145	0,1262		
NBP[0]338*	0,0143	0,1313		
NBP[0]351*	0,0094	0,0908		
NBP[0]368*	0,0084	0,0858		
NBP[0]381*	0,0057	0,0601		
NBP[0]396*	0,0040	0,0442		

CORRENTES MATERIAIS				
Número da corrente	4			
Descrição	Carga combinada aquecida pelo trocador E- 1			
Pressão	49,63	Kg/cm ² g		
Temperatura	200,0	°C		
Vazão mássica	300400	Kg/h		
Vazão molar	9843	Kmol/h		
Entalpia total	-0,1488	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	0,909			
F	PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	302,976	m³/h		
Peso molecular	251,5	Kg/kmol		
Densidade	746	Kg/m³		
Viscosidade	0,3828	сР		
Condutividade térmica	0,101	W/m-°C		
Calor específico	2,5	kJ/kg⋅°C		
Tensão superficial	16,31	dinas/cm		
	OPRIEDADES DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T	7339	m ³ /h		
de operação	1339	111-711		
Peso molecular	8,32	Kg/kmol		
Densidade	10,14	Kg/m³		
Viscosidade	0,01443	cР		
Condutividade térmica	0,1417	W/m.°C		
Calor específico	4,424	kJ/kg⋅°C		
Fator de compressibilidade	1,015			
	COMPOSIÇÃO			
Componente	Fração molar	Fração mássica		
Metano	0,3514	0,1847		
Etano	0,0095	0,0094		
Propano	0,0043	0,0062		
n-Butano	0,0007	0,0013		
n-Pentano	0,0003	0,0007		
Hidrogênio	0,5461	0,0361		
Água	0,0022	0,0013		
NBP[0]251*	0,0032	0,0201		
NBP[0]264*	0,0036	0,0241		
NBP[0]279*	0,0028	0,0201		
NBP[0]296*	0,0086	0,0675		
NBP[0]309*	0,0109	0,0896		
NBP[0]324*	0,0145	0,1262		
NBP[0]338*	0,0143	0,1202		
		0,1313		
NBP[0]351*	0,0094			
NBP[0]368*	0,0084	0,0858		
NBP[0]381*	0,0057	0,0601		
NBP[0]396*	0,0040	0,0442		

CORRENTES MATERIAIS		
Número da corrente	5	
Descrição	Carga combinada aquecida pelo forno F-1	
Pressão	48,94	Kg/cm ² g
Temperatura	380,0	°C
Vazão mássica	300400	Kg/h
Vazão molar	9843	Kmol/h
Entalpia total	-0,0989	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,977	
F	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	96,372	m³/h
Peso molecular	251,6	Kg/kmol
Densidade	587,3	Kg/m ³
Viscosidade	0,05396	cP
Condutividade térmica	0,08077	W/m·°C
Calor específico	3,164	kJ/kg⋅°C
Tensão superficial	60,77	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T	10980	m³/h
de operação		-
Peso molecular	25,35	Kg/kmol
Densidade	22,22	Kg/m ³
Viscosidade	0,02747	сР
Condutividade térmica	0,1553	W/m·°C
Calor específico	3,528	kJ/kg⋅°C
Fator de compressibilidade	1,008	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3514	0,1847
Etano	0,0095	0,0094
Propano	0,0043	0,0062
n-Butano	0,0007	0,0013
n-Pentano	0,0003	0,0007
Hidrogênio	0,5461	0,0361
Água	0,0022	0,0013
NBP[0]251*	0,0032	0,0201
NBP[0]264*	0,0036	0,0241
NBP[0]279*	0,0028	0,0201
NBP[0]296*	0,0086	0,0675
NBP[0]309*	0,0109	0,0896
NBP[0]324*	0,0145	0,1262
NBP[0]338*	0,0143	0,1313
NBP[0]351*	0,0094	0,0908
NBP[0]368*	0,0084	0,0858
NBP[0]381*	0,0057	0,0601
NBP[0]396*	0,0040	0,0442
เทอะเบเงลด	0,0040	0,0442

	CORRENTES MATERIAIS	
Número da corrente	6	
Descrição	Saída do reator vapor	
Pressão	42,93	Kg/cm ² g
Temperatura	377,60	°C
Vazão mássica	252400	Kg/h
Vazão molar	9362	Kmol/h
Entalpia total	-0,0849	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
	RIEDADES DA FASE LÍQUIDA	
Vazão vol. @P e T de	<u>_</u>	m³/h
operação		
Peso molecular	<u>-</u>	Kg/kmol
Densidade	<u>-</u>	Kg/m ³
Viscosidade	-	cP
Condutividade térmica	<u>-</u>	W/m·°C
Calor específico	<u>-</u>	kJ/kg⋅°C
Tensão superficial	<u>-</u>	dinas/cm
	EDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T	12110	m³/h
de operação		
Peso molecular	26,96	Kg/kmol
Densidade	20,85	Kg/m ³
Viscosidade	0,02788	cP
Condutividade térmica	0,1491	W/m·°C
Calor específico	3,492	kJ/kg⋅°C
Fator de compressibilidade	1,006 COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3693	0,2198
Etano	0,0103	0,0115
Propano	0,0049	0,0113
n-Butano	0,0010	0,0022
n-Pentano	0,0007	0,0022
n-Hexano	0,0007	0,0020
n-Heptano	0,0003	0,0011
n-Octano	0,0002	0,0009
n-Nonano	0,0002	0,0009
Água	0,0023	0,0016
H2S	0,0072	0,0091
Amônia	0,0006	0,0004
Hidrogênio	0,5344	0,0400
NBP[1]222*	0,0013	0,0085
NBP[1]237*	0,0011	0,0076
NBP[1]252*	0,0012	0,0084
NBP[1]267*	0,0014	0,0108
NBP[1]283*	0,0026	0,0222
NBP[1]296*	0,0079	0,0716
NBP[1]312*	0,0106	0,1022
NBP[1]324*	0,0103	0,1049
NBP[1]339*	0,0101	0,1082
Componente	Fração molar	Fração mássica
Componente	riacao ilibiai	Flacao illassica

NBP[1]368*	0,0067	0,0800
NBP[1]381*	0,0042	0,0524
NBP[1]396*	0.0025	0.0327

	CORRENTES MATERIAIS	
Número da corrente	7	
Descrição	Saída do reator líquida	
Pressão	42,93	Kg/cm ² g
Temperatura	377,60	°C
Vazão mássica	48040	Kg/h
Vazão molar	183	Kmol/h
Entalpia total	-0,0141	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	84,96	m³/h
Peso molecular	262,8	Kg/kmol
Densidade	565,5	Kg/m ³
Viscosidade	0,05136	cP
Condutividade térmica	0,08085	W/m.°C
Calor específico	3,213	kJ/kg⋅°C
Tensão superficial	5,849	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T	<u>-</u>	m³/h
de operação		-
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m.°C
Calor específico	-	kJ/kg⋅°C
Fator de compressibilidade	-	
Commonante	COMPOSIÇÃO	Fração méssico
Componente	Fração molar	Fração mássica
Metano	0,0539	0,0033
Etano	0,0022	0,0003
Propano	0,0014	0,0002
n-Butano	0,0004	0,0001
n-Pentano	0,0004	0,0001
n-Hexano	0,0002	0,0001
n-Heptano	0,0002	0,0001
n-Octano	0,0002	0,0001
n-Nonano	0,0002	0,0001
Agua	0,0004	0,000
H2S	0,0018	0,0002
Componente	Fração molar	Fração mássica
Amônia	0,0001	0,0000
Hidrogênio	0,0557	0,0004
NBP[1]222*	0,0038	0,0025
NBP[1]237*	0,0039	0,0027
NBP[1]252*	0,0048	0,0035
NBP[1]267*	0,0070	0,0054
	0,0160	0,0138
NBP[1]283*	0,0100	
NBP[1]296*	0,0568	0,0527
NBP[1]296* NBP[1]312*	0,0568 0,0939	0,0527 0,0930
NBP[1]296*	0,0568	0,0527

NBP[1]353*	0,1311	0,1518
NBP[1]368*	0,1376	0,1683
NBP[1]381*	0,1058	0,1345
NBP[1]396*	0,0817	0,1085

CORRENTES MATERIAIS		
Número da corrente	8	
Descrição	Blend saída líquida + vapor do reator	
Pressão	42,93	Kg/cm ² g
Temperatura	377,60	°C
Vazão mássica	300400	Kg/h
Vazão molar	9545	Kmol/h
Entalpia total	-0,0989	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,981	Fração mássica
	PROPRIEDADES DA FASE LÍQUIDA	1
Vazão volumétrica @P e T de operação	84,96	m³/h
Peso molecular	262,8	Kg/kmol
Densidade	565,5	Kg/m ³
Viscosidade	0,05136	cP
Condutividade térmica	0,08085	W/m·°C
Calor específico	3,213	kJ/kg⋅°C
Tensão superficial	5849	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	1
Vazão volumétrica @P e T de operação	12110	m³/h
Peso molecular	26,96	Kg/kmol
Densidade	20,85	Kg/m ³
Viscosidade	0,02788	cР
Condutividade térmica	0,1491	W/m·°C
Calor específico	3,492	kJ/kg⋅°C
Fator de compressibilidade	1,006	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3633	0,1851
Etano	0,0101	0,0097
Propano	0,0049	0,0068
n-Butano	0,0010	0,0018
n-Pentano	0,0007	0,0017
n-Hexano	0,0004	0,0010
n-Heptano	0,0003	0,0008
n-Octano	0,0002	0,0008
n-Nonano	0,0002	0,0008
Água	0,0023	0,0013
H2S	0,0071	0,0077
Amônia	0,0006	0,0003
Hidrogênio	0,5253	0,0336
NBP[1]222*	0,0014	0,0076
NBP[1]237*	0,0012	0,0068
NBP[1]252*	0,0013	0,0076
NBP[1]267*	0,0015	0,0099
NBP[1]283*	0,0029	0,0209
NBP[1]296*	0,0088	0,0686
NBP[1]312*	0,0122	0,1007
NBP[1]324*	0,0122	0,1063
NBP[1]339*	0,0124	0,1140
Componente	Fração molar	Fração mássica
Componente	i iação iliciai	i ração massica

NBP[1]353*	0,0105	0,1018
NBP[1]368*	0,0092	0,0941
NBP[1]381*	0,0062	0,0655
NBP[1]396*	0,0040	0,0448

CORRENTES MATERIAIS		
Número da corrente	9	
Descrição	Saída do reator após resfriamento no	
	trocador E-1	1//2
Pressão	42,24	Kg/cm ² g
Temperatura	299,40	°C
Vazão mássica	300400	Kg/h
Vazão molar	9545	Kmol/h
Entalpia total	-0,1237	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,927 PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T	ROPRIEDADES DA FASE LIQUIDA	<u> </u>
de operação	284,976	m³/h
Peso molecular	261	Kg/kmol
Densidade	641,6	Kg/m ³
Viscosidade	0,1475	cP
Condutividade térmica	0,08941	W/m·°C
Calor específico	2,925	kJ/kg⋅°C
Tensão superficial	97,65	dinas/cm
PR	OPRIEDADES DA FASE VAPOR/GÁS	-1
Vazão volumétrica @P e T	10070	m³/h
de operação	10270	m ^y /n
Peso molecular	13,3	Kg/kmol
Densidade	11,45	Kg/m ³
Viscosidade	0,01937	cP
Condutividade térmica	0,1525	W/m.°C
Calor específico	3,888	kJ/kg⋅°C
Fator de compressibilidade	1,011	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3633	0,1851
Etano	0,0101	0,0097
Propano	0,0049	0,0068
n-Butano	0,0010	0,0018
n-Pentano	0,0007	0,0017
n-Hexano	0,0004	0,0010
n-Heptano	0,0003	0,0008
n-Octano	0,0002	0,0008
n-Nonano	0,0002	0,0008
Água	0,0023	0,0013
H2S	0,0071	0,0077
Amônia	0,0006	0,0003
Hidrogênio	0,5253	0,0336
NBP[1]222*	0,0014	0,0076
NBP[1]237*	0,0012	0,0068
NBP[1]252*	0,0013	0,0076
NBP[1]267*	0,0015	0,0099
NBP[1]283*	0,0029	0,0209
NBP[1]296*	0,0088	0,0686
NBP[1]312*	0,0122	0,1007
NBP[1]324*	0,0122	0,1067
NBP[1]339*	0,0122	0,1003
	Fração molar	
Componente	riação moiar	Fração mássica

NBP[1]353*	0,0105	0,1018
NBP[1]368*	0,0092	0,0941
NBP[1]381*	0,0062	0,0655
NBP[1]396*	0,0040	0,0448

CORRENTES MATERIAIS		
Número da corrente	10	
Descrição	Saída do reator resfriada + água de caldeiras	
Pressão	42,24	Kg/cm ² g
Temperatura	280,80	°C
Vazão mássica	308400	Kg/h
Vazão molar	9988	Kmol/h
Entalpia total	-0,1534	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,925	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T		2.0
de operação	296,424	m³/h
Peso molecular	260,1	Kg/kmol
Densidade	658,6	Kg/m ³
Viscosidade	0,1764	cР
Condutividade térmica	0,0934	W/m-°C
Calor específico	2,856	kJ/kg⋅°C
Tensão superficial	10,9	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T	10370	m ³ /h
de operação		
Peso molecular	12,25	Kg/kmol
Densidade	10,92	Kg/m ³
Viscosidade	0,018	сР
Condutividade térmica	0,1436	W/m·°C
Calor específico	3,835	kJ/kg⋅°C
Fator de compressibilidade	1,009	
. a.c. ac compressionadae	,	
-	COMPOSIÇÃO	F~
Componente	COMPOSIÇÃO Fração molar	Fração mássica
Componente Metano	COMPOSIÇÃO Fração molar 0,3471	0,1803
Componente Metano Etano	COMPOSIÇÃO Fração molar 0,3471 0,0097	0,1803 0,0094
Componente Metano Etano Propano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046	0,1803 0,0094 0,0066
Componente Metano Etano Propano n-Butano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010	0,1803 0,0094 0,0066 0,0018
Componente Metano Etano Propano n-Butano n-Pentano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007	0,1803 0,0094 0,0066 0,0018 0,0016
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0068	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S Amônia	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0068 0,0005	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S Amônia Hidrogênio	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0466 0,0068 0,0005 0,5020	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S Amônia Hidrogênio NBP[1]222*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0466 0,0068 0,0005 0,5020 0,0013	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328 0,0074
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0466 0,0068 0,0005 0,5020 0,0013 0,0011	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328 0,0074 0,0066
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0068 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0466 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0097
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0068 0,0068 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014 0,0028	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0072 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0097 0,0204
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0466 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0097
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0068 0,0068 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014 0,0028	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0097 0,0204
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0002 0,0002 0,0466 0,0466 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014 0,0028 0,0085	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0066
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0068 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014 0,0028 0,0085 0,0085 0,0085	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0072 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0097 0,0097 0,0204 0,0668 0,0981
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312* NBP[1]312* NBP[1]324*	COMPOSIÇÃO Fração molar 0,3471 0,0097 0,0046 0,0010 0,0007 0,0003 0,0003 0,0002 0,0002 0,0466 0,0068 0,0068 0,0005 0,5020 0,0013 0,0011 0,0012 0,0014 0,0028 0,0085 0,0016 0,0116 0,0117	0,1803 0,0094 0,0066 0,0018 0,0016 0,0009 0,0008 0,0008 0,0008 0,0272 0,0075 0,0003 0,0328 0,0074 0,0066 0,0074 0,0097 0,0097 0,0204 0,0668 0,0981 0,1035

NBP[1]353*	0,0101	0,0992
NBP[1]368*	0,0088	0,0917
NBP[1]381*	0,0059	0,0638
NBP[1]396*	0.0039	0,0436

	CORRENTES MATERIAIS	
Número da corrente	11	
Descrição	Saída do reator com injeção de águas de caldeiras após passagem pelo aerorrefrigerante E-2	
Pressão	41,53	Kg/cm ² g
Temperatura	55,00	°C
Vazão mássica	308400	Kg/h
Vazão molar	9988	Kmol/h
Entalpia total	-0,2065	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,868	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	273,996	m³/h
Peso molecular	255	Kg/kmol
Densidade	831,4	Kg/m ³
Viscosidade	3,753	cР
Condutividade térmica	0,1175	W/m·°C
Calor específico	1,95	kJ/kg⋅°C
Tensão superficial	24,55	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	5875	m³/h
Peso molecular	8,416	Kg/kmol
Densidade	12,41	Kg/m ³
Viscosidade	0,01108	cР
Condutividade térmica	0,1002	W/m.°C
Calor específico	3,916	kJ/kg⋅°C
Fator de compressibilidade	1,012	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3471	0,1803
Etano	0,0097	0,0094
Propano	0,0046	0,0066
n-Butano	0,0010	0,0018
n-Pentano	0,0007	0,0016
n-Hexano	0,0003	0,0009
n-Heptano	0,0003	0,0008
n-Octano	0,0002	0,0008
n-Nonano	0,0002	0,0008
Água	0,0466	0,0272
H2S	0,0068	0,0075
Amônia	0,0005	0,0003
Hidrogênio	0,5020	0,0328
NBP[1]222*	0,0013	0,0074
NBP[1]237*	0,0011	0,0066
NBP[1]252*	0,0012	0,0074
NBP[1]267*	0,0014	0,0097
NBP[1]283*	0,0028	0,0204
NBP[1]296*	0,0085	0,0668
NBP[1]312*	0,0116	0,0981
NBP[1]324*	0,0117	0,1035
NBP[1]339*	0,0118	0,1110
NDELLOOS	0,0110	1 0,1110

Componente	Fração molar	Fração mássica
NBP[1]353*	0,0101	0,0992
NBP[1]368*	0,0088	0,0917
NBP[1]381*	0,0059	0,0638
NBP[1]396*	0,0039	0,0436

CORRENTES MATERIAIS			
Número da corrente	12		
Descrição	Corrente líquida de hidrocarbonetos após separador C-3		
Pressão	41,53	Kg/cm ² g	
Temperatura	55,00	°C	
Vazão mássica	227800	Kg/h	
Vazão molar	893	Kmol/h	
Entalpia total	-0,1127	Gkcal/h	
Fração de sólidos	0,000		
Fração de vapor	0,000		
PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T	272 006	m³/h	
de operação	273,996	m ^o /n	
Peso molecular	255	Kg/kmol	
Densidade	831,4	Kg/m ³	
Viscosidade	3,753	сР	
Condutividade térmica	0,1175	W/m·°C	
Calor específico	1,95	kJ/kg⋅°C	
Tensão superficial	24,55	dinas/cm	
	OPRIEDADES DA FASE VAPOR/GÁS		
Vazão volumétrica @P e T	_	m³/h	
de operação	-	1117/11	
Peso molecular	-	Kg/kmol	
Densidade	-	Kg/m ³	
Viscosidade	-	cP	
Condutividade térmica	-	W/m·°C	
Calor específico	-	kJ/kg⋅°C	
Fator de compressibilidade	-		
COMPOSIÇÃO			
Componente	Fração molar	Fração mássica	
Metano	0,0549	0,0035	
Etano	0,0060	0,0007	
Propano	0,0075	0,0013	
n-Butano	0,0035	0,0008	
n-Pentano	0,0045	0,0013	
n-Hexano	0,0030	0,0010	
n-Heptano	0,0026	0,0010	
n-Octano	0,0022	0,0010	
n-Nonano	0,0020	0,0010	
Água	0,0015	0,0001	
H2S	0,0064	0,0009	
Amônia	0,0005	0,0000	
Hidrogênio	0,0099	0,0001	
NBP[1]222*	0,0145	0,0100	
NBP[1]237*	0,0128	0,0090	
NBP[1]252*	0,0134	0,0100	
NBP[1]267*	0,0162	0,0100	
NBP[1]283*	0,0309	0,0131	
NBP[1]296*	0,0309	0,0276	
	·	·	
NBP[1]312*	0,1301	0,1329	
NBP[1]324*	0,1307	0,1402	
NBP[1]339*	0,1324	0,1503	
Componente	Fração molar	Fração mássica	

NBP[1]353*	0,1125	0,1343
NBP[1]368*	0,0985	0,1241
NBP[1]381*	0,0659	0,0864
NBP[1]396*	0.0431	0.0591

CORRENTES MATERIAIS		
Número da corrente	13	
Descrição	Corrente líquida de hidrocarbonetos pós C- 3, pós válvula VLV-100	
Pressão	8,03	Kg/cm ² g
Temperatura	56,63	°C
Vazão mássica	227800	Kg/h
Vazão molar	893	Kmol/h
Entalpia total	-0,1127	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,050	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	273,348	m³/h
Peso molecular	267,6	Kg/kmol
Densidade	830,8	Kg/m ³
Viscosidade	3,91	cР
Condutividade térmica	0,1197	W/m·°C
Calor específico	1,954	kJ/kg⋅°C
Tensão superficial	25,66	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T	153,9	m³/h
de operação	·	
Peso molecular	15,27	Kg/kmol
Densidade	4,426	Kg/m ³
Viscosidade	0,01235	сР
Condutividade térmica	0,05164	W/m·°C
Calor específico	2,484	kJ/kg⋅°C
Fator de compressibilidade	0,9916	
COMPOSIÇÃO		
Components	,	Fração mássico
Componente	Fração molar	Fração mássica
Metano	Fração molar 0,0549	0,0035
Metano Etano	Fração molar 0,0549 0,0060	0,0035 0,0007
Metano Etano Propano	Fração molar 0,0549 0,0060 0,0075	0,0035 0,0007 0,0013
Metano Etano Propano n-Butano	Fração molar 0,0549 0,0060 0,0075 0,0035	0,0035 0,0007 0,0013 0,0008
Metano Etano Propano n-Butano n-Pentano	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045	0,0035 0,0007 0,0013 0,0008 0,0013
Metano Etano Propano n-Butano n-Pentano n-Hexano	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Àgua	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0009 0,0000
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0001 0,0000 0,0000
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S Amônia Hidrogênio NBP[1]222*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0001 0,0001 0,0009 0,0000 0,0001 0,0001
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0001 0,0001 0,0009 0,0000 0,0000 0,0000 0,0100 0,00100 0,0010
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Agua H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128 0,0134	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0001 0,0009 0,0000 0,0001 0,0000 0,0000 0,0000 0,0000
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128 0,0134 0,0162	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0000 0,0000 0,0000 0,0000 0,0100 0,0090 0,0100 0,0100 0,0131
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267* NBP[1]283*	Fração molar	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0001 0,0001 0,0009 0,0000 0,0100 0,0100 0,0090 0,0100 0,0131 0,0276
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128 0,0134 0,0162	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0000 0,0000 0,0000 0,0000 0,0100 0,0090 0,0100 0,0100 0,0131
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283*	Fração molar	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0009 0,0000 0,0001 0,0100 0,0100 0,0090 0,0100 0,0131 0,0276
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Agua H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128 0,0134 0,0162 0,0309 0,0945	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0001 0,0009 0,0000 0,0000 0,0100 0,0100 0,0100 0,0100 0,0131 0,0276 0,0905
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128 0,0134 0,0162 0,0309 0,0945 0,1301	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0009 0,0000 0,0001 0,0100 0,0100 0,0131 0,0276 0,0905 0,1329
Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312* NBP[1]312* NBP[1]312*	Fração molar 0,0549 0,0060 0,0075 0,0035 0,0045 0,0030 0,0026 0,0022 0,0020 0,0015 0,0064 0,0005 0,0099 0,0145 0,0128 0,0128 0,0134 0,0162 0,0309 0,0945 0,1301 0,1307	0,0035 0,0007 0,0013 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0001 0,0000 0,0000 0,0000 0,0010 0,0100 0,0100 0,0100 0,0131 0,0276 0,0905 0,1329 0,1402

NBP[1]353*	0,1125	0,1343
NBP[1]368*	0,0985	0,1241
NBP[1]381*	0,0659	0,0864
NBP[1]396*	0,0431	0,0591

CORRENTES MATERIAIS		
Número da corrente	14	
Descrição	Corrente gasosa após separador C-3	
Pressão	41,53	Kg/cm ² g
Temperatura	55,00	°C
Vazão mássica	72930	Kg/h
Vazão molar	8666	Kmol/h
Entalpia total	-0,0649	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
	ROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m-°C
Calor específico	-	kJ/kg⋅°C
Tensão superficial	-	dinas/cm
PROPRIEDADES DA FASE VAPOR/GÁS		
Vazão volumétrica @P e T de operação	5875	m³/h
Peso molecular	8416	Kg/kmol
Densidade	12,41	Kg/m ³
Viscosidade	0,01108	cP
Condutividade térmica	0,1002	W/m·°C
Calor específico	3,916	kJ/kg⋅°C
Fator de compressibilidade	1,012	
COMPOSIÇÃO		
Componente	Fração molar	Fração mássica
Metano	0,3944	0,7519
Etano	0,0105	0,0376
Propano	0,0046	0,0240
n-Butano	0,0007	0,0051
n-Pentano	0,0003	0,0029
n-Hexano	0,0001	0,0008
n-Heptano	0,000	0,0003
n-Octano	0,000	0,0001
n-Nonano	0,000	0,000
Água	0,0043	0,0092
H2S	0,0071	0,0289
Amônia	0,0004	0,0008
Hidrogênio	0,5775	0,1383

CORRENTES MATERIAIS		
Número da corrente	15	
Descrição	Corrente gasosa após C-3 condensada em E-3	
Pressão	40,83	Kg/cm ² g
Temperatura	45,00	°C
Vazão mássica	72930	Kg/h
Vazão molar	8666	Kmol/h
Entalpia total	-0,0657	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,998	
,	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	0,2592	m³/h
Peso molecular	18,01	Kg/kmol
Densidade	990,4	Kg/m ³
Viscosidade	0,6284	cP
Condutividade térmica	0,6362	W/m·°C
Calor específico	4,039	kJ/kg⋅°C
Tensão superficial	68,36	dinas/cm
PR	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	5783	m³/h
Peso molecular	8400	Kg/kmol
Densidade	12,57	Kg/m ³
Viscosidade	0,01085	cР
Condutividade térmica	0,09773	W/m·°C
Calor específico	3,9	kJ/kg⋅°C
Fator de compressibilidade	1,012	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3944	0,7519
Etano	0,0105	0,0376
Propano	0,0046	0,0240
n-Butano	0,0007	0,0051
n-Pentano	0,0003	0,0029
n-Hexano	0,0001	0,0008
n-Heptano	0,000	0,0003
n-Octano	0,000	0,0001
n-Nonano	0,000	0,000
Água	0,0043	0,0092
H2S	0,0071	0,0289
Amônia	0,0004	0,0008
Hidrogênio	0,5775	0,1383
i ildi ogerilo	0,0110	0,1000

CORRENTES MATERIAIS		
Número da corrente	16	
Descrição	Corrente líquida de hidrocarbonetos após vaso separador C-4	
Pressão	40,83	Kg/cm ² g
Temperatura	45,00	°C
Vazão mássica	256,70	Kg/h
Vazão molar	14,25	Kmol/h
Entalpia total	-0,0010	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	0,2592	m³/h
Peso molecular	18,01	Kg/kmol
Densidade	990,4	Kg/m ³
Viscosidade	0,6284	сР
Condutividade térmica	0,6362	W/m.°C
Calor específico	4,039	kJ/kg⋅°C
Tensão superficial	68,36	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	cP
Condutividade térmica	-	W/m.°C
Calor específico	-	kJ/kg⋅°C
Fator de compressibilidade	-	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Água	0,9946	0,9949
H2S	0,0001	0,0001

	CORRENTES MATERIAIS	
Número da corrente	17	
Descrição	Corrente 16 após passagem pela válvula VLV-101	
Pressão	8,03	Kg/cm ² g
Temperatura	45,74	°C
Vazão mássica	256,70	Kg/h
Vazão molar	14,25	Kmol/h
Entalpia total	-0,0010	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	0,259632	m³/h
Peso molecular	18,01	Kg/kmol
Densidade	988,8	Kg/m ³
Viscosidade	0,6201	сР
Condutividade térmica	0,6371	W/m·°C
Calor específico	4,043	kJ/kg⋅°C
Tensão superficial	68,23	dinas/cm
PROPRIEDADES DA FASE VAPOR/GÁS		
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	cР
Condutividade térmica	-	W/m.°C
Calor específico	-	kJ/kg⋅°C
Fator de compressibilidade	-	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Água	0,9946	0,9949
H2S	0,0001	0,0001

CORRENTES MATERIAIS		
Número da corrente	18	
Descrição	Corrente gasosa após separador C-4	
Pressão	40,83	Kg/cm ² g
Temperatura	45,00	°C
Vazão mássica	72670	Kg/h
Vazão molar	8652	Kmol/h
Entalpia total	-0,0647	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
P	ROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade		Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m-°C
Calor específico	-	kJ/kg⋅°C
Tensão superficial	-	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	5783	m³/h
Peso molecular	8400	Kg/kmol
Densidade	12,57	Kg/m ³
Viscosidade	0,01085	cР
Condutividade térmica	0,09773	W/m-°C
Calor específico	3,9	kJ/kg⋅°C
Fator de compressibilidade	1,012	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3951	0,7545
Etano	0,0105	0,0377
Propano	0,0046	0,0241
n-Butano	0,0007	0,0051
n-Pentano	0,0003	0,0029
n-Hexano	0,0001	0,0008
n-Heptano	0,000	0,0003
n-Octano	0,000	0,0001
Água	0,0027	0,0057
H2S	0,0072	0,0290
Amônia	0,0004	0,0007
Hidrogênio	0,5784	0,1388
i ildi ogci ilo	U,UT UT	0,1000

CORRENTES MATERIAIS		
Número da corrente	19	
Descrição	Corrente 18 após passagem pela válvula VLV-100 (entrada da coluna de absorção)	
Pressão	40,83	Kg/cm ² g
Temperatura	45,00	°C
Vazão mássica	72670	Kg/h
Vazão molar	8652	Kmol/h
Entalpia total	-0,0647	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
F	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	cP
Condutividade térmica	-	W/m·°C
Calor específico	-	kJ/kg⋅°C
Tensão superficial	-	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	5783	m³/h
Peso molecular	8400	Kg/kmol
Densidade	12,57	Kg/m ³
Viscosidade	0,01085	cP
Condutividade térmica	0,09773	W/m⋅°C
Calor específico	3,9	kJ/kg⋅°C
Fator de compressibilidade	1,012	normy c
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3951	0,7545
Etano	0,0105	0,0377
Propano	0,0046	0,0241
n-Butano	0,0007	0,0051
n-Pentano	0,0003	0,0029
n-Hexano	0,0001	0,0029
n-Heptano	0,000	0,0003
n-Octano	0,0000	0,0003
,		
Agua	0,0027	0,0057
H2S	0,0072	0,0290
Amônia	0,0004	0,0007
Hidrogênio	0,5784	0,1388

Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	CORRENTES MATERIAIS		
Pressão 39,83 Kg/cm² g	Número da corrente	20	
Temperatura	Descrição	Gás tratado	
Vazão mássica 70500 Kg/h Vazão molar 8584 Kmol/h Entalpia total -0,0643 Gkcal/h Fração de sólidos 0,000 Fração de vapor 1,000 PROPRIEDADES DA FASE LÍQUIDA Vazão volumétrica @P e T de operação - Kg/kmol Peso molecular - Kg/m³ Viscosidade - cP Condutividade térmica - kJ/kg·°C Calor específico - kJ/kg·°C Tensão superficial - kJ/kg·°C PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação \$883 m³/h Peso molecular \$212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m·°C Calor específico 3,983 kJ/kg·°C Fator de compressibilidade 1,012 Componente Fração molar Fração mássica Metano <th>Pressão</th> <th>39,83</th> <th>Kg/cm² g</th>	Pressão	39,83	Kg/cm ² g
Vazão molar 8584 Kmol/h Entalpia total -0,0643 Gkcal/h Fração de sólidos 0,000 Fração de vapor 1,000 PROPRIEDADES DA FASE LÍQUIDA Vazão volumétrica @P e T de operação - m³/h Densidade - Kg/kmol Densidade - Kg/m³ Viscosidade - Calor específico - KJ/kg·°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação S883 m³/h Densidade 11,98 Kg/m³ Viscosidade 11,98 Kg/m³ Viscosidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m·°C Calor específico 3,983 kJ/kg·°C Fator de compressibilidade 1,012 Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0001 0,0009 n-Hexano 0,0001 0,0000 n-Hexano 0,0000 0,0001 n-Octano 0,0000 0,0001 n-Octano 0,0000 0,0001 n-Octano 0,0000 0,0001 Octano 0,0001 0,0000 n-Octano 0,0000 0,0001 Calor específico 0,0000 0,0001 n-Octano 0,0000 0,0000 N-Octano 0,0000 0,0000 N-Octano 0,0000 0,0000 N-Octa	Temperatura	45,01	°C
Entalpia total	Vazão mássica	70500	Kg/h
Fração de sólidos	Vazão molar	8584	Kmol/h
Pração de vapor	Entalpia total	-0,0643	Gkcal/h
PROPRIEDADES DA FASE LÍQUIDA	Fração de sólidos	0,000	
Vazão volumétrica @P e T de operação - m³/h Peso molecular - Kg/kmol Densidade - Kg/m³ Viscosidade - cP Condutividade térmica - W/m°C Calor específico - kJ/kg·°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/kmol Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m·°C Calor específico 3,983 kJ/kg·°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 <	Fração de vapor	1,000	
Peso molecular -	P	PROPRIEDADES DA FASE LÍQUIDA	
Densidade - Kg/m³ Viscosidade - cP Condutividade térmica - W/m⋅°C Calor específico - kJ/kg⋅°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0004 0,0052 n-Pentano 0,0003 0,0003 n-Hexano 0,0000 0,0003 n-Qct	_	-	m³/h
Viscosidade - cP Condutividade térmica - W/m⋅°C Calor específico - kJ/kg⋅°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0003 n-Hexano 0,0000 0,0003 n-Heptano 0,0000 0,0000	Peso molecular	-	Kg/kmol
Condutividade térmica - W/m⋅°C Calor específico - kJ/kg⋅°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/kmol Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0001	Densidade	-	Kg/m ³
Calor específico - kJ/kg.°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m.°C Calor específico 3,983 kJ/kg.°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Qctano 0,0000 0,0001	Viscosidade		
Tensão superficial dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅ºC Calor específico 3,983 kJ/kg⋅ºC Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Condutividade térmica	-	W/m-°C
PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração mássica Metano 0,3981 0,77776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Calor específico	-	kJ/kg⋅°C
Vazão volumétrica @P e T de operação 5883 m³/h Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Tensão superficial	-	dinas/cm
de operação 5883 m³/n Peso molecular 8212 Kg/kmol Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m.ºC Calor específico 3,983 kJ/kg.ºC Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	PR	OPRIEDADES DA FASE VAPOR/GÁS	
Densidade 11,98 Kg/m³ Viscosidade 0,01079 cP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	_	5883	m³/h
Viscosidade 0,01079 CP Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Peso molecular	8212	Kg/kmol
Condutividade térmica 0,09871 W/m⋅°C Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Densidade	11,98	Kg/m ³
Calor específico 3,983 kJ/kg⋅°C Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Viscosidade	0,01079	cP
Fator de compressibilidade 1,012 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Condutividade térmica	0,09871	W/m·°C
Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Calor específico	3,983	kJ/kg⋅°C
Componente Fração molar Fração mássica Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Fator de compressibilidade	1,012	
Metano 0,3981 0,7776 Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001		COMPOSIÇÃO	
Etano 0,0106 0,0389 Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Componente	Fração molar	Fração mássica
Propano 0,0046 0,0248 n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Metano	0,3981	0,7776
n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Etano	0,0106	0,0389
n-Butano 0,0007 0,0052 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	Propano	0,0046	0,0248
n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001		•	
n-Hexano 0,0001 0,0009 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001	n-Pentano	·	,
n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001			
n-Octano 0,0000 0,0001			
		•	
1 WAR 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Água	0,0026	0,0056
H2S 0,0001 0,0004	H2S		
Hidrogênio 0,5829 0,1431			i i

Número da corrente Descrição	22 Gás tratado pós purga	
Descrição	Gás tratado nós nurga	
2000113410	ous tratado pos parga	
Pressão	39,83	Kg/cm ² g
Temperatura	45,01	°C
Vazão mássica	70440	Kg/h
Vazão molar	8577	Kmol/h
Entalpia total	-0,0643	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
PRO	OPRIEDADES DA FASE LÍQUIDA	<u>.</u>
Vazão volumétrica @P e T de operação	-	m ³ /h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m·°C
Calor específico	-	kJ/kg·°C
Tensão superficial	-	dinas/cm
	PRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	5879	m³/h
Peso molecular	8212	Kg/kmol
Densidade	11,98	Kg/m ³
Viscosidade	0,01079	сР
Condutividade térmica	0,09871	W/m-°C
Calor específico	3,983	kJ/kg·°C
Fator de compressibilidade	1,012	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3981	0,7776
Etano	0,0106	0,0389
Propano	0,0046	0,0248
n-Butano	0,0007	0,0052
n-Pentano	0,0003	0,0030
n-Hexano	0,0001	0,0009
n-Heptano	0,000	0,0003
n-Octano	0,000	0,0001
Água	0,0026	0,0056
H2S	0,0001	0,0004
Hidrogênio	0,5829	0,1431

CORRENTES MATERIAIS		
Número da corrente	23	
Descrição	Corrente 22 após ajuste matemático para simulação do reciclo de H ₂	
Pressão	39,83	Kg/cm ² g
Temperatura	45,01	°C
Vazão mássica	70090	Kg/h
Vazão molar	8534	Kmol/h
Entalpia total	-0,0639	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	cР
Condutividade térmica	-	W/m.°C
Calor específico	-	kJ/kg⋅°C
Tensão superficial	-	dinas/cm
PR	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	5849	m³/h
Peso molecular	8214	Kg/kmol
Densidade	11,98	Kg/m ³
Viscosidade	0,01079	cР
Condutividade térmica	0,09871	W/m·°C
Calor específico	3,983	kJ/kg⋅°C
Fator de compressibilidade	1,012	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3976	0,7765
Etano	0,0107	0,0391
Propano	0,0047	0,0253
n-Butano	0,0008	0,0054
n-Pentano	0,0004	0,0031
n-Hexano	0,0001	0,0009
n-Heptano	0,000	0,0003
n-Octano	0,000	0,0001
Água	0,0026	0,0056
H2S	0,0001	0,0004
Hidrogênio	0,5831	0,1431
i ilulogerilo	0,0001	U, 1 4 31

CORRENTES MATERIAIS		
Número da corrente	24	
Descrição	Corrente de H2 de reciclo comprimida	
Pressão	80,04	Kg/cm ² g
Temperatura	126,50	°C
Vazão mássica	70090	Kg/h
Vazão molar	8534	Kmol/h
Entalpia total	-0,0583	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
P	ROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m-°C
Calor específico	-	kJ/kg⋅°C
Tensão superficial	-	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	3710	m³/h
Peso molecular	8214	Kg/kmol
Densidade	18,9	Kg/m ³
Viscosidade	0,01285	сР
Condutividade térmica	0,122	W/m-°C
Calor específico	4,215	kJ/kg⋅°C
Fator de compressibilidade	1,027	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,3976	0,7765
Etano	0,0107	0,0391
Propano	0,0047	0,0253
n-Butano	0,0008	0,0054
n-Pentano	0,0004	0,0031
n-Hexano	0,0001	0,0009
n-Heptano	0,000	0,0003
n-Octano	0,000	0,0001
Água	0,0026	0,0056
H2S	0,0001	0,0004
Hidrogênio	0,5831	0,1431
Hiarogenio	0,5831	0,1431

Número da corrente	CORRENTES MATERIAIS		
Pressão 50,33 Kg/cm² g	Número da corrente	26	
Temperatura	Descrição	Injeção de H2 (H2 de reciclo + H2 de aporte)	
Vazão mólar 72130 Kg/h Vazão molar 9004 Kmol/h Entalpia total -0,0595 Gkcal/h Fração de sólidos 0,000 Fração de vapor PROPRIEDADES DA FASE LÍQUIDA Vazão volumétrica @P e T de operação - Mg/kmol Peso molecular - Kg/kmol Densidade - Kg/m³ Viscosidade - CP Condutividade térmica - W/m.°C Calor específico - kJ/kg.°C Tensão superficial - m³/h PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 8011 Kg/kmol Densidade 11,81 Kg/kmol Densidade 11,81 Kg/kmol Densidade 11,81 Kg/kmol Densidade 10,122 W/m.°C Condutividade térmica 0,122 W/m.°C </th <th>Pressão</th> <th>50,33</th> <th>Kg/cm² g</th>	Pressão	50,33	Kg/cm ² g
Vazão molar 9004 Kmol/h Entalpia total -0,0595 Gkcal/h Fração de sólidos 0,000 Fração de vapor PROPRIEDADES DA FASE LÍQUIDA Vazão volumétrica @P e T de operação - m³/h Peso molecular - Kg/kmol Densidade - CP Condutividade térmica - W/m.°C Calor específico - kJ/kg.°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m.°C Calor específico 4,272 kJ/kg.°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar	Temperatura	122,90	°C
Entalpia total	Vazão mássica	72130	Kg/h
Fração de sólidos 0,000 Fração de vapor PROPRIEDADES DA FASE LÍQUIDA Vazão volumétrica @P e T de operação - m³/h Peso molecular - Kg/kmol Densidade - Kg/m³ Viscosidade - cP Condutividade térmica - W/m.ºC Calor específico - kJ/kg.ºC Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Vazão volumétrica @P e T de operação 8011 Kg/kmol Kg/kmol Peso molecular 8011 Kg/kmol Kg/kmol Densidade 11,81 Kg/km³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m.ºC CP Calor específico 4,272 kJ/kg.ºC Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 <td< th=""><th>Vazão molar</th><th>9004</th><th>Kmol/h</th></td<>	Vazão molar	9004	Kmol/h
Fração de vapor	Entalpia total	-0,0595	Gkcal/h
PROPRIEDADES DA FASE LÍQUIDA Vazão volumétrica @P e T de operação - m³/h Peso molecular - Kg/kmol Densidade - Kg/m³ Viscosidade - cP Condutividade térmica - kJ/kg·°C Calor específico - kJ/kg·°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/kmol Densidade 11,81 Kg/kmol Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m·°C Calor específico 4,272 kJ/kg·°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0047 0,0260 n-Butano 0,004	Fração de sólidos	0,000	
Vazão volumétrica @P e T de operação - m³/h Peso molecular - Kg/kmol Densidade - Kg/m³ Viscosidade - cP Condutividade térmica - W/m.ºC Calor específico - kJ/kg.ºC Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m.ºC Calor específico 4,272 kJ/kg.ºC Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 <th>Fração de vapor</th> <th>1,000</th> <th></th>	Fração de vapor	1,000	
Peso molecular -	F	PROPRIEDADES DA FASE LÍQUIDA	
Densidade - Kg/m³ Viscosidade - cP Condutividade térmica - W/m·°C Calor específico - kJ/kg·°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m·°C Calor específico 4,272 kJ/kg·°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0003 n-Hexano 0,0000	_	-	m³/h
Viscosidade - cP Condutividade térmica - W/m.ºC Calor específico - kJ/kg.ºC Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m.ºC Calor específico 4,272 kJ/kg.ºC Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração mólar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0003 n-Hexano 0,0000 0,0008 n-Petano 0,0000 0,0003 <th>Peso molecular</th> <th>-</th> <th>Kg/kmol</th>	Peso molecular	-	Kg/kmol
Condutividade térmica - W/m⋅°C Calor específico - kJ/kg⋅°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m⋅°C Calor específico 4,272 kJ/kg⋅°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heytano 0,0000 0,0003 n-Octano 0,0004 0,	Densidade	-	Kg/m ³
Calor específico - kJ/kg·°C Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/kmol Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m·°C Calor específico 4,272 kJ/kg·°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0047 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,00024 0,0055 H2S 0,0001<		-	
Tensão superficial - dinas/cm PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m⋅ºC Calor específico 4,272 kJ/kg⋅ºC Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0004 0,0055 H2S 0,0001 0,0003	Condutividade térmica	-	W/m-°C
PROPRIEDADES DA FASE VAPOR/GÁS Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m·°C Calor específico 4,272 kJ/kg·°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Calor específico	-	kJ/kg⋅°C
Vazão volumétrica @P e T de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m·°C Calor específico 4,272 kJ/kg·°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0004 0,0055 H2S 0,0001 0,0003		-	dinas/cm
de operação 6106 m³/h Peso molecular 8011 Kg/kmol Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m·°C Calor específico 4,272 kJ/kg·°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	PR	OPRIEDADES DA FASE VAPOR/GÁS	
Densidade 11,81 Kg/m³ Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m⋅°C Calor específico 4,272 kJ/kg⋅°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003		6106	m³/h
Viscosidade 0,01251 cP Condutividade térmica 0,122 W/m⋅°C Calor específico 4,272 kJ/kg⋅°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Peso molecular	8011	Kg/kmol
Condutividade térmica 0,122 W/m⋅°C Calor específico 4,272 kJ/kg⋅°C Fator de compressibilidade COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Densidade	11,81	Kg/m ³
Calor específico 4,272 kJ/kg⋅°C Fator de compressibilidade 1,017 COMPOSIÇÃO Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Viscosidade	0,01251	сР
Fator de compressibilidade 1,017 COMPOSIÇÃO COMPOSIÇÃO Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Condutividade térmica	0,122	W/m·°C
Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Calor específico	4,272	kJ/kg⋅°C
Componente Fração molar Fração mássica Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Fator de compressibilidade	1,017	
Metano 0,3841 0,7693 Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003		COMPOSIÇÃO	
Etano 0,0104 0,0390 Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	<u> </u>	Fração molar	Fração mássica
Propano 0,0047 0,0260 n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Metano	0,3841	0,7693
n-Butano 0,0007 0,0053 n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Etano	0,0104	0,0390
n-Pentano 0,0003 0,0030 n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	Propano	0,0047	0,0260
n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	n-Butano	0,0007	0,0053
n-Hexano 0,0001 0,0008 n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003	n-Pentano	0,0003	0,0030
n-Heptano 0,0000 0,0003 n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003			
n-Octano 0,0000 0,0001 Água 0,0024 0,0055 H2S 0,0001 0,0003			
Água 0,0024 0,0055 H2S 0,0001 0,0003		,	
H2S 0,0001 0,0003			
	H2S		
	Hidrogênio	0,5971	0,1503

CORRENTES MATERIAIS		
Número da corrente	27	
Descrição	Corrente líquida de hidrocarbonetos após separador C-5	
Pressão	8,03	Kg/cm ² g
Temperatura	56,52	°C
Vazão mássica	227100	Kg/h
Vazão molar	849	Kmol/h
Entalpia total	-0,1121	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	273,348	m³/h
Peso molecular	267,4	Kg/kmol
Densidade	830,9	Kg/m ³
Viscosidade	3,922	cР
Condutividade térmica	0,1199	W/m-°C
Calor específico	1,953	kJ/kg⋅°C
Tensão superficial	25,71	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	T
Vazão volumétrica @P e T	<u>-</u>	m³/h
de operação		
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m·°C
Calor específico	-	kJ/kg·°C
Fator de compressibilidade	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Metano	0,0203	0,0012
Etano	0,0044	0,0005
Propano	0,0069	0,0011
n-Butano	0,0035	0,0008
n-Pentano	0,0047	0,0013
n-Hexano	0,0031	0,0010
n-Heptano	0,0027	0,0010
n-Octano	0,0024	0,0010
n-Nonano	0,0021	0,0010
Água	0,0016	0,0010
H2S	0,0052	0,0007
Amônia	0,0005	0,0007
Hidrogênio	0,0006	0,0000
NBP[1]222*	0,0153	0,0100
NBP[1]237*	0,0133	0,0090
NBP[1]252*	0,0134	0,0100
NBP[1]267*	0,0141	0,0100
NBP[1]283*	0,0325	0,0131
NBP[1]296*	0,0323	0,0278
NBP[1]312*	0,1368	0,0908
	·	·
NBP[1]324*	0,1375	0,1406
NBP[1]339*	0,1393	0,1508
Componente	Fração molar	Fração mássica

NBP[1]353*	0,1183	0,1347
NBP[1]368*	0,1036	0,1245
NBP[1]381*	0,0694	0,0866
NBP[1]396*	0,0454	0.0592

CORRENTES MATERIAIS		
Número da corrente	28	
Descrição	Corrente 27 aquecida pelo trocador E-4	
Pressão	7,33	Kg/cm ² g
Temperatura	150,00	°C
Vazão mássica	227100	Kg/h
Vazão molar	849	Kmol/h
Entalpia total	-0,1012	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,008	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	297,396	m³/h
Peso molecular	269,5	Kg/kmol
Densidade	763,2	Kg/m ³
Viscosidade	0,7102	cP
Condutividade térmica	0,1075	W/m·°C
Calor específico	2,346	kJ/kg⋅°C
Tensão superficial	19,4	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	_
Vazão volumétrica @P e T	34,39	m ³ /h
de operação	•	
Peso molecular	21,17	Kg/kmol
Densidade	4,361	Kg/m ³
Viscosidade	0,01532	сР
Condutividade térmica	0,05004	W/m·°C
Calor específico	2,377	kJ/kg⋅°C
Fator de compressibilidade	0,9923	
0	COMPOSIÇÃO	F
Componente	Fração molar	Fração mássica
Metano	0,0203	0,0012
Etano	0,0044	0,0005
Propano	0,0069	0,0011
n-Butano	0,0035	0,0008
n-Pentano	0,0047	0,0013
n-Hexano	0,0031	0,0010
n-Heptano	0,0027	0,0010
n-Octano	0,0024	0,0010
n-Nonano	0,0021	0,0010
Agua	0,0016	0,0001
H2S	0,0052	0,0007
Amônia	0,0005	0,000
Hidrogênio	0,0006	0,0000
NBP[1]222*	0,0153	0,0100
NBP[1]237*	0,0134	0,0090
NBP[1]252*	0,0141	0,0100
NBP[1]267*	0,0170	0,0131
NBP[1]283*	0,0325	0,0276
NBP[1]296*	0,0994	0,0908
NBP[1]312*	0,1368	0,1333
NBP[1]324*	0,1375	0,1406
NBP[1]339*	0,1393	0,1508
Componente	Fração molar	Fração mássica

NBP[1]353*	0,1183	0,1347
NBP[1]368*	0,1036	0,1245
NBP[1]381*	0,0694	0,0866
NBP[1]396*	0,0454	0.0592

CORRENTES MATERIAIS			
Número da corrente	29		
Descrição	Corrente 29 após retirada de água		
Pressão	7,33	Kg/cm ² g	
Temperatura	150,00	°C	
Vazão mássica	227100	Kg/h	
Vazão molar	848	Kmol/h	
Entalpia total	-0,1011	Gkcal/h	
Fração de sólidos	0,000		
Fração de vapor	0,007		
	PROPRIEDADES DA FASE LÍQUIDA	1	
Vazão volumétrica @P e T de operação	297,396	m³/h	
Peso molecular	269,6	Kg/kmol	
Densidade	763,1	Kg/m ³	
Viscosidade	0,7095	сР	
Condutividade térmica	0,1071	W/m·°C	
Calor específico	2,346	kJ/kg⋅°C	
Tensão superficial	19,34	dinas/cm	
	OPRIEDADES DA FASE VAPOR/GÁS	1	
Vazão volumétrica @P e T	29,88	m³/h	
de operação Peso molecular	21,11	Ka/kmal	
Densidade	4,346	Kg/kmol Kg/m ³	
Viscosidade	0,0154	cP	
Condutividade térmica	0,0134	W/m·°C	
Calor específico	2,397	kJ/kg·°C	
-		norng o	
•			
Fator de compressibilidade			
Componente	0,9927 COMPOSIÇÃO Fração molar	Fração mássica	
-	COMPOSIÇÃO	Fração mássica 0,0012	
Componente	COMPOSIÇÃO Fração molar		
Componente Metano Etano	COMPOSIÇÃO Fração molar 0,0203	0,0012	
Componente Metano	COMPOSIÇÃO Fração molar 0,0203 0,0044	0,0012 0,0005	
Componente Metano Etano Propano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069	0,0012 0,0005 0,0011	
Componente Metano Etano Propano n-Butano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035	0,0012 0,0005 0,0011 0,0008	
Componente Metano Etano Propano n-Butano n-Pentano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047	0,0012 0,0005 0,0011 0,0008 0,0013	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0000	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0024 0,0021 0,0000 0,0052 0,0005	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0000 0,0000 0,0007	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0000 0,0007 0,0000 0,0000	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0000 0,0007 0,0000 0,0000 0,0000 0,0000	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006 0,0153 0,0134	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0000 0,0007 0,0000 0,0000 0,0000 0,0000 0,0000	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006 0,0153 0,0134 0,0141	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0000 0,0007 0,0000 0,0000 0,0000 0,0000 0,0000	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006 0,0153 0,0134 0,0141 0,0171	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0000 0,0000 0,0000 0,0000 0,0000 0,0100 0,0090 0,0100 0,0131	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0005 0,0006 0,0153 0,0134 0,0141 0,0171 0,0326	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0000 0,0007 0,0000 0,0000 0,0000 0,0100 0,0100 0,0100 0,0131	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006 0,0153 0,0134 0,0141 0,0171 0,0326 0,0996	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0000 0,0000 0,0000 0,0000 0,0100 0,0100 0,0100 0,0100 0,0100 0,0131 0,0276 0,0908	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006 0,0153 0,0153 0,0134 0,0141 0,0171 0,0326 0,0996 0,1370	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0100 0,0090 0,0100 0,0131 0,0276 0,0908 0,1333	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Água H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312* NBP[1]312* NBP[1]312*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0005 0,0153 0,0153 0,0134 0,0141 0,0171 0,0326 0,0996 0,1370 0,1377	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0000 0,0000 0,0000 0,0000 0,0100 0,0100 0,0100 0,0100 0,0131 0,0276 0,0908 0,1333 0,1406	
Componente Metano Etano Propano n-Butano n-Pentano n-Hexano n-Heptano n-Octano n-Nonano Ägua H2S Amônia Hidrogênio NBP[1]222* NBP[1]237* NBP[1]252* NBP[1]252* NBP[1]267* NBP[1]283* NBP[1]296* NBP[1]312*	COMPOSIÇÃO Fração molar 0,0203 0,0044 0,0069 0,0035 0,0047 0,0031 0,0027 0,0024 0,0021 0,0000 0,0052 0,0005 0,0006 0,0153 0,0153 0,0134 0,0141 0,0171 0,0326 0,0996 0,1370	0,0012 0,0005 0,0011 0,0008 0,0013 0,0010 0,0010 0,0010 0,0010 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0100 0,0100 0,0100 0,0131 0,0276 0,0908 0,1333	

NBP[1]353*	0,1185	0,1347
NBP[1]368*	0,1037	0,1245
NBP[1]381*	0,0695	0,0867
NBP[1]396*	0,0454	0,0592

CORRENTES MATERIAIS		
Número da corrente	30	
Descrição	Gasóleo dessulfurado quente	
Pressão	7,83	Kg/cm ² g
Temperatura	451,40	°C
Vazão mássica	224900	Kg/h
Vazão molar	800	Kmol/h
Entalpia total	-0,0522	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
	PROPRIEDADES DA FASE LÍQUIDA	
Vazão volumétrica @P e T de operação	462,96	m³/h
Peso molecular	281,1	Kg/kmol
Densidade	485,7	Kg/m ³
Viscosidade	45,82	сР
Condutividade térmica	0,07169	W/m-°C
Calor específico	3,692	kJ/kg⋅°C
Tensão superficial	23,77	dinas/cm
	OPRIEDADES DA FASE VAPOR/GÁS	
Vazão volumétrica @P e T de operação	0,006688	m³/h
Peso molecular	267	Kg/kmol
Densidade	48,35	Kg/m ³
Viscosidade	0,01122	cP
Condutividade térmica	0,03832	W/m·°C
Calor específico	3,232	kJ/kg⋅°C
Fator de compressibilidade	0,7041	
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
NBP[1]222*	0,0162	0,0101
NBP[1]237*	0,0142	0,0091
NBP[1]252*	0,0150	0,0101
NBP[1]267*	0,0181	0,0132
NBP[1]283*	0,0345	0,0279
NBP[1]296*	0,1055	0,0916
NBP[1]312*	0,1452	0,1345
NBP[1]324*	0,1459	0,1420
NBP[1]339*	0,1478	0,1523
NBP[1]353*	0,1255	0,1360
NBP[1]368*	0,1099	0,1257
NBP[1]381*	0,0736	0,0875
NBP[1]396*	0,0482	0,0598

CORRENTES MATERIAIS				
Número da corrente	31			
Descrição	Água			
Pressão	7,33	Kg/cm² g		
Temperatura	150,00	°C		
Vazão mássica	24,24	Kg/h		
Vazão molar	1,35	Kmol/h		
Entalpia total	-0,0001	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	0,000			
PROPRIEDADES	DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	0,0268164	m³/h		
Peso molecular	18,02	Kg/kmol		
Densidade	903,9	Kg/m ³		
Viscosidade	0,1811	сР		
Condutividade térmica	0,6866	W/m·°C		
Calor específico	4,295	kJ/kg⋅°C		
Tensão superficial	48,68	dinas/cm		
PROPRIEDADES [DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular	-	Kg/kmol		
Densidade	-	Kg/m ³		
Viscosidade	-	сР		
Condutividade térmica	-	W/m·°C		
Calor específico	-	kJ/kg⋅°C		
Fator de compressibilidade				
COMI	POSIÇÃO			
Componente	Fração molar	Fração mássica		
Água	1,000	1,000		

CORRENTES MATERIAIS				
Número da corrente	32			
Descrição	Água Caldeiras			
Pressão	70,33	Kg/cm ² g		
Temperatura	95,00	°C		
Vazão mássica	7984	Kg/h		
Vazão molar	443	Kmol/h		
Entalpia total	-0,0297	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	0,000			
PROPRIEDADES	DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	8,3592	m³/h		
Peso molecular	18,02	Kg/kmol		
Densidade	955	Kg/m ³		
Viscosidade	0,2944	сР		
Condutividade térmica	0,6785	W/m-°C		
Calor específico	4,083	kJ/kg⋅°C		
Tensão superficial	59,55	dinas/cm		
PROPRIEDADES [DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular		Kg/kmol		
Densidade	-	Kg/m³		
Viscosidade	-	cP		
Condutividade térmica	-	W/m-°C		
Calor específico	-	kJ/kg·°C		
Fator de compressibilidade	-			
COMI	POSIÇÃO			
Componente	Fração molar	Fração mássica		
Água	1,000	1,000		

CORRENTES MATERIAIS			
Número da corrente	33		
Descrição	Águas ácidas C-5		
Pressão	8,03	Kg/cm² g	
Temperatura	56,52	°C	
Vazão mássica	237,20	Kg/h	
Vazão molar	13,17	Kmol/h	
Entalpia total	-0,0009	Gkcal/h	
Fração de sólidos	0,000		
Fração de vapor	0,000		
PROPRIEDADE	S DA FASE LÍQUIDA		
Vazão volumétrica @P e T de operação	0,241704	m³/h	
Peso molecular	18,01	Kg/kmol	
Densidade	981,4	Kg/m ³	
Viscosidade	0,5214	сР	
Condutividade térmica	0,6491	W/m·°C	
Calor específico	4,046	kJ/kg⋅°C	
Tensão superficial	66,41	dinas/cm	
PROPRIEDADES	DA FASE VAPOR/GÁS		
Vazão volumétrica @P e T de operação	-	m³/h	
Peso molecular	-	Kg/kmol	
Densidade	-	Kg/m³	
Viscosidade	-	сР	
Condutividade térmica	-	W/m·°C	
Calor específico	-	kJ/kg⋅°C	
Fator de compressibilidade	-		
	MPOSIÇÃO		
Componente	Fração molar	Fração mássica	
Água	0,9965	0,9966	
H2S	0,0001	0,0001	
Amônia	0,0035	0,0033	

CORRENTES MATERIAIS			
Número da corrente	34		
Descrição	Águas ácidas C-3		
Pressão	41,53	Kg/cm ² g	
Temperatura	55,00	°C	
Vazão mássica	7712	Kg/h	
Vazão molar	428	Kmol/h	
Entalpia total	-0,0289	Gkcal/h	
Fração de sólidos	0,000		
Fração de vapor	0,000		
PROPRIEDADE	S DA FASE LÍQUIDA		
Vazão volumétrica @P e T de operação	7,8408	m³/h	
Peso molecular	18,01	Kg/kmol	
Densidade	983,5	Kg/m ³	
Viscosidade	0,5343	сР	
Condutividade térmica	0,6475	W/m·°C	
Calor específico	4,04	kJ/kg⋅°C	
Tensão superficial	66,66	dinas/cm	
PROPRIEDADES	DA FASE VAPOR/GÁS		
Vazão volumétrica @P e T de operação	-	m³/h	
Peso molecular	-	Kg/kmol	
Densidade	-	Kg/m ³	
Viscosidade	-	сР	
Condutividade térmica	-	W/m·°C	
Calor específico	-	kJ/kg⋅°C	
Fator de compressibilidade	-		
	MPOSIÇÃO		
Componente	Fração molar	Fração mássica	
Água	0,9961	0,9962	
H2S	0,0001	0,0001	
Amônia	0,0038	0,0036	

CORRENTES MATERIAIS				
Número da corrente	35			
Descrição	Gases			
Pressão	6,83	Kg/cm ² g		
Temperatura	101,10	°C		
Vazão mássica	1745	Kg/h		
Vazão molar	44	Kmol/h		
Entalpia total	-0,0009	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	1,000			
PROPRIEDADES	DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular	-	Kg/kmol		
Densidade	-	Kg/m ³		
Viscosidade	-	сР		
Condutividade térmica	-	W/m-°C		
Calor específico	-	kJ/kg·°C		
Tensão superficial	- ,	dinas/cm		
PROPRIEDADES D	A FASE VAPOR/GÁ	S		
Vazão volumétrica @P e T de operação	194	m³/h		
Peso molecular	39,93	Kg/kmol		
Densidade	8,997	Kg/m ³		
Viscosidade	0,01256	сР		
Condutividade térmica	0,03112	W/m·°C		
Calor específico	2,058	kJ/kg⋅°C		
Fator de compressibilidade	0,9559			
	POSIÇÃO			
Componente	Fração molar	Fração mássica		
Metano	0,3935	0,1581		
Etano	0,0852	0,0641		
Propano	0,1319	0,1457		
n-Butano	0,0656	0,0956		
n-Pentano	0,0826	0,1492		
n-Hexano	0,0497	0,1072		
n-Heptano	0,0354	0,0888		
n-Octano	0,0227	0,0650		
n-Nonano	0,0112	0,0360		
H2S	0,1004	0,0857		
Amônia	0,0096	0,0041		
Hidrogênio	0,0122	0,0006		

CORRENTES MATERIAIS				
Número da corrente	36			
Descrição	Gases a Aminas			
Pressão	8,03	Kg/cm ² g		
Temperatura	56,52	°C		
Vazão mássica	693	Kg/h		
Vazão molar	45	Kmol/h		
Entalpia total	-0,0007	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	1,000			
PROPRIEDADE	S DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular	-	Kg/kmol		
Densidade	-	Kg/m³		
Viscosidade	-	сР		
Condutividade térmica	-	W/m-°C		
Calor específico	-	kJ/kg⋅°C		
Tensão superficial	-	dinas/cm		
PROPRIEDADES	DA FASE VAPOR/GÁS	3		
Vazão volumétrica @P e T de operação	156,1	m³/h		
Peso molecular	15,32	Kg/kmol		
Densidade	4,442	Kg/m ³		
Viscosidade	0,01232	сР		
Condutividade térmica	0,05121	W/m-°C		
Calor específico	2,475	kJ/kg⋅°C		
Fator de compressibilidade	0,9914			
	POSIÇÃO			
Componente	Fração molar	Fração mássica		
Metano	0,7039	0,7370		
Etano	0,0361	0,0709		
Propano	0,0192	0,0552		
n-Butano	0,0033	0,0124		
n-Pentano	0,0015	0,0071		
n-Hexano	0,0004	0,0020		
n-Heptano	0,0001	0,0007		
n-Octano	0,000	0,0003		
n-Nonano	0,0000	0,0001		
Água	0,0224	0,0263		
H2S	0,0278	0,0618		
Amônia	0,0017	0,0019		
Hidrogênio	0,1837	0,0242		
i ilulogelilo	0,1001	U,UZ4Z		

CORRENTES MATERIAIS				
Número da corrente	37			
Descrição	Gasóleo Dessulfurado			
Pressão	7,13	Kg/cm ² g		
Temperatura	393,00	°C		
Vazão mássica	224900	Kg/h		
Vazão molar	800	Kmol/h		
Entalpia total	-0,0631	Gkcal/h		
Fração de sólidos	0,000			
Fração de vapor	0,000			
PROPRIEDADES D	A FASE LÍQUIDA	T		
Vazão volumétrica @P e T de operação	0,40104	m³/h		
Peso molecular	281,1	Kg/kmol		
Densidade	560,7	Kg/m ³		
Viscosidade	0,00006239	cР		
Condutividade térmica	0,07895	W/m·°C		
Calor específico	3,314	kJ/kg⋅°C		
Tensão superficial	5,197	dinas/cm		
PROPRIEDADES DA	FASE VAPOR/GÁS			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular	-	Kg/kmol		
Densidade	-	Kg/m ³		
Viscosidade	-	сР		
Condutividade térmica	-	W/m⋅°C		
Calor específico	-	kJ/kg⋅°C		
Fator de compressibilidade	-			
COMPOS	SIÇÃO			
Componente	Fração molar	Fração mássica		
NBP[1]222*	0,0162	0,0101		
NBP[1]237*	0,0142	0,0091		
NBP[1]252*	0,0150	0,0101		
NBP[1]267*	0,0181	0,0132		
NBP[1]283*	0,0345	0,0279		
NBP[1]296*	0,1055	0,0916		
NBP[1]312*	0,1452	0,1345		
NBP[1]324*	0,1459	0,1420		
NBP[1]339*	0,1478	0,1523		
NBP[1]353*	0,1255	0,1360		
NBP[1]368*	0,1099	0,1257		
NBP[1]381*	0,0736	0,0875		
NBP[1]396*	0,0482	0,0598		
n-Nonano	0,0003	0,0001		

CORRENTES MATERIAIS							
Número da corrente	38						
Descrição	H ₂ aporte						
Pressão	50,33319227	Kg/cm ² g					
Temperatura	45,00	°C					
Vazão mássica	2035,00	Kg/h					
Vazão molar	470	Kmol/h					
Entalpia total	0	Gkcal/h					
Fração de sólidos	0,0000						
Fração de vapor	1,000						
PROPE	RIEDADES DA FASE LÍQUIDA						
Vazão volumétrica @P e T de operação	-	m³/h					
Peso molecular	-	Kg/kmol					
Densidade	-	Kg/m ³					
Viscosidade	-	cP					
Condutividade térmica	-	W/m-°C					
Calor específico	-	kJ/kg⋅°C					
Tensão superficial	-	dinas/cm					
PROPRIE	EDADES DA FASE VAPOR/GÁS						
Vazão volumétrica @P e T de operação	259,5	m³/h					
Peso molecular	4330	Kg/kmol					
Densidade	7,842	Kg/m ³					
Viscosidade	0,009387	cP					
Condutividade térmica	0,1473	W/m-°C					
Calor específico	6,934	kJ/kg⋅°C					
Fator de compressibilidade	1,03						
	COMPOSIÇÃO						
Componente	Fração molar	Fração mássica					
Metano	0,14	0,5187					
Etano	0,005	0,0347					
Propano	0,005	0,0509					
Hidrogênio	0,85	0,3957					

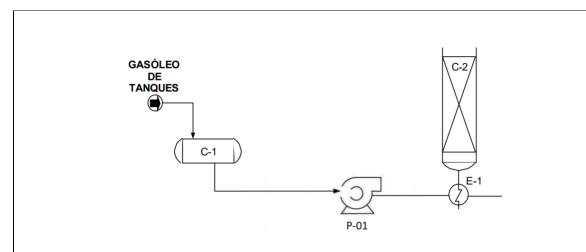
CORRENTES MAT	ERIAIS	
Número da corrente	39	
Descrição	Nafta	
Pressão	6,83	Kg/cm ² g
Temperatura	101,10	°C
Vazão mássica	401,7	Kg/h
Vazão molar	3,94	Kmol/h
Entalpia total	-0,0002	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	0,000	
PROPRIEDADES DA FA	SE LÍQUIDA	
Vazão volumétrica @P e T de operação	0,65232	m³/h
Peso molecular	102	Kg/kmol
Densidade	615,9	Kg/m ³
Viscosidade	0,2113	сР
Condutividade térmica	0,09809	W/m-°C
Calor específico	2,604	kJ/kg⋅°C
Tensão superficial	12,04	dinas/cm
PROPRIEDADES DA FAS	E VAPOR/GÁS	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m-°C
Calor específico	-	kJ/kg⋅°C
Fator de compressibilidade	-	
COMPOSIÇÃ	0	
Componente	Fração molar	Fração mássica
Metano	0,0103	0,0016
Etano	0,0075	0,0022
Propano	0,0269	0,0116
n-Butano	0,0312	0,0178
n-Pentano	0,0884	0,0626
n-Hexano	0,1211	0,1024
n-Heptano	0,1848	0,1816
n-Octano	0,2546	0,2852
n-Nonano	0,2634	0,3313
H2S	0,0103	0,0034
Amônia	0,0014	0,0002

CORRENTES MAT	ERIAIS	
Número da corrente	40	
Descrição	Purga	
Pressão	39,83	Kg/cm ² g
Temperatura	45,01	°C
Vazão mássica	56,40	Kg/h
Vazão molar	6,87	Kmol/h
Entalpia total	-0,0001	Gkcal/h
Fração de sólidos	0,000	
Fração de vapor	1,000	
PROPRIEDADES DA FA	SE LÍQUIDA	
Vazão volumétrica @P e T de operação	-	m³/h
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m.°C
Calor específico	-	kJ/kg⋅°C
Tensão superficial	-	dinas/cm
PROPRIEDADES DA FAS	E VAPOR/GÁS	
Vazão volumétrica @P e T de operação	4,707	m³/h
Peso molecular	8212	Kg/kmol
Densidade	11,98	Kg/m ³
Viscosidade	0,01079	сР
Condutividade térmica	0,09871	W/m.°C
Calor específico	3,983	kJ/kg⋅°C
Fator de compressibilidade	1,012	
COMPOSIÇÃ	0	
Componente	Fração molar	Fração mássica
Metano	0,3981	0,7776
Etano	0,0106	0,0389
Propano	0,0046	0,0248
n-Butano	0,0007	0,0052
n-Pentano	0,0003	0,0030
n-Hexano	0,0001	0,0009
n-Heptano	0,0000	0,0003
n-Octano	0,0000	0,0001
n-Nonano	0,0000	0,0000
Água	0,0026	0,0056
H2S	0,0001	0,0004
Hidrogênio	0,5829	0,1431

CORRENTES MATERIAIS						
Número da corrente	41					
Descrição	MEA pobre					
Pressão	38,8	Kg/cm ² g				
Temperatura	45,00	°C				
Vazão mássica	9703196,3470	Kg/h				
Vazão molar	481649,9659	Kmol/h				
Entalpia total	-32,6151	Gkcal/h				
Fração de sólidos	0,0					
Fração de vapor	0					
PROPE	RIEDADES DA FASE LÍQUIDA	·				
Vazão volumétrica @P e T de operação	9898,27	m³/h				
Peso molecular	20,15	Kg/kmol				
Densidade	980,3	Kg/m ³				
Viscosidade	0,8684	cP				
Condutividade térmica	0,6064	W/m-°C				
Calor específico	3,3	kJ/kg⋅°C				
Tensão superficial	67,51	dinas/cm				
PROPRIE	EDADES DA FASE VAPOR/GÁS					
Vazão volumétrica @P e T de operação	-	m³/h				
Peso molecular	-	Kg/kmol				
Densidade	-	Kg/m ³				
Viscosidade	-	cP				
Condutividade térmica	-	W/m-°C				
Calor específico	-	kJ/kg⋅°C				
Fator de compressibilidade						
COMPOSIÇÃO						
Componente	Fração molar	Fração mássica				
MEA amine	0,306	0,15				
Água	0,694	0,85				

CORRENTES MATERIAIS						
Número da corrente	42					
Descrição	MEA rica					
Pressão	39,80 Kg/c					
Temperatura	44,98	°C				
Vazão mássica	9705375,5648	Kg/h				
Vazão molar	481717,8277	Kmol/h				
Entalpia total	-32,6154	Gkcal/h				
Fração de sólidos	0,0					
Fração de vapor	0					
PROPE	RIEDADES DA FASE LÍQUIDA					
Vazão volumétrica @P e T de operação	9900,414	m³/h				
Peso molecular	20,11	Kg/kmol				
Densidade	980,3	Kg/m ³				
Viscosidade	0,8683	сР				
Condutividade térmica	0,6063	W/m.°C				
Calor específico	3,3	kJ/kg⋅°C				
Tensão superficial	67,5	dinas/cm				
PROPRIE	DADES DA FASE VAPOR/GÁS	·				
Vazão volumétrica @P e T de operação	-	m³/h				
Peso molecular	-	Kg/kmol				
Densidade	-	Kg/m ³				
Viscosidade	-	сР				
Condutividade térmica	-	W/m-°C				
Calor específico	-	kJ/kg⋅°C				
Fator de compressibilidade	-					
COMPOSIÇÃO						
Componente	Fração molar	Fração mássica				
MEA amine	0,0495	0,115				
Água	0,9504	0,885				
H2S	0,0001	0,0002				

C	CORRENTES MATERIAIS			
Número da corrente	43			
Descrição	Gasóleo dessulfurado resfriado pelo trocador E-6			
Pressão	7,072	Kg/cm ² g		
Temperatura	40	°C		
Vazão mássica	224900	Kg/h		
Vazão molar	800	Kmol/h		
Entalpia total	-0,375	Gkcal/h		
Fração de sólidos	0			
Fração de vapor	0			
PROPI	RIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	264,159	m³/h		
Peso molecular	281,1	Kg/kmol		
Densidade	851,38	Kg/m ³		
Viscosidade	7,404	сР		
Condutividade térmica	0,1251	W/m-°C		
Calor específico	1,837	kJ/kg⋅°C		
Tensão superficial	28,7	dinas/cm		
PROPRI	EDADES DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T de operação	-	m³/h		
Peso molecular	-	Kg/kmol		
Densidade	-	Kg/m ³		
Viscosidade	-	cР		
Condutividade térmica	-	W/m·°C		
Calor específico	-	kJ/kg⋅°C		
Fator de compressibilidade	-			
	COMPOSIÇÃO			
Componente	Fração molar	Fração mássica		
NBP[1]222*	0,0162	0,0101		
NBP[1]237*	0,0142	0,0091		
NBP[1]252*	0,0150	0,0101		
NBP[1]267*	0,0181	0,0132		
NBP[1]283*	0,0345	0,0279		
NBP[1]296*	0,1055	0,0916		
NBP[1]312*	0,1452	0,1345		
NBP[1]324*	0,1459	0,1420		
NBP[1]339*	0,1478	0,1523		
NBP[1]353*	0,1255	0,1360		
NBP[1]368*	0,1099	0,1257		
NBP[1]381*	0,0736	0,0875		
NBP[1]396*	0,0482	0,0598		

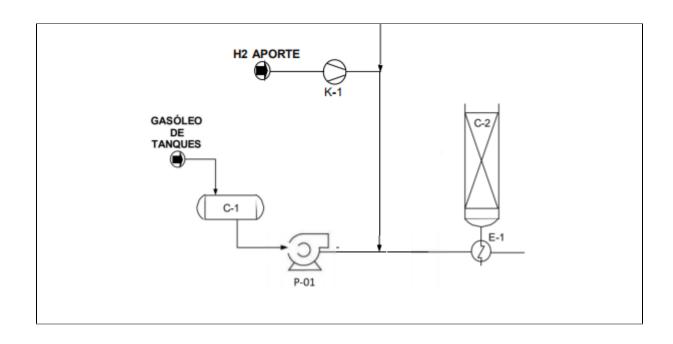

ANEXO 2: FOLHA DE ESPECIFICAÇÕES DOS ALARMES

ESPECIFICAÇÕES DOS ALARMES						
Identificação no diagrama mecânico	Localização (núm. da tubulação ou vaso)	Descrição da ação	Vinculado a qual elemento de medição e/ou controle			
LAL LAH	C-1	Notificar quanto ao nível no tanque de armazenamento de entrada o Gasóleo	Transmissor de nível, controle de válvula (PCV-01)			
TAH TAHH		Alerta de temperatura alta e muito alta no forno	TIC-101,TIT-101			
FAL	F-1	Alerta de baixa vazão na entrada de reagente no forno	TIC-100			
FAL		Alerta de baixa vazão na entrada de combustível no forno	FIC-101, FCV-4			
TAH TAHH	C-2	Alerta de temperatura alta e muito alta no reator	FT-101, FCV-04			
LAH LAL	0.3	Alerta de níveis alto e baixo no separador	LT-101, LY-100, FCV-08, LY- 101, FCV-07			
PAH PAHH	C-3	Alerta de alta e muito alta pressão no separador	PT-100, PY-100, FCV-09			
LAH LAL	C 4	Alerta de níveis alto e baixo no separador	LT-102, LY-102, FCV-11			
PAH PAHH	C-4	Alerta de alta e muito alta pressão no separador	PT-101, PY-101, FCV-10			
LAH LAL	C-5	Alerta de níveis alto e baixo no separador	LT-103, LY-103, FCV-14, LY- 104, FCV-13			
PAH PAHH	U-5	Alerta de alta e muito alta pressão no separador	PT-102, PY-102, FCV-12			
PAH PAHH	C-6	Alerta de alta e muito alta pressão na torre de absorção química				

TAH TAHH		Alerta de temperatura alta e muito alta no forno	FT-102, FCV-18, TIT-102, FIC- 102
FAL	F-2	Alerta de baixa vazão na entrada de reagente no forno	TIT-102, FIC-102, FT-101
FAL		Alerta de baixa vazão na entrada de combustível no forno	FT-102, FCV-18
PAH PAHH	C-7	Alerta de alta e muito alta pressão na torre de stripping	FCV-19
FAL FALL	G-1	Alerta de baixa e muito baixa vazão na torre de stripping	FCV-16
LAL LALL	C-8	Alerta de níveis baixo e muito baixo no separador	LC-101, LT-106
PAH PAHH		Alerta de alta e muito alta pressão no separador	PI-106, PSV-08
FAL FALL	P-1	Alerta de baixa e muito baixa vazão na bomba na alimentação de gasóleo	Pl- 100, Pl-101
FAL FALL	P-2	Alerta de baixa e muito baixa vazão na bomba na alimentação da injeção de água de caldeiras a montante do aerorref rigerante E-2	PI-104, FI-102, FCV-06
FAL FALL	P-3	Alerta de baixa e muito baixa vazão na bomba na alimentação da torre de absorção química	FCV-22, XIC-100, XT-100

ANEXO 3: FOLHAS DE ESPECIFICAÇÕES DE BOMBAS

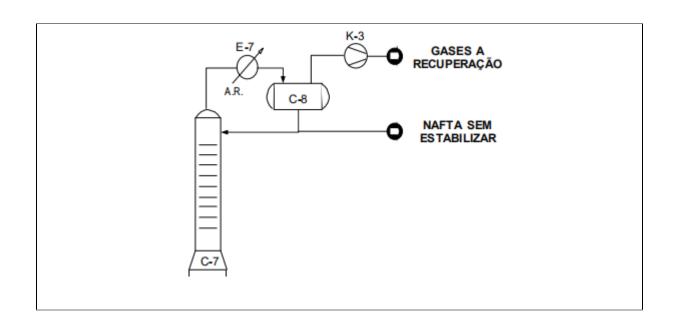
ESPE	ECIFIC	CAÇÕE	SBOMB	AS			
Identificação do equipamento				P-1			
operação / reserva		P-1 P		7-1			
Descrição			Tran	sporte	gas	óleo ao C	-1
Número de bombas operação	/		1				1
reserva							·
Tipo de bomba (centrífuga,							
volumétrica alternativa, volumét	rica			C	entrífi	uga	
rotativa)					<u> </u>		
Funcionamento (contínuo ou			Contínuo)		Pai	ralelo
descontínuo / série ou paralel	<u>o) </u>	<u> </u>					
CARACTERÍSTICAS DO	SFL			ÇOES	DE		
PARTE DA BOMBA		Aspi	ração			Impu	
Vazão volumétrica de operação			264				m³/h
Pressão		5	kg/cm	² g		79	kg/cm ² g
Temperatura	-	0,00	°C	,		46,95	°C
<u>Densidade</u>		61,6	kg/m	3		863,0	kg/m³
Viscosidade	-	526	cP	2		5,707	cP
Pressão de vapor		033	kg/cm	<u> g</u>		1,033	kg/cm ² g
CÂRACTÉRIS				DAB	OMB	A	
Vazão de projeto (110 ou 12	u% aa	a vazao	ae		291	,47	
operação)	lo vo=õ	- do				m³/h	
Vazão mínima de processo (6	00% U	a vazac	o de		158	3,98	
operação) Pressão na aspiração na va	7ão d	lo projo	+ o			5	
Pressão na impulsão na va						9	kg/cm² g
Pressão diferen		e proje				<u>3</u> '4	kg/cm ²
Altura diferenc						5	m Kg/Cili
NPSH disponív						<u>,</u> 1,7	m
Máxima pressão diferencial a		são fec	hada			3,8	kg/cm ²
Pressão máxima na a			iiuuu			3,0 3	
Pressão máxima na i						<u>,</u> 1,8	kg/cm² g
Diâmetro da tubulação aspi			ão	1		10	polegadas
	- u y u o			-	•		p c. e gararar
CONDIÇÕ	ES DI	E PROJ	IETO ME	CÂNI	CO		1
Pressão de projeto			104,28				Kg/cm ² g
Temperatura de							
projeto 46,95					°C		
CARACTE	RÍSTI	CAS DE	ACION	AMEN	ITO		
Potência elétrica a 1419,16					kW		
vazao de projeto					IV V		
ESQUEMA D	o sis	TEMA	DE BOME	BEAM	ENT	0	


ESD	ECIE!	CACÕE	SBOMB	10			
Identificação do equipament		CAÇUE 	O DUIVID	AJ			
operação / reserva			P-2			P-2	
Descrição		Tra	nsporte á		e cald lor E		ocador de
Número de bombas operação	1		1	- 00			1
reserva Tipo de bomba (centrífuga,			<u>'</u>				
volumétrica alternativa, volumét	trica			Ce	ntrífu	ga	
rotativa) ´							
Funcionamento (contínuo ou descontínuo / série ou paralel			Contínuo)		Pa	ralelo
CARACTERÍSTICAS DO		JÍDOS I	CONDI	CÕES	DE C	PERAC	ÃO
PARTE DA BOMBA			ração			Impu	
Vazão volumétrica de operação		•	8,3			•	m³/h
Pressão		16	kg/cm ²	² g		69,3	kg/cm ² g
Temperatura	9:	5,00	٥C		ç	7,24	°C
Densidade	9:	52,8	kg/m	3	Q	953,2	kg/m³
Viscosidade	0,	2944	cР		0	,2873	сР
Pressão de vapor			kg/cm ²	^{2}g			kg/cm² g
CARACTÉRIS	STICA	S DE PI	ROJETO	DA BO	OMB/	4	
Vazão de projeto (110 ou 12 operação)	0% da	a vazão	de		9,2	22	3/1-
Vazão mínima de processo (60% d	la vazão	o de		5,0	3	m³/h
operação)		laa :a	1-				
Pressão na aspiração na va					16		kg/cm² g
Pressão na impulsão na va Pressão diferen		e proje	to		69,		
Altura diferenc					53,		kg/cm ²
NPSH disponí					3 169		m m
		leão foo	hada			,	m kg/cm ²
Máxima pressão diferencial a impulsão fechada63,96Pressão máxima na aspiração17,6							
Pressão máxima na impulsão					76,2		kg/cm ² g
Diâmetro da tubulação aspiração/impulsão					ĺ	5	polegadas
CONDIÇÕ	ES D	E PROJ	ETO ME	CÂNIC	O		
Pressão de projeto	83,85				Kg/cm ² g		
Temperatura de projeto			125				°C

CARACTE	RÍSTI	CAS DE	E ACION/	AMEN	ITO	
Potência elétrica a vazão de projeto						kW
ESQUEMA DO SISTEMA DE BOMBEAMENTO						
ÁGUA DE CALDEIRAS	P-0	2		E-1	E-2	
		CAÇÕE	SBOMB	AS		
Identificação do equipamento operação / reserva)		P-3			P-3
Descrição			Transr	orte N	MEA pobre ao	C-6
Número de bombas operação	1		•	20110 1	VIET (PODIO GO	
reserva			1			1
Tipo de bomba (centrífuga, volumétrica alternativa, volumét rotativa)	rica			Ce	entrífuga	
Funcionamento (contínuo ou	ı		Contínuo		Dr	aralelo
descontínuo / série ou paralel						
CARACTERÍSTICAS DO	S FLU			ÇOES		
PARTE DA BOMBA		Aspi	ração		Impu	ılsão
Vazão volumétrica de operação			9.6			m ³ /h
Pressão		5	kg/cm	²g	38,8	kg/cm ² g
Temperatura	45 979,0		°C	3	45,33	°C
Densidade Viscosidade		79,0 8675	kg/m cP	-	980 0,8636	kg/m³ cP
Pressão de vapor	0,0	0	kg/cm ²	² a	0,8636	kg/cm ² g
CARACTÉRIS	TICA	-			-	i kg/oili g
Vazão de projeto (110 ou 12						
operação)					10.560	2.0
Vazão mínima de processo (60% da vazão de operação)					m³/h	
Pressão na aspiração na vazão de projeto					5	kg/cm ² g
Pressão na impuisão na vazão de projeto 50,00						
					kg/cm ²	
					m	
NPSH disponív		-~- (-	la a de		94.340	m
Máxima pressão diferencial a	ımpul	sao tec	nada		40,56	kg/cm ²

	ima na aspiração	6	kg/cm² g
Pressão máx	46,56		
Diâmetro da tubula		polegadas	
	ONDIÇÕES DE PROJETO ME	CANICO	1.6.7.2
Pressão de projeto	51,22		Kg/cm ² g
Temperatura de projeto	49,86		٥C
	RACTERÍSTICAS DE ACIONA	ΔMENTO	
Potência elétrica a			1
vazão de projeto	11.800,00		kW
ESQ	JEMA DO SISTEMA DE BOME	BEAMENTO	
MEA POBRE	P-03	PURGA C-6	

ANEXO 4: FOLHAS DE ESPECIFICAÇÕES DE COMPRESSORES


ESPECIF	FICAC	ÕES CO	OMPRES	SOR	FS		
Identificação do equipament				<u> </u>			
operação / reserva			K-1				-
Descrição		С	Compressor da entrada de H2 de aporte				
Número de compressores opera	ção /						
reserva	_		1				0
Tipo de compressor					entrífuç	10	
(centrífugo/deslocamento posit	ivo)				enin ii uç	JO	
Funcionamento (contínuo o			Contínuo	,			_
descontínuo / série ou parale	lo)						
CARACTERÍSTICAS DO	S FLU	JÍDOS I	CONDI	ÇÖE	S DE O	PERAÇ.	ÃO
PARTE DO COMPRESSOR		Aspi	ração			Impu	
Vazão mássica de operação			203				kg/h
Pressão		0,00	kg/cm	² a		9,30	kg/cm² a
Temperatura		45	٥C		1	159	°C
Densidade @ P e T de	3	,335	kg/m	3	5	854	kg/m³
operação	0,	,000			<u> </u>		_
Massa molar			4,3	33			kg/kmol
Fator de compressibilidade @	1.	1,013		1,022			
P e T de operação					·		
$K = c_P/c_V @ P e T de operação$,382				360	
CARACTÉRISTIC				CON	MPRESS	SOR	
Vazão de projeto (110 ou 12	20% da	a vazao	de		671,3	34	m³/h
operação)		.1 - ~ -				·	
Máxima temperatura n		uisao			170		°C
Número de eta		(Λ			1	
Razão de compressão por					3	2,47 3	pologodos
Diâmetro da tubulação aspi			ao				polegadas %
Eficiência politrópica do CONDIÇÕ			IETO ME		75,0	U	76
Pressão de projeto na				CAIN			
aspiração / impulsão	22	<u>)</u>			54,23		Kg/cm² g
Temperatura de projeto	210						°C
CARACTE	RÍSTI	CAS DE		ΔΜΕ	NTO		
Potência elétrica a		OAO DI					
vazão de projeto 461,89 kW						kW	
ESQUEMA DO SISTEMA DE COMPRESSÃO							
		— \					

ES	PECIFI	CAC	ÕES C	OMPRESS	ORE	S	
Identificação do equip							
operação / reserva				K-2			-
Descrição			Compressor da corrente de reciclo de absorção				da torre de
Número de compressores	operac	ão /		4			^
reserva		,		1			0
Tipo de compress	sor				0-		
(centrífugo/deslocamento		vo)			Ce	entrífugo	
Funcionamento (contí				Contínua			
descontínuo / série ou	paralelo	o)		Contínuo			-
CARACTERÍSTIC	AS DO	S FLU	JÍDOS I	CONDIÇ	ÕES	DE OPERAÇ	ÃO
PARTE DO COMPRESS				ração		Impu	
Vazão mássica de opera	ação			43.884	,87		kg/h
Pressão		38	8,80	kg/cm ²		79,00	kg/cm² a
Temperatura		44	4,98	°C		126	°C
Densidade @ P e T d operação	е	12	2,48	kg/m³		19,70	kg/m³
Massa molar				8,54	1		kg/kmol
Fator de compressibilida	de @		0.4.0	0,0		4.60=	g/
P e T de operação		1,	,010			1,025	
$K = c_P/c_V @ P e T de oper$	ação	1,	357			1,332	
CARACTÉ		AS DE	E PROJ	ETO DO C	OMI	PRESSOR	1
Vazão de projeto (110	ou 120)% da	a vazão	de		2516.42	100 3 /la
oper	ação)		3516,42			m³/h	
Máxima tempera	atura na	impu	ulsão			138,6	٥C
Número	de etap	as	1 as (///) 2,04				
Razão de compress							
Diâmetro da tubulaçã						polegadas	
Eficiência politróp	oica do	comp	ressor		_	75,00	%
CO	<u>NDIÇO</u>	ES DI	E PROJ	IETO MEC	ÂNIC	0	
Pressão de projeto na		46,6	88			86,90	Kg/cm ² g
aspiração / impulsão		,		450.40	_		
Temperatura de projeto		-ía		152,46			°C
	RACTE	RISTI	CAS DE	E ACIONA	MEN	10	
Potência elétrica a vazão de projeto				3911,28			kW
ESQU	JEMA D	O SIS	STEMA	DE COMP	PRES	SÃO	
ESQUEMA DO SISTEMA DE COMPRESSÃO PURGA H2 APORTE N-1 POBRE C6							

1			

ESPECII	FICAÇ	ÕES C	MPRES	SOR	ES		
Identificação do equipament			K-3				
operação / reserva							
Descrição		Compressor da corrente de saída de gases de					
		recuperação					
Número de compressores opera	ıção /		1				0
reserva							
Tipo de compressor				C	Centrífu	ıgo	
(centrífugo/deslocamento posis Funcionamento (contínuo o							
descontínuo / série ou parale			Contínu	0			-
CARACTERÍSTICAS DO	10) 18 FL I	IÍDOS F	COND	CÕE	SDF	PERAC	ÃΩ
PARTE DO COMPRESSOR	 		ração	ŞOL	ODL	Impu	
Vazão mássica de operação		ДОР		58		mpa	kg/h
Pressão	5	5,80	kg/cm			7,00	kg/cm² a
Temperatura		2,67	°C			13,56	°C
Densidade @ P e T de			1 . /	. 2		·	1 . / 2
operação	8	,761	kg/n	٦°	,	9,974	kg/m³
Massa molar			28	,44			kg/kmol
Fator de compressibilidade @	0.9	9423),9428	
P e T de operação						<u> </u>	
$K = c_P/c_V @ P e T de operação$,263				1,260	
CARACTÉRISTIC				COV	IPRES	SSOR	
Vazão de projeto (110 ou 12	20% da	a vazão	de		132	.,42	m³/h
operação)	- •	1 - ~ -					
Máxima temperatura n		uisao			14,	92	°C
Número de eta		20////	Λ			1,21	
Razão de compressão po Diâmetro da tubulação asp					6	1,∠1_ 6	polegadas
Eficiência politrópica do			au		75,		%
CONDIÇO) FS D	F PRO	ETO ME	CÂΝ	<u>, , , , , , , , , , , , , , , , , , , </u>	,00	/0
Pressão de projeto na							
aspiração / impulsão	6,38				7,70		Kg/cm ² g
Temperatura de projeto	16,41						°C
CARACTERÍSTICAS DE ACIONAMENTO							•
Potência elétrica a 4,90 kW							
vazao de projeto							
ESQUEMA	DO SIS	STEMA	DE COM	IPRE	SSAC)	

ANEXO 5: FOLHA DE ESPECIFICAÇÕES DE PRATOS

	EC DOATOS		
ESPECIFICAÇÕ	ES PRATOS	0.7	
Número do equipamento		C-7 Torre de destil	
Descrição		açao	
Número de seções da coluna		3	
SEÇÃO 1 DA	COLUNA	7	~ _
Identificação		Zona de retific	açao
De prato/A prato	1	48	
Pressão	6,1	6,4	Kg/cm ² g
Perda de pressão		,3	
Temperatura	151,1	174,8	°C
Vazão mássica de vapor/fase orgânica	3782,0		Kg/h
Vazão mássica de líquido/fase aquosa	2002,0		r vg/ r r
Vazão volumétrica de vapor/fase orgânica @ P	295,8	308,6	
e T de operação	,-	,-	m ³ /h
Vazão volumétrica de líquido/fase aquosa @ P	3,45	3,8	
e T de operação	5, 15	0,0	
Densidade da fase vapor/fase orgânica @ P e	12,8	13,8	
T de operação	. =, 5	.0,0	Kg/m ³
Densidade da fase líquida/fase aquosa @ P e T	579,9	570,9	1.9/111
de operação	0.0,0	0.0,0	
Viscosidade da fase vapor/fase orgânica @ P	0,012	0,013	
e T de operação	0,012	0,010	сР
Viscosidade da fase líquida/fase aquosa @ P e	0,163	0,155	
T de operação			
Diâmetro		92,2	mm
Número de pratos		18	
Espaçamento entre pratos		10	mm
Tipo de pratos (válvulas, perfurados)	Válv	⁄ulas	
Altura de recheio		-	mm
Tipo de recheio (anéis Raschig, selas		_	
Intalox)			
05040.00	00111114		
SEÇÃO 2 DA			
Identificação		ona de esgota	mento
De prato/A prato	49	50	
Pressão	6,4	6,4	Kg/cm ² g
Perda de pressão		0	
Temperatura	173,7	159,1	°C
Vazão mássica de vapor/fase orgânica		4941,0	Kg/h
Vazão mássica de líquido/fase aquosa		243000	
Vazão volumétrica de vapor/fase orgânica @ P	308,3	312,0	
e T de operação	,-	,-	m³/h
Vazão volumétrica de líquido/fase aquosa @ P	4,8	326,9	
e T de operação	,		
Densidade da fase vapor/fase orgânica @ P e	14,0	15,8	
T de operação	,	,	Kg/m ³
Densidade da fase líquida/fase aquosa @ P e T	577,8	744	
de operação	,		
Viscosidade da fase vapor/fase orgânica @ P	0,013	0,013	
e T de operação			cР
Viscosidade da fase líquida/fase aquosa @ P e	0,162	0,560	
T de operação	700	<u> </u>	mm
Diâmetro		92,2	mm
Número de pratos		2	
Espaçamento entre pratos		10 vula	mm
Tipo de pratos (válvulas, perfurados)			

Altura de recheio		-	mm
Tipo de recheio (anéis Raschig, selas Intalox)	-		
SEÇÃO 3 DA	COLUNA		
Identificação	Z	Zona de esgota	mento
De prato/A prato	51	100	
Pressão	6,4	6,7	- Kg/cm ² g
Perda de pressão	C),3	
Temperatura	187,8	436,7	°C
Vazão mássica de vapor/fase orgânica		993000	- Kg/h
Vazão mássica de líquido/fase aquosa		1270000	TXg/11
Vazão volumétrica de vapor/fase orgânica @ P e T de operação	733,8	21448,0	3 /le
Vazão volumétrica de líquido/fase aquosa @ P e T de operação	415,4	2573,1	- m³/h
Densidade da fase vapor/fase orgânica @ P e T de operação	24,7	46,3	May /ma 3
Densidade da fase líquida/fase aquosa @ P e T de operação	693,7	494,0	- Kg/m ³
Viscosidade da fase vapor/fase orgânica @ P e T de operação	0,013	0,014	сP
Viscosidade da fase líquida/fase aquosa @ P e T de operação	0,331	0,045	CP
Diâmetro	7092,2		mm
Número de pratos	-	50	
Espaçamento entre pratos		510	mm
Tipo de pratos (válvulas, perfurados)	Válvulas		
Altura de recheio			mm
Tipo de recheio (anéis Raschig, selas		_	
Intalox)			

ANEXO 6: FOLHA DE ESPECIFICAÇÕES DOS ENCRAVAMENTOS

ESPECIFICAÇÕES DOS ENCRAVAMENTOS							
Identificação no diagrama mecânico	Localização (núm. da tubulação ou vaso)	Descrição da ação	Vinculado a qual elemento de medição e/ou controle				
SE-1	F-1	Fechamento de válvula da válvula de combustível	FCV-4				
SE-2	C-2	Abertura da válvula de água de caldeira e injeção de gás	FCV-6				
SE-3	C-3	Abertura de válvula	FCV-9				
SE-4	5	Fechamento de válvula	FCV-7				
SE-5	C-4	Abertura de válvula	FCV-10				
SE-6	U-4	Fechamento de válvula	FCV-11				
SE-7	C-5	Abertura de válvula	FCV-12				
SE-8	Ö	Fechamento de válvula	FCV-13				
SE-9	C-6	Fechamento de válvula	FCV-19				
SE-10	F-2	Fechamento de válvula de entrada de combustível	FCV-18				
SE-11	C-7	Fechamento de válvula	FCV-20				
SE-12	U-1	Abertura de válvula	FCV-20				
SE-13		Abertura de válvula	FCV-19				
SE-14	C-8	Abertura de válvula	FCV-20				

ANEXO 7: FOLHAS DE ESPECIFICAÇÕES DE TROCADORES DE CALOR

E	SPECIFICAÇÕES	TROC	ADORES DE	CALOR			
Número do eq		Forno F-1					
Descriç		Forno para aquecimento da entrada do reator C-2					
Tipo de tro	cador		Forno retang	ular de caixa	s gêmeas		
Tirage			_	Natural			
Número de bancos de convecção	Lisos ou aletados		2		Um liso e um aletado		
	ÍSTICAS DOS FLU	JÍDOS	E CONDIÇÕI	S DE OPER	ACÃO		
Lado				QUENTE D	OTROCADOR		
	Entrac	da		Saída			
Vazão total		3	386951		Kg/h		
Fração de vapor/gá	s 0,439	7		1	_		
Vazão de vapor/gás	17013	7	3	86951	I/ or/lo		
Vazão de líquido	21681	4		0	Kg/h		
Temperatura	200			380	°C		
Pressão	49,63	3		18,933	Kg/cm ² g		
Perda de pressão			0,7		Kg/cm ²		
permitida			0,1		Ttg/offf		
Coeficiente de							
transferência térmic convectiva do banco		5330,901					
Coeficiente de transferência térmic		4901,345					
convectiva do banco	0.2	°C h m² °C					
Fator de deposição)	0,00023					
Calor trocado		C	,09349		GKcal/h		
Eficiência da troca o calor			79,4		%		
Lado				CA DO FORM	10		
	ENTRADA D	E COM			ADA DE AR		
Vazão total	9824,36		Kg/h	184968,889			
Temperatura	32		°C	32	°C		
Pressão	1,0093		Kg/cm² g	2,0186	Kg/cm ² g		
Lado				DO FORNO			
Vazão total	19	194783,25 Kg					
Temperatura		390 °(
Pressão		1,0093 Kg/cm ² g CONDIÇÕES DE PROJETO MECÂNICO					
Altura da alcão a	CONDIÇOES D	EPRO	IETO MECAI	NICO			
Altura do chão a chaminé		50					
Elevação do forno							
CARACTERÍSTICAS CONSTRUTIVAS DO FORNO							
Area de troca de ca			3008	5,1	m ²		
	nensionada	3306,91			m²		
	dos tubos	4			polegadas		
Comprime	nto dos tubos		00	mm			

Espessura do	s tubos		6,08		mm		
Espaçamento er		260		mm			
Passos de t		12					
Orientação do	s tubos		\	/ertical			
Material do			321 Stainless				
Dobra em U d	o tubo	I	Fora da caixa de radiação				
Altura do F	orno		20000		mm		
Comprimento d	lo Forno	;	36000		mm		
Largura do I			10000		mm		
CARACTERÍSTI							
	CAIXA 1 (SAÍ				TRADA DO		
CAIXA	2/ENTRADA I		FO		TRADA DA		
7	RADIA	ĄÇÃO)		CAIX	A 1)		
Área de troca de calor	63,9	m²	21	97,3	m²		
da parte convectiva							
Área de troca de calor							
da parte convectiva	70,29	m²	24	17,03	m²		
após	·			·			
superdimensionamento Orientação dos tubos	Hori-	ontal		 Horizontal			
	ПОП	Ontai		HOHZO	niai		
Comprimento dos tubos	8000	mm	n 8000		mm		
Diâmetro dos tubos	5	polegadas		5	polegadas		
Espessura dos tubos	6,55	mm	6	,55	Mm		
Altura da aleta	-	mm	2	5,4	mm		
Espessura da aleta	-	mm		,27	mm		
Frequência de aletas	-	mm	1	97	mm		
Material das aletas		ainless		321 sta			
Disposição dos tubos	30 equ	ilateral		30 equil	ateral		
Espaçamento dos tubos	304	mm	3	304	mm		
Matric des tubes	tubos por 3	6 cc	lunas de	tubos por 3			
Matriz dos tubos	oos em série		linhas de tubos em série				
	TICAS CONSTR			O DE GÁ	S		
Diâmetro de cha		1965,	3		mm		
Altura da cham		3700			mm		
Localização do ab	2300		mm				

Número do equipamento		SPECIFICAÇÕES	TDOC	N DODES DE	CALOB				
Tipo de trocador	Número do ec	uinamento	IROG						
Tipo de trocador Forno cilíndrico Natural	Numero do equipamento								
Tipo de trocador Tiragem Natural	Descrição			·					
Número de bancos de convecção Lisos ou aletados 2 Um liso e um aletado CARACTERISTICAS DOS FLUÍDOS E CONDIÇÕES DE OPERAÇÃO Lado TUBO/TUBO INTERIOR/FLUÍDO QUENTE DO TROCADOR DE PLACAS Vazão total Entrada Saída Vazão de vapor/gás 0 0,151 Kg/h Vazão de líquido 423462 74203 Kg/h Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² °C/ kcal Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² °C/ kcal Fator de deposição 0,00023 km² °C/ kcal kcal Efliciência da troca de calor 78,54 % % Lado ENTRADA DE COMBUSTÍVEL COMBUSTÍVEL ENTRADA DE COMBUSTÍVEL COMBUSTÍVEL COMBUSTÍVEL	Tino de tro	ncador							
Número de bancos de convecção Lisos ou aletados 2 Um liso e um aletado CARACTERÍSTICAS DOS FLUÍDOS E CONDIÇÕES DE OPERAÇÃO Lado TUBO/TUBO INTERIOR/FLUÍDO QUENTE DO TROCADOR DE PLACAS Vazão total Entrada Saída Vazão de vapor/gás 0 0,151 Kg/h Vazão de vapor/gás 0 349259 Kg/h Vazão de líquido 423462 74203 Kg/h Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² °C kal Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² °C kal Fator de deposição 0,00023 h m² °C kal Kcal / h m² °C kal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % % Lado ENTRADA DE COMBUSTÍVEL ENTRADA DE COMBUSTÍVEL ENTRADA DE COMBUSTÍVEL ENTRADA DE COMBUST				1 01					
Dancos de					Matural				
convecção aletados aletado CARACTERÍSTICAS DOS FLUÍDOS E CONDIÇÕES DE OPERAÇÃO Lado TUBO/TUBO INTERIOR/FLUÍDO QUENTE DO TROCADOR DE PLACAS Vazão total Entrada Saída Vazão de vapor/gás 0 0,151 Kg/h Fração de vapor/gás 0 0,151 Kg/h Vazão de líquido 423462 Kg/h Vazão de líquido 423462 Kg/h Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 2 Kcal / h m² «Coeficiente de transferência térmica convectiva do banco 2 Kcal / h m² «Coeficiente de transferência térmica convectiva do banco 2 Kcal / h m²<				2					
CARACTERÍSTICAS DOS FLÚÍDOS E CONDIÇÕES DE OPERAÇÃO Lado TUBO/TUBO INTERIOR/FLÚIDO QUENTE DO TROCADOR DE PLACAS Vazão total Entrada Saída Fração de vapor/gás 0 0,151 Vazão de liquido 423462 74203 Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² °C C Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² °C / kcal Fator de deposição 0,00023 h m² °C / kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CA		aletados		_		aletado			
Lado		RÍSTICAS DOS FLI	JÍDOS E	CONDIÇÕE	SDE OPER	ACÃO			
Lado									
Vazão total 423462 Kg/h Fração de vapor/gás 0 0,151 Vazão de vapor/gás 0 349259 Vazão de líquido 423462 74203 Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² Kcal / h m² c°C Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² c°C Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² c°C Fator de deposição 0,00023 h m² c°C/kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Kg/cm² g °C 2 °C	Lado		_						
Fração de vapor/gás 0 0,151 Vazão de vapor/gás 0 349259 Kg/h Vazão de líquido 423462 74203 Kg/h Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² °C / kcal Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² °C / kcal Enter de deposição 0,00023 hm² °C / kcal Ediciência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C <t< th=""><th></th><th>Entrad</th><th>da</th><th></th><th>Saída</th><th></th></t<>		Entrad	da		Saída				
Fração de vapor/gás 0 0,151 Vazão de vapor/gás 0 349259 Kg/h Vazão de líquido 423462 74203 Kg/h Temperatura 437 451 °C Perda de pressão permitida 0,7 Kg/cm² g Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² °C / kcal / h m² °C / kcal / h m² °C / kcal Convectiva do banco 2 4853,645 Kcal / h m² °C / kcal Fator de deposição 0,00023 h m² °C / kcal Calor trocado 0,016039 GKcal/h Entrada da troca de calor 78,54 % ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAIDA DA CASCA DO FORNO CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m <t< th=""><th>Vazão total</th><th></th><th>4</th><th>23462</th><th></th><th>Kg/h</th></t<>	Vazão total		4	23462		Kg/h			
Vazão de líquido 423462 74203 Kg/h Temperatura 437 451 °C Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² Kcal / h m² corectiva do banco 1 Kcal / h m² °C Coeficiente de transferência térmica convectiva do banco 1 4853,645 Kcal / h m² °C °C Fator de deposição 0,00023 h m² °C/ kcal kcal Calor trocado 0,016039 GKcal/h % Eficiência da troca de calor ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé	Fração de vapor/gá	is 0		(),151				
Temperatura	Vazão de vapor/gá	s 0		3	49259	Ka/b			
Pressão 7,733 7,833 Kg/cm² g Perda de pressão permitida 0,7 Kg/cm² Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² ° °C Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² ° °C Fator de deposição 0,00023 h m² ° °C / kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DE COMBUSTÎVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAIDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g Altura do chão a chaminé 50 m Elevação do forno 3 m Area de troca de calor da parte radioativa superdimensionada 5			32	7		_			
Perda de pressão permitida 0,7 Kg/cm² Coeficiente de transferência térmica convectiva do banco 1 4750,195 Kcal / h m² °C Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² °C Fator de deposição 0,00023 h m² °C/ kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DE COMBUSTIVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/m² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/m² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé °C m Elevação do forno 3 m m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Area de troca de calor da parte radioativa superdimensionada 1012,55 </th <th>-</th> <th></th> <th></th> <th></th> <th></th> <th></th>	-								
Coeficiente de transferência térmica convectiva do banco 1			3		7,833	Kg/cm ² g			
Coeficiente de transferência térmica convectiva do banco 1				0.7		Ka/cm²			
transferência térmica convectiva do banco 1 Coeficiente de transferência térmica convectiva do banco 2 Fator de deposição Calor trocado Eficiência da troca de calor da parte radioativa superdimensionada CONDIÇÕES DE PROJETO MECĂNICO Area de troca de calor da parte radioativa superdimensionada Convectiva do banco 2 Kcal / h m² o°C / kcal / h m² o°C / kcal Calor trocado 0,00023 h m² o°C / kcal Calor trocado 78,54 % ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 o°C 32 o°C Pressão 1,0093 Kg/cm²g 2,0186 Kg/cm²g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 o°C Pressão 1,0093 Kg/cm²g CONDIÇÕES DE PROJETO MECĂNICO Altura do chão a chaminé Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Ārea de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 19200 mm						119/0111			
transferencia termica convectiva do banco 1 Coeficiente de transferência térmica convectiva do banco 2 Fator de deposição Calor trocado Eliciência da troca de calor da parte radioativa superdimensionada CARACTERÍSTICAS CONSTRUTIVAS DO FORNO At a do taro de calor da parte radioativa superdimensionada CARACTERÍSTICAS CONSTRUDIO (A CASCA DO FORNO) At convectiva do banco 2 Kcal / h m² °C/						Kcal / h m²			
Coeficiente de transferência térmica convectiva do banco 2 4853,645 Kcal / h m² °C/ °C Fator de deposição 0,00023 h m² °C/ kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/m² Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m Área de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 5 polegadas Diâmetro dos tubos 5 polegadas Comprimento d			47	750,195					
transferência térmica convectiva do banco 2 4853,645 Koal / n m² oC / oC Fator de deposição 0,00023 h m² oC / kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO m Altura do chão a chaminé 50 m Elevação do forno 3 m Area de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 5 polegadas Diâmetro dos tubos 5		01							
Convectiva do banco 2 "C Fator de deposição 0,00023 h m² °C/ kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m Area de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 5 polegadas Diâmetro dos tubos 5 polegadas Comprimento dos tub			40	252 645		Kcal / h m ²			
Fator de deposição 0,00023 h m² °C/kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECĂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m Area de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada 1012,55 m² Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tu									
Fator de deposição 0,00023 kcal Calor trocado 0,016039 GKcal/h Eficiência da troca de calor 78,54 % Lado ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO M Altura do chão a chaminé 50 m Elevação do forno 3 m Area de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada 1012,55 m² Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm <th>CONVECTIVA GO DANCE</th> <th>0.2</th> <th></th> <th></th> <th></th> <th>h m² °C/</th>	CONVECTIVA GO DANCE	0.2				h m² °C/			
Eficiência da troca de calor 78,54 % Lado ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 5 polegadas Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm	Fator de deposição	0	0	,00023		kcal			
calor 78,54 % Lado ENTRADA DA CASCA DO FORNO ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Area de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 1012,55 m² Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm			0,	016039		GKcal/h			
Lado		de		78 54		%			
ENTRADA DE COMBUSTÍVEL ENTRADA DE AR Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 1012,55 m² Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm				·					
Vazão total 1703,76 Kg/h 32076,00 Kg/h Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa superdimensionada 920,5 m² Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm	Lado								
Temperatura 32 °C 32 °C Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa superdimensionada 920,5 m² Área de troca de calor da parte radioativa superdimensionada 1012,55 m² Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm	W ~		DE COM						
Pressão 1,0093 Kg/cm² g 2,0186 Kg/cm² g Lado SAÍDA DA CASCA DO FORNO Vazão total 33779,76 Kg/h Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm²									
LadoSAÍDA DA CASCA DO FORNOVazão total33779,76Kg/hTemperatura408,6°CPressão1,0093Kg/cm² gCONDIÇÕES DE PROJETO MECÂNICOAltura do chão a chaminé50mElevação do forno3mCARACTERÍSTICAS CONSTRUTIVAS DO FORNOÁrea de troca de calor da parte radioativa920,5m²Área de troca de calor da parte radioativa superdimensionada1012,55m²Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm									
Vazão total33779,76Kg/hTemperatura408,6°CPressão1,0093Kg/cm² gCONDIÇÕES DE PROJETO MECÂNICOAltura do chão a chaminé50mElevação do forno3mCARACTERÍSTICAS CONSTRUTIVAS DO FORNOÁrea de troca de calor da parte radioativa920,5m²Área de troca de calor da parte radioativa superdimensionada1012,55m²Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm		1,0093	SVÍD	Ng/CIII- g	2,0100	Ng/cm²g			
Temperatura 408,6 °C Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm		3,			DOTORING				
Pressão 1,0093 Kg/cm² g CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé 50 m Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm		J.	·						
CONDIÇÕES DE PROJETO MECÂNICO Altura do chão a chaminé Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm			100,0						
Altura do chão a chaminé Elevação do forno 3 m CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos Comprimento dos tubos Espessura dos tubos 50 m 1012,55 m²	1103300								
chaminé50mElevação do forno3mCARACTERÍSTICAS CONSTRUTIVAS DO FORNOÁrea de troca de calor da parte radioativa920,5m²Área de troca de calor da parte radioativa superdimensionada1012,55m²Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm	Altura do chão a								
Elevação do forno3mCARACTERÍSTICAS CONSTRUTIVAS DO FORNOÁrea de troca de calor da parte radioativa920,5m²Área de troca de calor da parte radioativa superdimensionada1012,55m²Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm			50						
CARACTERÍSTICAS CONSTRUTIVAS DO FORNO Área de troca de calor da parte radioativa 920,5 m² Área de troca de calor da parte radioativa superdimensionada Diâmetro dos tubos 5 polegadas Comprimento dos tubos 19200 mm Espessura dos tubos 6,55 mm		o	3 m						
Área de troca de calor da parte radioativa920,5m²Área de troca de calor da parte radioativa superdimensionada1012,55m²Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm	3		CONST		FORNO				
Área de troca de calor da parte radioativa superdimensionada1012,55m²Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm									
superdimensionada1012,55III2Diâmetro dos tubos5polegadasComprimento dos tubos19200mmEspessura dos tubos6,55mm		• • • • • • • • • • • • • • • • • • • •							
Comprimento dos tubos19200mmEspessura dos tubos6,55mm	superdi	mensionada	iensionada						
Espessura dos tubos 6,55 mm									
				•					
Espaçamento entre tubos 254 mm	<u>Espaçamer</u>	nto entre tubos		254	1	mm			

Passos de t	ubos		6				
Orientação do			Vertical				
Material do		Carbon Steel					
Dobra em U d		F	ora da ca				
Altura do Fo			0000	1	mm		
Diâmetro do			9100		mm		
CARACTERÍSTIC				ONVEC			
		DA DA CAIXA		-	TRADA DO		
CAIXA	2/ENTRADA I				TRADA DA		
	RADIA	AÇÃO)		CAIX	(A 1)		
Área de troca de calor	63,9	m²	210	97,3	m²		
da parte convectiva	03,9	111-	218	51,3	111-		
Área de troca de calor							
da parte convectiva	70,29	m²	2/1	7,03	m²		
após	10,29	111-	241	7,03	111-		
superdimensionamento							
Orientação dos tubos	Horiz	ontal	Horizontal				
Comprimento dos tubos	8000	mm	80	000	mm		
Diâmetro dos tubos	5	polegadas		5	polegadas		
Espessura dos tubos	6,55	mm		55	Mm		
Altura da aleta	-	mm		5,4	mm		
Espessura da aleta	-	mm	1,	27	mm		
Frequência de aletas	-	mm	19	97	mm		
Material das aletas	Carbo	n steel		Carbor	n steel		
Disposição dos tubos	30 equ	ilateral		30 equi	ilateral		
Espaçamento dos tubos	304	mm		04	mm		
Matriz dos tubos		tubos por 3			tubos por 3		
	linhas de tub				os em série		
	CARACTERÍSTICAS CONSTRU				4S		
Diâmetro de cha		1965,3			mm		
Altura da cham	37000			mm			
Localização do ab		23000	1				

		E	SPE	CIFICAC	ÕES TROCA	DORES DE C	ALOR	
Número do								
equ		mento			Trocador o		rrente afluen	te a F-1 e a
		escrição				saída do re		
1		de trocador					o-tubo	
		po TEMA isposição				BE Horiz		
		irculação					ada	
Nú						-	,	
mero de		Em sér	ie			1		_
carcaças estimadas		ou paralelo						
Johnnadae		CARACTER	ÍSTIC	CAS DOS	S FLUÍDOS E	CONDIÇÕES	DE OPERAÇ	ÃO
_				CASCO/T			TUBO/TI	
Lad	0			FLUÍDO F R DE PL			R/FLUÍDO QU CADOR DE PI	
		En	ADO	Sa		En	Saí	
		trada		ída		trada	da	
Vazâ	ãο		3869	951	Kg		386951	Kg
total Fraç	ão				/h	0,4	0,4	/h
de vapor/gá		1		1		1	2	
Vazâ		38		38		15	164	
de vapor/gá Vazâ		6951		6951	Kg /h	8601 22	344	_ Kg /h
de líquido		0		0	/ 11	8351	608	/"
Tem		38		33	°C	11	159	°C
ratura	-=	0,19		8,52		1,1	,92	
Pres. o	sa	42, 93		39, 24	Kg /cm² g	50, 33	24, 82	/cm² g
Perc	da	00			Kg	- 55	<u> </u>	Kg
de pressão			0,	7	/cm ²		0,7	/cm ²
permitida Coef								
ente					Kc			Kc
individual d			146	1,4	al / h m²		22955,7	al / h m²
transmissão de calor	0				₀C			∘C
					h			h
Fato de deposiçã			0,00	002	m² °C/		0,0002	m² °C/
Coef					kcal			kcal
ente global					4404			Kc
transmissão					1494	•		al / h m² ⁰C
de calor					200.0			°C
ΔT _n			222,64					
Cald			40.0					
trocado		19,6						
Droo	CONDIÇÕES DE PROJETO MECÂNICO Pressã Ko							l/ ~-
o de projet		56,08						/cm² g
Tem	ре							
ratura de		420						٥C
projeto	projeto CARACTERÍSTICAS CONSTRUTIVAS DO TROCADOR							
	Á	rea de troca o				59		m²
		Diâmetro dos	tub	os		19,05		mm 102

Comprimento dos tubos	6000	mm	
Espessura dos tubos	2	mm	
Espaçamento entre centro dos tubos	23,81	mm	
Tipo de disposição dos tubos	Triangular		
Diâmetro do casco	919	mm	

		ES	SPECIF	ICAÇÕE	S TROCADO	RES DE CA	LOR			
Nú	do equipame			E-2						
Descrição Tipo de trocador (casco-				Trocador de calor pré separador C-3						
	as, tub	os concêntri				Aero-Ro	esfriad	or		
		isposição				Horiz	zontal			
(ho		al/vertical) iguração dos								
		adores	• 			For	çada	1		
Nú mero de		Número	de							
comparti		entiladores p				11			2	
mentos		compartiment				~~~~~				
	-	CARACTERIS	STICAS	DOS F	LUÍDOS E C	ONDIÇOES I		ERAÇA JBO/TL		
La	ido		FL	-UÍDO F	RÍO	INTERIO)
								DE PL		
		Ent		S		E		Saí		
Va	zão	ada	ı	aída	K	ntrada		la		K
total			71295	01	g/h		39493	35	g/h	• • •
	ıção	1		1		0,	•	0,4		
de vapor/g Va	yas zão	71		712		7807	U	17 15		
de vapor/g		29501	9	501	K	08327	86	33		K
Va de líquid	zão lo	0		0	g/h	6609 8	63	23 302	g/h	
Tem tura	pera	32		99,7	°C	95,87	2	54, 23	С	0
Pre	ssão	1, 033		1,03 3	K g/cm² g	2,233	7	41, 16	g/cm²	K a
	rda				K	,				K
de pressa permitid			0,2		g/cm ²		0,7		g/cm	
Coe	eficie				Kc					K
nte individ			906,	7	al / h m ²		519,2	2	cal / h	
de transmis de calo			ŕ		٥C		ŕ		۰C	
	or de				h					h
deposiçã			0,0001	16	m² °C/ kcal		0,0002	67	m² °C kcal	-
Coe	eficie				I NOW!	I			Roai	
nte global					326,5				cal / h	K m²
transmissão calor	o de				020,0				°C	
	T _{ml}				137,66	<u> </u>				οС
F	T									
	lor				0,116342	992				G
trocado)		CONI	NCÕES	DE PROJET		<u> </u>		Kcal/	n
Pre	ssão		CONL	JIÇOLO			<u>, </u>			K
de projet	to				46,456	5			g/cm²	
Tem tura de pro	ipera ijeto				325,97	•				٥С
					CONSTRUTI		OCADO	R	1	
Áre		roca de calo			r	70,505			m ²	
		de troca de rea de troca				1551,1			m²	
		ea de troca (erdimensiona		7 1		1706,21			m²	
100										

Diâmetro dos tubos	25,4	mm		
Comprimento dos tubos	8750	mm		
Espessura dos tubos	10	BWG		
Espaçamento entre centro dos tubos	51,96	mm		
Tipo de disposição dos tubos (triangulas, triangular rotada, quadrangular, rômbica)	Triangular			
Material dos tubos	Aço (arbono		
Diâmetro da ponta da aleta	57,15	mm		
Espessura da aleta	0,28	mm		
Frenquência de aletas	433	#/m		
Tipo de aleta	G-fi	nned		
Material da aleta	Alumínio 1060			
Diâmetro dos ventiladores	3,65	m		
Velocidade dos ventiladores	3,05	m/s		

	ESPECIFICAÇÕES TROCADORES DE CALOR							
Número do					E-3			
equipamento Descrição					Cooler da vazão afluente a C-4			
7	Tipo de trocador Casco-tubo						<u> </u>	
		ро ТЕМА				BE		
		isposição irculação				Horiz		
Nú		ircuiação				Forç	aua	
mero de		Em séi	rie			3		Paralelo
carcaças		ou paralelo				3		Faraleio
estimadas		CADACTED	ÍCTI	CAS DOS	S FLUÍDOS E	CONDICÕES	DE OBERA	CÃO
		CARACTER		CASCO/T		CONDIÇUES	TUBO/	
Lad	lo	EXTERI		FLUÍDO F		INTERIO	R/FLUÍDO G	
			ADO	R DE PL	ACAS		ADOR DE I	
		En trada		Sa ída		En l trada	Sa da	Í
Vazā	ão	uaua			Kg	uaua		Kg
total			264	410	/h		159518	/h
Fraç de vapor/gá		0		0		1	0,9 9	
Vazá de vapor/gá	ão	0		0	٧a	15 9518	158 347	
Vaza	ão	26		26	Kg /h	0	11	/h /h
de líquido Tem		4410		4410			1 45	
ratura	pe	31		45	°C	55	01	°C
Pres o	sã	1,0 3		1	Kg /cm² g	41, 71	41 47	, Kg /cm² g
Pero de pressão			0,0	03	Kg		0,7	Kg
permitida					/cm²		<u> </u>	/cm²
Coef ente	ICI				Kc			Kc
individual c	de		336	6,9	al / h m²		2277,4	al / h m ²
transmissã	0				٥C			۰C
de calor					h			h
Fato de deposiçã			0,00	004	m² °C/		0,0002	m² °C/
					kcal			kcal
Coef ente global	-							Kc
transmissã					1265,9	9		al / h m² ⁰C
de calor								
<u>Δ</u> Τ _n					11,96			°C
Cald					0,9817	1		М
trocado	J 1			ONDIGÖE	3,57	TO MEGÂNIO	20	Kcal/h
Pres	sã		C	ONDIÇOE	S DE PROJE		,0	Kg
o de projet					45,89	1		/cm² g
Tem	ре							
ratura de projeto					90			°C
ρισμεισ		CAR	ACTE	ERÍSTICA	S CONSTRU	TIVAS DO TR	ROCADOR	
		rea de troca	de c	alor		572,5		m²
		a superdime				629,8		m²
		Diâmetro dos	tub	os		19,05		mm 107

Comprimento dos tubos	6100	mm	
Espessura dos tubos	2,11	mm	
Espaçamento entre centro dos tubos	23,81	mm	
Tipo de disposição dos tubos	Triangular		
Diâmetro do casco	670	mm	

	ESPECIFICAÇÕES TROCADORES DE CALOR							
Núm	Número do equipamento E-4							
		Descrição			Trocador que integra corrente afluente a torre de			
destinação e o produto de fundo da mes								esma
Tipo de trocador Casco-tubo								
tipo TEMA BEU Disposição Horizontal								
		Circulação					çada	
Nú		, , , , , , , , , , , , , , , , , , , ,					,	
mero de		Em séri	e ou			1		Série
carcaças		paralelo				-		333
estimadas		CARACTER	ÍSTIC	AS DOS	S FLUÍDOS E	CONDICÕES	DE OPERAC	ÃO
		OARAGIER		ASCO/T		OONDIÇOEO	TUBO/TU	
Lad	lo				RÍO DO		R/FLUÍDO QU	
			ADOR	DE PL	ACAS		ADOR DE PL	ACAS
		En		Sa da		En	Saí	
Vaza	ão	trada	_		Kg	trada	da	Kg
total			22710)6	/h		224934	/h
Fraç		0		0,0		0	0	
de vapor/gá			0)14		•		
Vazá de vapor/gá		0		31 6	Kg	0	0	Kg
Vaza		22		22	/h	22	224	h
de líquido		7106	6	790	,	4934	934	,
Tem	ре	56,		23	°C	45	323	°C
ratura	~	62	6	,47		1,43	,25	
Pres o	sa	8,0 33		7,6 27	Kg /cm² g	7,8 33	7,3 64	/cm ² g
Pero	da	33		<u> </u>		33		
de pressão)		0,7 Kg O				0,7	Kg /cm²
permitida					70111			70111
Coef ente	ici				Kc			Kc
individual o	de		2042,	.1	al / h m ²		3322,1	al / h m ²
transmissã			,		°C			°C
de calor								
Fato	or		0,000		h m² °C/		0.0002	h m² °C/
de deposiçã	ãο		0,000	12	kcal		0,0002	kcal
Coef					3.50.5.			Kc
ente global					1164,7	7		al / h m ²
transmissã de calor	0							°C
de calor ΔT _n	nl				220,53	3		°C
FT						-		
Cald	or				22,75	i		M
trocado				NDIGGE	•		20	Kcal/h
Pres	çã		CO	NDIÇOE	S DE PROJE		,U	Kg
o de projet					9,177	,		/cm ² g
Tem	ре							
ratura de					490			۰C
projeto		CAD	ACTEC	ρίςτια	S CONSTRU	TIVAS DO TE	OCADOR	
	Δ	rea de troca			ONSTRU	157,74	COCADOR	m²
						· · · · · · · · · · · · · · · · · · ·		polegadas/
		Diâmetro dos	tubos	S		19,05		mm
_								189

Comprimento dos tubos	6100	mm	
Espessura dos tubos	2,11	mm	
Espaçamento entre centro dos tubos	23,81	mm	
Tipo de disposição dos tubos	Triangular		
Diâmetro do casco	620	mm	

		F	SPFC	IFICAC	ÕES TROCAD	ORES	DF CA	I OR	
Núr	nero	do equipam		n rozg			E-	6	
Descrição					Cooler do produto de fundo da torre de destilação				
Tipo de trocador Casco-tubo									
		Tipo TEMA Disposição					BE Horiz		
		Disposição Circulação					Forç		
Nú	`	Sirculação					rorç	aua	
mero de carcaças estimadas		Em séri paralelo	e ou		9			3 Paralelo	o 3 Série
		CARACTER			FLUÍDOS E	COND	IÇÕES I		
Lac	ob		OR/FL	ASCO/TI LUÍDO F R DE PL	RÍO DO	IN		TUBO/TU /FLUÍDO QUI ADOR DE PL	ENTE DO
		En		Saí			Ent	Sa	
	~	trada	(da		r	ada	ída	
Vaz total			22871	57	Kg /h			224934	/h
Fra o de vapor/gás	5	0		0			0	0	
Vaz de vapor/ga	ás	0		0	Kg		0	0	Kg
Vaz de líquido)	22 87157	7	228 157	/h	ç	224 934	22 4934	/h
Tem ratura	-	31		48	°C	,	323	40	°C
Pre ão		8,0 33		7,4 07	Kg /cm² g		7,3 64	7,0 72	Kg /cm² g
Per de pressão permitida	0		0,7	/cm ²				0,7	Kg /cm²
Coe iente individual d transmissã de calor	de		6589,	,3	Kc al / h m² °C			127,6	Kc al / h m² ºC
Fat de deposiçã			0,000)4	h m² °C/ kcal			0,0002	h m² °C/ kcal
Coe iente globa de transmissã	al				124,2				Kc al / h m² °C
de calor					05.00				°C
ΔT F-					85,99 1,03				
Cal									M
trocado					37,49				Kcal/h
-			CO	NDIÇÕE	S DE PROJE	TO MI	ECÂNIC	O	
Pre ão de proje	eto				9,177				Kg /cm² g
Tem ratura de projeto					360				°C
					S CONSTRUT			OCADOR	
	A	rea de troca	de cal	or		40	099,92		m ²

Área superdimensionada	4509,91	m²	
Diâmetro dos tubos	19,05	mm	
Comprimento dos tubos	5400	mm	
Espessura dos tubos	2,11	mm	
Espaçamento entre centro dos tubos	23,81	mm	
Tipo de disposição dos tubos	Triangular		
Diâmetro do casco	1024	mm	

	ESPECIFICAÇÕES TROCADORES DE CALOR								
Número do eq					E-7				
Descrição				Cooler do topo da torre de destilação					
Tipo de tro	3	r			Casco-tub				
tipo TE		-			BEU				
Disposi					Horizonta	al			
Circula					Forçada				
Número de carcaças		Em série ou			•				
estimadas		paralelo		1				-	
CARACTE	RÍST	TICAS DOS I	FLUÍDOS	E CONDIC	ÕES DE OP	ERAC	ÃO		
			SCO/TUI			UBO/)	
Lado		EXTERIO)R/FLUÍI	O FRÍO	INTERIO	R/FLU	JÍDO	QUENTE	
		DO TROCA	ADOR DE	PLACAS	DO TROC				
		Entrada	Saída		Entrada	Saío	da		
Vazão total		1403	57	Kg/h	378	32		Kg/h	
Fração de vapor/gás	5	0	0		0,94	0,4	13		
Vazão de vapor/gás		0	0	V a/h	3555	162	28	V a/b	
Vazão de líquido		14037	14037	Kg/h	227	215	54	Kg/h	
Temperatura		31	48	°C	151,07	96,	78	°C	
Pressão		8,03	8	Kg/cm ² g	7,18	7,0)7	Kg/cm ² g	
Perda de pressão permi		0,7		Kg/cm ²	0,35			Kg/cm ²	
Coeficiente individual	de	3238	3	Kcal / h	810,2			Kcal / h	
transmissão de calor	•	3230	,5	m² °C	010,2			m ² °C	
Fator de deposição		0,000)4	h m ² °C/	0,0002			h m ² °C/ kcal	
Coeficiente global de				kcal s,5552					
transmissão de calor				625,5					
				82,63				m ² °C	
F _T				1,27					
Calor trocado				0,248					
Culor trocudo	C	ONDIÇÕES	DE PRO		ÂNICO			MKcal/h	
Pressão de projeto	Ĭ	31		9,18				Kg/cm ² g	
Temperatura de proje	eto			190				°C	
		ERÍSTICAS	CONSTI	RUTIVAS D	O TROCAD	OR		-	
Área de 1					7,1			m^2	
Área supe					7,81			m^2	
Diâmetro dos tubos					19,05			mm	
Comprimento dos tubos					1800			mm	
Espessura dos tubos					2,11			mm	
Espaçamento er	itre c	entro dos tub	oos		23,81			mm	
Tipo de disp	osiçã	o dos tubos			Tria	ngular			
Diâme	tro do	casco			273,05			mm	

ANEXO 8: FOLHAS DE ESPECIFICAÇÕES DE INSTRUMENTOS DE VAZÃO

ESPECIFICAÇÕES INSTRUMENTOS DE VAZÃO									
Identificação	Localização (núm. da tubulação)	Fase (L, G ou M)	Vazão normal / kg/h						
FI-01	1	M	228154,2323						
FI-02	2	M	228154,2323						
FI-03	3	М	228154,2323						
FI-04	4	G	2033,913963						
FI-05	5	G	2033,913963						
FI-06	6	G	45899,36142						
FI-07	7	М	274053,5937						
FI-08	8	M	274053,5937						
FI-09	9	М	274053,5937						
FI-10	10	M	274053,5937						
FI-11	11	M	274053,5937						
FI-12	12	L	7978,42351						
FI-13	13	L	7978,42351						
FI-14	14	М	282032,0172						
FI-15	15	М	282032,0172						
FI-16	16	L	7821,99582						
FI-17	17	L	227713,1818						
FI-18	18	G	46496,83953						
FI-19	19	L	46496,83953						
FI-20	20	 G	46340,22279						
FI-21	21	G	70447,4848						
FI-22	22	G	35,42645962						
FI-23	23	G	43865,44746						
FI-24	24	G	43865,44746						
FI-25	25	<u> </u>	156,6167477						
FI-26	26	 G	764,2980656						
FI-27	27	<u> </u>	135,9723361						
FI-28	28		226969,5282						
FI-29	29	i i	226969,5282						
FI-30	30	<u>_</u>	224780,2072						
FI-31	31	<u>-</u>	224780,2072						
FI-32	32	<u>-</u> 	224780,2072						
FI-33	33	<u>_</u>	142562,8679						
FI-34	34	M	142562,8679						
FI-35	35	G	2000,610725						
FI-36	36	<u></u>	2000,610725						
FI-37	37	G	1744,467124						
FI-38	38	G	1744,467124						
FI-39	39	<u>_</u>	256,1436016						
FI-40	40	L I	11115,45307						
FI-41	41	<u> </u>	4,756323087						
FI-41 FI-42	41 42	L I	9696554,871						
FI-42 FI-43		L I							
FI-43 FI-44	43	L I	9696554,871						
ri-44	44	L	9698732,597						

ANEXO 9: FOLHAS DE ESPECIFICAÇÕES DE INSTRUMENTOS DE NÍVEL

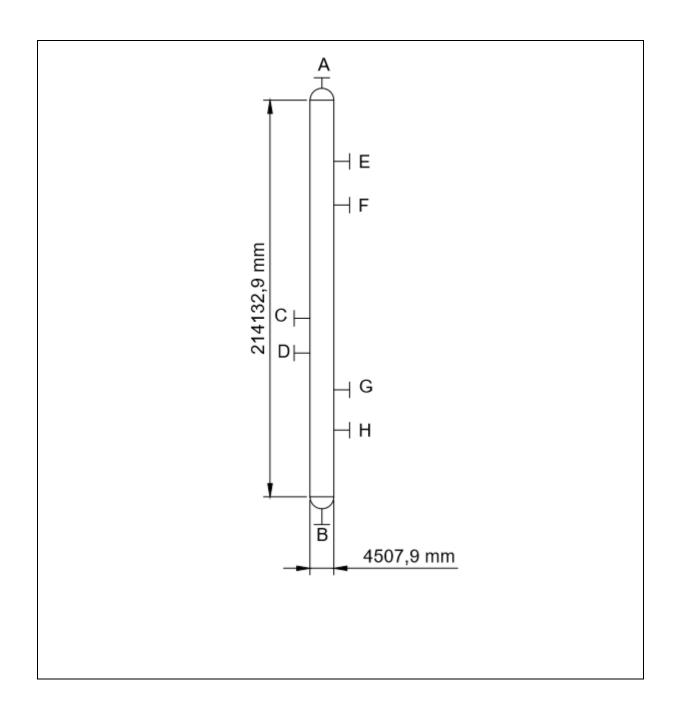
	ESPECIFICAÇÕES INSTRUMENTOS DE NÍVEL									
Identificação	Localização (núm. do vaso)	Tipo de interfase (L-L ou L-V/G)	Nível normal / mm							
LI-01	C-1	L-V	1926,55							
LI-02	C-2	L-V	214130							
LI-03	C-3	L-V	2775							
LI-04	C-4	L-V	8,32							
LI-05	C-5	L-V	3075							
LI-06	C-6	L-V	-							
LI-07	C-7	L-V	7816,2							
LI-08	C-8	L-V	240,2							

ANEXO 10: FOLHA ESPECIFICAÇÕES DE INSTRUMENTOS DE TEMPERATURA

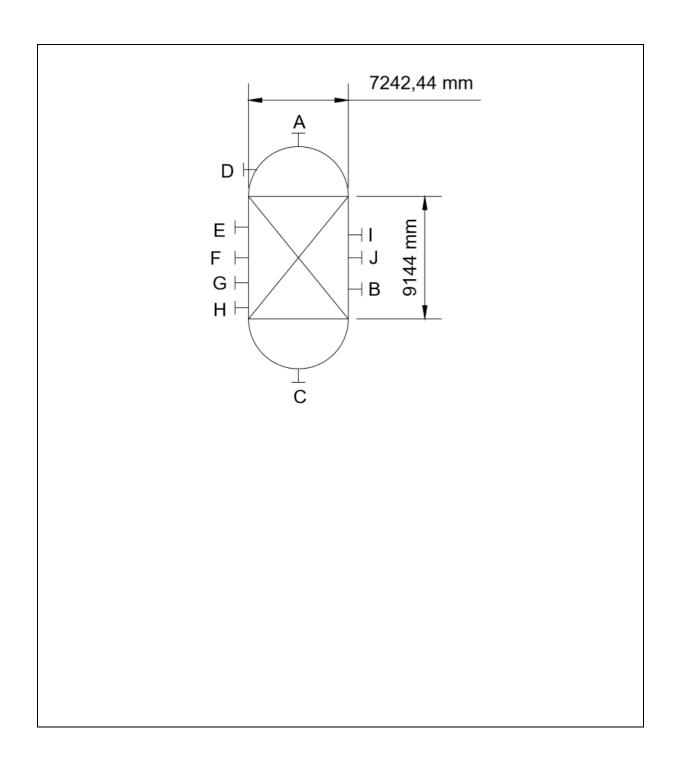
	SPECIFICAÇÕES INSTRUME		
Identificação	Localização (núm. da	Fase	Temperatura
TI 04	tubulação ou vaso)	(L, G ou M)	normal / °C
TI-01	1	M	40
TI-02	2	M	46,95
TI-03	3	<u>M</u>	46,95
TI-04	4	G	45
TI-05	5	G	159
TI-06	6	G	128,4
TI-07	7	<u>M</u>	73,15
TI-08	8	<u>M</u>	200
TI-09	9	<u>M</u>	380
TI-10	10	<u>M</u>	377,5
TI-11	11	<u> </u>	294,9
TI-12	12	<u> </u>	95
TI-13	13	L	95,72
TI-14	14	<u>M</u>	272,7
TI-15	15	<u> </u>	55
TI-16	16	<u> </u>	55
TI-17	17	L	56,59
TI-18	18	G	55
TI-19	19	L	45
TI-20	20	G	45
TI-21	21	G	44,99
TI-22	22	G	44,99
TI-23	23	G	44,98
TI-24	24	G	126
TI-25	25	L	45,74
TI-26 TI-27	26 27	G	56,47
	28	L I	56,47
TI-28 TI-29	29	L I	56,47 150
	30	<u> </u>	
TI-30 TI-31		<u>L</u>	436,7
TI-31	31 32	L L	393 393
TI-32	33	<u> </u>	436,7
TI-34	34	 М	450,7
TI-35	35	G	151,1
TI-36	36	<u>G</u>	101,1
TI-37	37	G	101,1
TI-37	38	G G	101,1
TI-39	39		101,1
TI-40	40	<u> </u>	180,3
TI-40	41	L	2,697
TI-41	41 42	<u> </u>	101,1
TI-42	43	L I	45
TI-43	43	L I	44,98
TI-44	C-2	 М	44,96
TI-45	C-2 C-2		406,7
TI-46	C-2	M	406,7
TI-47	C-2	M	406,7

TI-49	C-6	M	45
TI-50	C-6	M	44,99
TI-51	C-6	M	45
TI-52	C-6	M	44,98
TI-53	C-7	M	150
TI-54	C-7	M	436,7
TI-55	C-7	M	151,1
TI-56	C-7	M	180,3

ANEXO 11:FOLHA DE ESPECIFICAÇÕES DE INSTRUMENTOS DE PRESSÃO


	ESPECIFICAÇÕES INSTRUMENTOS DE PRESSÃO					
Identificação	Localização (núm. da tubulação ou vaso)	Fase (L, G ou M)	Pressão normal / kg/cm² g			
PI-01	1	M	5			
PI-02	4	G	20			
PI-03	16	L	40,5			
PI-04	27	L	7			
PI-05	32	L	6,1			
PI-06	38	L	7			
PI-07	41	L	5,8			
PI-08	42	L	5,8			
PI-09	44	L	39,8			
PI-10	C-1	M	79			
PI-11	C-2	M	47,9			
PI-12	C-3	M	40,5			
PI-13	C-4	M	39,8			
PI-14	C-5	M	7			
PI-15	C-6	M	38,8			
PI-16	C-7	M	39,33			
PI-17	C-8	M	5,8			
PI-18	P-1A	M	74			
PI-19	P-1B	M	74			
PI-20	P-2A	L	53,3			
PI-21	P-2B	L	53,3			
PI-22	P-3A	L	33			
PI-23	P-3B	L	33			

ANEXO 12: FOLHA DE ESPECIFICAÇÕES DE LAÇOS DE CONTROLE


ESPECIFICAÇÕES LAÇOS DE CONTROLE							
Identificação no diagrama mecânico	Localização (núm. da tubulação ou vaso)	Descrição da ação	Elementos vinculados (medidor, controle, acionador e válvula de controle)				
LIC-100	C-1	Controle de nível	LT-100, FCV-01				
FIC-100	3	Controle de vazão	FT-100, FCV-02				
TIC-100	E-1	Controle de temperatura	TIT-100, FCV-03				
FIC-101	Entrada de combustível em F-1	Controle de vazão	FT-101, FCV-04				
TIC-101	F-1	Controle de temperatura	TIT-101, FIC-101				
LIC-101	C-3	Controle de nível	LT-101, LY-100, FCV-08				
LIC-102	C-3	Controle de nível	LT-101, LY-101, FCV-07				
PIC-100	C-3	Controle de pressão	PT-100, PY-100, FCV-09				
LIC-103	C-4	Controle de nível	LT-102, LY-102, FCV-11				
PIC-101	C-4	Controle de pressão	PT-101, PY-101, FCV-10				
LIC-104	C-5	Controle de nível	LT-103, LY-103, FCV-14				
LIC-105	C-5	Controle de nível	LT-103, LY-104, FCV-13				
PIC-102	C-5	Controle de pressão	PT-102, PY-102, FCV-12				
XIC-100	C-6	Controle de composição	XT-100, FCV-22				
FIC-102	Entrada de combustível em F-2	Controle de vazão	FT-102, FCV-18				
TIC-102	F-2	Controle de temperatura	TIT-102, FIC-102				
FC-100	30	Controle de vazão	FT-101				
LC-100	C-7	Controle de nível	LT, FC-100				
PIC-103	C-7	Controle de pressão	FCV-19				
FC-101	40	Controle de vazão	FT-102, FCV-20				
FC-102	41	Controle de vazão	FT-103, FCV-21				
LC-101	C-8	Controle de nível	LT-106, FC-102				

ANEXO 13: FOLHAS DE ESPECIFICAÇÕES DO REATOR

		ESPECIFICAÇÕE	S REATOR		
Número do e	equipamento		C-2		
Desc	rição		Reator de dessulfuração		
Pressão	no topo		41,9		
Pressão	no fundo		36,7	kg/cm² g	
Pressão d	le projeto		46,1		
Temperatu	ıra no topo		377,6		
Temperatura no fundo			377,6	°C	
Temperatura de projeto					
Nível norma	al de líquido		-		
Nível máximo d	e líquido (80%)		-		
Nível máximo de líquido (20%)			-	mm	
Alt	ura		214132,9		
Diân	netro		4507,8		
Mate	erial		Aço inox 321		
		PROPRIEDADES	DO FLUÍDO		
Densidade da fase leve @ P e T de operação no prato chave		-		kg/m³	
Densidade da fase pesada @ P e T de operação no prato chave		-		kg/m³	
		CONEXÕ	DES		
Sigla	Número	Diâmetro	Serviço		
A			Entrada da alimen	tação	
В			Saída do produt		
С			Instrumento de pro	essão	
D			Válvula de segura		
Е			Instrumento de temp		
F			Instrumento de temp		
G			Instrumento de temperatura		
Н			Instrumento de temperatura		
		ESQUEMA DO R	ECIDIENTE		
		N			

Número do equipamento		C-06		
Descrição		Torre de absorção química		
Pressão no topo		38,8		
Pressão no fundo		39,8	kg/cm² g	
Pressão de projeto		43,8		
Temperatura no topo		45,0		
Temperatura no fundo		47,9	°C	
Temperatura de projeto		80		
Nível normal de líquido		-		
Nível máximo de líquido (80%)		-		
Nível máximo de líquido (20%)		-	mm	
Altura		9144		
Diâmetro		7442,4		
Material		Aço inox 304		
	PROPRIEDADES I	DO FLUÍDO		
Densidade da fase leve @ P e T de operação no prato chave		- kg/m ³		
Densidade da fase pesada @ P e T de operação no prato chave	-		kg/m³	
CL L N/	CONEXÕI			
Sigla Número	Diâmetro	Serviço	1	
A		Entrada de líqui		
В		Entrada de gás		
С		Saída de líquid	0	
D		Saída de gás		
E		Instrumento de temp		
F		Instrumento de temp		
G		Instrumento de temp		
H		Instrumento de temp		
I		Sensor de press. Válvula de segura		
ı		Valuula de cemira	nca	

ANEXO 14: FOLHA DE ESPECIFICAÇÕES DE SERVIÇOS AUXILIARES

		SERVIÇOS A	UXILIAI	RES				
Equipamento	Utilidade			Cons	umo			_
E-3				264,41				
E-6		2287,157						
E-7	Água de resfriamento	14,037					m³/h	
		Tipo de vapor (baixa, média ou alta)	Pre	essão	Temper	atura	Con	sumo
	Vapor			kg/cm² g		°C		t/h
		Tipo de combustível (fuelóleo, fuelgas, gás natural)		Consumo				
F-1		Fuelgas			9,8243	86		
F-2	Combustível	Fuelgas			5,1112	28		
								t/h
				Cons	umo			
P-1				1.429,16				
P-2				32,55				
P-3	Eletricidade			27.132,55				kWh/h
K-1				461,88				,
K-2				3.911,28				
K-3				4,9 Cons	umo			
	Ar de instrumentação			30110				Nm³/h

Г		

ANEXO 15: FOLHAS DE ESPECIFICAÇÕES TUBULAÇÕES

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubula						
De/a			Gasoleo de entrada		MIX-1	
Existem componentes corrosivos? (sim ou não)				Nã	Não	
Se sim, porcentagem em per				-		
Fases presentes [líquido (L), vapou ou mista (M)]						
CARAC	CTERÍSTICAS D	O FL	JÍDO			
Vazão total			228	3300		kg/h
Fração de vapor				-		
Vazão volumétrica de líquido @ P e T de operação			263,1			
Vazão volumétrica de vapor/g	ás @ P e T de					m³/h
operação			_			
Massa molar			271,9			kg/kmol
Densidade do gás/líquido @ P e			-	867,7		kg/m³
Viscosidade do gás/líquido @ P			-	6,557		cР
1	ES DE OPERA	ÇAO/P	ROJETO		1	
Pressão de operação		79	9		k	g/cm² g
Pressão de projeto 86,9				IX.	9/0111 9	
Temperatura de operação 40				٥С		
Temperatura de projeto	70					
	DOS DA TUBU	LAÇA				
Diâmetro da tubul				0		olegadas
Perda de press	ão		0,03	3104	kg	/cm²/km

ESPECIFICAÇÕES TUBULAÇÕES								
Identificação da tubulaçã	ão			02				
De/a		Água	gua de caldeira M		MIX - 100			
Existem componentes corrosivos?	(sim ou não)		não		não			
Se sim, porcentagem em peso	(% p.)			-				
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou			L				
CAR	CARACTERÍSTICAS DO FLUÍDO							
Vazão total			79	984	kg/h			
Fração de vapor				-				
Vazão volumétrica de líquido @ P e T de operação			8,3					
Vazão volumétrica de vapor/gás @	P e T de operaçã	0		m³/h				
Massa molar			18	kg/kmol				
Densidade do gás/líquido @ P e	T de operação		955	-	kg/m ³			
Viscosidade do gás/líquido @ P e	e T de operação		0,2944	-	cP			
CONDIÇ	ÕES DE OPERAÇÃ	ÃO/PRO	JETO					
Pressão de operação		69,3	3		1 / 2			
Pressão de projeto		76,2	3		kg/cm ² g			
Temperatura de operação	95				0.0			
Temperatura de projeto	125			ōC				
Е	OADOS DA TUBUI	LAÇÃO						
Diâmetro da tubul:	ação	5			polegadas			
Perda de pressã	io		00,1016		kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ão 03						
De/a		N	MIX-100		E-103		
Existem componentes corrosivos?	(sim ou não)		sim			n	
Se sim, porcentagem em peso	(% p.)			0,0216			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	u gás (V) ou M					
CARA	ACTERÍSTICAS DO) FLUÍD	0				
Vazão total			491	700		kg/h	
Fração de vapor			0,9964				
Vazão volumétrica de líquido @ P e T de operação			79,53			2 Л.	
Vazão volumétrica de vapor/gás @	P e T de operação	0	74610			m³/h	
Massa molar			9,448			kg/kmol	
Densidade do gás/líquido @ P e	T de operação		6,791	657,4		kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		0,01773	0,1518		cР	
CONDIÇ	ÕES DE OPERAÇÂ	ÃO/PRO	JETO				
Pressão de operação		38,0	5		1.	ra lam? a	
Pressão de projeto		41,8	85		K	g/cm ² g	
Temperatura de operação	295				ōC		
Temperatura de projeto	325				≟C		
Ε	DADOS DA TUBUL	AÇÃO	1	,			
Diâmetro da tubul	ação	25			p	olegadas	
Perda de pressã	io		0,4340			z/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaç		,		04			
De/a			E-103		C3	C3	
Existem componentes corrosivos? (sim ou não)			sim		sim		
Se sim, porcentagem em peso	o (% p.)			0,0216	, ,		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou			M			
CAF	RACTERÍSTICAS DO	FLUÍ	ÍDO				
Vazão total			4	30700		kg/h	
Fração de vapor		0,976			69		
Vazão volumétrica de líquido @ P e T de operação			278,829			m³ /h	
Vazão volumétrica de vapor/gás @ P e T de operação			3	37640		m³/h	
Massa molar			•	9,448	T	kg/kmol	
Densidade do gás/líquido leve/ líqu de operação	ido pesado @ P e T		6,867	833	985	kg/m³	
Viscosidade do gás/líquido leve/ líq T de operação	uido pesado @ P e	0),009732	3,993	0,5374	cР	
CONDI	ÇÕES DE OPERAÇÃ()/PR	ROJETO				
Pressão de operação		37,35	5		1	/am ? ~	
Pressão de projeto	41,085				Kg,	/cm ² g	
Temperatura de operação	55					ºC.	
Temperatura de projeto	85					-u	
	DADOS DA TUBULA	ÇÃO)				
Diâmetro da tubula	ação		32			polegadas	
Perda de pressã	0		0,0694 kg/cm ² /km			cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo			05		
De/a		C3 Água			ıas ácidas C3	
Existem componentes corrosivos?	(sim ou não)	sim ou não) sim			sim	
Se sim, porcentagem em peso	(% p.)			0,001		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	L				
CARA	ACTERÍSTICAS DO	FLUÍD	0			
Vazão total			61	36	kg/h	
Fração de vapor				-		
Vazão volumétrica de líquido @ P e T de operação		6,229			2.4	
Vazão volumétrica de vapor/gás @	Vazão volumétrica de vapor/gás @ P e T de operação		,	m³/h		
Massa molar			18	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		-	985	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		- 0,5374		cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		37,3	5		1/2	
Pressão de projeto		41,08	35		kg/cm ² g	
Temperatura de operação	55			0.0		
Temperatura de projeto	85			ōС		
Ε	ADOS DA TUBULA	AÇÃO				
Diâmetro da tubul:	ação	4		polegadas		
Perda de pressã	0		0,00	kg/cm ² /km		

ESPECIFICAÇÕES TUBULAÇÕES								
Identificação da tubulaçã	ăo	ŭo 06						
De/a		C3			E-101			
Existem componentes corrosivos?	(sim ou não)		sim	sim				
Se sim, porcentagem em peso	(% p.)			0,0405				
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V						
CARA	CARACTERÍSTICAS DO FLUÍDO							
Vazão total			258	500	kg/h			
Fração de vapor								
Vazão volumétrica de líquido @ P e T de operação				2.0				
Vazão volumétrica de vapor/gás @	P e T de operação)	376	m³/h				
Massa molar			5,0	kg/kmol				
Densidade do gás/líquido @ P e	T de operação		6,867	-	kg/m³			
Viscosidade do gás/líquido @ P e	e T de operação		0,009732	-	cP			
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO					
Pressão de operação		37,3	35		1/2 -			
Pressão de projeto		41,0	85		kg/cm ² g			
Temperatura de operação	55				°C			
Temperatura de projeto	85			<u>.</u>				
Ε	ADOS DA TUBUL	AÇÃO						
Diâmetro da tubul:	ação	24		polegadas				
Perda de pressã	0		0,04531		kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	07				
De/a		C3 /			VLV-100	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,0007		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou	L				
CARA	ACTERÍSTICAS DO	FLUÍD	0			
Vazão total			227	100	kg/h	
Fração de vapor				-		
Vazão volumétrica de líquido @ P e T de operação			27	2.0		
Vazão volumétrica de vapor/gás @ P e T de operação		,		m ³ /h		
Massa molar			26	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		-	833	kg/m ³	
Viscosidade do gás/líquido @ P e	e T de operação		- 3,993		cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		37,3	5		1/2 -	
Pressão de projeto		41,08	35		kg/cm ² g	
Temperatura de operação	55				∘C	
Temperatura de projeto	85			<u>°</u> C		
D	ADOS DA TUBUL	AÇÃO				
Diâmetro da tubula	ação	10		polegadas		
Perda de pressã	0		0,02913		kg/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ão 08						
De/a		1	VLV-100		C5		
Existem componentes corrosivos?	orrosivos? (sim ou não)				sim		
Se sim, porcentagem em peso	(% p.)			0,0007			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	gás (V) ou M					
CARACTERÍSTICAS DO FLUÍDO							
Vazão total			227	100	kg/h		
Fração de vapor							
Vazão volumétrica de líquido @ P e T de operação			27	2.4			
Vazão volumétrica de vapor/gás @	Vazão volumétrica de vapor/gás @ P e T de operação		69,	m³/h			
Massa molar			26	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		3,159	831,1	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01165	3,962	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	OJETO				
Pressão de operação		7	,		1/2		
Pressão de projeto		8,	8		kg/cm ² g		
Temperatura de operação	ão 56,75						
Temperatura de projeto	86,75			ōС			
Ε	ADOS DA TUBULA	AÇÃO					
Diâmetro da tubula	ação	11,5			polegadas		
Perda de pressã	0		0,05	kg/cm ² /km			

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	io 09				
De/a		C5 Águ			guas ácidas	
Existem componentes corrosivos?	(sim ou não)	sim ou não) sim			sim	
Se sim, porcentagem em peso	(% p.)			0,0011		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou	L				
CARA	ACTERÍSTICAS DO	FLUÍD	0			
Vazão total			15	557	kg/h	
Fração de vapor	o de vapor -					
Vazão volumétrica de líquido @ P e T de operação		1,584			2.0	
Vazão volumétrica de vapor/gás @ P e T de operação				m³/h		
Massa molar			18	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		-	982,7	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		-	0,5234	cP	
CONDIÇ	ÕES DE OPERAÇÃO)/PRO	JETO			
Pressão de operação		7			1/2 -	
Pressão de projeto		8,8			kg/cm ² g	
Temperatura de operação	56,55				°C	
Temperatura de projeto	86,55			<u>°</u> C		
D	ADOS DA TUBULA	ÇÃO				
Diâmetro da tubula	ação	4		polegadas		
Perda de pressã	0	0,0001775		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES								
Identificação da tubulaçã	ăo			10				
De/a		E-101			V-101			
Existem componentes corrosivos?	(sim ou não)		sim		sim			
Se sim, porcentagem em peso	(% p.)			0,0405				
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	ou M						
CARA	CARACTERÍSTICAS DO FLUÍDO							
Vazão total			258	500	kg/h			
Fração de vapor								
Vazão volumétrica de líquido @ P e T de operação			1,579		2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	37120		m ³ /h			
Massa molar			5,084		kg/kmol			
Densidade do gás/líquido @ P e	T de operação		6,921	992,5	kg/m³			
Viscosidade do gás/líquido @ P e	e T de operação		0,0095	0,6331	cP			
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO					
Pressão de operação		36,6	5		1/2 -			
Pressão de projeto		40,31	15		kg/cm ² g			
Temperatura de operação	45			0.0				
Temperatura de projeto	75			ōC				
Ε	ADOS DA TUBUL	AÇÃO						
Diâmetro da tubul:	ação	28		polegadas				
Perda de pressã	0		0,0222 kg/c1					

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ão	11				
De/a		V-101 V			VLV-101	
Existem componentes corrosivos?	(sim ou não)	sim ou não) sim			sim	
Se sim, porcentagem em peso	(% p.)			0,0014		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	L				
CARA	ACTERÍSTICAS DO) FLUÍD	0			
Vazão total			15	67	kg/h	
Fração de vapor				-		
Vazão volumétrica de líquido @ P e T de operação			1,5	2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)		m³/h		
Massa molar			18,01		kg/kmol	
Densidade do gás/líquido @ P e	T de operação		-	992,5	kg/m ³	
Viscosidade do gás/líquido @ P e	e T de operação		- 0,6331		cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		36,6	5		1 / 2	
Pressão de projeto		40,31	15		kg/cm ² g	
Temperatura de operação	45			0.0		
Temperatura de projeto	75			ōC		
Ē	ADOS DA TUBUL	AÇÃO				
Diâmetro da tubul:	ação	4		polegadas		
Perda de pressã	io		0,000)1864	kg/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo			12		
De/a		VLV-101			C5	
Existem componentes corrosivos?	(sim ou não)	sim ou não) sim			sim	
Se sim, porcentagem em peso	(% p.)			0,0014		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou	(V) ou L				
CARA	ACTERÍSTICAS DO	FLUÍD	0			
Vazão total			15	67	kg/h	
Fração de vapor	or -					
Vazão volumétrica de líquido @ P e T de operação			1,5	2.0		
Vazão volumétrica de vapor/gás @ P e T de operação				m ³ /h		
Massa molar			18	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		-	991	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		-	0,6256	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		7			1/2 -	
Pressão de projeto		8,8	3		kg/cm ² g	
Temperatura de operação	45,67			°C		
Temperatura de projeto	75,67			<u>°</u> C		
D	ADOS DA TUBULA	AÇÃO				
Diâmetro da tubula	ação	4			polegadas	
Perda de pressã	0		0,0001864		kg/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ňo 13						
De/a		C5 Gase					
Existem componentes corrosivos?	(sim ou não)		sim	sim			
Se sim, porcentagem em peso	(% p.)			0,0784			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	u V					
CARACTERÍSTICAS DO FLUÍDO							
Vazão total			22	3,5	kg/h		
Fração de vapor	Fração de vapor			1			
Vazão volumétrica de líquido @ P e T de operação				m³/h			
Vazão volumétrica de vapor/gás @	Vazão volumétrica de vapor/gás @ P e T de operação			70,29			
Massa molar			11,	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		3,180	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01165	-	cР		
CONDIÇ	ÕES DE OPERAÇÃ	O/PF	ROJETO				
Pressão de operação			7		l/2 -		
Pressão de projeto		8	3,8		kg/cm ² g		
Temperatura de operação		ōC					
Temperatura de projeto	86,55			<u> </u>			
Ε	ADOS DA TUBULA	AÇÃ0)		_		
Diâmetro da tubul	ação	1,5			polegadas		
Perda de pressã	io		0,07713		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo			14			
De/a		C5			E-104		
Existem componentes corrosivos?	(sim ou não)	sim sim			sim		
Se sim, porcentagem em peso	(% p.)			0,0006			
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou	L					
CARA	ACTERÍSTICAS DO	FLUÍD	00				
Vazão total			226	900	kg/h		
Fração de vapor		-					
Vazão volumétrica de líquido @ P e T de operação			27	2.0			
Vazão volumétrica de vapor/gás @	P e T de operação			m³/h			
Massa molar			270		kg/kmol		
Densidade do gás/líquido @ P e	T de operação		-	831,3	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		-	3,983	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO)JETO				
Pressão de operação		7			1/2		
Pressão de projeto		8,8	3		kg/cm ² g		
Temperatura de operação		56,55					
Temperatura de projeto	86,55			ōС			
D	ADOS DA TUBULA	ĄÇÃO					
Diâmetro da tubula	ação	8			polegadas		
Perda de pressã	0		0,08864		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ão	15					
De/a		V-101 FLOW-			FLOW-1		
Existem componentes corrosivos?	(sim ou não)	s im ou não) sim si			sim		
Se sim, porcentagem em peso	(% p.)			0,0407			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CARA	ACTERÍSTICAS DO) FLUÍD	0				
Vazão total			256	900	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P e T de operação				2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	37120		m ³ /h		
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		6,921	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,0095	-	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO				
Pressão de operação		36,6	55		1/2 -		
Pressão de projeto		40,32	15		kg/cm ² g		
Temperatura de operação	45			0.0			
Temperatura de projeto	75			ōC			
Ε	OADOS DA TUBUL	AÇÃO	,				
Diâmetro da tubul	ação	24		4	polegadas		
Perda de pressã	io	0,04439 kg/		kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	16					
De/a		FLOW-1 TEE -			EE - 100		
Existem componentes corrosivos?	(sim ou não)	ou não) sim sim					
Se sim, porcentagem em peso	(% p.)			0,0326			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CARA	ACTERÍSTICAS DO) FLUÍD	0				
Vazão total			254	400	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P e T de operação				2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	35100		m ³ /h		
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		7,248	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,009504	-	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO				
Pressão de operação		38,8	3		1/2 -		
Pressão de projeto		42,6	8		kg/cm ² g		
Temperatura de operação	45				0.0		
Temperatura de projeto	75			ōC			
Ε	ADOS DA TUBUL	AÇÃO	,				
Diâmetro da tubula	ação	24			polegadas		
Perda de pressã	0	0,04150		kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	17					
De/a		TEE - 100 PURGA			PURGA		
Existem componentes corrosivos?	(sim ou não)		sim		sim		
Se sim, porcentagem em peso	(% p.)			0,0326			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CARA	ACTERÍSTICAS DO) FLUÍD	0				
Vazão total			20	3,5	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P	Vazão volumétrica de líquido @ P e T de operação			-			
Vazão volumétrica de vapor/gás @	P e T de operação	0	28	m³/h			
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		7,248	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,009504	-	cP		
CONDIÇ	ÕES DE OPERAÇÂ	ÃO/PRO	JETO				
Pressão de operação		38,8	3		1/2 -		
Pressão de projeto		42,6	8		kg/cm ² g		
Temperatura de operação	45				°C		
Temperatura de projeto	75			<u>°</u> C			
Ε	ADOS DA TUBUL	AÇÃO	,				
Diâmetro da tubul:	ação	1,5		polegadas			
Perda de pressã	io	0,02707		kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES								
Identificação da tubulaçã	ão			18				
De/a		Т	EE-100		RCY-1			
Existem componentes corrosivos?	(sim ou não)	im ou não) sim s			sim			
Se sim, porcentagem em peso	(% p.)			0,0326				
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V						
CARA	ACTERÍSTICAS DO) FLUÍD	0					
Vazão total			254	200	kg/h			
Fração de vapor				1				
Vazão volumétrica de líquido @ P	e T de operação			2.0				
Vazão volumétrica de vapor/gás @	P e T de operação)	35070		m ³ /h	m³/n		
Massa molar			5,0	kg/kmo	ıl			
Densidade do gás/líquido @ P e	T de operação		7,248	-	kg/m³			
Viscosidade do gás/líquido @ P e	e T de operação	(0,009504	-	cР			
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO					
Pressão de operação		38,8	3		1/2 -			
Pressão de projeto		42,6	8		kg/cm ² g			
Temperatura de operação	45				0.0			
Temperatura de projeto	75			ōС				
Ē	ADOS DA TUBUL	AÇÃO						
Diâmetro da tubula	ação	24			polegadas			
Perda de pressã	io		0,04144		kg/cm²/km	n		

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ão	19					
De/a		RCY-1 K-			K-100		
Existem componentes corrosivos?	(sim ou não)	si m ou não) sim si					
Se sim, porcentagem em peso	(% p.)			0,0326			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CAR	ACTERÍSTICAS DO) FLUÍD	0				
Vazão total			253	400	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P e T de operação				2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	35040		m ³ /h		
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		7,230	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,009499	-	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO				
Pressão de operação		38,8	3		1/2 -		
Pressão de projeto		42,6	8		kg/cm ² g		
Temperatura de operação	44,99				0.0		
Temperatura de projeto	75			ōС			
Ε	OADOS DA TUBUL	AÇÃO	,				
Diâmetro da tubula	ação	28			polegadas		
Perda de pressã	io	0,04126		kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	20					
De/a		K-100 E-103			E-102		
Existem componentes corrosivos?	(sim ou não)		sim		sim		
Se sim, porcentagem em peso	(% p.)			0,0326			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CARA	ACTERÍSTICAS DO) FLU	ÍDO				
Vazão total			253	400	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P e T de operação				2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	22560		m³/h		
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		11,23	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01175	-	cP		
CONDIÇ	ÕES DE OPERAÇÃ	(O/P	ROJETO				
Pressão de operação			79		1/2 -		
Pressão de projeto		8	86,9		kg/cm ² g		
Temperatura de operação			°C				
Temperatura de projeto	163,1				<u>°</u> C		
Ε	ADOS DA TUBUL	AÇÃ()				
Diâmetro da tubul:	ação	20		polegadas			
Perda de pressã	0		0,06811		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	21					
De/a		E-102 MIX-			MIX-4		
Existem componentes corrosivos?	(sim ou não)		sim		sim		
Se sim, porcentagem em peso	(% p.)			0,0326			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CARA	ACTERÍSTICAS DO) FLU	ÍDO .				
Vazão total			253	400	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P e T de operação				2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	22560		m³/h		
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		11,23	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01175	-	cP		
CONDIÇ	ÕES DE OPERAÇÃ	(O/P	ROJETO				
Pressão de operação			79		1/2 -		
Pressão de projeto		8	86,9		kg/cm ² g		
Temperatura de operação	133,1				°C		
Temperatura de projeto	163,1				<u>.</u> C		
Ε	ADOS DA TUBUL	AÇÃ()				
Diâmetro da tubul	ação	20		polegadas			
Perda de pressã	io		0,06811		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES								
Identificação da tubulaçã	io 22							
De/a		H2	APORTE		MIX 4			
Existem componentes corrosivos?	(sim ou não)		não		não			
Se sim, porcentagem em peso	(% p.)			-				
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V						
CARA	ACTERÍSTICAS DO) FLUÍD	0					
Vazão total			20	35	kg/h			
Fração de vapor				1				
Vazão volumétrica de líquido @ P	e T de operação			2 /I-				
Vazão volumétrica de vapor/gás @	P e T de operação	0	259,5		m ³ /h			
Massa molar			4,3	kg/kmol				
Densidade do gás/líquido @ P e	T de operação		7.842	-	kg/m³			
Viscosidade do gás/líquido @ P e	e T de operação		0,009387	-	cP			
CONDIÇ	ÕES DE OPERAÇÂ	ÃO/PRO	JETO					
Pressão de operação		49,	3		lra/am² a			
Pressão de projeto		54,2	.3		kg/cm ² g			
Temperatura de operação	45				°C			
Temperatura de projeto	75			<u>*</u> U				
Ε	DADOS DA TUBUL	AÇÃO	1		T			
Diâmetro da tubul	ação	3			polegadas			
Perda de pressã	io	0,08133 kg/			kg/cm ² /km			

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	23					
De/a			MIX-1				
Existem componentes corrosivos?	(sim ou não)	im ou não) sim sim					
Se sim, porcentagem em peso	(% p.)			0,0323			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V					
CARA	ACTERÍSTICAS DO	FLU	IÍDO .				
Vazão total			255	400	kg/h		
Fração de vapor				1			
Vazão volumétrica de líquido @ P e T de operação				2.0			
Vazão volumétrica de vapor/gás @	P e T de operação)	35790		m³/h		
Massa molar			5,0	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		7,135	-	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01168	-	cP		
CONDIÇ	ÕES DE OPERAÇÃ	0/P	ROJETO				
Pressão de operação		4	9,30		1/2 -		
Pressão de projeto		5	4,23		kg/cm ² g		
Temperatura de operação		0.0					
Temperatura de projeto	163,9 °€C				≚C		
Ε	ADOS DA TUBUL	AÇÃ()				
Diâmetro da tubul	ação	24		polegadas			
Perda de pressã	io		0,04261		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	24					
De/a		MIX-1 E-			E-1		
Existem componentes corrosivos?	(sim ou não)	sim ou não) sim si			sim		
Se sim, porcentagem em peso	(% p.)			0,0171			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	М					
CARA	ACTERÍSTICAS DO) FLUÍD	00				
Vazão total			483	700	kg/h		
Fração de vapor				0,9828			
Vazão volumétrica de líquido @ P e T de operação			281,9		2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)	34030		m³/h		
Massa molar			9,3	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		7,490	811,7	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01117	1,232	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO				
Pressão de operação		49,2	26		1/2 -		
Pressão de projeto		55,	2		kg/cm ² g		
Temperatura de operação	113,5				°C		
Temperatura de projeto	143,5			<u>°</u> C			
Ε	ADOS DA TUBUL	AÇÃO					
Diâmetro da tubula	ação	38			polegadas		
Perda de pressã	0		0,01	kg/cm²/km			

ESPECIFICAÇÕES TUBULAÇÕES							
Identificação da tubulaçã	ăo	25					
De/a		E1 MIX-			1IX-100		
Existem componentes corrosivos?	(sim ou não)	ou não) sim sim					
Se sim, porcentagem em peso	(% p.)			0,022			
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	М					
CAR	ACTERÍSTICAS DO) FLUÍ	DO				
Vazão total			483	700	kg/h		
Fração de vapor				0,9979			
Vazão volumétrica de líquido @ P	Vazão volumétrica de líquido @ P e T de operação			46,02			
Vazão volumétrica de vapor/gás @	P e T de operação)	65070		m³/h		
Massa molar			9,3	kg/kmol			
Densidade do gás/líquido @ P e	T de operação		6,972	652	kg/m³		
Viscosidade do gás/líquido @ P e	e T de operação		0,01832	0,1404	cP		
CONDIÇ	ÕES DE OPERAÇÃ	O/PR	ОЈЕТО				
Pressão de operação		38	,05		1/2		
Pressão de projeto		4	-2		kg/cm ² g		
Temperatura de operação	302,2				0.0		
Temperatura de projeto	332,2				ōС		
Ε	ADOS DA TUBUL	AÇÃO					
Diâmetro da tubul:	ação	24			polegadas		
Perda de pressã	io	0,05402		kg/cm ² /km			

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	26				
De/a			E-1		E-100	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,0171		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou			M		
CARA	ACTERÍSTICAS DO	FLUÍD	0			
Vazão total			483	700	kg/h	
Fração de vapor				0,9841		
Vazão volumétrica de líquido @ P	e T de operação		28	2.41		
Vazão volumétrica de vapor/gás @	P e T de operação)	448	m ³ /h		
Massa molar			9,320		kg/kmol	
Densidade do gás/líquido @ P e	T de operação		6,037	748,9	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		0,01345	0,3901	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		45,4	5		l/2 ~	
Pressão de projeto		50			kg/cm ² g	
Temperatura de operação	200			o€		
Temperatura de projeto	230			<u> </u>		
D	ADOS DA TUBUL	AÇÃO		<u>, </u>		
Diâmetro da tubula	ação	32		polegadas		
Perda de pressã	0	0,062535		kg/cm ² /km		

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	o 27				
De/a			E-100		C-2	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,0171		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	v				
CARA	ACTERÍSTICAS DO) FLUÍI	00			
Vazão total			483	700	kg/h	
Fração de vapor				1		
Vazão volumétrica de líquido @ P	e T de operação			2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)	636	m³/h		
Massa molar			9,3	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		7,605	-	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		0,02083	-	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	DJETO			
Pressão de operação		44,	75		1/2 -	
Pressão de projeto		49,2	25		kg/cm ² g	
Temperatura de operação	380			0.6		
Temperatura de projeto	410			ōC		
Ε	DADOS DA TUBULAÇÃO					
Diâmetro da tubul:	ação	80		polegadas		
Perda de pressã	io		0,1163		kg/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	28				
De/a			C-2		MIX-2	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,022		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou			V		
CARA	ACTERÍSTICAS DO) FLU	ÍDO .			
Vazão total			483	700	kg/h	
Fração de vapor				1		
Vazão volumétrica de líquido @ P	e T de operação			2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)	72640		m ³ /h	
Massa molar			9,3	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		6,659	-	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		0,02092	-	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PF	ROJETO			
Pressão de operação		38	3,75		1/2 -	
Pressão de projeto		4	2,6		kg/cm ² g	
Temperatura de operação	379,9			0.6		
Temperatura de projeto	409,9			ōC		
D	ADOS DA TUBUL	AÇÃ O)			
Diâmetro da tubula	ação	30		polegadas		
Perda de pressã	0	0,08810		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	29				
De/a			MIX-2		E-1	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,022		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou	V				
CAR	ACTERÍSTICAS DO) FLUÍ	DO			
Vazão total			483	700	kg/h	
Fração de vapor				1		
Vazão volumétrica de líquido @ P	e T de operação			2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)	67440		m³/h	
Massa molar			9,3	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		7,172	-	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		0,02093	-	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PR	ОЈЕТО			
Pressão de operação		41,	86		1/2 -	
Pressão de projeto		46,0	046		kg/cm ² g	
Temperatura de operação	379,9			0.6		
Temperatura de projeto	409,9 °C			<u>.</u>		
DADOS DA TUBULAÇÃO						
Diâmetro da tubul	ação	30		polegadas		
Perda de pressã	io	0,08163		kg/cm²/km		

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulação	30					
De/a		E-10	4	X-100		
Existem componentes corrosivos? (sim ou não)		sim	1	sim		
Se sim, porcentagem em peso (% p.)			0,0006			
Fases presentes [líquido (L), vapor ou gás (V) ou mista (M)]			M			
CARACTERÍSTICAS DO FLUÍDO	<u> </u>					
Vazão total		227	000	kg/h		
Fração de vapor			0,0021			
Vazão volumétrica de líquido @ P e T de operação		297	7,3	m³/h		
Vazão volumétrica de vapor/gás @ P e T de operação		8,746		1119/11		
Massa molar				kg/kmol		
Densidade do gás/líquido @ P e T de operação	3,	909	763,3	kg/m³		
Viscosidade do gás/líquido @ P e T de operação	0,0	1542	0,7113	cР		
CONDIÇÕES DE OPERAÇÃO/PRO	ЕТО					
Pressão de operação		6,3		lra/am² a		
Pressão de projeto		8,1		kg/cm ² g		
Temperatura de operação 150)	°C			
Temperatura de projeto 1)	<u>-</u> U		
DADOS DA TUBULAÇÃO		1				
Diâmetro da tubulação			13	polegadas		
Perda de pressão		0,	013155	kg/cm ² /km		

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ão	31				
De/a			X-100		T-100	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,0006		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou			L		
CAR	ACTERÍSTICAS DO) FLUÍD	0			
Vazão total			226	900	kg/h	
Fração de vapor				-		
Vazão volumétrica de líquido @ P	e T de operação		30	2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)		m ³ /h		
Massa molar			27	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		-	748,8	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		- 0,7108		cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		6,3	1		1 / 2	
Pressão de projeto		8,1			kg/cm ² g	
Temperatura de operação	zão 150			0.0		
Temperatura de projeto	180			ōC		
E	ADOS DA TUBUL	AÇÃO				
Diâmetro da tubul	ação	13		polegadas		
Perda de pressã	io		0,01105		kg/cm²/km	

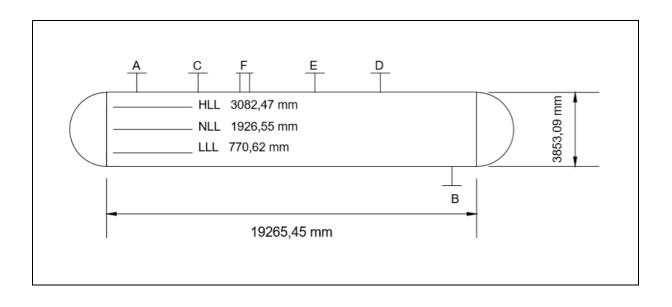
ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	32				
De/a			X-100	Sa	aída água	
Existem componentes corrosivos?	(sim ou não)		não		não	
Se sim, porcentagem em peso	(% p.)			-		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou			L		
CARA	ACTERÍSTICAS DO) FLUÍD	0			
Vazão total			24	,25	kg/h	
Fração de vapor				-		
Vazão volumétrica de líquido @ P	Vazão volumétrica de líquido @ P e T de operação		0,02	2.0		
Vazão volumétrica de vapor/gás @	P e T de operação	O	-		m ³ /h	
Massa molar			18,02		kg/kmol	
Densidade do gás/líquido @ P e	T de operação		-	903,9	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		-	0,1811	cP	
CONDIÇ	ÕES DE OPERAÇÂ	ÃO/PRO	JETO			
Pressão de operação		6,3			1/2 -	
Pressão de projeto		8,1			kg/cm ² g	
Temperatura de operação	ão 150			0.0		
Temperatura de projeto	180			ōС		
D	ADOS DA TUBUL	AÇÃO				
Diâmetro da tubula	ação	4		polegadas		
Perda de pressã	0		0,0000002051 kg/cm		kg/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ão	33				
De/a			T-100	Saí	ída GASES	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,1707		
Fases presentes [líquido (L), vapor mista (M)]	ou gás (V) ou			V		
CARA	ACTERÍSTICAS DO) FLUÍD	0			
Vazão total			86	0,4	kg/h	
Fração de vapor				1		
Vazão volumétrica de líquido @ P	e T de operação			3 /1-		
Vazão volumétrica de vapor/gás @	P e T de operação)	94	m ³ /h		
Massa molar			30	kg/kmol		
Densidade do gás/líquido @ P e	T de operação		9,140	-	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		0,01019	-	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		5,8	3		lva /am² a	
Pressão de projeto		7,6	,)		kg/cm ² g	
Temperatura de operação	11,79			°C		
Temperatura de projeto	41,79			<u>-</u> (,		
Γ	DADOS DA TUBULAÇÃO					
Diâmetro da tubul	ação	1,5		polegadas		
Perda de pressã	io	0,4101		kg/cm²/km		

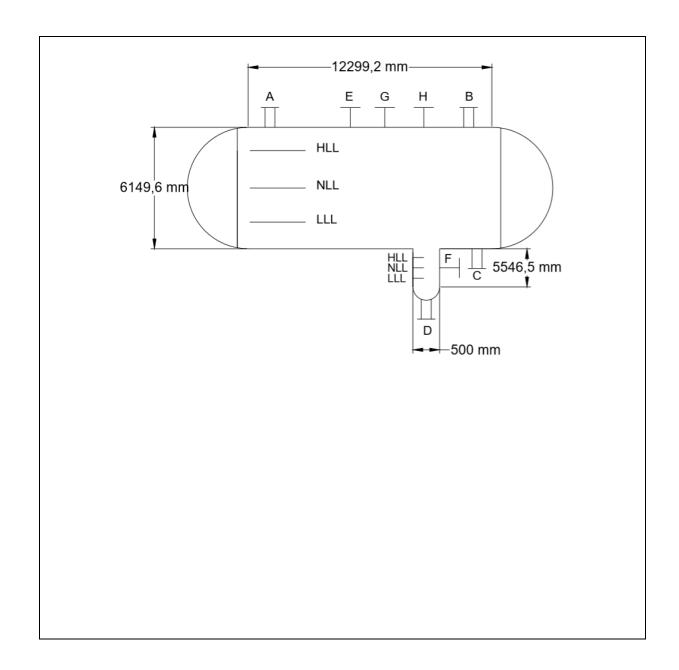
ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	34				
De/a			T-100	Sai	nída Nafta	
Existem componentes corrosivos?	(sim ou não)		sim		sim	
Se sim, porcentagem em peso	(% p.)			0,0263		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou			L		
CARA	ACTERÍSTICAS DO) FLUÍD	0			
Vazão total			3,9	969	kg/h	
Fração de vapor				-		
Vazão volumétrica de líquido @ P	e T de operação		0,00	2.0		
Vazão volumétrica de vapor/gás @	P e T de operação)	-		m ³ /h	
Massa molar			59	,33	kg/kmol	
Densidade do gás/líquido @ P e	T de operação		-	10,17	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		-	0,1947	cP	
CONDIÇ	ÕES DE OPERAÇÃ	O/PRO	JETO			
Pressão de operação		5,8			1/2	
Pressão de projeto		7,6	1		kg/cm ² g	
Temperatura de operação	11,79			°C		
Temperatura de projeto	41,79			<u>≅</u>		
D	ADOS DA TUBUL	AÇÃO				
Diâmetro da tubula	ação	0,25		polegadas		
Perda de pressã	0		0,002702		kg/cm²/km	

ESPECIFICAÇÕES TUBULAÇÕES						
Identificação da tubulaçã	ăo	35				
De/a			T-100	Gas	óleo final	
Existem componentes corrosivos?	(sim ou não)		não		não	
Se sim, porcentagem em peso	(% p.)			-		
Fases presentes [líquido (L), vapor o mista (M)]	ou gás (V) ou			L		
CARA	ACTERÍSTICAS DO) FLU	ÍDO			
Vazão total			226	5100	kg/h	
Fração de vapor	rapor -					
Vazão volumétrica de líquido @ P	e T de operação		4!	2.0		
Vazão volumétrica de vapor/gás @	P e T de operação	0		m³/h		
Massa molar			278,3		kg/kmol	
Densidade do gás/líquido @ P e	T de operação		-	495,8	kg/m³	
Viscosidade do gás/líquido @ P e	e T de operação		- 0,0460		cP	
CONDIÇ	ÕES DE OPERAÇÃ	io/Pl	ROJETO			
Pressão de operação			6,8		l/2	
Pressão de projeto			8,6		kg/cm ² g	
Temperatura de operação	441,8			0.0		
Temperatura de projeto	<u>471,8</u> <u>°</u> C			<u>*</u> U		
D	DADOS DA TUBULAÇÃO					
Diâmetro da tubul	ação	12		polegadas		
Perda de pressã	0		0,01509		kg/cm²/km	

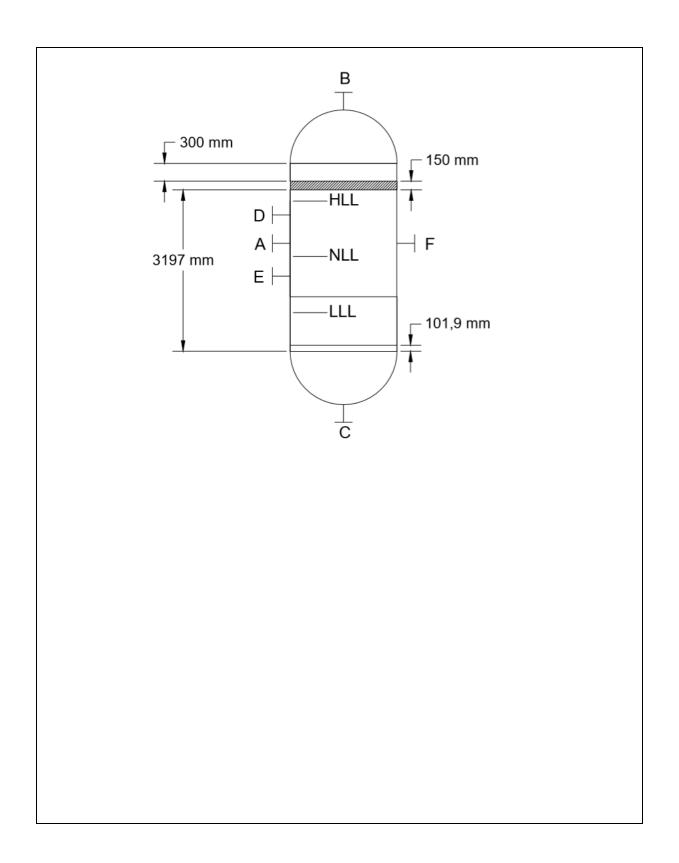
ANEXO16: FOLHA ESPECIFICAÇÕES VÁLVULAS DE CONTROLE

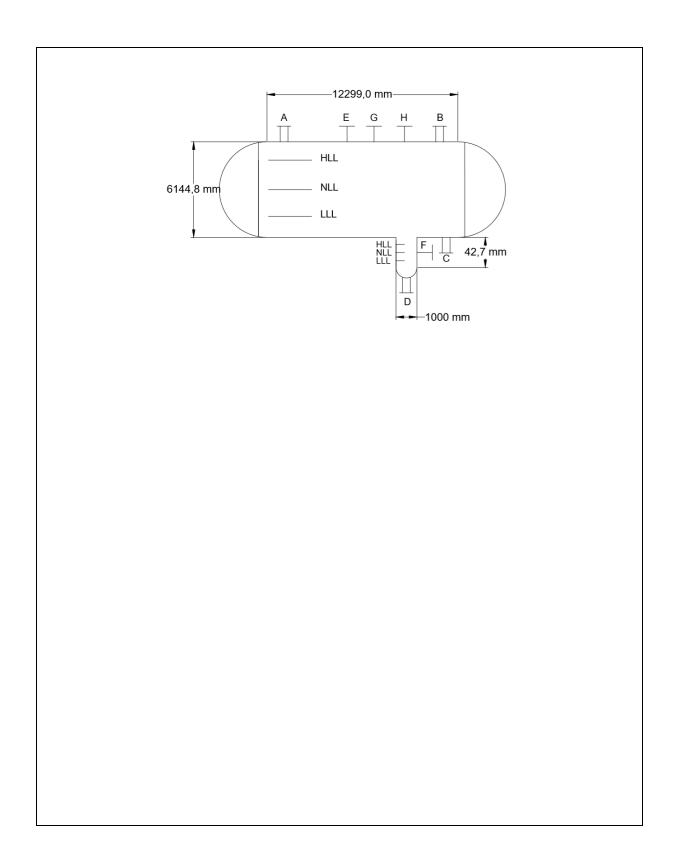

ESPECIFICAÇÕES VÁLVULAS DE CONTROLE								
Identificação no diagrama mecânico	Localização (núm. da tubulação)	Vinculada ao laço de controle	Vazão normal do fluído circulante (kg/h)	Ação à falha no ar (abrir ou fechar completamente)				
FCV-01	02	LIC-100	228154,2323	Fechar				
FCV-02	03	TIC-100	274053,5937	Fechar				
FCV-03	08	TIC-101	274053,5937	Fechar				
FCV-04	Entrada de combustível em F-1	FIC-101	9824	Fechar				
FCV-05	9	TIC-101	274053,5937	Fechar				
FCV-06	14	TIC-100	282032,0172	Abrir				
FCV-07	16	LIC-100	7821,99582	Abrir				
FCV-08	17	LIC-101	227713,1818	Abrir				
FCV-09	18	PIC-100	46496,83953	Abrir				
FCV-10	20	XIC-100	46340,22279	Fechar				
FCV-11	25	LIC-102	156,6167477	Abrir				
FCV-12	26	PIC-102	764,2980656	Abrir				
FCV-13	27	LIC-103	135,9723361	Abrir				
FCV-14	28	LIC-104	226969,5282	Fechar				
FCV-15	29	LC-100	226969,5282	Fechar				
FCV-16	31	LC-100	224780,2072	Abrir				
FCV-17	33	LC-100	142562,8679	Fechar				
FCV-18	Entrada de combustível em F-2	FC-102	5112	Fechar				
FCV-19	36	PIC-103	2000,610725	Abrir				
FCV-20	40	FC-101	11115,45307	Fechar				
FCV-21	41	FC-102	4,756323087	Abrir				
FCV-22	43	XIC-100	9696554,871	Fechar				

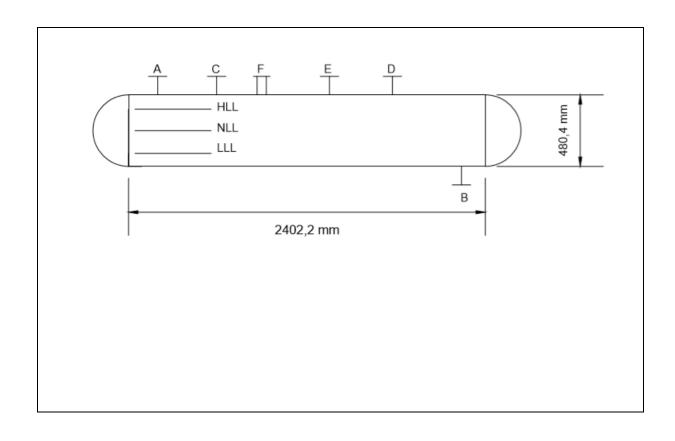
ANEXO 17: FOLHA DE ESPECIFICAÇÕES DE VÁLVULAS DE SEGURANÇA


	ESPECIFICAÇÕES VÁLVULAS DE SEGURANÇA						
Identificação no diagrama mecânico	Localização (núm. da tubulação ou vaso)	Caso de descarga	Vazão de descarga / kg/h	Pressão de acionamento / kg/cm²g	Função		
PSV-01	C-1	Bloqueio da válvula de controle	228154,2323	7	Evitar sobrepressão na entrada da planta		
PSV-02	C-2	Sobrepressão do reator	274053,5937	45	Evitar superaquecimento e explosão do reator		
PSV-03	C-3	Bloqueio da válvula de controle	46496,83953	45	Evitar sobrepressão no separador		
PSV-04	C-4	Bloqueio da válvula de controle	156,6167477	10	Evitar sobrepressão no separador		
PSV-05	C-5	Bloqueio da válvula de controle	226969,5282	10	Evitar sobrepressão no separador		
PSV-06	C-6	Bloqueio da válvula de controle	9696554,871	45	Evitar sobrepressão e superaquecimento na torre		
PSV-07	C-7	Falha no forno F-2	142562,8679	10	Evitar superaquecimento e explosão do forno		
PSV-08	C-8	Bloqueio da válvula de controle	256,1436016	10	Evitar sobrepressão no separador		

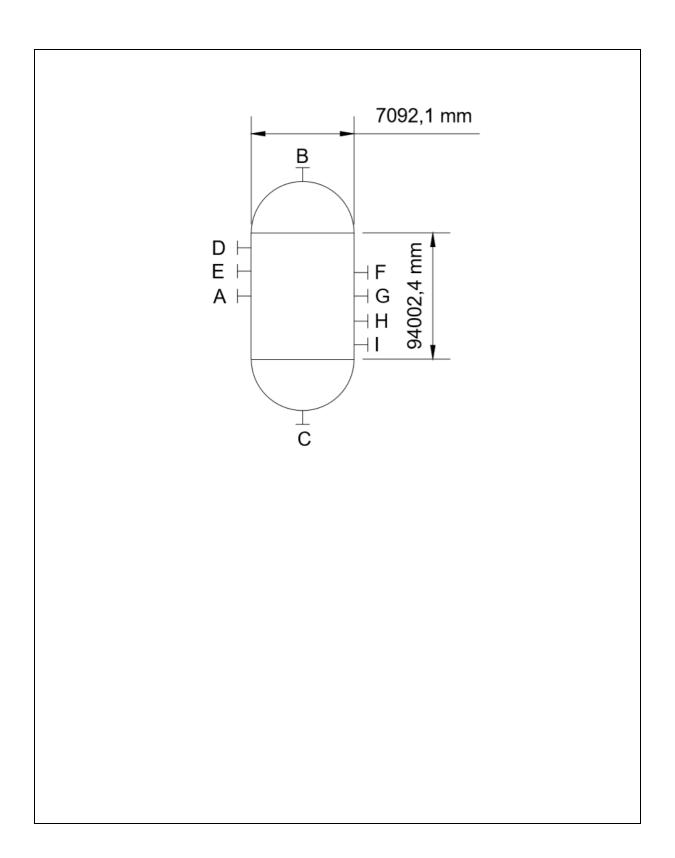
ANEXO 18: FOLHA DE ESPECIFICAÇÕES VASO


		ESPECIFICAÇÕ	ES VASO		
Número do	equipamento	C-01			
Des	crição	Pulmão na entrada de gasóleo			
Pressão no topo			79		
Pressão no fundo			kg/cm² g		
Pressão	de projeto				
Temperat	tura no topo	40		°C	
Temperati	ura no fundo				
Temperatu	ra de projeto		80		
Nível norm	al de líquido		1926,55		
Nível máximo	de líquido (80%)		3082,47		
Nível máximo	de líquido (20%)		770,62	mm	
Comp	rimento		19265,45		
Diâ	metro		3853,09		
Ma	terial		Aço carbono		
		PROPRIEDADES I	DO FLUÍDO		
Densidade da fase leve @ P e T de operação no prato chave		-		kg/m³	
Densidade da fase pesada @ P e T de operação no prato chave		-		kg/m³	
		CONEXÕ	ES		
Sigla	Número	Diâmetro	Serviço		
A	-	-	Entrada da aliment	ação	
В	-	-	Saída do produt		
С	-	-	Instrumento de ni		
D	-	-	Instrumento de pre		
E	-	- Válvula de segurança			
F	-	- Bocal de inspeção			
			1 ,		
	<u>'</u>	ESQUEMA DO RE	CIPIENTE		
		C			


		ESPECIFICAÇÕI	ES VAS	0		
Número do e	equipamento	C-03				
Desc	rição	Vaso	essão			
Pressão	no topo	40,5				
Pressão	no fundo		40,5		kg/cm² g	
Pressão o	le projeto		44,6			
Temperatı	ıra no topo		5	55		
Temperatu	ra no fundo		5	55	°C	
Temperatur	a de projeto		8	35		
Nível norma	al de líquido	20740		250.0		
corpo prin	icipal/bota	3074,8		250,0		
Nível máximo d	e líquido (80%)	4010.7		400.0		
corpo prin	icipal/bota	4919,7		400,0		
Nível máximo d	e líquido (20%)	1229,9		100,0	mm	
corpo prin	cipal/bota	1227,7		100,0	111111	
Compr	imento	12299,2		5546,5		
corpo prin	cipal/bota	12277,2		3340,3	_	
Diân	netro	6149,6		500,0		
corpo prin	cipal /bota	0117,0		300,0		
Material				Aço inox 304		
		PROPRIEDADES I	OO FLU	ÍDO	<u> </u>	
	se leve @ P e T de					
	prato chave	12,4		831,4	kg/m³	
	cipal/bota se pesada @ P e T					
	no prato chave	831,4		983,5	kg/m³	
corpo prin	cipal/bota				S/	
		CONEXÕ	ES			
Sigla	Número	Diâmetro		Serviço		
A			Entrada da alimentação			
В			Saída de gás			
С		Saída de líquido leve			leve	
D		Saída de líquido pesado			esado	
E		Válvula de segurança			ança	
F		Instrumento de nível				
G		Instrumento de nível				
Н				Instrumento de pi	ressão	
		ESQUEMA DO RE	CIPIEN	NTE		


		ESPECIFICAÇÕ	ES VASO		
Número do e	equipamento	C-04			
Descrição		Vaso separador bifásico de alta pressão			
Pressão no topo		39,8			
Pressão no fundo		39,8		kg/cm² g	
Pressão o	de projeto	43,8			
Temperati	ıra no topo	45			
Temperatu	ra no fundo	45		°C	
Temperatui	ra de projeto		80		
Nível norm	al de líquido		1598,5		
Nível máximo d	le líquido (80%)		2557,6		
Nível máximo d	le líquido (20%)		639,4	mm	
Alt	ura		3197		
Diân	netro		1820		
Mat	erial		Aço inox 304		
		PROPRIEDADES	DO FLUÍDO		
	Densidade da fase leve @ P e T de operação no prato chave		12,6		
Densidade da fase pesada @ P e T de operação no prato chave		990,4		kg/m³	
	T T	CONEXÕ	ES		
Sigla	Número	Diâmetro	Serviço		
A			Entrada da alimentação		
В			Saída do produto de topo		
С			Saída do produto de fundo		
D			Válvula de segurança		
Е			Instrumento de i	nível	
F		Instrumento de pressão			
		ESQUEMA DO RE	ECIPIENTE		
1					
1					

		ESPECIFICAÇÕE	ES VAS	0		
Número do e	equipamento	C-05				
Desc	rição	Vaso separador bifásico de baixa pre			ressão	
Pressão	no topo	7,0				
Pressão	no fundo		7,0		kg/cm² g	
Pressão o	le projeto		7,	7		
Temperati	ıra no topo		56	5,5		
Temperatu	ra no fundo		56	5,5	°C	
Temperatui	ra de projeto		86	5,5		
Nível norma	al de líquido	2072 4		500		
corpo prin	icipal/bota	3072,4		500		
Nível máximo d	e líquido (80%)	4915.8		800		
corpo prin	cipal/bota	4913.6		800		
Nível máximo d	e líquido (20%)	1229,0		200	mm	
corpo prin	cipal/bota	1227,0		200		
Compr	imento	12289,5		42,7		
corpo prin	cipal/bota	12207,3		72,7		
Diân	netro	6144,8		1000		
corpo prin	cipal/bota	0177,0		1000		
Mat	erial			Aço inox 304		
		PROPRIEDADES I	O FLU	ÍDO		
	ise leve P e T de	4,4		830,9		
	prato chave cipal/bota				kg/m³	
• •	ase pesada P e T					
	no prato chave	830,9		981,4	kg/m³	
corpo prin	icipal/bota				G,	
		CONEXÕ	ES			
Sigla	Número	Diâmetro	Serviço			
A				Entrada da alime	ntação	
В				Saída de gás	5	
С		Saída de líquido leve			leve	
D		Saída de líquido pesado		esado		
Е				Válvula de segui	ança	
F		Instrumento de nível			nível	
G		Instrumento de nível			nível	
Н		Instrumento de pressão			ressão	
		ESQUEMA DO RE	CIPIEN	ITE	241	



		ESPECIFICAÇÕE	S VASOS			
Número do e	equipamento	C-08				
Desc	rição	Pulmão da coluna C-07				
Pressão no topo						
Pressão no fundo		5,8		kg/cm² g		
Pressão d	le projeto	6,8				
Temperatu	ıra no topo	101,1				
Temperatu	ra no fundo		101,1	°C		
Temperatur	a de projeto		131,1			
Nível norma	al de líquido		240,2			
Nível máximo d	e líquido (80%)		384,3			
Nível máximo d	e líquido (20%)		96,1	mm		
Diân	netro		480,4			
Compr	imento		2402,2			
Mat	erial		Aço carbono			
		PROPRIEDADES I	OO FLUÍDO			
Densidade da fase leve @ P e T de operação no prato chave		-		kg/m³		
Densidade da fase pesada @P e T de operação no prato chave		-		kg/m³		
		CONEXÕI	ES			
Sigla	Número	Diâmetro				
A			Entrada da alimentação			
В			Saída do produto			
С			Instrumento de n	ível		
D			Instrumento de pressão			
E		Válvula de segurança				
F		Bocal de inspeção				
		ESQUEMA DO RE	CIPIENTE			

ANEXO 19: FOLHA DE ESPECIFICAÇÕES TORRE

		ESPECIFICAÇÕE	S TORRE		
Número do equipamento		C-07			
Descrição		Coluna de destilação			
Pressão no topo		6,1			
Pressão no fundo		6,7		kg/cm² g	
Pressão (de projeto		8,6		
Temperat	ura no topo	151,1			
Temperatu	ra no fundo	451,4		°C	
Temperatu	ra de projeto		481,4		
Nível norm	al de líquido		7816,2		
Nível máximo d	le líquido (80%)		12505,9		
Nível máximo d	le líquido (20%)		3126,5	mm	
Alt	ura		94002,4		
Diân	netro		7092,1		
Mat	erial		Aço carbono		
		PROPRIEDADES	DO FLUÍDO		
Densidade da fase leve @ P e T de operação no prato chave		12,8		kg/m³	
	Densidade da fase pesada@ P e T de operação no prato chave		494,0		
		CONEXÕ	ES		
Sigla	Número	Diâmetro	Diâmetro Serviço		
A			Entrada da alimentação		
В			Saída do produto de topo		
С			Saída do produto de fundo		
D			Instrumento de pressão		
E			Válvula de segurança		
F			Instrumento de temperatura		
G			Instrumento de temperatura		
Н			Instrumento de temperatura		
I			Instrumento de temperatura		
	,	ESQUEMA DO RI	ECIPIENTE		

