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1. Summary
The non-integrin laminin receptor (LAMR1/RPSA) and galectin-3 (Gal-3) are

multi-functional host molecules with roles in diverse pathological processes,

particularly of infectious or oncogenic origins. Using bimolecular fluorescence

complementation and confocal imaging, we demonstrate that the two proteins

homo- and heterodimerize, and that each isotype forms a distinct cell surface

population. We present evidence that the 37 kDa form of LAMR1 (37LRP) is

the precursor of the previously described 67 kDa laminin receptor (67LR),

whereas the heterodimer represents an entity that is distinct from this molecule.

Site-directed mutagenesis confirmed that the single cysteine (C173) of Gal-3 or

lysine (K166) of LAMR1 are critical for heterodimerization. Recombinant Gal-3,

expressed in normally Gal-3-deficient N2a cells, dimerized with endogenous

LAMR1 and led to a significantly increased number of internalized bacteria

(Neisseria meningitidis), confirming the role of Gal-3 in bacterial invasion. Con-

tact-dependent cross-linking determined that, in common with LAMR1, Gal-3

binds the meningococcal secretin PilQ, in addition to the major pilin PilE. This

study adds significant new mechanistic insights into the bacterial–host cell inter-

action by clarifying the nature, role and bacterial ligands of LAMR1 and Gal-3

isotypes during colonization.
2. Introduction
The non-integrin laminin receptor (LAMR1), also commonly referred to as ribo-

somal protein SA (RPSA), is a highly conserved multi-functional protein that

has been localized to the cell surface, the cytosol, the 40S ribosomal subunit

and, in histone, chromatin and membrane-associated complexes in the nucleus

[1–6]. We recently demonstrated that the three major aetiological agents of

bacterial meningitis, Neisseria meningitidis, Streptococcus pneumoniae and Haemo-
philus influenzae, engage LAMR1 on the surface of human cells via specific

surface ligands [7]. LAMR1 has also been identified as the surface receptor

for the Escherichia coli K1 toxin Cfr1, a number of viruses, and the cellular prion

protein [8–13]. LAMR1 also has roles in cell viability, adhesion and motility.

Importantly, elevated LAMR1 expression correlates strongly with increased inva-

siveness and metastatic potential of cancer cells [2,5,14–16]. Taken together,

LAMR1 has important functions in diverse pathological processes, particularly

of infectious or oncogenic origins.
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LAMR1 is encoded by the RPSA gene, which is present in

64 copies, although these are predominantly pseudo-genes; it

is unclear how many functional copies there are [17], but one

or more active genes encodes the 37 kDa ‘precursor’ protein

(37LRP), which migrates at 37–45 kDa on SDS–PAGE gels.

A proportion of 37LRP migrates to the cell surface, where it

is thought to ‘mature’, possibly via dimerization and/or post-

translational modification, into the 67 kDa high-affinity

receptor (67LR), which migrates at 60–67 kDa on SDS–

PAGE gels. The transition from 37LRP to 67LR has never

been directly demonstrated, however. It is the 67LR isoform

that is thought to act as the receptor for laminin and/or

other substrates including elastin or collagen [2,18–21],

although the 37LRP isoform has also been suggested to

have laminin-binding properties [18,22]. A 120 kDa form of

the protein has also been described, but its nature, identity

and relationship to 37LRP is unknown [23,24].

37LRP has also been suggested to associate with the

b-galactoside-binding lectin galectin-3 (Gal-3), previously

known as the 31 kDa human laminin-binding protein

(HLBP31), to form a composite receptor for molecules includ-

ing laminin [23]. Indeed, a heterodimer containing 37LRP

and a protein carrying one or more galectin-3 epitopes

has been proposed as the basis for 67LR [23]; this has given

rise to confusion in the literature between the homo- and

heterodimers. Evidence for heterodimerization has so far been

circumstantial, based primarily on (i) the cross-reactivity of

anti-Gal-3 antibodies with a 67 kDa protein [23], (ii) that Gal-3

and a 67 kDa protein can be co-eluted from laminin affinity col-

umns by lactose, galactose and N-acetyl-lactosamine [25], and

(iii) pre-treatment of laminin with b-galactosidase abolishes

the interaction of the 67 kDa molecule and Gal-3 with laminin

[25]. Nevertheless, 67LR is observed in Neuro 2a (N2a) cells,

which do not express Gal-3, suggesting that 67LR and

37LRP–Gal-3 heterodimer exist as distinct, but potentially

coexisting cell surface populations.

Together with galectin-1, Gal-3 is an important mediator

of inflammation, and is involved in recruitment of neutro-

phils, bacterial recognition and activation of the phagocytic

respiratory burst [26]. Gal-3 is the only chimera-type galectin,

and occurs mainly as a monomer in solution [27]; it also

self-associates on surfaces and, upon binding to divalent

ligands, into homodimers or pentamers [28–30]. Gal-3 has

one C-terminal 135-amino acid carbohydrate recognition

domain (CRD) that is responsible for binding the b-galactoside

moiety of mono- or oligosaccharides on several host molecules,

including the b-galactosides and the poly-N-acetyl-lactosa-

mine residues of host laminin [31], and structurally similar

microbial molecules including neisserial lipooligosaccharide

(LOS) [32,33]. The N-terminal domain (NTD) of Gal-3 is non-

lectin-binding, but can bind proteins as well as recognizing

the lipid A/inner core region of bacterial lipopolysaccharides

(LPSs) [34]. It is also thought to be responsible for the protein’s

self-association, although Gal-3 self-association in solution via

its CRD has also been described [35].

A fundamental understanding of the nature and functions

of Gal-3 and the multiple isotypes of LAMR1 is central to our

understanding of the diverse pathological processes in which

these proteins play critical roles. LAMR1 and Gal-3 are both

differentially expressed in various cancer cells, and between

them play regulatory roles in a broad range of processes,

including cancer cell growth, transformation, apoptosis,

angiogenesis, adhesion, invasion and metastasis [2,36]. The
direct relationship between these proteins remains controver-

sial, and is often confusing. As a consequence, our current

lack of understanding of the basic biochemistry, cell biology

and ligand-specificity of the homo- and heterodimers of

37LRP and Gal-3 remains a hindrance to further progress

towards deciphering these important pathological processes.

In this study, we show evidence for the self- and mutual

association of 37LRP and Gal-3, show their distinctive surface

distribution and demonstrate that they target an overlapping

repertoire of surface ligands on N. meningitidis. We pro-

vide the first evidence that, together with LAMR1, Gal-3

expression enhances bacterial host–cell invasion. Our data

clarify much of the confusion relating to LAMR1/Gal-3

monomeric and dimeric isotypes, and will have significant

implications in the fields of infection and cancer biology.
3. Results
3.1. Molecular modelling supports the proposed

association of 37LRP and Gal-3
The proposed interaction of 37LRP and Gal-3 was investi-

gated using the ZDOCK server (zdock.umassmed.edu) and

their docking compared with the previously proposed inter-

action of two 37LRP molecules forming a homodimer [18].

ZDOCK has been reported to achieve high predictive accu-

racy on protein–protein docking benchmarks for rigid-body

cases and consistent success in the international protein–

protein docking experiment [37]. The model revealed a

large protein–protein interface between the 37LRP and

Gal-3 subunits, involving several prominent 37LRP residues,

mainly through salt bridges and hydrogen bonds (figure 1).

In the proposed complex between 37LRP and lactose-associ-

ated Gal-3 (figure 1a), four salt bridges are apparent. They

are K166 of 37LRP with D178 and D154 of Gal-3, R80 of

37LRP with D178 of Gal-3, D151 of 37LRP with R151 and

K227 of Gal-3, and D44 of 37LRP with K233 of Gal-3. Hydrogen

bonds between N81 of 37LRP and N180 of Gal-3, N29 of 37LRP

and K233 and E230 of Gal-3, and Y28 of 37LPR and E230 of

Gal-3 are also involved in the interaction (figure 1a). A similar

interaction mode occurs between 37LRP and non-liganded

Gal-3 (figure 1b). Here, K166 in 37LRP also interacts with

D178 and D154 of Gal-3, and S233 of Gal-3 forms a hydrogen

bond with D44 in 37LRP.

Importantly, binding of Gal-3 to the proposed heterodi-

mer interface is incompatible with both homodimer

formation (figure 1c) and laminin binding to at least one of

the four proposed laminin-binding sites of 37LRP, because

the relevant residues (A114, F116 and Y139 for homodimeriza-

tion and F32, E35 and R155 for 37LRP-laminin binding) [38] are

either sterically hindered or implicated in the heterodimer

interaction. In short, our model supports a hypothesis of

the mutual exclusivity of 37LRP homodimerization to form

67LR and 37LRP/Gal-3 heterodimerization for a given

37LRP molecule, while allowing for the possibility that

both homo- and heterodimers could coexist as separate mol-

ecules. It should be noted, however, that the LAMR1 crystal

structure is derived from a truncated protein and the pro-

posed structure of the homodimer is highly speculative;

it is possible that the proposed dimer interface may be an

artefact of crystallization.

zdock.umassmed.edu
http://rsob.royalsocietypublishing.org/
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Figure 1. Molecular modelling of 37LRP interaction with galectin-3. (a) Ribbon diagram of the heterodimer interaction of 37LRP with (a) lactose-liganded or
(b) non-lactose-liganded Gal-3. Residues involved in the hypothetical large protein – protein interface are represented with sticks. (c) Ribbon diagram with super-
imposed molecular surface of the homodimer interaction of 37LRP (red) with a second 37LRP (cyan) as proposed by Jamieson et al. [18]. (d ) Fluorescently labelled
recombinant Gal-3 and 37LRP were detected in transiently co-transfected COS7 cells via vYFP or mCherry tags. Cells were fixed at 24 h with 4% paraformaldehyde
without permeabilization and stained with Hoechst.
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3.2. 37LRP and Gal-3 co-localization on the cell surface
To demonstrate cell surface co-localization of Gal-3 and 37LRP,

two independent approaches were adopted. First, COS7 cells

were co-transfected with constructs encoding recombinant

37LRP and Gal-3 proteins fused at their C-terminal ends with

vYFP (YFP) or mCherry, respectively. Both proteins were

successfully expressed and co-localized (figure 1d).

As the data presented in figure 1d could also be consistent

with a cytosolic location of the protein, to demonstrate sur-

face localization human cerebrovascular endothelial cells
(hBMECs) were double-labelled for endogenous 37LRP,

67LR and/or Gal-3. Use of a wide range of antibodies with

differing specificities for various isoforms of LAMR1 has

resulted in considerable confusion in the literature. We

selected antibodies with defined specificities as follows:

rabbit IgG polyclonal (IHLR) raised in-house against 37LRP-

derived peptide aa263–282 [7] and the commercially available

mouse IgG2b monoclonal (A7) raised against the 37LRP-

derived peptide aa253–289 were employed to detect 37LRP.

Both recognized an indistinguishable approximately 40 kDa

protein in human hBMECs in immunoblotting experiments

http://rsob.royalsocietypublishing.org/
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and produced interchangeable staining patterns in immunos-

taining experiments (electronic supplementary material,

figure S1; co-localization coefficient: 81.5%). 37LRP was predo-

minantly cytoplasmic but was also present to a much lesser

extent in the membrane fraction of hBMECs and in the soluble

nuclear fraction (electronic supplementary material, figure S1).

IHLR, but not A7, exhibited very low level cross-reactivity

with an approximately 60 kDa band (possibly 67LR) in the

cytoskeleton-enriched cell fraction of hBMECs.

The widely used mouse IgM monoclonal MLuC5, which is

known to block several LAMR1-mediated functions, exhibited

a distinct immunostaining pattern from the two 37LRP-specific

antibodies and predominantly recognized an approximately

60 kDa protein (presumably 67LR) in hBMEC cellular frac-

tions. This protein was predominantly associated with the

cytoskeletal cell fraction, but was also present in small amounts

in the membrane and nuclear fractions (electronic supple-

mentary material, figure S1). The commercially available

Gal-3-specific mouse monoclonal (MAb; Mac-2 clone M3/38;

Biolegends) and goat polyclonal (PAb; AF1154; R&D Systems)

antibodies were also employed. Staining of non-permeabilized

hBMEC cells clearly demonstrated the co-localization of Gal-3

(using MAb) with 37LRP (figure 2a,b), but not with 67LR on the

cell surface (figure 2c). Similar results were obtained using a

second Gal-3 MAb (clone 9H3.2; Millipore). Cells stained

with anti-Gal-3 PAb and 67LR-specific MLuC5 consistently

demonstrated a significant co-localization of Gal-3-specific epi-

tope(s) with 67LR (more than 90%), consistent with the

existence of a Gal-3-specific epitope associated with the 67LR

molecule [23] (figure 2d). The identity of this epitope is

unknown, but it is not localized to galectin-3 as two indepen-

dent galectin-3-specific monoclonal antibodies do not detect

a protein in association with 67LR. Additionally, COS7 cells

(which exhibit no surface-localized 67LR (electronic sup-

plementary material, figure S2) demonstrated clear surface

co-localization of 37LRP and Gal-3 (figure 2e), suggesting

that 37LRP/Gal-3 heterodimers are distinct from 67LR, a find-

ing which is consistent with the observation that 67LR can be

detected in N2a cells, which do not express Gal-3 [9]. By deter-

mining the co-localization coefficient of 37LRP or 67LR with

Gal-3 (using MAb M3/38) on hBMECs, we observed that

Gal-3 associated with approximately half of the surface-

localized 37LRP (50+5.9%); by contrast, only 9.4+2.1% of

the surface-localized 67LR co-localized with Gal-3 (figure 2k).

3.3. Gal-3 and 37LRP form homo- and heterodimers
To test the hypothesis that 37LRP is capable of forming

homodimers and also heterodimers with Gal-3, as suggested

by our model, we employed a bimolecular fluorescence com-

plementation (BiFC) technique. A fluorescing union is formed

when two separate non-fluorescent YFP subfragments are

brought together by the close association of two intimately

interacting proteins [39]. In addition to the full-length YFP,

its N- or C-terminal domains (Yn and Yc, respectively)

were fused to the C-terminal end of Gal-3 and 37LRP

(figure 3a), and transfected into N2a, hBMECs and COS7

cells (figure 3b–g shows N2a cells). Immunoblot analysis of

host cells (electronic supplementary material, figure S3) con-

firmed transfection and protein expression. Although 37LRP

was readily observed in COS7 cells by fluorescence

microscopy (electronic supplementary material, figure S2)

and immunoblotting (electronic supplementary material,
figure S3), no 67LR was observed in these cells, suggesting

that under the experimental conditions tested, 67LR did not

form. As the tagged proteins do not form a higher molecular

mass protein equivalent to 67LR, it is possible that additional

factors may be required subsequent to homodimerization (as

detected by our BiFC experiments) for the maturation into the

SDS-stable 67LR form of the protein, which are not present in

these cells. This would be consistent with the observation that

endogenous 37LRP was apparent in these cells (electronic

supplementary material, figures S2 and S3), whereas 67LR

was not detected. It should also be noted that in cells expres-

sing endogenous 37LRP and 67LR the latter species runs in

SDS–PAGE gels with an apparent molecular mass of

around 60 kDa, which is lower than might be expected of a

homodimer of 37LRP, which has an apparent molecular

mass of around 42 kDa (electronic supplementary material,

figure S1). The most likely explanation for this is that 67LR

is resistant to denaturation in SDS, and thus maintains a

more compact structure than during SDS–PAGE and runs

with a higher electrophoretic mobility.

Cells were examined 24 h post-transfection by confocal

microscopy after fixation without permeabilization. Trans-

fection with full-length YFP-fused proteins (figure 3c,d,

respectively; positive control) resulted in the appearance of

punctate fluorescence; non-transfected cells (figure 3b) exhibited

negligible fluorescence, as did cells transfected with Yn or Yc

constructs alone (figure 5d shows FACS analysis of COS7

cells; see below). Co-transfection of cells with 37LRP–Gal-3,

37LRP-37LRP or Gal-3-Gal-3 (each pair carrying comple-

mentary Ynþ Yc) yielded fluorescent cells, indicating both

homo- and heterodimerization of both molecules (figure 3e–g).

Similar results were observed in COS7 cells, whereas in

hBMEC cells, punctate fluorescence could be observed in cells

co-transfected with 37LRP–Gal-3 or 37LRP-37LRP, while cells

co-transfected with Gal-3–Gal-3 did not fluoresce. The reason

for this is not known. Quantification and statistical analysis of

surface fluorescence of transfected cells, using confocal and

FACS analysis, confirmed the statistical significance of homo-

and heterodimerization of both 37LRP and Gal-3 (figure 5d
shows data for COS7 cells).
3.4. Surface 67LR is resilient to siRNA knockdown of
Gal-3 or 37LRP

Gal-3 or 37LRP was knocked down by targeting LGALS3
or RPSA, respectively, in hBMEC cells over a 48 h period

(figure 4). RT-qPCR analysis confirmed the effective and

specific silencing of Gal-3 and 37LRP siRNA treatment at the

level of mRNA (figure 4j). Fixed siRNA-treated cells were

co-stained for either Gal-3 or 37LRP and compared with

untreated or mock siRNA-treated cells. RPSA siRNA-treated

cells exhibited significantly reduced levels of both surface

37LRP and Gal-3 (figure 4c,g), whereas Gal-3 siRNA-treated

cells exhibited significantly reduced surface levels of Gal-3

(figure 4d), but not 37LRP (figure 4i). Approximately 50% of

surface-localized 37LRP was Gal-3-associated, and levels of sur-

face-localized Gal-3 were significantly reduced (by approx.

37%) in the presence of 37LRP siRNA (figure 4i), implying

that 37LRP promotes Gal-3 surface localization. It should be

noted, however, that 37LRP is a ribosomal protein and it is

also possible that depressed levels of this protein could

reduce transcription of Gal-3. Surprisingly, in both 37LRP and

http://rsob.royalsocietypublishing.org/
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Gal-3 siRNA-treated cells, the mean fluorescence intensity

of 67LR was not significantly different from untreated

(figure 4a,e) or mock siRNA-treated cells (figure 4b,f). Further-

more, overexpression of 37LRP by transfection did not coincide

with increased 67LR (electronic supplementary material,

figure S2). These observations indicate a low turnover of
67LR. To further investigate the relationship between expres-

sion of RPSA and the appearance of 37LRP and 67LR cells

were treated with non-targeting siRNA or RPSA siRNA for

48, 72 or 96 h before fixing and analysis by confocal microscopy.

37LRP was significantly reduced by 48 h, as previously

observed, and was still significantly reduced by 72 h, although

http://rsob.royalsocietypublishing.org/
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Figure 5. Gal-3 residue C173 and 37LRP residue K166 are implicated in 37LRP – Gal-3 dimerization. (a) Ribbon diagram of the homodimer interaction of Gal-3 with a
second Gal-3 showing the position of C173 (white arrows). (b) Ribbon diagram with superimposed molecular surface of the heterodimer interaction of Gal-3 with
37LRP with residue 166 substituted to alanine (white arrow). The mutation of K166 in 37LRP to alanine is predicted to disrupt the interaction between the two
molecules (compare with figure 1a), whereas some (i.e. between R151 and K227 of 37LRP with D151 of Gal-3) are retained. (c) Superimposed structures of lactose-
liganded (yellow) and non-lactose-liganded (blue) Gal-3 complexed with 37LRP highlighting the positions of K166A, R155 and Y139 (white arrows). Other features in
the 37LRP/Gal-3 interface are not shown for clarity. (d ) Following transfection of COS7 cells with the indicated 37LRP and Gal-3 -vYFP, -Yn or -Yc fusion proteins,
cells were harvested and the number of fluorescent cells quantified by FACS and expressed as a percentage of the total number of cells counted. Expression of
37LRP-YFP, Gal-3-YFP and Gal-3C173A-YFP resulted in a significant increase in fluorescent cells compared with -Yn and -Yc control constructs (37LRP: 18.4+ 1.1%
compared with 0.28+ 0.07% and 0.18+ 0.05%; Gal-3: 28.4+ 3.1% compared with 0.19+ 0.04% and 0.21+ 0.03%; Gal-3C173A: 25+ 6.7% compared with
0.21+ 0.07% and 0.26+ 0.12%). Co-transfection of 37LRP-Yn and -Yc, which would form a 37LRP homodimer (37LRP HD), resulted in 10.89+ 0.9% fluorescent
cells, a similar number to cells co-transfected with either 37LRP-Yn and Gal-3-Yc (12.39+ 1.6%) or Gal-3-Yn and Gal-3-Yc (12.65+ 1.4%), which would form a
heterodimer (37LRP/Gal-3 HTD) or self-associated Gal-3 (Gal-3 HD), respectively. Similar results were obtained when Gal-3-Yn and 37LRP-Yc constructs were inves-
tigated. Mutation of C173 on Gal-3 resulted in a significant inhibitory effect on 37LRP/Gal-3 HTD (3.29+ 1.8%; approx. 73% inhibition) and Gal-3 HD formation
(6.5+ 0.9%; approx. 49% inhibition). Co-transfection of Gal-3C173A – Yn and Gal-3C173A – Yc resulted in negligible numbers of fluorescent cells (0.8+ 0.6%)
demonstrating complete disruption of protein – protein interactions under these conditions. Data are mean+ s.e.m. of �3 independent experiments. (e) Binding
of Gal-3 to ELISA wells coated with recombinant 37LRP or its mutant derivatives. The mean value obtained from Gal-3 binding to BSA-coated wells was subtracted
from all data points. ( f ) Flow cytometry analysis of COS7 cells transfected with indicated pairs of BiFC constructs and analysed 36 h post-transfection. Substitution of
LAMR1 lysine 166 with alanine significantly reduced its heterodimerization with Gal-3. Fluorescence intensity was evaluated as a percentage of gated cells. Data
analysed by one-way ANOVA and Tukey test. ****p , 0.0001; *p , 0.05. Error bars ¼ mean of triplicate values on three occasions+ s.e.m.
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by this time levels had started to recover. By 96 h, 37LRP levels

had recovered further and were not significantly lower than in

untreated cells (figure 4k). 67LR levels were not significantly

different than in untreated or mock-treated cells by 48 h, as

had previously been observed. However, by 72 h, there was

an approximately 70% reduction in 67LR levels in RPSA
siRNA-treated cells compared with untreated or mock-treated

cells, which was highly significant. By 96 h, 67LR levels were

still significantly depressed in RPSA siRNA-treated cells,

although levels had started to recover by this time.

3.5. Gal-3 residue C173 and 37LRP residue K166 are
implicated in 37LRP – Gal-3 dimerization

The sole cysteine residue of murine Gal-3 (C186, corresponding

to C173 in its human homologue) has been implicated in

Gal-3/Gal-3 homodimerization [40] (figure 5a). We substituted

alanine for C173 (yielding Gal-3C173A), and fused the mutant

molecule to Yn and Yc. Co-transfection of COS7 cells with comp-

lementary Gal-3C173A Yn and Yc pairs resulted in very little

fluorescence, confirming the central role of C173 in homodimer-

ization and the validity of the BiFC approach (figure 5d).

Dimerization of Gal-3C173A with wild-type Gal-3 or wild-type

37LRP was also significantly reduced (figure 5d); the latter

observation suggests a role for C173 in Gal-3/37LRP heterodi-

merization. In contrast, alanine substitution of 37LRP’s two

cysteines (C148 and C163) had no statistically significant effect

on 37LRP cell surface expression cells as measured by FACS

analysis of COS7 cells transfected with the relevant BiFC

constructs (electronic supplementary material, figure S4).

Our molecular model suggested that K166 of 37LRP may

play an important role in the interaction of this molecule

with Gal-3 (figure 1). Substitution of alanine for K166 in

37LRP is predicted to disrupt several interactions between

the two molecules (compare figure 1a and figure 5b; for clarity,

the position of 37LRP K166 is highlighted in the proposed

interaction of 37LRP with superimposed lactose and non-

lactose-liganded Gal-3 shown in figure 5c). To investigate

this, we purified recombinant 37LRP and a 37LRPK166A deri-

vative, and determined their binding to Gal-3 in ELISA

experiments. The ability of the 37LRPK166A derivative to bind

rGal-3 was significantly reduced, confirming the involvement

of this residue in heterodimer formation and supporting the

validity of our model of heterodimerization (figure 5e). By con-

trast, substitution with phenylalanine or alanine, respectively,

of key residues implicated in homodimerization or laminin

binding (Y139 and R155, respectively) [38] had no significant

impact on Gal-3 binding (Y139F), or reduced binding signifi-

cantly but to a much lower degree (R155A; figure 5e). The

involvement of K166 of LRP in binding to Gal-3 was confirmed

by BiFC complementation experiments; K166A derivatives of

37LRP fused to either the N- or C-terminal portions of YFP

interacted to a significantly lower degree with their corre-

sponding C- or N-terminal YFP-labelled Gal-3 partners

compared with the wild-type molecules (figure 5f ).

3.6. Gal-3 engages meningococci and potentiates
cellular invasion

Gal-3 has previously been shown to be expressed in splenic

tissue from patients infected with N. meningitidis, but not that

of healthy humans, and co-localization of Gal-3 with
meningococcal colonies on splenic tissue was demonstrated

[33]. Quattroni et al. also showed that Gal-3 binds to the

lactosamine moiety of meningococcal LOS. To determine

whether interaction of meningococci with Gal-3 could potentiate

cellular invasion, N2a cells, which do not express endogenous

Gal-3, were transfected with a Gal-3-YFP construct prior to infec-

tion with meningococci. Diffuse expression of Gal-3 was

confirmed by confocal microscopy (figure 6a). Expression of

endogenous 37LRP, which co-localized with Gal-3.vYFP on

the cell surface, was also confirmed (figure 6a), confirming that

these cells were an appropriate model to study the role of Gal-

3 in the interaction of meningococci with host cells. Internalized

meningococci were measured using a gentamicin protection

assay after infection of N2a cells transfected with either the

empty vector pcDNA3.1 zeo-vYFP or the same vector containing

the Gal-3-YFP construct. Meningococci invaded cells express-

ing Gal-3-YFP at significantly higher levels than those

transfected with the empty vector, or non-transfected cells

(figure 6b) confirming a role for Gal-3 in cellular invasion by

meningococci. In order to confirm these findings in a more

physiologically relevant cell line we knocked down Gal-3

expression by siRNA transfection in hBMEC cells and deter-

mined whether invasion of these cells by meningococci was

affected. Indeed, transfection with Gal-3 siRNA significantly

reduced invasion of these cells by meningococci (strain MC58),

whereas transfection with a non-targeting siRNA had no signifi-

cant effect (figure 6e). Similarly, blockading surface Gal-3

molecules by pre-treating hBMEC cells with polyclonal anti-

Gal3 reduced the susceptibility of these cells to meningococcal

invasion (figure 6f ).

3.7. Neisseria meningitidis binds Gal-3 in a
lipooligosaccharide-dependent and -independent
manner

Quattroni et al. [33] showed that high concentrations (100 mM)

of lactose significantly reduced, but did not abolish, binding

of Gal-3 to meningococci. Similarly, meningococcal mutants

not elaborating the a-chain of LOS showed significantly

reduced, but not completely abolished Gal-3 binding

(figure 6c). Collectively, this suggested the presence of

additional meningococcal Gal-3 receptors. To explore this,

we used lactose-liganded recombinant Gal-3 (Lac–Gal-3) in

further ELISA assays. Lac–Gal-3 was biologically functional,

as determined by its ability to bind 37LRP, N. meningitidis
MC58 and 25 additional isolates, irrespective of their

invasiveness, serotype or country of isolation (electronic sup-

plementary material, figure S5 and table S1). Meningococcal

binding to Lac–Gal-3 was not inhibited by increasing con-

centrations of lactose (up to 150 mM) or by adding a range

of other Gal-3-binding sugars (Lewis X, Lewis Y, core H

type II, galactose and fucose; electronic supplementary

material, figure S6), suggesting that lactose-liganding had

successfully blocked the carbohydrate-dependent (and thus

LOS-dependent) binding capacity of Gal-3.

3.8. Gal-3 and 37LRP target common as well as specific
meningococcal targets

To identify non-LOS meningococcal Gal-3-binding surface

molecules, we employed a re-tagging (a contact-dependent
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Figure 6. Gal-3 and 37LRP target common as well as specific meningococcal targets. (a) Subcellular localization of Gal-3.vYFP and endogenous 37LRP in transfected
N2a cells. Cells were fixed at 24 h with 4% paraformaldehyde without permeabilization. Fluorescently labelled recombinant Gal-3 was detected via the vYFP tag.
Endogenous 37LRP was detected using IHLR antibody. Co-localization is observed as yellow in merged image with Hoechst 33258 DNA staining (blue). Images are
representative of �2 independent experiments. (b) Gal-3 expression enhances MC58 invasion of N2a cells. N2a cells were transiently transfected with an empty
pcDNA3.1 zeo-vYFP vector alone (YFP), or the same vector containing Gal-3 (Gal-3-YFP). Cells were infected with MC58 for 4 h at a multiplicity of infection of 300
before treatment with 100 mg ml21 gentamycin. NT, non-transfected negative control. Mean+ s.e.m. of at least three separate experiments. Significance was
determined by Student’s t-test. **p , 0.01; ***p , 0.001. (c) Binding of DIG-labelled N. meningitidis MC58 and its isogenic lgtF mutant to immobilized recom-
binant Lac – Gal-3. BSA-coated wells (negative control) were included and their mean value subtracted from those of the test. Mean+ s.e.m. of at least three
separate experiments. Significance was determined by Student’s t-test. ***p , 0.001. (d ) Binding of DIG-labelled N. meningitidis MC58 and its isogenic pilQ, pilE
and porA mutants to immobilized Lac – Gal-3. BSA-coated wells (negative control) were included and their mean value subtracted from those of the test. Mean+
s.e.m. of at least three separate experiments. Significance was determined by Student’s t-test. *p , 0.05; **p , 0.01. (e) hBMEC cells were grown to 60% con-
fluence in 24-well plates were transfected with siRNA oligomers specific for Gal-3, with mock siRNA or left untreated. Post-transfection cells (48 h) were incubated
with 1 � 107 freshly prepared meningococcal cells (strain MC58) per well. Post-infection cells (4 h) were treated with gentamicin (100 mg ml21) for 1 h to kill
extracellular bacteria. After 1 h incubatin monolayers were disrupted and homogenized with saponin and internalized bacteria enumerated by plating onto chocolate
agar. Compared with non-transfected cells both specific and non-specific siRNA-treated cells demonstrated reduced levels of bacterial invasion, but numbers inter-
nalized into Gal-3 siRNA-treated cells were significantly lower than for non-transfected cells (one-way ANOVA; p , 0.05), whereas mock-transfected cell numbers
were not significantly lower. Bars represent mean of four independent experiments (n ¼ 42) and error bars indicate s.e.m. ( f ) hBMEC monolayers as above were
pre-incubated with either anti-Galectin 3 monoclonal antibody (25 mg ml21) or left untreated for 1 h. Wells were then treated as described above and numbers of
invading meningococci enumerated. Significantly reduced invasion was observed in cells treated with anti-Gal-3 antibodies (unpaired t-test; p , 0.05). Bars
represent the mean of four independent experiments (n ¼ 30) and error bars represent s.e.m.
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cross-linking) approach. MC58 cells were incubated with

Lac–Gal-3 conjugated to a light-activated cross-linker.

Following photoactivation and subsequent exposure to redu-

cing conditions to allow transfer of the reactive biotin moiety

to molecules in close proximity to the Lac–Gal-3, bacteria
were lysed and the biotin-tagged proteins purified with strep-

tavidin-coated magnetic beads as previously described [41].

Extracted biotin-tagged proteins were separated by SDS–

PAGE and identified using MALDI-TOF. This approach

identified PilQ (accession: NMB1812; 82.4 kDa; score:
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2463.12) and PilE (accession: P05431; 18.1 kDa; score: 2029.04)

as the only Lac–Gal-3 binding meningococcal surface

ligands. PilQ is a conserved outer membrane secretin that is

absolutely required for type IV pilus extrusion [42]. PilE is

the major glycosylated pilin subunit that forms the shaft of

the hair-like and retractile type IV pilus fibre [43,44].

A role for each of these proteins in Lac–Gal-3 binding

by whole bacteria was confirmed by testing the Lac–Gal-3

binding activity of pilQ and pilE mutants. As expected,

MC58 mutants lacking pilE or pilQ showed significantly

reduced Lac–Gal-3 binding when compared with wild-type

(figure 6d ). Mutation of PorA (a 37LRP-binding, surface-

exposed, outer membrane protein employed as a negative

control) had no significant effect on Lac–Gal-3 binding

(figure 6d ). Because PilQ is required for secretion and surface

expression of the PilE-containing fibre, it is not possible from

these data to distinguish between a direct role for PilQ bind-

ing of Gal-3 from an indirect effect owing to the lack of

surface PilE. However, these data show that at least PilE

expression is required for maximal Gal-3 binding.
4. Discussion
It is increasingly well established that 37LRP and Gal-3 have

a complex functional relationship and are likely to play colla-

borative roles during physiological and pathological events,

including the interaction of mammalian host cells with patho-

gens [2,45]. On the cell surface, each of these molecules has

been suggested to be both self-associating as well as associat-

ing with each other. However, there is extensive confusion in

the literature regarding the relationship between the 37LRP

species, assumed to represent the monomer, and a 67 kDa

‘mature’ form of the protein, which has been described as

either a homodimer or a heterodimer of 37LRP with Gal-3.

Here, we present evidence for both self- and mutual associ-

ation of both 37LRP and Gal-3. We employed molecular

modelling to visualize the 37LRP–Gal-3 interaction support-

ing previous predictions of mutual association, and further

informed the putative critical interfaces and key residues

involved. BiFC experiments supported the hypothesis that

37LRP and Gal-3 both homo- and heterodimerize, and that

the single cysteine (C173) of Gal-3 (but not the two cysteines

of 37LRP) is critical for these associations, as was previously

shown for the murine Gal-3 molecule’s equivalent residue

C186 [40]. We showed that monomeric 37LRP, its presumed

homodimer 67LR and the 37LRP/Gal-3 heterodimer coexist

as distinct populations on the host cell surface. It is of note

that 67LR has previously been shown to incorporate a

Gal-3-specific epitope that is not present on monomeric

37LRP [23,45]. It is likely that this epitope was responsible

for the observed co-localization of 67-LR with one or more

Gal-3 specific epitopes when a polyclonal antiserum was

employed. We show that this is not due to the presence of

Gal-3 in this complex, however, as it is not detected by two

independent Gal-3-specific monoclonal antibodies. It is poss-

ible that homodimerization results in the creation of a new

epitope that mimics a Gal-3 epitope. Alternatively, the poly-

clonal anti-Gal-3 antiserum may contain 67LR cross-reacting

antibodies that are not specific for Gal-3. The latter possibility

seems unlikely, however, as the polyclonal antiserum

employed was raised against recombinant Gal-3 produced

in E. coli. Gal-3 preferentially associated with 37LRP and
rarely (if at all) with 67LR, and knockdown of Gal-3 had

no discernable qualitative or significant quantitative effects

on cell surface 67LR, confirming early models which

suggested that Gal-3 is not a component of 67LR [9,23]. Inter-

estingly, while 37LRP and Gal-3 are shown here to associate,

these proteins dissociate under denaturing SDS–PAGE and

thus cannot represent 67LR, which is known to be resistant

to dissociation in the presence of SDS. Elevated cell surface

67LR is a prognostic marker for metastatic potential in

cancer, yet overexpression of 37LRP by transfection is not

coincident with increased 67LR, which is in line with pre-

vious observations [46–48]. Indeed, the transition of 37LRP

to 67LR has not been conclusively demonstrated to date,

and recombinant 37LRP has never been unambiguously

shown to associate with higher molecular mass isoforms

corresponding to the native 67LR isoform [47]. Our data sup-

port the hypothesis that 67LR is a homodimer of 37LRP, but it

remains a possibility that the ability of 37LRP to homodimer-

ize that we have demonstrated does not represent 67LR, and

further experiments will be required to conclusively settle this

matter. The delayed reduction in 67LR expression after pro-

longed siRNA knockdown of RPSA described here

represents the clearest evidence yet that 67LR is indeed

derived from the smaller protein. It should be born in

mind, however, that another plausible explanation for the

reduction in 67LR after prolonged knockdown of RPSA is

due to a general reduction in protein synthesis that knock-

down of 37LRP, a known ribosomal protein, results in a

more generalized depression of new protein synthesis.

While some 37LRP partitions to the membrane fraction, this

precursor protein is predominantly isolated in soluble cyto-

plasmic cell fractions, where it is known to have a clearly

defined ribosomal association and function. By contrast,

67LR has been clearly demonstrated previously to predomi-

nate in the membrane and, in particular, preferentially

localizes to the environment of ‘lipid raft’ domains and

focal plaques, co-localizing with vinculin and b-actinin

[3,49]. Our demonstration that 37LRP and 67LR are essen-

tially discrete populations implies that the majority of

membrane-associated 37LRP is not lipid-raft-resident or

focal-plaque-associated. While we acknowledge that transfec-

tion and high-level expression of recombinant proteins can

give rise to anomalous protein localization, and that single

amino acid changes can have an effect by altering the overall

conformation of a protein, the observation that our data

are consistent with the in silico modelling data supports our

conclusions based on the BiFC experiments.

Therapeutic strategies based on 67LR currently involve

selective drug targeting, antibodies against 37LRP, polysulfated

glycans and siRNA treatment. Resolving the relationship and

mechanism(s) governing ‘maturation’ of 67LR may provide

new approaches in combinatorial cancer therapy. As interest

in LAMR1 derives from its potential for therapeutic interven-

tion, and the molecule is clearly a pathologically significant

multi-functional protein involved in a wide variety of processes,

assigning roles to differing receptor populations and deter-

mining any potential pleiotropism or functional redundancy

will be critical for effective and selective targeting.

While the precursor–product relationship between 37LRP

and 67LR is widely accepted, the mechanism of 67LR

maturation remains unresolved. As we show that 37LRP is

the predominant Gal-3-associated LAMR1 population, it

is tempting to speculate that Gal-3 may play a regulatory or
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mechanistic role in this process. Indeed, modelling revealed

that the interaction domains for 37LRP homo- and heterodi-

mer formation may overlap, and thus form the basis for

two mutually exclusive LAMR1 cell surface populations. In

support of our hypothesis that a proportion of cell surface

Gal-3 is spatially restricted to 37LRP, previous reports by

Buto et al. [23] showed that treatment of A431 cells with cer-

ulenin, to inhibit 37LRP acylation, resulted in a marked

decrease in detectable Gal-3 and 67 kDa LAMR1 in the

NP-40 soluble membrane fraction [23].

The fact that 37LRP and Gal-3 bind common and separate

antigens in the human host further supports the hypothesis

that the two proteins engage in a joint and mechanistically

synchronized interaction during physiological and pathologi-

cal events. Here, we show that this is paralleled during

bacterial–host cell interactions. Using N. meningitidis as a

model invasive organism that is known to interact with

both Gal-3 and 37LRP [7,33], we showed that both host mol-

ecules are targeted by a common bacterial surface ligand

(PilQ). The latter protein forms a large (960 kDa) homo-dode-

camer complex with an apparent cavity through which the

type IV pilus fibre is exported and retracted [50]. PilE is the

major subunit that forms the shaft of that fibre [43]. PilQ and

PilE remain intimately positioned and are surrounded by

LOS, which is the predominant lipid moiety of the outer leaflet

of the outer membrane. PorA, the other specific meningococcal

ligand for 37LRP, is also a pore-forming outer membrane

protein present in large numbers, and juxtapositioned with

both PilQ and LOS [7,51]. Meningococci, and perhaps other

bacterial pathogens, are likely to have evolved a closely posi-

tioned array of 37LRP- and Gal-3-binding surface ligands,

with consequences for the virulence of these pathogens.

Ligand–receptor interactions may act in concert to enhance

cell–cell intimacy and affinity, and trigger downstream host

cell-signalling and cytoskeletal rearrangements as a prelude

to cellular invasion and tissue penetration [52].

Taken together, these findings lead us to propose a model

for the dynamic and mechanistic interaction of the host and

bacterial surface proteins (figure 7). We propose that upon

entry into the host (mucosa or blood stream), N. meningitidis
would initiate contact with host cell surfaces via the type IV
pili, which extend up to several micrometres, and at the tip

may contain the adhesive PilC1 [44]. Retracting pili induces

twitching motility that allows the organism to move over

host cell surfaces against the tide of mucus or blood flow,

until it comes into intimate contact with specific receptors

[53]. Secreted forms of Gal-3 may bind LOS and/or bacterial

protein ligands, a process that is likely to protect the host from

bacterial colonization. However, meningococci may use Gal-3

to enhance its adherence to the host cell surface via Gal-3/

37LRP heterodimerization, or shed the Gal-3–LOS complex

as part of the outer membrane vesicles (which are well

known to be shed continuously). Interestingly, surface Gal-3

is thought to be a negative regulator of the LOS-induced

inflammatory response, and protects the host from endotoxin

shock while also promoting survival of invading bacteria [54].

Similarly, when triggered by specific molecules (e.g. the

LAMR1-binding green tea-derived polyphenol, EGCG), sur-

face LAMR1 is believed to inhibit TLR4 and TLR2 responses

in mouse macrophages [55,56].

Given that both 37LRP and Gal-3 are broadly distributed

in different cellular compartments, their collaborative inter-

action with the meningococcus or its ligands may not be

limited to the cell surface. In the cytoplasm, Gal-3 can bind

to Bcl-2 and inhibit cell apoptosis, and in the nucleus it can

regulate gene transcription [31,57]. Suppression of Gal-3 in

highly malignant human breast carcinoma cells resulted in

reversion of the transformed phenotype and led to the inhi-

bition of tumour growth in immunologically suppressed

mice [58]. Extracellular Gal-3 can bind to cell surface N-gly-

cans and induce monocyte and T-cell apoptosis, which may

help bacterial or tumour cell evasion from the immune

surveillance. Gal-3 can suppress IL-5 production and inhibit

B-lymphocyte differentiation, and increase phagocytosis of

neutrophils. In human monocytes, Gal-3 is chemotactic and

increases calcium influx at high concentrations, whereas at

low concentrations it promotes chemokinesis [59].

In conclusion, we demonstrate the presence of discrete

populations of LAMR1 on the epithelial and endothelial

cell surface. We show that 37LRP can form homodimers

(67LR) as well as heterodimers with Gal-3, which is also

capable of forming homodimers. These surface molecules
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are likely to play distinct roles in a number of oncogenic, neu-

rodegenerative and infectious diseases. 37LRP and Gal-3

target common and specific meningococcal surface ligands,

events that are exploited by the organism to enhance its

adhesion and cell invasion. Our data enhance our under-

standing of the roles of Gal-3 and 37LRP in host cell

biology, which can be exploited for the design of therapeutic

and/or preventive strategies against invasive bacterial and/

or oncogenic diseases.
 g.org
Open

Biol.4:140053
5. Material and methods
5.1. Cell culture
All cells were cultured at 378C, 5% CO2. Human brain micro-

vascular endothelial cells were cultured in endoprime media

(PAA) supplemented with 5% (v/v) fetal bovine serum (FBS),

IGF, bFGF, ascorbic acid, hydrocortisone and heparin,

EGF, VEGF (all from PAA) and 1% antibiotic–antimycotic

solution (v/v) (Gibco). Cells were either P2–15 primary

cells (ScienCell, USA) or immortalized cells at either early

(P10–30) or late (P60–70) passage. Where cells were routinely

cultured on fibronectin, fibronectin-coated T75 flasks were

used (BD Biosciences). Neuro 2a (N2a) mouse neuroblastoma

cells were cultured in Eagle’s minimum essential medium

supplemented with 1% (v/v) antibiotic–antimycotic solution

and 10% (v/v) FBS. COS7 cells were grown in Dulbecco’s

modified Eagle’s medium (DMEM, Invitrogen) supplemen-

ted with 1% (v/v) antibiotic–antimycotic solution (Gibco)

and 10% (v/v) FBS. Cell culture medium was changed

every 2 days, and cells were split using trypsin–EDTA

(Gibco) upon reaching 90% confluence.

5.2. Flow cytometry
COS7 cells were grown in six-well plates and detached 24 h

after transfection using cell dissociation solution (Sigma),

washed in PBA buffer (0.5% bovine serum albumin (BSA),

0.5% sodium azide in PBS), resuspended in 0.5% paraformal-

dehyde (PFA) in PBS (Oxoid) and subjected to flow

cytometry using a Coulter Altra flow cytometer. Data acqui-

sition and analysis were performed with WEASEL v. 2.5

software. In each case, 50 000 cells were counted in triplicate

and used to calculate the average BiFC signal intensity+ s.e.

Full-length YFP fluorescence signal was used as the interas-

say reference for maximal fluorescence in each experiment

against which the BiFC signal intensities were compared.

5.3. Immunofluorescence
For confocal analysis, cells were grown on acid-etched glass

12 mm coverslips (SLS) that were coated with 0.1% human

fibronectin (1 ml 2.5 cm22; Sigma) or laminin10 (1 mg cm22;

Millipore) as required. Following any treatments, cells were

fixed with 4% PFA (10 min at RT) and, if required, permeabi-

lized with 0.1% Triton X-100/1% BSA in PBS (5 min at RT).

Following 1 h incubation in PBS/4% BSA to reduce non-

specific binding, coverslips were incubated with primary

antibody(s) either as a cocktail or sequentially, depending

upon predetermined secondary antibody cross-talk: anti-67-

kDa LAMR1 (MAb MLuC5, 1 : 100, Abcam); anti-37-kDa

LAMR1 (PAb IHLR, 1 : 100 [7]; MAb A7, 1 : 250 (Santa Cruz
Biotech.); anti-Gal-3 (MAb M3/38, 1 : 50 (Biolegends); MAb

9H3.2, 1 : 100 (Millipore); PAb, 1 : 50 (R&D Systems)) in PBS-

T/4% BSA for 1 h. Coverslips were washed three times in PBS

and incubated with conjugated secondary antibody(s): anti-

mouse IgM (Alexa647, 1 : 1500; Alexa488, 1 : 1000); anti-mouse

IgG (Alexa680, 1 : 200); anti-rabbit (Alexa488, 1 : 400; Alexa680

1 : 200); anti-goat (Alexa680, 1 : 200) [1 : 200]; anti-rat

(Alexa647, 1 : 200) all from Molecular Probes, in PBS-T/4%

BSA for 1 h and washed three times in PBS, once in H2-

O. Coverslips were mounted with Prolong Gold anti-fade

with/without DAPI (Invitrogen) and images obtained as sec-

tions, unless stated otherwise, by confocal microscope. For

each experiment, unstained and secondary antibody-alone

samples were processed in parallel to control for non-specific

staining. Additionally, all possible primary/secondary combi-

nations were checked for cross-reactivity and sequential

staining used as required. For all co-localization studies, samples

stained for localization of each protein individually were pro-

cessed in parallel and, in all cases, the fluorescence of adjacent

channels was monitored for bleed through.

5.4. Confocal microscopy
Images (400–600 nm optical sections) were acquired using a

Zeiss LSM 700 AxioObserver confocal microscope using a

Plan-Apochromat 63�/1.40 Oil DIC M27 objective with

ZEN 2009 operating software. Images were processed using

IMAGEJ and Adobe PHOTOSHOP software. Raw data are avail-

able upon request. Co-localization analyses used the ZEN

software function with an FI threshold of 50; the data were

not intensity-weighted. Mean FI data of individual cells or

fields of cells were also obtained using ZEN software.

5.5. Bimolecular fluorescence complementation analysis
BiFC expression constructs were obtained by PCR: cDNA

sequences of human LAMR1 (888 bp) and galectin-3 (725 bp)

were generated with flanking N-terminal EcoRI/Kozak and

C-terminal XhoI restriction sites using the following primer

sequences: for galectin-3, 50-GCGCGAATTCGCCATGGCAGA

CAATTTTTCGCT-30 (forward primer) and 50-GCGCCTCGA

GTATCATGGTATATGAAGCACTGGTG-30 (reverse primer);

and for LAMR1, 50-GCGCGAATTCGCCATGTCCGGAGCC

CTTGAT-30 (forward primer) and 50-GCGCCTCGAGAGA

CAGTCAGTGGTTGCTCC-30 (reverse primer). The amplified

PCR products were digested and ligated into an EcoRI/

XhoI-digested pcDNA3.1zeo vector, which contained either

full-length Venus yellow fluorescent protein (vYFP) or the

N- or C-terminal regions (Yn or Yc, respectively) of vYFP or

full-length mCherry. Cysteine mutations were introduced by

site-directed mutagenesis (QuikChange, Stratagene) using the

following primer sequences: for Gal-3C173A, 50-GAGAACAA

CAGGAGAGTCATTGTTGCCAATACAAAGCTGGATAATA

ACTG-30 (forward primer) and 50-CAGTTATTATCCAGCTTT

GTATTGGCAACAATGACTCTCCTGTTGTTCTC-30 (reverse

primer); for 37LRPC148A, 50-CCTACCTACCATTGCGCTGGCT

AACACAGATTCTCCTCTG-30 (forward primer) and 50-CAG

AGGAGAATCTGTGTTAGCCAGCGCAATGGTAGGTAGG-30

(reverse primer); and for 37LRPC163A, 50-TGGACATTGCCAT

CCCAGCCAACAACAAGGGAGCTC-30 (forward primer) and

50-GAGCTCCCTTGTTGTTGGCTGGGATGGCAATGTCCA-30

(reverse primer). Cells were grown on fibronectin-coated

12 mm glass coverslips and transfected at approximately 60%
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confluence using TransIT-2020 at a DNA : TransIT-2020 ratio of

2 : 1 according to manufacturer’s instructions. In brief, pre-

formed DNA : TransIT complexes were added to the growth

medium for 4 h. Cells were then washed with growth

medium, and recombinant proteins expressed for 24 h before

fixing with 4% PFA and subsequent confocal analysis.

5.6. siRNA of galectin-3 and LAMR1
hBMECs were cultured as described and transfected with pre-

designed siGENOME SMARTpool (mix of four siRNAs

targeting one ORF) targeting LAMR1 (M-013303-01-0005),

galectin-3 (M-010606-02-0005) or ON-TARGETplus non-

targeting pool control siRNA (Dharmacon, Thermo Scientific).

Cells were transfected on day 1 with a final concentration of

37.5 nM siRNA using the DharmaFECT transfection reagents

(Dharmacon, USA). The inhibition of LAMR1 and Gal-3

expression was assessed at 48, 72 or 96 h post-transfection 3

by confocal analysis, quantitative polymerase chain reaction

(RT-qPCR) and immunoblot analysis. To determine transfec-

tion efficiency, non-transfected and siGLO-transfected cells

were analysed 1 day after transfection on a FACSCaliber

machine (Beckton–Coulter). All galectin-3 or LAMR1 confocal

images were acquired at the same resolution and scale, with the

same hardware/laser settings used to image untreated control

cells. Identical image manipulations were performed on all

images stained with the same antibody set.

5.7. qPCR analysis
hBMECs were washed twice with serum-free EndoPrime base

medium (PAA) and total RNA extracted using the RNeasy

mini kit (Qiagen) according to the manufacturer’s instructions.

DNA was removed using RNAase-free turbo-DNAase I

(Ambion, Applied Biosystem). RNA was cleaned and concen-

trated using RNeasy MiniElute clean-up kit (Qiagen). cDNA

was synthesized using high-capacity cDNA reverse transcrip-

tion kit (Applied Biosystems). RT-qPCR was performed in an

ABI7500 real-time PCR system (Applied Biosystems) with the

brilliant SYBR green qPCR master mix (Stratagene). Cycling

was initiated at 958C for 10 min, followed by 40 cycles of

958C for 15 s, 608C for 60 s and 608C for 1 min. Samples were

run in triplicate, and relative expression of LAMR1 and galec-

tin-3 was calculated using the comparative threshold cycle

method normalized to GAPDH. Primers were designed

using PRIMER 3 software and obtained from Sigma-Aldrich.

Primer sequences were as follows: GAPDH, 50-GGGAAAC

TGTGGCGTGAT-30 (forward primer) and 50-TTCAGCTCAG

GGATGACCTT-30 (reverse primer); LAMR1, 50-CCATTGAAA

ACCCTGCTGAT-30 (forward primer) and 50-CAGCGCA

ATGGTAGGTAGGT-30 (reverse primer); and galectin-3,

50-CTATAGCCGGGACTCCTTCC-30 (forward primer) and

50-AGTTCCAGGGCACATACGTC-30 (reverse primer).

5.8. Purification of recombinant protein
Cells from 50 ml culture were re-suspended in 5 ml of buffer

B (8 M urea (Sigma), 0.1 M NaH2PO4 (BDH) and 0.01 M Tris–

HCl (Sigma) pH 8.0) and then sonicated in an ice bath for 15

cycles of 10 s with 5 s of cooling between cycles. Lysate was

centrifuged at 10 000g for 30–40 min at 48C to pellet cellular

debris, followed by incubation of the supernatant with

20 mM imidazole (Qiagen) and cobalt resin (Fisher Scientific)
overnight at 48C. Supernatant was passed through a gravity

column, extensively washed with buffer C (8 M urea, 0.1 M

NaH2PO4 and 0.01 M Tris–HCl, pH 6.3) and incubated over-

night at 48C with buffer E (8 M urea, 0.1 M NaH2PO4 and

0.01 M Tris–HCl, pH 4.5). Buffer exchange was performed

using PD-10 desalting columns (Amersham Biosciences),

replacing the acidic urea buffer with PBS (pH 7.2). Protein

concentration was measured using a Nanodrop ND-1000

spectrophotometer (NanoDrop Technologies) by measuring

the absorbance at 280 nm, and proteins were stored at 2208C.

5.9. Immunoblotting
Cells were lysed with RIPA buffer supplemented with Phos-

stop (Merck Millipore) and complete mini EDTA-free

protease inhibitor cocktail. Alternatively, cells were fractio-

nated using a cell fractionation kit (Thermo Fisher

Scientific) as described in the manufacturer’s instructions.

Protein samples were separated on 4–20% gradient SDS–

PAGE (Thermo Scientific) at 125 V and calibrated with Col-

ourplus broad pre-stained marker. Gels were transferred to

nitrocellulose membranes (BioRad) at 10 V for 30 min on a

BioRad semi-dry transfer system. Membranes were blocked

in Tris-buffered saline with 0.1% Tween20 (TBS-T) containing

5% bovine serum albumin (BSA, w/v). Primary antibodies

(in TBS-T/5% BSA) were incubated with the membrane at

either 48C overnight or 1 h at room temperature. Membranes

were washed (3 � 15 min) in TBS-T and subsequently probed

with conjugated secondary antibody (in TBS-T/5% BSA) for

45 min at room temperature. The membrane was washed

(5 � 10 min) with TBS-T before membranes were exposed to

ECL substrate (Luminata Crescendo; Millipore) for visualiza-

tion of immuno-reactive proteins. Antibodies used included

anti-67LR (MLuC5), anti-37-kDa LAMR1 (A7 or IHLR) or

anti-Galectin-3 (9H3.2).

5.10. Modelling the molecular interaction of galectin-3
with LAMR1

The structures of the Gal-3 CRD and LAMR1 were obtained

from the RCSB protein data bank (www.rcsb.org). The molecu-

lar docking of Gal-3 (3zsj.pdb: lactose-liganded structure;

3zsm.pdb: non-liganded structure) and LAMR1 (3bch.pdb)

was performed employing a server in zdock.umassmed.edu

[60,61] based on current knowledge of crystal structures.

RASMOL [62] and UCSF CHIMERA [63] were used to generate

images of the molecular interactions and docking.

5.11. Bacterial strains, growth conditions and
invasion assays

Neisseria meningitidis clinical isolates (electronic supplementary

material, table S1) were grown on chocolate horse blood

(Oxoid) at 378C, in an atmosphere of 5% CO2. Mutagenesis of

N. meningitidis MC58 pilQ and porA was described previously

[7]. To mutate pilE, chromosomal DNA extracted from

N. meningitidis C311DpilE (kindly provided by Prof. C. Tang,

University of Oxford, UK) was used to mutate MC58 by natu-

ral transformation and allelic exchange as described previously

[64]. The MC58DlgtF strain used in this study was described

previously [65]. For selection of mutants, meningococcal cells

were cultured on Mueller–Hinton agar plates supplemented

http://www.rcsb.org
zdock.umassmed.edu
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with 1% Vitox (Oxoid) and, where appropriate, with strepto-

mycin and spectinomycin (100 mg ml21) or kanamycin

(50 mg ml21). Invasion assays were performed as previously

described [66].

5.12. Expression and purification of recombinant LAMR1
The 37LRP coding sequence was generated with flanking NdeI
and NotI restriction sites using the following primer sequences

50-GGGAATTCCATATGGAGGTGCTATTCCAGGGACCCGG

ATCCATGTCCGGAGCCCTTGAT-30 (forward primer) and

50-AAGGAAAAAAGCGGCCGCTTAAGACCAGTCAGTGG

TTGCT-30 (reverse primer). The amplified PCR product was

NdeI/NotI digested and ligated into ss-Fc-IRES-Tpz-pEFBOS

[67], allowing the expression of N-terminally Fc-tagged

37LRP. Mutations were introduced by site-directed mutagen-

esis (QuikChange, Stratagene) using the following primer

sequences: for 37LRPR155A, 50-TAACACAGATTCTCCTCTG

GCCTATGTGGACATTGCCATC-30 (forward primer) and 50-

GATGGCAATGTCCACATAGGCCAGAGGAGAATCTGTGT

TA-30 (reverse primer); for 37LRPK166A, 50-CCATCCCATGCA

ACAACGCGGGAGCTCACTCAGTGG-30 (forward primer)

and 50-CCACTGAGTGAGCTCCCGCGTTGTTGCATGGAT

GG-30 (reverse primer); and for 37LRPY139F, 50-CCTCTCACGG

AGGCATCTTTTGTTAACCTACCTA-30 (forward primer) and

50-TAGG TAGGTTAACAAAAGATGCCTCCGTGAGAGG-30

(reverse primer). Recombinant 37LRP was expressed in

human embryonic kidney (HEK293T) cells grown in DMEM

(Gibco) supplemented with 1% (v/v) antibiotic/antimycotic

solution, 10% (v/v) FBS and 0.5% L-glutamine (Sigma). Trans-

fection was achieved using CaPO4 precipitation. Briefly,

DNA/CaCl2 mix was added to an equal volume of 2 �
HEPES-buffered saline (pH 7.12), incubated for 10 min at

room temperature, and then added to approximately 40% con-

fluent HEK293T monolayers. After overnight incubation, the

medium was replaced with Ultra CHO cell medium (Gibco)

and cells incubated for a further 48 h. Cells were lysed with

RIPA buffer (supplemented with Phosstop (Merck Millipore)

and complete Mini EDTA-free protease inhibitor cocktail) and

cell debris removed by centrifugation at 20 000g for 10 min at

48C. Recombinant 37LRP was then purified by protein A affi-

nity chromatography using HiTrap protein A–sepharose HP

columns and the AKTA PrimePlus purification system, accord-

ing to the manufacturer’s instructions (GE Healthcare,

Amersham, UK). Briefly, the clarified lysate was mixed with

an equal volume of binding buffer, containing 20 mM sodium

phosphate and 150 mM NaCl (pH 7.3), and then applied to

the column. After washing unbound proteins, using the same

buffer, 37LRP was eluted using 0.1 M glycine (pH 2.5), and
the pH neutralized with 1 M Tris–HCl (pH 8.8). Eluted

proteins were then dialysed into PBS.

5.13. Enzyme-linked immunosorbant assays
100 ml lactose-purified recombinant human Gal-3 (Calbiochem)

or BSA (5 mg ml21) in PBS was used to coat amino-reactive

96-well microtiter plates (Immobilizer Amino; Nunc) over-

night at 48C. Bacterial strains were grown in liquid culture,

washed and labelled with digoxigenin (Roche) as descri-

bed previously [51]. Labelled bacteria were added to ELISA

plates for 2–4 h at room temperature. Plates were washed

with PBS/T and incubated with 100 ml polyclonal anti-digoxi-

genin Fab fragment–alkaline phosphatase antibody (1 : 5000;

Roche) in PBS/1% BSA for 1 h, and then washed several

times as described above. 100 ml of alkaline phosphatase sub-

strate (5 mg ml21; Roche) was added to each well, and the

absorbance measured at 405 nm after 15 min using an ELISA

reader (Biotek EL800). Inhibition assays were performed as

described above, except that bacteria were pre-incubated

with lactose or sugars for 2 h at room temperature before

being added. For LamR/Gal-3 binding, 100 ml aliquots of

8.7 mg ml21 37LRP proteins were immobilized as above.

Following washing in PBS/T, wells were blocked with 1%

BSA/PBS for 1 h. 100 ml of 5 mg ml21 Gal-3 was then added

and incubated at room temperature for 1 h. After washing,

100 ml of mouse anti-Gal-3 (9H3.2; 1 : 8000 diluted in 1%

BSA/PBS) was added and incubated at 48C overnight. After

washing, 100 ml anti-mouse IgG-HRP conjugate (1 : 8000

diluted in 1% BSA/PBS) was added and incubated at 48C over-

night. Plates were again vigorously washed and colour

developed by adding 100 ml ABTS substrate (Roche). Plates

were read at an absorbance of 405 nm.

5.14. Cross-linking
Cross-linking was performed as described previously [41].
Briefly, N. meningitidis was incubated with Gal-3 conjugated

to the light-activated cross-linker Sulfo-SBED. After photoac-

tivation, in which the reactive biotin moiety is transferred to

molecules in close proximity to the cross-linking agent, cells

were washed, lysed, subjected to SDS–PAGE and immuno-

blotting, and probed with streptavidin before molecules

were identified using MALDI-TOF.
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