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ABSTRACT: In this work we propose a general theoretic framework for the derivation of constitutive 
equations for dual-phase steels, undergoing continuum finite deformation. The proposed framework is based 
on the generalized plasticity theory and comprises the following three basic characteristics: 

1. A multiplicative decomposition of the deformation gradient into elastic and plastic parts. 
2. A hyperelastic constitutive equation 
3. A general formulation of the theory which prescribes only the number and the nature of the internal 

variables, while it leaves their evolution laws unspecified. Due to this generality several different 
loading functions, flow rules and hardening laws can be analyzed within the proposed framework 
by leaving its basic structure essentially unaltered. 

As an application, a rather simple material model, which comprises a von-Mises loading function, an associ-
ative flow rule and a non-linear kinematic hardening law, is proposed. The ability of the model in simulating 
simplified representation of the experimentally observed behaviour is tested by two representative numerical 
examples. 
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1 INTRODUCTION 

Dual-Phase (DP) steels are a sub-group of ad-
vanced high strength steels comprising a soft ferrite 
matrix and a hard martensite phase in the form of 
islands. The combination of the unique formability 
properties of the ferrite matrix and the high 
strength properties of the martensite microstructure 
gives rise to a highly efficient steel alloy in terms 
of ductility, drawability and formability (see, e.g., 
[1]). As a result DP steels are increasingly used in 
the automotive industry, and in particular in sheet 
metal forming processes. Nevertheless, their wide-
spread application is still limited due to their ex-
tremely complex behaviour, which can affect 
spring-back after forming. For these reasons, there 
is a great need for a better understanding of these 
materials and accordingly for the development of 
accurate constitutive models in order to fully ex-
ploit and apply their potential. Moreover, the large 

strains which occur during metal forming processes 
call for the development and the implementation of 
a finite deformation constitutive theory.  
The basic objective of this study is the introduction 
of a general theoretical framework which in turn 
can be used as a basis for the constitutive model-
ling of DP steels, within the finite strain regime. 
The framework is based on the theory of general-
ized plasticity (see, e.g., [2-5]; see also the recent 
developments given in [6], where emphasis is paid 
in the present case). Generalized plasticity is a 
local internal variable theory of rate-independent 
behaviour which is physically motivated by load-
ing-unloading irreversibility and is mathematically 
founded on set theory and topology. This mathe-
matical foundation provides the theory the ability 
to deal with some “non-standard” cases. Such cases 
may comprise non-conventional elastic-plastic 
response, which may appear during a loading re-
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versal and/or a (proportional or non-proportional) 
change of the deformation path. 
This work represents also a first attempt to show 
the applicability of the framework in the constitu-
tive modelling of the materials in question. In order 
to accomplish this goal a rather simple material 
model is proposed. The model is implemented 
numerically and its ability in simulating several 
patterns of the experimentally observed behaviour 
is demonstrated by two representative numerical 
examples.    
 
2 BASIC EQUATIONS 

As a starting point we assume a continuum body 
made from a DP steel alloy, which - at time t - 
occupies a reference configuration 3 ,B  with 
particles labeled by .BX  A deformation of B  is 
defined as the (time-dependent) mapping  

:  ( , t),B b x x x X  (1) 

which maps the points of the reference configura-
tion B  onto the points x of the spatial configura-
tion .b The deformation gradient is defined as the 
derivative of the deformation (1), that is 

( , t)
( , t) .

t

  
x X

F F X  (2) 

The basic kinematic assumption consists of a local 
decomposition of the deformation gradient F   into 
elastic eF  and plastic pF  parts (see, e.g., [3], [5], 

[7, pp. 301-303]), i.e. 

. e pF F F  (3) 

By following Simo and Hughes [7, pp. 303-305] 
we consider the plastic right and the elastic left 
Cauchy-Green (deformation) tensors pC  and  ,eb  

respectively, which are defined as 

,  . T T
p p p e e eC F F b F F   (4) 

We note that both pC  and  eb  are symmetric and 

positive-definite and accordingly they can serve as 
primitive measures (metrics) of plastic defor-
mation.  These metrics are related by: 

1 ; T
e pb FC F  one says that  eb  is the push-

forward (see, e.g., [5]) of 1,
pC that is eb  is 1

pC  as 

perceived in the spatial configuration. 
The local state at the point X is assumed to be 
determined by the second Piola-Kirchhoff stress 
tensor S, the tensor pC  and the hardening variables 

A  and Q. As usual, A   is a scalar internal variable 

which serves as a measure of isotropic hardening, 
while Q  is a tensorial internal variable which 
serves as a measure of directional hardening. 
The flow rule in generalized plasticity is derived on 
the basis of a loading/unloading postulate, the 
continuity of the material behavior and the defining 
property of the loading surface (see, e.g., [2-5]) in 
the following form  

1 ( ) ( , , , ) : .H F  ppC S C Q N S   (5) 

In Eq. (5), H  is a scalar function of the mathemat-
ical expression for the loading surfaces which is 
assumed to be given as a one- parameter family of 
curves, that is ( , , , ) ,F F m  S C Q  C is the 

right Cauchy-Green tensor ( ) TC F F and   is a 

non-vanishing (tensorial) function of the state vari-
ables which is associated with the direction of the 
plastic flow. Next, in Eq. (4),   stands for the 

Macauley bracket, i.e. ( ) / 2,x x x   and N is 

the normal vector to the loading surface at the 
current stress point. The particular case ,N  cor-
responds to normality or associative plasticity. It is 
noted that the tensor C is used as a basic state vari-
able in addition to S, since it is included among the 
arguments of the functions F  and ;  such a formu-
lation is called the convected representation of the 
theory and offers several advantages for the devel-
opment of a finite theory (see, e.g., [5], [7, p. 261]). 
In view of Eq. (4) and in accordance with classical 
plasticity theories, the rate equations for the evolu-
tion of the hardening variables may be stated in the 
form   

( ) ( , , , ) : ,

( ) ( , , , ) : ,

H F M

H F

  
 

S C Q N S

Q P S C Q N S
  (6) 

where M  and Q  stand for a scalar and a tensorial 
function of the state variables.  
To this end it is interesting to note that the decom-
position (3) is a local one (see, e.g., [7, pp. 302-
303]) and accordingly the (intermediate) configura-
tion which appears upon unloading (by 1),

eF  is in 

fact a collection of local unloaded configurations, 
that is a manifold. This can be endowed by a non-
Euclidean metric - say eG  - so that pC  and eb  can 

be redefined - see [4, 8] for details - as follows 

,  . T T
p p e p e e e eC F G F b F G F   (7) 

By means of these definitions, several curved ma-
terial structures may be analyzed without the re-
quirement of testing every local neighborhood of 
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the body. By using Eqs. (7), in place of Eqs. (3), 
the curved structure can be accounted for by means 
of the metric eG of the (curvilinear) coordinate 

system of the local configuration. This approach 
may find application in DP steels, in the case 
where curved specimens, like the triangle or Na-
gajima specimens, are used in place of the standard 
cylindrical or rectangular ones. 
The formulation of the theory is supplemented by 
the stress-deformation (strain) relations. Without 
loss of generality, it may be assumed that the stress 
response is hyperelastic, governed by an isotropic 
strain energy function (see, e.g., [5], [7, p.258]) in 
terms of the first 1( )I  and the third 3( )I invariants 

of the tensor 1,
pCC  that is 

1 3 3

3 1

( , ) ( 1)
4

( ) ln ( 3),
2 2

E I I I

I I


 

 
   

   

where  and  are material parameters to be inter-

preted as Lame  parameters. Then the stress re-
sponse is determined by the standard relation (see, 

e.g., [7, p. 256]) 2 ,
E S
C

 which yields 

1 1 1
3( 1) ( ).

2 2
I

      pS C C C   (8) 

Next we derive an equivalent assessment of the 
basic equations in the spatial configuration. These 
can be done in a straight forward manner by per-
forming a push-forward operation (see, e.g., [5]) to 
the basic Eqs. (4), (5) and (7). The resulting equa-
tions read  

3

( ) ( , , , ) : ,

( ) ( , , , ) : ,

( ) ( , , , ) : ,

( 1) ( ),
2

L h f L

h f L

L h f L

i


 


 


 


   

v e v

v

v v

e

b q F n

q F n

q p q F n

I b I

  
 
 


  (9) 

where   is the Kirchhoff stress tensor 

( ), TFSF  q is the push-forward of Q and 

( )L v stands for the Lie derivative (see, e.g. [5], [7, 

pp. 254-255]). Further, in Eqs. (8) ,  f and h 

stand for the equivalent expressions of the scalar 
invariants ,A  F  and H in terms of the spatial vari-
ables and ,  p and n are the push-forwards of the 
functions ,  P and N in the spatial configuration. 

Finally,   is the spatial expression for M, 3i  is the 

third invariant of eb  and I is the identity (rank -2) 

tensor. The presence of the deformation gradient F 
among the arguments of the functions ,   and p 
is noteworthy. This is due to the push-forward 
operation by which equations (8) are derived from 
their referential counterparts. 
Eqs. (4), (5) and (6) - or equivalently Eqs. (8) - 
constitute a rather general approach to the consti-
tute modeling of DP steels within the context of the 
multiplicative decomposition (3). In order to de-
velop a particular model we have to specify: 

1. The mathematical expression for the load-
ing surfaces F  (or equivalently f), 

2. The expression for the scalar function H 
(or h), 

3.  The expressions for the state functions 
, M and P (or ,   and p).    

These will be specified in the forthcoming section 
where a rather simple model is proposed. 
 
3 MATERIAL MODEL 

From the aforementioned analysis it is concluded 
that a finite strain model may in principle be for-
mulated equivalently with respect to the reference 
or the spatial configurations. Since we deal with 
large scale plastic flow, the kinematics of the prob-
lem, together with the concept of spatial invariance 
(see, e.g., [5]), suggest that a formulation in the 
spatial configuration is more fundamental. Moreo-
ver a careful observation of the basic equations, 
reveals that the spatial ones, although involving Lie 
derivatives, are in general simpler than their refer-
ential counterparts. Accordingly, we develop the 
model in the spatial configuration. An equivalent 
assessment of a related model in the reference 
configuration can be found in [6]. 
For this purpose we introduce a von-Mises type of 
expression for the loading surfaces, 

2
( ) ( ) ,

3 yf dev K m    q 
where ( )dev  stands for the deviatoric operator,   

is the Euclidean norm, y  is the uniaxial (Kirch-

hoff) yield stress and K is the isotropic hardening 
modulus. Note that the initial loading surface aris-
ing for 0m  constitutes the yield surface of classi-
cal plasticity ([4], [6]; see also [7]). Note further, 
that more sophisticated expressions for the loading 
surface family which may comprise distortional 
hardening (see, e.g., [9, 10]) can be implemented in 
place of f, at some computational cost, without any 
conceptual difficulty. 
The plastic flow is assumed to be governed by the 
associated flow rule ( )n  i.e.  
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( ) : ,L h f Lv e vb n n     

while for the evolution of the isotropic hardening 
variable , motivated by the infinitesimal theory 
(see, e.g., [7, pp. 90, 9])we assume a rate equation 
of the form   

2
( ) : .

3
h f L  vn     

For the evolution of the kinematic hardening varia-
ble q we consider an evolution law of Armstrong-
Frederic type, that is 

2
H ,

3
L L L v v eq b q    

where H and L are the linear and non-linear kine-
matic hardening moduli, respectively. 
Finally, for the scalar function h we assume an 
expression discussed in [11], which within the 
present (finite strain) context is expressed in a 
somewhat surprising format, as  

1
( ) ,

2 ( ) ( )

f
h f

K L L R f          

where   and R are two additional model parame-

ters. 
 
4 NUMERICAL SIMULATIONS 

In this section we implement the proposed model 
numerically - see [5] for computational details - in 
order to test its ability in predicting some of the 
complex phenomena appearing in DP steels. In 
particular we consider two examples: one of simple 
shear and another one of uniaxial tension.   

4.1 SIMPLE SHEAR 
The simple shear problem constitutes a standard 
test within the context of finite deformation plastic-
ity and is defined as 

1 1 2 2 2 3 3,,  ,  x X X x X x X       

where (t)   is the applied shear. Our purpose in 

this example is to show the effect of the basic 
model parameters   and R in a typical DP steel 

alloy stress-strain curve. For this purpose we con-
sider elastic perfectly-plastic behaviour i.e. we 
assume that H 0.K L   The remaining pa-
rameters are set equal to 
 

205 ,  0.3, 420yE GPa MPa     

 
 

 

Fig. 1 Simple shear: Typical monotonic stress-
strain curves. 

The monotonic stress-strain curves predicted by the 
model for three different values of the parameter   are shown in Fig. 1.  

By referring to this figure we note that the predict-
ed stress-strain curves have the same qualitative 
characteristics with the monotonic curves reported 
by Tarigopula et al. in [12]. In particular they show 
a general a smooth elastic-plastic transition and 
finally the stress convergences to the ultimate 
strength. Moreover we note that higher is the value 
of   is, the higher is the predicted stress; accord-

ingly it is concluded that   has to be related di-

rectly to the ultimate strength of the steel.  
As a second illustration, we show the effect of the 
parameter R in a typical loading-unloading-
reloading stress-strain curve ( 320).   The results 

are shown in Fig. 2.  
 

 

Fig. 2 Simple shear: Typical loading-unloading-
reloading stress-strain curve. 

In this case we note the ability of the model in 
predicting an unconventional response, according 
to which, the reloading, following (plastic) loading 
and subsequent (elastic) unloading, is not elastic up 
to the state where the unloading began, while the 
subsequent loading curve does not attain the (mon-
otonic) loading one. This is the so called long-term 
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or permanent softening effect (see, e.g. [13]). 
Moreover the ability of the model in predicting a 
very fast increase of the hardening rate upon re-
loading, which is characteristic in DP steels and is 
termed transient (rapid) strain hardening, is easily 
verified. 
Since the permanent softening effect appears more 
intense in higher strength DP steels (see, e.g., fig. 6 
in [13]), in view of fig. 2, we conclude that in gen-
eral a relative low value of R has to be chosen for 
a high strength DP steel alloy; on the other hand a 
relative large value of R corresponds to a lower 
strength one.  

4.2 TENSION-COMPRESSION TEST 
ALONG THE ROLLING DIRECTION 

This one-component loading problem is defined as  

1 1 2 2 2

3

(1 ) ,  ,  (1 ) ,

(1 ) ;

x X X x X

x X

 


   
     

where 1 (t)  and 1 (t)  are the principal 

stretches (1 ) and (1 )  (see, e.g. [7, pp. 241-

242]) along the rolling and transverse directions 
respectively. Note that in the infinitesimal case, 

(t)  and (t)  are equal to the correspond-

ing principal strains. 
This simulation concerns primarily the validation 
of the model against the actual experimental results 
of a DP 780 steel reported in the recent paper by 
Sun and Wagoner [13]. The corresponding model 
parameters are: 

205,000 (Mpa), 0.3, 320 Mpa

=320 (Mpa), 1200 (Mpa), 50 (Mpa)

H 410 (Mpa), 1025 (Mpa).

yE

R K

L

 

  

 
 

 

As in [13] the material is subjected to uniaxial 
(monotonic) tension and in tension-compression 
(up to zero strain)-tension at three different strain 
levels. The results are shown in Fig. 3. 
As it is shown in this figure the model is able to 
describe actual experimental data. In particular the 
model can simulate in a very precise way, besides 
transient hardening and permanent softening phe-
nomena, and the Bauschinger effect,, that is the 
early re-yielding of the material in stress levels 
lower that the initial yield stress, upon a loading 
reversal. This response appears alike in a tension-
compression test (see Fig. 4) 
 
5 CONCLUSIONS 

In this work we have introduced a finite strain 
version of the theory of generalized plasticity and 
have shown it to constitute a convenient framework 
for modelling DP steel alloys. In particular: 

1. Based on the multiplicative decomposition 
of the deformation gradient and the use of 

a hyperelastic constitutive equation we 
have presented the theory in an invariant 
setting, i.e. a setting where the basic equa-
tions can be written in an equivalent man-
ner in both the reference and the spatial 
configuration. This approach has the ad-
vantage that one can find a configuration 
where the basic equations take their sim-
pler form and then recast them in the dual 
configuration by just performing a stand-
ard push forward or pull-back (see, e.g. 
[5]) operation. 

2. We have confined the theory in the sim-
plest possible setting by considering a 
von-Mises type expression of loading sur-
faces, an associated flow rule and a non-
linear kinematic hardening law. We have 
shown that, although this consideration is 
simple, it is able to simulate several pat-
terns of the complex behaviour of DP 
steels, upon a loading reversal. 

 

 

Fig. 3 Uniaxial loading-unloading-reloading: 
Bauschinger effect, transient hardening, 
permanent softening for a DP 780 steel al-
loy 

However, the assumption of a von-Mises type 
expression for the loading surfaces constitutes 
an oversimplification and in general a more 
sophisticated expression has to be introduced.  
In a future work 
1. We will extend the present model, to ad-

dress more complex phenomena, e.g., 
cross-hardening and latent hardening ap-
pearing upon a change of the loading path. 
For this purpose a more complicated load-
ing function, which  (possibly) comprises 
distortional hardening will be considered 
within the present model, 

2. We will implement the model within the 
context of the finite element method, 
where special emphasis will be given in 
spring-back predictions.  
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Fig. 4 Uniaxial loading: Tension-compression 
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