
Lehre, Per Kristian and Dang, Duc-Cuong (2016) Self-
adaptation of mutation rates in non-elitist populations. In:
14th International Conference on Parallel Problem
Solving from Nature, 17-21 Sept 2016, Edinburgh, UK.
(In Press)

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/34365/1/self-adaptive-arxiv.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Self-adaptation of Mutation Rates

in Non-elitist Populations

Duc-Cuong Dang1, Per Kristian Lehre1

School of Computer Science, University of Nottingham, United Kingdom
{duc-cuong.dang,PerKristian.Lehre}@nottingham.ac.uk

Abstract. The runtime of evolutionary algorithms (EAs) depends criti-
cally on their parameter settings, which are often problem-specific. Auto-
mated schemes for parameter tuning have been developed to alleviate the
high costs of manual parameter tuning. Experimental results indicate that
self-adaptation, where parameter settings are encoded in the genomes of
individuals, can be effective in continuous optimisation. However, results
in discrete optimisation have been less conclusive. Furthermore, a rigorous
runtime analysis that explains how self-adaptation can lead to asymptotic
speedups has been missing. This paper provides the first such analysis for
discrete, population-based EAs. We apply level-based analysis to show
how a self-adaptive EA is capable of fine-tuning its mutation rate, leading
to exponential speedups over EAs using fixed mutation rates.

1 Introduction

An obstacle when applying Evolutionary Algorithms (EAs) is that their efficiency
depends crucially, and sometimes unpredictably, on their parameter settings,
such as population size, and mutation rates. Parameter tuning [7], where the
parameters are fixed before running the algorithm, is the most common way
of choosing the parameters. A weakness with parameter tuning is that optimal
parameter settings may depend on the current state of the search process. In
contrast, parameter control allows the parameters to change during the execution
of the algorithm, e.g. according to a fixed schedule (e.g. as in simulated annealing),
through feedback from the search, or via self-adaptation [7]. Adaptive parameters
can be essential and advantageous (e.g. covariance-matrix adaptation [8]) in
continuous search spaces. In discrete spaces, it has been shown that changing the
mutation rate as a function of the current fitness [2] can improve the runtime,
and the 1/5-rule has been used to adapt the population size [5].

While previous studies have shown the benefit of adaptive parameters, only
global parameters were analysed. Our focus is different, we look at the so-called
“evolution of evolution” or true self-adaptation [7], in which the parameter is
encoded in the genome of individual solutions. As far as we know, the existing
studies on this topic from the EC literature is mostly experimental [1, 7, 12], or
about proving the convergence of the population model at their limit [1], i. e.
infinite population.

We study how mutation rates can evolve within a non-elitist population,
where the mutation rate of each individual is encoded by its own genome. The
rate at which the mutation rate mutates is specified by a strategy parameter
p. In endogenous control, the strategy parameter is itself evolved [1, 13]. Here,
we consider exogenous control of the strategy parameter p, where the value
of the parameter is fixed before the run. Our contribution is twofold: using
LeadingOnes as a benchmark, we provide the necessary and sufficient conditions,
especially those on p, for self-adaptation to work; by making a small modification
of the function, we show that self-adaptation is essential in optimising the modified
function, more precisely that a single mutation rate or uniform mixing of mutation
rates requires exponential time, while self-adaptation is efficient. We also prove
that a non-elitist EA can outperform the (µ+λ) EA.

2 Preliminaries

For any n ∈ N, define [n] := {1, . . . , n}. The natural logarithm is denoted by
ln(·), and the logarithm to the base 2 is denoted by log(·). For x ∈ {0, 1}n, we
write x(i) for the i-th bit value. The Hamming distance is denoted by H(·, ·)
and the Iverson bracket by [·]. Given a partition of a search space X into m
ordered “levels” (A1, . . . , Am), we define A≥j := ∪mi=jAi. A population is a vector

P ∈ X λ, where the i-th element P (i) is called the i-th individual. Given A ⊆ X ,
we let |P ∩A| := |{i | P (i) ∈ A}| be the number of individuals in population P
that belong to the subset A. All algorithms considered here are of the form of
Algorithm 1 [4]. A new population Pt+1 is generated by independently sampling λ
individuals from an existing population Pt according to psel, and perturbing each
of the sampled individuals by a variation operator pmut. The selection mechanism
psel implicitly embeds a fitness function g : Y → R.

Algorithm 1 [4]

Require: Finite search space Y with an initial population P0 ∈ Yλ.
1: for t = 0, 1, 2, . . . until a termination condition is met do
2: for i = 1 to λ do

3: Sample It(i) ∈ [λ] according to psel(Pt), and set x := Pt(It(i)).
4: Sample x′ ∈ Y according to pmut(x), and set Pt+1(i) := x′.

We consider the standard bitwise mutation operator, where for any pair of
bitstrings x, x′ ∈ {0, 1}n and any mutation rate χ ∈ (0, n], the probability of

obtaining x′ from x is Pr (x′ = mut(x, χ)) = (χ/n)
H(x,x′)

(1− χ/n)
n−H(x,x′)

. To
model the parameter control problem, we assume that Algorithm 1 must choose
mutation rates from a predefined set M.

Uniform mixing, denoted pmix
mut, chooses the mutation rate χ uniformly

at random from the set M every time an individual is mutated, pmix
mut(x) :=

mut(x, χ), where χ ∼ Unif(M).

The special case of |M| = 1, i.e. a fixed mutation rate, has been studied
extensively [4, 11].

Here, we focus on |M| > 1. It is known that such mixing of mutation operators
can be beneficial [10, 6].

Self-adaptation uses an extended search space Y = X × M, where each
element (x, χ) consists both of a search point x ∈ X and a mutation rate χ ∈ M.
A fitness function g : Y → R is defined by g((x, χ)) := f(x) for all (x, χ) ∈ Y . The

mutation operator pmut is written as padaptmut and it is parameterised by a globally

fixed parameter p ∈ (0, 1/2] such that padaptmut ((x, χ)) := (x′, χ′) where χ′ = χ
with probability 1− p, and χ′ ∼ Unif(M\ {χ}) otherwise, and x′ = mut(x, χ′).

We analyse the runtime of Algorithm 1 using the level-based theorem [3]. This
theorem applies to any population-based process where the individuals in Pt+1

are sampled independently from the same distribution D(Pt), where D maps
populations Pt to distributions over the search space X . In Algorithm 1, the map
is D = pmut ◦ psel, i.e., composition of selection and mutation.

Theorem 1 ([3]). Given a partition (A1, . . . , Am+1) of X , define T := min{tλ |
|Pt ∩Am+1| > 0} to be the first point in time that elements of Am+1 appear in Pt
of Algorithm 1. If there exist parameters z1, . . . , zm, z∗ ∈ (0, 1], δ > 0, a constant
γ0 ∈ (0, 1) and a function z0 : (0, γ0) → R such that for all j ∈ [m], P ∈ X λ,
y ∼ D(P) and γ ∈ (0, γ0] we have

(G1) Pr (y ∈ A≥j | |P ∩A≥j−1| ≥ γ0λ) ≥ zj ≥ z∗
(G2) Pr (y ∈ A≥j | |P ∩A≥j−1| ≥ γ0λ, |P ∩A≥j | ≥ γλ) ≥ z0(γ) ≥ (1 + δ)γ

(G3) λ ≥
2

a
ln

(

16m

acεz∗

)

with a =
δ2γ0

2(1 + δ)
, ε = min{δ/2, 1/2} and c = ε4/24

then E [T] ≤ (2/cε)(mλ(1 + ln(1 + cλ)) +
∑m
j=1 1/zj).

We apply the negative drift theorem for populations [9] to obtain tail bounds
on the runtime of Algorithm 1. For any individual Pt(i) in Algorithm 4 where
t ∈ N and i ∈ [λ], define Rt(i) := |{j ∈ [λ] | It(j) = i}|, i.e., the number of times
the individual was selected. We define the reproductive rate of the individual Pt(i)
to be E [Rt(i) | Pt], i.e., the expected number of offspring from individual Pt(i).
Informally, the theorem states that if all individuals close to a given search point
x∗ ∈ X have reproductive rate below a certain threshold α0, then the algorithm
needs exponential time to reach x∗. The threshold depends on the mutation
rate. Here, we derive a variant of this theorem for algorithms that use multiple
mutation rates. In particular, we assume that the algorithm uses m mutation
rates, where mutation rate χi/n for i ∈ [m] is chosen with probability qi. The
proof of this theorem is similar to that of Theorem 4 in [9], and thus omitted

Theorem 2. For any x∗ ∈ {0, 1}n, define T := min{t | x∗ ∈ Pt}, where Pt is
the population of Algorithm 1 at time t ∈ N. If there exist constants α0, c, c

′, δ > 0
such that with probability 1− e−Ω(n)

– the initial population satisfies H(P0, x
∗) ≥ c′n

– for all t ≤ ecn and i ∈ [λ], if H(Pt(i), x
∗) ≤ c′n, then the reproductive rate

of individual Pt(i) is no more than α0,

–
∑m
j=1 qje

−χj ≤ (1− δ)/α0, and maxj χj ≤ χmax for a constant χmax ,

then Pr
(

T ≤ ec
′′n
)

= e−Ω(n) for a constant c′′ > 0.

Proof (of Theorem 2). We apply Theorem 1 in [9]. The first condition holds
immediately. We use the distance function g(x) := H(x, x∗) over the interval

[b(n)/2, b(n)], where b(n) := n/(e2κ − 1) and κ := max
{

ln(2), ln
(

4χmax

ln(1+δ)

)}

.

Without loss of generality, we assume that x∗ = 1n, hence g(x) is the number of
0-bits in x.

For the second condition, the drift of the process ∆(i) := (g(Xt+1)− g(Xt) |
g(Xt) = i) is a sum ∆(i) = ∆+(i)−∆−(i) of two binomially distributed random
variables, the number of 1-bits flipped ∆+(i) ∼ Bin(n− i, Q), and the number of
0-bits flipped, where Q ∼ q. For i < b(n), we use exp(np(eκ − 1)) as an upper
bound on the mgf of a binomially distributed random variable with parameters
n and p, and get

E
[

e−κ∆(i) | Xt

]

= E
[

E
[

e−κ(∆
−(i)−∆+(i)) | Q

]

| Xt

]

≤

m
∑

j=1

qj exp
(

(n− i)(χj/n)(e
−κ − 1) + i(χj/n)(e

κ − 1)
)

=

m
∑

j=1

qj exp
(

−χj(1− e−κ) + (i/n)χj(e
κ − e−κ))

)

=
m
∑

j=1

qj exp
(

−χj(1− 2e−κ)
)

.

Noting that e−κ ≤ ln(1 + δ)/(4χmax), we get

E
[

e−κ∆(i) | Xt

]

≤

m
∑

j=1

qj exp (−χj) exp
(

χmax 2e
−κ)
)

≤

m
∑

j=1

qj exp (−χj) (1 + δ)1/2 ≤
1

α0(1 + δ)1/2
.

The second condition is then satisfied. The third and fourth conditions can be
satisfied for any mutation rate χ/n for appropriate positive constants δ2, δ3 ∈ (0, 1)
and D(n), as long as κ(n) ≥ ln(2) (see the proof of Theorem 4 in [9]). ⊓⊔

3 General negative results

Using Theorem 2, we can now show general negative results for uniform mixing
and self-adaptation of two mutation rates for any function with a unique global
optimum x∗, assuming that the initial population is positioned sufficiently far
away from x∗. The following theorem is a special case of Theorem 2 for |M| = 1.

Theorem 3. The runtime of Algorithm 1 with reproductive rate α0 and mutation
rate χhigh/n ≥ (ln(α0) + δ)/n for some constant δ > 0 satisfies Pr (T ≤ ecn) =
e−Ω(n) on any function with a unique global optimum x∗ assuming that H(P0, x

∗) ≥
c′n for two constants c > 0 and c′ ∈ (0, 1).

For binary tournament and (µ, λ)-selection, α0 is bounded from above by 2
and λ/µ respectively. Hence, any mutation rate above ln(2) for 2-tournament
selection and ln(λ/µ) for (µ, λ)-selection by a constant renders the EA inefficient.

For |M| = 2, we have the following general result, again due to Theorem 2.

Theorem 4. Consider Algorithm 1 with reproductive rate α0 and mutation rates
χlow/n and χhigh/n. If there exist constants δ1, δ2, ε > 0 such that

– χlow ≥ ln(α0)− ln(1 + δ1) and χhigh ≥ ln(α0)− ln(1− δ2),

– the EA chooses mutation rate χhigh with probability at least δ1(1+ε)
δ1+δ2

,

then Pr (T ≤ ecn) = e−Ω(n) on any function with a unique optimum x∗ given
that H(P0, x

∗) ≥ c′n for some constants c′, c > 0

Proof (of Theorem 4). We have

q1e
−χlow + q2e

−χhigh = (1− q2)e
−χlow + q2e

−χhigh

≤ ((1− q2)(1 + δ1) + q2(1− δ2))/α0

= (1 + δ1 − q2(δ1 + δ2))/α0 ≤ (1− εδ1)/α0,

which by Theorem 2 implies the result. ⊓⊔

Uniform mixing selects the mutation rate χhigh/n with probability 1/2. Thus,
if δ1/(δ1 + δ2) is below 1/2 by a constant then the EA is inefficient. For example,
in binary tournament, the setting χlow ≥ ln(3/2)− ln(100/99) and χhigh ≥ ln 3 +
ln(33/32) satisfies the conditions of the theorem for δ1 = 103/297, δ2 = 105/297
and δ1/(δ1 + δ2) = 103/208 < 1/2. Theorem 8 later on will show the efficiency of
self-adaptation in this setting in contrast to the uniform mixing. In self-adaptation,
χhigh/n is selected with at least probability p, thus self-adaptation does not work
if p is above δ1/(δ1 + δ2) by a constant.

4 Robust self-adaptation

The previous section showed how critically non-elitist EAs depend on having
appropriate mutation rates. A slightly too high mutation rate χhigh can lead to
an exponential increase in runtime. Uniform mixing of mutation rates can fail if
the of mutation rates M contains one such high mutation rate, even though the
set also contains an appropriate mutation rate χlow.

Self-adaptation has a similar problem if the strategy parameter p is chosen
too high. However, we will prove for a simple, unimodal fitness function that for
a sufficiently small strategy parameter p, self-adaptation becomes highly robust,
and is capable of fine-tuning the mutation rate. For the rest of this section,

we consider a set of two mutation rates M = {χlow, χhigh} which for arbitrary

parameters ℓ ∈ [n] and ε > 0 are defined by
(

1−
χhigh

n

)ℓ
< µ

λ ≤
(

1−
χhigh

n

)ℓ−1

and µ
λ (1 + ε) ≤

(

1− χlow

n

)n
. By the previous section, if ℓ is chosen sufficiently

small, and hence χhigh sufficiently high, then uniform mixing will fail on any
problem with a unique optimum. In contrast, using a Chernoff and a union bound,
the following lemma shows that individuals that have chosen χhigh will quickly
vanish from a self-adapting population, and the population will be dominated by
individuals choosing the appropriate mutation parameter χlow.

Lemma 1. Let Yt := |Pt ∩ A−1| where Pt is the population of Algorithm 1 at
time t ∈ N with (µ, λ)-selection on LeadingOnes and the set A−1 is as defined
in Eq. (1). Then Pr (Yt ≥ max((3/4)µ, (1− p/3)tY0)) ≤ t · e−Ω(λ)for all t ∈ N.

Proof (of Lemma 1). For an upper bound, we assume that search points in B
have higher fitness than search points outside B. The probability of producing a
B-individual with (µ, λ)-selection is at most

(

1−
χhigh

n

)ℓ
(

Yt
µ
(1− p) +

(

1−
Yt
µ

)

p

)

≤
(µ

λ

)

(

Yt
µ
(1− 2p) + p

)

≤
(µ

λ

)

(

max

(

3

4
,
Yt
µ

)

(1− 2p) + p

)

≤ max

(

3µ

4λ
,
Yt
λ

)

(1− 2p/3) =: ps

Hence, Yt+1 is stochastically dominated by a random variable Z ∼ Bin(λ, ps). It
now follows by a Chernoff bound that

Pr (Yt+1 ≥ max (3µ/4, (1− p/3)Yt)) ≤ Pr

(

Z ≥ E [Z]

(

1 +
p

3− 2p

))

≤ exp

(

−
p2µ

12(3− 2p)

)

.

The proof now follows by induction on t and a union bound. ⊓⊔

Theorem 5. Algorithm 1 with (µ, λ)-selection where λ ≥ c ln(n) for a sufficiently
large constant c > 0, and self-adaptation from the set M = {χlow, χhigh} using a
sufficiently small constant strategy parameter p satisfying (1 + ε)(1− p) ≥ 1 + pε
has expected runtime O(nλ log(λ) + n2) on LeadingOnes.

Proof. We partition the search space into the following n+ 2 levels

Aj :=

{(x, χhigh) | Lo(y) ≥ ℓ} if j = −1

{(x, χlow), (x, χhigh) | Lo(x) = j} if 0 ≤ j ≤ ℓ− 1

{(x, χlow) | Lo(x) = j} if ℓ ≤ j ≤ n.

(1)

The special level A−1 contains search points with too high mutation rate. We
first estimate the expected runtime assuming that there are never more than

(3/4)µ individuals in level A−1. In the end, we will account for the generations
where this assumption does not hold.

We now show that conditions (G1) and (G2) of the level-based theorem hold
for the parameters γ0 := (1/8)(µ/λ), δ := pε, and zj = Ω(1/n). Assume that the
current population has at least γ0λ = µ/8 individuals in A≥j−1 and γλ < γ0λ
individuals in A≥j , for 0 ≤ j ≤ n and γ ∈ [0, γ0). If 0 ≤ j ≤ ℓ − 1, then an
individual can be produced in levels A≥j if one of the γλ individuals in these
levels is selected, and none of the first j bits are mutated. Assuming in the
worst case that the selected individual has chosen the high mutation rate, the

probability of this event is at least (γλµ)
(

(

1−
χhigh

n

)j
(1− p) +

(

1− χlow

n

)j
p
)

> (γλµ)
(

(

1−
χhigh

n

)ℓ−1
(1− p) +

(

1− χlow

n

)n
p
)

≥ γ(1 + pε). All individuals in

levels j ≥ ℓ use the low mutation rate. Hence, an individual in levels A≥j can
be produced by selecting one the γλ individuals in this level, not change the
mutation rate, and not flip any of the first j ≤ n leading 1-bits. The probability

of this event is at least γλ
µ

(

1− χlow

n

)j
(1− p) > γλ

µ

(

µ
λ (1 + ε)(1− p)

)

≥ γ(1 + δ).

Condition (G2) is therefore satisfied for all levels. For condition (G1), assume
that the population does not contain any individuals in A≥j . Then in the worst
case, it suffices to select one of the at least γ0λ individuals in level Aj , switch
the mutation rate, and only flip the first 0-bit and no other bits. The probability

of this event is higher than γ0λ
µ

(

χlow

n

) (

1−
χhigh

n

)n−1
p = Ω(1/n).

Condition (G3) holds for any population size λ ≥ c ln(n) and a sufficiently
large constant c, because γ0 and δ are constants. It follows that the expected
number of generations until the optimum is found is t1(n) = O(n log(λ) + n2/λ).
By Markov’s inequality, the probability that the algorithm has not found the
optimum after 2t1(n) generations is less than 1/2.

Finally, we account for the generations with more than (3/4)µ individuals in
level A−1. We call a phase good if after t0(n) = O(log(λ)) generations and for the
next 2t1(n) generations, there are fewer than (3/4)µ individuals in level A−1. By
Lemma 1, a phase is good with probability 1− (t0(n) + 2t1(n)) · e

−Ω(λ) = Ω(1),
for λ ≥ c ln(n) and c a sufficiently large constant. By the level-based analysis, the
optimum is found with probability at least 1/2 during a good phase. Hence, the
expected number of phases required to find the optimum is O(1). The theorem
now follows by keeping in mind that each generation costs λ evaluations. ⊓⊔

We have shown that the EA can self-adapt to choose the low mutation
parameter χlow when required. Nevertheless, uniform mixing of mutation rates
with a sufficiently small χlow could achieve the same asymptotic performance.
Furthermore, naively picking a mutation rate from the beginning also has a
constant probability of optimising the function in polynomial time. Our aim is
therefore to show that there exists a setting for which all the above approaches,
except self-adaptation, fail. To prove this, we have identified a problem fm where
a high mutation rate is required in one part of the search space, and a low
mutation rate is required in another part. For 1 ≤ m < n, define fm(0

n) := m
and fm(x) := LeadingOnes(x) for all x 6= 0n. We call the local optimum 0n the
peak, and assume that all individuals in the initial population are peak individuals.

It is clear that the elitist algorithm (µ+λ) EA without any diversity mechanism
will only accept a search point if it has at least m leading 1-bits.

Theorem 6. Starting at 0n, the (µ+λ) EA has expected runtime nΩ(m) on fm.

To reach the optimal search point more efficiently, it is necessary to accept
worse individuals into the population, e.g. a non-elitist selection scheme should be
investigated. Since fm has a unique global optimum, either using only a too high
mutation rate or uniformly mixing a correct mutation rate with a too high one can
lead to exponential runtime as discussed above. Analogously to the (µ+ λ) EA,
we also prove that using a too low mutation rate fails because the population is
trapped on the peak (e.g. due to Theorem 2, individuals fell off the peak have
too low reproductive rate to optimise m leading 1-bits). Subsequent proofs use
the two functions q(i) := (1− χlow/n)

i and r(i) := (1− χhigh/n)
i, which are the

probabilities of not flipping the first i ∈ [n] bits using mutation rate χlow/n and
χhigh/n respectively. Clearly, q(i) and r(i) are monotonically decreasing in i. We
also use the function β(γ) := 2γ(1− γ/2), which is the probability that binary
tournament selection chooses one of the γλ fittest individuals.

Theorem 7. The runtime of Algorithm 1 on fm with tournament size 2, ini-
tialised with the population at 0n and with fixed mutation rate χ ≤ ln(3/2)− ε
for any constant ε ∈ (0, ln(3/2)) satisfies Pr (T ≤ ecn) = e−Ω(λ) for a constant
c > 0.

Proof (of Theorem 7). We will prove that with probability 1− e−Ω(λ), all indi-
viduals during the first ecn generations have less than m leading 1-bits, where
c > 0 is a constant. Clearly, this stronger statement implies the theorem.

Choose the parameter δ ∈ (0, 1) such that ln((1+δ)/(1−δ)) = ε. We first show
by induction that with probability 1− e−Ω(λ), there are at least (λ/2)(1 + δ/2)
peak-individuals in each of the first ecλ generations, and we call the run of the
algorithm a failure otherwise. By Lemma 3, the probability of not mutating
any bits when n ∈ N is sufficiently large is q(n) ≥ e−χ(1 − δ) ≥ (2/3)(1 + δ).
Assume that there are γλ ≥ λ/2 peak individuals in the current population. A
peak individual is produced if a peak individual is selected and none of its bits
are flipped. The probability of this event is at least β(γ)q(n) ≥ β(1/2)q(n) =
(1/2)(2− 1/2)(2/3)(1 + δ) = (1/2)(1 + δ), where the first inequality uses the fact
that β(γ) is strictly increasing in γ over the interval [0, 1]. Hence, by a Chernoff
bound, the probability that the next generation contains less than (λ/2)(1 + δ/2)
peak individuals is e−Ω(λ). By induction and a union bound, the bound e−Ω(λ)

also holds for the next ecλ generations, if c > 0 is a sufficiently small constant.

We now assume that the run is not a failure. Furthermore, we assume that
the algorithm is optimising the function g(x) := min(m, fm(x)) instead of fm.
Clearly, the time to reach at least m leading 1-bits is the same, whether the
algorithm optimises g or fm. Assuming that there are more than (λ/2)(1 + δ/2)
peak individuals, the reproductive rate of any non-peak individual is always less

than λ
(

2(1/λ) (1− 1/λ− (1/2)(1 + δ/2)) + (1/λ)
2
)

< 1− δ/2 =: α0.

For non-peak individuals, the last n −m bit-positions are irrelevant when
the algorithm optimises g. We can therefore apply the negative drift theorem
(Theorem 2) with respect to the algorithm limited to the first m bit positions only.
The variation operator in this algorithm flips each of them bits independently with
probability χ′/m, where χ′ = χlow(m/n). Hence, we have e

−χ′

< 1 = (1−δ/2)/α0,
and the conditions of the theorem are satisfied. ⊓⊔

Theorem 8. If M = {χlow, χhigh} where χlow := ln(3/2)− ε for any constant
ε ∈ (0, ln(100/99)), and ln(3) ≤ χhigh = O(1), then there exists an m ∈ Θ(n)
such that Algorithm 1 starting with the population at 0n, with tournament size 2,
population size λ ≥ c lnn for some constant c > 0 and self-adaptation of M with
p = 1/20 has expected runtime O(nλ log(λ) + n2) on fm.

Our intuition is that with sufficiently high mutation rate, some individuals
fall off the peak and form a sub-population which optimises the LeadingOnes

part of the problem. This will happen if the selective pressure is not too high.
However, at the same time, the population should be able to reach the optimal
search point 1n after escaping the local optimum. Here we used the level-based
technique to infer constraints on the mutation rates and the strategy parameter
p. The proof idea follows closely from these observations.

We will need the following result to limit the number of individuals at
unfavourable portions of the search space, i. e. too many individuals in those
portions will prevent the algorithm from moving in the right direction.

Lemma 2. Given any subset A ⊂ X , let Yt := |Pt ∩ A| be the number of
individuals in generation t ∈ N of Algorithm 1 with tournament size 2, that
belong to subset A. If there exist three parameters ρ, σ, ε ∈ (0, 1) such that
Pr (pmut(y) ∈ A) ≤ ρ for all y ∈ A and Pr (pmut(y) ∈ A) ≤ σγ∗ − ε for all y 6∈ A,
where γ∗ := 2− (1− σ)/ρ, then Pr (Yt ≥ max (γ∗λ, (1− ε/2)tY0)) ≤ t · e−Ω(λ).

Proof (of Lemma 2). For an upper bound, we assume that all search points in A
have higher fitness than search points in X \A. The probability of selecting an
individual in A is therefore β(Yt/λ). The probability that any given offspring in
generation t+ 1 ≤ ecλ − 1 belongs to subset A is no more than

β(Yt/λ)ρ+ σγ∗ − ε ≤ β(max (γ∗, Yt/λ))ρ+ σγ∗ − ε

≤ 2max (γ∗, Yt/λ) (1−max (γ∗, Yt/λ) /2)ρ+ σγ∗ − ε

≤ 2max (γ∗, Yt/λ) (1− γ∗/2)ρ+ σγ∗ − ε

= max (γ∗, Yt/λ) (1− σ) + σγ∗ − ε

≤ max (γ∗, Yt/λ) (1− ε) =: ps.

Hence, Yt+1 is stochastically dominated by the random variable Z ∼ Bin(λ, ps).
It now follows by a Chernoff bound that

Pr (Yt+1 ≥ max(γ∗λ, Yt(1− ε/2))) ≤ Pr (Z ≥ max(γ∗λ, Yt(1− ε/2)))

≤ Pr

(

Z ≥ E [Z]

(

1 +
ε

2(1− ε)

))

≤ exp

(

−
ε2 max (γ∗λ, Yt)

12(1− ε)

)

≤ exp

(

−
ε2γ∗λ

12(1− ε)

)

.

The proof is completed by induction with respect to t and a union bound. ⊓⊔

Proof (of Theorem 8). We apply the level-based theorem with respect to a
partitioning of the search space X = {0, 1}n ×M into the following n+ 2 levels

Aj :=

{(0n, χlow), (0
n, χhigh)} if j = −1,

{(x, χlow), (x, χhigh) | Lo(x) = 0 ∧ x 6= 0n} if j = 0,

{(x, χlow), (x, χhigh) | Lo(x) = j} if 1 ≤ j ≤ ℓ− 2,

{(x, χlow), (y, χhigh) | Lo(x) = ℓ− 1,Lo(y) ≥ ℓ− 1} if j = ℓ− 1,

{(x, χlow) | Lo(x) = j} if ℓ ≤ j ≤ n.

where ℓ ∈ [n] is the unique integer such that
(

1−
χhigh

n

)ℓ
< 85

171 ≤
(

1−
χhigh

n

)ℓ−1
.

Note that as long as m ≤ ln(171/85)(n − 1)/χhigh, we have
(

1−
χhigh

n

)m
≥

(e−χhigh)
m

n−1 ≥ 85
171 >

(

1−
χhigh

n

)ℓ
, hence ℓ > m.

We first estimate the expected runtime assuming that every population
contains less than ψλ individuals in A−1, and less than ξλ individuals in the set
B := {(y, χhigh) | Lo(y) ≥ ℓ}, where ψ := 123/250 and ξ := 1/5. In the end, we
will account for the generations where these assumptions do not hold. We begin
by showing that condition (G2) of the level-based theorem hold for all levels.

Levels 0 ≤ j ≤ m: Assume that the population contains γλ individuals in
levels A≥j for any γ ∈ (0, γ0). An individual in A≥j will be selected if the
tournament contains at least one individual in A≥j , and no individuals in level
A−1. The probability of this event is β(γ) ≥ 2γ(1 − γ0/2 − ψ). The mutated
offspring of the selected individual will belong to levels A≥j if none of the first
j ≤ m bits are flipped, which occurs with probability at least r(m). Hence,
condition (G2) is satisfied if there exists a γ0 ∈ (0, 1) and a constant δ > 0 such
that for all γ ∈ (0, γ0], it holds β(γ)r(m) ≥ γ(1 + δ), i.e., it is sufficient to choose
m ∈ N sufficiently small such that r(m) =

(

1−
χhigh

n

)m
≥ 1+δ

2(1−γ0/2−ψ)
. Note

that such an m = Θ(n) exists, because 2(1− γ0/2− ψ) = 127/125− γ0 > 1 + δ
when γ0 and δ are sufficiently small.

Levels m+ 1 ≤ j < ℓ: The probability of mutating an individual from A≥j

into A≥j , pessimistically assuming that the selected individual uses the high
mutation rate χhigh, is at least r(ℓ−1)(1−p)+q(ℓ−1)p > r(ℓ−1)(1−p)+q(n)p >

(85/171)(1 − p) + (2/3)p = 1/2 + 1/180. Hence, assuming that the current
population has γλ individuals in A≥j where γ ∈ (0, γ0), the probability of selecting
one of these individuals and mutating them into A≥j is at least β(γ)(r(ℓ− 1)(1−
p) + q(ℓ− 1)p) > 2γ(1− γ0/2)(1/2 + 1/180) = γ(1− γ0/2)(1 + 1/90) > γ(1 + δ′)
for some δ′ > 0 given that γ0 is a sufficiently small constant. Note that the lower
bound on β(γ) here does not depend on ψ, and nor on ξ because in this setting
the peak individuals have lower fitness than the individuals in Aj , and B ⊂ A≥j .

Levels ℓ ≤ j ≤ n: By the level-partitioning, any individual in these levels uses
the low mutation rate χlow, and other individuals with at least ℓ leading 1-bits
belong to the set B. Assume that the current population contains γ ∈ (0, γ0)
individuals in levels A≥j . An individual in A≥j can be produced by having a
binary tournament with at least one individual from A≥j and none of the at most
ξλ individuals in B, not mutating any of the bits, and not changing the mutation
rate. The probability of this event is at least 2γ(1 − γ0/2 − ξ)q(n)(1 − p) ≥
γ(4/5− γ0/2)(19/15) = γ(1 + 1/75− (19/30)γ0) > γ(1 + δ′) for some constant
δ′ > 0, assuming that γ0 is sufficiently small.

We now show that condition (G1) of the level-based theorem is satisfied for
a parameter z = Ω(1/n) in any level j. Assume that the current population
contains at least γ0λ individuals in A≥j . Then, to create an individual in A≥j+1,
it is sufficient to create a tournament of two individuals from A≥j , flip at most
one bit, and either keep or switch the mutation rate. The probability of such an
event is at least γ20(χlow/n)(1− χhigh/n)

n−1p = Ω(1/n).

To complete the application of the level-based theorem, we note that since δ
and γ0 are constants, condition (G3) is satisfied when λ ≥ c lnn for some constant
c. Hence, under the assumptions on the number of individuals in level A−1 and
B described above, the level-based theorem implies that the algorithm obtains
the optimum in expected t1(n) = O(n log(λ) + n2/λ) generations. Furthermore,
by Markov’s inequality, the probability that the optimum has not been found
within 2t1(n) generations is less than 1/2.

To complete the proof, we justify the assumption that less than ψλ individuals
belong to level A−1, and less than ξλ individuals belong to B. We will show
using Lemma 2 that starting with any population, these assumptions hold after
an initial phase of t0(n) = O(log(λ)) generations. We call a phase good if the
assumptions hold for the next t1(n) < ecλ generations.

To apply Lemma 2 with respect to level A−1, we note that the probability
of obtaining an individual in A−1 by mutating an individual in A−1 is bounded
from above by q(n)(1− p) + r(n)p ≤ (2/3)eε(1− p) + p/3 ≤ 65/99. Furthermore,
to mutate an individual from X \ A−1 into A−1, it is necessary to flip at least
one specific bit-position, i.e., with probability O(1/n). Therefore, by Lemma 2
with σ = 49/4950 and ρ = 65/99, it holds for all t where t0(n) < t < ecn and
t0(n) = O(log(λ)) that Pr (|Pt ∩A−1| ≥ ψλ) = e−Ω(λ) where ψ := 123/250.

Similarly, the probability of not destroying a B-individual with mutation is by

definition of ℓ at most
(

1−
χhigh

n

)ℓ
(1− p) ≤

(

85
171

) (

19
20

)

= 17
36 =: ρ. To create a B-

individual from X \B, it is in the best case necessary to change the mutation rate
from χlow to χhigh and not mutate the first ℓ bit-positions. The probability of this

event is
(

1−
χhigh

n

)ℓ
p ≤

(

85
171

) (

1
20

)

= 17
684 . Therefore, by Lemma 2 with respect to

σ := 3/20 and the above value of ρ, for every generation t where t0(n) < t < ecλ

and t0(n) = O(log(λ)) it holds Pr (|Pt ∩B| ≥ ξλ) = e−Ω(λ),where ξ := 1/5.
To summarise, starting from any configuration of the population, a phase of

length t0(n) + 2t1(n) = O(n log(λ) + n2/λ) generations is good with probability
1 − e−Ω(λ). If a phase is good, then the optimum will be found by the end of
that phase with probability at least 1/2. Hence, the expected number of phases
required to find the optimum is O(1), and the theorem follows, keeping in mind
that each generation costs λ function evaluations. ⊓⊔

Below are results from 1000 experiments with the self-adaptive EA on the
LeadingOnes function for n = 200, p = 1/1000 using (µ, λ)-selection for
µ = 500, λ = 4µ, and mutation parameters M = {2/5, 2}. For each j ∈ [n],
the figure contains a box-plot describing the distribution of the fraction of the
population choosing χlow over all generations where the (1/10)-ranked individual
in the population has j leading one-bits.

0 8 18 29 40 51 62 73 84 95 108 122 136 150 164 178 192

0
.0

0
.4

0
.8

90-percentile of population fitness.

F
ra
ct
io
n
ch
o
o
si
n
g
2
/
(5
n
).

The initial population, including mutation rates, are sampled uniformly at
random. Hence the (1/10)-ranked individual will have fitness close to 1 in the first
generations. For j ≤ 5, i. e. early in the run, approximately half of the population
chooses the low mutation. However, the population quickly switches to the higher
mutation χhigh until the (1/10)-ranked individual in the population reaches a
value approximately j ≥ 60 where the population switches to the lower mutation
χlow. Almost all individuals choose χlow for j ≥ 108. These experimental results
confirm that the population adapts the mutation rate according to the region of
the fitness landscape currently searched.

5 Conclusion

This is the first rigorous runtime analysis of self-adaptation. We have demon-
strated that self-adaptation with a sufficiently low strategy parameter can robustly
control the mutation-rates of non-elitist EAs in discrete search spaces, and that
this automated control can lead to exponential speedups compared to EAs that
use fixed mutation rates, or uniform mixing of mutation rate.

Acknowledgements This work received funding from the European Union Seventh

Framework Programme (FP7/2007-2013) under grant agreement no. 618091 (SAGE).

References

1. T. Bäck. Self-adaptation in genetic algorithms. In Proc. of ECAL’92, pages 263–271,
1992.

2. S. Böttcher, B. Doerr, and F. Neumann. Optimal fixed and adaptive mutation
rates for the leadingones problem. In Proc. of PPSN’10, pages 1–10, 2010.

3. D. Corus, D.-C. Dang, A. V. Eremeev, and P. K. Lehre. Level-based analysis of
genetic algorithms and other search processes. In Proc. of PPSN’14, pages 912–921.
Springer, 2014.

4. D.-C. Dang and P. K. Lehre. Refined upper bounds on the expected runtime of
non-elitist populations from fitness-levels. In Proc. of GECCO’14, pages 1367–1374,
2014.

5. B. Doerr and C. Doerr. Optimal parameter choices through self-adjustment:
Applying the 1/5-th rule in discrete settings. In Proc. of GECCO’15, pages 1335–
1342, 2015.

6. B. Doerr, C. Doerr, and T. Kötzing. Solving problems with unknown solution
length at (almost) no extra cost. In Proc of GECCO’ 15, pages 831–838, New York,
NY, USA, 2015. ACM.

7. A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E. Smith. Parameter control in
evolutionary algorithms. In Parameter Setting in Evolutionary Algorithms, pages
19–46. Springer, 2007.

8. N. Hansen and A. Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evol. Comp., 9(2):159–195, 2001.

9. P. K. Lehre. Negative drift in populations. In Proc. of PPSN’10, pages 244–253,
2010.

10. P. K. Lehre and E. Özcan. A runtime analysis of simple hyper-heuristics: To mix
or not to mix operators. In Proc. of FOGA’13, pages 97–104, 2013.

11. P. K. Lehre and X. Yao. On the impact of mutation-selection balance on the
runtime of evolutionary algorithms. IEEE Trans. Evol. Comput., 16(2):225–241,
2012.

12. S. van Rijn, M. T. M. Emmerich, E. Reehuis, and T. Bäck. Optimizing highly
constrained truck loadings using a self-adaptive genetic algorithm. In Proc. of CEC

’15, pages 227–234, 2015.
13. J. Z. Xue, A. Kaznatcheev, A. Costopoulos, and F. Guichard. Fidelity drive: A

mechanism for chaperone proteins to maintain stable mutation rates in prokaryotes
over evolutionary time. J. Theor. Biol., 364:162–167, 2015.

Appendix A

Lemma 3. For any δ ∈ (0, 1) and χ > 0, if n ≥ (χ+ δ)(χ/δ) then

(1− δ)e−χ ≤
(

1−
χ

n

)n

≤ e−χ.

Proof. The upper bound follows immediately from the inequality 1+ x ≤ ex. For
the lower bound, note first that ln(1− δ) < −δ, hence

(

n

χ
− 1

)

(χ− ln(1− δ)) ≥ n+
nδ

χ
− (χ+ δ) ≥ n.

By making use of the fact that (1− 1/x)x−1 ≥ 1/e and simplifying the exponent
n as above

(

1−
χ

n

)n

≥

[

(

1−
χ

n

)(n/χ)−1
]χ−ln(1−δ)

≥ (1− δ)e−χ. ⊓⊔

Lemma 4. Let X ∼ Bin(λ, p) with p ≤ (k/λ)(1− δ) for some k ∈ [λ] and some
δ ∈ [0, 1), then

Pr (X > k) ≤ exp

(

−
k2δ2

2λ

)

.

Proof. Define Y := λ − X, thus Y ∼ Bin(λ, q := 1 − p). Therefore, q ≥ λ −
(k/λ)(1− δ) = (λ− k(1− δ))/λ and

E [Y] ≥ λ− k(1− δ).

Then by a Chernoff bound,

Pr (X > k) = Pr (Y < λ− k)

= Pr

(

Y < (λ− k(1− δ))

(

λ− k

λ− k(1− δ)

))

≤ Pr

(

Y < E [Y]

(

1−
kδ

λ− k(1− δ)

))

≤ exp

(

−

(

kδ

λ− k(1− δ)

)2
E [Y]

2

)

≤ exp

(

−

(

kδ

λ− k(1− δ)

)2
λ− k(1− δ)

2

)

= exp

(

−
k2δ2

2(λ− k(1− δ))

)

< exp

(

−
k2δ2

2λ

)

. ⊓⊔

