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ABSTRACT

In this paper we propose a novel approach towards fast multi-class volume segmentation that exploits supervoxels
in order to reduce complexity, time and memory requirements. Current methods for biomedical image segmen-
tation typically require either complex mathematical models with slow convergence, or expensive-to-calculate
image features, which makes them non-feasible for large volumes with many objects (tens to hundreds) of differ-
ent classes, as is typical in modern medical and biological datasets. Recently, graphical models such as Markov
Random Fields (MRF) or Conditional Random Fields (CRF) are having a huge impact in different computer
vision areas (e.g. image parsing, object detection, object recognition) as they provide global regularization for
multiclass problems over an energy minimization framework. These models have yet to find impact in biomedical
imaging due to complexities in training and slow inference in 3D images due to the very large number of voxels.
Here, we define an interactive segmentation approach over a supervoxel space by first defining novel, robust
and fast regional descriptors for supervoxels. Then, a hierarchical segmentation approach is adopted by training
Contextual Extremely Random Forests in a user-defined label hierarchy where the classification output of the
previous layer is used as additional features to train a new classifier to refine more detailed label information.
This hierarchical model yields final class likelihoods for supervoxels which are finally refined by a MRF model for
3D segmentation. Results demonstrate the effectiveness on a challenging cryo-soft X-ray tomography dataset by
segmenting cell areas with only a few user scribbles as the input for our algorithm. Further results demonstrate
the effectiveness of our method to fully extract different organelles from the cell volume with another few seconds
of user interaction.
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1. INTRODUCTION

The amount of data generated by current bio-imaging techniques is currently overtaking our ability to efficiently
analyse it. In order to analyse a biomedical volume, expert knowledge is required to visually explore the volume
and manually tag different areas/sections of it for measurement. This manual segmentation labour is tedious,
error prone and time consuming. In the past years, several computer vision approaches have been adapted to
the task of biomedical image segmentation with the aim of reducing the user effort needed to segment medical
images. By combining expert knowledge with template based techniques, Active Appearance Models' or Atlas
based models? are able to learn a template of the human body an automatically segment its bones, brain areas
or individual organs. These approaches however, require a significant amount of training data, that over the
past decade has been collected by several researchers or doctors. When there is a limited amount of training
data available, Active Contour Models (Snakes,?* or Level Set methods®) are able to assist the end user, which
only needs to draw an approximate boundary around the desired object and the contour will evolve (expand or
shrink) to efficiently match the object’s boundary and segment it.

Further author information: (Send correspondence to Imanol Luengo)
Imanol Luengo: imanol.luengo@nottingham.ac.uk

Mark Basham: mark.basham@diamond.ac.uk

Andrew P. French: andrew.p.french@nottingham.ac.uk



Such models are efficient and provide very accurate segmentation of the objects of interest, either by volume
registration or contour optimization. However, biological datasets (i.e. TEM, SEM or cryo-TEM datasets)
remain very challenging as each dataset corresponds to a different sample, which has its own subtleties in terms
of image properties. This sample is usually at the cell-scale with low signal to noise ratio, with potentially tens
to hundreds of subcellular features such as organelles which need labelling. Here, as the internal organization of
a cell is not likely to match any other one, template models cannot be learnt. Active Contour Models could still
provide a sufficient segmentation of different organelles, however, this would involve too much user interaction
as a contour would be needed for each of many organelles.

To handle the lack of structure in the target datasets, machine learning approaches have been adopted. Here,
using available training data, local voxel descriptors are extracted and a classifier is trained to learn to classify
a voxel into different classes. This approach has previously been used to successfully segment mitochondria® or
cell boundaries and organelles.” It is very effective, and only requires a limited amount of previously available
training data to automatically segment future datasets. This approach still requires expert interaction to segment
some initial datasets, but after sufficient manual segmentation is gathered, the user would no longer be necessary
and the learnt model would be sufficient to automatically segment future datasets based on local or global learnt
voxel/supervoxel statistics.

Despite all the advantages of the machine learning based models, here they are not sufficient as they require
a considerable amount of training data. In some environments, biologists are constantly gathering volumes of
different samples. Different samples have different image properties or correspond to a different organism, and
thus, the learnt model doesn’t necessarily match the target dataset. Moreover, in some cases just a single volume
of a single sample is obtained, which is hard to generalize and different to previously seen ones. Despite some
approaches trying to solve this problem by manually segmenting part (half or a third) of the dataset and use it to
learn a model and segment the other remaining part,® this still requires a per-volume tedious and time-consuming
user interaction.

Thus, due to the lack of structure in the dataset, and the scarcity of similar training data, a trend in semi-
automatic volume segmentation techniques has been growing recently. Semi-automatic segmentation techniques
(also termed interactive techniques) aim to find a balance between automatic methods and manual segmentation.
Here, the user is assisted and by using a short period of user interaction, such approaches learn a model on-
the-fly to segment the target dataset. There are different ways of incorporating user knowledge in interactive
approaches; the previously mentioned Active Contours Methods is one of them, where the user draws a contour
and the algorithm refines it. Other approaches use user scribbles, acting as simple and fast markup on the
image,® to learn a classification model and propagate class probabilities to the rest of the dataset. However, so
far the effort of interactive approaches has mainly focussed on assisting the user to segment a few organelles. In
biomedical volumes, due to the large size of the datasets (1000 x 1000 x 500 voxels), this approach requires too
much user interaction to achieve desirable results, and have a computationally expensive training and testing
steps.

Here we present an interactive segmentation pipeline that can be used to segment any kind of volumetric data
with an arbitrary number of classes and number of objects of interest with the same user effort. Our method
uses a supervoxel oversegmentation® to represent the volume reducing the complexity of the following algorithms
by several orders of magnitude compared with working over raw voxels. Regional features are extracted from
each of these supervoxels and, using the user scribbles as a ground truth and the only input for our method,
a hierarchy of labels is created, and an Extremely Random Forest (ERF)!° is trained for each of the hierarchy
levels, using the output of the previous level as contextual information for the next level classifier. By using the
probabilistic output of the ERF hierarchy as the unary potentials, the final segmentation is then refined by a
Markov Random Field to yield the final result. The main objectives of our pipeline are:

e Assist the user during the segmentation: incorporates user knowledge in the form of scribbles to
hierarchically segment a given volume.

e Reduce the amount of user interaction: uses supervoxels in order to reduce the number of scribbles
needed by the user.



e Offer a fluid segmentation experience: uses supervoxels to reduce computational and time complexity,
as well as GPU computing units to parallelize almost all steps of the pipeline to offer a near real-time
experience to the user.

The main contributions of our work can be summarized as follows:

1. GPU Implementation of SLIC Supervoxels: a 3D variant of SLIC superpixels,” inspired by g-SLIC,!
which allow us to extract supervoxels from a 1000 x 1000 x 200 volume in around 10-15 seconds.

2. 3D texture features based on Sigma Set:'? simple yet robust and efficient features using Sigma Set
descriptors, which are covariance-like descriptors that reside in a Euclidean space. These features are very
efficient to compute and are also parallelized in the GPU.

3. Use of contextual information to refine classification: the user is asked to draw hierarchically more
informative scribbles to allow us to partition the image and obtain better estimates with Random Forest,
as training a Random Forest using the contextual information of previous levels of the hierarchy reduces
the bias towards common classes and the overall variance by spatially separating the classes. This effect
is similar to the widely studied auto-context!® adapted to an interactive segmentation problem. We also
include contextual information as a hierarchical label cost in the MRF refinement.

The rest of the paper will be organized as follows: Section 2 will briefly discuss relevant and similar work.
Section 3 will briefly describe how to adapt SLIC Supervoxels to oversegment X-ray volumes in the GPU. Section
4 will explain the generation of Textural Sigma Set features for biomedical texture segmentation. Section 5.1
will detail the main contribution of our paper, the hierarchical labels and ERF training and its effect in the
classification. Section 5.2 will show how we infer the optimal segmentation from the ERF likelihoods using
the label hierarchy as label costs. And, finally, section 6 will show quantitative and qualitative results of our
approach compared to a baseline.

2. RELATED WORK ON 3D SEGMENTATION

There have been many approaches trying to segment biomedical images using machine learning based approaches
powered by ensemble methods (such as (Extremely)Random Forests or boosting). Ensemble methods consist
of a set of weak classifiers trained on different subsets of data or with different weighted samples. Each of the
classifiers is not by itself very robust, but, as they have limited information, each classifier tends to learn different
discriminative rules. By combining them in the prediction step, the average response of multiple weak classifiers
has been proven to give state-of-the-art performance. Additionally, ensemble methods have many appealing
properties: they are fast to train, data doesn’t need to be normalized and their natural feature selection process
allows for efficient training on datasets with large numbers of features and samples (as in the case of a large 3D
volume).

The most similar approaches to ours include ilastik,® which proposes an interactive segmentation pipeline
by using Random Forests with Gaussian filter bank features to segment 3D volumes to segment 3D volumes,
and the work from Lucchi et al.® which introduced supervoxel based mitochondria segmentation with learned
shape features. However, ilastik operates at pixel level and requires a lot of training data (manual interaction)
to be able to segment a challenging volume, while the approach off is very specific. Here we propose an inter-
active segmentation pipeline on the supervoxel space by performing hierarchical classification to add contextual
information.

Adding contextual information to the training and testing process has been gaining a lot of focus recently. The
general idea of incorporating contextual information to the estimation of the class-probabilites of a pixel seems
quite appealing since standard classification techniques don’t exploit the underlying 3D neighbouring structure
of voxels. In 2009 Tu and Bai'® proposed an auto-context algorithm to train hierarchically probabilistic boosting
trees (PBT)' using the output of one classifier as an input for the next one with interesting results for Brain
MRI volume segmentations resulting in increasingly more accurate probability estimates in further layers of the



hierarchy. Later in 2011 A. Montillo et al.!> proposed Entagled Decision Forests (EDT) to segment CT images.
EDT forest also add contextual information to the training stage by adding class-probabilities of neighbouring
voxels in a previous node of the decision trees as additional features for the voxels.

The works above, however, learn the contextual information during training step. Here we propose a similar
approach to add contextual information to the interactive segmentation by adding a 2-step segmentation. The
first step requires quick user scribbles to infer probabilistic volume areas that are used as contextual information
for the second step supervoxel classification.

3. SUPERVOXEL OVERSEGMENTATION

Superpixels consist of a group of neighbouring pixels in a given image that share some properties, such as
texture or color. Each of the pixel of the image belong to exactly one superpixel, and by adopting the superpixel
representation of an image, the complexity of a problem can be reduced two or three orders of magnitude. A
sample image with 500 x 500 = 250000 pixels can be encoded with just ~ 800 superpixels, which has a dramatic
effect on the speed of any subsequent algorithms, which can act at the superpixel, rather than pixel, level.
Superpixels, in order to allow an efficient representation of the image, must share a certain characteristic: every
strong boundary of the image should lay along superpixel boundaries, or in other words, all the pixels of a
superpixel must lay in a single higher lever object of the image.

A range of superpixel generation methods exisit. Simple Linear Iterative Clustering (SLIC)? is one of the most
common. It is a superpixel oversegmentation algorithm that splits a given image into superpixels by performing
a k-means-based local clustering of the pixels in the 5-D {labxy} space. The algorithm take as an input the
approximate desired number of superpixels K and a compactness factor m. Then, for an image of N pixels, the
approximate size of each superpixel becomes N/K and the image is split into a grid of uniformly distributed
superpixels of size S x S with S = /N/K. Then, an iterative local k-means is applied by searching for every
super pixel in the grid the pixels that belong to it in a 25 x 25 window according to a custom distance function
that controls the compactness of the superpixels D,,. Each pixel is assigned to the cluster with smallest distance.
For a given pixel i € N and a given superpixel centre k € K, the distance from the pixel ¢ to the superpixel k
would be defined as Dy (i, k):

diav (i, k) = /(I = 1)? + (a5 — ag)® + (b — be)?,
oy (i, k) = /(i — 21)% + (yi — yr)?, (1)

Dsp(i, k) = dlab + %dmya

where m is the compactness factor, {l,a,b} is the L*a*b color space and {z,y} corresponds to the = and y
position of the pixel in the image and the cluster centre. As the k-means algorithm, a 2-step expectation and
maximization algorithm optimizes the {l, a, b, x,y} feature of the cluster centres and each pixel is finally assigned
to its nearest cluster after T' = 5 iterations.

Later, g-SLIC!! introduced a GPU version of SLIC that replaces the search in 25 x 25 windows around each
superpixel centre by a lookup table that contains the M = 9 nearest cluster centres for each pixel. Thus, instead
of performing K sequential searches for every superpixel, M searches are made for every pixel in parallel. The
computational cost would be much higher in a sequential CPU, however, by running it in a GPU with hundreds
of cores the performance is greatly improved.

To apply SLIC to a volumetric X-ray dataset we sightly change the formulation of? and.!! First, to handle
the anisotropicity of some X-Ray datasets, we replace the desired number of superpixels K with the desired
average size of the supervoxels S = {S, Sy, 5.} in each dimension. This allows us to make for example less deep
superpixels (i.e. S = {S;,5y,S5.} = 10 x 10 x 3 supervoxels) if X and Y are the isotropic axes and Z suffers
anisotropicity due external factors like limited data or limited available angle in CT-reconstruction. The total
number of supervoxels is extracted by the relation between their expected size and the total number of voxels
N in the image K = N/(S; x Sy x S.). By initially sampling K supervoxels of shape S we already encourage
superpixels of customizable shapes in the image. However, to enforce that constrain over the optimization



scheme, we introduce the standard spacing factors d = {d,,d,,d.} to weight spatial distance from a voxel to a
superpixel centroid along the different axes. Finally, the 5-D {l,a,b, x,y} feature vector is replaced with a 4-D
{I,x,y,z} vector where I is the intensity of a voxel in a X-ray volume. Equation 1 can then be re-written as

dr(i, k) =/ (I; — I,)?,

m
Dy (i,k):d[—l—fdx 2
P ‘Sl Yy

The spacing factors can be set to existing sampling units (in mm, um or nm) or empirically defined by the user.
Note that by setting d = 1 the same spatial distance function d, is obtained (its 3-D extension).

Last, in order to parallelize the algorithm in the GPU, we use a similar approach to ¢g-SLIC, and parallelize
over the voxels by finding at each Expectation-step (of the local k-means) the nearest 26 supervoxel centers
(26-connected in 3D) for each voxel and assign to each one its nearest one according to equation 2.

4. TEXTURAL SIGMA SET FEATURE EXTRACTION

Once supervoxels are constructed from the volume, we represent each supervoxel by means of simple first and
second order statistics. Typical approaches include using the mean intensity of the supervoxel, or the histogram
of intensities within each supervoxel. More advanced features include SIFT or Histogram of Oriented Gradients
(HOG), which have been proven to be extremely robust for object detection, but lose performance when the
objects of interest have a lot of variability in shape and size.

Here, we use a simple yet robust and efficient Sigma Set descriptor,'? based on regional covariances that
has been used before for saliency estimation and object detection.'® With 8(V, z,vy, 2) a mapping function that
extracts d-dimensional feature f; for each voxel ¢ in a volume V (such as position, intensity, derivatives or other
local textural cues). Then, a region R inside the feature space 6 can be described by means of a d x d covariance
matrix

Cr = FrF%, (3)

where Fp = [f'l, £5..., f'n] denotes the feature matrix of the centered d-dimensional feature vectors f; = 1 JVN(fi—
w) of all the voxels i € R. As noted in'? a non-singular covariance matrix (or symmetric positive definite matrices)
lie in a nonlinear Riemannian manifold and not in an FEuclidean space. Thus, in order to perform classification
or evaluate differences between descriptors, these need to be projected onto a linear space. To achieve this, the
Sigma Set creates a set of points S that satisfies Cg ~ Cx in terms of first and second order statistics and define
efficient Euclidean distance transformations.

For this purpose, the Cholesky decomposition of the covariance C = Cg is extracted C = LL”, where L is a
lower triangular matrix, and multiplied by a scalar that as'? suggests is set to v/d, yielding L = v/d x L. Thus,
our first regional descriptor for a supervoxel k is constructed as:

o ={L1,... ., Ly, (-Ly),...,(-La)}, (4)

where L; is the i-th column of L. This descriptor has the same second order statistics as Cr, and by adding the
mean vectors, the same 1st orders statistics can also be recovered as

of ={@ai+n),...,(Latp),(-Li+p),..., (~La+ )}, (5)

which yields the final sigma set descriptor. We will later see (in section 5.1.1), that adding the mean p vector to
the descriptor is helpful in most situations, but has to be used with caution as samples will be biased towards
the mean descriptor.

In this work, we use a 7-dimensional texture descriptor and a 10-dimensional feature vector to describe the
position and texture of a voxel i € V

fl = {Iylxalyajmlxxa[yy7lzz}a (6)



f2 = {x7yaz7I7Ia:aIy7IZ7Ia:quyy7Izz}; (7)

where z, y and z indicate the absolute position (in range [0, 1]), I indicates the intensity of the voxel and subscripts
indicate directional derivatives. The final Sigma Set descriptors are then constructed from the covariance matrix
of all the voxels belonging to each of the supervoxels.
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Figure 1. Overview of the algorithm. [Top row] user experience, from left to right: central 2D slice of target vol-
ume, supervoxel segmentation, user drawn scribbles (blue: nucleus, green: endoplasm/organelles, red: ice), final 3D
segmentation showing boundaries between segmented areas. [Bottom row] intermediate class likelihoods (nucleus, en-
doplasm/organelles, ice) given by the ERF and final segmentation with the MRF model. (Note for visualization purposes,
only central 2D slices are shown, but processes happen in 3D data)

5. INTERACTIVE CLASSIFICATION USING CONTEXTUAL LAYERS

Our hierarchical segmentation approach is based on Extremely Random Forests,'” an ensemble of T Decision
Trees. In Extremely Random Forests, the input is formed by a training samples Xyxx = X1, X; ..., X where
X; = ¢’¢+ and thus, N is the number of samples and K the number of features per sample. During the training
step, each tree receives the full set X and, since the optimal tree training is NP-hard, trees are grown in a
greedy manner. The root node selects k = /K random split tests S. A split test contains a randomly selected
feature index j (from ¢) and randomly sampled threshold ¢, which can be parameterised as s = {j,t}. Out of
the k split criterions sampled, the best one is selected according to the information gain of the Gini criterion,'”
yielding the optimal split s* = {j*,t*} = mazses G(X,s) (where G stands for information gain). The node
splits into a left and right node, and all the samples are split in two sets X' = {X;|Vi € N, X+ < t*} and
X" ={X;|Vi e N, X, ;» > t*}, which are passed to the left and the right node respectively. The process is
repeated in the binary tree structure until a stopping criterion is reached, such as the information gain for the
optimal split being lower than a threshold at a given node or a maximum depth is achieved. During testing,
each test sample is fed to each of the T trees and routed through the root node to a leaf node (according to the
optimal split tests learn during the training phase). The leaf node then, contains a class probability distribution
of the nodes that during training reached that same node. The probability distributions returned by each of the
trees are then added and normalized to give the final class-probability estimate for each of the samples.

Each trained tree is unique, as each of them selects the split criterion (both features and thresholds) randomly,
and thus, despite that each individual tree grown greedily are not by themselves particularly robust, it is shown
in'” that an ensemble of T randomly trained trees achieves state-of-the-art classification rates and helps reduce
the generalization error.



5.1 Hirarchical Contextual ERF

We use the Extremely Random Forests for interactive supervoxel classification in the following way. First, the
user is asked to define a 2 layer hierarchy of labels with semantic information in a tree structure. The first
layer should contain information about areas of the image the user is interested in, such as a sky, vertical and
horizontal for a street image,'® or nucleus and endoplasm for a more related 3D volumetric image. The second
layer of labels aims to focus on the biology-specific labels appearing in each of the regions, such as mitochondria
or other vesicles in the endoplasm, or nucleoli inside the nucleus. For each of the layers a random forest is trained
and the probabilistic output of the first layer is used as features in the second layer, similar to the auto-context
Random Forests,'3,1® just with different training data in each layer. By doing so, it reduces the variability in the
training of the second layer, as different classes with similar appearance in different regions of the image (as is
usual in X-ray data) are spatially separated by the contextual information of the first layer, and thus, becomes
easier for the classifier to discriminate between them.

5.1.1 First layer classification

In practice, the user is asked to draw a few scribbles using different colors for each of the labels. Those supervoxels
marked by a scribble are tagged as ground truth and a standard Extremely Random Forest is trained with 7" = 50
trees and max_depth = 30. For training and testing the & = {(bf, (;52', ..., @} features from equation 5 formed
by f> (equation 7) are used. Note that these features include the absolute position of the scribbles z, y, z, and thus,
the centroid coordinates of the training supervoxels are part of the training set. In other words, supervoxels
of the volume will be biased towards their nearest scribble in the Euclidean space, but other factors such as
volume intensity and first and second order derivatives will also play a role in the classification. In practice, this
classification will be similar to calculating geodesic distances'? from the scribbles to the volume, but with much
lower computational cost. Since the desired output is a an approximate probability estimate of different image
areas, these features provide an excellent compromise between complexity and robustness. Figure 1 shows the
power of using a few annotations to spatially separate the cell in regions.

5.1.2 Second layer classification

In this second layer of the hierarchy, the user is again asked to draw some more specific scribbles, to tag different
organs/organelles within the image (such us mitochondria/endoplasm or nucleus/nucleoli in our later example)
and those supervoxels are marked as ground truth. This time, f; features are chosen to represent the texture of
voxels, and a modified contertual Extremely Random Forest with T' = 100 trees is trained with max_depth = 50.

This time each training sample ¢ is represented by its feature vector ¢; and the output class-probabilities of
the previously trained spatial classifier (in layer 1) p; = {p(X; =1) |Vl € L)} with L the set of user defined labels.
Each node then selects t = k+d = VK + \/m splits tests, sampling k features from ¢; and d features from the
spatial probabilities p;. Thus, each node is able to choose between an appearance feature (textural feature) or
a spatial density map. Classes with similar appearance will be spatially separated, whereas appearance will be
useful to separate supervoxels with different textural features.

Figure 2 shows a diagram of the hierarchical interactive classification approach.

5.2 MRF-based segmentation refinement

To refine labels, contextual information is taken into account. The final global volume labelling problem is
formulated as a minimization of a standard MRF energy function defined over the graph of supervoxel neighbours
with labels ¢ = {¢; }:

E(C) = Z Edata(si, Ci) + A Z Esmooth(ci7 Cj)' (8)

8,€SV (si,85)EN

Here, the data fidelity term (or unary potential) Egq, is defined by the negative log likelihood of the output of
the ERF, while the pairwise potential is defined as

Esmootn(ci; cj) = Wi jexp(ollfi, — fi,|[2) Clei, ¢ 9)
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Figure 2. Overview of the hierarchical classification. The predictions of volume areas are used as features for the 2nd
layer’s contextual ERF (C-ERF), which at each node chooses the best split criterion among the features or probabilities.

which is a standard Gaussian similarity kernel with a label based cost matrix C and weighted by W; ;, a weighting
factor depending on the amount of boundary pixels that share supervoxels s; and s;, defined as
min(t, b; ;

Wij= 7(15 i) (10)
where b = {b; ;} are the boundaries between supervoxels s; and s;, t < b is a truncation parameter to avoid
extremely large boundaries to unbalance the weighting, and b = maxz(b) is the maximum amount of boundaries
shared between two supervoxels. Therefore, W; ; is then a weighting factor in the range [0, 1].

Finally, we define the label cost matrix C using the hierarchical label information (instead of using the
standard Potts model). Here, we empirically proposed label costs c¢l, ¢2 and ¢3 with increasing cost for our
hierarchical labels. Figure 3 shows how the 5 x 5 label cost matrix is weighted. Being 0 < ¢l < ¢2 < ¢3, costs
are empirically set to ¢c1 =1, ¢2 =5 and ¢3 = 100. Figure 3 shows an example setup of the matrix cost C.

The MRF is then in a form that can be efficiently approximated by QPBO with a-expansion.?®

6. EXPERIMENTAL EVALUATIONS

We empirically test our segmentation pipeline over 3 different 946 x 946 x 200 cryo-SXT datasets.?! These
datasets contain the following classes of interest: nucleus, nucleoli, endoplasm, mitochondria and ice. For their
segmentation, labels are separated in 2 stages, for the first one, nucleus, endoplasm and ice regions are used to
draw contextual information (as shown in Figure 1). For the second stage, the user is asked to annotate mito-
chondria, nucleoli and other nucleus, endoplasm and ice supervoxels to train a ERF to learn how to discriminate
between them, using both appearance features and contextual information from their position. Figures 1 and 4
show a qualitative evaluation of our approach, showing 3D volume renderings of obtained segmentations.
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Figure 4. Further cell segmentation with contextual information and MRF-based refinement. The green region from figure
1 was segmented again, allowing for resolution of even smaller, harder-to-distinguish objects (mitochondria: red, nucleoli:
yellow and feducials: orange). Feducials where previously extracted by following a basic intensity thresholding approach
(as they completely absorb X-rays and can easily be detected as spherical outliers).

For validation purposes, we have manually segmented 10 uniformly separated slices (1 every 20 slices) to
demonstrate the segmentation accuracy (in terms of the per-supervoxel label) of our algorithm compared to a
baseline RF trained in the whole data, as shown in table 1. We trained an ERF using different splits of the
manually segmented 10 slices as ground truth data. The splits are formed of randomly selected 1%, 10%, 30%,
50%, 70% and 90% of the data for training and the rest for testing respectively with the aim of detecting the
amount of ground truth needed (using textural sigma set features) to segment a volume. To perform the split,
we used a Stratified Split, where the percentages of data for training and testing are taken on a per-class basis,
meaning that 1% represents 1% of samples for each of the classes are used for training, and the rest for testing.
Table 1 shows the result, indicating that overall around 30% of the data (which is the 30% of 10 slices and
can be obtained with a couple of minutes of user scribbles) are enough to get a good classification for most of
the volume. The table contains results for a standard ERF with sigma set features in the first section, while
the second sections shows results of our contextual ERF assuming the output of the first layer of the hierarchy



is known (the separation between nucleus, endoplasm and ice is known). Thus, it can be seen that adding
contextual (position) information to the second layer results in an performance increase as with only 10% of
training data already achieves overall better results than using 50% of the data without the contextual split.

Overall | Mitochondria | Endoplasm | Nucleus | Nucleoli Tce
1% | 0.8704 0.5655 0.9349 0.9597 0.3626 | 0.8760
10% | 0.9319 0.6108 0.9630 0.9594 0.8200 | 0.9404
30% | 0.9513 0.7070 0.9714 0.9662 0.9029 | 0.9707
50% | 0.9561 0.7352 0.9759 0.9676 0.9080 | 0.9779
70% | 0.9589 0.7632 0.9750 0.9716 0.9233 | 0.9810
90% | 0.9638 0.8096 0.9799 0.9705 0.9150 | 0.9893
Assuming contextual information is known
1% | 0.9569 0.6316 0.9709 0.9593 0.8530 | 0.9885
10% | 0.9601 0.7314 0.9702 0.9767 0.8756 | 0.9911

Table 1. Textural SigmaSet feature performance over different classes with different training splits. 10 slices has been
manually labelled for each of the datasets. Left column indicates split percentages in a per-class train-test split, meaning
the percentage of training samples from each class used for training (while the remaining is uses for testing). Note that
the datasets are unbalanced and 1% of nucleus is not the same amount of training data than 1% of mitochondria. Overall
score shows per-volume test scores.

Last, in table 2 we provide timings of different stages of our algorithm using a standard i5 processor with
a K40 Tesla GPU (for CUDA implementations). As can be seen, after supervoxels and features are computed,
the pipeline provides a near real-time experience for the user, as the classification requires around a second to
predict the class of all the supervoxels of the volume, as individual trees of the ERF are trained in parallel.

1. Supervoxel oversegmentation ~10 sec
2. Descriptor Extraction ~3 sec
3. User interaction (scribbles) -
4. Train+predict ERF 1 sec
5. Refine segmentation with MRF ~b sec

Table 2. Computational times for a 1000 x 1000 x 200 volume. Note that the user can loop steps 3 — 5 hierarchically.

7. CONCLUSIONS

We have shown that using supervoxels for segmentation of a challenging X-ray dataset with computationally
efficient Sigma Set features can quickly achieve good classification accuracy. Additionally, a 2-stage training
approach by incorporating predictions of spatial probabilities from quick sketch annotations enhances the clas-
sification accuracy of the final segmentation, with a similar effect to the auto-context RF approach. And last,
we propose a weighting for the supervoxels in the MRF refinement based in their shared boundaries and adding
a label cost based on the user knowledge (the label hierarchy) to improve the quality of the MRF-based label
refinement.
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