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Abstract

We investigate generalizations of coherent states as a means of representing

the dynamics of excitations of the superconducting ground state. We also

analyse the propagation of generalized coherent state wave packets under

the Bogoliubov-de Gennes Hamiltonian. The excitations of the supercon-

ducting ground state are superpositions of electron and hole quasi-particles

described by the Bogoliubov-de Gennes equations, that can only exist at

energies outside the band gap. A natural generalization relevant to the ex-

citations of the superconducting ground state is the tensor product of canon-

ical and spin coherent states. This state will quickly become de-localized on

phase space under evolution by the Bogoliubov-de Gennes Hamiltonian due

to the opposite velocities of the quasi-spin components. We therefore de-

fine the electron-hole coherent states which remain localised on phase space

over longer times. We show that the electron-hole coherent states though

entangled retain many defining features of coherent states.

We analyse the propagation of both product and electron hole coherent

states in a superconductor with a spatially homogeneous superconducting

band gap. The dispersion relation indicates that wavepackets defined on

the band gap have a zero group velocity, but we will show that interference

effects can create states on the band gap that propagate at the Fermi ve-

locity. We also consider the two semiclassical, short wavelength regimes,

~ → 0 and the large Fermi energy limit µ → ∞. In general these limits

produce behaviour analogous to the canonical coherent states except for

isolated cases.

Finally we analyse the dynamics of the Andreev Reflection of a Gaussian

wavepacket incident on a discontinuous normal-superconducting interface.

We show that restricting the energy bandwidth of the incident state inside

the superconducting band gap precludes the wavepacket from fully enter-

ing the superconducting region. We again consider the two semiclassical

regimes.
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Chapter 1

Introduction

The Bogoliubov-de Gennes equations describe the excitations of the super-

conducting ground state with a spatially inhomogeneous superconducting

pair potential [1]. They also have applications in descriptions of superfluid

fermions (for example helium-3 at cryogenic temperatures[2]) in the pres-

ence of spatially varying external potentials [3]. The microscopic theory

of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS)

describes the superconducting ground state as a condensate of electron

Cooper-pairs. The Cooper pairs are formed from electrons with opposite

spin and momenta, which then behave like bosons [4]. The same mecha-

nism also occurs in superfluid helium-3 where the Cooper pairs are formed

from atoms [5]. The superconducting condensate forms below a critical tem-

perature Tc at which the superconductor undergoes a phase change. The

behaviour of fermionic condensates (of which superconductors are one ex-

ample) is closely related to superfluid phenomenon also demonstrated by

some Bose-Einstein condensates [6]. The excitations of the BCS ground

state are broken Cooper pairs, which consequently demonstrate interesting

features [7]. They can only exist above a minimum energy, outside the su-

perconducting energy band gap occupied by Cooper pairs. They are also

generally superpositions of electron and hole quasi-particles. The solutions

to the coupled Bogoliubov-de Gennes equations are spinors which describe

the coupled electron and hole components. The hole component demon-

strates a velocity opposite to the momentum of the excitation. This is the

source of the interesting quantum dynamics considered in this thesis.

The relationship between classical and quantum phase space trajecto-

ries has it’s roots in the early development of quantum theory [8]. In this

respect canonical coherent states play a unique role as states that best
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satisfies quantum-classical correspondence under a quadratic Hamiltonian

and for short times under other Hamiltonians [9]. In particular as coher-

ent states are minimum uncertainty states, in semiclassical regimes their

evolution can be found using the corresponding classical phase space tra-

jectories. Up to certain times the evolution of coherent states is given by

the classical trajectory through the centre of the state and the linearised

flow of the nearby trajectories [10–13]. Moreover the additional properties

of the canonical coherent states as a continuous, over-complete set allow for

their use in the representation of quantum states on classical phase space

[8, 14, 15]. The concept of a coherent state has been generalised to other

systems and structures [16, 17]. A group theoretic definition of the coherent

states allows for the definition of the spin coherent states [18–20] which we

will associate with the electron-hole degree of freedom of excitations of the

superconducting ground state.

A natural representation of the BCS excitations are the product coher-

ent states constructed as the tensor product of the canonical coherent states

on phase space and the spin coherent states; defined on the corresponding

product Hilbert space. Product coherent states are useful tools in the anal-

ysis of systems with spin coupling (for example [21]). Under evolution by

the Bogoliubov-de Gennes Hamiltonian a product coherent state that is ini-

tially well localised on phase space will generally quickly disperse due to

the opposite velocities of the two components. We will therefore define the

electron-hole coherent states on the product space as a superposition of a

Gaussian electron component and conjugate Gaussian hole component. The

two components will now have the same velocity and thus remain localised

on phase space for longer times than product coherent states. Electron-hole

coherent states are in general entangled but retain many of the desirable

features of scalar canonical coherent states, though they have some analytic

disadvantages.

We will analyse the wave packet dynamics of both product and electron-

hole states in two settings, also considering the asymptotic short wavelength

limits. Firstly in a spatially homogeneous superconductor; as the relevant

excitations are superpositions of electron and hole components the dynam-

ics will depend on the coupling between electron and hole components, but

also interference between the positive and negative energy stationary so-

lutions of the Bogoliubov-de Gennes equations. Secondly we consider the

scattering of quasi-particles at a normal-superconducting boundary. Since
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excitations cannot exist inside the energy band gap of the superconductor,

an electron quasi-particle incident from the normal region with an energy

inside the band-gap is retro-reflected as a hole at the boundary (and vice-

versa). This scattering process is known as Andreev reflection and is unique

as the reflected quasi-particle follows the trajectory of the incident quasi-

particle [22–24]. We will analyse the dynamics of a Gaussian wave packet

incident on a normal-superconducting boundary showing how it is Andreev

reflected without fully penetrating into the superconducting region if the

energy bandwidth of the wave packet is restricted to be smaller than the

superconducting band gap.

Both semiclassical descriptions of inhomogeneous superconducting sys-

tems and wave packets dynamics are well studied fields. The nature of the

Bogoliubov-de Gennes equations means that descriptions of spatially inho-

mogeneous superconductors benefit greatly from the application of semiclas-

sical techniques. In particular a great deal of literature is devoted to WKB

style approximations of the stationary solutions [22, 25–27], relying on the

slowly varying amplitudes of the electron and hole components. There is

also a great deal of literature on wave packet dynamics applied to numer-

ous systems and notable work relating classical phase space trajectories to

the evolution of wave packets [10, 28]. It appears though that there are no

notable attempts to analyse the dynamics of wave packets constructed from

stationary solutions of the Bogoliubov-de Gennes equations.

The structure of this thesis is as follows. Chapter 2 is devoted to the

theoretical underpinnings required to arrive at the Bogoliubov-de Gennes

equations and the coherent state theory required to define the E-H coherent

states. Obviously superconductivity is an extensive field, so we will concen-

trate on the Bogoliubov-de Gennes equations only giving a brief account

of the development of the microscopic theory of superconductivity, concen-

trating on the parameters that define the Bogoliubov-de Gennes equations.

We will go into more detail with the derivation and theoretical features of

canonical coherent states and their relation to classical phase space. We will

then consider generalizations of the canonical coherent states, and show how

a group theoretic definition of coherent states can be used to define the spin

coherent states. Finally in this section we will consider classical-quantum

correspondence using the framework of the Ehrenfest theorem and the rela-

tionship between classical trajectories and the propagation of wave packets.

In Chapter 3 we will first define the product coherent states, the natu-
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ral definition for particles with a quasi-spin component, as the product of

canonical and product coherent states. We will then define the electron-

hole coherent states and analyse their properties. In particular we will

devote sub-sections to the group theoretic definition, the representation of

superconducting states on phase space using electron-hole coherent states

and measuring the entanglement of electron-hole coherent states. This sec-

tion is based on work produced in collaboration with Marek Kus and Sven

Gnutzmann [29].

In Chapter 4 we will derive the stationary solutions for both the spatially

homogeneous superconductor and a discontinuous normal-superconducting

interface. These results can be found in previous literature [30], but we

detail the solutions here as in later chapters they will be used to con-

struct time dependent wave packets. We also consider the representation of

the stationary states (and the numerically derived bound eigenstates of a

superconducting-normal-superconducting system) on phase space using the

E-H coherent states. Finally we give a brief account of an original analysis of

limited analytic solutions to the BdG equations when the superconducting

band gap varies linearly.

Chapters 5 and 6 present original work analysing the dynamics of wave

packets under the Bogoliubov-de Gennes equations for two systems. Chap-

ter 5 and is devoted to wave packet dynamics in a spatially homogeneous

superconductor. We will first consider the relationship between the disper-

sion relation and wave packet dynamics in the scalar case. Applying this

approach to the Bogoliubov-de Gennes dispersion relation we shall show

how the relative amplitudes of the electron and hole components vary with

momentum, and how decomposing a wave packet in the spinor plane wave

basis informs the resulting dynamics. Working first in the Heisenberg pic-

ture we will consider the difference in the dynamics of the expectation values

and variances between the electron-hole and product coherent states. In the

case of the homogeneous superconductor we will be able to solve the set of

phase space and quasi-spin Heisenberg equations of motion. Using the time

dependent operators we will further consider the dynamics of the moments

of the two forms of coherent states. In general we will not be able to derive

a completely analytic picture, and so will analyse the asymptotic long time

behaviour of the moments. The homogeneous superconductor will also al-

low for a straightforward derivation of the action of the time time evolution

operator in the Schrödinger picture. We will show how the electron-hole
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and coherent state wave packets relate to each other, and how the contri-

butions from the electron and hole components enter the dynamics. In lieu

of simple analytic solutions we will again be required to examine the long-

time behaviour of wave packets, but we will also give consideration to the

two possible short wavelength limits relevant to the Bogoliubov-de Gennes

equations. These are the usual semiclassical limit ~→ 0 but also the large

Fermi energy limit.

Finally in Chapter 6 we will use the stationary solutions as a basis

to derive the scattering of a wave packet incident from a normal region

onto a discontinuous normal-superconducting boundary. We will restrict

the argument to states inside the superconducting band gap. In this case the

wave packet does not fully enter the superconducting region. We will again

consider the possible short wavelength regimes, to analyse the propagation

of the wave packet in the normal region and the penetration of the wave

packet into the superconducting region. The main results of Chapters 5 and

6 will form the basis of two reports we plan to submit in the near future.

Chapter 7 gathers the results of the proceeding chapters, and offers some

possible extensions to the work presented. We have omitted several lengthy

calculations from the main body of the text so as to better present the

main arguments. These can be found in the Appendix, referenced by the

chapter and section they refer to. The Appendix also contains notes on

some integral solutions and asymptotic techniques used in this thesis.

9



Chapter 2

Background

2.1 Superconductivity & Andreev Reflection

In this section we will give a brief synopsis of the main features of the mi-

croscopic theory of superconductivity which are relevant to the work in this

thesis. This thesis will mainly focus on a theoretical analysis of the interest-

ing quantum wave packet dynamics arising from the Bogoliubov-de Gennes

(BdG) Hamiltonian, which describes excitations in spatially inhomogeneous

superconductors. As such it will be advantageous to have an idea of how the

terms in the BdG Hamiltonian arise, and in particular how the variables

that describe a superconducting system relate to each other. The BdG

Hamiltonian we will investigate is a consequence of the microscopic theory

of superconductivity developed by Bardeen, Cooper and Schrieffer (BCS).

A full derivation of the theory is somewhat outside the scope of this thesis,

so the following is a brief outline which concentrates on the variables that

are important in the BdG Hamiltonian and the theoretical steps required

to arrive at the BdG Hamiltonian. We roughly follow the prescription as

given in Tinkham’s ‘Introduction to Superconductivity’ [31] with elements

also from ‘Superconductivity of Metals and Alloys’ by de-Gennes [1], which

are both excellent sources for more detailed derivations of the theory and

surrounding topics

2.1.1 BCS Theory

The phenomenon now known as superconductivity was discovered in 1911

by Kamerlingh Onnes [32], evidencing itself as the the disappearance of re-

sistance in mercury below a critical temperature (Tc). Modern experiments

have shown a lower bound of around 105 years for the characteristic decay

10



Figure 2.1: Exclusion of a magnetic field from the interior of a superconductor and

comparison of flux penetration behaviour of type I and type II superconductors. Adapted

from [31].

λL

(a) Schematic of the exclusion of a mag-

netic field from the interior of a super-

conductor. λL is the field penetration

depth predicted by London theory. λL

is typically on the order of nanometres.

B

0 Hc1 Hc Hc2 H

(b) Flux penetration (B) of an external

field into a type I and type II super-

conductor with the same critical field

strength Hc. Type I superconductors

show a discontinuous change in pene-

tration at Hc. Type II superconductors

show a continuous increase in flux pen-

etration between Hc1 and Hc2.

time of a current in a superconducting loop [33], implying that supercon-

ductors are effectively perfect electrical conductors.

It was later discovered by Meissner and Ochsenfeld in 1933 [34] that a

superconductor will also screen an external magnetic field from its interior

(now better known as the Meissner effect) up to a critical field strength

Hc. Moreover a magnetic field will be expelled from the interior of the

superconductor as the material is cooled through Tc. This also implies that

a superconducting state can be destroyed by a sufficiently strong external

magnetic field.

Initial theoretical efforts in superconductivity focused on phenomeno-

logical theories describing these two defining macroscopic features of a su-

perconductor, and the relationship between them. London theory (after

the brothers F. and H. London) relates the supercurrent inside the super-

conductor to the Meissner effect [35]. The main result of the theory is an

expression for the London penetration depth (λL), the distance an external

magnetic field penetrates into the superconducting bulk, typically on the

order of nanometres (illustrated in Figure 2.1a).

11



Figure 2.2: The intermediate state of a type I superconductor and the vortex core

structure on the surface of a type II superconductor.

S S SN N N N

(a) Schematic of the intermediate state

of a superconducting slab in a per-

pendicular magnetic field with intensity

H < Hc. In this case the intermediate

state is a laminar structure of normal

and superconducting regions.

V
o
rt

ex
C

or
es

(b) Schematic of triangular lattice of

vortices on the surface of a type II su-

perconductor. Adapted from [39]. The

contours are lines of constant ns.

Further development of the phenomenological theory by Ginzburg and

Landau (GL) [36] introduced a pseudo-wave function Ψ(q) that describes the

density of superconducting electrons as ns = |Ψ(q)|2. This plays the role of

a superconducting order parameter. GL theory allows for the description of

intermediate states of a superconductor, where superconducting and normal

states meet at H ∼ Hc, which London theory could not accommodate. The

intermediate states occur when (depending upon the configuration of an

external magnetic field and the superconducting sample) the external field

may have points that reach sufficient intensity to form normal regions inside

the superconductor, even though the external field strength lies below Hc

[37, 38]. The example of a superconducting slab in a perpendicular magnetic

field is shown in Figure 2.2a. In this case normal bands penetrate through

the sample forming a series of laminar superconducting and normal regions.

GL theory also propose an additional superconducting parameter, the

coherence length (ξ), characterizing the distance over which Ψ(q) varies.

Importantly this gives rise to descriptions of two distinct types of super-

conductors [36]. Type I superconductors exhibit a discontinuous change in

magnetic field penetration at Hc. Type II superconductors (first proposed

by Abrikosov [40]) exhibit a continuous increase in flux penetration from

Hc1 up to Hc2 as shown in Figure 2.1b. The flux penetration between Hc1

and Hc2 in type II superconductors is not complete like the intermediate

states but takes the form of flux tubes, which form magnetic field vortices

12



Ek

ξk

∆

Figure 2.3: The excitation energy

spectrum ξk =
√
E2
k + |∆|2 in a su-

perconductor (∆ 6= 0, red) and nor-

mal states (∆ = 0, blue). The mini-

mum excitation energy in the super-

conductor is ∆ which is the origin

of the superconducting energy band

gap.

on the surface of the superconductor as schematically shown in 2.2b. The

magnetic field is maximal at the core of the vortex, decaying over a radius

proportional to λL and the number of superconducting electrons is reduced

in a smaller radius ξ around the core. We will not investigate type II super-

conductors further in the main body of this thesis, and thus omit further

detailed theory here. We should consider though that type II supercon-

ductors as well as intermediate states are a key motivating factor for the

investigation of spatially inhomogeneous superconductors.

It would take until the 1950’s for a detailed microscopic theory to be

developed that would propose an explanation of the mechanism behind su-

perconductivity. The background theoretical setting for BCS theory is the

Fermi sea in a normal conductor consisting of electrons with energies εk.

The normal conductor ground state, if the electrons are non-interacting,

consists of all states with energy εk ≤ µ occupied (due to their fermionic

nature and the Pauli exclusion principle). We will refer to µ as the Fermi en-

ergy from here on (with the corresponding Fermi momentum pF =
√

2mµ).

Excitations of the normal ground state are formed by removing an electron

with energy εk < µ and raising it to εk > µ, creating a quasi-electron with

energy εk = µ + Ek and quasi-hole with energy εk = µ − Ek. From here

on Ek will refer to the energy measured relative to the Fermi energy (i.e.

Ek = εk − µ).

It was proposed by Cooper that the Fermi sea is unstable against the

formation of bound electron states [41], independent of the strength of the

attractive force. Cooper demonstrated the possibility of the formation of

Cooper pairs. These bound states are formed from electrons of opposite

spin and momentum which have an energy lower than the Fermi energy,

hence the Fermi sea is unstable against the formation of such pairs. The

mechanism that generates this attractive force was found to be phonon

interactions with the ion cores in the superconductor, first proposed by

13



Fröhlich [42]. This can be imagined as an electron polarizing the Fermi sea,

creating a region of increased positive charge, which in turn attracts another

electron, correlating the motion of the pair. We can infer that the process of

correlation by phonon interaction is why classical superconductivity requires

low temperatures. This is experimentally supported by the finding that Tc is

altered by differing isotopes of the superconducting material. Experiments

show that Tc decreases with an increase in isotopic mass [43]. This is the

mechanism which best explains classical low temperature superconductors,

but it is theorized that other mechanisms may contribute to the phenomena

in more exotic (high temperature etc. see [44]) superconductors.

BCS theory therefore proposes a superconducting ground state formed

from electrons with energies close to the Fermi energy, bound in Cooper

pairs. This pairing leads to bosonic behaviour allowing the Cooper pairs

to conduct efficiently. The excitations of the superconducting ground state

are quasi-particles, which are a superposition of single electron-hole states

(effectively split cooper pairs), with excitation energy ξk =
√
E2
k + |∆|2

as shown in Figure 2.3. The excitations have a minimum energy ∆, and

this is the source of the superconducting energy band gap that exists in a

superconductor. It’s interesting to note that ∆ is temperature dependent,

and it can be shown that ∆(T )→ 0 as T → Tc from below, at which point

the quasi particle energy spectrum is the same as in a normal conductor.

Roughly speaking ∆ determines the range of energies of electrons that will

contribute to forming Cooper pairs, from within a range |∆| of µ. Moreover

the order parameter Ψ(q) described by GL theory is proportional to ∆ (it

was shown in 1959 by Gor’Kov that GL theory is a limiting form of BCS

theory [45]) and the minimum energy of the excitations corresponds to the

energy required to break a Cooper pair.

The properties of the BCS ground state are best derived using second

quantization notation. We define operators ĉ†kσ which creates an electron

with momentum k and spin σ, and likewise ĉkσ the corresponding annihila-

tion operator. For example in this notation the creation of a quasi-electron

and hole excitation in the normal state is written as , ĉ†k′σ ĉkσ and a cooper

pair is created by ĉ†k↑ĉ
†
-k↓. These operators obey the standard Fermion anti-

commutation relations

{ĉkσ, ĉ†k′σ′} = δkk′δσσ′ (2.1)

{ĉkσ, ĉk′σ′} = {ĉ†kσ, ĉ
†
k′σ′} = 0. (2.2)
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0 E

|v
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Figure 2.4: The amplitude of Cooper pair occupation, |vk|2, as a

function of electron energy relative to the Fermi energy.

We can also naturally define a number operator n̂kσ = ĉ†kσ ĉkσ. The form of

the superconducting ground state can be derived from the pairing Hamil-

tonian (this variational method is the approach used in the original BCS

paper [4], more modern approaches use canonical transformations)

Hpair =
∑
kσ

εkn̂kσ +
∑
kk′

Vkk′ ĉ
†
k↑ĉ
†
-k↓ĉk′↑ĉ-k′↓. (2.3)

Here the first term is simply the total kinetic energy and the second term the

scattering of Cooper pairs, with Vkk′ the appropriate scattering amplitudes.

The attractive binding force arises if V < 0. This Hamiltonian omits any

other interaction terms, presumed not to be involved in superconductivity

such as higher order terms or non Cooper (i.e. opposite momenta and spin)

pairings. The BCS ground state is found by minimizing the expected energy

of the ground state relative to µ

〈ΨG| (Hpair − µn̂kσ) |ΨG〉 = 2
∑
k

Ekv
2
k +

∑
k

Vkk′ukvkuk′vk′ (2.4)

where uk is the amplitude that a Cooper pair is unoccupied, and vk that

it is occupied. |vk|2 as a function of the excitation energy relative to µ is

shown in Figure 2.4. It follows that they must satisfy |uk|2 + |vk|2 = 1. We

define the quantities

∆k = −
∑
k′

Vkk′uk′vk′ and ξk =
√

∆2
k + E2

k. (2.5)

ξk turns out to be the aforementioned energy of the quasi-particle excita-

tions of the ground state and ∆k the minimum excitation energy (which

we will also refer to as the pairing potential), and also the order parameter

derived by the phenomenological theory. The important theoretical step

made to make the equations solvable is the approximation that Vkk′ = V

up to a cut off energy away from the Fermi energy. In practice this turns
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out to be a good approximation indicating that indeed only electrons close

to the Fermi level contribute to the cooper pairing.

2.1.2 Bogoliubov-de Gennes Equations

The single electron operators prove cumbersome for the purpose of deriving

the form of the excitations of the BCS ground state. A simplification can

be made by diagonalizing the pairing Hamiltonian using the Bogoliubov

transformations [46]

ĉk↑ = u∗kγ̂k0 + vkγ̂
†
k1 (2.6)

ĉ†-k↓ = ukγ̂
†
k1 − v

∗
kγ̂k0 (2.7)

again the cooper pair occupation amplitudes satisfy |uk|2 + |vk|2 = 1. This

choice ensures that the transformations are canonical. The operators γ̂k,i

correspond to coherent mixtures of electron-hole excitations. These effec-

tively broken Cooper pairs are commonly referred to as Bogolons. Inverting

(2.6) we obtain the operators

γ̂†k0 = u∗kĉ
†
k↑ − v

∗
kĉ−k↓ (2.8)

γ̂†k1 = u∗kĉ
†
−k↓ + v∗kĉk↑ (2.9)

which create quasi particle excitations in the two spin directions when ap-

plied to the BCS ground state. Both operators also have the net effect of

increasing the system momentum by k. The superconducting ground state

is defined as the vacuum state of the annihilation operator

γ̂k0|ΨG〉 = γ̂k1|ΨG〉 = 0. (2.10)

The excited states γ̂†k0|ΨG〉 and γ̂†k1|ΨG〉 correspond to placing with certainty

a single electron into one of the states which form a Cooper pair (k ↑ or

−k ↓), raising the ground state energy accordingly.

Analysing spatially inhomogeneous potentials, and especially of interest

for this thesis an inhomogeneous pairing potential ∆(q), this approach must

be altered. This requires the utilization of a generalization of the Bogoliubov

transforms

Ψ̂(r, ↑) =
∑
n

[
γ̂n↑un(r)− γ̂†n↓v

∗
n(r)

]
(2.11)

Ψ̂(r, ↓) =
∑
n

[
γ̂n↓un(r) + γ̂†n↑v

∗
n(r)

]
. (2.12)
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These are annihilation operators in the position representation, as opposed

to the momentum representations ĉkσ’s. The functions un(r) and vn(r) are

position dependent eigenfunctions which diagonalize the effective Hamilto-

nian

Ĥeff =

∫ {∑
σ

Ψ̂∗(r, σ)

[
1

2m

(
i~∇+

e

c
A
)2

+ U(r)− µ
]

Ψ̂(r, σ)

+∆(r)Ψ̂∗(r, ↑)Ψ̂∗(r, ↓) + ∆∗(r)Ψ̂(r, ↑)Ψ̂(r, ↓)

}
dr.

(2.13)

This requires that u(r) and v(r) satisfy the coupled BdG equations

Ĥ0u(r) + ∆(r)v(r) = Eu(r) (2.14)

−Ĥ∗0v(r) + ∆∗(r)u(r) = Ev(r). (2.15)

Here

Ĥ0 =
1

2m

(
i~∇+

e

c
A
)2

+ U(r)− µ (2.16)

is the standard Hamiltonian for an electron in a magnetic potential A and

potential U(r) with energy measured relative to µ.

It is straightforward to see that if ∆ = 0, the equations decouple, leaving

H0u(r) = Eu(r) (2.17)

H∗0v(r) = −Ev(r) (2.18)

then u(r) corresponds to an electron wave function with energy ε = µ+ E

of the normal state. v(r) is in effect a time reversed electron, which behaves

like a hole with energy ε = µ − E, and they will referred to as such from

here on, denoting their respective wave functions ψe(r) and ψh(r). A large

part of this thesis focuses on the analysis of the dynamics of coherent state

wave packets when ∆ 6= 0, where interactions between the hole and electron

states are introduced. In later chapters we will also consider the generalized

time dependent BdG equations

H0u(r, t) + ∆(r)v(r, t) = i~
∂

∂t
u(r, t) (2.19)

−H∗0v(r, t) + ∆∗(r)u(r, t) = i~
∂

∂t
v(r, t) (2.20)

2.1.3 Andreev Reflection

Boundaries between superconducting and normal regions of superconduc-

tors have been an area of rich study. Clearly a complete theory of supercon-

ductivity requires description of both superconductors in the intermediate
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Figure 2.5: Andreev reflection at a

normal-superconductor boundary: An elec-

tron incident on the boundary with energy

E < ∆ from the normal region is retro-

reflected as a hole, with opposite spin, and

to first order the same momentum. The

incident electron is absorbed into a super-

conducting Cooper pair inside the supercon-

ductor.

state, and vortex cores present on the surface of type II superconductors (see

sub-section 2.1.4 for specific examples). Phenomena such as the Josephson

effect [47] can occur in a superconducting wire with a thin insulating region

over which not only normal electrons, but also Cooper pairs tunnel across

the insulating gap. This has many useful real world applications including

extremely sensitive magnetometers and superconducting transistors.

Let us consider a normal-superconducting (N-S) interface. Andreev re-

flection can occur when an electron incident from the normal conductor,

meets the N-S interface. If the electron has an energy lower than the min-

imum excitation energy ∆, we’ve seen that due to the superconducting

energy band gap, it cannot exist alone inside the superconducting bulk. In-

stead it is absorbed into a superconducting Cooper pair. Conservation of

charge and momentum (the cooper pair having a charge 2e) requires that

a hole state is retro-reflected into the normal region with opposite spin,

and to first order the same momentum, albeit with the opposite velocity to

the incoming electron. This process is shown schematically in Figure 2.5.

We can also consider the same process in reverse i.e. a hole incident on

the N-S interface, with an electron injected into the normal region. In the

asymptotic limit E � ∆ � µ, the incident state is completely Andreev

reflected with a phase shift of e-iπ/2 and the momentum of the Andreev re-

flected state is exactly that of the incident state, the reflected hole following

the path of the incident electron. Andreev reflection was derived concur-

rently by Andreev [22] and St. James [48] and has been used to explain

how a normal conductor can carry a superconducting current between two

superconducting regions by Kulik [49] and by Andreev to explain why the

thermal resistance of the intermediate state is greater than that of a purely

superconducting state [22].

For larger energies but still in the regime E < ∆ we must also consider

specular reflection with a finite amplitude. We will also see that the incident
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particle penetrates a finite distance into the superconducting region, before

being absorbed into a superconducting pair. For a 1-dimensional interface

the possible processes can be described in terms of the scattering matrix

S =

(
See Seh

She Shh

)
(2.21)

where She is the amplitude for an incident electron to be reflected as a hole

etc. In chapter 4 we will give a detailed account of the analytic solutions

for a discontinuous N-S interface, and generalise to numeric solutions for

a continuous transition between normal and superconducting regions, de-

scribed by ∆(q). We will apply the scattering matrix to the time dependent

Andreev reflection of coherent states in Chapter 6. In the asymptotic limit

|E| � ∆� µ the scattering matrix reduces to

S =

(
0 −i
−i 0

)
(2.22)

corresponding to complete Andreev reflection. Although this thesis investi-

gates the reflection of states with energy below ∆ we can in principle also

consider incident quasi-particles with |E| > ∆. We would then need to

consider 4 scattering processes, the incident particle still has a probability

to be specularly or Andreev reflected, but may also be transmitted into

the superconductor as a quasi-particle with energy µ +
√
E2 −∆2, which

travels freely into the superconducting region. These possible processes are

demonstrated in the energy momentum diagram Figure 2.6 for an incident

electron with |E| > ∆.

N S

α+-α+ -α- α- -κ+ -κ- κ- κ+

∆AeIAeR

AhR

F G

E

k

Figure 2.6: Schematic of energy v momentum at an N-S interface showing the

possible excitation energies in the normal and superconducting regions. For an

incident electron (AeI) with E > ∆0 there is a probability for it to specularly reflected

as an electron (AeR), or retro-reflected as a hole (AhR). It may also be transmitted

into the superconductor as an electron or hole-like Bogolon with probability F or G.

Adapted from [31].
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2.1.4 Semiclassical Approaches to the Bogoliubov-de

Gennes Equations

The BdG equations have been previously employed by a number of authors

as a means of investigating inhomogeneous superconductors and associated

phenomena. We’ve seen in sub-section 2.1.1 that inhomogeneous supercon-

ductors arise both in the case of the intermediate state and the penetrating

state of type II superconductors. In both cases the transition from nor-

mal to superconducting regions requires semi-classical techniques. Only

in the simplified case of a discontinuous normal-superconducting interface

(which we will analyse) will we be able to find analytic solutions without

approximation. Like the standard scalar Schrödinger equation there are two

semi-classical approaches.

The first approach we consider utilizes the WKB wave function as a

form of solution. Andreev used this approach in 1964 [22] to calculate

the thermal resistance at a N-S interface, and in 1966 [25] to derive the

energy spectrum of the intermediate state of the superconductor. Also see

Bardeen, Kümmel, Jacobs and Tewordt, 1969 [26]. They apply the WKB

method to calculate the energy spectrum and scattering states of a vortex

line in a type II superconductor. This approximation takes advantage of

the slowly varying amplitudes of u(r) and v(r) to reduce the second order

BdG equations. In the prescription given in Bardeen, Kümmel, Jacobs and

Tewordt the solution of the BdG equations may be written in the form(
u

v

)
=

(
eiη/2

e−iη/2

)
eiS (2.23)

assuming that η is slowly varying over atomic distances and ∇S is a wave-

vector close to the Fermi surface (and in general both S and η are complex).

They retain terms of order (∇S)2, ∇S ·A and ∇S · ∇η, but neglect terms

of order (∇η)2 and (∇A)2.

The second approach developed by Azbel [50] uses effective classical

Hamiltonians and Bohr quantization to study the wave functions and energy

spectrum of superconducting quasi-particles. Duncan and Györffy [27] build

on this approach to extend the WKB approximation to take account of

higher order terms of ~ in the solution.

They take as the WKB ansatz(
u(r)

v(r)

)
=

(
ũ(r)

ṽ(r)

)
e
i
~S0(r)(1 +O(~)) (2.24)
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Figure 2.7: The S-N-S junction and the corresponding phase space trajectories derived

by Duncan and Györffy. Images reproduced from [27].

y

y-(E) y+(E)

E
∆(y)

(a) The profile |∆(y)| of the S-N-S junc-

tion. The classical turning points y±(E)

are also indicated.

y

y-(E) y+(E)

py
p+y

p-y

(b) p±y (y) as |∆(y)| → E. p±y (y) are

constant in the normal region. P +
y (E) =

P -
y (E) are the classical turning points at

which an incident electron (solid) con-

verts into a hole (dashed).

where ũ(r) and ṽ(r) are slowly varying amplitudes. Inserting this ansatz

into the BdG equations the lowest order approximation is then found by

neglecting terms containing ~ (i.e. p̂ = −i~∇ whose action on the ampli-

tude terms is small). In this regime the differential matrix BdG equations

are reduced to a pair of Hamilton-Jacobi equations. The quasi particle de-

scribed by these equations also have an internal structure describing the

complex spinor components at each point along the trajectory. This can be

represented by a vector which represents the electron-hole degree of freedom

which varies as it travels along the phase space trajectory. The vortex cores

present in type II superconductors enter as topological phase contributions

to the Hamiltonian.

They show that the extension to include contributions of order ~2 is

necessary for a derivation of the wave function at the vortex core. This is

achieved by using p̂ as the ordering parameter instead of ~, the result being

~ dependent Hamilton-Jacobi equations and a corresponding ~ dependent

action. This dependence also carries over to the spinor amplitudes. They

apply this technique to two inhomogeneous systems, a smoothly varying S-

N-S junction (as shown in Figure 2.7a) and a type II vortex core. In section

4.3 we will use numerical techniques to derive the allowed wave functions

for a similar S-N-S junction, and show how we can use coherent states to

represent them on classical phase space. Their approach predicts that the

phase space trajectories are straight lines in the normal region as might be

expected for the free motion in this region. At the classical turning points

(denoted y±(E)) the particle and hole momenta are equal. In contrast the

classical orbits are characterised by stationary points satisfying py(y) = 0.

21



The velocity, v+ > 0, of a particle travelling along p+y towards y+ decreases

until it reaches zero at the turning point. At this point p+y(y+) = p-y(y+) and

the particle converts into a hole as shown in Figure 2.7b. It moves away from

the interface with velocity v- < 0. This is consistent with Andreev reflection

at the boundary, giving a clear picture of the particle-hole conversion at the

interface. One of the benefits of this technique is that Andreev reflection

arises naturally from the classical Hamiltonian, rather than requiring wave-

function matching.

2.2 Coherent States & their Semiclassical Ap-

plications

Coherent states were first described by Schrödinger in 1926 [9], as a result

of seeking a form of quantum state that best satisfies quantum-classical

correspondence (a key issue in the interpretation and acceptance of quantum

theory during it’s early development). Coherent states arise naturally from

the study of the quantum harmonic oscillator, and the coherent state wave

function was derived by Schrödinger. However further refinement of the

theory would wait until the 1960’s for developments made by Glauber and

Sudarshan motivated by a quantum description of the electromagnetic field,

alongside group theoretic developments by Klauder. Coherent states have

since become a key feature of quantum mechanics and quantum field theory,

and the concept of a coherent state has been generalised to other fields and

mathematical structures.

Coherent states have many useful properties for the study of classical-

quantum correspondence. In the special case of the quantum harmonic

oscillator the canonical expectation values of the coherent states coincide

exactly with the phase space trajectory of the corresponding classical har-

monic oscillator. This property also holds for short times with other sys-

tems. Coherent states are also states of minimum uncertainty on phase

space, best satisfying the minimum bound set by the Heisenberg uncer-

tainty principle. As such they also represent the smallest possible deviation

of a quantum state from the corresponding classical trajectory.
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2.2.1 Canonical Coherent States

Although Schrödinger derived the form of the coherent state wave func-

tion there was little further theoretical progress made until the develop-

ment of the recognisable modern formulation of coherent states through

work by Glauber and Sudarshan, and concurrently Klauder. Glauber [51–

53] and Surdashan’s [54] contributions were motivated by a desire to pro-

vide a quantum mechanical description of optical coherence effects. The

term coherent states was coined by Glauber, who would provide the defini-

tion of coherent states as eigenstates of the annihilation operator. Klauder

[14, 55] (at approximately the same time) would contribute a set of con-

tinuous states, which contained the basic concept of generalising coherent

states to arbitrary Lie groups. This would define what we will refer to as

the Schrödinger-Glauber-Sudarshan (SGS) coherent states of the quantum

harmonic oscillator (though other naming conventions include canonical co-

herent states or field coherent states).

Coherent states arise naturally from the study of the quantum harmonic

oscillator, the quantum analogue of a classical particle in a quadratic po-

tential well. The quantum Hamiltonian is given in terms of phase space

observables q̂ and p̂ as

Ĥosc =
1

2m
p̂2 +

1

2
mω2q̂2 (2.25)

where ω is the angular frequency of the oscillator. It is useful to define the

operators â and â†, referred to as the annihilation and creation (or raising

and lowering) operators respectively. They are defined in terms of the phase

space observables as

â =

√
mω

2~

(
q̂ +

i

mω
p̂

)
and â† =

√
mω

2~

(
q̂ − i

mω
p̂

)
. (2.26)

They are aptly named due to their action on the quantized energy eigen-

states (or number states) of Ĥosc,

â†|n〉 =
√
n+ 1|n+ 1〉 and â|n〉 =

√
n|n− 1〉. (2.27)

With these definitions in hand we can also define the number operator

N̂ = â†â, with the action on the number states N̂ |n〉 = n|n〉.
These operators are closed under the commutation relations [â, â†] = I,

[N̂ , â†] = â† and [N̂ , â] = −â. We also define the ground state of the

harmonic oscillator, defined by the action of the annihilation operator as

â|0〉 = 0. (2.28)
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The harmonic oscillator Hamiltonian can then be re-written in diagonal

form as

Ĥosc = ~ω
(
N̂ +

1

2

)
. (2.29)

The SGS coherent states, denoted from here on by |z〉, are defined as eigen-

states of the annihilation operator

â|z〉 = z|z〉 (2.30)

where z ∈ C. It can be seen from the action of the annihilation operator

that the SGS coherent states are necessarily superpositions of the energy

eigenstates of Hosc written as

|z〉 = e−
1
2
|z|2

∞∑
n=0

zn√
n!
|n〉. (2.31)

It will also prove useful to define the non-normalized variant of the coherent

states, which we will denote |z), as

|z) = e
1
2
|z|2|z〉 =

∞∑
n=0

zn√
n!
|n〉. (2.32)

Although non-normalized they are useful by virtue of being analytic function

of z over the entire complex plane. It should be noted that there is no defined

eigenstate of the creation operator a†, but the action of a† on a coherent

state

a†|z〉 =

(
∂

∂z
+
z∗

2

)
|z〉. (2.33)

can be of use in some analytic situations. SGS states are parametrized by

the complex number z. It is straight forward to show that the overlap of

two distinct coherent states parametrized by w and z respectively is

〈w|z〉 = exp

[
−1

2
|z|2 − 1

2
|w|2 + w∗z

]
6= 0 (2.34)

and thus coherent states cannot be used to construct an orthonormal ba-

sis. The set of coherent states is over-complete though, and allows for a

resolution of identity

I =
1

π

∫
d2z |z〉〈z|. (2.35)

Here the integration is taken over the entire complex plane with d2z =

dRe(z) Im(z). This allows for the representation of a state |ψ〉 ∈ H∞ in

terms of coherent states as ψ(z∗) ≡ 〈z|ψ〉. This is not an analytic function

in z but the non-normalized variant

f(z∗) = ψ(z)e
1
2
|z|2 (2.36)
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is, and generally referred to as the Bargmann representation [56].

We can see that the set of coherent states may be mapped one-to-one to

classical phase space given that the expectation values of the phase space

observables p̂ and q̂ are

〈z|q̂|z〉 =

√
2~
mω

Re(z) and 〈z|p̂|z〉 =
√

2m~ω Im(z). (2.37)

We can therefore derive the coherent states wave function in the position

basis

〈q|z〉 =
(mω
π~

) 1
4

exp

[
−mω

2~
(q − 〈q̂〉)2 +

i

~
〈p̂〉q − i

2~
〈p̂〉〈q̂〉

]
(2.38)

noting for later use that 〈q|z∗〉 = 〈q|z〉∗. Transforming into the momentum

basis we have the representation

〈p|z〉 =
1

(πm~ω)
1
4

exp

[
− 1

2~mω
(p− 〈p̂〉)2 − i

~
〈q̂〉p− i

2~
〈p̂〉〈q̂〉

]
(2.39)

and it will be again important to note that for conjugate z the relevant

transformation is

〈p|z∗〉 =
1

(πm~ω)
1
4

exp

[
− 1

2~mω
(p+ 〈p̂〉)2 − i

~
〈q̂〉p− i

2~
〈p̂〉〈q̂〉

]
(2.40)

corresponding as we might expect to inverting the complex axis of the com-

plex parametrization of phase space. We will define for later convenience the

scaled momentum-width parameter λ = 1/m~ω. By inspection it can be

seen that the coherent states are Gaussian distributions centred at 〈z|q̂|z〉
and 〈z|p̂|z〉.

The SGS coherent states remain coherent states under time evolution

by the quantum harmonic oscillator Hamiltonian. This can be shown if we

act with the time development operator, exp(−itĤosc/~), on the coherent

state in the number basis

exp

(
−it
~
Ĥosc

)
|z〉 = e−iωt/2e−iωtN̂e−

1
2
|z|2

∞∑
n=0

zn√
n!
|n〉. (2.41)

Since the number states are eigenstates of N̂ we can rewrite this as

e−iωt/2e−
1
2
|z|2

∞∑
n=0

zne−iωtn√
n!
|n〉 = e−iωt/2|ze−iωt〉. (2.42)

The result, up to an overall phase, is the same coherent state distribution,

but parametrized by a new z′ = ze−iωt. ze−iωt corresponds to a rotation
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Figure 2.8: Contour plots of the Q-function, |〈z|w(t)〉|2 of a coherent states at various

times, evolved under the harmonic oscillator Hamiltonian. The corresponding classical

trajectory of a single particle is shown in red. The centre of the coherent state follows

the classical trajectory without dispersion.

〈q̂〉

〈p̂〉

0

(a) t = 0

〈q̂〉

〈p̂〉

0

(b) t = 0.5

0

(c) t = 1

of the location of the coherent state about the origin in the complex plane,

with frequency ω as demonstrated in Figure 2.8.

The classical solutions of the harmonic oscillator follows the phase space

trajectory x(t) = x0 cos(ωt + φ) and p(t) = −mωx0 sin(ωt + φ) where φ is

a phase determined by the initial state of the system. We can see that the

centre of the coherent state follows the corresponding classical trajectory

whilst also retaining its form. The coherent state in a quadratic potential

is a special case where the relationship between the classical and quantum

dynamics is exact and non-dispersive. In general this correspondence does

not remain exact for other Hamiltonians, but does remain true for short

times.

As a simple but enlightening example, the free time dependent (i.e.

under the Hamiltonian p̂2/2m) coherent state is in the position basis

Ψ(q, t) = exp

[
−mω

2~
1

λ(t)
(q − tv)2 +

i

h
p0

(
q − 1

2
tv

)]
(2.43)

where λ(t) = 1+iωt. The form of the wave packet overall remains Gaussian,

with the centre propagating along the path of a free particle with velocity

v = p0/m. The width of the wave packet is now linearly dependent on time,

and also proportional to ω. We will see analogous wave packets several

times in this thesis under the BdG Hamiltonian. We can imagine that the

spreading of the state is proportional to ω as contributions to the wave

packet propagate at different velocities, thus a larger spread of momenta

will cause the state to spread more quickly (see the following section for

more discussion).

The uncertainty of a state |ψ〉, with respect to an observable can be de-

rived from the variance with respect to the corresponding quantum operator
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defined as

Var(Â)|ψ〉 = 〈ψ|Â2|ψ〉 − 〈ψ|Â|ψ〉2. (2.44)

For the phase space observables q̂ and p̂ with respect to the SGS coher-

ent states the respective variance are Var(q̂)|z〉 = ~/2mω and Var(p̂)|z〉 =

~mω/2. As such their product

Var(q̂)|z〉Var(p̂)|z〉 =
~2

4
(2.45)

minimizes the possible uncertainty as bounded by the Heisenberg uncer-

tainty principle. The dependence of the uncertainty on ~ also means that

in the semiclassical limit ~ → 0 the Gaussian distribution tends towards

a δ-function that traces the corresponding classical trajectory. For finite ~
the minimum uncertainty property of SGS coherent states still minimizes

the deviation from the classical trajectory.

The variable ω, as well as being the frequency of the oscillations of the

classical harmonic oscillator, also parametrizes the squeezed states on phase

space. They are deformations of the coherent state distribution in phase

space, in either the position or momentum direction whilst retaining the

minimum uncertainty relation. When ω = 1, the width is equal in both

directions. Since the width of the state in position space is inversely pro-

portional to ω and we must maintain the minimum uncertainty relationship

it follows that the width in momentum space is proportional to ω as shown

in Figure 2.9. In this thesis ω will often prove useful as a free parameter in-

dependent of the system parameters (energy scales etc.) that we can use to

control the spatial width or energy/momentum bandwidth of the coherent

state wave packet as required.

The resolution of identity in terms of SGS coherent states allows the

representation of general quantum states in a coherent state basis

|Ψ〉 =
1

π

∫
d2z |z〉〈z|Ψ〉. (2.46)

Due to the one-to-one correspondence between the parameter z and points

〈q̂〉 and 〈p̂〉 on classical phase space coherent states can be used to generate

a representation of quantum states on classical phase space.

There are several possible means of representing the probability distri-

butions on phase space (see [57, 58]). We will consider the Q-function (or

Husimi distribution, after its introduction by Husimi in 1940 [59]) Q(q, p) =

|〈z(q, p)|Ψ〉|2, where the phase space variables are defined by q = 〈z|q̂|z〉
and p = 〈z|p̂|z〉 with respect to the reference coherent state. As the density
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Figure 2.9: Contour plots of the Q-function, Q(q, p) = |〈z|w〉|2, of a coherent states

with various squeezing parameters. The centre of the state lies at q0 = 〈w|q̂|w〉 and

p0 = 〈w|p̂|w〉. When ω = 1 the width of the state is the same in q and p, varying

w ’squeezes’ the state in one of the phase space variables, but maintains the overall

minimum uncertainty relationship.

q0

p0

0

(a) ω = 1

q0

p0

0

(b) ω = 0.4

q0

p0

0

(c) ω = 2.5

operator is defined by ρ̂ = |Ψ〉〈Ψ| we can equivalently define the Q-function

as Q(q, p) = 〈z|ρ̂|z〉. As an example the Husimi distribution of a coherent

state, |w〉 centred at q0 = 〈w|q̂|w〉 and p0 = 〈w|p̂|w〉 is

Q(q, p) = |〈z|w〉|2 (2.47)

=

(
2
√
ω

1 + ω

) 1
2

exp

[
− 1

2~m(1 + ω)
(p− p0)2 − m

2~
ω

(1 + ω)
(q − q0)2

]
(2.48)

as shown in Figure 2.9 for various squeezing values of ωw. Here we’ve

set ωz = 1 for the reference state |z〉, which effectively means scaling the

position and momentum axis equally.

An operator Â can then also be represented by its symbol

A(z, z∗) = 〈z|Â|z〉. (2.49)

There is a one-to-one correspondence between states and their Q-function,

and operators and their symbol.

2.2.2 Ehrenfest’s Theorem

We have shown that for the quantum harmonic oscillator the time evolution

of the phase space distribution exactly follows the corresponding classical

phase space trajectories with no dispersion. This notion of correspondence

between quantum expectation values and classical trajectories has been an

important area of research and this thesis will partly ask the question; can

we in some sense derive classical trajectories for BCS excitations despite
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their quantum nature? We will examine this and related questions in greater

detail in chapter 5.

Ehrenfest’s theorem provides a framework for the study of the relation-

ship between quantum expectation values and the corresponding classical

equations of motion [60]. Although not an exact relation, we will derive

conditions under which the relationship is best satisfied. The starting point

is the differential equation for the time dependence of an operator in the

Heisenberg picture
d

dt
〈Â(t)〉 =

i

~
〈[Ĥ, Â(t)]〉 (2.50)

for some general Hamiltonian H and time dependent operator Â(t). We

consider the phase space operators with the canonical commutation relation

[q̂, p̂] = i~ (2.51)

and Hamiltonian operator Ĥ defined as

Ĥ =
p̂2

2m
+ U(q̂) (2.52)

describing a particle in some potential U(q). The expectation values of the

phase space operators have the time dependence

d

dt
〈q̂〉 =

1

m
〈p̂〉 (2.53)

d

dt
〈p̂〉 = −

〈
d

dq̂
Û(q̂)

〉
. (2.54)

These are recognisable as analogous to the classical equations of motion

ẋ =
p

m
and ṗ = −U ′(x) (2.55)

for a classical particle in a potential U(x). Essentially this is a statement

that the dynamics of the expectation values follow the classical equations

of motion. This is only approximately true for equation (2.54), as the right

hand side would only correspond exactly to the classical equations if it could

instead be written as

− d

d〈q〉
U(〈q̂〉). (2.56)

In general this is not possible for an arbitrary function of q̂ as generally

〈q̂n〉 6= 〈q̂〉n. This means the quantum dynamics will generally deviate from

the classical trajectories. If we suppose that the potential U(q̂) is slowly

varying then we can expand dU(q̂)/dq̂ around 〈q̂〉 to find deviation from

classical trajectory as

d

dq̂
U(q̂) =

d

d〈q̂〉
U(〈q̂〉) +

d2

d〈q̂〉2
U(〈q̂〉)(q − 〈q̂〉) +

1

2

d3

d〈q̂〉3
U(〈q̂〉)(q − 〈q̂〉)2 . . . .

(2.57)
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Inserting the expansion back into the Ehrenfest relationship gives

d

dt
〈p̂〉 ≈ − d

d〈q̂〉
U(〈q̂〉)− 1

2
Var(q̂)

d3

d〈q̂〉3
U(〈q̂〉). (2.58)

From this result it can be conclude that the accuracy of the Ehrenfest

relationship is dependent on the initial width of the state. This also implies

a requirement that the Ehrenfest relationship only applies if the state is

δ-function like in the sense that is is localised and has a peak value. The

solution is trivial in harmonic oscillator case when U ′(q) = mω2q, and it

is true for any general state under a quadratic potential. The property of

the distribution remaining invariant under time development is a special

property of SGS coherent states under a quadratic potential.

As the SGS coherent states are minimum uncertainty states, their evo-

lution has a simplified description in semiclassical regimes. As they are

strongly localised on phase space, their propagation can be derived from the

corresponding classical phase space trajectories. The location of the wave

packet then follows the classical trajectory as shown by Ehrenfest’s theorem,

and the spreading of phase space distribution is described by the linearised

flow of nearby classical trajectories. The basic principle behind this approx-

imation allows the Hamiltonian to be approximated by its quadratic Taylor

expansion close to the peak of the coherent state’s distribution. The exact

origin of this method of is hard to locate, but a great deal of the modern

development is due to work by Heller [13], Heller & Davis [11] and [12]

(this is limited selection of a broad literature on this subject, see [10] for an

overview of the subject).

For the free particle example given by Equation (2.43) the spreading of

the wave packet is analogous to the spreading shown by an ensemble of freely

evolving (and non-interacting) classical particles (see [10]). The lower and

higher velocities or the trajectories above and below 〈p̂〉 create the shearing

and spreading of the wave packet in phase space. The time dependent

spreading evidenced by (2.43) disappears as ~ → 0, this is because the

width of the wavepacket also scales as Var(p̂) → 0 meaning the velocity

differential across the wave packet disappears.

This approximation only holds up to certain time scales, known as the

Ehrenfest time. After such times the dispersion of wave packet means the

Ehrenfest relation, as applied to localised wave packets, no longer holds

and wave packets can no longer be approximated using a single trajectory.

As such the Ehrenfest time depends upon the system under consideration.
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Schubert et al provide a means of describing the evolution of wave packets

at and beyond Ehrenfest time scales, describing the transition of a state

from localised state to a extended state, in a uniform manner [61].

It is not immediately clear that coherent states evolved under the BdG

Hamiltonian allow for the application of this approximation. Firstly as we

will show the hole component has a velocity opposite to it’s momentum

and meaning an initially localised wave packet will generally quickly dis-

perse, motivating the definition of electron-hole coherent states. Secondly

when analysing the propagation of wave packets in a spatially homogeneous

superconductor; we will show that in certain cases interference between

contributions from the positive and negative energy solution of the BdG

equations play a strong role in the dynamics in addition to the propagation

of the components.

2.2.3 SU(2) Coherent States

The concept and application of coherent states defined on phase space has

very much spread from this original motivation and definition. Like BCS

theory, the generalisation of coherent states is a broad topic which due to

our requirements we will only give a brief overview of. An extensive review

can be found in [17] and [16].

The concept of a coherent state can been generalised by first considering

the defining features of the SGS coherent states. According to Glauber there

are three defining features of the coherent states of the harmonic oscillator

(see [53]). They are:

1. The coherent states are eigenstates of the lowering operator, defined

by

â|z〉 = z|z〉 (2.59)

for a complex number z.

2. The SGS coherent states can be generated by the action of the dis-

placement operator on the ground state. The displacement operator

D̂(z) is defined as

D̂(z) = exp
(
zâ† − z∗â

)
. (2.60)

The SGS coherent states are then defined as the action of the dis-

placement operator on the ground state

D̂(z)|0〉 = |z〉. (2.61)
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3. The SGS coherent states are minimum uncertainty states satisfying

Var(q̂)|z〉Var(p̂)|z〉 =
~2

4
. (2.62)

The first and third definition have been observed in the previous section,

the second definition arises naturally when considering the Group-theoretic

structure of coherent states. The set of operators â, â† and Î are the gener-

ators of an irreducible unitary representation of the Heisenberg-Weyl group

H3(R). The unitary representation is given by the exponent of a anti-

hermitian linear combination of the generators

D̂(z, φ) = exp
(
zâ† − z∗â+ iφ

)
. (2.63)

The action of the displacement operator can be resolved using the Baker-

Campbell-Hausdorff formula

exp
(
zâ† − z∗â+ iφ

)
= ezâ

†
e−z

∗âe−|z|
2/2+iφ. (2.64)

Since D̂(α, φ)|0〉 = eiφ|0〉 setting φ = 0 fixes a phase convention (and we

often omit the phase term). D̂(z) effectively translates the Gaussian distri-

bution in phase space to a new centre located at z. Thus the action of D̂(z)

on a coherent state |w〉 is

D̂(z)|w〉 = exp (Im[zw∗]) |z + w〉 (2.65)

another coherent state translated in the complex plane, up to an overall

phase.

Generalizations of the coherent states attempt to apply one of these def-

initions to other mathematical structures and with the appropriate choices,

also generate analogues of other desirable properties of coherent states

(which may also include over-completeness, a resolution of identity etc.).

The first and third definitions prove less useful as definitions for generalisa-

tion, but it proves effective to build on the group theoretic definition.

One such generalisation developed mainly by Perelemov [20, 62] and

Gilmore [19] replaces the Heisenberg-Weyl group, from which we generated

the SGS states, with another group G with generators that are observables

of the quantum system of interest. Taking an irreducible representation of

G on the Hilbert space, and a choice of reference state |α〉 the coherent

states are defined by the action of an element of the group g ∈ G as g|α〉 =

|g〉. An appropriate choice of reference state will generate analogues of the

properties of the SGS states.
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The construction we will make use of in conjunction with the SGS states

when defining coherent states relevant to the superconducting system, will

be the SU(2) coherent states also known as spin coherent states. The in-

finitesimal generators of this group are the angular momentum operators

Jx, Jy and Jz with the commutation relations

[Jx, Jy] = iJz, [Jy, Jz] = iJx, [Jz, Jx] = iJy (2.66)

The irreducible representations are characterised by the half integer j. The

total angular momentum is then J2
x + J2

y + J2
z = j(j + 1/2) and the Hilbert

space has dimensions 2j + 1. For our purposes we will only be required

to consider the simplest case j = 1/2 (in anticipation of the two levels

describing the electron-hole degree of freedom) on the space C2. The Hilbert

space is spanned by the orthogonal states

|+〉 =

(
1

0

)
and |−〉 =

(
0

1

)
(2.67)

and the generators of SU(2) will be represented using the hermitian Pauli

spin operators as

J1 ≡
1

2
σ1 =

1

2

(
0 1

1 0

)
, J2 ≡

1

2
σ2 =

1

2

(
0 −i
i 0

)
, J3 ≡

1

2
σ3 =

1

2

(
1 0

0 −1

)
.

(2.68)

It will also prove useful to define the non-Hermitian two-level raising and

lowering operators

J+ = J1 + iJ2 ≡ σ+ =

(
0 1

0 0

)
J- = J1 − iJ2 ≡ σ- =

(
0 0

1 0

)
(2.69)

which are closed under the commutation relations with J3, [J3, J±] = ±J±
and [J+, J-] = 2J3. The elements of of SU(2) are covered by the parametriza-

tion

Û(β, φ) =

 eiθ√
1+|β|2

−β∗e-iθ√
1+|β|2

βeiθ√
1+|β|2

e-iθ√
1+|β|2

 ≡ eβJ-e- log(1+|β|2)J3e-β
∗J+e2iφJ3 (2.70)

where β ∈ C and 0 ≤ φ ≤ 2π. The spin coherent states are then defined by

the action of Û(β, φ) (fixing the phase at φ = 0) on the reference state |+〉
as

|β〉 = Û(β, 0)|+〉 =
1√

1 + |β|2
(
|+〉+ β|−〉

)
. (2.71)
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Figure 2.10: The SU(2) co-

herent states map the two-

dimensional sphere S2 onto the

complex plane. This is compact

when the point at infinity is in-

cluded.

β-plane β

x

x

y

y

z

S2

It will also be useful to again define an un-normalized variant that is analytic

in β as

|β) = |+〉+ β|−〉. (2.72)

The spin coherent states map the two dimensional-sphere S2 onto the com-

plex plane as illustrated in Figure 2.10. With the inclusion of the coherent

state |β = ∞〉 ≡ |−〉 we can show that the SU(2) coherent states span a

manifold equivalent to the unit sphere S2 = SU(2)/U(1). If we calculate

the expectation values with respect to the spin operators they are

〈β|σ1|β〉 =
2 Re(β)

1 + |β|2
〈β|σ2|β〉 =

2 Im(β)

1 + |β|2
〈β|σ3|β〉 =

1− |β|2

1 + |β|2
.

(2.73)

They build a vector in R3 of length 1

3∑
j=1

〈β|σj|β〉2 = 1. (2.74)

Like the SGS coherent states the spin coherent states form an overcom-

plete basis. The overlap of distinct (normalized and un-normalized) spin

coherent states is given by

(β1|β2) = 1 + β1β
∗
2 〈β1|β2〉 =

1 + β1β
∗
2√

(1 + |β1|2)(1 + |β2|2)
. (2.75)

A resolution of unity is then found to be

I =
2

π

∫
d2β

1

(1 + |β|2)2
|β〉〈β| = 2

π

∫
d2β

1

(1 + |β|2)3
|β)(β| (2.76)
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where the integration is taken over the unit sphere. Like the SGS coherent

states this then also allows for the representation of states on C2.
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Chapter 3

Electron-Hole Coherent States

Using the SGS and SU(2) coherent states, defined on L2 and C2 respectively,

there is a natural coherent state definition on the product space that can

encapsulate the properties of spin or quasi-spin particles.

In this chapter we will define a different set of coherent states on the

product space L2 ⊗ C2 that may have added relevance for descriptions of

superconducting states and the BdG equations. Due to the time reversed

nature of the hole component of the BdG equation, an initially well localised

product coherent state on the product space will quickly separate. As such

it will be beneficial to define what will be termed the electron-hole coherent

states, which account for this and remain localised over longer times. An

analysis of the advantages of these states over the more natural product

definition will form the basis of the following chapter.

3.1 Product Coherent States

With the definition of the SGS and SU(2) coherent states in hand it is

straightforward to define coherent states on the tensor Hilbert space H⊗ =

L2⊗C2. If the SGS coherent states parametrized by z occupy |z〉 ∈ L2 and

the spin coherent states |β〉 ∈ C2, then the product coherent states (as we

will refer to them from now on) are defined as

|z ⊗ β〉 = |z〉 ⊗ |β〉 =
[
D̂(z)⊗ Û(β)

]
|0〉 ⊗ |+〉. (3.1)

A non-normalized variant can again be defined

|z ⊗ β) = |z)⊗ |β). (3.2)

The product coherent states have been defined as generated by the action

of an element of the group H3(R) × SU(2), such that the action of this
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|e〉
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〉−

i|h
〉
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〉+
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|e〉 − |h〉

|e〉+ |h〉
|β〉

Figure 3.1: The Bloch sphere as used

for the purpose of product coherent

states. The poles (designated by β = 0

and the addition of β = ∞) repre-

sent states that only consist of electron

or hole components. The equal super-

positions of electron and hole compo-

nents, eigenstates of σ1 and σ2, sit on

the equator.

group on a product coherent state will be another product state up to an

additional phase factor.

For the purposes of describing superconducting states we will therefore

associate |+〉 = |e〉 with the electron component and |−〉 = |h〉 with the

hole components of a quasi-particle as

|z ⊗ β〉 = |z〉 ⊗

[
1√

1 + |β|2
|e〉+

β√
1 + |β|2

|h〉

]
. (3.3)

In line with the definition of the SU(2) coherent states complex β parametrizes

points on the Bloch sphere as shown in Figure 3.1. The pole β = 0 cor-

responds to an electron (only) state and β = ∞ a hole state. β could be

parametrized as

β = eiθ tan(φ) (3.4)

with φ the weight of electron and hole components and θ their relative

phase. This would parametrize the sphere as

|β〉 = cos(φ)|e〉+ sin(φ)eiθ|h〉 (3.5)

though we will usually consider complex β alone.

The product state construction proves useful when considering systems

that occupy tensor product structures, for example Pauli equations where

dynamics are coupled to spin variables via the magnetic field. As an example

we can look at Bolte and Glaser [21]. They use a product coherent state

construction to investigate the propagation of coherent states with spin orbit

interaction in semiclassical regimes.

If we consider the dynamics of a product coherent state with central

momentum p0 and a superposition of electron and hole components (i.e. β 6=
0,∞); ignoring any oscillations between components, the contributions from
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Figure 3.2: Density plot of the Q-function of a product coherent state (i.e. Q(q, p) =

|〈w|z ⊗ β〉|2) with |β|2 = 1, in a normal conductor. Plotted both at t = 0, when the two

contributions from the electron and hole overlap, and after a short time interval. Due to

the negative velocity of the hole, the contributions from the two components wave packet

quickly separates.
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the electron component will have an initial expected velocity ve ∼ p0/m.

Due to their time reversed nature the hole will have an expected velocity

vh ∼ −p0/m (this is most obvious for the single particle states in a normal

region, though we can consider the same for short times in a superconducting

region before rotations between the electron and hole components come

into effect. This will be made more concrete in the following chapter).

This means an initial product coherent state with non-zero momentum will

quickly spread into two components and separate in phase space, losing

any desirable semiclassical properties as the components move in opposite

directions along the classical trajectories (as illustrated in 3.2). In particular

were we to try and consider an analogue of the scalar Ehrenfest relation

under the BdG Hamiltonian we will see expectation values that correspond

to the relative position of the two components and their relative amplitudes

rather than the unique trajectory of a well-localised wave-packet.

3.2 Electron-Hole Coherent States

We will therefore define the electron-hole (E-H) coherent states on the

Hilbert space H⊗ = L2 ⊗ C2 as

|z on β〉 =
1√

1 + |β|2
|z〉 ⊗ |e〉+

β∗√
1 + |β|2

|z∗〉 ⊗ |h〉 (3.6)

as well as the un-normalized variant

|z on β) = |z)⊗ |e〉+ β∗|z∗)⊗ |h〉. (3.7)
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Our analysis will show that the E-H coherent states have theoretical proper-

ties as a complete set that are strongly analogous to the SGS coherent states.

Although the dynamics are more complicated for E-H coherent states, the

localisation properties are closer to SGS coherent states than those shown

by product coherent states. Note that the E-H coherent states are no-longer

product states yet we will show that we can still define a resolution of iden-

tity.

3.2.1 Expectation Values of Electron-Hole Coherent

States

The expectation values of the phase space operators with respect to the E-H

and for comparison the product coherent states are

〈q̂〉on = q0 〈q̂〉⊗ = q0 (3.8)

〈p̂〉on =
1− |β|2

1 + |β|2
p0 〈p̂〉⊗ = p0. (3.9)

The expected values of the spin operators are

〈σ1〉on =
2 Re(β)

1 + |β|2
〈σ1〉⊗ =

2 Re(β〈z|z∗〉)
1 + |β|2

(3.10)

〈σ2〉on =
2 Im(β)

1 + |β|2
〈σ2〉⊗ =

2 Im(β〈z|z∗〉)
1 + |β|2

(3.11)

〈σ3〉on =
1− |β|2

1 + |β|2
〈σ3〉⊗ =

1− |β|2

1 + |β|2
. (3.12)

Though the values of 〈q̂〉 and 〈σ3〉 are invariant, the form of 〈p̂〉on suggests

that for the E-H states we should instead consider what we will term the

pseudo-velocity operator defined by V̂ = σ3p̂. This operator takes into

account the time reversed nature of the hole component and thus has the

expectation value with respect to the E-H states

〈V̂ 〉on = p0. (3.13)

Thus the E-H states will be defined on a phase space spanned by position

and pseudo-velocity rather than position and momentum. The E-H coher-

ent states will also be parametrized by their central velocity V0 (to avoid

confusion when later also discussing physical velocities given by v = p/m,

we will reserve the use of upper case V for the pseudo-velocity operator and

expectation values, and lower case when referring to physical velocities).

The relative amplitudes of the components described by σ3 remains un-

changed between the states, as might be expected from its diagonal nature.
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The expectation values of the off diagonal operators σ1 and σ2 mean that

where as the product states sit on the Bloch sphere of radius 1, the same

value with respect to the E-H states is

R2 =
3∑
i=1

〈z on β|σi|z on β〉2 ≤ 1. (3.14)

Except in the case that V0 = 0, the E-H coherent states no longer remain

on the unit sphere. We can deform the sphere into an ellipsis of unit length

in the σ3 direction and radius e-λV
2
0 on the equator then

eλV
2
0
[
〈σ1〉2on + 〈σ2〉2on

]
+ 〈σ3〉2on = 1. (3.15)

Altogether the phase space on which the E-H coherent states will be set

is the complex plane spanned by position and pseudo-velocity expectation

values with the described ellipsoid attached at each point.

3.2.2 Minimum Uncertainty

It can also be shown that the E-H coherent states are minimum uncertainty

states with respect to the operators q̂ and the newly defined pseudo-velocity

operator V̂ . The general standard uncertainty relation for two operators Â

and B̂ with respect to a state |ψ〉 is given by the inequality

Var(Â)|ψ〉Var(B̂)|ψ〉 ≥
1

4
|〈ψ|[Â, B̂]|ψ〉|2 (3.16)

In the case of the operators q̂ and V̂ it is a simple calculation to show that

with respect to the E-H coherent states the terms on the left are given by

Var(q̂)on ≡ Var(q̂)|z〉 =
~

2mω
and Var(V̂ )on ≡ Var(p̂)|z〉 =

~mω
2

(3.17)

analogous to the scalar SGS coherent states. But a direct calculation of

the right hand side of equation (3.16), since 〈[q̂, V̂ ]〉 = i~〈σ3〉, indicates

that there is lower bound with respect to the E-H state of 0. This suggests

we should modify the standard derivation. For this to work we write the

variances as

Var(V̂ ) Var(q̂) = 〈(V̂ − V )2〉〈(q̂ −Q)2〉 = 〈(p̂− σ3V )2〉〈(q̂ −Q)2〉 (3.18)

where Q = 〈q̂〉 and V = 〈V̂ 〉. If we define the operators ∆P = p̂− σ3V and

∆Q = q̂ −Q then

〈∆P 2〉〈∆Q2〉 = 〈∆Pψ|∆Pψ〉〈∆Qψ|∆Qψ〉 ≥ |〈ψ|∆P∆Q|ψ〉|2. (3.19)
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For any complex number z we have |z|2 ≥ (Im(z))2 and

Im[〈∆P∆Q〉] =
1

2i
〈[∆P,∆Q]〉 =

~
2

(3.20)

from which the stricter uncertainty relation

Var(V̂ )on Var(q̂)on ≥
~2

4
(3.21)

follows.

Whilst the electron-hole coherent states satisfy the the uncertainty re-

lationship on position-momentum phase space, they do not obey any anal-

ogous relation for the quasi-spin variables. Defining the analogous operator

∆σj = σj − 〈σj〉 the uncertainty relation is given by
∑3

j=1〈∆σ2
j 〉 ≥ 2. This

lower bound is equivalent to the upper bound
∑3

j=1〈σj〉2 ≤ 1.

3.2.3 Overcompleteness & Resolution of Unity

It is straightforward to calculate the overlap of the permutations of the

un-normalized E-H and product coherent states as follows

(z ⊗ β|z′ ⊗ β′) = (1 + β∗β′)ez
∗z′ (3.22)

(z on β|z′ on β′) = ez
∗z′ + ββ′∗ezz

′∗

(3.23)

(z on β|z′ ⊗ β′) = ez
∗z′ + ββ′ezz

′
(3.24)

(z ⊗ β|z′ on β′) = ez
∗z′ + β∗β′∗ez

∗z′∗ . (3.25)

This allows for various definitions of a resolution of unity. In terms of the

normalized and un-normalized product coherent state basis

I =
2

π2

∫
d2z d2β

1

(1 + |β|2)2
|z ⊗ β〉〈z ⊗ β| (3.26)

=
2

π2

∫
d2z d2β

e−|z|
2

(1 + |β|2)3
|z ⊗ β)(z ⊗ β| (3.27)

which follows from the correspond resolutions in terms of SU(2) and SGS

coherent states. For the E-H coherent states, similar normalized and un-

normalized forms of resolution exists

I =
2

π2

∫
d2z d2β

1

(1 + |β|2)2
|z on β〉〈z on β| (3.28)

=
2

π2

∫
d2z d2β

e−|z|
2

(1 + |β|2)3
|z on β)(z on β| (3.29)

which can be seen by first integrating over β, leaving the standard resolution

in terms of SGS coherent states.
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3.2.4 Electron-Hole Coherent State Representation

Using the resolution of unity we can represent a state |Ψ〉 ∈ H⊗ as the

function

〈z on β|Ψ〉 = Ψ(z, z∗, β, β∗). (3.30)

The electron and hole components of |Ψ〉 then map to the functions

Ψ(z, z∗, β, β∗) =
e−|z|

2/2

1 + |β|2
(
u|Ψ〉(z

∗) + βv|Ψ〉(z)
)

(3.31)

where u|Ψ〉(z
∗) is analytic in z∗ and v|Ψ〉(z) is analytic in z. For the pur-

poses of representing the action of operators in this representation it will

be convenient to instead use the function

f|Ψ〉(z, z
∗, β) = u|Ψ〉(z

∗) + βv|Ψ〉(z). (3.32)

Acting on the un-normalized variant of the E-H coherent states the quasi-

spin, raising and lowering operators can be represented in terms of differ-

ential operators by

â|z on β) =

[
z

(
1− β∗ ∂

∂β∗

)
+ z∗β∗

∂

∂β∗

]
|z on β) (3.33)

â†|z on β) =

[
∂

∂z
+

∂

∂z∗

]
|z on β) (3.34)

σ1|z on β) =

[
β∗
(

1− β∗ ∂

∂β∗

)
+

∂

∂β∗

]
|z∗ on β) (3.35)

=

[
β∗
(

1− β ∂

∂β

)
+

∂

∂β

]
|z∗ on β∗) (3.36)

σ2|z on β) =

[
−iβ∗

(
1− β∗ ∂

∂β∗

)
+ i

∂

∂β∗

]
|z∗ on β) (3.37)

=

[
−iβ∗

(
1− β ∂

∂β

)
+ i

∂

∂β

]
|z∗ on β∗) (3.38)

σ3|z on β) =

[(
1− β∗ ∂

∂β∗

)
− β∗ ∂

∂β∗

]
|z on β). (3.39)

where complex parameters and their conjugates behave as independent vari-

ables. The differential operators (1− β∗∂/∂β∗) and β∗∂/∂β∗ are effectively

projectors onto the electron and hole components respectively. We can then

readily extend these definitions to functions of the raising and lowering op-

erators using

ân|z on β) =

[
zn
(

1− β∗ ∂

∂β∗

)
+ z∗nβ∗

∂

∂β∗

]
|z on β) (3.40)
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and similarly

â†n|z on β) =

[
∂n

∂zn
+

∂n

∂z∗n

]
|z on β). (3.41)

If we consider a scalar state, represented using the Bargmann repre-

sentation as f(z∗) = 〈z|ψ〉e|z|2/2 (see Equation (2.36)) the time-dependent

Schrödinger equation can be written as

i
∂

∂t
f(z∗) =

[
V(z∗)− ω~

4

(
z∗2 +

∂2

∂z∗2
− 1− 2z∗

∂

∂z∗

)]
f(z∗) (3.42)

where V(z∗) is a differential operator dependent on the form of the potential

V (q).

In a similar manner using the E-H coherent state representation; the

time dependent BdG equations may then be written as non-local partial

differential equations

i
∂

∂t
f|Ψ〉(z, z

∗, β) =− ω~
4

(
1− β∗ ∂

∂β∗

)(
z∗2 +

∂2

∂z∗2
− 1− 2z∗

∂

∂z∗

)
f|Ψ〉(z, z

∗, β)

+
ω~
4
β
∂

∂β

(
z2 +

∂2

∂z2
− 1− 2z

∂

∂z

)
f|Ψ〉(z, z

∗, β)

− µ
(

1− 2β
∂

∂β

)
f|Ψ〉(z, z

∗, β)

+ ∆0

(
β

(
1− β ∂

∂β

)
+

∂

∂β

)
f|Ψ〉(z

∗, z, β) (3.43)

when ∆(q) = ∆0 is real and constant. The non-local nature can be seen from

the exchange of the arguments z → z∗ in the last term. This representation

has similarities to the analytic Bargmann representation, f|Ψ〉(z, z
∗, β) is not

analytic in z though.

3.3 The Group Theoretic Approach to Electron-

Hole Coherent States

In section 3.1 it was shown that the product coherent states can be pro-

duced by the action of a group element of H3(R) × SU(2) acting on the

reference state |0〉 ⊗ |+〉 ∈ L2 ⊗ C2. The repeated application of the group

element produces additional product coherent states up to a phase factor.

There is no obvious group which has an action on the E-H coherent states

that produces the analogous transformations via a linear representation in

Hilbert space. It can be shown though that there is a (what will we term)
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quasi-linear action of the product group that will lead to the same behaviour

for E-H coherent states.

We first define the anti-unitary time-reversal operator τ̂ with the action

on an arbitrary state in H⊗, represented in the number basis as

τ̂

(
∞∑
n=0

An,+|n〉 ⊗ |+〉+ An,-|n〉 ⊗ |−〉

)
=
∞∑
n=0

A∗n,+|n〉⊗ |+〉+A∗n,-|n〉⊗ |−〉.

(3.44)

It follows that acting with τ̂ on a product coherent state produces

τ̂ |z ⊗ β〉 = |z∗ ⊗ β∗〉. (3.45)

We will therefore define the operator

Ẑ = Î∞ ⊗ |+〉〈+|+ τ̂(Î∞ ⊗ |−〉〈−|) ≡

(
1 0

0 τ̂

)
(3.46)

where Î is the identity operator. This operator is neither linear or anti-linear

as it behaves linearly on one subspace but anti-linearly on the other. From

the definition it is also clear that Ẑ is its own inverse

Ẑ2 = Î ⇒ Ẑ-1 = Ẑ. (3.47)

The norm of a general product state |ψ〉 ∈ L2 ⊗ C2 is invariant under the

action of Ẑ
〈Zψ|Zψ〉 = 〈ψ|ψ〉. (3.48)

This is generally not true for the inner product

〈Zψ1|Zψ2〉 6= 〈ψ1|ψ2〉. (3.49)

so Ẑ cannot be considered a unitary operator. There is also no way to define

a general adjoint of Ẑ. Such an adjoint would need to satisfy the condition

|〈ψ1|Zψ2〉| = |〈Z†ψ1|ψ2〉|. (3.50)

This means the use of Ẑ for further analytic purposes is limited.

We can then use Ẑ to transform product coherent states to E-H coherent

states and vice-versa

Ẑ|z ⊗ β〉 = |z on β〉 ⇔ Ẑ|z on β〉 = |z ⊗ β〉. (3.51)

This implies that the correct group operation that produces and translates

E-H coherent states is given by

|z on β〉 = Ẑ[D(z, 0)⊗ U(β)]Ẑ(|0〉 ⊗ |+〉). (3.52)
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3.4 Electron-Hole Q-Function

The definition of the scalar Q-function given in section 2.2 can be extended

to the product coherent states as simply the expectation with respect to the

product coherent

Q⊗(z, β) = 〈z ⊗ β|ρ̂|z ⊗ β〉 (3.53)

where the density operator now describes a state with electron and hole

components |ψ〉⊗ |e〉+ |φ〉⊗ |h〉. The analogous symbol of an operator Â is

A⊗(z, z∗, β, β∗) = 〈z ⊗ β|Â|z ⊗ β〉. (3.54)

A natural definition then also carries over to the E-H states

Qon(z, β) = 〈z on β|ρ̂|z on β〉 (3.55)

but we will show that this Q-function does not retain all the information

about the original density matrix. This can be shown if the density operator

is expanded in the Fock basis. Considering a general two level state |Ψ〉 =

|e〉⊗|ψ〉+|h〉⊗|φ〉 and product coherent state |z⊗β) =
(
|e〉+β|h〉

)
⊗|z〉 (we

omit the normalization without any loss to the argument) the components

of the state can be expanded in the Fock basis as

|ψ〉 =
∑
n

an|n〉 and |φ〉 =
∑
m

am|m〉. (3.56)

Then the expanded product Q-function is in this basis contains the terms

(z ⊗ β|Ψ〉〈Ψ|z ⊗ β) =
∑
m,n

z∗mzn√
n!m!

[
ama

∗
n + βanb

∗
m + β∗bma

∗
n + |β|2bmb∗n

]
.

(3.57)

Assigning the numbers n and m to elements of a density matrix the original

state can be reliably reproduced.

Now considering the Q-function formed from the electron-hole coherent

state in the same basis gives

(z on β|ψ)〈ψ|z on β) =
∑
m,n

ama
∗
nz
∗mzn√

m!n!
+ β∗

∑
m,n

amb
∗
nz
∗(m+n)

√
m!n!

+ β
∑
m,n

bma
∗
nz

(m+n)

√
m!n!

+ |β|2
∑
m,n

bmb
∗
nz

mz∗n√
m!n!

. (3.58)

Each term cannot then be discretely assigned to a position in the density

matrix due to the z(m+n) terms information is lost about the original state.
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In general the E-H symbol for an operator Â

Aon(z, z∗, β, β∗) = 〈z on β|Â|z on β〉 (3.59)

does not have a one-to-one correspondence between the symbol and opera-

tors. As a simple example of how this fails consider the expectation value

with respect to the operator σ1â
†â

〈σ1â
†â〉on =

1

N+

[
β∗z∗2〈z|z∗〉+ βz2〈z∗|z〉

]
≡ 〈σ1â

2〉on ≡ 〈σ1â
†2〉on. (3.60)

Whether some properties of the density matrix can be used to reliably

recreate the original state requires further study.

In the dynamical case, given that the initial (t = 0) product state Q-

function consists of the terms

Q⊗(z, β) = |〈z|ψ〉|2 + β∗〈z|φ〉〈ψ|z〉+ β〈z|ψ〉〈φ|z〉+ |β|2|〈z|φ〉|2. (3.61)

The infinitesimal time dependence of the Q-function can be found using the

density operator form of the Heisenberg equation

d

dt
Q⊗(z, β) = 〈z ⊗ β| i

~
[ρ̂, Ĥ]|z ⊗ β〉. (3.62)

If we consider a BdG Hamiltonian for a real and constant ∆(q̂) = ∆0,

ĤBdG = σ3

(
p̂2

2m
− µ

)
+ σ1∆0 (3.63)

this gives

d

dt
Q⊗(z, β) =

i

~
{

[H0(z)−H∗0(z) + ∆0(β − β∗)] 〈z|ψ〉〈ψ|z〉

−
[
(H0(z)−H∗0(z))|β|2 + ∆0(β − β∗)

]
〈z|φ〉〈φ|z〉

−
[
(H0(z) +H∗0(z))β −∆0(1− |β|2)

]
〈z|ψ〉〈φ|z〉

+
[
(H0(z) +H∗0(z))β∗ −∆0(1− |β|2)

]
〈z|φ〉〈ψ|z〉

}
(3.64)

where H0(z) is the differential form of the Hamiltonian

H0(z) = −~ω
4

(
∂2

∂z2
− 2z

∂

∂z
+ z2 − 1

)
− µ. (3.65)

Using the differential projection operators onto the terms in the Q-function

the time dependence can then be expressed in the form of a Fokker-Planck

transport equation; as a differential operator D acting on the original Q-

function
d

dt
Q⊗(z, β) = D(z, z∗, β, β∗)Q⊗(z, β). (3.66)
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This property does not hold for Q-functions formed from the E-H coherent

states. The terms produced by the Q-function with respect to the E-H

coherent states are

Qon(z, β) = |〈z|ψ〉|2 + β∗〈z|ψ〉〈φ|z∗〉+ β〈z∗|φ〉〈ψ|z〉+ |β|2|〈z∗|φ〉|2. (3.67)

Deriving the infinitesimal time dependence the terms generated by the free

motion under Ĥ0 are contained in the original Q-function

2i Im
{
〈z|ψ〉〈ψ|H0|z〉 − β∗〈z|ψ〉〈φ|H0|z∗〉+ β〈z∗|φ〉〈ψ|H0|z〉 − |β|2〈z∗|φ〉〈φ|H0|z∗〉

}
.

(3.68)

But the off-diagonal terms in the BdG Hamiltonian related to supercon-

ducting states produces additional terms

2i Im {β∗〈z|ψ〉〈ψ|∆(q̂)|z∗〉+ 〈z|ψ〉〈φ|∆(q̂)|z〉

+β〈z∗|φ〉〈φ|∆(q̂)|z〉+ |β|2〈z∗|φ〉〈ψ|∆(q̂)|z∗〉
}
. (3.69)

The time evolution cannot therefore be expressed as an operator acting on

the original Q-function.

For practical purposes these limitations of the E-H Q-function can be

somewhat overcome by utilizing the projection operators defined as

P̂e =

(
1 0

0 0

)
≡ |e〉〈e| and P̂h =

(
0 0

0 1

)
≡ |h〉〈h| (3.70)

which project onto the electron or hole components of the spinor. The full

Q-function contains terms of the form (product or E-H)

Q(z) = Qee(z) + |β|2Qhh(z) + βQeh(z) + β∗Qhe(z) (3.71)

labelled by the contributing components. The projection onto the elements

of the Q-function using the projection operators as

Qee(z) = 〈P̂eρ̂P̂e〉/〈P̂e〉 (3.72)

and

Qhh(z) = 〈P̂hρP̂h〉/〈P̂h〉. (3.73)

Consideration can be given to the meaning of the diagonal terms Qeh and

Qhe which describe the interactions between electron and hole components.

These additional terms are responsible for the inability to reconstruct the

time dependent Q-function. We only consider the projection onto the quasi-

spin components. Any β dependence can also be traced out of Qon(z) and
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Q⊗(z) by integrating over β, arriving at what we will refer to as the reduced

Q-function

Qred(z) =

∫
dβ Q(z, β) = Qee(z) +Qhh(z). (3.74)

This isolates the non-interfering sum of the electron and hole contributions.

Overall Husimi functions based on E-H coherent states do not have the

same mathematical properties shared by SGS and product coherent states.

This means they are less useful for analytic purposes, but will be useful

for representing the details of the trajectories of the electron and hole com-

ponents on phase space. The use of E-H and product Q-functions will be

demonstrated in chapter 4.

3.5 Entanglement Measure for Electron-Hole

Coherent States

It was noted earlier in this chapter that the E-H coherent states are (except

for specific cases) entangled i.e. not product states. Here we consider a

measure of the entanglement of an E-H coherent state. In general a pure

state on |Ψ〉 ∈ H⊗ is called separable if it can be written as |Ψ〉 = |φ〉 ⊗ |θ〉
where |φ〉 ∈ L2 and |θ〉 ∈ C2, and otherwise entangled. By definition

the product coherent states are separable. The E-H coherent states are

clearly separable in the special cases of β = 0,∞ (as noted these values

define states consisting of only an electron or hole component), and also

in the case that V0 = 0 where the electron component and conjugate hole

component completely overlap independent of the value of β. Otherwise

the E-H coherent states are entangled and we would like a measure of this

entanglement in terms of the amplitude of the electron and hole components

We first consider how the expectation values of the spin operators can

measure the amount of mixing of states in C2. Pure states |θ〉 ∈ C2 satisfy∑3
i=1〈θ|σi|θ〉 = 1 and mixed states are described by the density matrix

ρ̂ = p1|θ1〉〈θ1|+ p2|θ2〉〈θ2| (3.75)

where p1, p2 ≥ 0 and satisfy p1 + p2 = 1. The expectation values of the

quasi-spin operators σi are

tr(ρ̂σi) =
2∑
j=1

pj〈θj|σi|θj〉. (3.76)
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Assuming that the components |θ1〉 and |θ2〉 are orthogonal as ρ̂ is hermitian,

then the state is pure if ρ̂2 = ρ̂, either when p1 = 1 or p1 = 0. Defining the

quantity

R2 =
3∑
i=1

tr(ρ̂σi)
2, (3.77)

since R2 is rotation invariant it can be assumed that |θ1〉 = |+〉 and |θ2〉 =

|−〉 and thus R2 takes the values

R2 = (p1 − p2)2 = (1− 2p1)2. (3.78)

This means that R2 = 1 only when the state is pure. Note that R2 < 1

for the values of 0 < p1 < 1. The value of R2 is also minimized at 0 when

p1 = 1/2. This measure of entanglement can be used for states on the

product space H⊗ using the reduced density matrix

ρ̂red = trL2(|Ψ〉〈Ψ|) (3.79)

the trace taken over L2 such that ρ̂red is an operator in C2. |Ψ〉 is considered

separable if and only if ρ̂red = ρ̂2
red describes a pure state. R2 applied to

ρ̂red can be used as a measure of entanglement with the same measure,

zero entanglement at R2 = 1 and maximal entanglement when R2 = 0.

E-H coherent states can take values in the range e-V
2
0 ≤ R2 ≤ 1. For a

state with non zero momentum the lower bound is only satisfied for equal

superpositions of electron and hole components (|β|2 = 1) and the upper

bounds when the state has only an electron or hole component when β =

0,∞.
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Chapter 4

Andreev Reflection &

Stationary States of a

Homogeneous Superconductors

In later chapters we will analyse the dynamics of wave packets in both a ho-

mogeneous superconductor, and at a discontinuous normal-superconducting

boundary. In both situations the wave packets can be constructed from a

superposition of the stationary solutions of the BdG equations. In this

chapter we will give a detailed account of these stationary solutions.

The stationary solutions at an N-S boundary are the scattering state

wave functions, the wave functions generated by the various scattering pro-

cesses of an electron or hole incident on the boundary. We will later use the

scattering states derived here as an orthogonal basis with which to find the

time dependence of Andreev reflected states from a discontinuous boundary

in chapter 6. We will also derive the stationary states of the homogeneous

superconductor from which we will construct Gaussian wave packets inside

a homogeneous superconductor in chapter 5.

Using the E-H Q-function derived in section 3.4 we will also consider

the phase space representation of both the scattering states and the An-

dreev States, the excitation eigenstates that occupy the normal region in

continuous S-N-S system as one might find in the intermediate state of a

superconductor.
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4.1 Stationary States of a Homogeneous Su-

perconductor

We will first, as the simplest example, consider the stationary states of a 1-

dimensional homogeneous superconductor. This is described by a spatially

independent band gap labelled ∆(q) = ∆0, which is also set as both positive

and real. We also consider a system with no external potentials or magnetic

fields (such that U(q) = 0 and A(q) = 0). In this case the coupled time

independent BdG equations 2.14 and 2.15 can be compactly written in terms

of operators acting on a spinor as

ĤBdGΨ(q) =
[
σ3Ĥ0 + σ1∆(q)

]
Ψ(q) = EΨ(q) (4.1)

where Ψ(q) is a two component spinor wave function (spinors will be de-

noted from here on in bold-type) which in the position representation has

electron and hole quasi-particle wave functions as components

Ψ(q) =

(
ψe(q)

ψh(q)

)
(4.2)

(upper indices from here on will refer to the spinor component). The σi are

the standard Pauli matrices

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
(4.3)

and Ĥ0 is the free particle Hamiltonian, given in the position basis as

Ĥ0 = − ~2

2m

d2

dq2
− µ (4.4)

which measures energies relative to µ. We’ve seen in section 2.1.3 that in

the normal conductor (∆0 = 0), the BdG equations decouple. If we take as

an ansatz the spinor

Ψ(q) =

(
ũ

ṽ

)
exp

(
i

~
qα

)
(4.5)

which inserted into 4.1 (with ∆0 = 0) gives us the stationary solutions(
1

0

)
exp

(
± i
~
qα+(E)

)
and

(
0

1

)
exp

(
± i
~
qα-(E)

)
. (4.6)

Here

α±(E) =
√

2m(µ± E). (4.7)

The solutions ±α+(E) represent electron quasi particles with energy +E

relative to µ, travelling in the positive/negative q direction respectively.
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The ±α-(E) solutions represent the hole quasi-particles with energy −E
relative to µ, but travelling with velocity anti-parallel to their momenta,

hence propagating in the negative/positive direction respectively.

In a superconducting region (i.e. ∆0 > 0) the solutions to the coupled

equations require a little more work, but as long as ∆(q) is homogeneous the

same ansatz can be used. Firstly considering states with positive energies

above the band gap (E > ∆0) the four stationary solutions are(
ũ(E)

ṽ(E)

)
exp

[
± i
~
qκ+(E)

]
and

(
ṽ(E)

ũ(E)

)
exp

[
± i
~
qκ-(E)

]
. (4.8)

The energy dependent spinor amplitudes are given by

ũ(E) =

[
1

2

(
1 +

1

E

√
E2 −∆2

0

)] 1
2

(4.9)

and

ṽ(E) =

[
1

2

(
1− 1

E

√
E2 −∆2

0

)] 1
2

(4.10)

with momenta

κ±(E) =

[
2m(µ±

√
E2 −∆2

0)

]1/2

. (4.11)

These solutions are position representations of the Bogoliubov quasi-particle

operators γ̂†k0 = u∗kĉ
†
k↑ − v∗kĉ−k↓ where ĉ†k↑ creates an electron at k and ĉ−k↓

destroys an electron below µ, creating a hole at k.

For positive energies, the relative amplitudes of ũ and ṽ mean that the

±κ+ solutions are predominantly electron-like superpositions and similarly

±κ- are predominantly hole-like. Only for states on the band gap (|E| = ∆0)

are the states equal superpositions of electron and hole components.

The BdG equations also require solutions for negative energies relative

to µ (E < −∆0), for which the solutions are given by(
ṽ(E)

−ũ(E)

)
exp

[
± i
~
qκ+(E)

]
and

(
ũ(E)

−ṽ(E)

)
exp

[
± i
~
qκ-(E)

]
. (4.12)

These solutions correspondingly invert the relative amplitudes of the com-

ponents, with an additional phase shift applied to the hole component.

We will further consider the behaviour of these stationary states in sec-

tion 5.1 with relation to the BdG dispersion relation.
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0

∆ = 0

N

∆0 > 0

S

q

Figure 4.1: The one dimensional

Normal-Superconducting boundary

model. In the normal region ∆(q) = 0

for q < 0 and the superconducting

region∆(q) = ∆0 for q > 0. We

consider electron or holes incident from

the normal region on the left.

4.2 Discontinuous Normal-Superconducting

Interface Scattering States

We now consider the stationary scattering states created by a electron

(or hole) incident on a normal superconducting boundary with energies

|E| < ∆0, which are then both specular and Andreev reflected as well a

penetrating a finite distance into the superconducting region. We first con-

sider a discontinuous N-S interface as shown in Figure 4.1, described by the

Heaviside step-function ∆(q) = ∆0θ(q). µ is also taken as homogeneous

across the interface. The form of the coupled BdG equations means that

this is one system for which a full set of analytic solutions can be found

(without any WKB type approximation as described in section 2.1.4). We

will consider more general N-S interfaces in the next section but will be

required to utilize numerical techniques.

Many of the solutions found in this section can also be found in work by

Blonder, Tinkham and Klapwijk [30] with reference to current across a N-S

boundary. We will only be considering the scattering process at energies

|E| < ∆0, but this paper goes into further detail of the additional scattering

processes that occur at energies outside the band gap.

The solutions in the normal and superconducting regions either side of

the boundary will be considered separately. In the normal region the general

solution is a superposition of incident and outgoing electron and hole states

as given by equations 4.6. This can be written in spinor notation as

ΨN(q) =
1√
α+(E)

(
1

0

)[
AeI exp

(
iq

~
α+(E)

)
+ AeR exp

(
−iq

~
α+(E)

)]
+

1√
α-(E)

(
0

1

)[
AhR exp

(
iq

~
α-(E)

)
+ AhI exp

(
−iq

~
α-(E)

)]
.

(4.13)

In this notation the amplitude superscripts again identify electron or hole

spinor components, and the subscript whether the state is incident (I) onto
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or reflected (R) from the boundary. Again note that hole states are de-

fined as having negative velocities relative to their momenta (also see the

dispersion relation, derived in section 5.1), and if E = 0 the incident and re-

flected states have the same momenta. The difference in momenta between

reflected electron and hole components when E 6= 0 of the order 2E/µ. The

leading 1/
√
α±(E) terms normalize the current flux so that

je,h =
~
m

(
|Ae,hR |

2 − |Ae,hI |
2
)

(4.14)

is the flux carried by the electron/hole component respectively. This choice

of normalization also ensures that the scattering matrix will be unitary.

In the superconducting region, although for energies |E| > ∆0 stationary

states can be found as given by equations 4.8 and 4.12, propagating states

with energies inside the band-gap cannot exist. Consequently the solutions

to the BdG equations inside the band gap are(
ν(E)

ν∗(E)

)
exp

(
± i
~
qκ+(E)

)
and

(
ν∗(E)

ν(E)

)
exp

(
± i
~
qκ-(E)

)
. (4.15)

The energy dependent amplitudes are complex continuations of the ampli-

tudes above the band gap given by

ν(E) =

[
1

2

(
1 +

i

E

√
∆2

0 − E2

)] 1
2

(4.16)

and similarly the momentum term is now also complex

κ±(E) =

[
2m

(
µ± i

√
∆2

0 − E2

)]1/2

. (4.17)

The (small) imaginary part of κ± means that these solutions now corre-

spond to both exponentially decaying (±κ±) and exponentially growing

(∓κ±) solutions for positive q. For this N-S interface model where the su-

perconducting region is effectively infinitely long only the decaying solutions

are physically applicable.

The typical decay length-scale of the decaying solution is given by

L(E) =
~vF

2∆

[
1−

(
E

∆

)2
] 1

2

(4.18)

although it should be noted that this decay length diverges when |E| = ∆0,

for states on the band gap.
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Therefore for energies |E| < ∆0 the allowed general solution in the

superconducting region is

ΨS(q) =
F√
κ+(E)

(
ν(E)

ν∗(E)

)
exp

(
iq

~
κ+(E)

)
+

G√
κ-(E)

(
ν∗(E)

ν(E)

)
exp

(
−iq

~
κ-(E)

)
.

(4.19)

Were we to consider a superconducting region of finite length, for instance

as part of a N-S-N system (i.e. a superconducting region bounded by normal

regions) all four terms in the general solution would need to be included to

account for reflection at the second S-N boundary, but such systems are not

considered in this thesis.

We now consider the possible scattering processes at energies |E| <
∆0. The possible scattering processes (specular or Andreev reflection) are

contained in the scattering matrix S(E), acting on the amplitudes of the

incident components as(
AeR
AhR

)
= S(E)

(
AeI
AhI

)
=

(
See(E) Seh(E)

She(E) Shh(E)

)(
AeI
AhI

)
. (4.20)

The subscripts denote the possible processes, for example She is an incident

electron Andreev reflected as a hole. This scattering matrix is specific to

incident energies inside the superconducting band gap. Were we to consider

higher energies we would be required to include the amplitudes for the

additional processes that transmit electron-like and hole-like excitations into

the superconductor.

The entries of the scattering matrix can be populated, and the corre-

sponding transmission amplitudes in the superconducting region, by first

imposing the condition that the component wave functions and their first

derivatives are continuous across the N-S boundary (i.e. ΨN(0) = ΨS(0)

and Ψ′N(0) = Ψ′S(0)). Imposing this condition transfer matrices can be

found that relate amplitudes in the normal and superconducting region.

The full details of the calculation are omitted here, but the full derivation

can be found in Appendix A.1.1 and additional information in [63]. The

scattering matrix S can then be populated by setting AeI = 1 and AhI = 0

(corresponding to an incident electron with no incident hole component)

to find See and She, and then AeI = 0 and AhI = 1 (likewise corresponding

to an incident hole with no incident electron component) for the other two

entries.

We will later use the scattering states to analyse the dynamics of An-

dreev reflection of a wave packet and so present the details here. In the
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normal region they are (the incident component i.e. electron or hole is

denoted by the subscript)

Ψe,N(q) =
1√
α+(E)

(
1

0

)[
eiqα+(E)/~ + See(E)e-iqα+(E)/~]

+
1√
α-(E)

(
0

1

)
She(E)eiqα-(E)/~ (4.21)

and

Ψh,N(q) =
1√
α-(E)

(
0

1

)[
e-iqα-(E)/~ + Shh(E)eiqα-(E)/~]

+
1√
α+(E)

(
1

0

)
Seh(E)e-iqα+(E)/~. (4.22)

The scattering matrix entries are given by

Seh(E) = She(E) = γ-1
√
α+(E)α-(E)

(
κ+(E) + κ-(E)

)
(4.23)

See(E) = S(E)γ-1(E) Shh(E) = −S∗(E)γ-1(E) (4.24)

defining terms for later brevity

S(E) =
E

∆0

[
ν2(α+ − κ+)(κ- + α-) + ν∗2(α+ + κ-)(κ+ − α-)

]
(4.25)

γ(E) =
E

∆0

[
ν2(α- + κ-)(α+ + κ+)− ν∗2(α- − κ+)(α+ − κ-)

]
. (4.26)

In this thesis we will consider several asymptotic limits. We will first con-

sider the behaviour of the scattering amplitudes in the regime E � ∆0 � µ

(a large Fermi energy limit, and excitation energies close to zero). Expand-

ing the scattering amplitudes in the small parameters E/µ and ∆0/µ then

only retaining terms up to first order leaves

See(E) ≈ −Shh(E) ≈ E

µ
ν∗2 and Seh(E) ≈ 2E

∆0

ν∗2 (4.27)

where ν∗2 = 1
2
(1− i

√
∆2 − E2/E). We will use these first-order approxima-

tions in Section 6.3 where we will also consider expansion of ν∗2 in E/∆0 if

E � ∆0.

To lowest order (i.e omitting all terms of order E/µ, ∆0/µ and E/∆0)

the scattering matrix simplifies to

S(E) ≈

(
0 −i
−i 0

)
(4.28)

as anticipated in section 2.1.3. This corresponds to incoming electron or

hole states being completely Andreev reflected, with no specular reflection

and a phase shift of e-iπ/2 between the incident and reflected states.
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The corresponding scattering states in the superconducting region are

Ψe,S(q) =
2E

∆0

√
α+

γ

[(
ν

ν∗

)
ν(κ- + α-)e

iqκ+/~ +

(
ν∗

ν

)
ν∗(κ+ − α-)e

−iqκ-/~
]

(4.29)

Ψh,S(q) =
2E

∆0

√
α-

γ

[(
ν

ν∗

)
ν∗(κ- − α+)e

iqκ+/~ +

(
ν∗

ν

)
ν(κ+ + α+)e

−iqκ-/~
]

(4.30)

which describe the penetration of the incident state into the superconduct-

ing region before being absorbed into a superconducting pair.

Examples of the electron and hole components of the scattering wave

functions Ψe(q) created by an incident electron are shown in Figure 4.2

for various values of E, ∆0 and µ. Oscillations occur due to interference

between the incident and reflected electron components. Smaller values of

∆0/µ mean a smaller amplitude of specular reflection and hence smaller

oscillations. It should be noted that the wave functions are normalized by

flux when comparing the amplitudes of the components, indicating that the

reflected hole is slower than the incident electron. The plots are also scaled

by the penetration depth L(E).

We show in Appendix A.3.1 that the scattering states form an orthog-

onal basis with respect to a measure on E and between electron and hole

components, in which we can resolve an incident wave packet, and derive

a time dependent picture of the Andreev reflection process for an incident

coherent state wave packet.

The Q-function phase space picture of the two components of the scat-

tering states (4.21), (4.22) and (4.29), (4.30), can be found as outlined in

section 3.4 either using the projection operators to resolve individual or elec-

tron or hole components, or integrating over β to leave the non-interacting

sum of the components. After inserting the resolution of identity in the

position basis, the electron component from an incident electron requires

solutions to the integrals

〈z|Ψe
e〉 =

∫ ∞
−∞

dq 〈z|q〉Ψe
e(q) =

∫ 0

−∞
〈z|q〉Ψe

e,N(q) dq +

∫ ∞
0

〈z|q〉Ψe
e,S(q) dq

(4.31)

for the element Qee
e,on(z) of the E-H Q-function. Here integration is taken

over the normal and superconducting regions independently. The hole com-

ponent has a similar form for Qhh
e,on(z) after the replacement z → z∗. The

solutions are given by the error integrals, the full derivation is given in

Appendix B.
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Figure 4.2: Absolute value squared of the electron (red) and hole (blue) scattering wave

functions generated by an incident electron with energy and band gaps as labelled. The

oscillations in the electron wave function in the normal region are due to interference

between the incident and reflected electron wave functions, thus for smaller values of ∆

the smaller specular reflection co-efficient reduces the scale of the oscillations. All other

units m, ~ = 1.
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(b) E = 15, ∆0 = 20, µ = 50

In this specific case of a discontinuous boundary the result in the normal

region is∫ 0

-∞
〈z|q〉Ψe

e,N(q) dq =(
π~
mω

) 1
4 1√

2α+

{
erfc

[√
λ

2
(mωq − i(p− α+))

]
e-

λ
2

(p-α+)2- i~ q(p-α+)

+See erfc

[√
λ

2
(mωq − i(p+ α+))

]
e-

λ
2

(p+α+)2- i~ q(p+α+)

}
(4.32)

from which it can be seen that the phase space representation is formed from

Gaussian distributions in momentum centred at ±α+(E) respectively rep-

resenting the incident and reflected components. The corresponding result

in the superconducting region is∫ ∞
0

〈z|q〉Ψe
e,S(q) dq =

1√
2

(
π~
mω

) 1
4

{
ν
√
κ+
F erfc

[
−
√
λ

2
(mωq − i(p− κ+))

]
e-

λ
2

(p-κ+)2- i~ q(p-κ+)

+
ν∗
√
κ-
G erfc

[
−
√
λ

2
(mωq − i(p+ κ-))

]
e-

λ
2

(p+κ-)2- i~ q(p+κ-)

}
(4.33)

The projections of the E-H Q-function onto the electron and hole compo-
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Figure 4.3: Reduced Q-functions of the scattering state wave functions shown in Figures

4.2a and 4.2b. Qred
⊗ (z) (top row) and Qred

on (z). Energy values as labelled and ~,m = 1.

When E = 0 the incident electron and reflected hole coincide along pF for the product Q-

function (a). For the E-H Q-function the reflected hole lies at −pF (c). When E 6= 0 the

incident electron lies above pF and the reflected hole below pF in the product Q-function

picture (b).

-pF
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nents are therefore given by

Qee
on (z) = |〈z|Ψe

N〉+ 〈z|Ψe
S〉|2 (4.34)

and

Qhh
on (z) = |〈z∗|Ψh

N〉+ 〈z∗|Ψh
S〉|2. (4.35)

Density plots of the E-H and product Q-functions corresponding to the

wave functions given in Figure 4.2 are shown in Figure 4.3. The reflection

of the hole component in the momentum axis means the E-H Q-function

reveals additional details of the components, though care has to be taken if

the components overlap as the hole contribution now obscures any reflected

electron component shown by the product Q-function.
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4.3 Bound Andreev States

∆0 ∆(q) ∆ = 0 ∆(q) ∆0

−(c+ b) −b 0 a

aR,l aI,r

q

Figure 4.4: The S-N-S system under consideration: We find the allowed eigen-

energies where the reflected state on the left becomes the incident state on the

right, and similarly on the left.

Andreev states are the eigenstates that occupy the normal region of an

S-N-S system as shown in Figure 4.4. The properties and spectrum of S-N-S

systems have been studied by a number of authors, see [22, 64, 65]. This one

dimensional model consists of a normal region over −b < q < 0, bounded

by homogeneous superconducting regions extending over q < −(b + c) and

q > a, with intermediate transitional regions with a spatially dependent

∆(q) with values ∆(0) = ∆(−b) = 0 and ∆(a) = ∆(−(b+ c)) = ∆0. In the

transitional regions, 0 < q < a and −(c+ b) < q < −b, due to the nature of

the BdG equations numerical techniques will be required to solve the BdG

equations for arbitrary functions of ∆(q).

Andreev states satisfy the condition that the reflected states outgoing

from one boundary are the incident states at the opposite boundary as

schematically shown in Figure 4.4. The allowed bound Andreev states can

be found by first extending the transfer matrix process, used for the discon-

tinuous boundary, to find the transfer matrices relating electron and hole

amplitudes moving from the normal region to the homogeneous supercon-

ducting regions through the transitional regions. The full details of the

algorithm implemented are omitted here but given in appendix A.1.2.

The bound Andreev state are then found by the process of using the

transfer matrix to find the scattering matrix at q = 0. Written in terms of

the incident and hole amplitudes, on the right (denoted by the subscript)(
aeR,r
ahR,r

)
=

(
See,r(E) Seh,r(E)

She,r(E) Shh,r(E)

)(
aeI,r
ahI,r

)
(4.36)

aR,r = Sr(E)aI,r. (4.37)
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Figure 4.5: The real part of, and the logarithm of the eigenvalues of U(E).
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(a) The real part of the eigenvalues

Re(λj(E)) (The two curves overlap due

to the symmetry of the system under

consideration).
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(b) The corresponding logarithm of the

two eigenvalues log(λj(E)). Allowed en-

ergies are located where log(λj(E)) = 0.

To find the crossing points the algorithm

extrapolates between points of log λj(E)

on opposite sides of the 0 line.

Similarly on the left we derive the scattering matrix relating the incident

and reflected states at q = −b from which we get aR,l = Sl(E)aI,l. A

transfer matrix that relates reflected states at one boundary to incident

states across the normal region is also required. This will be denoted by

T (E), with entries that are the phase shifts associated with the election

and hole excitations in a normal region

T (E) =

(
exp(−ibα+(E)/~) 0

0 exp(ibα-(E)/~)

)
. (4.38)

It follows that aI,r = T (E)aR,l relates the reflected states on the left to the

incident states on the right. The three matching conditions can then be

manipulated to construct an equation that only includes amplitudes on the

right

aR,r = Sr(E)T (E)Sl(E)T (E)aR,r = U(E)aR,r. (4.39)

For this equality to be satisfied the energies need to be found where(
I−U(E)

)
aR,r = 0. (4.40)

Thus the allowed energies equivalently occur when det(I−U(E)) = 0. Since

U is unitary by construction it can be assumed that the two eigenvalues of

U(E) lie on the unit circle and have the form

λj(E) = exp[iφj(E)] (4.41)
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Figure 4.6: Examples of the bound Andreev state wave function and corresponding

Q-function density plots. The Q-functions are given for both the and electron and hole

components as well as their sum. The system under consideration is shown in figure 4.4,

with a linear function of ∆(q) connecting the normal and homogeneous regions. µ = 10,

∆0 = 3, a = c = 5 and b = 10. All other parameters ~,m = 1
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(e) Absolute value squared of the electron (red) and hole (blue) components of

the Andreev state wave functions. E = 0.73×∆0
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then the allowed energies are found when λj(E) = 1 as shown in Figure

4.5a or equivalently for numerical purposes where log λj(E) = 0 as shown

in Figure 4.5b.

In practice this has been implemented by an algorithm that numerically

solves the coupled differential equations given by the BdG equations, to

generate U(E) (see section A.1.2 for details) for a range of values of 0 <

E < ∆0 (as to not include propagating states at energies |E| > ∆0 in

the superconducting regions). From this list of values the location where

log λj(E) crosses the origin is found (as shown in Figure 4.5b) and then the

location of the eigen-energies extrapolated.

Once the allowed energies are known, it is then straight forward to cal-

culate the Andreev state electron and hole component wave functions, and

hence their corresponding Q-function. For the regions of constant ∆0 and

the normal region the solutions are known. For the regions ∆(q), the wave

function are found by numerically solving the differential equations. The

Q-function over the intermediate region is then found by numerical inte-

gration. Examples are shown in Figure 4.6 where the transitional region is

modelled by a linear function of ∆(q).

4.4 Solutions of the BdG Equations for a

Linearly Varying Band Gap

In general it turns out to be difficult to find analytic solutions to the coupled

BdG equations for any other superconducting system apart from the homo-

geneous superconductor or the discontinuous N-S boundary. To generate

the Andreev states for varying values of E in the regions with a spatially

dependent band gap, ∆(q), we have relied upon numerical differential equa-

tions solvers to generate the corresponding electron and hole wave functions

in these regions.

We have found though that we can find limited analytic solutions for a

region of linearly varying ∆(q), described by ∆(q) = δq for a constant δ.

By rearranging the BdG equations in the position basis solutions must be

found for the matrix differential equation

d2

dq2
ψ(q) =

2m

~2
[iδqσ2 − Eσ3 − µ]ψ(q). (4.42)

When E = 0 (i.e. states on the Fermi energy) a solution ansatz consisting
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Figure 4.7: The absolute square of

the electron (red) and hole (blue) com-

ponent wave functions from an inci-

dent electron on a linearly varying pair

potential ∆(q) = qδθ(q). The inci-

dent electron has energy E = 0 and

δ/µ = 0.1, ~ =,m = 1.

0 q

|ψ
e
,h
e

(q
)|2

of a constant vector and scalar function in q

ψ(q) = xf(q) (4.43)

can be used. As E = 0 the vector is just given by the eigenvector of σ2. With

this condition the solution for f(q) of the resulting differential equation is

given by the Airy Functions of the first and second kind (see [66] p.446).

The spinor solutions are therefore

ψA±(q) =

(
1

±i

)
Ai

[(
±2imδ

~2

) 1
3 (
q ± iµ

δ

)]
(4.44)

and

ψB±(q) =

(
1

±i

)
Bi

[(
±2imδ

~2

) 1
3 (
q ± iµ

δ

)]
. (4.45)

For an infinitely long linear potential, starting at q = 0 (i.e. ∆(q) = qδθ(q)),

the allowed decaying solutions are described by the Airy functions of the

first kind. The allowed general solution in the linearly varying region can

then be given by the linear sum

ΨL(q) = FψA+(q) +GψA-(q). (4.46)

If we consider the interface of a normal region and a region of linearly

varying ∆(q) it is straightforward to generalise the transfer matrix technique

described in section A.1.1, by again satisfying the corresponding matching

conditions at the normal/linear boundary. An example of the component

wave functions are shown in Figure 4.7.

Although this is an interesting results in itself, it is of limited use when

considering the dynamics of wave packets. For the purpose of wave packet

dynamics information is required about the contributions from a range of

energies contained under the wave packet. It seems that it is not possi-

ble to find a full analytic solutions for an arbitrary non-zero value of E.
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We can consider that if it was possible to extend these analytic solutions

pertubatively in E close to µ, such a solution could be used to calculate

contributions to a Gaussian distribution that is sufficiently sharply peaked

around the Fermi momentum as any contributions from energies far from the

Fermi energy are suppressed. Although there are well established methods

for finding perturbative solutions to matrix differential equations it seems

that using a simple pertubative expansion of the form

ψ(q) = ψ0(q) + Eψ1(q) . . . (4.47)

does not provide a simplified analytic form for the higher order terms, al-

though the lowest order term is easily found. In particular it remains to be

seen if a small pertubation in the energy produces a small pertubation in

the wavefunction.

We might instead consider the same problem in the momentum basis,

the BdG equations are rearranged as

d

dp
y(p) =

1

δ~

[(
p2

2m
− µ

)
σ2 − iEσ1

]
y(p) (4.48)

simplifying the required calculation.

Assuming that y(p) can be expanded pertubatively in E as

y(p) = y0(p) + Ey1(p) . . . (4.49)

inserting this back into (4.48), the lowest order equation

E0 ⇒ d

dp
y0(p) =

1

δ~

(
p2

2m
− µ

)
y0(p) (4.50)

is easily solved to give

y0(p) =

(
cosh(f(p))

i sinh(f(p))

)
and y0(p) =

(
−i sinh(f(p))

cosh(f(p))

)
(4.51)

where

f(p) =
1

δ~

(
p3

6m
− pµ

)
. (4.52)

Like the position representation though higher order terms are not easily

found.
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Chapter 5

Dynamics of Electron-Hole

Coherent States in a Spatially

Homogeneous Superconductor

In this chapter we will consider the dynamics of Gaussian wave packets

which describe quasi-particle excitations inside a spatially homogeneous su-

perconductor, defined by a spatially constant energy band gap ∆(q) = ∆0.

We will first analyse the behaviour of the time dependent operators in

the Heisenberg picture. We will also consider the difference in behaviour

between the E-H and product coherent states, and how both forms of states

behave in a semi-classical context. For a region with a constant band gap we

can find exact analytic solutions to the set of time dependent operators in

the Heisenberg picture, and so we will look at the moments of Gaussian wave

packets and again compare the behaviour of the moments with respect to

the product or electron-hole states. In lieu of full analytic solutions for the

moments we will be required to utilize asymptotic techniques to investigate

the time dependence of the moments, in particular we will consider the long

time behaviour of E-H and product coherent states.

The second half of this chapter will be dedicated to further investigation

into the behaviour of wave packets in a homogeneous superconductor in the

Schrödinger picture. In particular we will focus on wave packets centred on

the Fermi momentum, where examination of the dispersion relation relevant

to the BdG Hamiltonian would suggest that wave packets have the property

of a zero group velocity despite the large momentum value. We will again be

required to employ asymptotic analysis techniques to examine the long-time

behaviour of Gaussian wave packets. Finally we will consider the two short
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wavelength limits appropriate to the BdG equations, both the standard

semiclassical limit ~→ 0 and the large Fermi energy limit µ→∞.

5.1 Bogoliubov-de Gennes Dispersion Rela-

tion

Here we give a brief overview of the dispersion relation and its relations to

the dynamics of a scalar wave packet. We will then extend this concept

to wave packets with a spin component under the BdG Hamiltonian for

an indication of how we should expect wave packets to behave inside a

superconductor.

The representation of localised particles by groups of plane waves has

roots in the development of quantum theory, and concepts used here are

detailed in most quantum mechanics textbooks (for example [67]). When

applied to the plane wave solutions of the BdG equations, we will show that

the relative amplitudes of the spinor components informs not only how they

propagate but how the positive and negative energy solutions interfere.

Let us first consider a free scalar wave packet, many features of which

will have analogues when we consider spinor wave packets under the BdG

Hamiltonian later in this section. A general time-dependent wave packet

defined on position space can be decomposed into travelling plane waves in

k-space using the relationship

Ψ(q, t) =

∫
dk A(k) exp [i(kq − E(k)t/~)] . (5.1)

The function A(k) is the amplitude of the plane waves from which Ψ(q, t)

is constructed. The plane waves as defined here have an associated flow

travelling in the positive direction. For the standard free scalar Schrödinger

equation k and E(k) are related by the dispersion relation E(k) = ~2k2/2m

(though much of what follows still remains valid for different forms of Hamil-

tonian). If the distribution of wave vectors A(k) is strongly peaked around

a mean wave vector k0 then E(k) can be expanded about k0, as only infor-

mation about plane waves with values of k close to the peak k0 is required.

Expanding up to second order around k0 gives the terms

E(k) ≈ E(k0) + E ′(k0)(k − k0) +
1

2
E ′′(k0)(k − k0)2. (5.2)

Firstly only considering terms up to first order in (k− k0), inserting the ex-

pansion back into (5.1) and shifting the origin to the peak of the distribution
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k → k0 gives

Ψ(q, t) ≈ exp [i(k0q − E(k0)t)]

∫
dk A(k + k0) exp [i(q − E ′(k0)t)k] (5.3)

= exp [ik0(q − vp(k0)t)]

∫
dk A(k + k0) exp [i(q − vg(k0)t)k] . (5.4)

In the second line we have identified the phase velocity defined as vp(k) =

E(k)/k and the group velocity vg(k) = E ′(k). The phase velocity cor-

responds to the propagation of the phases and the group velocity to the

velocity of the wave packet. This can be made analytically explicit for a

Gaussian distribution of k values, parametrized in a manner analogous to

previous sections by a central wave vector k0 and a width parameter λ as

A(k) =

√
λ

π
exp

[
− λ(k − k0)2

]
(5.5)

with a corresponding Gaussian wave packet defined in the position basis.

The propagation of this wave packet in space is therefore approximately

described by the function

Ψ(q, t) ≈ exp

[
− 1

4λ

(
q − vg(k0)t

)2
+ ik0

(
q − vp(k0)t

)]
(5.6)

the original Gaussian wave packet translated to a new peak position located

at vg(k0)t, confirming that the group velocity indeed describes the velocity

of the wave packet.

Further considering the next second order term in the expansion (5.2),

inserting this into the plane wave resolution gives

Ψ(q, t) ≈ exp (ik0(q − vp(k0)t))

∫
dkA(k+k0) exp

(
i(q − vg(v0)t)k − it

2
E ′′(k0)k2

)
.

(5.7)

This indicates that for a Gaussian wave packet, the second order term in

the expansion enters the solution as a time dependence in the width of the

wave packet

Ψ(q, t) ≈

√
λ

λ(t)
exp

[
− 1

4λ(t)

(
q − vg(k0)t/~

)2
+ ik0

(
q − vp(k0)t/~

)]
(5.8)

where λ(t) = λ+ itE ′′(k0)/2~. The spreading of the initial Gaussian state is

approximately linear in time, and for long times the major contribution to

broadening is proportional to E ′′(k), but also inversely proportional to the

initial width. This again shows that spatially narrower wave packets spread

more quickly due to consequently being broader in k-space. This can be
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0 kF-kF

√
µ2 + ∆2

0

-
√
µ2 + ∆2

0

-|∆|

+|∆|

E(k)

k
Band Gap

Figure 5.1: The dispersion relation, E(k) = ±
√

(~2k2/2m− µ)2 + ∆2
0, rele-

vant to the BdG equations. The positive and negative branches are shown for

states both inside a homogeneous superconducting region where ∆0 > 0 (red)

and a normal conductor where ∆0 = 0 (blue). In the normal case the two

branches correspond to electron and hole quasi-particles, who intersect at ±kF
the Fermi wavenumber kF = pF/~. In a superconductor the corresponding plane

waves are superpositions of electron and hole components.

imagined as being due to the contributions to the wave packet moving at

differing velocities. Higher order terms (cubic and above) in the expansion

of E(k) are then responsible for non-Gaussian dynamics of the wave packet.

For the time dependent BdG equations the spinor ansatz(
u(q, t)

v(q, t)

)
=

(
ũ

ṽ

)
exp

[
i

(
kq − t

~
E(k)

)]
(5.9)

shows that the BdG dispersion relation has positive and negative energy

branches

± E(k) = ±

√(
~2k2

2m
− µ

)2

+ ∆2
0. (5.10)

These branches are plotted in Figure 5.1 for both states in a normal con-

ductor (∆ = 0) and superconducting (∆ > 0) system. Note again the

energy band gap of width 2∆0 at energies |E| < |∆0| from µ, where single

excitations cannot persist in a superconductor.

For a set energy in the range ∆0 < E <
√
µ2 + ∆2

0 the 4 possible

stationary states are given by equation (4.8). Likewise in the range −∆0 >

E > −
√
µ2 + ∆2

0 the stationary solutions are given by equation (4.12).

Each of the solutions (±κ+ and ±κ-) are applicable in a limited range of k.

In a normal conductor the scalar dispersion relation

± E(k) = ±
(
~2k2

2m
− µ

)
(5.11)
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Figure 5.2: The spinor component amplitudes as a function of k and their relation to

balance of components along the dispersion relation.

kF-kF 0
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0.5

1

(a) The spinor component amplitudes

|A+(k)|2 (red) and |A-(k)|2 (blue) as a

function of k. ∆0/µ = 0.25.
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(b) At large values of k the plane waves

are predominantly electron/hole-like on

the positive/negative energy branches

respectively. On ±kF they are equal su-

perpositions of components.

is regained as shown in blue in Figure 5.1. The positive branch corresponds

to the electron-like quasi-particle. This is equivalent to the free scalar case,

albeit with a shift in energies measured relative to µ. The negative en-

ergy branch is the corresponding hole excitation, this is the reflection of

the electron relation in the energy axis about µ. This is due to the time

reversed nature of the hole component. It follows that the group velocity

and momenta of a hole quasi-particle have opposite signs.

To examine how the magnitude of the spinor components behave in

the superconducting case the dispersion relation can be used to rewrite the

amplitudes ũ(E) and ṽ(E) in terms of k as

ũ(E(k)) ≡ A+(k) =

[
1

2

(
1 +

H0(k)√
H2

0(k) + ∆2
0

)] 1
2

(5.12)

and

ṽ(E(k)) ≡ A-(k) =

[
1

2

(
1− H0(k)√

H2
0(k) + ∆2

0

)] 1
2

. (5.13)

Here H0(k) = ~2k2/2m− µ. The amplitudes of A+(k) and A-(k) are shown

in Figure 5.2a. From this it can be inferred that along the positive branch

the states are predominantly electron-like when |k| > kF (being almost

completely electron when |k| � kF) and predominantly hole-like when |k| <
kF. At the crossing point kF the stationary states are equal superpositions

of electron and hole components. The inverse is true along the negative

energy branch, with an additional eiπ phase applied to the hole component.
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In particular as shown in Figure 5.2b the spinor amplitudes on the pos-

itive and negative Fermi momenta are

E(±kF) = ∆0 =⇒ 1√
2

(
1

1

)
and − E(±kF) = −∆0 =⇒ 1√

2

(
1

−1

)
(5.14)

describing equal superpositions of electron and hole components on the edge

of the band gap. For energies far from the band gap

E(|k| � kF)� ∆0 =⇒
(

1

0

)
and − E(|k| � kF)� −∆0 =⇒

(
0

−1

)
(5.15)

the states are predominantly electron-like or hole-like. When k = 0 such

that E(0) =
√
µ2 + ∆2

0 then

A±(0) =

[
1

2

(
1± µ√

µ2 + ∆2
0

)] 1
2

(5.16)

in the limit ∆0/µ→ 0 this simplifies to A±(0) ≈
√

1/2(1± 1). These states

will then consist of predominantly one component in this limit. Also note

that the operator iσ2 takes states from the positive energy branch to the

negative and vice-versa.

It can be inferred from Figure 5.2b that interesting dynamics should

especially be seen from wave packets located on and close to the Fermi

momentum. The equal superposition of electron and hole components will

mean wave packets defined in this region will create strong interference be-

tween the positive and negative energy branches. At much larger energies

as the positive and negative branches consist of predominantly one of the

orthogonal electron or hole components, the energy branches will only in-

terfere weakly.

Like the scalar example given by equation 5.1 we will consider the plane

wave decomposition of an initial spinor wave packet using the stationary

states of the BdG equation (equations (4.8) and (4.12)). Consideration

will have to be given as to how the decomposition models the electron-hole

degree of freedom parametrized by β as defined in section 3.2.

To discuss the decomposition we label the positive and negative energy

branch momentum eigenstates as (the bold notation again denoting a state

with spinor components)

|k,+〉 =

(
A+(k)

A-(k)

)
|k〉 and |k,−〉 =

(
A-(k)

−A+(k)

)
|k〉. (5.17)

71



from which the resolution of identity can be formed

I =

∫
dk
(
|k,+〉〈k,+|+ |k,−〉〈k,−|

)
. (5.18)

First considering a general product spinor wave packet

|ψ0 ⊗ β〉 =
(
|e〉+ β|h〉

)
⊗ |ψ0〉. (5.19)

then the corresponding time dependent wave function can be resolved as

ψ⊗(q, t, β) = 〈q| exp

(
− i
~
tĤBdG

)
|ψ0 ⊗ β〉 (5.20)

=

∫
dk 〈q| exp

(
− i
~
tĤBdG

)(
|k,+〉〈k,+|+ |k,−〉〈k,−|

)
|ψ0 ⊗ β〉

(5.21)

=

∫
dk 〈q| exp

(
− i
~
tĤBdG

)(
B+(k)|k,+〉+B-(k)|k,−〉

)
(5.22)

=

∫
dk e-

i
~ tE(k)B+(k)〈q|k,+〉+ e

i
~ tE(k)B-(k)〈q|k,−〉 (5.23)

where the plane wave amplitudes are given by

B±(k) =
[
A±(k)± βA∓(k)

]
〈k|ψ0〉. (5.24)

This is the product spinor analogue of the scalar decomposition given by

(5.1). For wave packets that are well localised and peaked at some k0 (like

the Gaussian coherent state distribution) information about the dynamics of

wave packets can be garnered from the dispersion relation, and the balance

of the components.

In the following section we will consider several values of k0 with respect

to the Fermi momentum as illustrated in Figure 5.3a. Firstly a wave packet

centred far from the Fermi momentum at k0 � kF and a distribution that

is also sufficiently narrow to isolate a small region in k then A+(k) ≈ 1

and A-(k) ≈ 0. The resulting decomposition of the time dependent wave

function will approximately be

ψ⊗(q, t, β) ≈
∫
dk 〈k|ψ0〉eiqk

[(
1

0

)
e-itE(k)/~ + β

(
0

1

)
eitE(k)/~

]
. (5.25)

The electron and hole components of the initial wave packet are resolved

in positively and negatively propagating plane waves respectively. It can

read directly from the dispersion relation that for states centred at k0 � kF

the electron-like component will have a positive group velocity and the
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Figure 5.3: Wave packets and the BdG dispersion relation.

E(k)
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kF-kF 0

(a) We will consider wave packets lo-

cated at k0 ≈ kF, k0 = 0 and k0 � kF.

Sufficiently narrow Gaussian distribu-

tions will isolate contributions from re-

gions of the dispersion relation.

E(k)

k

kF-kF 0

τq
τq

(b) The time reversal operator, τq,

translates the centre of the initial Gaus-

sian distribution from k0 to −k0.

hole a negative, confirming that in this case the state initially centred on

k0 � kF will quickly separate. Since the electron and hole components are

orthogonal then the wave packet |ψ⊗(q, t, β)|2 will contain no interference

between positive and negative energy branches. Each component will then

evolve freely.

When the state is centred on the Fermi momentum k0 = kF thenA+(kF) ≈
A-(kF) ≈ 1/

√
2 and the wave packet decomposes as

ψ⊗(q, t, β) ≈ 1

2

∫
dk〈k|ψ0〉eiqk

[(
1

1

)
(1 + β)e-itE(k)/~ +

(
1

-1

)
(1− β)eitE(k)/~

]
.

(5.26)

The electron and hole components of the initial wave packet are resolved in

equal superpositions of positive and negative energy contributions. Like the

scalar case, expanding the dispersion relation about k0 the phase velocity

of a state centred on kF is

vp(kF) =
1

kF

E±(kF) = ±∆0

kF

(5.27)

but the corresponding group velocity is

vg(kF) = E ′(kF) = 0. (5.28)

We see that for states centred on the Fermi momentum the group velocity

is 0 though the phase velocity remains non zero. This is due to to the two

components of the plane wave having the same momentum at kF, but as

they propagate in opposite directions they produce the zero group velocity.
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Close to kF the states either side of kF move from electron-like to hole-like

and so also move in opposite direction for a given energy. This is only

true close to kF though as E(p) is asymmetric about kF at higher energies.

This means ignoring any interference effects wave packets on either branch

will only disperse as their components move in opposite directions. We

will demonstrate in later sections that interesting dynamics can arise due

to interference between the energy branches. In particular we will see that

although the group velocity as found from the dispersion relation is zero on

the band gap, wave packets can in fact be produced that have initial group

velocities ±vF, the Fermi velocity vF = pF/m.

To create the E-H state the application of the time reversal operator to

the hole component inverts the hole component of the wave packet about

the origin. This inverts the location of the peak of the wave packet from k0

to −k0 as shown in Figure 5.3b. As such the action of the Ẑ (see Equation

(3.46)) operator means we construct the hole component of our initial state

from the negative momentum plane waves. For a general E-H state

|ψ0 on β〉 = |e〉 ⊗ |ψ0〉+ β∗|h〉 ⊗ |ψ∗0〉 (5.29)

the plane wave amplitudes are replaced by

B±(k) = A±(k)〈k|ψ0〉 ± β∗A∓(k)〈k|ψ∗0〉. (5.30)

For the wave packet centred at k0 � kF since A(k)± are symmetric in k

their approximate values are unchanged by Ẑ leaving

ψon(q, t, β) ≈
∫
dk eiqk

[(
1

0

)
〈k|ψ0〉e-itE(k)/~ +

(
0

1

)
β∗〈k|ψ∗0〉eitE(k)/~

]
.

(5.31)

As 〈k|ψ∗0〉 isolates negative values of k, this now means that the hole compo-

nent has a positive group velocity, in line with the electron component. Ig-

noring rotations between the electron and hole components we would expect

the components to move together. Due to the lack of interaction between

the electron and hole components, apart from the overall time reversal the

dynamics of these states will be left mainly unaffected.

For states located on the Fermi momentum the E-H state decomposes

as

ψon(q, t, β) ≈ 1

2

∫
dk eiqk

[(
1

1

)
(〈k|ψ0〉+ β∗〈k|ψ∗0〉)e-itE(k)/~

+

(
1

-1

)
(〈k|ψ0〉 − β∗〈k|ψ∗0〉)eitE(k)/~

]
. (5.32)
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Although the electron and hole component of the initial state are again re-

solved in equal superpositions of positive and negative energy contributions,

the hole contributions are now located at −k.

Here the approximation has been made that the spinor amplitudes are

constant over the width of the wave packet. We will show in later sections

that this is an appropriate approximation for states at k0 = 0 or k0 � kF,

but for states on kF the variation of E(k) across the width of the wave packet

will play a strong role in the dynamics.

As with the scalar example, for a Gaussian wave packet the time de-

pendent width of the wave packet in q is given by the second derivative of

E(k). On the Fermi momentum this is

E ′′(kF) =
(~vF)

2

∆0

. (5.33)

The same calculation for the normal conductor dispersion relation (5.11)

provides the energy indipendent value E ′′(k) = ~2/2m, the same as the

scalar wave packet. This indicates an additional spreading mechanism for

wave packets on the band gap. It can be inferred that this is due to the

spreading due to opposite velocities of the two components.

5.2 Time Scales & Wave Packet Dimensions

We now consider the time and length scales of interest for Gaussian wave

packets under the BdG Hamiltonian. Firstly

TF =
π~
µ

(5.34)

the approximate time for a wave packet with expected momentum pF =
√

2mµ to travel one Fermi wavelength, λF = 2π~/pF, ignoring any rotations

between electron-hole components. We also assign

Tδq =
mδq
pF

= δq

√
m

2µ
∝

√
~
ωµ

(5.35)

the approximate time required for a wave packet centred on the Fermi mo-

mentum pF to travel its own spatial width δq. For an initially Gaussian wave

packet δq is proportional to δq ∝
√

2~/mω which gives the right hand side

of (5.35). Finally there is the time-scale

Tσ(p) =
π~√

〈H0(p̂)〉2 + ∆2
(5.36)
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the approximate time for an initially pure electron state to rotate completely

in quasi-spin space through the hole and back to the electron component.

For a wave packet centred on pF this will be π~/∆0.

We define the length scale η = δq/λF the spatial width of the wave packet

measured in units of the Fermi wavelength. Semiclassical constraints require

that η � 1 ensuring that the width of the wave packet is much larger than

the Fermi wavelength. For a Gaussian wave packet η ∝
√
µ/π2ω~. The

condition η � 1 implies that the time-scales should satisfy Tδq � TF .

These fundamental time-scales also suggest the length scale dσ(p) =

vFTσ(pF) which we will term the spin distance. dσ(p) is the approximate

distance the centre of a wavepacket located on the Fermi momentum will

travel over one full revolution in quasi-spin. We would like to ensure that

the width of the initial wave packet falls in the region between the Fermi

wavelength and the spin distance

λF � 4σq ≤ dσ(pF). (5.37)

The right hand side of the inequality ensures that the wave packet can

travel sufficiently far outside the initial Gaussian envelope before any oscil-

lations between the components set in, otherwise any quasi-spin effects on

the dynamics will be contained inside the wave packet envelope.

To this end we assign the parameter x as

x =
δq

dσ(pF )
. (5.38)

x can be used to scale the width of the initial wave packet in terms of

vFTσ(pF). We will show that x will also provide a means of generating

certain dynamic behaviour from Gaussian wave packets under the BdG

Hamiltonian located on the Fermi momentum.

For a wave packet centred at V0 = pF we set the total spatial width of

the initial Gaussian wave packet (i.e. the width of |〈q|z〉|2) as δq = 4~
√
λ/2

(where again λ = 1/mω~) this sets the width at 4 standard-deviations,

encompassing ∼99% of the weight of the Gaussian distribution. We also

set the corresponding momentum width at δp = 4/
√
λ (similarly set at

4 standard-deviations of the momentum distribution 〈p|z〉). We can then

rearrange for the spatial and momentum widths for a given value of x

δq =

(
~πpF

m∆0

)
x ⇒ δp =

(
16m∆0√

2πpF

)
1

x
. (5.39)

The analysis of the dispersion relation indicates that consideration should

also be given to the momentum width of the wave packet relative to the
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Figure 5.4: Scaling of the momentum and spatial widths of a wave packet centred at

pF. When x = 1 the energy of the contributing stationary states fall outside the range

∆0 of the band gap, but the spin distance dσ(pF) is on the same scale as the spatial

width of the wave packet. If x = 2 the contributing energies fall inside the range ∆0 of

the band gap but dσ(pF) lies well inside the initial wave packet envelope.

E
(p

)

2∆0

4σp

(a) Gaussian envelope in p, x = 1

E(p)

2∆0

4σp

(b) Gaussian envelope in p, x = 2

4σq = dσ(pF)

(c) Wave packet at t = 0 in q, x = 1

4σq

dσ(pF)

(d) Wave packet at t = 0 in q, x = 2

dispersion relation E(p). As shown the shape of the dispersion relation is

determined by the ratio ∆0/µ. The relationship between the dispersion re-

lation and momentum distribution also dictates the range of energies of the

plane wave contributions to the wave packet. For a wave packet centred at

pF the resultant range of energies is given by

δE = E(pF + δp)− E(pF). (5.40)

If we would like to have the contributing energies lie inside the range 2∆0 of

µ (i.e. within ∆0 of the band gap) this means δE ≤ ∆0 which for a Gaussian

distribution is approximately satisfied when

δp .

√
3m∆0

pF

. (5.41)

Obviously we cannot set δp such that we simultaneously satisfy both of

these conditions as shown in Figure 5.4. Scaling x between 1 < x < 2 means

that when x = 1, 〈p|z〉 will include plane wave contributions with E > 2∆0

(Figure 5.4a), but dσ(pF) is located in the tails of the initial wave packet

(Figure 5.4c). At the other end of the scale when x ∼ 2 the energies of
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the plane wave contributions are well contained inside the range ∆0 (Figure

5.4b) of the band gap, but dσ(pF) falls inside the spatial width of the wave

packet (Figure 5.4d).

The ratio x will prove particularly useful in the analysis of dynamics

in the short-wavelength limits ~ → 0 and µ → ∞; as it contains all the

important features of the wavepacket, and its decomposition, the width of

the wave packet, it’s central velocity and rate of rotation in quasi-spin.

5.3 Heisenberg Equations of Motion

As shown in section 2.2, under certain conditions we can relate the dy-

namics of quantum wave packets to classical trajectories generated by the

corresponding classical Hamiltonian. In this section we consider the BdG

Hamiltonian and the resultant equations of motion. In particular we analyse

the difference between the dynamics of product and E-H coherent states.

For a scalar particle on phase space the Ehrenfest relations apply to the

phase space observables 〈q̂〉 and 〈p̂〉. For the BdG Hamiltonian we will also

have to consider the observables 〈σi〉 that describe the electron-hole degree

of freedom. We have also shown in chapter 3 that the E-H coherent states

span position-pseudo-velocity phase space and so we will consider the dy-

namics of the moments of these operators with respect to the E-H coherent

states. Where the pseudo-velocity operator is V̂ = σ3p̂ we will also confirm

that this does in fact describe the initial velocity of the E-H coherent states.

We again utilize the standard Heisenberg time evolution given in general

form by
d

dt
Â(t) =

i

~
[Ĥ, Â(t)] (5.42)

for a Hamiltonian Ĥ and operator Â(t). For the BdG Hamiltonian this

will also require taking into account the commutation relation of the spin

operators. We will require the standard canonical commutation relations

[q̂, p̂] = i~ (5.43)

[f(q̂), p̂] = i~f ′(q̂) (5.44)

[q̂, q̂] = [p̂, p̂] = 0 (5.45)

and the Pauli operator commutator relations

[σi, σj] = 2iεijkσk (5.46)
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(where εijk is the Levi-Cevita symbol). Also note that the spin and canonical

operators commute

[p̂, σ̂i] = [q̂, σ̂i] = 0. (5.47)

Though the spin operator notation has been used here, it will be useful

to keep in mind that in bra-ket notation they can be represented in the

orthogonal electron-hole basis as

σ1 = |e〉〈h|+ |h〉〈e| (5.48)

σ2 = i (|h〉〈e| − |e〉〈h|) (5.49)

σ3 = |e〉〈e| − |h〉〈h|. (5.50)

It will also be useful to consider the non-hermitian lowering and raising

operators defined as σ± = (1/2)[σ1 ± iσ2] with the commutation relations

[σ3, σ±] = ±2σ± (5.51)

[σ+, σ-] = σ3. (5.52)

First considering the expectation values of the spin operators, which de-

scribe values of complex β on the Bloch sphere as outlined in section 3.1,

in switching from product to E-H states the magnitude of β is unaffected

〈z ⊗ β|σ3(0)|z ⊗ β〉 ≡ 〈z on β|σ3(0)|z on β〉 =
1− |β|2

1 + |β|2
(5.53)

as we might be expected from the diagonal nature of σ3. The change in the

expectation values of σ1 and σ2 is (omitting the normalization)

〈z ⊗ β|σ1(0)|z ⊗ β〉 = 2 Re(β) → 〈z on β|σ1(0)|z on β〉 = 2 Re(β∗〈ψ|ψ∗〉)
(5.54)

〈z ⊗ β|σ2(0)|z ⊗ β〉 = 2 Im(β) → 〈z on β|σ2(0)|z on β〉 = 2 Im(β∗〈ψ|ψ∗〉).
(5.55)

The most important feature of note is the added dependence on the overlap

of the state and its conjugate. If |z〉 is located at p0 then the conjugate

wave packet is located at −p0. The overlap is given by exp(−λV 2
0 ), which

can be especially small when V0 ≥ pF.

With these elements in hand; under the BdG Hamiltonian as defined in

section 4.2 with no magnetic vector potential (A = 0), but for generality an

external potential U(q̂), the Heisenberg equations of motion on phase space
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are

d

dt
q̂(t) =

1

m
V̂ (t) (5.56)

d

dt
p̂(t) = −U ′(q̂(t))σ3(t)−∆′(q̂(t))σ1(t) (5.57)

d

dt
V̂ (t) = −U ′(q̂(t)) +

1

~
{∆(q̂(t)), p̂(t)}σ2(t) (5.58)

and quasi-spin

d

dt
σ1(t) = −2

~
Ĥ0σ2(t) (5.59)

d

dt
σ2(t) =

2

~

(
Ĥ0σ1(t)−∆(q̂(t))σ3(t)

)
(5.60)

d

dt
σ3(t) =

2

~
∆(q̂(t))σ2(t). (5.61)

Here the anti-commutator {Â, B̂} = ÂB̂ + B̂Â has been used. These equa-

tions are somewhat simplified for the raising and lowering operators

d

dt
σ±(t) = ± i

~

(
2Ĥ0σ±(t) + ∆(q̂(t))σ3(t)

)
(5.62)

d

dt
σ3(t) =

2i

~
∆(q̂(t)) (σ-(t)− σ+(t)) . (5.63)

In this general case it proves difficult to find a closed set of solutions to

the ordered set of equations of motion.

The short time behaviour can be estimated by expanding the time de-

pendent operator as

Â(t) = Â(0) +
dÂ(0)

dt
t+O(t2). (5.64)

Given that in the Heisenberg picture〈
d

dt
Â(t)

〉
=

d

dt
〈Â(t)〉 (5.65)

the first order term can be evaluated with respect to either a product or

E-H state. Firstly for a general product state

|Ψ⊗ β〉 =
1√

1 + |β|2
(
|e〉+ β|h〉

)
⊗ |Ψ〉 (5.66)

(labelling N±(β) = 1 ± |β|2 for brevity) the first order terms are for the
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phase space operators are

d

dt
〈q̂(0)〉⊗ =

1

m

(
N-(β)

N+(β)

)
〈ψ|p̂(0)|ψ〉 (5.67)

d

dt
〈p̂(0)〉⊗ = − 1

N+(β)

[
N-(β)〈ψ|U ′(q̂(0))|ψ〉+ 2 Re(β)〈ψ|∆′(q̂(0))|ψ〉

]
(5.68)

d

dt
〈V̂ (0)〉⊗ = −〈ψ|U ′(q̂(0))|ψ〉+

2

~

(
Im(β)

N+(β)

)
〈ψ|{∆(q̂(0)), p̂(0)}|ψ〉

(5.69)

and for the quasi-spin operators

d

dt
〈σ1(0)〉⊗ = −4

~
Im(β)

N+(β)
〈ψ|Ĥ0|ψ〉 (5.70)

d

dt
〈σ2(0)〉⊗ =

2

~
1

N+(β)

[
2 Re(β)〈ψ|Ĥ0|ψ〉 −N-(β)〈ψ|∆(q̂(0))|ψ〉

]
(5.71)

d

dt
〈σ3(0)〉⊗ =

4

~
Im(β)

N+(β)
〈ψ|∆(q̂(0))|ψ〉. (5.72)

As might be expected of a product state the phase space and spin operators

act independently on their corresponding spaces. This creates a strong

dependence on β, this can be seen in particular for the dynamics of the

expected position. If β = 0,∞ such that that the state only consists of

an electron or hole component, it has the form of an Ehrenfest relation. If

|β|2 = 1 though, the expected position is stationary. The (total) momentum

operator can be somewhat misleading. In this case if the initial wave packet

is an equal superposition and β is purely imaginary, it would show a constant

momentum despite an external potential. The pseudo-velocity operator

equation coincides with the Ehrenfest relation if Im(β) = 0, suggesting

additional dynamics dependent upon complex phase of the of the initial

state.

The corresponding general E-H state is given by

|ψ on β〉 =
1√

1 + |β|2
(
|e〉 ⊗ |ψ〉+ β∗|h〉 ⊗ |ψ∗〉

)
. (5.73)
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The respective expectation value equations are

d

dt
〈q̂(0)〉on =

1

m
〈ψ|p̂|ψ〉 (5.74)

d

dt
〈p̂(0)〉on = − 1

N+(β)

[
〈ψ|U ′(q̂(0))|ψ〉 − |β|2〈ψ∗|U ′(q̂(0))|ψ∗〉

]
− 1

N+(β)
[β∗〈ψ|∆′(q̂(0))|ψ∗〉+ β〈ψ∗|∆′(q̂(0))|ψ〉] (5.75)

d

dt
〈V̂ (0)〉on = − 1

N+(β)

[
〈ψ|U ′(q̂(0))|ψ〉+ |β|2〈ψ∗|U ′(q̂(0))|ψ∗〉

]
+
i

~
1

N+(β)
[β〈ψ∗| {∆(q̂(0)), p̂(0)} |ψ〉 − β∗〈ψ| {∆(q̂(0)), p̂(0)} |ψ∗〉]

(5.76)

and

d

dt
〈σ1(0)〉on = −2i

~
1

N+(β)

[
β〈ψ∗|Ĥ0|ψ〉 − β∗〈ψ|Ĥ0|ψ∗〉

]
(5.77)

d

dt
〈σ2(0)〉on =

2

~
1

N+(β)

[
β∗〈ψ|Ĥ0|ψ∗〉+ β〈ψ∗|Ĥ0|ψ〉

]
+

2

~
1

N+(β)

[
〈ψ|∆(q̂(0))|ψ〉 − |β|2〈ψ∗|∆(q̂(0))|ψ∗〉

]
(5.78)

d

dt
〈σ3(0)〉on =

2i

~
1

N+(β)
[β〈ψ∗|∆(q̂(0))|ψ〉 − β∗〈ψ|∆(q̂(0))|ψ∗〉] . (5.79)

As noted in the transfer from product to E-H states there is an dependence

on the overlap of states and their conjugate. But the expected position no

longer has any dependence on the electron-hole degree of freedom described

by β suggesting that the two components of the wave packet move together.

It remains to be seen if this leads to semiclassical trajectories though.

It will also be important to consider the time dependent variance of

the operators. It has been shown in section 2.2 that in the scalar case the

width of the wave packet grows linearly with time. The infinitesimal time

dependence of the variance of an operator is given by

d

dt
Var(Â(t)) =

d

dt
〈Â2(t)〉 − 2〈Â(t)〉 d

dt
〈Â(t)〉 (5.80)

which requires the time dependence of the square of the operators. For the

velocity operator this is

d

dt
(V̂ 2(t)) =

d

dt
(p̂2(t)) = −

{
V̂ (t), U ′(q̂(t))

}
− {∆′(q̂(t)), p̂(t)}σ1(t) (5.81)

and q̂(t)
d

dt
(q̂2(t)) =

1

m

{
V̂ (t), q̂(t)

}
. (5.82)
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The time dependence of the spatial variance is then given by

d

dt
Var(q̂(t)) =

1

m

[
〈σ3(t){p̂(t), q̂(t)}〉 − 〈q̂(t)〉〈σ3(t)p̂(t)〉

]
. (5.83)

Without any further information about the time dependence of the op-

erators additional information about the difference between the E-H and

product states cannot be directly found. We therefore look at the short

time behaviour of the position operator

q̂(t) = q̂(0) + t
d

dt
q̂(0) +O(t2) (5.84)

= q̂(0) +
t

m
V̂ (0) +O(t2) (5.85)

for which the variance is then given by

Var(q̂(t)) =

〈(
q̂(0) +

t

m
V̂ (0)

)2
〉
−
(
〈q̂(0)〉+

t

m
〈V̂ (0)〉

)2

+O(t2)

(5.86)

= Var(q̂(0)) + t
d

dt
Var(q̂(0)) +

(
t

m

)2

Var(V̂ (0)) +O(t2). (5.87)

This result can be compared with the variance of the position operator in

the scalar (free particle) case, given for short times by q̂(t) = q(0)+tp̂(0)/m.

With respect to both the E-H and product coherent state the first two terms

of Equation (5.87) give equivalent results to the scalar expectation values.

There is a discrepancy in the third term though. With respect to the E-

H coherent states this term is still equivalent to the scalar operator with

respect to the scalar coherent state as

Var(V̂ (0))on ≡ Var(p̂(0))|z〉 (5.88)

indipendent of the value of β. The same value with respect to the E-H

coherent states is

Var(V̂ (0))⊗ = 〈z|p̂2(0)|z〉 −
(

1− |β|2

1 + |β|2

)2

〈z|p̂(0)|z〉2. (5.89)

This will only be equivalent to the scalar case if |β|2 = 0. If |β|2 = 1, the

discrepancy from the scalar example is

Var(V̂ (0))⊗ = Var(p̂)|z〉 + 2〈z|p̂(0)|z〉2. (5.90)

This demonstrates that at least for short times the E-H state grows like

a free scalar coherent state. The additional growth shown by the product
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state can be especially large if we are considering states close to or above

the Fermi momentum. For the rest of this chapter we will only consider

superconductors with a spatially homogeneous band-gap, and as such a time

indipendent energy spectra. For a spatially dependent band-gap though it

may in future work prove useful to consider the adiabatic approximation.

Generally speaking the adiabatic theorem states that a system will re-

main in its instantaneous eigenstate if a perturbation acts slowly enough.

Let us as an example first consider the model developed by Born and Op-

penheimer [68]. To analyse the behaviour of the electron-nucleus system

they noted that that since the ratio of the mass of the electron to the

mass of the nucleus, me/M is small; it can used as an expansion parameter

for the energy spectra of the molecular electron-nucleus system. Without

derivation, the physical picture is that the velocity of the nucleus is slow

(on the atomic scale) in comparison to that of the electron. The electron

therefore quickly adapts to the motion of the nucleus (i.e. adiabatically)

remaining at their initial energy level. The dynamics of the nucleus can

then be treated semiclassically. This work has proved a key feature of

quantum-chemistry greatly simplify atomic problems with a large number

of degrees of freedom. The study of Born-Oppenheimer approximations

have produced a large body of work with notable work by Hagedorn [69]

on the time-dependent Born-Oppenheimer approximation and Spohn and

Teufel [70] to name a few.

For the two level electron-hole system we considered in this thesis there

is a clear analogue in the model analysed by Landau [71] and Zener [72].

They consider a two-level system with a time-dependent diagonal Hamilto-

nian H0(t) and eigenstates |1〉 and |2〉 with degenerate energy levels at a

certain value of t (the diabatic system). If a (time-indipendent) off-diagonal

perturbation is introduced coupling the eigenstates, the energy levels will

now repel where they would have crossed for the unperturbed Hamiltonian.

This is commonly referred to as avoided crossing. If the simplification is

made that H0(t) varies linearly; the Landau-Zerner formula gives the prob-

ability that as the energy gap between the eigenstates varies with time,

the state will make a non-adiabatic transition between energy levels. If the

energy levels vary slowly the adiabatic approximation indicates that the

state will remain at the initial energy level, but faster variations allow for

non-adiabatic energy level transitions despite the avoided crossing.

When considering a spatially inhomogeneous superconductor there are
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two questions we might consider:

• If the band gap varies slowly for wavepackets propagating at the Fermi

velocity can the quasi-spin and phase space dynamics be treated in an

indipendent manner in the style of the Born-Oppenheimer approxima-

tion. Could one set of dynamics be treated in a semiclassical manner

whilst the other behaves adiabatically?

• The BdG has avoided crosses at ±pF due to the perturbation of

σ3H0(p̂) by ∆ in the the BdG Hamiltonian. As can be seen from

the BdG dispersion relation (Figure 5.1) in a normal conductor the

energy curves of the electron and hole quasi-particles intersect at ±pF

where conversely the dispersion relation has a minimum at ±pF in a

superconductor. Could we therefore consider a generalization of the

Landau-Zerner effect for transitions between electron-like and hole-like

energy bands? This could include quantifying an adiabatic condition

for the BdG equations.

These are possible directions for future analysis of the BdG equations,

though we will not consider them further in this thesis.

5.3.1 Normal Conductor

First as the simplest dynamic example we consider a normally conducting

region where ∆(q̂) = 0. Although we know the BdG equations are decou-

pled, and the dynamics relatively simple, it will serve to illustrate the need

for E-H states and their relation to classical trajectories. In this case the

phase space Heisenberg equations of motion, 5.56 and 5.57, simplify to

d

dt
〈q̂(t)〉 =

1

m
〈V̂ (t)〉 (5.91)

d

dt
〈p̂(t)〉 = −〈U ′(q̂(t))σ3(t)〉 (5.92)

which look very much like the Ehrenfest relations for the scalar system the

obvious difference being σ3(t) dependence contained in both the expecta-

tion values on the right. We will use the projection operators defined in

section 3.4 to define the projections of expectation of the electron and hole

components as

〈Â〉e =
〈P̂eÂP̂e〉
〈P̂e〉

and 〈Â〉h =
〈P̂hÂP̂h〉
〈P̂h〉

. (5.93)
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Then the expected position of each component with respect to a product

state is

d

dt
〈q̂(t)〉e,⊗ =

1

m
〈p̂(t)〉e,⊗

d

dt
〈p̂(t)〉e,⊗ = −〈U ′(q̂(t))〉e,⊗ (5.94)

and

d

dt
〈q̂(t)〉h,⊗ = − 1

m
〈p̂(t)〉h,⊗

d

dt
〈p̂(t)〉h,⊗ = 〈U ′(q̂(t))〉h,⊗. (5.95)

These are merely the Ehrenfest relations for an independent electron and

the corresponding time reversed hole. If we instead consider the pseudo-

velocity equation of motion (simplified from equation 5.58)

d

dt
〈V̂ (t)〉 = −〈U ′(q̂(t))〉 (5.96)

pairing this with the expected position they have the form of the Ehrenfest

relations for a particle defined by the mean pseudo-velocity. The electron-

hole quasi-spin dynamics take the form

d

dt
〈σ1(t)〉 = −2

~
〈Ĥ0σ2(t)〉 (5.97)

d

dt
〈σ2(t)〉 =

2

~
〈Ĥ0σ1(t)〉 (5.98)

d

dt
〈σ3(t)〉 = 0. (5.99)

The time independence of 〈σ3(t)〉 should be expected as the lack of interac-

tion between the electron and hole means their relative amplitude remains

constant at the initial value 〈σ3〉 = (1 − |β|2)/(1 + |β|2) indipendent of

the choice of initial product or E-H wave packet. The time dependence of

the relative phase components, σ1(t) and σ2(t), can be interpreted as be-

ing due to the change in relative phase of the plane wave solutions as they

propagate. The time dependent operators are found to be

σ2(t) = σ2(0) cos

(
2t

~
H0

)
+ σ1(0) sin

(
2t

~
H0

)
(5.100)

σ1(t) = σ1(0) cos

(
2t

~
H0

)
− σ2(0) sin

(
2t

~
H0

)
(5.101)

or equivalently in terms of the raising and lowering operators

σ2(t) = i
[
σ-(0)e−2itH0/~ − σ+(0)e2itH0/~

]
(5.102)

σ1(t) = σ+(0)e2itH0/~ + σ-(0)e−2itH0/~. (5.103)

In this form it is clear that these are the contribution from the interference

between positive and negative energy branches as they propagate in opposite
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directions. Their expected values with respect to a product coherent state

is simply

〈σ2(t)〉⊗ =
i

1 + |β|2
[
β∗〈z|e−2itH0/~|z〉 − β〈z|e2itH0/~|z〉

]
(5.104)

〈σ1(t)〉⊗ =
1

1 + |β|2
[
β∗〈z|e−2itH0/~|z〉+ β〈z|e2itH0/~|z〉

]
(5.105)

where as for the E-H coherent state they are

〈σ2(t)〉on =
i

1 + |β|2
[
β〈z∗|e−2itH0/~|z〉 − β∗〈z|e2itH0/~|z∗〉

]
(5.106)

〈σ1(t)〉on =
1

1 + |β|2
[
β〈z∗|e−2itH0/~|z〉+ β∗〈z|e2itH0/~|z∗〉

]
. (5.107)

The E-H coherent states suppress these interference effects if the overlap of

the coherent state and it’s conjugate is small.

It is clear then as to why the E-H state definition is required. The

two components, although they may have the same initial position in phase

space, they will quickly separate as they move in opposite directions. Fur-

thermore if we consider a normal conductor with no external potentials (i.e.

U(q̂) = 0) such that d〈V̂ 〉/dt = 0 then it is straightforward to solve the

differential equation and see that for an initial product coherent state, the

components will separate proportional to their initial velocity V0 as

〈q̂(t)〉⊗ =
t

m

(
1− |β|2

1 + |β|2

)
〈z|p̂|z〉. (5.108)

This can be pictured as being due to expected value being located between

the two separating states, depending on their relative initial weights. As

seen in the general case, for a state with equally weighted electron and hole

components (i.e. |β| = 1) 〈q̂(t)〉⊗ = 0, as the motion of the two components

cancel each other. If we now calculate the expectation value with respect

to the E-H states then

〈V̂ 〉on =
1

1 + |β|2
[
〈z|p̂|z〉 − |β|2〈z∗|p̂|z∗〉

]
= 〈z|p̂|z〉 (5.109)

as it’s straightforward to see that

〈z|p̂|z〉 ∝ 〈z|(â† − a)|z〉 = −〈z∗|(â† − a)|z∗〉. (5.110)

The action of the Ẑ operator inverts the expected momentum such that the

projected velocities are

1

〈P̂e〉
d

dt
〈P̂eq̂P̂e〉on =

1

〈P̂h〉
d

dt
〈P̂hq̂P̂h〉on. (5.111)
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It follows that

〈q̂(t)〉on =
t

m
〈z|p̂|z〉 (5.112)

in this simple case, indicating the E-H coherent state follows the scalar

trajectory.

In a normal region the variances of the phase space operators are straight-

forward to calculate, and found to be

d

dt
Var(q̂) =

1

m

[
〈{q̂, p̂}σ3〉 − 2〈q̂〉〈V̂ 〉

]
(5.113)

and

d

dt
Var(V̂ ) = 2〈V̂ 〉〈U ′(q̂)〉 (5.114)

meaning with no external potentials the variance in pseudo-velocity is con-

stant in a normal region. Since the time dependent operators in this case

are simply

V̂ (t) = V̂0 and q̂(t) =
t

m
V̂0 + q̂(0). (5.115)

Inserted back into the time dependent variance of q̂(t) means that

d

dt
Var(q̂) =

2t

m2

[
〈V̂ 2

0 〉 − 〈V̂0〉2
]

=
2t

m2
Var(V̂0). (5.116)

The time dependence of the spatial variance with respect to the product

coherent state is

d

dt
Var(q̂)⊗ =

2t

m2

[
〈z|p̂2|z〉 −

(
N-(β)

N+(β)
〈z|p̂|z〉

)2
]

(5.117)

which for a initially only electron or hole state behaves like a single particle

but, but not for a general superposition. For a balanced wave packet (|β|2 =

1) the variance will contain additional terms dependent on the expected

momentum, which can be especially large for a wave packet centred on the

Fermi momentum, quickly destroying any localisation.

The same value with respect to the E-H coherent states is given by

d

dt
Var(q̂)on =

2t

m2

[
〈z|p̂2|z〉 − 〈z|p̂|z〉2

]
=

2t

m2
Var(p̂). (5.118)

This is equivalent to a scalar coherent state, with no β dependence evidenced

by the product state.

For this simple example at least, E-H coherent states retain localisation

in position-velocity phase space, where product states quickly lose local-

isation in general. This makes them more suitable for classical-quantum
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correspondence purposes, having all the advantages of coherent states. As

we’ve seen, and might have expected given the plane wave solutions derived

for the time independent case, the dynamics and derived trajectories are

somewhat trivial in a normally conducting region (and defining states that

remain coherent is also fairly trivial only requiring time reversal of the hole

component). The interesting dynamics will arise where coupling between

the components is introduced, in particular we are interested in the wave

packets concentrated about the Fermi momentum where wave packets con-

sist of equally weighted superpositions of electron and hole components. Far

from the Fermi momentum we’ve shown with the dispersion relation that

the components are predominantly electron or hole-like, and thus we would

expect to behave much like wave packets in the normal conductor.

5.3.2 Spatially Homogeneous Superconductor

We now consider (and for the rest of this chapter) a spatially homogeneous

superconductor defined by the spatially independent band gap ∆(q) = ∆0 >

0. The set of Heisenberg equations of motion then simplify to

d

dt
q̂(t) =

1

m
V̂ (t) (5.119)

d

dt
p̂(t) = −U ′(q̂)σ3(t) (5.120)

d

dt
V̂ (t) = −U ′(q̂) +

2

~
∆0p̂(t)σ2(t) (5.121)

d

dt
σ1(t) = −2

~
Ĥ0σ2(t) (5.122)

d

dt
σ2(t) =

2

~

[
Ĥ0σ1(t)−∆0σ3(t)

]
(5.123)

d

dt
σ3(t) =

2

~
∆0σ2(t). (5.124)

In the absence of external potentials the total expected momentum is time

independent. This will provide a constant of integration which allows an-

alytic solutions to the differential equations. The time derivative of the

expected pseudo-velocity now depends on the expectation 〈p̂σ2(t)〉. The

time derivative of the expected position retains the form of an Ehrenfest

relation (this is in general true), albeit with the right hand side dependent

on the expected pseudo-velocity. We can consider rewriting the equations of

motion in terms of the pseudo-velocity operator instead of momentum as a

means of representing trajectories on position-pseudo-velocity phase space.
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Rewriting the time derivative of the expected velocity as

d

dt
〈V̂ (t)〉 = −2i

~
∆0〈V̂ (t)σ1(t)〉. (5.125)

This can readily also be extended to the Hamiltonian as

Ĥ0 =
p̂2

2m
− µ ≡ V̂ 2

2m
− µ (5.126)

which also implies that V̂ 2(t) is time independent in this case. Like the

Ehrenfest relation we would like to be able to reformulate the equations

of motion in terms of expectation values. This suggests that we seek the

separation of the expectation values of the form

〈V̂ (t)σ1(t)〉 ∼ 〈V̂ (t)〉〈σ1(t)〉. (5.127)

Presently it is unclear if such an approximation can be made utilizing the

E-H coherent states.

Let us now consider solving the ordered differential equations 5.119 -

5.124 for ∆0 > 0 and U(q) = 0. As ∆0 is indipendent of q̂(t), the time

dependent quasi-spin operators form a self contained system, with analytic

solutions. A full derivation of the solutions is given A.2.1. From the time

dependent spin operators it is then straightforward to also calculate the

time dependent pseudo-velocity (given that V̂ (t) = p̂σ3(t)) and the time

dependent position operator as q(t) = p̂
m

∫
σ3(t)dt.

The set of time dependent operators can then be written in terms of

the the quasi-spin operators at time 0 and p̂ (the position operator doesn’t

enter explicitly except as a constant of integration in q̂(t)). We can write

the time dependent quasi-spin operators in general form as the linear sum

over contributions of the form

σi(t) =
3∑
j=1

σj(0)fj(p̂, t) + Ig(p̂). (5.128)

which will be used in the following section.

5.4 Dynamics of the Moments of Coherent

State Wave packets

Though the set of time dependent operators formally contain all the in-

formation about the dynamics under the BdG Hamiltonian, it will require
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further analysis in order to extract useful information about the moments

with respect to E-H and product coherent states. Though a simple example

we have shown that the E-H coherent states remain localised in a normal

conductor where product states will quickly separate unless they consist of

only electron or hole components.

We consider two main questions in this section, firstly how the expecta-

tion values and variances differ between E-H and product coherent states in

this system. Further consideration will be given as to how the dependence

on the initial amplitude of the electron and hole of a initial product wave

packet affects the dynamics of the moments. We would expect that a prod-

uct state that is an equal superposition of electron and hole components

will again initially separate. We should also consider how the dependence

on the overlap of the coherent states and their conjugate introduced by the

E-H wave packet effects their dynamics.

Secondly we will consider both the effect of the parameters that de-

fine the superconducting system (in particular the values of ∆0 and µ that

describe the superconducting system), and also the width and central mo-

mentum of the initial wave packet.

We have shown in section 5.1 that the dispersion relation indicates that

wave packets centred on momenta much larger than the Fermi momentum,

or close to zero (as long as µ� ∆0), will have electron and hole components

that very much behave like independent free wave packets. Each compo-

nent will predominantly consist of superpositions of stationary states from

the positive and negative branches respectively. Although we will consider

these regimes (mainly as examples) we will mainly focus on wave packets

located at V0 ≈ pF where the stationary states are balanced superpositions

of electron and hole components. The dispersion relation predicts that these

wave packets will have zero group velocity, despite the expected values of

the velocity having large values.

Given that the time dependent operators can be written in the general

form given in equation 5.128, the lack of q̂ dependence means it is convenient

to resolve the expectation values of each term in the integral form

〈ψ, β|σi(0)fi(p̂, t)|ψ, β〉 =

∫
〈ψ, β|σi(0)fi(p̂, t)|p〉〈p|ψ, β〉 dp (5.129)

=

∫
fi(p, t)〈ψ, β|p〉σi(0)〈p|ψ, β〉 dp (5.130)

given here for some general 2-component (E-H or product) state |ψ, β〉. In

general it has not been possible to find closed analytic solutions for these
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integrals. We will therefore consider several approximations, in particular

devoting sub-section 5.4.5 to the long time asymptotic behaviour of E-H

coherent state wave packets.

Some of the differences between the product and E-H coherent states

have been shown in the previous section, and the time dependent operators

presented in this form will also allow a clear measure of how these two types

of coherent state behave.

The expectation values of the off diagonal components with respect to

the product coherent state are given by

〈σ1(0)f1(p̂, t)〉⊗ =
2 Re(β)

N+(β)
〈z|f1(p̂, t)|z〉 (5.131)

=
2 Re(β)

N+(β)

√
λ

π

∫
f1(p, t)e-λ(p-V0)2

dp (5.132)

〈σ2(0)f2(p̂, t)〉⊗ =
2 Im(β)

N+

〈z|f2(p̂, t)|z〉 (5.133)

=
2 Im(β)

N+(β)

√
λ

π

∫
f2(p, t)e-λ(p-V0)2

dp (5.134)

(where λ = 1/m~ω is the scaled squeezing parameter). As shown previously,

quasi-spin operators and p̂ dependent terms act on their respective Hilbert

spaces independently, the spin operators merely select out the β dependence

of each component, and thus show a strong dependence on the initial phase

between electron and hole components of the initial wave packet.

The same expectation values with respect to the E-H coherent states are

given in integral form as

〈σ1(0)f1(p̂, t)〉on =

√
λ

π
〈σ1(0)〉on

∫
f1(p, t)e-λp

2

dp (5.135)

〈σ2(0)f2(p̂, t)〉on =

√
λ

π
〈σ2(0)〉on

∫
f2(p, t)e-λp

2

dp. (5.136)

For brevity we have used

〈σ1(0)〉on =

(
2 Re(β)

N+(β)

)
e-λV

2
0 and 〈σ2(0)〉on =

(
2 Im(β)

N+(β)

)
e-λV

2
0 .

(5.137)

Like the normal conductor example these off diagonal terms are suppressed

by E-H coherent states for large values of λ and V0. In contrast the depen-

dence on β will always remain for a product state. This can be seen from

the location of the distribution as shown in 5.3b. A product state will in-

clude interference between components from the same location in k-space.

As the Ẑ operator inverts the location of the hole component about the
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momentum origin, this now involves interactions at opposite locations on

k-space.

The expectation values of the diagonal terms of σ3 with respect to the

E-H and product states are given by

〈σ3(0)f3(p̂, t)〉⊗ =
N-(β)

N+(β)
〈z|f3(p̂, t)|z〉 (5.138)

and

〈σ3(0)f3(p̂, t)〉on =

√
λ

π
N-1

+ (β)

∫
f3(p, t)

[
e-λ(p-V0)2 − |β|2e-λ(p+V0)2

]
dp.

(5.139)

Again the product state will always have a dependence on initial balance of

components, with theses terms completely disappearing for an equal super-

position. The E-H coherent state can in certain cases lose any dependence

on the magnitude of β, depending on the form of f3(p, t). If f3(p, t) is odd

in p then the Gaussian term can be inverted∫
f3(p, t)e-λ(p+V0)2

dp = −
∫
f3(p, t)e-λ(p-V0)2

dp (5.140)

which allows for the contraction the expectation into the single term

N+(β)-1

∫
f3(p, t)

[
e-λ(p-V0)2 − |β|2e-λ(p+V0)2

]
dp =

∫
f3(p, t)e-λ(p-V0)2

dp

(5.141)

removing any dependence on the initial amplitude of the quasi-spin.

5.4.1 Expected Pseudo-Velocity

We first analyse the behaviour of the pseudo-velocity operator V̂ (t) =

p̂σ3(t), this is written in terms of the initial operators as

V̂ (t) =
p̂∆0

E(p̂)

[
σ-(0)A2

-(p̂)− σ+(0)A2
+(p̂)

]
e2itE(p̂)/~

+
p̂∆0

E(p̂)

[
σ+(0)A2

-(p̂)− σ-(0)A2
+(p̂)

]
e-2itE(p̂)/~

+ p̂

[
1− ∆2

0

E2(p̂)
2 sin2

(
t

~
E(p̂)

)]
σ3(0) +

p̂H0

E2(p̂)
∆0σ1(0). (5.142)

From this there are some clear key features of the expectation value with

respect to the product state. For a state which initially has only electron or

hole components (β = 0 or β =∞ respectively) any off diagonal terms will

vanish. The expectation value of an initial hole will then be the negative of
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an initial electron. If the initial product state is an equal superposition of

electron and hole components (|β|2 = 1) then (5.142) simplifies to

〈V̂ (t)〉⊗ = 〈z| 2p̂∆0

N+(β)E(p̂)

[
Im(β) sin

(
2t

~
E(p̂)

)
− H0

E(p̂)
Re(β) sin2

(
t

~
E(p̂)

)]
|z〉.

(5.143)

This indicates a dependence on the phase of β in the resulting dynamics.

The expectation value with respect to the E-H coherent state is given

by the integral

〈V̂ (t)〉on =

〈
V̂ (0)

{
1 +

∆2
0

E2(p)

[
cos

(
2t

~
E(p)

)
− 1

]}〉
on

(5.144)

= V0 −
√
λ

π
∆2

0

∫
2p

E2(p)
sin2

(
t

~
E(p)

)
e-λ(p−V0)2

dp. (5.145)

The off diagonal terms proportional to σ1(0) and σ2(0) vanish independently

of the value β as the integrals generated by theses components have the form∫
pf(p) exp(−λp2)dp = 0 (5.146)

when f(p) is even. Altogether this means that the expected pseudo-velocity

will always be indipendent of the initial electron-hole amplitudes. Also when

β = 0 the E-H and product solutions coincide.

This can clearly then be interpreted as the initial pseudo-velocity 〈V̂ (0)〉on,

modified by an oscillating term dependent on ∆0, V0 and the width of the

initial state in δp. The oscillating integral does not have a simple closed

solution. In the following sub-section we will analyse the asymptotic be-

haviour in the long time limit using the stationary phase approximation.

Without further calculation it is also clear that when V0 = 0 the os-

cillating term vanishes (integrated over odd p) meaning the state remains

located at V0 = 0 for all times. The oscillating term is largest when V0 = pF

(the minimum of E(p)) and in a similar manner the oscillations will disap-

pear again when V0 � pF then the velocity of the wave packet will remain

approximately constant.

It is also possible to make some straight forward approximations. Firstly

for short times, the sinusoidal term is readily expanded up to second order

in t leaving integrals with analytic solutions. This provides the short time

approximation

〈V̂ (t)〉on ≈ V0

[
1− 2

(
∆0t

~

)2
]

+O(t4) (5.147)

94



Figure 5.5: 〈V̂ (t)〉on for various values of ∆0/µ and ∆0/E0. The are approximate values

for a narrow momentum distribution using the Laplace method.
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(a) 〈V̂ (t)〉on for a state centred on the

Fermi momentum such that ∆0/E0 = 1.

Varying the value of ∆0/µ, as labelled,

increases the rate of oscillation
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(b) 〈V̂ (t)〉on for a fixed value ∆0/µ =

0.05 with values of ∆/E0 as labelled.

Moving to larger momenta increases the

rate of oscillations but decreases the am-

plitude.

(the approximation converges when 2tE(p)/~ � 1). For such short times

the centre of the wave packet decelerates, retarded by ∆0 dependent term,

the width of state does not come into effect at these short time scales.

Another straight forward approximation is obtained by considering an

extremely localised wave packet in momentum space such that the scaled

squeezing parameter λ = 1/mω~ → ∞. Although we have the freedom to

do this by either scaling ω or ~ (and we will consider the difference between

these two scalings in section 5.5.3) scaling ω → 0 by itself allows the use of

the lowest order Laplace approximation by evaluating any other terms at

the peak of the Gaussian (equivalent to evaluating the limiting δ-function

behaviour of a Gaussian distribution, essentially the plane wave solution).

We should also note that this choice is equivalent to scaling x → ∞ (see

section 5.2) producing a very narrow energy bandwidth but broad spatial

distribution. We should see this evidenced in the dynamics. This also

isolates the effects of the width of the wave packet from the dynamics for a

clearer picture of how the momentum eigenstates contribute.

For a state centred on V0 = pF the oscillating term is simply approxi-

mated as√
λ

π
∆2

0

∫
2p

E2(p̂)
sin2

(
t

~
E(p̂)

)
e-λ(p-pF)2

dp ≈ 2V0 sin2

(
t

~
∆0

)
(5.148)

meaning the expected pseudo-velocity oscillates as

〈V̂ (t)〉on ≈ V0 − 2V0 sin2

(
t

~
∆0

)
= V0 cos

(
2t

~
∆0

)
(5.149)
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between±V0 with a frequency 2∆0/~. The same approximation with respect

to the product state is

〈V̂ (t)〉⊗ ≈
V0

N+(β)

[
N-(β) cos

(
2t

~
∆0

)
+ 2 Im(β) sin

(
2t

~
∆0

)]
(5.150)

showing that though the first term disappears when |β|2 = 1, oscillations

will always remain if Im(β) 6= 0.

If the centre of the momentum distribution is moved away from the

Fermi momentum, the same approximation for a narrow wave packet is

〈V̂ (t)〉on ≈ V0 − 2V0

(
∆0

E0

)2

sin2

(
t

~
E0

)
(5.151)

where |E0| > ∆0 is the energy that corresponds to the central momentum

V0 (i.e. E0 = E(V0)). Moving from the Fermi momentum the frequency of

the oscillations increases, but the amplitude of the oscillations decrease. In

particular for the value E0 =
√

2∆0 then

〈V̂ (t)〉 ≈ 〈V̂ (0)〉 − V0 sin2

(
t

~
√

2∆0

)
(5.152)

which oscillates between 0 and V0. V (t) will therefore always be positive

when E0 >
√

2∆0, though quasi-spin oscillations are still present they are

insufficient to hold the wave packet at the origin.

5.4.2 Expected Position

The expected position with respect to the E-H coherent state is given in

integral form by

〈q̂(t)〉on = 〈q̂(0)〉on +

〈
~

2m
V̂ (0)

{
2t

~
+

∆2
0

E(p̂)2

[
1

E(p̂)
sin

(
2t

~
E(p̂)

)
− 2t

~

]}〉
on

(5.153)

=
t

m
V0 +

~∆2
0

2m

√
λ

π

∫
p

E2(p̂)

[
1

E(p̂)
sin

(
2t

~
E(p̂)

)
− 2t

~

]
e-λ(p-V0)2

dp

(5.154)

on the second line 〈q̂(0)〉on = 0 has been set without any loss of generality.

Analogous to the expected velocity the first term is just the simple propa-

gation of the wave packet at a fixed initial velocity and the second term an

oscillating ∆0 dependent term. Properties of the expected pseudo-velocity

carry over to the position, in particular when V0 = 0 the state then remains

centred at q = 0, the oscillations are maximal at V0 = ±pF, and they again
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Figure 5.6: The approximate value

of 〈q̂(t)〉on as λ→∞ for a fixed value

∆0/µ = 0.05 for various values of

E(V0)/∆0 as labelled. The dashed

line for comparison represents a free

wave packet travelling at the Fermi

velocity vF = pF/m.

disappear at larger central momenta past the Fermi momentum, where the

wave packet will approximately freely propagate.

An analytic approximation for short times, by expanding the oscillating

term up to 3rd order in t, is easily found giving

〈q̂(t)〉on =
t

m
V0

[
1− 2

3

(
∆0

~

)2

t2

]
+O(t5). (5.155)

The lowest order Laplace approximation for a localised wave packet in

momentum, centred at V0 = pF gives

〈q̂(t)〉on ≈
~
2

vF

∆0

sin

(
2t

~
∆0

)
(5.156)

the centre of the wave packet oscillating about the origin, as the correspond-

ing velocity oscillates between ±V0. The same approximation for a product

state is

〈q̂(t)〉⊗ ≈
~
2

vF

∆0

[
2 Im(β)

[
1− cos

(
2t

~
∆0

)]
+N-(β) sin

(
2t

~
∆0

)]
(5.157)

showing again that the E-H and product wave packets coincide for when β =

0, but also that the product state retains oscillations even if the amplitude

of the two components is balanced (i.e. |β| = 1) if Im(β) > 0 another

feature not present in for E-H states.

Moving away from the Fermi momentum the lowest order Laplace ap-

proximation is

〈q̂(t)〉on ≈
t

m
V0

[
1−

(
∆0

E0

)2
]

+
~

2m

V0

E0

(
∆0

E0

)2

sin

(
2t

~
E0

)
. (5.158)

As ∆0 < E0, this would suggest that for higher energies above the band

gap, although the frequency of the oscillations increase, the decrease in the
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Figure 5.7: Numerically integrated solutions for 〈q̂(t)〉on and 〈σ3(t)〉on where 〈V̂ (0)〉on =

pF. For widths of wave packets x = 1, x = 1.5 and x = 2 (as labelled). The centre of

a free wave packet travelling at vF is also shown for comparison. 〈σ3(t)〉on is given for a

pure electron wave packet β = 0. The time axis is given in units of Tσ(pF).
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amplitude of the oscillations means the centre of the wave packet begins to

behave much like a free state with central momentum pF as shown Figure

5.6.

For a picture of how the width of the wave packet enters the dynamics

numerically integrated solutions for 〈q̂(t)〉on and the corresponding 〈σ3(t)〉on
are shown in Figures 5.7 and 5.8 for wave packets located on the Fermi

momentum, alongside the expected position of a free scalar wave packet

propagating at vF. The expectation values are shown for various values

of the parameter x = δq/vFTσ(pF), which as outline in section 5.2 scales

the width of the initial Gaussian wave packet in terms of the spin distance

dσ = vFTσ(pF).

Figure 5.7a shows the expected position of an E-H coherent state for

various values of x. If the width of the wave packet of the order dσ (i.e.

x ≈ 1) the wave packet moves quickly from the initial position. For wave

packets wider than dσ(pF) (i.e. x > 1) the wave packet oscillates closer to it’s
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initial position. For much larger and smaller values of x as shown in Figure

5.8a, the smaller values of x means the wave packet increasingly propagates

like a free wave packet moving at the Fermi velocity, with no interaction

between components causing oscillations. Conversely the wave packet that

is much larger than dσ oscillates about the origin without propagating away

from the origin.

Plots 5.7b and 5.8b show how the expected position relates the time

evolution of 〈σ3(t)〉, smaller values of x produce smaller oscillations, that

decay in amplitude more quickly. They also show a stronger bias towards

positive values of 〈σ3〉 (i.e. the initial electron component) over time, caus-

ing the wave packet to propagate more quickly when averaged over many

oscillations. Conversely the larger value of x retains oscillations over longer

times, but also the larger amplitude of the oscillations retains a negative

(hole) component.

5.4.3 Expected Quasi-Spin

We will now consider the time dependent quasi-spin moments. Applying

the same analysis to the time dependent spin operators, firstly 〈σ1(t)〉 in

integral form is

〈σ1(t)〉on =

∫
H0

E(p)

[
〈σ+(0)〉onA2

+(p) + 〈σ-(0)〉onA2
-(p)

]
e-λp

2+ 2i
~ tE(p)dp

+

∫
H0

E(p)

[
〈σ-(0)〉onA2

+(p)− 〈σ+(0)〉onA2
-(p)

]
e-λp

2− 2i
~ tE(p)dp

+ 〈σ3(0)〉on
∫
H0∆0

E2(p)

[
1− cos

(
2t

~
E(p)

)]
e-λ(p−V0)2

dp

+ 〈σ1(0)〉on
∫

∆2
0

E2(p)
e-λp

2

dp. (5.159)

The central pseudo-velocity of the initial wave packet has the effect of scal-

ing any terms proportional to σ1(0), σ+(0) or σ-(0) by exp(−λV 2
0 ). For wave

packets centred at V0 ≈ 0 these terms will make larger contributions, but

as the wave packet move towards momentum centred close to and above

the Fermi momentum (as µ is considered a large parameter) the contribu-

tions from these terms will be heavily suppressed by the Gaussian tails,

only leaving terms dependent upon the initial balance of electron and hole

components.

An analytic short time approximation is readily found up to first order
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Figure 5.8: Numerically integrated solutions for 〈q̂(t)〉on and 〈σ3(t)〉on where 〈V̂ (0)〉 =

pF. For widths of wave packets x = 0.1, x = 1.5 and x = 20 (as labelled). The centre

of a free wave packet travelling at vF is also shown for comparison. 〈σ3(t)〉 is given for a

pure electron wave packet β = 0. The time axis is given in units of Tσ(pF). For values of

x� 2 the wave packet is confined to oscillate about the origin and for values x� 1 the

position of the wave packet moves towards propagating at the Fermi velocity.
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in t given by

〈σ1(t)〉on ≈ 〈σ1(0)〉on −
2t

~
〈σ2(0)〉on

[
1

4mλ
− µ

]
+O(t2) (5.160)

If we consider wave packet with 〈V̂ (0)〉 ≈ pF (and δp � pF) and only retain

terms not suppressed by exp (−λV 2
0 ) leaves

〈σ1(t)〉on ≈ 〈σ1(0)〉on + 〈σ3(0)〉on

√
λ

π
2∆0

∫
H0(p)

E2(p)
sin2

(
t

~
E(p)

)
e-λ(p−V0)2

.

(5.161)

We note that in this regime the dependence on 〈σ3(0)〉on means any large

oscillations will therefore vanish when the initial state is an equal superpo-

sition of electron and hole components and conversely will be largest when

the initial state consists of only an electron or hole component.
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The expected value of σ2(t) is given by

〈σ2(t)〉on = i

√
λ

π

∫ [
〈σ-(0)〉onA2

-(p)− 〈σ+(0)〉onA2
+(p)

]
e-λp

2+ 2i
~ tE(p)dp

+ i

√
λ

π

∫ [
〈σ-(0)〉onA2

+(p)− 〈σ+(0)〉onA2
-(p)

]
e-λp

2− 2i
~ tE(p)dp

− 〈σ3(0)〉on

√
λ

π

∫
∆0

E(p)
sin

(
2t

~
E(p)

)
e-λ(p−V0)2

dp. (5.162)

The short time approximation up to first order in t is

〈σ2(t)〉on ≈ 〈σ2(0)〉on −
2t

~
∆0〈σ3(0)〉on +

2t

~
〈σ1(0)〉on

[
1

4mλ
− µ

]
+O(t2)

(5.163)

Again considering V0 ≥ pF, neglecting terms that are not suppressed by

exp (−λV 2
0 ) leaves only an oscillating term

〈σ2(t)〉on ≈ −〈σ3(0)〉on

√
λ

π
∆0

∫
1

E(p)
sin

(
2t

~
E(p)

)
e-λ(p-V0)2

dp. (5.164)

Finally 〈σ3(t)〉on is

〈σ3(t)〉on =

√
λ

π

∫
∆0

E(p)

[
〈σ-(0)〉onA2

-(p)− 〈σ+(0)〉onA2
+(p)

]
e-λp

2+ 2i
~ tE(p)dp

−
√
λ

π

∫
∆0

E(p)

[
〈σ-(0)〉onA2

+(p)− 〈σ+(0)〉onA2
-(p)

]
e-λp

2− 2i
~ tE(p)dp

+ 〈σ3(0)〉on − 〈σ3(0)〉on

√
λ

π
2∆0

∫
∆0

E2(p)
sin2

(
t

~
E(p)

)
e-λ(p-V0)2

+ 〈σ1(0)〉on
∫
H0∆0

E2(p)
e-λp

2

dp (5.165)

which for short times is

〈σ3(t)〉on ≈ 〈σ3(0)〉on +
2t

~
∆0〈σ2(0)〉on +O(t2). (5.166)

When V0 ≥ pF the non-suppressed terms leaves

〈σ3(t)〉on = 〈σ3(0)〉on − 〈σ3(0)〉on

√
λ

π
2∆0

∫
∆0

E2(p)
sin2

(
t

~
E(p)

)
e-λ(p−V0)2

(5.167)

again when |β|2 = 1 all the spin dynamics will be suppressed. Like the

phase space variables, for a sufficiently narrow wave packet in momentum

the lowest order Laplace approximation can be made giving

〈σ1(t)〉on ≈ 〈σ1(0)〉on + 〈σ3(0)〉on2

(
∆0

E0

)√
1−

(
∆0

E0

)2

sin2

(
t

~
E0

)
(5.168)

〈σ2(t)〉on ≈ −〈σ3(0)〉on
∆0

E0

sin

(
2t

~
E0

)
(5.169)

〈σ3(t)〉on ≈ 〈σ3(0)〉on − 〈σ3(0)〉on2

(
∆0

E0

)2

sin2

(
t

~
E0

)
. (5.170)
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Figure 5.9: The expected values of the

time dependent spin operators for a set

value of ∆0/µ = 0.05 and |β|2 = 0, for

various values of ∆0/E0. The values de-

rived from a lowest order Laplace ap-

proximation.
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These are shown in Figure 5.9 for various values of ∆0/E0 and a state with

only an initial electron component. This shows that a wave packet centred

on the Fermi momentum will have a (small) constant value for 〈σ1(t)〉on but

〈σ2(t)〉on and 〈σ3(t)〉on will oscillate between 〈σ3(0)〉. Any oscillations in the

quasi-spin basis will be maximal when E0 = ∆0 (on the Fermi momentum).

Overall this shows that E-H coherent states that are initially equal su-

perpositions of electron and hole components then only exhibit small oscil-

lations. These terms would not be suppressed when considering a product

state as the two components of the initial wave packet overlap in phase

space. This coincides with the picture that the quasi-spin dynamics are

described on an ellipses of radius exp(−λV 2
0 ) in the σ1 and σ2 directions.

5.4.4 Variances on Phase Space

Now let us consider the time dependent variances of wave packets on position-

pseudo-velocity phase space. This will give us some indication of how the

states retain their shape (and thus their usefulness for semiclassical pur-

poses). With the time dependent operators in hand we can consider the

time dependent variances directly, for which we require the squares of the

time dependent operators.

The time dependent spin operators still satisfy (σi(t))
2 = I, and it follows
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that (V̂ (t))2 = p̂2 is time indipendent. The corresponding expectation value

with respect to the E-H state is

〈V̂ (t)2〉on = V 2
0 +

1

2λ
. (5.171)

This means that any time dependence in the variance of the pseudo-velocity

operator will be contained in 〈V̂ (t)〉2. Omitting the full calculation this indi-

cates that the variance of the velocity will both oscillate an increase linearly

dependent on the location and width of the initial momentum distribution.

If we consider the lowest order order Laplace approximation given by equa-

tion (5.151). Inserted into the variance gives

Var(V̂ (t))on ≈
1

2λ
+ V 2

0

1−

(
1− 2

(
∆0

E0

)2

sin2

(
t

~
E0

))2
 (5.172)

and as we’ve seen, larger central momenta will produce faster, but smaller

oscillations in the variance.

For a wave packet located at the Fermi momentum this simplifies to

Var(V̂ (t))on ≈
1

2λ
+ V 2

0 sin2

(
2t

~
∆0

)
. (5.173)

In this case the variance will merely oscillate about 1/2λ the momentum

width of the initial wave packet, though this choice of approximation lacks

any information about the influence of the width of the wave packet.

The square of q̂(t) is somewhat cumbersome to calculate, being that if

we write q(t) in general form as

q̂(t) = q̂(0) +
3∑
i=1

fi(p̂, t)σi(0) (5.174)

then the square contains the terms

q̂(t)2 = q̂(0)2 +
3∑
i=1

[
fi(p̂, t)

2 + σi(0){q̂(0), fi(p̂, t)}
]
. (5.175)

For short times it is straightforward to expand q̂(t) up to second order in t

as

q̂(t) ≈ q̂(0) +
t

m
V̂ (0) +

∆0t
2

m~
p̂σ2(0) +O(t3). (5.176)

Calculating the variance using this expression we find the general form

without reference to a particular state

Var(q̂) ≈ Var(q̂(0)) +

(
t

m

)2

Var(V̂ (0)) +
t

m

(
〈{V̂ (0), q̂(0)}〉 − 2〈V̂ (0)〉〈q̂(0)〉

)
+

∆0t
2

m~
〈σ2(0){q̂(0), p̂(0)}〉+

(
∆0t

2

m~

)2

Var(p̂σ2(0)). (5.177)
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We can compare this solution with a scalar wave packet under the free

Hamiltonian. In this case the time dependent variance is given by

Var(q̂(t)) = Var(q̂(t)) +
t2

m2
Var(p̂(0)) +

t

m
[〈{p̂(0), q̂(0)}〉 − 2〈p̂(0)〉〈q̂(0)〉] .

(5.178)

We can see that there is similar behaviour between the two systems, albeit

with the momentum replaced by the pseudo-velocity and two additional

terms proportional to ∆0. Expanding the anti-commutator in the first ad-

ditional ∆0 dependent term gives

σ2(0){q̂(0), p̂(0)} = i
~
2
σ2(0)

(
â†2 − â2

)
. (5.179)

It is straight forward to see that the expectation values of this operator

disappears with respect to the E-H coherent state. Clearly for a product

coherent this does not apply where the additional term will be of the form

〈σ2(0){q̂(0), p̂(0)}〉⊗ =
1

N+

Im(βz2). (5.180)

This will only disappear where z = z∗, or equivalently p0 = 0.

With respect to the E-H coherent state the variance of p̂σ2(0) is simply

1/2λ. This indicates additional dispersion of the wave packet at longer times

dependent on the width of the wave packet. With respect to the product

state this value if

〈p̂σ2(0)〉⊗ = 2 Im(β)p0 (5.181)

where this term can be especially large for large central momenta.

Overall the shows that at least for short times the variance of the E-H

coherent state behaves in an analogous manner to the free scalar coherent

state. The product states though shows additional growth dependent on

the location of the wave packet.

5.4.5 Long Time Stationary Phase Approximation

Let us now consider the asymptotic long time behaviour of the expectation

values. We will show that for large enough values of t, the time dependent

integrals we could not find closed analytic solutions to are dominated by

contributions from stationary phase points.

We will use the stationary phase approximation, which applies to oscil-

latory integrals of the form

I(λ) =

∫
f(x) exp [iλθ(x)] dx. (5.182)

104



In the limit λ → ∞ (when x is real), the dominant contribution to the

integral comes from the region close to the stationary phase point(s) xS. xS

satisfies θ′(xS) = 0. For large values of λ the fast oscillations away from the

stationary point cancel and thus suppress any other contributions to the

integral (see appendix C.2 for a more detailed derivation and discussion of

this approximation).

For our purposes we need to find the asymptotic approximation to inte-

grals of the general form

I(t) =

∫
f(p) exp

[
±2it

~
E(p)

]
dp (5.183)

as t→∞. The points of stationary phase, pS, satisfy

d

dp
E(p)

∣∣∣∣
pS

≡ pSH0(pS)

mE(pS)
= 0. (5.184)

This equality is clearly satisfied where pS = 0, but also when H0(pS) = 0 at

both pS = ±pF. Altogether the general solution is therefore

I(t) ≈
∑
pS

f(pS)

(
π~

t|E ′′(pS)|

) 1
2

exp

[
±i
(

2t

~
E(pS) +

πc

4

)]
(5.185)

where the summation is performed over the distinct points of stationary

phase (it can be safely assumed that they are distinct when pF is a large

parameter) and c is the sign of E ′′(pS). This approximation also requires the

values of the phase term evaluated at the stationary phase points E(±pF) =

∆0, E(0) =
√
µ2 + ∆2

0 and also the second derivatives evaluated at the

stationary phase points

d2E(p)

dp2

∣∣∣∣
±pF

=
2µ

m∆0

and
d2E(p)

dp2

∣∣∣∣
0

=
−µ

mE(0)
. (5.186)

Inserting these values into Equation (5.185) gives the general solution from

which the expectation values will be constructed∫
f(p)e±2itE(p)/~dp ≈

(
π

ωtµλ

) 1
2
{
f(0)

√
E(0) exp

[
±i
(

2t

~
E(0)− π

4

)]
+ [f(pF) + f(−pF)]

√
∆0

2
exp

[
±i
(

2t∆0

~
+
π

4

)]}
.

(5.187)

As shown in Appendix C.2, the stationary phase contributions are dominant

when the width of stationary phase region is effectively narrower than any
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Figure 5.10: Comparison of Numerical integration (red-dashed) and stationary phase

approximation (blue) of the expected velocity and position of a E-H coherent state wave

packet centred at V0 = pF. The time axis is given in units of tcrit = ∆0/4ωµ, the

minimum time where the stationary phase approximation width is narrower than the

Gaussian envelope. Here ∆0/µ = 0.05, x = 2.
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significant changes in the preceding amplitude term. In this particular case

this equivalent to the requirement that the width of the stationary phase

region is narrower than the width of the Gaussian envelope in momentum-

space described by exp(−λ(p− V0)2/2). This is satisfied when

2tE ′′(pS)

~
� λ. (5.188)

Therefore the contribution from pS = 0 is dominant at times satisfying

t� 1

2ωµ

√
µ2 + ∆2

0 ≈
1

2ω
(5.189)

and the contributions from pS = ±pF are dominant for times greater than

t� ∆0

4ωµ
(5.190)

in the regime µ � ∆. This means contributions from the stationary point

pS = ±pF are in general dominant long before contributions from pS = 0.
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A comparison between numerically integrated solutions to I(t) and the

corresponding stationary phase approximation of 〈q̂(t)〉on and 〈V̂ (t)〉on are

shown in Figure 5.10, the time axis is given in units of tcrit = ∆0/4ωµ,

the minimum time at which stationary phase contributions from pS = ±pF

become significant.

〈V̂ (t)〉on

First considering the expected pseudo-velocity; the stationary phase point

at p = 0 makes no contributions (due to the leading power of p in V̂0) leaving

the sum over the contributions at ±pF

〈V̂ (t)〉on = V0 −
√
λπ m∆0 Im [iZ-(V0)]

+

(
m∆0

ωt

) 1
2

cos

(
2t

~
∆0 +

π

4

)[
e-λ(pF-V0)2 − e-λ(pF+V0)2

]
. (5.191)

where

Z±(V0) = w
(
−
√
λ(V0 − a)

)
± w

(√
λ(V0 + a)

)
(5.192)

and a =
√

2m(µ+ i∆0). The function w(x) is the Fadeeva function (or

the plasma dispersion function[73]) a scaled complementary error functions

defined as w(x) = e−x
2

erfc(−ix) (see Appendix B for details). This term

arises from separating the integral term in 〈V̂ (t)〉on (equation (5.145)) into

time dependent oscillating and stationary terms as√
λ

π
∆2

0

∫
p

E2(p)

[
1− cos

(
2t

~
E(p)

)]
e-λ(p−V0)2

dp. (5.193)

The stationary integral can be solved using√
λ

π
∆2

0

∫
p

E2(p)
e-λ(p−V0)2

dp =
√
λπm∆0 Im [iZ-(V0)] (5.194)

the full details of this calculation are given in Appendix A.2.2.

Due to the lack of contributions from p = 0 the time dependent oscilla-

tions in the pseudo-velocity are maximal when V0 = ±pF. The oscillations

completely cancel when the wave packet is located on V0 = 0. The oscil-

lation are also suppressed for wave packets centred at momenta V0 � pF.

Moreover the oscillations are scaled by ∆0 and decay over time.

Though the Faddeeva function is an exact solution to the stationary in-

tegral it will be useful to have an approximate picture of the behaviour of

this term as a function of V0. In the regime ∆0 � µ it can be shown that
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(see Appendix A.2.2) integral 5.194 can be approximated as the convolu-

tion of the Gaussian terms exp (-λ(p− V0)2) centred at V0 and a Lorentz

distribution of the form

f(p;∓pF,∆0/vF) =
1

π

[
∆0/vF

(p± pF)2 + (∆0/vF)2

]
(5.195)

which is peaked at ±pF and has a width described by the half-width half-

max ∆0/vF. As such Im[iw(−
√
λ(V0 − a))] is largest when V0 = −pf and

inversely Im[iw(
√
λ(V0 + a))] is largest when V0 = pF. Away from the the

Fermi momenta these terms will quickly disappear if both the Gaussian and

Lorentz distribution are suitably narrow (i.e. if λ is large and ∆0/vF small).

For a wave packet located at V0 ≈ pF this implies that the dominant

contributions to Equation (5.191) are

〈V̂ (t)〉on =V0 −
√
λπ m∆0 Im

[
iw(−

√
λ(V0 − a))

]
(5.196)

+

(
m∆0

ωt

) 1
2

cos

(
2t

~
∆0 +

π

4

)
e-λ(pF-V0)2

. (5.197)

The expected pseudo-velocity is a constant value described by the first two

terms with oscillations that both decrease in time and scale with the width

of the initial wave packet. If δp � ∆0/vF the Faddeeva function term is

approximately equal to V0, which cancels with the first term. This means

the expected pseudo-velocity only oscillates about 0.

When V0 = 0, the Faddeeva function terms in equation (5.191) cancel

directly with each other. This leaves a wave packet located at a constant

V (t) = V0 = 0. At momenta V0 � pF the expected pseudo-velocity is

approximately a constant 〈V̂ (t)〉on = V0.

〈q̂(t)〉on

One may calculate 〈q̂(t)〉on in a similar manner. The dominant contributions

only come from the stationary points ±pF giving

〈q̂(t)〉on =
t

m

{
V0 −

√
πλ m∆0 Im [iZ-(V0)]

}
+

~
2

(
1

m∆0ωt

) 1
2

sin

(
2t

~
∆0 +

π

4

)[
e-λ(pF-V0)2 − e-λ(pF+V0)2

]
.

(5.198)

As the expected position moves with the expected pseudo-velocity many

general features carry over from 〈V̂ (t)〉on. When the initial wave packet is
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located at V0 = 0 it remains on the origin, with no other oscillations. A

wave packet located at V0 ≈ pF has the remaining dominant terms

〈q̂(t)〉on =
t

m

{
V0 −

√
πλ m∆0 Im

[
iw(−

√
λ(V0 − a))

]}
+

~
2

(
1

m∆0ωt

) 1
2

sin

(
2t

~
∆0 +

π

4

)
e-λ(pF-V0)2

. (5.199)

Again if δp� ∆0/vF the first two terms cancel, leaving only the oscillations

about the origin. The amplitude of the oscillations also decrease over time.

〈σi(t)〉on

Applying the stationary phase approximation to the spin operators firstly

for σ1(t)

〈σ1〉on ≈
√
λπ∆0m

(
〈σ3〉on Re

[
i

a
Z+(V0)

]
+ 〈σ1〉on Im

[
i

a
w(
√
λa)

])
+

(
µ

ωtE(0)

) 1
2 1

E(0)

(
〈σ1〉onµ+ ∆0〈σ3〉one-λV

2
0

)
cos

(
2t

~
E(0)− π

4

)
+

(
µ

ωtE(0)

) 1
2

〈σ2〉on sin

(
2t

~
E(0)− π

4

)
(5.200)

The dependence on V0 of the E-H wave packet is again important here, where

the magnitude of 〈σ3(0)〉on is only dependent on the value of β, the overlap

between coherent states contained in 〈σ1(0)〉on and 〈σ2(0)〉on means that the

oscillating terms and the second Faddeeva function term are maximised

when V0 = 0.

Moving to a wave packet initially centred at V0 ≈ pF, when pF � δp all

the terms are appropriately suppressed except for the constant Faddeeva

term

〈σ1(t)〉on ≈
√
λπm∆0〈σ3(0)〉on Re

[
i

a
w
(
−
√
λ(V0 − a)

)]
. (5.201)

For 〈σ2(t)〉on there are additional terms evaluated at ±pF, in total

〈σ2〉on ≈
(
E(0)

ωtµ

) 1
2
[
〈σ2〉on cos

(
2t

~
E(0)− π

4

)
− 1

E(0)

(
〈σ1〉onµ+ ∆0〈σ3〉one-λV

2
0

)
sin

(
2t

~
E(0)− π

4

)]
+

(
∆0

2ωtµ

) 1
2
[
〈σ2〉on2 cos

(
2t

~
∆0 +

π

4

)
e-λp

2
F

−〈σ3〉on sin

(
2t

~
∆0 +

π

4

)[
e-λ(pF-V0)2

+ e-λ(pF+V0)2
]]
.

(5.202)
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again there is strong dependence on the momentum location of the wave

packet. The wave packet centred at V0 ≈ pF leaves

〈σ2(t)〉on ≈ −
(

∆0

2ωtµ

) 1
2

〈σ3(0)〉on sin

(
2t∆0

~
+
π

4

)
e-λ(pF-V0)2

(5.203)

retaining oscillations about the origin with amplitude proportional to ∆0,

which decay over time. Finally for σ3

〈σ3(t)〉on =2〈σ1(0)〉on
√
λπm∆0 Re

[
i

a
w(
√
λa)

]
+ 〈σ3(0)〉on

{
1−
√
λπm∆0 Im

[
i

a
Z+(V0)

]}
+

∆0√
ωtµE(0)

{[
〈σ-(0)〉onA2

-(0)− 〈σ+(0)〉onA2
+(0)

]
ei(2tE(0)/~−π/4)

−
[
〈σ-(0)〉onA2

+(0)− 〈σ+(0)〉onA2
-(0)

]
e−i(2tE(0)/~−π/4)

+〈σ3(0)〉on
∆0

E(0)
e−λV

2
0

}
+

(
∆0

2ωtµ

) 1
2
{

2〈σ2(0)〉on sin

(
2t∆0

~
+
π

4

)
e-λp

2
F

+〈σ3(0)〉on cos

(
2t∆0

~
+
π

4

)[
e-λ(pF+V0)2

+ e-λ(pF-V0)2
]}

.

(5.204)

〈σ3〉on ≈ 〈σ3〉+
√
λπ∆0m

(
〈σ1〉on Re

[
i

a
w(
√
λa)

]
− 〈σ3〉on Im

[
i

a
Z+(V0)

])
+

(
µ

ωtE(0)

) 1
2 ∆0

µ

[
〈σ2〉on sin

(
2t

~
E(0)− π

4

)
+

1

E(0)

(
〈σ1〉onµ+ ∆0〈σ3〉e-λV

2
0

)
cos

(
2t

~
E(0)− π

4

)]
+

(
∆0

2ωtµ

) 1
2
[
〈σ2〉on2 sin

(
2t

~
∆0 +

π

4

)
e-λp

2
F

+ 〈σ3〉on cos

(
2t

~
∆0 +

π

4

)(
e-λ(pF-V0)2

+ e-λ(pF+V0)2
)]

(5.205)

The remaining terms for a wave packet centred at V0 = pF are the previously

derived constant and an oscillating term

〈σ3(t)〉on ≈〈σ3(0)〉on
{

1−
√
λπm∆0 Im

[
i

a
w
(
−
√
λ(V0 − a)

)]}
+ 〈σ3(0)〉on

(
∆0

2ωtµ

) 1
2

cos

(
2t∆0

~
+
π

4

)
e-λ(pF-V0)2

(5.206)
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Figure 5.11: The time dependent entanglement measure R(t)2 for an initially elec-

tron wave packet (β = 0) centred on the Fermi momentum with various values of

x = δq/vFTσ(pF) as labelled. The time axis is given in units of Tσ(pF).
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no entanglement

strong entanglement

oscillating out of phase with the expectation of 〈σ2(t)〉.
In all three cases a state that is an equal superposition of electron and

hole components will only leave small oscillations of order exp(−λV 2
0 ).

5.4.6 Time Dependent Entanglement

As a final note in this section we will briefly consider the time dependent

behaviour of the measure of entanglement derived in section 3.5, written in

time dependent form as

R(t)2 =
3∑
i=1

〈σi(t)〉2 (5.207)

designed such that the state is maximally entangled when R2 = 0 and not

entangled when R2 = 1 (though E-H states can only reach the minimum

bound e-λV
2
0 ). Although we omit detailed calculation of this parameter, we

can derive key features from the preceding analysis of the expected spin

values. Of course the product coherent states are not initially entangled by

definition but will become strongly entangled after a short time if β 6= 0,∞.

In the case of E-H states we can consider how the time dependent entan-

glement depends upon the the dynamics we have derived for the individual

quasi-spin components.

The initial entanglement is maximized for initial states that are balanced

superpositions defined by |β|2 = 1 and V0 6= 0. Overall the state will remain

close to maximum entanglement as any remaining oscillation will be small

due to the overlap of coherent states and their conjugate as shown in the

previous section.

Oscillations can occur in the entanglement measure by starting with an

initial state with only an electron (or hole) component. This will retain
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the largest oscillating terms. The oscillations have the largest amplitude

for states centred on the Fermi momentum. The rate and amplitude of the

oscillations also depend upon the width of the initial wave packet as shown

in Figure 5.11, for a state centred on the Fermi momentum with various

values of x. This infers that a wave packet with a narrower momentum

bandwidth wave packet remains less entangled over more cycles of Tσ(pF),

though eventually they all become strongly entangled at large times.

5.5 Wave Packet Dynamics of Electron-Hole

Coherent States

The Heisenberg picture provided a means of analysing the dynamics of the

expectation values, moreover we have considered the connection with phase

space trajectories in the spirit of the Ehrenfest relationship. A spatially

homogeneous band gap allowed for a complete set of solutions to the op-

erator equations of motion, and the same setting will allow us to find the

action of the time evolution operator Û(t) = exp(−itHBdG/~) on a spinor

wave function in the Schrödinger picture, in a fairly simple manner. In this

section we will use this fact to derive a clearer picture of the dynamics of

E-H and product coherent state wave packets under the BdG Hamiltonian

and how they relate to the dispersion relation of the BdG Hamiltonian.

5.5.1 Bogoliubov-de Gennes Time Evolution Opera-

tor

For a full description we first need to find the action of the time development

operator Û(t) = exp[−itĤ/~], for the BdG Hamiltonian acting on an initial

two component state. We will only consider the behaviour in q, as we’ve

seen 〈p̂(t)〉 is time independent. As Û(t) is a function of the spin operators

and p̂ only we use the general method (to find the action of group element

of SU(2)) of expanding the exponential as ex =
∑
xn/n!. Since

[Ĥ0σ3 −∆0σ1]2 =
[
Ĥ2

0 + ∆2
0

]
I (5.208)

(as the anti-commutator cancels) then the even terms sum to

∑
n

(−1)n

(2n)!

[
t2

~2
(Ĥ2

0 + ∆2
0)

]n
= cos

(
t

~
E(ˆ̂p)

)
I (5.209)
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where the definition E(p̂) =
√
H0(p̂)2 + ∆2

0 has been used. The sum over

odd terms is similarly∑
n

(−1)n

(2n+ 1)!

(
t

~

)2n+1

[Ĥ2
0 + ∆2

0]n
[
Ĥ0σ3 −∆0σ1

]
= − i

E(p̂)
sin

(
t

~
E(p̂)

)[
Ĥ0σ3 −∆0σ1

]
. (5.210)

Although the solution has been given here in term of sinusoidal terms, it

will be better presented using the projection operators in the electron-hole

basis as

Û(t) = e-itE(p̂)/~
[
P̂eA2

+(p̂) + P̂hA2
-(p̂)

]
+ eitE(p̂)/~

[
P̂eA2

-(p̂) + P̂hA2
+(p̂)

]
+

i∆0

E(p̂)
sin

(
t

~
E(p̂)

)
σ1 (5.211)

where

A±(p̂) =

[
1

2

(
1± H0(p̂)√

H2
0(p̂) + ∆2

0

)] 1
2

. (5.212)

This expression is equivalent to the action of the time development operator

on the momentum eigenstate decomposition given by

e−itH(p̂)/~(|p,+〉〈p,+|+ |p,−〉〈p,−|)
= e−itE(p)/~|p,+〉〈p,+|+ eitE(p)/~|p,−〉〈p,−| (5.213)

= e−itE(p)/~|p〉〈p|
(
A+(p)|e〉+ A-(p)|h〉

)(
A+(p)〈e|+ A-(p)〈h|

)
+ eitE(p)/~|p〉〈p|

(
A-(p)|e〉 − A+(p)|h〉

)(
A-(p)〈e| − A+(p)〈h|

)
.

(5.214)

After expanding all the terms we arrive at the form of (5.211) since P̂+ ≡
|e〉〈e|, P̂- ≡ |h〉〈h| and σ1 ≡ |h〉〈e|+ |e〉〈h|.

Applying Û(t) to the product coherent state gives

Û(t) [|e〉+ β|h〉] |z〉 = e-itE(p̂)/~ [A2
+(p̂)|e〉+ A2

-(p̂)β|h〉
]
|z〉

+ eitE(p̂)/~ [A2
-(p̂)|e〉+ A2

+(p̂)β|h〉
]
|z〉

+
∆0

2E(p̂)

[
eitE(p̂)/~ − e-itE(p̂)/~]× (|h〉+ β|e〉) |z〉.

(5.215)

Applied to an initial E-H state the action is conversely

Û(t) [|e〉|z〉+ β∗|h〉|z∗〉] = e-itE(p̂)/~ [A2
+(p̂)|e〉|z〉+ A2

-(p̂)β
∗|h〉|z∗〉

]
+ eitE(p̂)/~ [A2

-(p̂)|e〉|z〉+ A2
+(p̂)β

∗|h〉|z∗〉
]

+
∆0

2E(p̂)

[
eitE(p̂)/~ − e-itE(p̂)/~]× (|h〉|z〉+ β∗|e〉|z∗〉) .

(5.216)
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Let us first consider an initial E-H state that is just an electron component

(i.e. β = 0). Inserting the identity in the momentum basis, gives the wave

function in the plane wave decomposition. The full solution will then consist

of terms of the general form

I(q, t) =

∫
f(p)e±itE(p)/~〈q|p〉〈p|z〉dp. (5.217)

The coherent state wave function in terms of momentum eigenstates 〈q|p〉〈p|z〉
is given by

〈q|p〉〈p|z〉 =

√
λ

π
exp

[
−λ

2
(p− V0)2 − i

~
pq0

]
exp

[
i

~
pq

]
. (5.218)

Here q is the phase space position variable and q0 the initial location of

the wave packet. Without loss of generality this will be set at q0 = 0.

We have also dropped the overall phase iq0V0/~ from the exponent as it

has no effect on the resultant dynamics. The corresponding solution for

terms containing the conjugate coherent state |z∗〉 can easily be found by

the translation V0 → −V0 in the momentum axis.

We will analyse the time dependent states resulting from an initial E-H

coherent state that only has either an electron (β = 0) or hole (β = ∞)

component independently. Lower indices again indicate the initial compo-

nent and the upper indices the spinor component. Each initial component

has a resulting time dependent spinor wave function with components

ψe(q, t) = ψee(q, t)|e〉+ ψhe (q, t)|h〉 (5.219)

ψh(q, t) = ψhh(q, t)|h〉+ ψeh(q, t)|e〉 (5.220)

which in integral form are

ψee(q, t) =

∫ [
e-itE(p)~A2

+(p) + eitE(p)~A2
-(p)

]
〈q|p〉〈p|z〉 dp (5.221)

and

ψhh(q, t) =

∫ [
e-itE(p)~A2

-(p) + eitE(p)~A2
+(p)

]
〈q|p〉〈p|z∗〉 dp. (5.222)

It is straightforward to show that ψhh(q, t) = ψe∗e (q, t) from the spectral

symmetry of the BdG Hamiltonian. In a similar manner for the terms that

mix electron and hole components

ψhe (q, t) =

∫
∆0

2E(p)

[
eitE(p)/~ − e-itE(p)/~] 〈q|p〉〈p|z〉 dp (5.223)
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and

ψeh(q, t) =

∫
∆0

2E(p)

[
eitE(p)/~ − e-itE(p)/~] 〈q|p〉〈p|z∗〉 dp (5.224)

which are related by ψeh(q, t) = −ψh∗e (q, t). Combining these relations the

state resulting from an initial hole only wave packet can be expressed in

terms of the initial electron wave function as

ψh(q, t) = iσ2ψ
∗
e(q, t) (5.225)

where iσ2 ≡ |h〉〈e|−|e〉〈h|. We have seen that this is the operator that takes

states from the positive to the negative branch of the dispersion relation.

We can then construct the time dependent wave function resulting from an

arbitrary initial superposition from the linear sum of initial components

〈q|Û(t)|z on β〉 ≡ ψon(q, t, β) = N
-1/2
+ (β) [ψe(q, t) + β∗ψh(q, t)] (5.226)

= N
-1/2
+ (β) [ψe(q, t) + β∗iσ2ψ

∗
e(q, t)] . (5.227)

The electron and hole components of this wave function (after the action of

iσ2) are given by

ψon(q, t, β) = N
-1/2
+ (β)

[(
ψee(q, t)− β∗ψh∗e (q, t)

)
|e〉+

(
ψhe (q, t) + β∗ψe∗e (q, t)

)
|h〉
]
.

(5.228)

The absolute value of the wave function will have electron and hole contri-

butions |ψon(q, t, β)|2 = |ψe(q, t, β)|2 + |ψh(q, t, β)|2. These terms are given

by

|ψe(q, t, β)|2 = N-1
+ (β)

[
|ψee(q, t)|2 + |β|2|ψhe (q, t)|2

−βψee(q, t)ψhe (q, t)− β∗ψe∗e (q, t)ψh∗e (q, t)
]

(5.229)

and

|ψh(q, t, β)|2 = N-1
+ (β)

[
|β|2|ψee(q, t)|2 + |ψhe (q, t)|2

+ βψee(q, t)ψ
h
e (q, t) + β∗ψe∗e (q, t)ψh∗e (q, t)

]
. (5.230)

This means that the sum of the first two terms of each component will be

the β indipendent term |ψee(q, t)|2 + |ψhe (q, t)|2 which is the wave function

of an initial electron only wave packet with β = 0. The final two terms of

each component proportional to ψee(q, t)ψ
h
e (q, t) and ψe∗e (q, t)ψh∗e (q, t) corre-

sponding to interference between initial electron and hole components. The

sum of theses terms in |ψon(q, t, β)|2 will cancel overall. The resulting E-H

wave packet has no dependence upon the initial value of β.
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In contrast the wave functions produced by an initial electron or hole

for a product state are related by

ψh(q, t) = iσ2ψ
∗
e(−q, t) (5.231)

which can be used to construct the time dependent wave function from an

arbitrary product state superposition

ψ⊗(q, t, β) = N
-1/2
+ (β) [ψe(q, t) + βiσ2ψ

∗
e(−q, t)] . (5.232)

The electron and hole components are given by

ψ⊗(q, t, β) = N
-1/2
+

[(
ψee(q, t)− βψh∗e (−q, t)

)
|e〉+

(
ψhe (q, t) + βψe∗e (−q, t)

)
|h〉
]
.

(5.233)

The electron and hole contributions to the wave packet |ψ⊗(q, t, β)|2 will be

symmetric in q, the relative amplitudes of the two contributions proportional

to |β|2. |ψ⊗(q, t, β)|2 will therefore be completely symmetric when the initial

wave packet is a balanced superposition of electron and hole components

(i.e. |β|2 = 1). This again also shows that when β = 0 (and there are

no symmetric contributions to |ψ⊗(q, t, β)|2) the E-H and product coherent

states will coincide.

The full integrals required to find the components of ψe(q, t) have the

general form

I(q, t) = N

∫
f(p) exp

[
−λ

2
(p− V0)2 +

i

~
pq

]
exp

[
±it
~
E(p)

]
dp. (5.234)

with a normalization constant

N =
1√

2πN+(β)

(
λ

π

) 1
4

. (5.235)

Due to the form of the integral further analytic insight into the behaviour

of the wave packet will again require asymptotic techniques. Numerically

integrated solutions are shown in Figures 5.12 to 5.20. They show the

evolution of the electron and hole components (|ψe(q, t)|2 and |ψh(q, t)|2

respectively) and their sum |ψ(q, t)|2 at time steps of 0.25 × Tσ(pF). Each

set of plots also shows the corresponding q v t density plot, again for each

component and their sum. We have placed the analysis of these plots in

their corresponding captions.

Figure 5.21 shows the same initial electron density plot, over a longer

time period, with the expected position (〈q̂(t)〉on) as calculated in section

5.4 overlaid. [continued on page 126]
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Figure 5.12: Figures a - i show snapshots of the propagation of an initial electron

(β = 0) Gaussian wave packet located at V0 = pF with parameters ∆0/µ = 0.05, x = 1

(x = δq/dσ(pF) the ratio of the initial width of wavepacket to the approximate distance

the wavepacket will travel after one revolution in quasi-spin). Red and blue dashed

lines denote electron (|ψe(q, t, 0)|2) and hole (|ψh(q, t, 0)|2) component wave functions

respectively, and green their sum. The dashed vertical lines correspond to the 4σq width

of the initial wave packet. Figures j - l are the corresponding q v t density plots, again

for each component, and their sum.

As the width of the initial wave packet is of the order vFTσ(pF) the wave packet quickly

shows oscillations outside the initial envelope. The electron component is biased toward

positive q whilst the hole component remains symmetric and centred on the origin (we will

comment on this further in the following section on the stationary phase approximation).

The spatial oscillations over the Gaussian envelope correspond to wave-fronts of the

electron component propagating away from the origin as the whole wave packet oscillates

between electron and hole components.
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Figure 5.13: Figures a - i show snapshots of the propagation of an initial electron

(β = 0) Gaussian wave packet located at V0 = pF with parameters ∆0/µ = 0.05, x = 2.

Red and blue dashed lines denote electron (|ψe(q, t, 0)|2) and hole (|ψh(q, t, 0)|2) compo-

nents respectively and green their sum. The dashed vertical lines correspond to the 4σq

width of the initial wave packet. Figures j - l are the corresponding q v t density plots,

again for each component, and their sum.

We can see that in comparison to Figure 5.12, since the wave packet has contributions

from a narrower energy band, the wave packet though still oscillating between compo-

nents remains well localised on the origin. Any effects due to the oscillation between

components are largely contained under the Gaussian envelope. The amplitudes of the

components are also more closely matched where as when x = 1, the electron component

is generally stronger.
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Figure 5.14: Figures a - i show the propagation of a initial electron (β = 0) coherent

state wave packet located at V0 = pF, with parameters ∆0/µ = 0.05 and x = 0.5. Red

and blue dashed lines denote electron (|ψe(q, t, 0)|2) and hole (|ψh(q, t, 0)|2) respectively

and green their sum. The dashed vertical lines correspond to the 4σq width of the ini-

tial wave packet. Figures j - l are the corresponding q v t density plots, again for each

component, and the sum.

As x < 1, vFTσ(pF) is now well outside the width of the initial wave packet the wave

packet propagates from under the initial wave packet before the rotation between com-

ponents takes effect. Consequently the wave packet remains biased towards the electron

component, and also quickly dissipates and loses its initial profile. After two full revolu-

tions of the quasi-spin the bulk of the wave packet lies well outside the original width of

the wave packet.
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Figure 5.15: Figures a - i show snapshots of the propagation of a initial electron (β = 0)

coherent state wave packet located at V0 = pF with parameters ∆0/µ = 0.05 and x = 2.5.

Red and blue dashed lines denote electron (|ψe(q, t, 0)|2) and hole (|ψh(q, t, 0)|2) compo-

nents respectively and green their sum. The dashed vertical lines correspond to the 4σq

width of the initial wave packet. Figures j - l are the corresponding q v t density plots,

again for each component, and their sum.

The analysis in the Heisenberg picture suggests that as the energy bandwidth becomes

narrower the wave packet will only oscillate about the origin without also propagating

away from the origin. We can see here that a larger value of x in comparison to the

previous plots means the wave packet fully oscillates between the electron and hole com-

ponents. Any dynamics resulting from the rotation between components are contained

under the initial envelope. Consequently the wave packet remains close to its initial

profile and also disperses more slowly. The contributions from the two components are

also increasingly symmetric.

4σq

0
.0

0
5

(a) t = 0

0
.0

0
5

(b) t = 0.25× Tσ(pF)

0
.0

0
5

(c) t = 0.5× Tσ(pF)

0
.0

0
5

(d) t = 0.75× Tσ(pF)

0
.0

0
5

(e) t = Tσ(pF)

0
.0

0
5

(f) t = 1.25× Tσ(pF)

0
.0

0
5

(g) t = 1.5× Tσ(pF)

0
.0

0
5

(h) t = 1.75× Tσ(pF)

0
.0

0
5

(i) t = 2× Tσ(pF)

t

4σq

0
T
σ

2
T
σ

(j) |ψe(q, t, 0)|2

t

4σq

0
T
σ

2
T
σ

(k) |ψh(q, t, 0)|2

t

4σq

0
T
σ

2
T
σ

(l) |ψ(q, t, 0)|2

120



Figure 5.16: Figures a - i now show the propagation of a product coherent state lo-

cated at V0 = pF with an initially equal superposition of electron and hole components

(β = 1) and parameters ∆0/µ = 0.05, x = 1. Red and blue dashed lines denote electron

(|ψe(q, t, 1)|2) and hole (|ψh(q, t, 1)|2) respectively and green their sum. The dashed ver-

tical lines correspond to the 4σq width of the initial wave packet. Figures j - l are the

corresponding q v t density plots, again for each component, and their sum.

As we have seen from the integral form a product coherent state has a |β|2 dependent spa-

tial symmetry between components. It’s clear that in this case of an equal superposition

the two components propagate in opposite directions. Both components now oscillate in

the same manner rather than the out of phase oscillation seen in the previous examples.

As the hole component propagates in the opposite direction to the electron, the overall

state remains centred on the origin, spreading over time, though the components moving

outside the width of the initial wave packet create oscillations in the width of the wave

packet. The value of x now dictates how the wave packet spreads, in this case the wave

packet quickly dissipates.
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Figure 5.17: Figures a - i show snapshots of the propagation of a product state located

at V0 = pF consisting of an initially equal superposition of electron and hole components

(β = 1) with parameters ∆0/µ = 0.05, x = 2. Red and blue dashed lines denote electron

(|ψe(q, t, 1)|2) and (|ψh(q, t, 1)|2) respectively and green their sum. The dashed vertical

lines correspond to the 4σq width of the wave packet. Figures j - l are the corresponding

q v t density plots, again for each component, and their sum.

The narrower energy bandwidth for this wave packet in comparison to Figure 5.16 means

this wave packet both remains located on the origin and retains its initial form over a large

number of oscillations. The oscillations between components are evidenced as oscillations

in the width of the wave packet. The wave packet also disperses more slowly, with the

bulk of the wave packet still contained inside the initial width of the envelope after two

full oscillation of the quasi-spin. As x increases the wave packet becomes increasingly

close to the description given by the dispersion relation. We can see how the zero group

velocity arises from the opposed velocities of the two components.
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Figure 5.18: Figures a - i show snapshots in the propagation of product state located

at V0 = pF consisting of an initially equal superposition of electron and hole components,

except now with a phase shift between components (β = i) with parameters ∆0/µ = 0.05,

x = 2. Red and blue dashed lines denote electron (|ψe(q, t, i)|2) and (|ψh(q, t, i)|2) re-

spectively and green their sum. The dashed vertical lines correspond to the 4σq width

of the initial wave packet. Figures j - l are the corresponding q v t density plots, again

for each component, and their sum.

The analysis in the Heisenberg picture indicated that the product coherent state wave

packet has dynamics dependent on the magnitude of Im(β). Here β is purely imaginary

and we can see that these dynamics are due to the oscillations of the two components

being out of phase. Although here x = 2, in comparison to 5.17 the wave packet still os-

cillates strongly about the origin, although these oscillations are still spatially symmetric

and the wave packet does not dissipate quickly.
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Figure 5.19: Figures a - i now show snapshots in the propagation of a E-H coherent

state located at V0 = pF with an equal superposition of components initially (β = 1)

with parameters ∆0/µ = 0.05 and x = 1. Red and blue dashed lines denote electron

(|ψe(q, t, 1)|2) and hole (|ψh(q, t, 1)|2) components respectively and green their sum. The

dashed vertical lines correspond to the 4σq width of the initial wave packet. Figures j -

l are the corresponding q v t density plots, again for each component, and their sum.

These plots show how the sum of the electron and hole components of the E-H coherent

state wave packet is equivalent to the behaviour of a wave packet with initially only

an electron component shown in Figure 5.12. The fast oscillations over the individual

components are due to interference between the electron and hole contributions, but they

cancel overall.
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Figure 5.20: Figures a - i show snapshots of the propagation of a E-H coherent state

located at V0 = pF initially consisting of an equal super position of components (β = 1)

and parameters ∆0/µ = 0.05 and x = 2. Red and blue dashed lines denote electron

(|ψe(q, t, 1)|2) and hole (|ψh(q, t, 1)|2) components respectively and green their sum. The

dashed vertical lines correspond to the 4σq width of the initial wave packet. Figures j -

l are the corresponding q v t density plots, again for each component, and their sum.

Again the sum of the electron and hole components produce a wave packet that is equiv-

alent to the behaviour of the initially electron only wave packet as shown in figure 5.13
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Figure 5.21: q v t density plots of the propagation of an initially electron (β = 0)

E-H coherent state wave packet located at V0 = pF with parameters ∆0/µ = 0.05, for 10

cycles of Tσ(pF) and varying wave packet widths x = 1 and x = 2 as labelled. The red

dashed line is the expected position of the wave packet as calculated in the Heisenberg

picture (see section 5.4).

Over longer time-scales we can see how the smaller value of x causes the wave packet to

more quickly dissipate due to the velocity of the individual components. Larger values of

x mean the wave packet retains it form over a larger number of rotation cycles. Though

the expected position of both wave packets demonstrate a positive velocity the smaller

value of x means the expected position quickly propagates away from the origin.
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5.5.2 Asymptotic Long Time Behaviour

We again analyse the long time behaviour of E-H coherent state wave pack-

ets using the stationary phase approximation. In this case this will require

analysis of stationary phase contributions that also depend on q. For wave

packets located on the Fermi momentum we will show how oscillations arise

from the electron and hole contributions, and the propagation of the wave

packet from the asymmetry of the plane wave contributions described by

the dispersion relation.

The integral given by Equation (5.234) must first be put into a form suit-

able for the application of the stationary phase approximation. Labelling
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the overall phase term in the integral

pq

t
± E(p) = θ±(p) (5.236)

then equation (5.234) can be written in a form suitable for the application

of the stationary phase approximation as

I(q, t) = N

∫
f(p) exp

[
−λ

2
(p− V0)2 +

it

~
θ±(p)

]
dp (5.237)

in the limit t → ∞. As a naive approach to the approximation we might

only consider the stationary points of E(p) as we did in the Heisenberg pic-

ture, suspecting that the term pq/t only makes small contributions at long

times. However it needs to be taken into account that the range of q under

consideration is potentially unbounded and at long times the propagation

and spread of the wave packet may mean there are significant contributions

where pq is of the same order as t. This has a significant effect on the loca-

tion of the stationary phase points, and is especially important for spatially

broad wave packets that are very localised in momentum.

We therefore consider the points of stationary phase pS, satisfying the

condition θ′±(pS) = 0. When q = 0 the solution is straightforward as it

requires solving

E ′(pS) ≡
pSHo(pS)

mE(pS)
= 0. (5.238)

for pS. This gives the three stationary phase solutions previously found in

Sub-section 5.4.5, pS = {0,±pF}. When q 6= 0 the solution is more involved,

as it then requires solving

E ′(pS) = ∓q
t

(5.239)

for pS. Analytically this is tricky, requiring finding the roots of a high

order polynomial. However this equation can be written as a third order

polynomial of H0. The full set of six solutions are analytic and given in full

by

±p1(q, t) =± 1

t

√
m

3

[
X1/3 + Y 2X−1/3 + Z

] 1
2 (5.240)

±p2(q, t) =± 1

t

√
m

6

[
−X1/3 − Y 2X−1/3 + i

√
3
(
X1/3 − Y 2X−1/3

)
+ 2Z

] 1
2

(5.241)

±p3(q, t) =± 1

t

√
m

6

[
−X1/3 − Y 2X−1/3 − i

√
3
(
X1/3 − Y 2X−1/3

)
+ 2Z

] 1
2
.

(5.242)
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Figure 5.22: Illustration of the regions of E′(p) over which the 3 stationary phase

solutions pi(q, t) are applicable. The number of real solutions (which permit stationary

phase approximations) depends upon the value of q/t under consideration. At the points

E′(±pT ) the stationary phase points ±p2(q) and ±p3(q) coalesce into a single saddle

point. This requires additional corrections to the stationary phase approximation. We

will typically consider Gaussian distributions centred at V0 = pF as shown in red. A

sufficiently narrow distribution will mean that we need only consider contributions from

stationary phase point that fall under the Gaussian profile.

The shorthand

X =

[
3
√

3mq∆0t
2 +

√
Y 3 + (3

√
3mq∆0t2)2

]2

(5.243)

Y =mq2 − 2µt2 (5.244)

Z =mq2 + 4µt2 (5.245)

has been introduced. The six solutions, ±pi(q, t), parametrize sections of

the curve E ′(p) in terms of q/t. Only contributions to the stationary phase

approximation from the real stationary points of θ′±(p) need to be con-

sidered, as contributions from complex stationary points are exponentially

suppressed. With this in mind each solution only contributes to the ap-

proximation over a limited range of q/t and corresponding values of p as

illustrated in Figure 5.22. The ranges of p and q/t over which the pi(q, t)
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are real are

p1(q) =⇒ p > pF q/t > 0

−p1(q) =⇒ p < −pF q/t < 0

p2(q) =⇒ pT < p < pF q/t < 0

−p2(q) =⇒ 0 < p < −pT q/t > 0

p3(q) =⇒ 0 < p < pT q/t < 0

−p3(q) =⇒ pF < p < −pT q/t > 0

where ±pT are the turning points between ±p2(q, t) and ±p3(q, t) respec-

tively. They satisfy θ′′(±pT) ≡ E ′′(±pT) = 0. The number of real solutions

changes with the value of q/t under consideration. There are three real so-

lutions when E ′(−pT) < q/t < E ′(pT), and only one real solution ±p1(q, t)

outside this range, where p2(q, t) and p3(q, t) are imaginary. It must also

be considered that as q/t approaches E ′(pT) from above or E ′(−pT) from

below, ±p2(q, t) and ±p3(q, t) will move toward each other before coalescing

at E ′(±pT).

The asymptotic analysis will first be performed under the assumption

that the stationary points are well separated in p. The case of coalescing

stationary points is discussed below. It will also assist in calculations if we

note that the symmetry of E ′(p) implies that p3(q) = p2(−q) and p1(q) =

p1(−q).
Applying the stationary phase approximation to integral (5.237) gives

I(q, t) ≈ N
∑
pi∈<

f(pi) exp

[
−λ

2
(pi − V0)2 +

it

~
θ±(pi)

]
×
∫

exp

[
± it

2~
E ′′(pi)(p− pi)2

]
dp (5.246)

= N
∑
pi∈<

f(pi)

√
2π~

t|E ′′(pi)|
exp

[
−λ

2
(pi − V0)2 + i

(
t

~
θ±(pi)±

cπ

4

)]
.

(5.247)

Here we will label the contributions by their stationary phase point and

energy branch as

I(q, t) ≈ N
∑
pi∈<

A(pi)S-[pi,±] (5.248)

for later convenience. The subscript S- here refers to the sign of V0 in the

Gaussian (i.e. this is positive for a hole state). The summation is made

over the real stationary phase points pi, hence the number of terms in the

129



summation will depend on the value of q/t. Additionally c = sgn(E ′′(pi)).

This approximation requires that the width of the stationary phase contri-

bution is narrower than the real Gaussian envelope in I(q, t) (see Appendix

C.2). This is true for times t� 1/mωE ′′(pS).

At isolated values of q/t the stationary points coalesce. In this case

a uniform approximation needs to be performed that generally leads to

a Airy-type integral. Though we will in practice not derive the uniform

approximation we can show how to treat this case in principal. It has been

shown that θ±(p) has stationary points±pi(q) and that two of the stationary

points coalesce at p3(qT) = p2(qT) ≡ pS. It can then be assumed that at this

degenerate stationary point

θ′±(pS, qT) = 0, θ′′±(pS, qT) = 0, θ′′′±(pS, qT) 6= 0, (5.249)

at a certain position qT for a given value of t. It has been shown by Chester,

Friedman and Ursell [74] that in a neighbourhood of (pS(q), qT) there is

change of variables p = P (q, s) and functions ϑ(q) and ρ(q) such that

θ±(q, p) = ϑ(q) + ρ(q)s+
1

3
s3. (5.250)

The new variable satisfies P (qT, 0) = pS and the function satisfies ρ(qT) = 0.

The stationary points are then located at s = ±
√
−ρ(q) where ρ(q) < 0

when q < qT. Inserting (5.250) back into the stationary phase integral the

approximation is then given in terms of s as

I(q) ≈ N

∫
ds f(P (q, s))P ′(q, s)

× exp

[
−λ

2
(P (q, s)− V0)2 +

i

~
t

(
ϑ(q) + ρ(q)s+

1

3
s3

)]
.

(5.251)

The largest contributions now come from the new stationary points at s =

±
√
−ρ(q) meaning

≈ Nf(pS)P
′(qT, 0) exp

[
−λ

2
(pS − V0)2 +

i

~
tϑ(q)

] ∫
exp

[
i

~
t

(
ρ(q)s+

1

3
s3

)]
ds.

(5.252)

After rescaling the integral the solution is the Airy function

≈ N

(
~
t

) 1
3

f(pS)P
′(qT, 0) exp

[
−λ

2
(pS − V0)2 +

i

~
tϑ(q)

]
Ai

(
ρ(q)

(~/t)2/3

)
.

(5.253)
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Figure 5.23: E′(p) as a function of ∆0/µ and the location of the Gaussian momentum

distributions.

q/
t

0 p
-
p
F

p
F

0.01

0.25

0.5

(a) E′(p) for various values of ∆0/µ:

0.01 (red), 0.25 (green), 0.5 (blue).

When ∆0/µ → 0, as µ → ∞ E′(p) is

discontinuous at pF. This will also dic-

tate which stationary phase points fall

within the Gaussian distribution.
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p

E
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(b) We will mainly consider Gaussian

distributions centred at V0 = pF but also

look at larger momenta and V0 = 0.

Each location of momentum distribu-

tion isolates different stationary phase

contributions along E′(p).

The main difficulty in extending the approximation in this case comes from

finding an analytic form for the location of the turning points.

In the case of distinct stationary points analysing the full set of contribu-

tions from all the stationary phase points would be cumbersome considering

the three possible solutions at a given value of q/t for both θ+(p) and θ-(p).

However since we are considering Gaussian momentum distributions; if the

momentum distribution is sufficiently narrow any stationary phase contri-

butions sufficiently far from from V0 will be suppressed in the tails of the

Gaussian distribution as illustrated in Figure 5.23b. A single stationary

phase point will then generally dominates for a given value of q/t greatly

simplifying the calculation. Although our main interest lies in E-H coher-

ent states located close to the Fermi energy, we will also briefly consider

electron-hole wave packets centred at V0 = 0 and V0 � pf as examples of

the application of the stationary phase method.

V0 � pF

First we consider a wave packet with central pseudo-velocity V0 � pF. Based

on the dispersion relation and the corresponding stationary states we expect

that the wave packet will propagate like a free wave packet with little quasi-

spin interaction due to the balance of components on each energy branch.

In practice calculating the stationary phase approximation will require
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that the positive and negative regions of q are considered independently, as

the contributing stationary phase points change across the q = 0 line.

We consider an initial electron wave packet (β = 0). For positive values

of q, a wave packet located at V0 � pF then isolates a single stationary phase

point p1(q). The two other possible stationary points are suppressed by the

tails of the Gaussian. The three stationary phase solutions to θ′+(pS) = 0

are given by E ′(p) = −q/t which are all suppressed for positive values of

q and thus we need only consider contributions from the positive energy

contributions.

The stationary phase approximation has the simple form for positive

values of q

ψ(t, q+)e ≈ N

[
A2

+(p1(q))|e〉 − ∆0

2
E-1(p1(q))|h〉

]
S-[p1(q),−]. (5.254)

The absolute value squared for positive q is then

|ψ(t, q+)e|2 ≈
(

~
πmω

) 1
2 exp [−λ(p1(q)− V0)2]

t|E ′′(p1(q))|

{
A4

+(p1(q)) +
∆2

0

4
E-2(p1(q))

}
.

(5.255)

A similar calculation for negative q gives the analogous result

|ψ(t, q-)e|2 ≈
(

~
πmω

) 1
2 exp [−λ(p1(−q)− V0)2]

t|E ′′(p1(−q))|

{
A4

-(p1(−q)) +
∆2

0

4
E-2(p1(−q))

}
.

(5.256)

The location of p1(q, t) can be estimated by expanding the derivative of the

phase term about V0 up to first order

E ′(p) ≈ E ′(V0) + E ′′(V0)(p− V0). (5.257)

Since V0 � pF the H0(p) term dominates in E(p) and thus H0/E(p) ∼ 1.

Therefore a good linear approximation of E ′(p) ≈ p/m can be made at these

large momenta values. Satisfying the stationary phase approximation then

means that

p1(q, t) ≈ mq

t
. (5.258)

Since p1(q, t) is approximately linear in q, the wave packet remains approx-

imately Gaussian. The centre of the wave packet is located at q = tV0/m,

consistent with the trajectory of a free particle. This approximation at a

large energy also indicates that the wave packet propagating into negative

q is suppressed as A-(p) → 0 as p → ∞, and in a similar manner the

amplitude ∆2
0/E

2(p) suppresses any contributions to the hole component.
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Although it has been shown that in general the E-H wave packet follows

the wave packet resulting from an initial electron, in practice the analogous

result for an initial hole (β = ∞) can be obtained from the electron-hole

symmetry of the BdG equations. For an E-H coherent state the reflection

about p = 0 from V0 → −V0 means that for positive q the only contributing

stationary phase point is from the positive energy branch where E ′(p) =

−q/t, with the solution −p1(−q). The full approximation is therefore for

positive q

ψ(t, q+)h ≈ N

[
A2

+(p1(q))|h〉+
∆0

2
E-1(p1(q))|e〉

]
S+[−p1(q),+]. (5.259)

as the amplitude terms are even in p and the symmetry p1(q) = p1(−q).
The wave packet generated by an E-H coherent state with only an initial

hole component will therefore follow the electron component as anticipated.

This example confirms previous (but somewhat trivial results) for a wave

packet centred at large momenta, namely that wave packets propagate in a

manner analogous to a freely propagating state.

V0 = 0

We’ll now consider a somewhat more involved example of a wave packet

centred at V0 = 0. In this case the contributing stationary phase points are

−p2(q) and p3(q). Again the assumption is made that contributions from

other stationary phase points are suppressed by the tails of the Gaussian dis-

tribution, especially avoiding any need to consider coalescing saddle points

at p0 = pT (satisfied if 4σp � pT then any contributions at the coalescing

point are suppressed).

For positive values of q the corresponding stationary phase points for

positive and negative energy phase terms are

θ′-(p) =⇒ −p2(q) ≡ −p3(−q)

θ′+(p) =⇒ p3(−q) ≡ p2(q).

Considering an initial electron wave packet the contributions to the station-

ary phase approximation are for positive q

ψ(t, q+)e ≈ N

[
A2

+(−p2(q))|e〉 − ∆0

2
E-1(−p2(q))|h〉

]
S- [−p2(q),−]

+N

[
A2

-(p2(q))|e〉+
∆0

2
E-1(p2(q))|h〉

]
S- [p2(q),+] . (5.260)
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This can be further simplified as the amplitude terms are even in p and it

can also be shown that S-[−p0,±] = S-[p0,∓]∗ which leads to

ψ(t, q+) ≈ N

√
2π~

t|E ′′(p2(q))|
exp

[
−λ

2
p2

2(q)

]{
i∆0

E(p2(q))
sin

(
t

~
θ+(p2(q)) +

cπ

4

)
|h〉

+ A2
+(p2(q)) exp

[
−i
(
t

~
θ+(p2(q)) +

cπ

4

)]
|e〉

+A2
-(p2(q)) exp

[
i

(
t

~
θ+(p2(q)) +

cπ

4

)]
|e〉
}
. (5.261)

Similarly for negative q the two contributing stationary phase points are

θ′+(p) =⇒ −p2(−q)

θ′-(p) =⇒ p3(q) ≡ p2(−q).

and by a similar process the stationary phase approximation is given by

ψ(t, q-) ≈ N

[
A2

+(p2(−q))|e〉 − ∆0

2
E-1(p2(−q))|h〉

]
S- [p2(−q),−]

+N

[
A2

-(p2(−q))|e〉+
∆0

2
E-1(p2(−q))|h〉

]
S- [−p2(−q),+] .

(5.262)

Using the relation S∗- [p2(q+),+] = S-[p2(−q-),−] the approximation can be

written in spinor form for valid all values of q

ψ(t, q)e ≈N

√
2π~

t|E ′′(p2(|q|))|
exp

[
−λ

2
p2

2(|q|)
]{

i∆0

E(p2(|q|))
sin

(
t

~
θ+(p2(|q|)) +

cπ

4

)
|h〉

+ cos

[
t

~
θ+(p2(|q|)) +

cπ

4

]
|e〉 − iH0(p2(|q|))

E(p2(|q|))
sin

[
t

~
θ+(p2(|q|)) +

cπ

4

]
|e〉
}
.

(5.263)

A good approximation of E ′(p) around p = 0 can be made up to the linear

term in p giving E ′(p) ≈ −pµ/mE(0). The stationary phase point p2 is

then approximately located at

p2(|q|, t) ≈ −m|q|E(0)

tµ
. (5.264)

Due to the linear dependence on q, the Gaussian term in (5.263) remains

approximately a Gaussian profile centred on q = 0, with a time dependent

width. The absolute value is the wave packet

|ψe(q, t)|2 ≈
(

~
πmω

) 1
2 1

t|E ′′(p2(|q|))|
exp

[
−λ
(
mE(0)

tµ

)2

|q|2
]

(5.265)
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which merely remains centred on the origin with a linear time dependence in

the width of the wave packet in a similar manner to the free scalar coherent

state with zero momentum.

These two examples show that we can apply the stationary phase ap-

proximation to find the dynamics of an E-H Gaussian wave packet when

V0 = ±pF and V0 = 0. In both cases the wave packet behaves as would

be expected from the dispersion relation and if µ � ∆0 the wave packet

behaves in an analogous manner to the dynamics of a scalar wavepacket.

V0 = pF

We now consider the region of interest close to the Fermi momentum where

the dispersion relation predicts that wave packets have zero group velocity

but non-zero phase velocity. For a wave packet centred on the Fermi mo-

mentum (or equivalently where E0 ≈ ∆0) further consideration needs to be

given as to how the stationary phase points are contained in the width of

the wave packet. For the previous two examples the stationary phase points

that are not suppressed have been far from pT without any additional re-

quirement on the momentum bandwidth apart from δp � pF. But in this

case, if we are considering the regime µ � ∆0 this means that |pF − pT|
is especially small as shown by Figure 5.23a. Moreover |pF − pT| → 0 as

∆0/µ→ 0.

In order to avoid any complications arising from the inclusion of the

coalescing stationary phase points p2(q) and p3(q) when |q/t| = E ′(pT) the

choice can be made to scale the momentum width of the wave packet in

proportion to ∆0/µ. If we scale the wave packet such that the 4σp width of

the Gaussian distribution is contained in the distance |pF − pT| as

λ�
(

2

pT − pF

)2

(5.266)

any contributions from the coalescing stationary phase points will then be

suppressed by the tails of the Gaussian wave packet. This is illustrated in

Figure 5.23b.

For an initial electron coherent state (β = 0) the wave function in inte-

gral form is given by

ψ(t, q)e = N

∫
e-itE(p)/~

[
A2

+|e〉 −
∆0

2E(p)
|h〉
]
〈q|p〉〈p|z〉dp

+N

∫
eitE(p)/~

[
A2

-|e〉+
∆0

2E(p)
|h〉
]
〈q|p〉〈p|z〉dp. (5.267)
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Figure 5.24: Comparison of numeric (red) and long time stationary phase approxima-

tion (blue) |ψon(q, t, 0)|2 as t→∞. ∆0/µ = 0.05, x = 1 and the wave packet is centred at

V0 = pF. Dashed lines correspond to the location of the turning points of E′(p) located

at qT = tE′′(pT) where the approximation fails due to the influence of coalescing saddle

points. tmin is the minimum time at which the stationary phase contributions become

dominant. In this case this is given by tmin = (mωE′′(pF))-1

t = 2.5× tmin

-qT qT

t = 5× tmin

-qT qT

t = 10× tmin

-qT qT

t = 15× tmin

-qT qT

The stationary phase solutions for q/t > 0 and q/t < 0 are again required to

be treated independently. The solutions to the stationary phase condition

changes from p1(q) > pF for positive values of q/t to p2(q) < pF for negative

values. For positive q the relevant stationary phase contributions are

θ+(p) =⇒ p2(−q, t)

θ-(p) =⇒ p1(q, t)

as any contributions from p3(−q, t) are suppressed by design. The stationary

phase approximation for positive q is therefore

ψ(t, q+)e ≈ N

[
A2

+(p1(q))|e〉 − ∆0

2
E-1(p1(q))|h〉

]
S-[p1(q),−]

+N

[
A2

-(p2(−q))|e〉+
∆0

2
E-1(p2(−q))|h〉

]
S-[p2(−q),+]

(5.268)
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and for negative q

ψ(t, q-)e ≈ N

[
A2

+(p2(q))|e〉 − ∆0

2
E-1(p2(q))|h〉

]
S-[p2(q),−]

+N

[
A2

-(p1(−q))|e〉+
∆0

2
E-1(p1(−q))|h〉

]
S-[p1(−q),+].

(5.269)

The hole components for positive and negative q are related by ψ(t, q-)
h
e =

ψ(t,−q+)h∗e . Thus the absolute value of the hole component of the wave

packet will always remain symmetrically located around the origin, but

there is a clearly a spatial asymmetry in the electron component as shown

by the numerical plots.

Examining the terms contained in the absolute value of the electron

component for positive q, firstly there are two non oscillating terms

N2

(
A+(p1(q))4|S-[p1(q),−]|2 + A-(p2(−q))4|S-[p2(−q),+]|2

)
. (5.270)

From the form of S (Equation (5.248)) we can infer that these are Gaussian

like terms peaked at pi = V0. There are also oscillating terms arising from

the interference between the two stationary phase points

N2[A+(p1(q))A-(p2(−q))]2
(
S-[p1(q),−]∗S-[p2(−q),+] + C.C.

)
. (5.271)

Moreover expanding the right hand bracket of Equation (5.271) it contains

both the product of real Gaussian contributions from both stationary points

exp

[
−λ

2
(p1(q)− V0)2 − λ

2
(p2(−q)− V0)2

]
(5.272)

which will suppress any oscillations away from the origin. It also contain

oscillating terms of the form

exp

[
i

~
q [p1(q)− p2(−q)]− i

~
t [E(p1(q)) + E(p2(−q))]

]
+ C.C. (5.273)

Numerically integrated results show that the oscillations over the wave

packet correspond to wave-fronts propagating from the origin, we can see

from these terms that the position of the peaks is dependent on the asym-

metry between the behaviour of stationary points either side of pF. In this

case if p1(q) and p2(−q) were symmetric in q the resulting oscillations would

also be spatially symmetric.

It has been shown that E ′(p) is well approximated by a linear function

close to p � pF and p = 0. In the region close to pF this approximation
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is of limited value as it does not take into account the asymmetry of p1(q)

and p2(−q) above and below q/t = 0. This asymmetry is not present (or

is relatively small) for stationary phase points either side of the origin or

V0 � pF.

We can consider a very narrow wave packet in momentum, such that

E ′(p) can be approximated linearly about pF (in effect the wave packet will

be too narrow to see any asymmetry in E(p) close to pF). Going back to

the phase term E(p) and expanding up to second order around the Fermi

momentum

E(p) ≈ ∆0 +
µ

m∆0

(p− pF)
2 (5.274)

gives E ′′(p) ≈ 2µ/m∆0. It follows that the stationary phase solutions

p1(q, t) and p2(q, t) close to pF are approximately linearly dependent on

q/t giving the approximate locations

p1 ≈ pF +
m∆0q

2µt
when q > 0 (5.275)

p2 ≈ pF +
m∆0q

2µt
when q < 0. (5.276)

Inserting approximations (5.275) and (5.276) into the stationary phase ap-

proximation the absolute square of the initial electron spinor wave function

can be written in a form that is valid for all q as

|ψ(q, t)ee|2 ≈
(
m~
πω

) 1
2 ∆0

2µt
exp

[
−λ
(
m∆0

2µt

)2

q2

]
{
A4

+

(
pF +

m∆0q

2µt

)
+ A4

-

(
pF −

m∆0q

2µt

)
+4A2

+

(
pF +

m∆0q

2µt

)
A2

-

(
pF −

m∆0q

2µt

)
cos

[
t

~
∆0

(
1 +

m

µ

( q
2t

)2
)

+
π

4

]}
.

(5.277)

Overall the wave packet remains symmetric and centred on the origin, with

time dependent oscillations between the components.

This symmetry in q arises as this approximation has modelled the sta-

tionary phase points contained inside the Gaussian envelope as symmetric

across the q = 0 line. In effect the wave packet is sufficiently narrow as

to suppress any asymmetry effects from higher terms in the expansion. In-

creasing the momentum bandwidth of the initial wave packet will quickly

start to include regions of E ′(p) that are no longer symmetric in p, and

as such will begin to shift the state from the origin and also deviate the

distribution from the initial Gaussian profile. This is consistent with the
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numerical plots where the narrower momentum bandwidth is seen to hold

the wave packet close to the origin. To get a full picture of the position

dependence of the stationary points would require including more terms in

the expansion of E ′(p), especially up to third order. In terms of complex-

ity extracting more information about the location of the stationary phase

points is essentially equivalent to finding the full stationary phase solution

so we will only state the full solution in terms of the stationary phase points.

5.5.3 Short Wavelength Behaviour

The short wavelength limit can be achieved both by taking the usual clas-

sical limit ~→ 0 but also the large Fermi energy limit µ→ 0. Considering

the time dependent BdG equation[
−
(

~2

2m

d2

dq2
+ µ

)
σ3 + ∆0σ1

]
ψ(q, t) = i~

d

dt
ψ(q, t) (5.278)

rescaling the time t→ τ gives[
−
(
d2

dq2
+

2mµ

~2

)
σ3 +

2m∆0

~2
σ1

]
ψ(q, τ) = i

d

dτ
ψ(q, τ). (5.279)

The two parameters 2mµ/~2 and 2m∆0/~2 both grow in the limit ~→∞,

but in the limit µ → ∞ only 2mµ/~2 grows. In general we may consider

asymptotic limits where both parameters grow at different rates. This allows

~ and m to remain fixed, and then consider the energy parameters µ and

∆0 as quantities that define the short wavelength asymptotics here.

We should also consider the relationship between the fundamental length

and time-scales, and the shape of the initial wave packet in these two short

wavelength regimes. The dynamics of the wave packet are dictated by the

energy parameters 2mµ/~, 2m∆0/~ and the expected energy of the initial

wave packet. The shape of the initial wave packet depends on the squeezing

parameter ω and ~.

We have also introduced the spin distance length scale (for a wave packet

with V0 = pF)

dσ(pF) = vFTσ(pF) =
pF

m

π~
∆0

(5.280)

in section 5.2 as the distance the centre of the wave packet will travel in the

time it takes for a full revolution in electron-hole quasi-spin space. We also

introduced the ratio x in section 5.2 as

x =
δq

dσ(pF)
=

1√
~ωµ

2∆0

π
. (5.281)
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The analysis in previous sections has shown that the value of x has a strong

effect on the resulting dynamics on the Fermi momentum. If ω does not

scale like µ or ~, this will mean that x will scale as 1/
√
µ~. Their are

two possible asymptotic cases, x → 0 as µ → ∞ meaning that the wave

packet moves quickly well outside the initial envelope (see the numerically

integrated example Figure 5.14) and x → ∞ as ~ → 0 meaning the wave

packet remains well localised and stationary as any oscillations will be con-

tained inside the initial envelope (see the numerically integrated example

Figure 5.15).

These two asymptotic values of x indicate behaviour analogous with a

free particle. To see any oscillatory dynamics in these short wavelength

regimes will require a fixed value of x. This can be achieved by scaling ω

like µ or ~. Considering the inverse of Equation (5.281)

ω =
1

~µ

(
2∆0

xπ

)2

(5.282)

gives the wave packet squeezing necessary to retain finite values of x. We

will show that except for a small number of specific cases, in the short

wavelength regime one cannot generally define a wave packet that retains a

finite width, and has a finite non-zero value of x.

µ→∞

We first consider the simplest case of scaling µ→∞ whilst holding all other

system parameters constant. This means that dσ(pF)→∞ as vF scales like
√
µ. If we first consider scaling the width of the wave packet so that x

remains finite then the wave packet will have the parameters

ω → 0 =⇒ σq →∞ σp → 0.

This wave packet loses any spatial information, and the resultant solutions

are simply plane waves.

If instead the value of ω is fixed by scaling x as x ∼ 1/µ, in this case

as x → 0 the wave packet will quickly move away from under the initial

envelope. This can be shown analytically by considering that since ∆0

is fixed, the ratio ∆0/µ → 0. In this limit E ′(p) shows a discontinuity

at ±pF (see Figure 5.23a). This discontinuity occurs due to the curves

±E(p) approaching the intersecting dispersion relations that describe free

electron and hole particle in a normal conductor as both shown in Figure
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5.1. Expanding E(p) around ±pF, where E ′(p) changes sign, as

E(p) = H0

√
1 +

(
∆0

H0

)2

= H0

[
1 +

1

2

(
∆0

H0

)2

. . .

]
(5.283)

then the expansion on the right converges towards H0 very quickly as µ→
∞ except at p = pF. In this regime the expansion either side of pF is

E(p) ≈

 H0, if p < −pF and p > pF

−H0, if − pF < p < pF

. (5.284)

As the width of the momentum distribution is fixed independent of µ, we

might attempt to apply the the stationary phase approximation. The dis-

continuities at E ′(p) would require a method of evaluating stationary phase

contributions on the discontinuity. If instead the discontinuous approxima-

tion of E(p) is inserted into the electron component of the wave function,

the amplitude term H0/E(p) in the regions either side of ±pF will behave

like

H0

E(p)
→

1, if p < −pF , p > pF

−1, if − pF < p < pF

. (5.285)

In total the time dependent terms in Equation (5.267) for the electron com-

ponent then tend to the simplified form

[
A2

+(p)e
-itE(p)/~ + A2

-(p)e
itE(p)/~]→

e-itH0(p̂)/~, if p < −pF , p > pF

eit-H0(p̂)/~, if − pF < p < pF

.

(5.286)

Even though previously the regions either side of pF had to be treated inde-

pendently, in the large µ limit the time development function can be written

as a single continuous function over the full range of p (excluding pF) as

Û(t) ≈ exp

(
−it
~
H0(p̂)

)
. (5.287)

This is of course recognisable as the time evolution operator for free motion

of the electron with no interaction (i.e. in a normally conducting region).

The solution is easily found with no further approximation as the exponent

is now quadratic in p. The resulting wave function is simply

ψ(q, t)e ≈ N

∫
exp

[
−λ

2
(p− V0)2 +

i

~
pq − it

~
H0(p)

]
dp (5.288)

= N

√
2π

a(t)
exp

[
− 1

2a(t)~2
(q − vFt)

2 +
iV0

~

(
q − tV0

2m

)
+
itµ

~

]
(5.289)
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Figure 5.25: Comparison of numerically integrated (red) and asymptotic approxima-

tions (blue) of an initial electron component E-H wave packet |ψon(q, t, 0)|2 when µ→∞.

The other system parameters (∆ and ω) held constant at a fixed time.

∆0/µ = 0.05 ∆0/µ = 0.01

∆0/µ = 0.005 ∆0/µ = 0.001

where a(t) = λ+ it/~m. The resultant position wave packet is simply

|ψ(q, t)e|2 ≈
(
λ

π

) 1
2 1

|a(t)|
exp

[
− λ

|a(t)|2~2
(q − vFt)

2

]
(5.290)

describing a Gaussian wave packet moving at the Fermi velocity as predicted

by the behaviour of x in this limit. Comparison of the numerically integrated

solution and this approximation are shown in Figure 5.25 demonstrating

convergence for increasingly small values of ∆0/µ.

To summarise scaling µ alone does not generate a wave packet that is

both localised and demonstrates oscillations about the origin. The more

interesting regime is when ∆0 scales alongside µ, parametrizing the scaling

of ∆0 as ∆0 = δµα where 0 < α ≤ 1. This choice of scaling also has the

consequence that both vF and Tσ(PF ) now scale like µ. vF is proportional

to
√
µ and Tσ(PF ) scales in the inverse manner ∼ 1/µα.

There is still a free choice in the scaling of x and ω. For fixed finite

values of x it can be seen from Equation (5.282) that there are three cases

to consider as µ→∞

0 < α < 1/2 =⇒ ω → 0

α = 1/2 =⇒ ω remains at a fixed value

1/2 < α < 1 =⇒ ω →∞.

The first case scales like the previous example (albeit more slowly) and the

resultant solutions will again be plane wave solutions with no resolution in
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Figure 5.26: Comparison of numerically integrated (red) and stationary phase approx-

imation (blue) of |ψon(q, t, 0)|2 as µ → ∞, with ∆0 also scaled as ∆0 = δµ1/2 at a fixed

time t = 1, δ = 0.05. µcrit = (λ~/tθ′′(0))2 is the approximate value at which the station-

ary phase contributions become dominant. Dashed lines indicate the origin and |q| = tvF

where the approximation fails.

µ = 10× µcrit

0-tvF tvF

µ = 50× µcrit

0-tvF tvF

µ = 100× µcrit

0-tvF tvF

µ = 200× µcrit

0-tvF tvF

q, albeit with the new scaling applied to E(p). The third case scales in the

inverse manner, the wave packet becoming increasingly narrow in q and no

definition in p.

Considering instead finite values of ω, the same regimes of α apply

0 < α < 1/2 =⇒ x→ 0

α = 1/2 =⇒ x remains at a fixed value

1/2 < α < 1 =⇒ x→∞.

The behaviour of x indicates that the first and third case will behave like

the free particle. The first case will move away from the origin and the third

case will be a stationary wave packet remaining on the origin.

In both cases their is a balanced regime α = 1/2, which retains finite

values of both x and ω. These wave packets will have both finite dimen-

sions and will be sufficiently narrow as to exhibit oscillations that move

outside the Gaussian envelope. For the wave packet located on the Fermi

momentum this asymptotic approximation can be derived using the sta-

tionary phase approximation with µ as the large parameter. Details of of

the calculation can be found in Appendix A.2.3. The resulting stationary

143



phase approximation of the electron wave function is given by

ψee(q, t) ≈ N

√
2π~

tµ1/2|ϕ′′(pS(q))|
exp

[
−λ

2
p2
S(q) +

i

~
qpF

]
×
{
A2

+(pF + pS(q))e
- i~
√
µ θ+(-pS(q))- iπc

4 + A2
-(pF − pS(q))e

i
~
√
µ θ+(-pS(q))+ iπc

4

}
(5.291)

and the corresponding hole

ψhe (q, t) ≈ N

√
2π~

tµ1/2|ϕ′′(pS(q))|
∆0

2
exp

[
−λ

2
p2
S(q) +

i

~
qpF

]
×
{
E-1(pF − pS(q))e

i
~
√
µ θ+(-pS(q))+ iπc

4 − E-1(pF + pS(q))e
- i~
√
µ θ+(-pS(q))- iπc

4

}
.

(5.292)

The stationary point pS(q) in this case is located at

pS(q) =

√
m

2
qδ
[
(tvF)

2 − q2
]-1/2

(5.293)

and the phase term is given by

θ±(p) =
pq
√
µ
± t
[

2

m
p2 + δ2

]1/2

. (5.294)

This approximation is valid for values of µ satisfying

µ�
(

λ~
tθ′′+(0)

)2

. (5.295)

A comparison between the numerically integrated solution and this approxi-

mation are shown in Figure 5.26 for increasing values of µcrit = (λ~/tθ′′(pS(0)))2,

the approximate minimum value of µ at which the stationary phase contri-

butions become dominant.

It should also be noted that this approximation breaks down for |q| ≥ tvF

(as marked on the plots). Indeed pS(q) is singular when the equality is sat-

isfied, and complex for larger values. The singularity could have been re-

moved by including the slowly varying Gaussian term in the approximation

(rather than evaluating it at pS(q)). This example is more suitable for a

clear picture of the dynamics though.

Since pS(q) is not exactly linear in q, the envelope exp (−λp2
S/2) does

not exactly describe a Gaussian profile. It is still peaked at the origin at

the minimum of pS(q). The strength of the peak is also described by the

parameter (tvF)
2 − q2 . This implies that the width of the wave packet
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is approximately tVF as can be seen in Figure 5.26. This envelope is also

symmetric in q, locating the bulk of the wave packet about the origin, but

as p0(q) is approximately linear in q a spatial asymmetry occurs due to the

amplitude terms E(pF ± pS).

~→ 0

Now let us consider the short wavelength limit ~ → 0 for fixed values of µ

and ∆0. We need to consider that ~ dependence appears both in the time-

scale Tσ(pF) and (in the case of the minimum uncertainty coherent state)

the spatial and momentum widths in both q and p given by

δq =

√
~

2mω
and δp =

√
~mω

2
. (5.296)

The squeezing operator ω as therefore scaled as ω = Ω~γ over the range

−1 ≤ γ ≤ 1. The two ends of the range correspond to fixing the widths

of the wave packet in p and q respectively. The standard semiclassical

approximation is found at γ = 1/2.

Applying this choice of scaling to x gives

x =

(
2∆0

π
√
µΩ

)
~-

1
2

(1+γ). (5.297)

There are then three cases to be considered, γ = ±1 and intermediate

values.

Firstly when δp is held constant indipendent of ~ (i.e. γ = −1), the

resultant value of x is also indipendent of ~. Ω can then be scaled such that

oscillations will be seen that move outside the initial wave packet (though

both the width of the wave packet and dσ(pF) tend to 0 identically). For any

other values −1 < γ ≤ 1, x will always tend to∞, and the wave packet will

remain located on the origin. The value of ω is fixed when x ∼ 1/
√
~, and

in this case the wave packet shrinks in both p and q identically as ∼
√
~.

This scaling is consistent with the previous assertion that ~ → 0 is

equivalent to scaling ∆0 and µ in an identical manner. In both cases there

is a choice to either fix the value of ω or x. Fixing x means ω → ∞, the

width of the wave packet tending to 0. Fixing the the value of ω means

x→∞ and the wave packet will remain centred on the origin.

We omit the full details of calculations of these three asymptotic approx-

imations here, but details can again be found in section A.2.3. We arrive at

each approximation by noting that each term in the exponent of the integral

I(q, t) = N

∫
f(p) exp

[
−λ

2
(p− V0)2 +

i

~
pq

]
exp

[
±it
~
E(p)

]
dp (5.298)
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Figure 5.27: Comparison of Numeric (red) and asymptotic approximations (blue) when

~→ 0. ∆0/µ = 0.05 at a fixed time. ~min is defined by the minimum value of ~ at which

the appropriate approximation becomes significant.

~ = 0.5× ~min
Fixed δp

~ = 0.1× ~min

~ = 0.05× ~min ~ = 0.01× ~min

~ = 0.5× ~min
Fixed δq

~ = 0.1× ~min

~ = 0.05× ~min ~ = 0.01× ~min

~ = 0.5
δp = δq ∝ ~

~ = 0.1

~ = 0.05 ~ = 0.01
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scales in some manner by ~. The choice of scaling for ω will change the

weight of contributions from either the real Gaussian term or complex phase

term.

γ = −1: We will first consider holding the momentum width of the wave

packet fixed (corresponding to γ = −1). The phase term in the exponent

scales like 1/~. The resulting approximation is functional identical to the

stationary phase solutions for long times derived in sub-section 5.5.2, though

now the stationary phase are found for

θ±(p) = pq ± tE(p) (5.299)

as ~ → 0. The stationary phase solutions are the same as the long time

case. We will again label the general solution in the same manner

I(q, t) ≈ N
∑
pi

A(pi)

√
2π~

t|E ′′(pi)|
exp

[
− 1

2mΩ
(pi − V0)2 +

i

~
θ±(pi)±

icπ

4

]
(5.300)

= N
∑
pi∈<

A(pi)S-[pi,±]. (5.301)

This still allows for a choice of fixed value of x using the scaling Ω =

(2∆0/xπ
√
µ)2 as δp is indipendent of ~. For a wave packet centred on

the Fermi momentum the stationary phase contributions are given by the

spinor, for positive q

ψon(q+, t, 0) ≈ N

[
A2

+(p1(q))|e〉 − ∆0

2
E-1(p1(q))|h〉

]
S-[p1(q),−]

+N

[
A2

-(p2(−q))|e〉+
∆0

2
E-1(p2(−q))|h〉

]
S-[p2(−q),+]

(5.302)

and for negative values of q

ψon(q-, t, 0) ≈ N

[
A2

+(p2(q))|e〉 − ∆0

2
E-1(p2(q))|h〉

]
S-[p2(q),−]

+N

[
A2

-(p1(−q))|e〉+
∆0

2
E-1(p1(−q))|h〉

]
S-[p1(−q),+].

(5.303)

This is essentially equivalent to the the long time behaviour, the only dif-

ference being the time scales, as anticipated at the start of this sub-section.

Although the spatial width of the wave packet scales like ~ the time-scale
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Tσ(pF) shrinks at the same rate. The above approximation applies for values

of ~ satisfying

~� tmΩE ′′(pi) (5.304)

thus it improves over longer times. The approximation breaks down for

coalescing stationary points at the turning points located at pT satisfying

E ′′(pT) = 0 (see section 5.5.2 for details).

γ = 1: Considering the case γ = 1 (corresponding to fixing the spatial

width of the wave packet). The momentum width of the wave packet scales

like 1/~2. Therefore the real Gaussian term in the integral (5.234) is domi-

nant (i.e. narrower than) over the stationary phase contributions from the

phase term. The Laplace method may then be employed (see Appendix

C.1) to evaluate the integral at the peak of the Gaussian. The asymptotic

solution in spinor form is given by

ψon(q, t, 0) ≈ N~
2

√
2π

a(t)
(|e〉 − |h〉) exp

[
− 1

2a(t)
q2 +

i

~
(qpF − t∆0)

]

+
N~
2

√
2π

a∗(t)
(|e〉+ |h〉) exp

[
− 1

2a∗(t)
q2 +

i

~
(qpF + t∆0)

]
.

(5.305)

where a(t) = 1/mΩ+it~E ′′(V0)). This describes a wave packet that remains

located on the origin with the envelope of the wave packet described by

exp

[
− q2

2mΩ|a(t)|2

]
. (5.306)

as anticipated by the value of x. This approximation is valid when ~ satisfies

the condition

~� 1

mΩtE ′′(V0)
(5.307)

and thus is increasingly accurate at shorter times.

γ = 0: At the central value γ = 0, the width in both p and q scale iden-

tically by
√
~. Since both the width of the stationary phase contribution

and the Gaussian contribution shrink at the same rate we should consider

an asymptotic solution that takes into account contributions from both.

We can therefore arrive at an approximation by considering the convolu-

tion of the contributions from the Gaussian envelope and stationery phase
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contribution. The general solution is given by

I(q, t) ≈ NA (z∓)

√
2π

λγ∓
exp

[
±itE

′′(pi)

2~γ∓
(pi − V0)2 +

i

~
θ±(V0)

]
(5.308)

where the width of the resultant distribution is described by

γ± = 1± itmωE ′′(pi) (5.309)

and the complex parameter z± is given by

z± = γ-1
±
(
V0 ± itmωE ′′(pi)pi

)
. (5.310)

The solution is again constructed from the same stationary phase point

contributions as found in the long time case. Though the value of x tends

to∞ more slowly at 1/
√
~ as both δq and Tσ(pF) tend to zero. The resulting

non-oscillating envelope of the wave packet is described by

exp

[
−mω

2~
E ′′(pi)

|γ∓|2
t2(pi − V0)2

]
. (5.311)

Although there is an influence from the oscillating terms, the wave packet

still remains restricted about the origin as predicated by the value of x.
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Chapter 6

Time Dependent Andreev

Reflection of Coherent States

In this chapter we will analyse the dynamics of a Gaussian wave packet

incident from the normal region onto a discontinuous N-S interface. The

wave packets are superpositions of the stationary state scattering solutions

derived in Section 4.2. We will show how the state with central pseudo-

velocity close to the Fermi momentum is mainly Andreev reflected and

partially specularly reflected at the N-S interface. Part of the wave packet

will also penetrate into the superconducting region, although in this case

the wave packet will not fully penetrate into the superconducting region.

As in the previous chapter, we will also consider the short wavelength

limits ~ → 0 and µ → ∞ using asymptotic techniques to compare the

dynamics in these regimes.

6.1 Time Dependent Andreev Reflection

The ultimate goal of this chapter is a derivation of the time dependent

Andreev reflection of an initially Gaussian wave packet. This will be done

using the known stationary scattering states derived in section 4.2. In prin-

ciple this will allow for an analysis of arbitrary initial states (under certain

conditions we will discuss below). The time dependent spinor state will be

denoted as

|Φ(t)〉 = exp

(
−it
~
ĤBdG

)
|Φ(0)〉 (6.1)
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for an initial state of the wave packet |Φ(0)〉. This is written in terms of

the electron-like and hole-like components

|Φ(t)〉 = |Φe(t)〉 ⊗ |e〉+ |Φh(t)〉 ⊗ |h〉 (6.2)

labelled by the superscript. The time dependent spinor wave function is

then

Φ(q, t) = 〈q| exp

(
−it
~
ĤBdG

)
|Φ(0)〉. (6.3)

The action of the time development operator on the initial wave packet

can be found by decomposing the initial state in the scattering basis. The

scattering states are eigenstates of the BdG Hamiltonian with eigenvalue

ĤBdG|E, σ〉 = E|E, σ〉. (6.4)

The scattering states have been denoted in bra-ket notation with incident

energy E and σ = {e, h} indicating the incident component. The corre-

sponding spinor wave functions are given in section 4.2. We only consider

scattering states for incident particles with energies inside the supercon-

ducting band gap, this will ensure that only the decaying states inside the

superconducting region contribute. This will also limit the allowed mo-

mentum bandwidth of the initial incident wave packet. If like the Gaus-

sian wavepacket, the momentum distribution of the wave packet is non-zero

along the real line then the momentum bandwidth of the initial wave packet

will be chosen so that the contributions from scattering states that propa-

gate into the superconductor (i.e. E > ∆0) can be neglected (clearly this

will restrict the possible distributions under consideration).

The scattering states are orthogonal both with respect to energy and E ′

and between spin components, i.e.

〈E ′, σ′|E, σ〉 = δ(E ′ − E)δσ′σ. (6.5)

This result is derived in detail in appendix A.3.1 for scattering states with

energies |E| < ∆0. Since contributions from states |E| > ∆0 are neglected

we will introduce the projection onto the subspace of states with energy

|E| < ∆0 labelled P|E|<∆0 . This can be resolved in the scattering basis as

P|E|<∆0 =
∑
σ

∫ ∆0

-∆0

dE |E, σ〉〈E, σ|. (6.6)

The summation is performed over the incident electron and hole states as

well as integrating over energy contributions across the superconducting

band gap.
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Using (6.6) the time dependent wave functions are therefore resolved as

Φ(q, t) =
∑
σ

∫ ∆0

-∆0

dE 〈q| exp

[
−itHBdG

~

]
|E, σ〉〈E, σ|Φ(0)〉 (6.7)

=
∑
σ

∫ ∆0

-∆0

dE exp

[
−itE

~

]
Ψσ(q, E)〈E, σ|Φ(0)〉. (6.8)

The functions Ψσ(q, E) are just the spinor scattering wave functions. 〈E, σ|Φ(0)〉
resolves the initial state in the scattering basis and can be calculated using

the known solutions in the position basis using

〈E, σ|Φ(0)〉 =

∫
dq Ψ†σ(q, E)Φ(q, 0). (6.9)

It needs to be taken into consideration that since the scattering states inside

the superconducting region are restricted to the decaying wave functions; it

is not generally possible to fully resolve any part of the initial wavepacket

that lies in the superconducting region in this restricted scattering basis on

P|E|<∆0 . In practice the approximation used will be

〈E, σ|Φ(0)〉 ≈
∫ 0

-∞
dq Ψ†σ(q, E)Φ(q, 0) (6.10)

by ensuring the bulk of the initial wave packet lies in the normal region.

This will ensure that any errors introduced from neglecting the components

of the initial state in the superconducting region are negligible. We will

later apply this to an initial Gaussian wave packet.

As a simple example we can consider an initial electron wave function

supported on a finite range of energies inside the band gap, centred in space

at some q0 in the normal region. This is described by a box function in

the energy basis, producing a spatial wave packet of the form sinc(q − q0)

at t = 0. If the initial wave packet is defined sufficiently far from the

N-S boundary (such that it is interacting weakly with the boundary) the

coefficients for a initial pure electron wave packet are defined by

〈E, σ|ΦN , 0〉 =

{
exp

[
− iq0

~ α+(E)
]
a ≤ E ≤ b and σ = e

0 otherwise
(6.11)

where |a|, |b| < ∆0. The wave function spinor in the normal region is then

given by

ΦN(q, t) =
∑
σ

∫ b

a

dE exp

[
− i
~

(tE + q0α+(E))

]
Ψe,N(q, E) (6.12)
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Figure 6.1: Time steps in the Andreev reflection of a box function distribution of

energies, centred on E = 0, with δE = 0.5 × ∆0. The time steps are fractions of

T = |q0|/vF the approximate time taken for the centre of the wave packet to meet the

boundary. ∆0/µ = 0.01. Electron component is shown in red and the hole in blue.
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and in the superconducting region

ΦS(q, t) =
∑
σ

∫ b

a

dE exp

[
− i
~

(tE + q0α+(E))

]
Ψe,S(q, E). (6.13)

Time steps for the Andreev reflection of this wave packet are shown in

Figure 6.1, generated using numerical integration. The initial wave packet is

a pure electron state, with central energy E0 = 0 and the energy bandwidth

set at half the value of ∆0 so as to ensure that contributions from states

propagating into the superconducting region are not introduced.

6.2 Andreev Reflection of a Gaussian Wave

packet

We now look at the time evolution of a Gaussian wave packet that is initially

an electron component incident from the normal region. First the Gaussian

wave packet is resolved in the scattering basis. The coefficients have terms

of the general integral form∫ 0

-∞
dqΨ†σ,N(q, E)Φ(q, 0) ∝ NA(E)

∫ 0

−∞
exp

[
−λ

2
(q − q0)2 +

i

~
q
(
Vo ± α+(E)

)]
dq

(6.14)
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Figure 6.2: Detail at the N-S boundary of the Andreev reflection of the wave packet

shown in Figure 6.1. The initial wave packet centred on E = 0, with x = 0.1, y = 2,

∆0 = 0.05. The time steps are in units T = m|q0|/pF. Electron component is shown in

red and the hole in blue. L(0) is the typical decay length given by Equation (4.18).
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where λ = mω/~ and N = (λ/π)1/4 and A(E) is a scattering amplitude

term. The solution to integral (6.14) is analytic and can be written in

terms of the Faddeeva function w(z) (see Appendix B) as

∫
dq =

N-1

√
2
A(E) exp

(
−mω

2~
q2

0

)
w
(
z(±α+(E))

)
(6.15)

where

z
(
± α+(E)

)
=

√
λ

2

(
imωq0 − (V0 ± α+(E))

)
. (6.16)
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Applying this solution to the scattering states in the normal region the

coefficients are, indexed by the incident component appropriately,

Ae(E) = 〈E, e|ΦN(0)〉

=
N-1√
2α+(E)

exp
(
−mω

2~
q2

0

)
[w(z(−α+(E))) + S∗eew(z(α+(E)))]

(6.17)

Ah(E) = 〈E, h|ΦN(0)〉

=
N-1√
2α+(E)

exp
(
−mω

2~
q2

0

)
S∗eh(E)w[z(α+(E))]. (6.18)

These are the most general analytic solutions, which will resolve the wave

packet at any value of q0 in the normal region and generate the correspond-

ing decaying continuation the superconducting region. However it includes

Faddeeva terms that are difficult to work with.

The value of q0 has been chosen so that errors from not including the

propagating superconducting states are negligible, this will mean that only

the very tails of the initial Gaussian wave packet enter the superconducting

region. This will also mean that the Faddeeva functions can be removed,

with any errors in the coefficients being negligible. In effect the approxima-

tion made for an arbitrary

∫ 0

−∞
dq Ψ†σ,N(q, E)Φ(q, 0) ≈

∫ ∞
−∞
dq Ψ†σ,N(q, E)Φ(q, 0). (6.19)

If q0 is sufficiently far from the boundary the extension to the limit q =∞
only introduces additional small terms into the integration over the tails of

the Gaussian.

If the width of the initial wave packet is again assigned (at four standard

deviations) as δq = 4
√
~/mω. The approximation is considered valid when

q0 is greater than δq and the bulk of the Gaussian is contained in the normal

region. This can be done by ensuring that q0 satisfies

|q0| � 4

√
~
mω

(6.20)

to minimize any errors arising from omitting the energy contributions out-

side the band width.

Using this approximation the scattering coefficients of the initial electron
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Figure 6.3: Time steps in the Andreev reflection of an electron Gaussian wave packet,

centred on E = 0, with x = 0.1, y = 2, ∆0 = 0.05. The time steps are scaled by

T = m|q0|/pF (the approximate time taken for the centre of the wave packet to meet the

boundary). Electron component is shown in red and the hole in blue.
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Gaussian wave packet are then simplified to

Ae(E) = N-1

√
2

α+(E)

[
G(−α+(E)) + S∗ee(E)G(α+(E))

]
(6.21)

Ah(E) = N-1

√
2

α+(E)
S∗eh(E)G(α+(E)) (6.22)

where G(±α+(E)) labels the Gaussian distribution in momentum space

G(±α+(E)) = exp

[
−λ

2

(
V0 ± α+(E)

)2
+
i

~
q0

(
V0 ± α+(E)

)]
. (6.23)

The electron and hole components of the time dependent spinor wave func-
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tion resulting from an incident electron wave packet are therefore

Φe
N(q, t) =

∫
dE√
α+(E)

[
Ae(E)

(
e
iq
~ α+(E) + See(E)e-

iq
~ α+(E)

)
+ Ah(E)Seh(E)e-

iq
~ α+(E)

]
e-

it
~ E

(6.24)

Φh
N(q, t) =

∫
dE√
α

1/2
- (E)

[
Ae(E)She(E)e

iq
~ α-(E) + Ah(E)

(
e-

iq
~ α-(E) + Shh(E)e

iq
~ α-(E)

)]
e-

it
~ E

(6.25)

in the normal region, and in the superconducting region

ΦS(q, t) =

∫
dE [Ae(E)Ψe,S + Ah(E)Ψh,S] e-

it
~ E. (6.26)

If we assume that for a state centred at pF contributions to the integral lie in

the regime E < ∆� µ, then the non-oscillating term in the decomposition

G(±α+(E)) can be approximate as

exp

[
−λ

2

(
pF ± α+(E)

)2
]
≈ exp

[
−λ

2
p2
F

(
1± 1± E

2µ

)2
]
. (6.27)

This implies that contributions from G(+α+) are in general suppressed and

G(−α+) is approximately Gaussian. The energy bandwidth is then approx-

imately δE ≈ 4(2~ωµ)1/2. To ensure that the energy width lies inside the

require range ω is set at

ω =
1

2~µ

(
x∆0

4

)2

(6.28)

where x sets the bandwidth as a ratio of ∆0 and thus must satisfy x � 1.

Scaling the energy bandwidth in such a manner clearly has the adverse effect

of broadening the wave packet in space. The value of q0 we then be chosen

as

qo = y × δq = y

(
16~
x∆0

√
2µ

m

)
. (6.29)

When y � 1 this ensures the initial wave packet is sufficiently far from

the boundary to minimize any contributions from the boundary. Although

there will be contributions from stationary points of the oscillating terms

under the integral, they will be time dependent, this choice of ω ensures the

required energy bandwidth at all times.

Numerically integrated examples are shown in Figure 6.3 for a wave

packet with δE = 0.1 × ∆0 where ∆/µ = 0.05. Restricting the energy

bandwidth means the the initial wave packet is much broader in space than
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the depth that the wave packet penetrates into the superconducting re-

gion. With this choice the wave packet is completely Andreev reflected,

the reflected hole wave packet demonstrating little dispersion. Although

the wave packet fully meets the boundary, the Gaussian envelope does not

move into the superconducting region, as only the exponentially decaying

solution contribute in the superconducting region. Details of the penetra-

tion of the wave packet at the boundary are shown in Figure 6.4. Additional

oscillations can also be seen over the electron component wave packet due

to the interaction with the reflected electron component.

6.3 Short Wavelength Approximations

The short wavelength approximation can be applied in a manner analogous

to sub-section 5.5.3. We will consider the short wavelength behaviour in

both the limits µ→∞ (with various scalings of ∆0) and ~→ 0.

The scaling parameter α is again assigned as

∆0 = δµα (6.30)

where 0 ≤ α ≤ 1. Using this scaling consideration also needs to be given

to the requirement that δE < ∆0 in this regime. For an initial coherent

state the energy bandwidth is approximately δE ∼ 4(2~ωµ)1/2. When 0 ≤
α < 1/2, as µ→∞ the energy bandwidth is then naturally wider than ∆0

unless the state is squeezed to satisfy δE < ∆0 by setting

ω =
1

2~

(
xδ

4

)2

µ2α−1. (6.31)

This scaling means ω → 0 and therefore δq → ∞ also. If we consider the

case α = 1/2, where the energy bandwidth is of the same order of ∆0. This

consequently also fixes the value of ω, and the width in q remains constant.

It is not required that δE/∆0 → 0 as µ→∞, but it is required that δE < ∆0

so that the errors from omitting contributions from states at |E| > ∆0 are

still negligible.

When 1/2 < α ≤ 1, the energy bandwidth, is naturally smaller than ∆0

without requiring any additional squeezing. This means that δE < ∆0 is

satisfied for values of ω

ω <
1

2~

(
δ

4

)2

µ2α−1. (6.32)
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In all the cases 0 ≤ α < 1 the terms inside the integral can consistently

be expanded in powers of ∆0/µ and E/µ (albeit with slower convergence

for larger values of α). Depending on the value of α we can also consider

whether higher powers in E/∆0 can be neglected. When 0 ≤ α ≤ 1/2 these

terms will need to be retained as contributing energies may be on the same

order as ∆0. Conversely when 1/2 < α < 1, the contributing energies and

∆0 can be ordered by magnitude

δE ∼
√
µ =⇒ δE < ∆0 < µ (6.33)

we can then consider additionally truncating an expansion in terms of order

E/∆0.

The choice of scaling effects the decay length L(E), given by (Equation

(4.18))

L(E) =
1√
2m

(
~
δ

)
µ

1
2
−α

(
1−

(
E

δµα

)2
)

(6.34)

In the regime 0 ≤ α < 1/2 the decay length diverges as µ→∞. This might

indicate that the wave packet penetrated into the superconducting region,

but we have shown that the width of the initial wave packet in the normal

region also grows in the same manner due to the restriction of the energy

bandwidth. In the regime 1/2 < α ≤ 1 the decay length tends to zero as

µ grows asymptotically which would suggest that the wave packet will be

completely reflected at the boundary without entering the superconducting

region. Only when α = 1/2 is L(E) finite.

In the normal region, retaining terms up to first order in E/µ the re-

sulting integral has the general form∫
dE f(E) exp

[
− E2

4~ωµ
− i

~vF

E ((q0 ∓ q) + vFt)±
i

~
qpF

]
. (6.35)

Although there is no obvious large parameter on which to base a stationary

phase approximation the remaining terms in the exponent are in a solvable

quadratic form.

In practice, we can therefore consider dynamics for values of 0 ≤ α < 1

by expanding up to first order in powers of E/µ and ∆0/µ. The lowest

order expansion is merely the plane wave solution with no resolution of the

wave packet. For consistency the amplitude terms in the scattering wave

functions also need to be expanded up to the same order. The first order

approximations of the scattering amplitudes are given in Section 4.2. The
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first order expansion in the normal region then requires solving the integral

Φe
N(q, t) ≈ N-1

√
2

pF

∫ (
1− E

2µ

)
exp

[
−λ

′

2
E2 − iE

~vF

zN(−q, t) +
i

~
qpF

]
+
E

µ
ν∗2(E) exp

[
−λ

′

2
E2 − iE

~vF

zN(q, t)− i

~
qpF

]
dE.

(6.36)

where λ′ = 1/2~ωµ and

zN(q, t) = (q0 + q) + vFt. (6.37)

Although the Gaussian integral by itself is readily solvable, Equation (6.36)

also requires a means of solving the integrals with E dependent amplitudes.

The linear term in E can be removed from under the integral using dif-

ferentiation under the integral sign. If the amplitude term of the reflected

electron is rewritten as

Eν∗2(E) =
∆0

2

E
∆
− i

√
1−

(
E

∆0

)2
 (6.38)

the identity

x− i
√

1− x2 = exp
(
− i arccos(x)

)
(6.39)

can then be used to absorb this terms into the exponent as an additional

energy dependent phase. Altogether this gives

Φe
N(q, t) ≈

√
2

NpF

∫
dE

(
1− i~

2µ

d

dt

)
exp

(
−λ

′

2
E2 − iE

~vF

zN(−q, t) +
i

~
qpF

)
+

∆0

2µ
exp

(
−λ

′

2
E2 − iE

~vF

zN(q, t)− i arccos

(
E

∆0

)
− i

~
qpF

)
.

(6.40)

The regimes 0 ≤ α ≤ 1/2 and 1/2 < α < 1 now have to be considered

separately here. First considering 1/2 < α < 1 terms can be consistently

expand in powers of E/∆0. Expanding arccos(E/∆0) up to first order

the resulting integral has a simple closed solution. The resulting electron

component of the wave function, in the normal region is then given by

Φe
N(q, t) ≈ 2

NpF

√
π

λ′

[(
1− i~

2µ

d

dt

)
exp

(
−mω

2~
zN(−q, t)2 +

iq

~
pF

)
− i∆0

2µ
exp

(
−mω

2~

(
zN(q, t)− ~

∆0

vF

)2

− i

~
qpF

)]
(6.41)
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The first term fits the description of the incident electron wave packet,

propagating at the Fermi velocity, locating the peak inside the normal region

until it meets the boundary at t = q0/vF. Referring back to section 4.2, the

additional term in the location of the reflected wave packet is equal to

~vF/∆0 = 2L(0), the decay length at E = 0. The second term describing

the reflected electron, is centred at

q(t) = −(q0 − 2L(0))− vFt (6.42)

The incident wave packet meets the boundary at t = q0/vF, the peak of

the reflected wave packet does not emerge from the boundary until t =

(q0−L(0))/vF, indicating a delay between the incident wave packet meeting

the boundary and being reflected due to the time taken for the incident

wave packet to penetrate into the superconductor. It can also be seen that

taking the absolute value of this wave function will generate not only the

incident and reflected Gaussian wave packets, but also oscillations where the

incident and reflected overlap (i.e. only at times when both components of

the wave packet are close to the boundary).

A similar delay effect can be observed both during the total internal

reflection of electromagnetic waves at an interface, and the scattering of

wave packets. Named after and first measured by Goos and Hänchen [75],

the Goos-Hänchen shift is evidenced as a lateral shift of the reflected wave.

This shift can be viewed as a time delay associated with the scattering of

a radiation pulse incident on the interface. The lateral shift results from

the pulse propagating parallel to the interface during the time delay. The

Goos-Hänchen shift is a coherence effect, and therefore also has an analogue

for wave packets incident on a potential step, as derived by Carter and Hora

[76].

The corresponding Andreev reflected hole component is given by

Φh
N(q, t) ≈ − 2i

NpF

√
π

λ′
exp

[
−mω

2~
(
zN(q, t)− 2L(0)

)2
+
iq

~
pF

]
. (6.43)

It demonstrates a similar delay from leaving the N-S boundary as the re-

flected electron component.

It should also noted that this choice of approximation has resulted in

a wave packet that does not disperse over time. Time dependence in the

width of the wave packet will only enter if additional terms of order (E/µ)2

in the expansion of α+(E) in ΦN(q, t) were included.

Considering the regime 0 ≤ α ≤ 1/2; in this regime we cannot reliably

discard terms of (E/∆0)2. Consideration would need to be given to how the
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additional higher order terms in arccos(E/∆) enter the solution. Though

these terms will always be in some sense “small” as we are still restricting

the energy bandwidth inside ∆0. As the next term in the expansion of

arccos(E/∆) is of the order (E/∆0)3, these additional terms would enter

the solution as deviations from the wave packets Gaussian profile.

So far we have only discussed the form of the reflected electron and hole

components. Now let us consider the wave function inside the supercon-

ducting region where the value of α has a stronger effect. The electron-like

component of the spinor in the superconducting region is given in integral

form as

Φe
S(q, t) ≈ 1√

2NpF

∫ [(
2− E

µ
ν2(E)

)
exp

(
i

~
qpF

)
+
E

µ
ν∗2(E) exp

(
− i
~
qpF

)]
× exp

(
−λ

′

2
E2 − iE

~vF

zS(t)− q

~vF

√
∆2

0 − E2

)
dE

(6.44)

where zS(t) = q0 + tvF. Rather than just attempting to solve this directly,

this integral can be rearranged to include terms that occurred in the corre-

sponding integral in the normal region

Φe
S(q, t) ≈

√
2

NpF

∫
dE exp

(
−λ

′

2
E2 − iE

~vF

zS(t)− q

~vF

√
∆2

0 − E2

)
×
[(

1− E

2µ

)
exp

(
iqpF

~

)
+
E

µ
ν∗2 exp

(
−iqpF

~

)
+
iE

µ
ν∗2 sin

(qpF

~

)]
.

(6.45)

Moreover we note that there is an additional oscillating term due to the

rotation between electron and hole components. If the same techniques to

absorb the amplitude terms into the exponent are applied, the choice of

short wavelength regime again informs the order of approximation. Only

retaining terms up to second order in E/∆0 in the regime 1/2 < α < 1

(including the expansion of κ±(E)) the solution is given by

Φe
S(q, t) ≈ 2

NpF

√
π

ζ(q)
exp

[
− q

2L(0)

]
×[(

1− i~
2µ

d

dt

)
exp

(
− 1

2ζ(q)
zS(t)2 +

iqpF

~

)
−i∆0

2µ
exp

(
− 1

2ζ(q)
(zS(t)− 2L(0))2 − iqpF

~

)
+

∆0

2µ
sin
(qpF

~

)
exp

(
− 1

2ζ(q)
(zS(t)− 2L(0))2

)]
. (6.46)
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The hole component is likewise given by

Φh
S(q, t) ≈ − 2i

NpF

√
π

ζ(q)
exp

(
− q

2L(0)

)
×[

exp

(
− 1

2ζ(q)
(zS(t)− 2L(0))2 +

iqpF

~

)
+

∆0

2µ
sin
(qpF

~

)
exp

(
− 1

2ζ(q)
zS(t)2

)]
.

(6.47)

Here the width parameter is given by ζ(q) = ~(1/mω − qvF/∆0) and the

time dependence is contained in

zS(t) = q0 + tvF. (6.48)

It’s clear from the form of zS(t) that the wave packet does not fully enter

the superconducting region as the spatial dependence only enters as terms

in ζ(q) and in the oscillations contained in both components. The incident

and reflected components each generate a corresponding component in the

superconducting region, but there is also an additional oscillating term over

both components.

If we consider higher powers of E/∆0 in the regime 0 ≤ α < 1/2 the next

term in the expansion of arccos(E/∆) is of order (E/∆0)3 and next con-

tribution from κ±(E) is of order (E/∆0)4. These terms will also represent

deviations of the wave packet from the Gaussian distribution.

In the limiting case α = 1, although the energy bandwidth is still natu-

rally narrower than ∆0, as ∆0 scales as ∼ µ, we cannot consistently ignore

terms of order ∆0/µ in the expansion. We also expect that the form of

wave function when α = 1 should coincide with the limit ~ → 0 (up to

time scaling). If we consider the ratio of ∆0 and the approximate energy

bandwidth δE
∆0

δE
=

δ√
2ω~

µα−1/2 (6.49)

when α = 1 the ratio is proportional to ∼
√
µ/~. In this special case both

short wavelength limits scale this ratio in an identical manner. Effectively

in this regime, the limit ~→ 0 or µ→∞ both correspond to the choice of

either holding µ constant and shrinking the width of the energy contribu-

tions, or choosing to scale µ (and consequently ∆0) faster than the energy

width grows. In either case δE � µ,∆0 and an expansion can still be made

in powers of the small parameters E/µ and E/∆0.
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If we first consider the normal region this expansion can be performed in

the exponent of the integral. The amplitude terms have no simple expansion

since terms of the form ∆0/µ must be retained. This leaves

Φe
N(q, t) ≈ N-1

α+(E)

√
2

∫
exp

(
−λ

′

2
E2 − iE

~vF

zN(−q, t) +
i

~
qpF

)
+See(E) exp

(
−λ

′

2
E2 − iE

~vF

zN(q, t)− i

~
qpF

)
dE. (6.50)

In the limit ~ → 0 there is a stationary phase point on the closed contour

made by the translation to E → E − izNωpF, with the assumption that we

can close the contour with no contributions at E = ±∞. The limit ~ → 0

therefore creates a peak at E ′ = 0 giving the approximation

Φe
N(q, t) ≈ 2N-1

√
λ′
α-1
+ (izNωpF)

[
exp

(
−mω

2~
zn(−q, t)2 +

i

~
qpF

)
+See(izNωpF) exp

(
−mω

2~
zn(q, t)2 − i

~
qpF

)]
. (6.51)

The corresponding hole component is then given by

Φh
N(q, t) ≈ 2N-1

√
λ′
She(izNωpF) exp

(
−mω

2~
zn(q, t)2 − i

~
qpF

)
(6.52)

In the superconducting region if we consider that in this regime κ± ≈
pF

√
1± iδ then the corresponding wave function consists of terms of the

general form∫
dE f(E) exp

(
−λ

′

2
E2 − iE

~vF

zS(q, t)±
i

~
qpF

√
1± iδ

)
≈ f(izSωpF) exp

(
−mω

2~
z2
S ±

i

~
qpF

√
1± iδ

)
(6.53)
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Figure 6.4: Detail at the N-S boundary of the Andreev reflection of a Gaussian

wavepacket as shown in Figure 6.3. The initial wave packet centred on E = 0, with

x = 0.1, y = 2, ∆0 = 0.05. The time steps are in units T = m|q0|/pF (the approximate

time for the centre of the wave packet to meet the boundary). Electron component is

shown in red and the hole in blue. L(0) is the typical decay length given by Equation

(4.18).
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Chapter 7

Conclusions

We have shown that the E-H coherent states have better spatial localisa-

tion compared to product coherent states when attempting to describe the

dynamics of BdG excitations. In some cases they demonstrate spreading

analogous to the scalar SGS coherent states. At the same time they also

lack some of the desirable analytic properties of SGS coherent states.

E-H coherent states retain the property of being minimum uncertainty

states, albeit on position-pseudo-velocity phase space. They also have a

identity of resolution that is analogous to the scalar SGS coherent states.

This can be used to represent quantum states on position-pseudo-velocity

phase space. However as the group action that defines the E-H coherent

state is neither linear or anti-linear, the lack of a well defined adjoint means

that the group formalism must be utilised carefully. The electron-hole Q-

function lacks many of the analytic features demonstrated by the product

and scalar Q-functions. In particular the electron-hole Q-function does not

give a complete description of the state. Visually the reduced electron-hole

Q-function does allow for additional details of the component trajectories

to be shown.

The analysis of the wave packet dynamics in the normal and homo-

geneous superconductor indicate that E-H coherent states show the same

dynamics independent of the amplitude of the initial components. In the

normal case this means that the wave packet will follow the corresponding

decoupled classical trajectories, and the coherent state wave packet spreads

in an analogous manner to the free scalar SGS coherent state. This example

although illustrative is somewhat trivial considering how the BdG equations

decouple in this regime.

In the case of a homogeneous superconductor the dynamics are more

166



complex. Our analysis indicates that there are three main contributing fac-

tors to the dynamics due to the decomposition of the wave packet in positive

and negative energy (with respect to the Fermi-energy) momentum eigen-

states. These are the central momentum of the wave packet, the momentum

bandwidth of the wave packet and interference effects between the positive

and negative energy momentum eigenstates.

For wave packets located on V0 = 0 or V0 � pF the contributing positive

and negative energy plane waves are predominantly electron-like or hole-like

respectively. This results in wave packets that behave like the decoupled

solutions in the normal conductor due the lack of interference as there is

little overlap between the two energy branches. Close to the Fermi mo-

mentum the contributing plane wave solutions are equal superposition of

electron and hole components, as such the wave packet will then contain

strong interference between the two energy branches.

Analysis of the BdG dispersion relation indicates that the group velocity

of states on the band gap is zero. Putting aside the effects of the width of

the wave packet this is true for the individual wave packets on the positive

and negative branches of the dispersion relation. The initial velocity of the

wave packet then depends on the initial value of β. For the product state,

choosing β = ±1 is then closest to the picture provided by the dispersion

relation; as it gives equal weighting to both branches with no additional

phase between them, any interference effects are also symmetric between

branches producing the symmetric product wave packet shown in Figures

5.16 and 5.17. Any other choice of β 6= 1 introduces interference between

branches that produce the possible range of initial velocities between ±vF

despite their individual zero velocity. Interference effects then also account

for the rotation in quasi-spin, and consequently the oscillations of the wave

packet around the origin. We have shown that the E-H coherent state

propagate like an initial state with only an electron component for arbitrary

values of β. The interference effects are still present, but their effect is to

produce the dynamics consistent with the β = 0 case.

The effects of the momentum bandwidth of the wave packet are encom-

passed in the parameter x = δq/dσ(pF) the ratio of the width of the wave

packet to the distance the free wave packet would travel after one full rev-

olution in quasi-spin. A small value of x � 1 means the components of

the wave packet move quickly outside the initial wave packet before any

rotation in quasi-spin can invert the overall velocity of the wave packet. As
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x → 0 an electron wave packet will propagate like a free wave packet. For

large values of x the fast rotation between components means any effects

caused by oscillations in quasi-spin occur before the components can move

outside the initial envelope. The wave packet will then remain localised

close to origin, oscillating around the origin. In the limiting case x → ∞
the product state will behave as indicated by the zero group velocity derived

from the BdG dispersion relationship, though the components of the wave

packet still propagate the rate of quasi-spin oscillations contain the wave

packet on the origin.

In general either of the short wavelength regimes ~→ 0 or µ→∞ will

either result in a value x→ 0 or x→∞, or a wave packet that has no spatial

or momentum resolution. We can retain oscillatory dynamics if we allow

∆0 to scale as ∆0 = δµ
1
2 as µ → ∞. As ~ → 0, the standard semiclassical

choice of letting the widths in both momentum and position tend to zero

will produce a value x→∞. Only the specific choice of squeezing the state

such that the momentum width of the wave packet remains finite will the

wave packet demonstrate oscillations.

Analysis of the long time behaviour of wave packets on the Fermi mo-

mentum would indicate that any asymmetry shown in the propagation of

the wave packet is due to an asymmetry in the energy of the plane wave

contributions away from the band gap. A sufficiently narrow momentum

bandwidth will effectively not see this asymmetry, resulting in a spatially

symmetric wave packet.

The product coherent state demonstrates symmetry dependent on the

magnitude and phase of β. If β = ±1 the two components of the wave

packet will be both symmetric and the same magnitude, meaning the wave

packet will be spatially symmetric. The value x will then indicate how the

wave packet disperses. Otherwise, as the momentum width of the wave

packet increases, this asymmetry means contributions to the wave packet

will quickly move outside the initial wave packet causing the wave packet

to quickly dissipate.

In the case of a Gaussian wave packet incident on a discontinuous N-S

interface, the restriction of the wave packet’s energy bandwidth inside the

superconducting band gap will preclude the wave packet from fully entering

the superconducting region. As the allowed states inside the superconduct-

ing region are decaying, the resulting wave packet will decay in the same

manner. The restriction to the band gap also means that the wave packet
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will be much broader than the penetration depth into the superconducting

region.

In the short wavelength regime we again considered the scaling of ∆0 as

∆0 = δµα. An analysis of the penetration depth in the short wavelength

regime shows that if 0 ≤ α < 1/2 the penetration depth will diverge,

but the restriction of the energy bandwidth inside the superconducting gap

means that the width of the initial wave packet will also grow. Only when

α = 1/2 will the penetration depth remain finite, disappearing otherwise

when 1/2 < α ≤ 1.

When 1/2 < α < 1 we have shown that omitting small terms of the order

E/µ, ∆/µ and E/∆0 means the wave packet is predominantly Andreev

reflected, with little dispersion of the incident electron or reflected hole.

The reflected components also demonstrate a delay from the incident wave

packet proportional to the decay length of states in the superconducting

region. Outside of this regime additional terms in the will contribute to

deviations of the wave packet from the Gaussian profile during the reflection

process.

7.1 Outlook

There are a number of obvious extensions to the work contained in this

thesis (a number of which were omitted due to time constraints). Firstly

we have mainly considered the simplest case of a superconducting system

with no external potentials or magnetic field, so an obvious extension is

considering the dynamics produced by these additional terms in the BdG

equation. We have given some consideration to external potentials in the

Heisenberg equations of motion. Except for a constant external potential

the additional spatial dependence would complicate the solutions to the

Heisenberg equations of motion, and also the calculation of the action of

the Schrödinger equation. This would most likely require the consideration

of slowly varying external potential compared to the size of and rate of

oscillations of the wave packet.

Another interesting extension would be to analyse wave packet dynam-

ics in an inhomogeneous superconductor. Although there are not simple

analytic solutions to the BdG equations for arbitrary functions ∆(q) we

might consider a slowly varying pair potential. We have seen that in cer-

tain cases wave packets located on the Fermi momentum oscillate about a
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Figure 7.1: Reduced Q-function representations of the Andreev reflection of an electron

incident from a normal conductor onto linearly varying band gap ∆(q) = 10 × qθ(q).
E = 50, µ = 100, ~,m = 1. qT denotes the classical turning point where E = ∆(q).
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small region about the origin. In this case the wave packet would effectively

not see any slow variations across this small region. In the case of Andreev

reflection at a continuous boundary, we could consider applying the WKB

style solutions as developed by Duncan and Györffy [27] (see Sub-section

2.1.4) in the construction of Gaussian wave packets.

A less trivial extension of this work would be the dynamics of wave

packets in the presence of flux structures arising on the surface of a type

II superconductor, where we have only really considered simplified type I

superconductor models. We have considered the BdG equations under the

restriction that ∆(q) is real and positive, but this extension would not only

require the inclusion the external field potential in H0, but that we also

consider the phase of a complex ∆(q), and the topological phase effects

presented by the vortex cores.

We have left the question of whether it is possible to relate the dy-

namics of superconducting excitations to ’classical’ phase space trajectories

somewhat open. In the case of scattering of wave packets at a N-S bound-

ary, analysis of the step potential would seem to indicate that there are no

continuous trajectories as the wave packet does not fully enter the supercon-

ducting region. The work of Duncan and Györffy [27] and numerical plots

(Figure 7.1) of the product and E-H Q-function would seem to indicate that

such trajectories can occur if the boundary is smooth, containing classical

turning points.
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Appendix A

Detailed Calculations

This chapter contains any detailed calculations that have been omitted from

the main body of the text. Calculations are arranged by the chapter, section

(and sub-section) they refer to.

A.1 Chapter 4

A.1.1 Section 4.2

To calculate the transfer matrix relating electron and hole amplitudes at a

discontinuous ∆(q) step located at q = 0, as shown in Figure 4.1, we satisfy

the condition that the general solutions (4.13) and (4.19) and their first

derivatives are continuous at the N-S boundary, hence

ΨN(0) = ΨS(0) and Ψ′N(0) = Ψ′S(0). (A.1)

Written in terms of matrices acting on vectors in the amplitude basis these

conditions are, for the electron wave function

1
√
α+

(
1 1
i
~α+ − i

~α+

)(
AeI
AeR

)
=

(
ν/
√
κ+ ν∗/

√
κ-

i
~ν
√
κ+ − i

~ν
∗√κ-

)(
F

G

)
(A.2)

and similarly for the hole wave function

1
√
α-

(
1 1
i
~α- − i

~α-

)(
AhR
AhI

)
=

(
ν∗/
√
κ+ ν/

√
κ-

i
~υ
∗√κ+ − i

~υ
√
κ-

)(
F

G

)
. (A.3)

We will label the matrices, creating the simultaneous equations

a

(
AIe
BR
e

)
= b

(
F

G

)
and c

(
ARh
AIh

)
= d

(
F

G

)
. (A.4)
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It is then straightforward to rearrange and substitute equations to form an

equation that relates the electron and hole amplitudes(
AeI
AeR

)
= a−1bd−1c

(
AhR
AhI

)
. (A.5)

We can then populate the scattering matrix S by imposing the condition

that the incident state is either an electron (AeI = 1 and AhI = 0), or a

hole (AhI = 1 and AeI = 0). With these conditions we can read the scat-

tering matrix entries from (A.5). In principle this method can be used to

estimate the scattering processes across an arbitrary potential or inhomoge-

neous band-gap by approximating the function as a series of potential steps

and satisfying the continuity condition at each boundary successively, gen-

erating a total transfer matrix across the inhomogeneous region. Further

details of this extension of the method, and the application of the transfer

matrix method with reference to linear potentials can be found in [63].

A.1.2 Section 4.3

For an N-S interface modelled by a general continuous function of ∆(q) of

length a bounded by homogeneous normal and superconducting regions it is

necessary that we utilize a numerical ODE solver to generate the component

wave functions across the varying region of ∆(q). From these solutions we

can then satisfy the same continuity matching conditions. As with the

discontinuous ∆(q) system we first look to find the transfer matrix, T , that

relates the amplitudes of states in the normal and spatially homogeneous

region either side of the varying region.

The numerical ODE solver employed first requires that we reduce the

order of the BdG equations, writing them as

Ψe′(q) =x(q) x′(q) =
2m

~2
[−µΨe(q) + ∆(q)Ψh(q)− EΨe(q)] (A.6)

Ψh′(q) =y(q) y′(q) =
2m

~2
[−µΨh(q)−∆(q)Ψe(q) + EΨh(q)]. (A.7)

We also require 4 initial conditions at q = 0 and, we therefore work with

vectors consisting of the wave functions and their derivatives at q = 0 and

q = a

Ψ̄N(0) =


Ψe
N(0)

Ψe′
N(0)

Ψh
N(0)

Ψh′
N(0)

 Ψ̄S(a) =


Ψe
S(a)

Ψe′
S (a)

Ψh
S(a)

Ψh′
S (a)

 . (A.8)
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We can then relate the two boundaries by T Ψ̄N(0) = Ψ̄S(a) with T to be

found. Since we cannot yet define an initial state with which to assign initial

conditions, to generate the elements of T , the algorithm first sets the first

element of Ψ̄N(0) to 1 and the remaining to 0 as

Ψ̄N(0) =


1

0

0

0

 (A.9)

which is passed as the initial conditions to the ODE solver. We then generate

corresponding values of Ψ̄S(a) from this initial condition. This gives the first

row of elements in T which are
T11

T12

T13

T14

 =


Ψe
S(a)

Ψe′
S (a)

Ψh
S(a)

Ψh′
S (a)

 . (A.10)

We can then repeat the process to generate all the elements of T by setting

each component of Ψ̄N(0) to 1 (and the remaining to 0) in turn. Once we

know the full form of T , inverting our initial equation Ψ̄N(0) = T -1Ψ̄S(a)

then gives us 4 equations that can then be reformulated in terms of transfer

matrix elements acting on amplitudes. For example for

Ψe
N(0) = T -1

11 Ψe
S(a) + T -1

12 Ψe′
S (a) + T -1

13 Ψh
S(a) + T -1

14 Ψh′
S (a). (A.11)

This can be written in full using the general solutions in the homogeneous

regions as

1
√
α+

[
AeI + AeR

]
=T -1

11

[
Fν
√
κ+

exp

(
ia

~
κ+

)
+
Gν∗
√
κ-

exp

(
−ia

~
κ-

)]
+ T -1

12

[
iκ+Fν

~√κ+
exp

(
ia

~
κ+

)
− iκ-Gν

∗

~√κ-
exp

(
−ia

~
κ-

)]
+ T -1

13

[
Fν∗
√
κ+

exp

(
ia

~
κ+

)
+

Gν
√
κ-
ν exp

(
−ia

~
κ-

)]
+ T -1

14

[
iκ+Fν

∗

~√κ+
exp

(
ia

~
κ+

)
− iκ-Gν

~√κ-
ν exp

(
−ia

~
κ-

)]
(A.12)

and likewise for the remaining rows of T -1. Gathering terms in F and G

generates entries in the scattering matrix that relate the amplitudes at the
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normal boundary, AII and ARe , to F and G in the superconducting region

1
√
α+

[
AeI + AeR

]
=

F
√
κ+

exp

(
ia

~
κ+

)[
ν

(
T11 +

i

~
T12κ+

)
+ ν∗

(
T13 +

i

~
T14κ+

)]
+

G
√
κ-

exp

(
−ia

~
κ-

)[
ν∗
(
T11 −

i

~
T12κ-

)
+ ν

(
T13 −

i

~
T14κ-

)]
.

(A.13)

Working through all the components we can then write an equation that

relates the electron and hole amplitudes, from which we can find the entries

in the full scattering matrix, given the conditions on the incoming state.

Once the correct amplitudes have been found, the wave functions for the

region ∆(q) can be then be numerically generated from the initial conditions

Ψl(0) and Ψ′l(0).

A.2 Chapter 5

A.2.1 section 5.4

We look to solve the set of differential Heisenberg equations of motion given

in section 5.3 to find the explicit form of the time dependent operators. The

obvious starting point is the time indipendent momentum operator

d

dt
p̂(t) = 0 =⇒ p̂(t) = p̂. (A.14)

We can insert this into the position operator equation giving

d

dt
q̂(t) =

1

m
σ3(t)p̂(t) =

1

m
p̂σ3(t). (A.15)

We then also have the set of quasi-spin operators

d

dt
σ1(t) = −2

~
Ĥ0σ2(t) (A.16)

d

dt
σ2(t) =

2

~

[
Ĥ0σ1(t)−∆0σ3(t)

]
(A.17)

d

dt
σ3(t) =

2

~
∆0σ2(t). (A.18)

Noting that if we differentiate equation (A.17) again we can then substitute

equations (A.16) and (A.18) into the right hand side, giving a second order

ODE in σ2(t),
d2

dt2
σ2(t) = − 4

~2
[Ĥ2

0 + ∆2
0]σ2(t). (A.19)

This has the general solution

σ2(t) = A exp

[
2it

~

√
Ĥ2

0 + ∆2
0

]
+B exp

[
−2it

~

√
Ĥ2

0 + ∆2
0

]
. (A.20)
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We also then have the initial conditions σ2(0) = A+B and

d

dt
σ2(0) =

2i

~
(A−B)

√
Ĥ2

0 + ∆2
0. (A.21)

We can then insert this general solution and directly integrate the differen-

tial equations for σ1(t) (A.16) and σ3(t) (A.18) giving

σ1(t) = −2Ĥ0

~

∫
σ2(t) dt (A.22)

=
iĤ0√
Ĥ2

0 + ∆2
0

[
A exp

(
2it

~

√
Ĥ2

0 + ∆2
0

)
−B exp

(
−2it

~

√
Ĥ2

0 + ∆2
0

)]
+C1

(A.23)

where we have the initial condition

σ1(0) =
iĤ0√
Ĥ2

0 + ∆2
0

(A−B) + C1 (A.24)

and

σ3(t) =
2∆0

~

∫
σ2(t) dt (A.25)

=
−i∆0√
Ĥ2

0 + ∆2
0

[
A exp

(
2it

~

√
Ĥ2

0 + ∆2
0

)
−B exp

(
−2it

~

√
Ĥ2

0 + ∆2
0

)]
+C3

(A.26)

with the initial conditions

σ3(0) =
−i∆0√
Ĥ2

0 + ∆2
0

(A−B) + C3. (A.27)

We can find the constants of integration by substituting these results back

into the first order equation, for σ2(t) at t = 0

d

dt
σ2(0) =

2

~

[
Ĥ0σ1(0)−∆0σ3(0)

]
(A.28)

=
2

~

[
i(A−B)

√
Ĥ2

0 + ∆2
0 + Ĥ0C1 −∆0C3

]
(A.29)

=⇒ Ĥ0C1 = ∆0C3. (A.30)

Further algebraic manipulation then yields the two constants

C3 =
1

Ĥ2
0 + ∆2

0

[
Ĥ2

0σ3(0) + ∆0Ĥ0σ1(0)
]

(A.31)

C1 =
1

Ĥ2
0 + ∆2

0

[
∆0Ĥ0σ3(0) + ∆2

0σ1(0)
]

(A.32)
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and the amplitudes

A =
σ2

2
− 1

2

i√
Ĥ2

0 + ∆2
0

[Ĥ0σ1 −∆0σ3] (A.33)

B =
σ2

2
+

1

2

i√
Ĥ2

0 + ∆2
0

[Ĥ0σ1 −∆0σ3]. (A.34)

In full the the time dependent spin operators are therefore

σ1(t) =
−Ĥ0σ2√
Ĥ2

0 + ∆2
0

sin

(
2t

~

√
Ĥ2

0 + ∆2
0

)
+
Ĥ2

0σ1 − Ĥ0∆0σ3

Ĥ2
0 + ∆2

0

cos

(
2t

~

√
Ĥ2

0 + ∆2
0

)

+
1

Ĥ2
0 + ∆2

0

[
∆0Ĥ0σ3 + ∆2

0σ1

]
(A.35)

σ2(t) =σ2 cos

(
2t

~

√
Ĥ2

0 + ∆2
0

)
+
Ĥ0σ1 −∆0σ3√
Ĥ2

0 + ∆2
0

sin

(
2t

~

√
Ĥ2

0 + ∆2
0

)
(A.36)

σ3(t) =
∆0σ2√
Ĥ2

0 + ∆2
0

sin

(
2t

~

√
Ĥ2

0 + ∆2
0

)
− Ĥ0∆0σ1 −∆2

0σ3

Ĥ2
0 + ∆2

0

cos

(
2t

~

√
Ĥ2

0 + ∆2
0

)

+
1

Ĥ2
0 + ∆2

0

[
Ĥ2

0σ3 + ∆0Ĥ0σ1

]
. (A.37)

These time dependent operators satisfy the same unitary conditions as the

Pauli matrices σ1(t)2 = σ2(t)2 = σ3(t)2 = −iσ1(t)σ2(t)σ3(t) = I.

The time dependent position operator is found by integrating the dif-

ferential equation now that we know σ3(t), so that q̂(t) = p̂
m

∫
σ3(t) dt+ C

which gives us

q̂(t) =
~p̂
2m

{
∆0σ2

Ĥ2
0 + ∆2

0

(
1− cos

[
2t

~

√
Ĥ2

0 + ∆2
0

])
+

2t

~(Ĥ2
0 + ∆2

0)

[
Ĥ2

0σ3 + ∆0Ĥ0σ1

]
− [Ĥ0∆0σ1 −∆2

0σ3]

(Ĥ2
0 + ∆2

0)3/2
sin

[
2t

~

√
Ĥ2

0 + ∆2
0

]}
+ q̂(0) (A.38)

where we’ve fixed q(0) at t=0 via the constant of integration. As the mo-

mentum operator is time independent the time dependent pseudo-velocity

operator is simply V̂ (t) = p̂σ3(t).

A.2.2 Section 5.4.5

The expectation values of the time dependent quasi-spin operators require

that we find the convolution of terms of the form

H0

H2
0 + ∆2

0

and
∆0

H2
0 + ∆2

0

(A.39)
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and a Gaussian envelope we can express these terms as the real and complex

parts of
H0 + i∆0

H2
0 + ∆2

0

=
2m

p2 − 2m(µ+ i∆0)
=

2m

p2 − a2
. (A.40)

We have defined the complex term

a =
√

2m(µ+ i∆0). (A.41)

We then have the identities

H0

H2
0 + ∆2

0

= Re

[
2m

p2 − a2

]
and

∆0

H2
0 + ∆2

0

= Im

[
2m

p2 − a2

]
. (A.42)

We first consider the convolution of a Gaussian function and the real term∫
H0

H2
0 + ∆2

0

e-λ(p-V0)2

dp =

∫
Re

[
2m

p2 − a2

]
e-λ(p-V0)2

dp. (A.43)

Since we are integrating along the real line, and over a real Gaussian we

can therefore move the real operator outside the integral, and after rescaling

and shifting p we have∫
Re

[
2m

p2 − a2

]
e−λ(p−V0)2

dp = Re

[∫ (
m

a

(
1

p− a
− 1

p+ a

))
e−λ(p−V0)2

dp

]
(A.44)

= Re

[∫ (
m

a

(
1

p− z-
− 1

p− z+

))
e−p

2

dp

]
(A.45)

where z± = −
√
λ(V0 ± a). These integrals are commonly referred to as the

plasma dispersion function[73] Z(z) the Hilbert transform of a Gaussian

function and a scaled form of the Faddeeva function. It is defined as

Z(z) =

∫
dx

e−x
2

x− z
= iπw(z), Im(z) > 0. (A.46)

Care has to be taken with the poles in the complex plane, as such this

definition is valid for non-zero Im(z) > 0, but the function can be defined

for all z in the complex plane by analytic continuation. We will make use

of the form that relates the solution for Im(z) < 0 as

w∗(z) = −w(−z), Im(z) < 0. (A.47)

We will only be required to use this integral where ∆0 6= 0 and so will

not require the analytic continuation when Im(z) = 0. The final result we

require is therefore∫
H0

H2
0 + ∆2

0

e-λ(p-V0)2

dp = Re

[
imπ

a

(
w(z-) + w(−z+)

)]
(A.48)
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and likewise for∫
∆0

H2
0 + ∆2

0

e-λ(p-V0)2

dp = Im

[
imπ

a

(
w(z-) + w(−z+)

)]
. (A.49)

For the expectation value of the pseudo-velocity operator we require the

solution to to a similar integral√
λ

π
∆2

0

∫
p

E2(p)
e-λ(p−V0)2

dp =
√
λπm∆0

∫
Im

[
1

p+ a
+

1

p− a

]
e-λ(p−V0)2

dp

(A.50)

=
√
λπm∆0 Im [i (w(z-)− w(−z+))] (A.51)

In this case we can analyse the behaviour of the Faddeeva function terms

Im[iw(±z∓)] by approximating a, when ∆0 � µ, as

a ≈ pF

[
1 +

i∆0

2µ

]
. (A.52)

We can then approximate the terms in Equation (A.50) as

1

p± a
≈ (p± pF)∓ i∆0/vF

(p± pF)2 + (∆0/vF)2
(A.53)

the imaginary part of this is recognisable as a Lorentz distribution of the

form

f(x;x0, γ) =
1

πγ

[
γ2

(x− x0)2 + γ2

]
. (A.54)

The Lorentz distribution is parametrized by x0, the location of the peak of

the distribution, and the scale-parameter γ, the half-width half-max of the

distribution. The height of the distribution at it’s peak is given by 1/πγ.

This gives us the relation

Im

(
1

p± a

)
≈ ∓πf(p;∓pF,∆0/vF). (A.55)

Though this does not simplify the calculation, we can however consider the

behaviour of the convolution, in particular when the peaks of the Lorentz

and Gaussian functions coincide.

A.2.3 Sub-Section 5.5.3

µ→∞, ∆0 = δµ1/2

Holding ∆0 constant as µ→∞ allowed us to expand the phase term, E(p),

in powers of ∆0/H0. But when ∆0 is scaled by µ there is no discontinuity in

178



E ′(p) we can use to simplify the calculation. We instead look to apply the

stationary phase approximation using Fermi energy as the large parameter.

If we consider a wave packet centred on pF, to see which terms dominate

in this regime we first proceed by translating the integration variable to

p→ p+ pF centring the Gaussian term on the origin. Applying the scaling

of ∆0 = δµ1/2 we have rewritten integral (5.234) as

I(q, t) = Ne
i
~ qpF

∫
f(p+ pF) exp

[
−λ

2
p2 +

i

~
pq ± it

~
E(p+ pF)

]
dp. (A.56)

We can then approximate and relabel the rescaled phase term as

E(p+ pF) =

[( p

2m

)2

(p+ 2pF)
2 + µ(δ)2

]1/2

(A.57)

≈ µ1/2

[
2

m
p2 + δ2

]1/2

= µ1/2ϕ(p) (A.58)

We have obtained the approximation on the second line by extracting the

large term µ from inside E(p+ pF) under the condition that we are consid-

ering integrating over p close to the origin. Terms of order p/pF will then

be negligible in the limit µ → ∞. As was the case for long times we will

therefore define an overall phase term in the exponent of I(q, t)

θ±(p) =
pq
√
µ
± t
[

2

m
p2 + δ2

]1/2

(A.59)

then Equation (A.56) can be written in a form suitable for the application

of the stationary phase approximation when µ→∞

I(q, t) = Ne
i
~ qpF

∫
f(p+ pF) exp

[
−λ

2
p2 +

i

~
√
µ θ±(p)

]
dp. (A.60)

For this simplified phase term it is straightforward to find analytic solutions

of stationary phase condition θ′±(∓pS(q)) = 0. pS(q) is

pS(q) =

√
m

2
δq
[
(tvF)

2 − q2
]-1/2

. (A.61)

With this in hand the application of the stationary phase approximation

gives the general solution

I(q, t) ≈N

√
2π~

tµ1/2|ϕ′′(pS(q))|
f
(
pF ∓ pS(q)

)
× exp

[
−λ

2
p2
S(q) +

i

~
qpF ±

i

~
√
µ θ+

(
− pS(q)

)
± iπc

4

]
. (A.62)

c again refers to the sign of ϕ′′(pS(q)).
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~→ 0, α = −1

α = −1 corresponds to a fixed momentum width indipendent of ~. The

width is parametrized by λ = 1/mΩ (where Ω = (2∆0/xπ)2/µ). We are

therefore required to approximate the solution to the integral

I(q, t) = N

∫
A(p) exp

[
−λ

2
(p− V0)2 +

i

~
pq ± it

~
E(p)

]
dp. (A.63)

Since λ is constant indipendent of ~ we see that in this case the limit ~→ 0

is equivalent to the previously derived t → ∞ approximation , except we

do not need to explicitly take the large parameter outside the phase term.

The appropriate phase term is

θ±(p) = pq ± tE(p) (A.64)

but in effect the resultant stationary phase points are given by the same

solutions. The stationary phase approximation therefore has the same form

as for long times,

I(q, t) ≈ N
∑
pi

A(pi)

√
2π~

t|E ′′(pi)|
exp

[
−λ

2
(pi − V0)2 +

i

~
θ±(pi)±

icπ

4

]
(A.65)

again summing over real stationary points. We can then again consider the

contributing stationary points contained under the wave packets momentum

distribution.

~→ 0, α = 1

Holding δq at a constant value (α = 1), our integral then looks like

I(q, t) =

∫
A(p) exp

[
1

~

(
−λ

′

2
(p− V0)2 + iθ±(p)

)]
dp (A.66)

where λ′ is the rescaled width λ′ = 1/mΩ~. Then as ~→ 0 the real Gaussian

term, with width proportional to ~, converges on a single value faster than

the width of the stationary phase approximation which scales with
√
~. If we

thus apply the Laplace method (see appendix C.1 for details) by expanding

the oscillating term around the centre of the Gaussian V0 giving

I(q, t) ≈ NA(V0)

∫
exp

[
− λ

′

2~
(p− V0)2 +

i

~
pq

±it
~

(
E(V0) + E ′(V0)(p− V0) +

1

2
E ′′(V0)(p− V0)2

)]
dp

(A.67)
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this is a standard complex Gaussian integral with the solution

= NA(V0)

√
2π~
a∓(t)

exp

[
− 1

2~a∓(t)
(q ± tE ′(V0))2 +

i

~
(qV0 ± tE(V0))

]
(A.68)

where the complex width parameter is defined as a±(t) = (λ′ ± itE ′′(V0)).

If we apply this to an initial electron wave packet centred on the Fermi

momentum

ψe(q, t) ≈
N

2

√
2π~
a+(t)

(|e〉 − |h〉) exp

[
− 1

2~a+(t)
q2 +

i

~
(qpF − t∆0)

]

+
N

2

√
2π~
a-(t)

(|e〉+ |h〉) exp

[
− 1

2~a-(t)
q2 +

i

~
(qpF + t∆0)

]
(A.69)

as anticipated this wave packet remains centred on the origin, with a linear

t dependent wave packet width.

~→ 0, α = 1/2

If we allow the width of the distribution in phase space to tend to 0 iden-

tically in both p and q as ~ → 0 when α = 1/2, we see that where as

in the previous two examples one of the terms in the exponent has clearly

converged faster than the other, in this case the width of the contribution

from the Gaussian term and the width of the stationary phase contributions

both converge at approximately the same rate,
√
~. Rather than finding the

stationary points of the whole term in the exponential via the method of

steepest descent, we can greatly simplify the calculation by expanding the

phase term close to the stationary point but still consider the contributions

from the Gaussian term rather than just evaluate it at the stationary phase

points. This has the form

I(q, t) ≈ N

∫
A(p) exp

[
−λ

2
(p− V0)2 +

i

~

(
θ±(pi) +

1

2
θ′′±(pi)(p− pi)2

)]
dp.

(A.70)

The result is therefore just the convolution of the two largest Gaussian

contributions, which is itself a Gaussian profile with a complex offset whose
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width will also scale with
√
~. Thus

I(q, t) ≈ NA (z∓)

∫
exp

[
−λγ∓

2
(p− z∓)2 ± itE ′′(pi)

2~γ∓
(pi − V0)2 +

i

~
θ±(V0)

]
dp

(A.71)

= NA (z∓)

√
2π

λγ∓
exp

[
±itE

′′(pi)

2~γ∓
(pi − V0)2 +

i

~
θ±(V0)

]
(A.72)

where the width of the resultant distribution is described by

γ± = 1± itmωE ′′(pi). (A.73)

where the pi are same stationary points as derived for the long time case.

The complex offset of the Gaussian integral is then given by

z± = γ-1
±
(
V0 ± itmωE ′′(pi)pi

)
. (A.74)

Both theses terms are indipendent of ~, ~ only entering the solution as 1/~
scaling in both the Gaussian and oscillating term, so in the limit ~→ 0 we

will see both very fast oscillations but also the suppression of contributions

when p0 6= V0 (i.e. the largest contributions will be where q/t ≈ 0).

It should be noted that the amplitude terms included here (i.e. A(p))

can contain poles in complex plane. Expanding E-1(p) (which also occurs

in A±(p)) as

E-1(p) = [(p+ a)(p− a)(p+ a∗)(p− a∗)]-
1
2 (A.75)

where a =
√
µ+ i∆0. The result given by Equation (A.72) is arrived at by

shifting the contour of integration parallel to the real line to the complex

offset z±. The real and complex parts of z± are given by

z± = |γ±|-2
[
V0 + pi (tmωE

′′(pi))
2 ± itmωE ′′(pi) (V0 − pi)

]
. (A.76)

We have shown that any contributions when pi is far from the peak of (A.72)

at V0 are suppressed. This means that though z± can take values that would

requires consideration of the contributions from the poles of E-1(p), these

contributions will become negligible as ~→ 0.

A.3 Chapter 6

A.3.1 Section 6.1

We would like to prove the orthogonality of the scattering states at energies

|E| < ∆0, which in bra-ket notation we will denote as |E, e〉 for the scat-

tering state resulting from an incident electron with energy E above µ and
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|E, h〉 likewise an incident hole with energy E below µ. Thus 〈q|E, e〉 =

Ψe(q) and 〈q|E, h〉 = Ψh(q) are the two component spinor with electron and

hole wave function components as derive in section 4.2, equations (4.21) and

(4.22) in the normal region, and (4.29) and (4.30) in the superconductor.

The appropriate orthogonality condition we would like to prove is

〈E ′, σ′|E, σ〉 = δ(E ′ − E)δσ′σ (A.77)

where σ = {e, h} denotes the incident state. We will prove this by insert-

ing the identity in the position basis and integrating over the normal and

superconducting regions independently,∫
〈E ′, σ′|q〉〈q|I|E, σ〉dq =

∫ 0

−∞
Ψσ′†
N (E ′)Ψσ

N(E)dq +

∫ ∞
0

Ψσ′†
S (E ′)Ψσ

S(E)dq.

(A.78)

We first prove the orthogonality condition where σ′ 6= σ. In the supercon-

ducting region the integrals we require∫ ∞
0

Ψh†
S (E ′)Ψe

S(E)dq =∫ ∞
0

2

∆0

√
α+α′-
γ∗′γ

[
(E ′ν ′2 + Eν2)(κ′+ − α′+)(κ- + α-)e

-iq(κ′--κ+)

+ (E ′ν ′2 + Eν∗2)(κ′+ − α′+)(κ+ − α-)e
-iq(κ′-+κ-)

+ (E ′ν∗′2 + Eν2)(κ′- + α′+)(κ- + α-)e
iq(κ′++κ+)

+(E ′ν∗′2 + Eν∗2)(κ′- + α′+)(κ+ − α-)e
iq(κ′+-κ-)

]
dq

(A.79)

The prime notation here is shorthand for an energy dependent function

evaluated at E ′. The convergence of the integrals in the superconducting

region is ensured by the requirement that the wave functions decay as q →
∞. With this condition the general solution for an integral of this form is

simply ∫ ∞
0

eiqXdq =
i

X
(A.80)

when X ∈ Z is chosen such that the integral converges. Applied to the

integral this gives∫ ∞
0

Ψh†
S (E ′)Ψe

S(E)dq =

2i
√
α+α′-

∆0γ∗′γ

[
(E ′ν ′2 + Eν2)

(κ+ − κ′-)
κα+′
+ κα-

- −
(E ′ν ′2 + Eν∗2)

(κ′- + κ-)
κα+′
+ κα-

+

+
(E ′ν∗′2 + Eν2)

(κ′+ + κ+)
κα+′
- κα-

- +
(E ′ν∗′2 + Eν∗2)

(κ′+ − κ-)
κα+′
- κα-

+

]
(A.81)
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where the notation κx± assigned here is shorthand for

κx± = κ± ∓ x. (A.82)

The terms in the superconducting region do not cancel themselves, we will

show that these terms cancel with those in the normal region. For the

normal region we need to integrate∫ 0

−∞
Ψh†
N (E ′)Ψe

N(E)dq =

∫ 0

−∞

S∗′eh√
α+α′+

eiα
′
+q
[
eiα+q + Seee

−iα+q
]

+
She√
α-α′-

eiα-q
[
eiα
′
-q + S∗′hhe

−iα′-q
]
dq. (A.83)

As these terms describe plane waves they do not naturally converge as

q → −∞. We will therefore ensure convergence by inserting a term into the

exponential of the form∫ 0

−∞
eiqXdq = lim

ε→0

∫ 0

−∞
eiqX+εqdq = lim

ε→0

1

iX + ε
(A.84)

such that in the limit ε → 0 we regain the original integral. Inserting this

into the integral the solution in the limit ε→ 0 is therefore∫ 0

−∞
Ψh†
N (E ′)Ψe

N(E)dq = lim
ε→0

S∗′eh√
α+α′+

[
1

ε+ i(α′+ + α+)
+

See
ε+ i(α′+ − α+)

]
+

She√
α-α′-

[
1

ε+ i(α- + α′-)
+

S∗′hh
ε+ i(α- − α′-)

]
.

(A.85)

This can be rewritten using the identity

lim
ε→0

1

ε+ iX
= lim

ε→0

ε− iX
ε2 +X2

= πδ(X)− lim
ε→0

iX

ε2 +X2
(A.86)

as∫ 0

−∞
Ψh†
N (E ′)Ψe

N(E)dq

= lim
ε→0

S∗′eh√
α+α′+

[
− i(α+ + α′+)

ε2 + (α+ + α′+)
2

+ See

[
πδ(α′+ − α+)−

i(α′+ − α+)

ε2 + (α′+ − α+)2

]]
+

She√
α-α′-

[
− i(α- + α′-)

ε2 + (α- + α′-)
2

+ S∗′hh

[
πδ(α- − α′-)−

i(α- − α′-)
ε2 + (α- − α′-)2

]]
.

(A.87)

We’ve used the fact that δ(α′+ + α+) = 0 and δ(α′- + α-) = 0 for all E. The

delta functions of α± can be written in terms of delta functions in E using

the identity

δ(f(x)) =
δ(x− x0)

|f ′(x0)|
(A.88)
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where x0 is a root of f(x). Applied to the delta functions with f(E) =

±(α′± − α±) then

δ(f(E)) =
m

α′±(E ′)
δ(E − E ′). (A.89)

If we first assume that E = E ′ then the delta function terms cancel due to

the unitary condition SeeS
∗
eh + S∗hhSeh = 0. Then assuming E 6= E ′ in the

limit ε→ 0 we are left with∫ 0

−∞
Ψh†
N (E ′)Ψe

N(E)dq

= lim
ε→0

−iS∗′eh√
α′+α+

[
1

α′+ + α+

+
See

α′+ − α+

]
− iShe√

α′-α-

[
1

α′- + α-

+
S∗′hh

α- − α′-

]
(A.90)

which now cancel with the terms in the superconducting region q > 0.

We now prove orthogonality for differing energies but σ′ = σ. We con-

sider the product of two incident electron states, on the left the integral

is∫
Ψe†
N (E ′)Ψe

N(E)dq =

∫
1√
α+α′+

[
eiq(α+−α′+) + Seee

−iq(α++α′+) + S∗′eee
iq(α++α′+)

+S∗′eeSeee
iq(α′+−α+)

]
+
S∗′heShe√
α-α′-

eiq(α-−α′-)dq.

(A.91)

As before we need to make the integral converge by the addition of a term

ε in the exponential, which gives the solution

= lim
ε→0

1√
α+α′+

[
πδ(α+ − α′+)(1 + S∗′eeSee) +

i(α+ − α′+)(S∗′eeSee − 1)

ε2 + (α+ − α′+)2

+
i(α+ + α′+)(See − S∗′ee)
ε2 + (α+ + α′+)

2

]
+
S∗′heShe√
α-α′-

[
πδ(α- − α′-)−

i(α- − α′-)
ε2 + (α- − α′-)2

]
.

(A.92)

We see that when E = E ′ the remaining terms are

π

m

(
1 + |See|2 + |She|2

)
=

2π

m
(A.93)

due to the unitary condition |See|2 + |She|2 = 1. When E 6= E ′ the terms

again cancel with those for q > 0.
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Appendix B

Error Integrals

integrating a Gaussian function over a negative range, the solution is given

by the error integral (see [66] p.297)∫ 0

−∞
exp

(
−ax2 + bx+ c

)
dx =

1

2

√
π

a
exp

(
b2

4a
+ c

)
erfc

(
b

2
√
a

)
(B.1)

=
1

2

√
π

a
exp

(
−(ib)2

4a
+ c

)
erfc

(
−i
(

ib

2
√
a

))
(B.2)

=
1

2

√
π

a
exp(c)w

(
ib

2
√
a

)
. (B.3)

The last line has given the solution in terms of the Faddeeva function defined

as

w(x) = e−x
2

erfc(−ix). (B.4)

The complementary error function, erfc(x), is defined as

erfc(x) =
2√
π

∫ ∞
x

e−t
2

dt. (B.5)

The integral over a positive range has the similar solution∫ ∞
0

exp
(
−ax2 + bx+ c

)
dx =

1

2

√
π

a
exp(c)w

(
−ib
2
√
a

)
(B.6)

(this can also be seen using the identities erfc(z) = 1− erf(z) and erf(−z) =

−erf(z)).
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Appendix C

Asymptotic Techniques

C.1 Laplace’s Method

We consider the behaviour of the integral

I(λ) =

∫ b

a

dx f(x) exp
(
− λφ(x)

)
(C.1)

(see [77]) as λ→∞. Here f(x) and φ(x) are smooth functions, φ : R→ R,

f : R→ C and the integral is taken over a real interval. Suppose that φ(x)

has an absolute minimum in the interval [a, b] at x = x0. Here a < x0 < b,

φ′(x0) = 0 and φ′′(x0) > 0. The largest contributions to the integral then

come from an arbitrarily small neighbourhood of x0 as λ → ∞. Taylor

expanding f(x) and φ(x) about the minimum x0

I(λ) ≈
∫ b

a

f(x0) exp

[
−λ
(
φ(x0) +

1

2
φ′′(x0)(x− x0)2

)]
dx (C.2)

in the limit λ → ∞ the strong decay of the integral away from x0 means

we can expand the limits of integration without introducing any significant

errors

I(λ) ≈ f(x0) exp
(
− λφ(x0)

) ∫ ∞
-∞

exp

(
−λ

2
φ′′(x0)(x− x0)2

)
dx. (C.3)

The solution is simply given by the Gaussian integral

I(λ) ≈

√
2π

λφ′′(x0)
f(x0) exp

(
− λφ(x0)

)
. (C.4)

Equation (C.4) is sometimes also referred to as Laplace’s formula. For a

more rigorous derivation of the asymptotic nature of the Laplace method

see [77].
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C.2 Stationary Phase Method

We now consider integrals of the form

I(λ) =

∫ b

a

dx f(x) exp
(
iλφ(x)

)
(C.5)

in the limit λ → ∞. The integral is taken over the real line and again

φ : R→ R and f : R→ C. Large values of λ produce fast oscillations about

zero except at stationary points x = x0 satisfying φ′(x0) = 0 (hence the

name stationary phase). These oscillations will generally cancel, lowering

the value of the integral. We will then assume that there is a point of

stationary phase in the interval [a, b] and that φ′′(x0) 6= 0. The order of a

stationary point refers to the first non-zero term in the expansion, in this

case this is a first-order or simple saddle point. We can then apply the same

process used to arrive at Laplace’s integral by expanding φ(x) around the

point of stationary phase x0

φ(x) ≈ φ(x0) +
1

2
φ′′(x0)(x− x0)2 (C.6)

which inserted into I(λ) gives a complex Gaussian integral

I(λ) ≈ exp
(
iλφ(x0)

) ∫ b

a

dx f(x) exp

(
i

2
λφ′′(x0)(x− x0)2

)
(C.7)

≈ f(x0) exp
(
iλφ(x0)

) ∫ ∞
∞

dx exp

(
i

2
λφ′′(x0)(x− x0)2

)
. (C.8)

Again the expansion of the integration range introduces negligible errors.

The stationary phase approximation of the integral is therefore

I(λ) ≈

√
2πi

λφ′′(x0)
f(x0) exp[iλφ(x0)] (C.9)

=

√
2πi

λ|φ′′(x0)|
f(x0) exp

(
i
(
λφ(x0) + sgn(φ′′(x0)

))
(C.10)

where sgn(a) is the sign function.

For both the Laplace and stationary phase methods if there are multiple

but distinct minima or stationary points contained in the desired range

of integration, the approximation is then made by the sum over distinct

stationary points xi

I(λ) ≈
∑
xi

√
2πi

λ|φ′′(xi)|
f(x0) exp

(
i
(
λφ(xi) + sgn(φ′′(xi)

))
. (C.11)
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Care must be taken using approximation if the location of the station-

ary points depend upon another variable, as stationary stationary points

can coalesce. If two simple saddle points xi(y) approach each other before

coalescing at some critical value y0 (i.e. xi(y0) = xj(y0)) they produce a

stationary point of order two. Techniques exist that can be applied in this

case to produce a uniform approximation but as we will not utilize them

fully in this thesis will omit the details, though we give a brief synopsis in

sub-section 5.5.2 and additional details can be found in [77].

In both the stationary phase method and Lapace’s method the approx-

imation is valid under the assumption that f(x) varies slowly compared

to φ(x) in the limit λ → ∞. To find the magnitude of λ at which the

stationary phase contributions become dominant we consider the width of

the stationary phase contributions. If we make the change of integration

variable x = ix′ (we’ll also set x0 = 0 without loss of generalisation) the

approximation of the exponent is

exp

(
iλφ(x0) +

i

2
λφ′′(x0)x2

)
= exp

(
iλφ(x0)

)
exp

(
−λ

2
φ′′(x0)x′2

)
.

(C.12)

The width of the contributing region close to the stationary point is propor-

tional to 2/λφ′′(x0). The stationary phase contribution is then dominant

when the contributing region is narrower that any significant variations in

f(x). In particular if f(x) is Gaussian the stationary phase contributions

are dominant when 2/λφ′′(x0) is much smaller than the Gaussian width.
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65. R. Kümmel, ‘Electronic structure of the intermediate state in type–I

superconductors’, Phys. Rev. B 3, 784–793 (1971).

66. M. Abramowitz and I. Stegun, Handbook of mathematical functions:

with formulas, graphs, and mathematical tables, Applied mathematics

series (Dover Publications, 1964).

67. L. I. Schiff, Quantum mechanics, International series in pure and applied

physics (McGraw–Hill, 1968).

68. M. Born and R. Oppenheimer, ‘Zur quantentheorie der molekeln’, An-

nalen der Physik 389, 457–484 (1927).

69. G. A. Hagedorn, ‘A time dependent Born–Oppenheimer approxima-

tion’, Communications in Mathematical Physics 77, 1–19 (1980).

194



70. H. Spohn and S. Teufel, ‘Adiabatic decoupling and time–dependent

Born–Oppenheimer theory’, Communications in Mathematical Physics

224, 113–132 (2001).

71. L. Landau, ‘On the theory of transfer of energy at collisions II’, Phys.

Z. Sowjetunion 2, 7 (1932).

72. C. Zener, ‘Non–adiabatic crossing of energy levels’, Proceedings of the

Royal Society of London A: Mathematical, Physical and Engineering

Sciences 137, 696–702 (1932).

73. B. D. Fried and S. Conte, The plasma dispersion function (N.Y. : Aca-

demic Press, 1961).

74. C. Chester, B. Friedman and F. Ursell, ‘An extension of the method of

steepest descents’, Mathematical Proceedings of the Cambridge Philo-

sophical Society 53, 599–611 (1957).

75. F. Goos and H. Hänchen, ‘Ein neuer und fundamentaler versuch zur

totalreflexion’, Annalen der Physik 436, 333–346 (1947).

76. J. L. Carter and H. Hora, ‘Total reflection of matter waves: the Goos–

Haenchen effect for grazing incidence’, J. Opt. Soc. Am. 61, 1640–1645

(1971).

77. N. Bleistein and R. Handelsman, Asymptotic expansions of integrals,

Dover Books on Mathematics Series (Dover Publications, 1986).

195


	Introduction
	Background
	Superconductivity & Andreev Reflection
	BCS Theory
	Bogoliubov-de Gennes Equations
	Andreev Reflection
	Semiclassical Approaches to the Bogoliubov-de Gennes Equations

	Coherent States & their Semiclassical Applications
	Canonical Coherent States
	Ehrenfest's Theorem
	SU(2) Coherent States


	Electron-Hole Coherent States
	Product Coherent States
	Electron-Hole Coherent States
	Expectation Values of Electron-Hole Coherent States
	Minimum Uncertainty
	Overcompleteness & Resolution of Unity
	Electron-Hole Coherent State Representation

	The Group Theoretic Approach to Electron-Hole Coherent States
	Electron-Hole Q-Function
	Entanglement Measure for Electron-Hole Coherent States

	Andreev Reflection & Stationary States of a Homogeneous Superconductors
	Stationary States of a Homogeneous Superconductor
	Discontinuous Normal-Superconducting Interface Scattering States
	Bound Andreev States
	Solutions of the BdG Equations for a Linearly Varying Band Gap

	Dynamics of Electron-Hole Coherent States in a Spatially Homogeneous Superconductor
	Bogoliubov-de Gennes Dispersion Relation
	Time Scales & Wave Packet Dimensions
	Heisenberg Equations of Motion
	Normal Conductor
	Spatially Homogeneous Superconductor

	Dynamics of the Moments of Coherent State Wave packets
	Expected Pseudo-Velocity
	Expected Position
	Expected Quasi-Spin
	Variances on Phase Space
	Long Time Stationary Phase Approximation
	Time Dependent Entanglement

	Wave Packet Dynamics of Electron-Hole Coherent States
	Bogoliubov-de Gennes Time Evolution Operator
	Asymptotic Long Time Behaviour
	Short Wavelength Behaviour


	Time Dependent Andreev Reflection of Coherent States
	Time Dependent Andreev Reflection
	Andreev Reflection of a Gaussian Wave packet
	Short Wavelength Approximations

	Conclusions
	Outlook

	Appendix Detailed Calculations
	Chapter 4
	Section 4.2
	Section 4.3

	Chapter 5
	section 5.4
	Section 5.4.5
	Sub-Section 5.5.3

	Chapter 6
	Section 6.1


	Appendix Error Integrals
	Appendix Asymptotic Techniques
	Laplace's Method
	Stationary Phase Method


