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ABSTRACT

As an immune inspired algorithm, the Dendritic Cell Algo-
rithm (DCA) has been applied to a range of problems, par-
ticularly in the area of intrusion detection. Ideally, the intru-
sion detection should be performed in real-time, to contin-
uously detect misuses as soon as they occur. Consequently,
the analysis process performed by an intrusion detection sys-
tem must operate in real-time or near-to real-time. The
analysis process of the DCA is currently performed offline,
therefore to improve the algorithm’s performance we suggest
the development of a real-time analysis component. The ini-
tial step of the development is to apply segmentation to the
DCA. This involves segmenting the current output of the
DCA into slices and performing the analysis in various ways.
Two segmentation approaches are introduced and tested in
this paper, namely antigen based segmentation (ABS) and
time based segmentation (TBS). The results of the corre-
sponding experiments suggest that applying segmentation
produces different and significantly better results in some
cases, when compared to the standard DCA without seg-
mentation. Therefore, we conclude that the segmentation is
applicable to the DCA for the purpose of real-time analysis.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Miscellaneous

General Terms

Algorithms, Experimentation, Performance

Keywords

Dendritic Cell Algorithm, Intrusion Detection Systems, Real-
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1. INTRODUCTION
Artificial Immune Systems (AIS) [4] are computer sys-

tems inspired by both theoretical immunology and observed
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immune functions, principles and models, which can be ap-
plied to real world problems. As the natural immune system
is designed to protect the body from a wealth of invading
micro-organisms, artificial immune systems are developed
to provide the same defensive properties within a comput-
ing context. Initially AIS based themselves upon simple
models of the human immune system. As noted by Stibor
et al. [16], ‘first generation algorithms’ including negative
and clonal selection do not produce the same high perfor-
mance as the human immune system. These algorithms,
negative selection in particular, are prone to problems with
scaling and the generation of excessive false alarms when
used to detect intruders in computer networks. Recently
developed AIS use more rigourous and up-to-date immunol-
ogy and are developed in collaboration with immunologists.
The resulting algorithms are believed to encapsulate the de-
sirable properties of immune systems including robustness
and error tolerance.

One of such ‘second generation’ AIS is the Dendritic Cell
Algorithm (DCA) [7]. This algorithm is inspired by the
function of the dendritic cells of the innate immune sys-
tem and incorporates the principles of a key novel theory
in immunology, termed the danger theory [13]. This theory
suggests that dendritic cells (DCs) are responsible for the
initial detection of invading micro-organisms. An abstract
model of natural DC behaviour is used as the foundation
of the developed algorithm. Currently, the DCA has been
successfully applied to numerous problem domains, includ-
ing port scan detection [7], Botnet detection [1] and as a
classifier for robotic security [14]. These applications have
suggested that the DCA shows not only good performance
on detection rate, but also the ability to reduce the rate of
false alarms in comparison to other systems including Self
Organising Maps [10]. The majority of applications to which
the DCA is applied involve the detection of unauthorised
use and abuse of computer systems and networks - a prob-
lem termed intrusion detection. Systems designed to detect
intrusions are termed intrusion detection systems. The de-
velopment of reliable and sophisticated intrusion detection
systems is non trivial, as such systems need to process huge
amounts of data in a short period of time and simultaneously
achieve high levels of detection accuracy.

As stated by Zhang et al. [17], in practice, intrusion de-
tection is a real-time critical mission. This means that intru-
sions should be detected as soon as possible or at least before
an attack eventually succeds. The detection speed which re-
flects the time taken for detecting intrusions, is the actual
key to prevent successful attacks. We believe that an effec-



tive intrusion detection system should ideally be a real-time
system that can react to the input within the certain time
bounds. The time bounds constrain the maximum latency
for the system to identify to an intrusion after its appear-
ance. Consequently, the analysis of an intrusion detection
system should be done in a fast and continuous manner,
namely, in real-time or near-to real-time.

The DCA can internally process input data in real-time.
However, this algorithm requires a further analysis process
which is thus far performed offline. To develop the DCA into
a fully functioning intrusion detection system, it is desirable
to improve the real-time capability of the algorithm by mod-
ifying the analysis component. Initially, it is important to
decide at which point the analysis component should process
its current batch of data, in order to derive intrusion scores
for the identification of intrusions. This can be achieved by
applying segmentation to the analysis process of the DCA.
As the word suggests, segmentation involves slicing the out-
put data into smaller segments with a view of generating
finer grained results, as well as performing analysis in par-
allel with the detection process. Segmentation is performed
based on a fixed quantity of output data items or alterna-
tively on a basis of a fixed time period. Thus, segmentation
enables the system to perform periodic analysis whenever
sufficient information is presented during detection.

The aim of this paper is to investigate two segmentation
approaches and to explore the applicability of segmentation
to the DCA. The investigation is focussed on the comparison
between the standard DCA without segmentation and the
two newly introduced segmentation approaches. A range of
segment sizes in both data quantity and time are varied to
demonstrate any potential effects. To test our hypotheses
we use a large real-world dataset based on a medium scale
port-scan of a university computer network. We intend to
use this investigation as a basis for the further work on the
development of a dynamic real-time solution for the anal-
ysis of the DCA. The presented experiments are necessary
steps towards achieving this aim. The paper is organised
as follows: the details of the DCA are described in Section
2; real-time analysis and segmentation are demonstrated in
Section 3; the experiments are explained in Section 4; the
results and the analysis are reported in Section 5; and finally
the conclusions and future work are drawn in Section 6.

2. THE DENDRITIC CELL ALGORITHM

2.1 The Biological Background
The DCA is a population based algorithm, capable of pro-

cessing multiple input sources, originally designed to solve
problems within intrusion detection. As previously stated
the blueprint for the DCA is the function of the dendritic
cells (DCs) of the innate immune system, which is the body’s
first line of defence against invaders. In nature DCs have the
ability to combine a multitude of molecular information and
to interpret this information for the T-cells of the adaptive
immune system, to induce appropriate immune response to-
wards perceived threats.

Signal and antigen are the two types of molecular infor-
mation processed by DCs. Signals are collected by DCs
from their local environment and consist of indicators of the
health of the monitored tissue. DCs are sensitive to three
types of signal: PAMP signals derived from molecules pro-
duced exclusively by invading micro-organisms; danger sig-

nals generated as a result of cell stress and unexpected cell
death; and safe signals produced by healthy cells. In addi-
tion, DCs exist in one of three states of maturation to per-
form their immune function. In their initial immature state,
DCs are exposed to a combination of these signals. Cells ex-
posed to higher concentrations of PAMP and danger signal
transition to a fully mature form and can instruct the adap-
tive immune system to activate. Conversely, higher concen-
tration of safe signal induces partial or ‘semi-maturation’ of
DCs and have a suppressive effect on the activation of the
adaptive system.

Additionally, during their immature phase DCs also col-
lect debris in the tissue which are subsequently combined
with the molecular environmental signals. Some of the de-
bris collected are termed antigens, and are proteins origi-
nating from potential invading entities. DCs combine the
‘suspect’ antigens with evidence in the form of signals to
correctly instruct the adaptive immune system to respond,
or become tolerant to the antigens in question. For more
detailed information, refer to Lutz and Schuler [13].

The resulting algorithm incorporates the state transition
pathway, the environmental signal processing procedure, and
the correlation between signals and antigens. In the algo-
rithm signals are represented as real valued numbers and
antigens are categorical values of the objects to be classi-
fied. The algorithm is based on a multi-agent framework,
where each cell processes its own environmental signals and
collects antigens. Diversity is generated within the cell pop-
ulation through the application of a ‘migration threshold’ -
this value limits the number of signal instances an individual
cell can process during its lifespan. This creates a variable
time window effect, with different cells processing the signal
and antigen input streams over a range of time periods [15].
The combination of signal/antigen correlation and the dy-
namics of a cell population are responsible for the detection
capabilities of the DCA. In the remainder of this section we
describe the algorithmic details of the DCA implementation.

2.2 The Deterministic DCA
In this paper we describe, implement and apply the sys-

tem based on the deterministic version of DCA (dDCA) [9]
for testing our hypotheses with respect to the addition of an
improved analysis module. However, a third signal category
is added to the input signals due to the complexity of the
testing dataset. The dDCA was introduced for providing a
reproducible and tractable system that is ideal for further
analysis and development. The dDCA employs a population
of artificial DCs, each of which has the ability to combine
multiple signal sources to assess the environmental context,
as well as asynchronously sample another data stream - anti-
gen. The correlation between signals and antigens is used
as the basis of identifying the intrusions contained within
the input data. To accomplish this, the standard dDCA has
three phases, which are system initialisation, data process-
ing and offline analysis, as shown in Figure 1. The system
initialisation phase involves generating the initial DC pop-
ulation. Each DC in the population is assigned with a par-
ticular migration threshold. The migration threshold of a
DC is sequentially increased by a fixed number as its index
number increases. As a result, the migration thresholds of
the whole DC population form a uniform distribution, which
creates diversity in the population.
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Figure 1: Three phases of the DCA and the future development of the real-time analysis, the offline analysis
process will be replaced by a real-time analysis component, which performs analysis whenever sufficient
information is presented during detection.

Following this phase, the input data (signals and antigens)
are fed to the data processing phase. This phase consists of
three sub-functions, which are data assignment, signal trans-
formation, and temporal correlation. Firstly, the data as-
signment function separates signals and antigens within the
input data, so that the signals are then passed to the signal
transformation function, while the antigens are allocated to
particular DCs selected from the population. Secondly, the
signal transformation function performs the transformation
from input signals to output signals. As all DCs receive
the same numerical set of signals for each iteration, the pro-
cessing of a single signal instance is performed globally. A
user-defined number of signal sources are involved as the
input signals, pre-categorised as either ‘PAMP’ (the third
signal category added), ‘danger’ or ‘safe’. The semantics of
these signals are listed as follows:

• PAMP: a signature of abnormal behaviour, e.g. errors
per second. An increase in this signal is associated with
a high confidence of abnormality.

• Danger: a measure of an attribute which increases in
value to indicate an abnormality. Low values of this
signal may not be anomalous, giving a high value a
moderate confidence of indicating abnormality.

• Safe: a measure which increases value in conjunction
with observed normal behaviour. This is a confident
indicator of normal, predictable or steady-state system
behaviour. This signal is used to counteract the effects
of PAMPs and danger signals.

As suggested by immunologists, safe signals always have a
negative effect to output signals, and PAMP signals have a
greater effect than danger signals. Such relationship is rep-
resented by predefined weights in the algorithm. Two out-
put signals are derived from signal transformation, which are
‘CSM’ and ‘k’. The calculation of output signals is displayed
in Equation 1,

Oj =
n

X

i=0

(Wij × Si) ∀j (1)

where Oj are the output signals, n is the number of output
signal categories minus one, Si is the input signals and Wij

is the transforming weight from Si to Oj . The output sig-
nals can be accessed by all DCs in the population. Thirdly,
each DC performs a temporal correlation function between
signals and antigens internally. An individual DC creates
a time window specified by its migration threshold, signals
and antigens which appear within this time window are cor-
related with each other. As suggested in [9], to perform
correct correlation, the signals are supposed to appear after
the antigens, and the delay should be shorter than the time
window created by each DC. In the mean time, the system
also performs summing of the output signals. Once a DC’s
cumulative CSM exceeds its migration threshold, it changes
the state and becomes a matured DC. As a result it stops
performing signal transformation and temporal correlation.
The association between the cumulative k and sampled anti-
gens within each DC is termed the ‘processed information’,
which is then presented by the cell to the analysis phase.
Once a matured DC has presented the processed informa-
tion, it is reset to an immature DC, and hence the DC pop-
ulation size is kept constant.

In the offline analysis phase, all the processed information
presented by the matured DCs is collated for the analysis
process. The analysis is performed per ‘antigen type’ - a
collection of identical antigen instances. The outcome of
the analysis process is a measure of whether an antigen type
is an intrusion or not, such measure is termed ‘Kα’, which
is calculated by Equation 2 [9],

Kα =

P

ki
P

αi

∀i (2)

where αi is the number of antigen type α sampled by DC i,
and ki is its cumulative k. The greater the value of Kα, the
higher the probability that antigen type α is an intrusion.
The dDCA implementation is shown as Algorithm 1 [9].

As mentioned previously, the analysis process in the dDCA
is performed offline after the data processing phase, which
is insufficiently effective for an intrusion detection system.



input : antigens and signals
output: antigen types plus Kα

set DC population size;
initialize DCs;
while data do

switch input do
case antigen

agCounter++;
cellIndex = agCounter % populationSize;
DC of cellIndex assigned antigen;
update DC’s antigen profile;

end
case signal

calculate csm and k;
foreach DC do

DC.lifespan -= csm;
DC.sumK += k;
if DC.lifespan <= 0 then

record antigens, DC.sumK;
reset DC;

end

end

end

end

end
foreach antigen type do

calculate Kα;
end

Algorithm 1: Pseudocode of the dDCA implementation.

Therefore, we intend to move the analysis phase to be with
the data processing phase, as indicated in Figure 1. The
analysis process can be then performed periodically to iden-
tify intrusions during detection, that is, in real-time.

3. REAL-TIME ANALYSIS

3.1 Real-Time Analysis And Segmentation
A real-time analysis component is essential for develop-

ing an effective intrusion detection system from the DCA.
Such component performs periodic analysis of the processed
information presented by DCs, to continuously identify in-
trusions during detection. An effective and fully functioning
intrusion detection system should be able to identify the
intrusions as quickly as possible, as accurately as possible,
and hence detection speed and detection accuracy are two
major indicators of performance. Most of the techniques
can produce reasonable detection accuracy, if sufficient time
is given. But as demonstrated before, detection speed is
the actual key to the performance of an intrusion detection
system. If an intrusion detection system fails to identify
the intrusions in time, no further responses against the in-
trusions can be made. This leads to the eventual success of
attacks, which is a fatal failure of an intrusion detection sys-
tem. Therefore, if the intrusions are identified too late, even
with 100% detection accuracy, it all becomes meaningless in
terms of system defence. As a result, we propose integrat-
ing real-time analysis with the DCA, to improve detection
speed without compromising detection accuracy.

If the real-time analysis is to be performed during detec-
tion, one issue needs resolved, that is, when the analysis
should be performed. This issue could be solved by ap-
plying segmentation to the DCA. It is different from the
moving time windows method described in [11], which is
used in the pre-processing stage to smooth noisy input sig-
nals, as segmentation is performed in the post-processing
stage for the purpose of analysis. As the processed informa-
tion is presented by matured DCs over time, a sequence of
processed information is being generated during detection.
Sesegmentation involves partitioning this sequence into rel-
ative smaller segments, in terms of the number of data items
or time. All the generated segments have the same size, and
the analysis is performed within each individual segment.
Therefore, in each segment, one set of detection result (Kα

per antigen type) is generated, in which intrusions appeared
within the duration of this segment can be identified.

First of all, segmentation can produce multiple sets of
results, rather than one set of results produced by non-
segmentation system. This enables the system to perform
analysis in real-time (online), rather than offline, as all seg-
ments are processed during detection. In addition, segmen-
tation distributes the analysis process into multiple steps,
instead of performing at once. This can reduce the compu-
tation power and time required for the analysis process, so
segmentation can effectively enhance detection speed. More-
over, as the processed information is presented by matured
DCs at different time points over the duration, analysing
the sequence of processed information at once ignores the
temporal difference of each piece of processed information.
As a result, same antigen type which causes malicious ac-
tivities at one point but does nothing at another point may
be classified as normal rather than an intrusion. This can
be avoided by applying segmentation, as it features periodic
analysis that can cope with the inherited time differences.
Therefore, the system can effectively discriminate the ac-
tivities which are intrusions from those which are not, and
hence the detection accuracy is also improved.

The most important and in fact the only factor of seg-
mentation is the segment size. It determines how soon the
intrusions can be identified. The smaller the segment size,
the sooner the intrusions can be identified, and vice versa.
Moreover, the segment size may also influence the sensitiv-
ity of the final results. If the segment size is too large, the
results can lose the sensitivity and thus the system loses the
ability to identify true positives. However, if the segment
size is too small, the results may be too sensitive, and the
system can generate false positives. In this paper, we only
introduce static segmentation with a fixed segment size to
the system, as the effect of different segment sizes on the
detection performance needs to be investigated first. Even-
tually a dynamic segmentation approach will be developed,
in which the segment size varies based on the real-time sit-
uations during detection.

3.2 The Approaches To Segmentation
Two segmentation approaches are applied, namely ‘anti-

gen based segmentation’ (ABS) and ‘time based segmen-
tation’ (TBS). These two approaches set the segment size
respectively according to two factors, which are the num-
ber of sampled antigens or the processed time. As data ac-
cumulates during detection, theses factors dictate at which
point the analysis should be performed. The number of sam-



PAMP Danger Safe

CSM 4 2 6

k 8 4 -13

Table 1: Weights for signal transformation.

Parameter Value

Population size 100

Migration thresholds 12 × x, x ∈ [1, 100]

Segment size (ABS) 1 × 10n
, n ∈ {2, 3, 4, 5, 6}

Segment size (TBS) 1 × 10n
, n ∈ {0, 1, 2, 3}

Table 2: Experimental parameters.

pled antigens indicates the amount of potential suspects that
have been identified by the system, that is, the quantity of
objects to be classified. ABS creates a segment whenever
the number of sampled antigens reaches the segment size,
and the analysis is performed within this segment. Similar
work was done in [12], in which the overall network traf-
fic is partitioned into subsets of manageable size, and the
analysis is performed within each partition. Conversely, the
processed time implies the quantity of signals that have been
processed, as one set of signals is updated once per iteration
in the algorithm. The processed time determines the quan-
tity of evidence that can be used for supporting classifica-
tion. TBS creates a segment whenever the defined time pe-
riod elapses, and the analysis is also performed within each
segment. Such an approach is commonly used in real-time
control of robotics, for example, to periodically compute the
next steering command in motion planning to avoid colli-
sions [6]. The concept of using segmentation with the DCA
is not entirely novel, preliminary work of ABS and TBS
has been performed in [10] and [15] respectively. However,
the corresponding experiments took only a cursory glance
at segmentation. In this paper we examine the addition of
segmentation in much greater detail than in previous work.

Segment size is vital to the quantity of the number of
sampled antigens or the processed time contained in each
segment. In order to perform sensitivity analyses, a range
of segment sizes are tested, to find out their effects on the
algorithm’s performance. Although ABS and TBS employ a
fixed segment size, they also both involve dynamics of vari-
ous system factors. In ABS the number of sampled antigens
required for each segment is fixed, resulting in the processed
time contained in each segment being variable. For exam-
ple, one segment can last 10 seconds, another one with the
same number of processed antigen can last over 30 seconds.
Whereas, in TBS the time required for each segment is fixed,
resulting in the number of sampled antigens contained in
each segment being variable. For instance, one segment can
have 100 processed antigens, and another one can have over
500 or even 1000 processed antigens. As a result, by inves-
tigating both segmentation approaches, different aspects of
system behaviour can be explored. This can provide more
insights into the algorithm, which are useful for further de-
velopment of dynamic segmentation in the future.

4. THE EXPERIMENTS
We use an intrusion detection dataset to test the described

segmentation approaches integrated with the dDCA. The
systems are programmed in C with a gcc 4.0.1 compiler. All
experiments are run on an Intel 2.2 GHz MacBook (OS X

10.5.5), with the statistical tests performed in R (2.8.1). The
predefined weights used for signal transformation in Equa-
tion 1 are displayed in Table 1, they are the same as those
used in previous work [10]. All other experimental param-
eters are listed in Table 2. Sensitivity analyses of various
population sizes [9] have shown that 100 is an appropriate
value to use. The fixed number related to the assignment of
migration thresholds is set to ensure the migration thresh-
olds of most DCs in the population are greater than the
strength of a single signal instance, so that these DCs can
last longer than one iteration.

4.1 The SYN Scan Dataset
SYN scan is an intrusion technique used by attackers for

exploiting the vulnerabilities of victim machines. The SYN
scan dataset was collected under the scenario that the scan is
performed by an insider, who can be a legitimate user of the
system performing unauthorised activities. The SYN scan
dataset [7] is chosen as the input data of the system. This
dataset was collected through an ssh connection, when both
anomalous and normal processes are included. This dataset
is large and noisy, making the problem difficult to solve.
It is ideal for the purpose of testing, as the segmentation
approaches are proposed to improve the DCA. The dataset
consists of over 13 million antigen instances and more than
4800 sets of signals.

In [9] the authors use only danger and safe signal cate-
gories in dDCA for a simple dataset. But for the purpose of
ease of analysis, in this paper we use all three signal cate-
gories, including PAMP, danger and safe. This dataset was
originally used in [8], where all seven signals were used. Only
the most appropriate three signals are selected, because the
aim of this paper is to introduce the concept of segmenta-
tion rather than solving the problem. The PAMP signal is
the number of ICMP ‘destination unreachable’ (DU) error
messages received per second. When the closed ports of a
host are scanned, a large amount of DU error messages can
be generated by the firewall. The danger signal is based the
ratio of TCP packets to all other packets processed by the
network card of the scanning host. A burst of this ratio is
not usually observed under normal conditions, which means
something malicious could be happening. The safe signal
is derived from the observation that during SYN scans the
average network packet size reduces to a size of 40 bytes.
The scans tend to send small sized packets in large quantity,
big packet sizes indicate normal behaviours of the network.
One set of signals is captured per second. All signals are
normalised into the range within [0,100], to match the pre-
defined weight for signal transformation. These signals are
plotted in Figure 2.

The process IDs (PIDs) whenever a system call is made
on the host are recorded as individual antigens, but only the
antigen types with high frequency are of interest. The num-
ber of each interesting antigen type per second is plotted Fig-
ure 3. The antigen types of interest include ‘Nmap’, ‘Fire-
fox’ and ‘Pts’. Nmap is the program used for invoking and
performing SYN scans to the victim machines, Pts (pseudo-
terminal slave) demon process is the parent of the Nmap
process, and Firefox is performing web browsing throughout
the recorded session. As a result, the antigen types of Nmap
and Pts are considered to be anomalous, while the antigen
type of Firefox is normal.



Figure 2: Input signal values against time series
(moving average with intervals of 100, per selected
signal category, used for plotting the graph, but not
the actual input of the system).

Figure 3: Number of each antigen type per second
against time series (moving average with intervals of
100, per antigen type of interest, used for plotting
the graph, but not the actual input of the system).

The antigens and signals are sorted according to their time
stamps as the input data. As Nmap and Pts are considered
responsible for intrusions, we expect to see high Kα values
for Nmap and Pts are produced by the system during scan-
ning activity. Whereas Firefox is considered as a normal
process, so low Kα values for Firefox are expected.

4.2 Experiments And Hypotheses
Two sets of experiments are conducted, to examine the

effects of ABS and TBS with the dDCA. The experiments
performed are listed as follows:

1. Experiment 1 (E1): experiments using the ABS ap-
proach with various segment sizes are performed. This
corresponds to the null hypothesis (H1) that changing
the segment size of ABS makes no significant differ-
ences to the results. The comparisons are performed
between one segment size and another.

2. Experiments 2 (E2): experiments using the TBS ap-
proach with various segment sizes are performed. This

Seg Min Mean Max Stdev

Nmap

1 × 102 -3358.0 -929.9 679.0 512.8

1 × 103 -2785.0 -935.2 606.0 465.8

1 × 104 -2225.0 -934.8 496.6 372.4

1 × 105 -1547.0 -932.7 131.8 334.4

1 × 106 -1157.0 -951.5 -354.7 234.1

Firefox

1 × 102 -3574.0 -963.0 679.0 539.5

1 × 103 -3178.0 -993.6 606.0 509.0

1 × 104 -2806.0 -985.5 526.2 405.6

1 × 105 -1812.0 -980.5 163.4 355.3

1 × 106 -1357.0 -988.0 -387.9 264.4

Pts

1 × 102 -3523.0 -953.8 679.0 535.3

1 × 103 -3178.0 -992.0 606.0 511.2

1 × 104 -2806.0 -985.0 493.7 404.2

1 × 105 -1816.0 -980.6 152.4 354.2

1 × 106 -1359.0 -994.0 -406.4 265.8

Table 3: Summary of Kα values per antigen type
when different segment sizes are applied in ABS.

corresponds to the null hypothesis (H2) that chang-
ing the segment size of TBS makes no significant dif-
ferences to the results. Similar comparisons are per-
formed between one segment size and another.

In addition to H1 and H2, two more hypotheses can be
tested by using the results of E1 and E2. The third hypoth-
esis (H3) is that applying segmentation makes no significant
difference to the results, which can be tested by the results
of segmentation approaches with the result of the standard
dDCA. The fourth hypothesis (H4) is that changing seg-
mentation approach from ABS to TBS makes no significant
differences to the results.

5. RESULTS AND ANALYSIS

5.1 Experimental Results
The experimental results consist of the Kα value per anti-

gen type when various segment sizes are applied. One set of
Kα values of all involved antigen types (one Kα value per
antigen type) are generated within each segment. These Kα

values are used for identifying the anomalous antigen types
within the particular duration covered by a segment. Each
row of Table 3 and Table 4 represents the statistics of all
Kα values of an antigen type over all generated segments.
The experimental results of ABS show that the minimum
of Kα values increases, whereas the mean, maximum and
standard deviation of Kα values decrease, as the segment
size increases. Similarly, the experimental results of TBS
indicate that the minimum and mean of Kα values increase,
while the maximum and standard deviation of Kα values de-
crease, as the segment size increases. It appears that chang-
ing segment size in both segmentation approach can make
differences to the results, but the differences are not obvi-
ous. As a consequence, more rigourous statistical tests need
to be performed, in order to examine whether the differences
are significant or not. The focus of these statistical tests is
to examine the effect of segmentation with various segment
sizes for each antigen type, rather than the differences be-
tween normal and anomalous antigen types as shown in [10].

5.2 The Statistical Tests
As all experimental results are normally distributed, a

two-sample two-sided t-test (α = 0.05) [3] is used to test



Seg Min Mean Max Stdev

Nmap

1 -2248.0 -966.2 539.3 387.7

10 -1630.0 -969.0 290.2 357.6

1 × 102 964.9 -1065.0 -27.1 310.6

1 × 103 -1008.0 -1049.0 -796.3 155.0

Firefox

1 -3445.0 -1146.0 561.7 513.2

10 -2153.0 -1083.0 293.5 388.1

1 × 102 -1080.0 -1114.0 42.6 325.7

1 × 103 -1066.0 -1074.0 -797.7 214.0

Pts

1 -3445.0 -1142.0 540.4 515.1

10 -2227.0 -1082.0 285.7 391.2

1 × 102 -1082.0 -1110.0 -1.2 318.4

1 × 103 -1065.0 -1065.0 -804.1 213.6

Table 4: Summary of Kα values per antigen type
when different segment sizes are applied in TBS.

Nmap

1 × 103 1 × 104 1 × 105 1 × 106

1 × 102 0.24 0.65 0.93 0.75

1 × 103 − 0.97 0.94 0.81

1 × 104 − − 0.95 0.80

1 × 105 − − − 0.80

Firefox

1 × 103 1 × 104 1 × 105 1 × 106

1 × 102 < 0.05 ∗ < 0.05 ∗ 0.57 0.74

1 × 103 − 0.50 0.68 0.94

1 × 104 − − 0.88 0.97

1 × 105 − − − 0.92

Pts

1 × 103 1 × 104 1 × 105 1 × 106

1 × 102 < 0.05 ∗ < 0.05 ∗ 0.39 0.60

1 × 103 − 0.56 0.72 0.98

1 × 104 − − 0.89 0.91

1 × 105 − − − 0.87

Table 5: The p-value of two-sample two-sided t-tests
for ABS (‘ ∗’ indicates a significant difference).

H1 and H2. The comparisons are performed within each
segmentation approach, by comparing the experimental re-
sult of one segment size with the experimental result of an-
other. As shown in Table 5, in ABS changing segment size
does not make any significant differences to the Kα values
of Nmap, but it can make significant differences to the Kα

values of Firefox or Pts. Therefore, H1 is rejected. Con-
versely, as shown in Table 6, changing segment size cannot
cause any significant differences to Kα values of Nmap, but
it can cause significant differences to Kα values of Firefox
or Pts. As a result, H2 is rejected.

In order to test H3, the experimental results of segmenta-
tion approaches are compared with the result of the standard
dDCA (non-segmentation). The comparisons are performed
per antigen type for every segment size. As no randomness is
involved in dDCA, the same sequence of processed informa-
tion is analysed in both segmentation and non-segmentation
approaches. The difference is that the standard dDCA pro-
duces only one set of Kα values of each antigen type, whereas
systems with segmentation produce multiple sets (equal to
the number of generated segments) of Kα values. There-
fore, the Kα values produced by the standard dDCA are
used as the true means in the one-sample one sided t-tests
(α = 0.05) [3], to test whether the means of the Kα val-
ues produced by segmentation approaches are significantly
different. This can indicate whether applying segmentation
can produce significantly different or better detection per-
formance. The p-value of all tests are listed in Table 7. If
the p-value is less than 0.05, for anomalous antigen types
(intrusions), it implies that segmentation approaches pro-

Nmap

10 1 × 102 1 × 103

1 0.89 0.98 0.63

10 − 0.94 0.65

1 × 102 − − 0.66

Firefox

10 1 × 102 1 × 103

1 < 0.05 0.17 0.51

10 − 0.94 0.88

1 × 102 − − 0.91

Pts

10 1 × 102 1 × 103

1 < 0.05 0.20 0.52

10 − 0.99 0.88

1 × 102 − − 0.89

Table 6: The p-value of two-sample two-sided t-tests
for TBS (‘ ∗’ indicates a significant difference).

duce significant different and better results. Whereas, for
normal antigen types (not intrusions), this indicates that
segmentation approaches can produce significantly different
but not necessarily better results. As shown in the table,
when segment size is equal to 1 × 102, 1 × 103, or 1 × 104,
ABS can produce significantly different and better results of
Nmap and Pts. When segment size is 1 × 105 or 1 × 106,
ABS can make significant differences to the results of Fire-
fox, but not the results of Nmap or Pts. Conversely, TBS
can make significant differences to the results of Firefox, but
not the results of Nmap or Pts. In summary, segmentation
approaches can make significant differences the results, and
ABS can produce better performance on identifying intru-
sions while TBS cannot. Therefore, H3 is rejected.

Even though no direct statistical tests are performed to
test H4, the statistical tests of other hypotheses can indi-
cate whether it should be rejected or not. Firstly, changing
segment size in TBS has less effect on the results than ABS,
as shown in Table 5 and Table 6. Secondly, ABS can pro-
duce significantly different and better results on identifying
intrusions, while TBS cannot. Therefore, changing segmen-
tation approach from ABS to TBS can make differences to
the DCA, and H4 is rejected.

As described above, applying segmentation makes signifi-
cant differences to the results, since it has changed the way
of analysing processed information. It can improve the re-
sults in terms of identifying intrusions, this applies to the
ABS approach in particular. However, segmentation cannot
improve the results on tolerating normal processes, this may
be because of the ‘innocent bystander effect’ of the DCA [7].
This effect occurs when normal processes are highly active
and appear at the same time as the anomalous processes, the
algorithm could classify normal processes as intrusions (false
alarms). This is an inherited issue of the dataset which has
not been resolved. In addition, it appears that ABS per-
forms better than TBS. It is possible that the number of
sampled antigens is more vital to the analysis process than
the processed time. As a result, ABS can always assure
that each segment includes sufficient processed information,
making it more effective for analysis. Moreover, changing
segment size in both approaches can make significant differ-
ences to the results. This is because it produces the quanti-
tative differences of processed information per segment that
is analysed by the analysis process. Furthermore, changing
segmentation from ABS to TBS can make a difference to the
detection performance. This may result from the fact that
ABS can ensure sufficient processed information is included
within every segment for analysis. However, TBS cannot



Seg Nmap Firefox Pts

-966.21 -1389.04 -1005.66

Antigen based segmentation

102 < 0.05 ∗ < 0.05 ∗ < 0.05 ∗

103 < 0.05 ∗ < 0.05 ∗ < 0.05 ∗

104 < 0.05 ∗ < 0.05 ∗ < 0.05 ∗

105 0.14 < 0.05 ∗ 0.21

106 0.41 < 0.05 ∗ 0.44

Time based segmentation

1 0.50 < 0.05 ∗ 1

10 0.56 < 0.05 ∗ 1

102 0.49 < 0.05 ∗ 0.95

103 0.69 < 0.05 ∗ 0.69

Table 7: The p-value of one-sample one-sided t-tests,
true means are listed in the second row (‘ ∗’ indicates
a significant difference).

provide such assurance. As mentioned previously, some seg-
ments in TBS can contain few or even no sampled antigens,
therefore nothing can be detected in such segments, as there
is nothing to classify.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have shown that applying segmentation

to the DCA makes significant differences to the results. In
fact, the ABS approach can improve the results, in terms
of identifying intrusions. In addition, segmentation enables
the system to perform periodic analysis on the processed
information presented by the DCs. As a result it can effec-
tively improve detection speed without compromising detec-
tion accuracy. Therefore, segmentation is applicable to the
DCA. Even though segmentation is not immune inspired,
it can still make contribution to the field of AIS, as it can
improve the system performance of the DCA. As a result,
more effective intrusion detection systems can be developed
by integrating segmentation with the DCA. This method is
also applicable to other second generation AIS.

This is not yet real-time analysis, as the segmentation
approaches still occur after a time delay. The actual situ-
ations occur during detection always change in a dynamic
fashion. Therefore, in order to perform real-time analysis,
an approach that can deal with online dynamics is required.
Such an approach should be able to adapt and evolve during
detection, so that it can deal with new situations that have
not been previously seen. This leads to the future work of
dynamic segmentation.

To continue this research, dynamic segmentation is to be
explored to develop more effective intrusion detection sys-
tems. Moreover, as the ultimate goal is to develop a real-
time system for the purpose of intrusion detection, it is
necessary to use formal techniques available in the area of
real-time systems. For example, we can use Duration Cal-
culus [18] to specify the real-time system demanded, and
Timed Automata [2] and PLC Automata [5] to implement
and verify such system.
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