Matthew W. Pagano

Computer Security Architecture
Spring 2008 Semester

Dr. Masson / Dr. Vasconcelos

PSEUDORANDOM NUMBER GENERATORS ON ATMEL AVR AT90USB1287 MICROCONTROLLERS

Summary

The purpose of this report is to provide exhaustive details of my Computer Security Architecture project
this spring 2008 semester. Ultimately, the goal has been to prepare a document that an undergraduate
student can read to increase his/her comprehension of the Atmel AVR AT90USB1287 microcontroller
and its hardware components, the Assembler programming language, random number generation,
pseudorandom number generation, and testing methods to determine levels of randomness. This
report outlines how to program a random number generator (RNG) on the AT90USB1287 using the on-
board thermometer, as well as two pseudorandom number generators (PRNGs) on the AT90USB1287.
One of the PRNGs is a Linear Feedback Shift Register (LFSR) and is designated as the “weak” PRNG. The
other PRNG is the Advanced Encryption Standard (AES) algorithm and is designated as the “strong”
PRNG algorithm. After programming the RNG, weak PRNG, and strong PRNG on the AT90USB1287, this
report details the results of randomness tests offered by the National Institute of Standards and
Technology (NIST) on both PRNG algorithms. The purpose of this is to demonstrate specifically what it
means to have a cryptographically secure PRNG algorithm.

Introduction, Goals, and Objectives

The central motivation of this project is to demonstrate proper implementation of pseudorandom
number generators (PRNGs). It will be assumed that the students of this project have some computer
science background, but this should be the only prerequisite. During the completion of this project,
students will be expected to research the importance of random and pseudorandom number generation
within modern computing. Students will be exposed to the difficulties of obtaining sufficient amounts of
true random data. This will highlight the realistic need for pseudorandom number generation.

From a high-level perspective, students will analyze two PRNG algorithms. The first PRNG algorithm, the
Linear Feedback Shift Register (LFSR), will be simple, but will not generate data that is “random enough.”
The first PRNG algorithm will not be cryptographically secure in order to demonstrate the significance of
this term. The goal is to demonstrate the pitfalls of a PRNG algorithm whose output an attacker can
easily differentiate from true random data. This first PRNG algorithm will be referred to as the “weak
PRNG algorithm.”

The second PRNG algorithm, the Advanced Encryption Standard (AES), will be complex, will produce
data that appears to be very random, and will be cryptographically secure. The second PRNG algorithm
will be referred to as the “strong PRNG algorithm.” Students will contrast these two PRNG algorithms in

order to understand the theoretical and practical differences between weak and strong PRNG
algorithms. Students will learn that even supposedly strong PRNG algorithms must be implemented
carefully to avoid producing predictable data.

From a low-level perspective, students will be required to code the weak PRNG algorithm in Assembler
and execute it on the Atmel AVR AT90USB1287 microcontroller. This will provide students will an
excellent opportunity to learn the finer components of Assembler. Coding a secure PRNG algorithm will
require a vast knowledge of algorithm analysis, Assembler programming tactics, and debugging on the
AT90USB1287. Students should leave the course having sharply increased their skills in all of these

areas.

Lastly, students will be required to evaluate their results against the National Institute of Standards and
Technology (NIST) suite of randomness tests. The intended result is that pseudorandom data produced
by the strong PRNG algorithm will score much higher than that of the weak PRNG algorithm. This should
confirm the need for a PRNG algorithm to be thoroughly tested to ensure that it produces strongly
random data.

Background and Related Theory

Pseudorandom number generators (PRNGs) are commonly encountered throughout many areas of
computer science. The demand for PRNGs results from a need for randomness in numerous
applications. Random data is essential for many gaming applications, cryptographic protocols, statistical
programs for random sampling, prime numbers generators, sorting algorithms, and so on.
Unfortunately, true random data (unpredictable data not produced by deterministic formulas) is often
expensive and difficult to obtain. Sources of true randomness that have been used in the past include
temperatures of hardware components, feedback from noisy diodes, formulas based on the time of day,
keystroke or mouse movement, and nuclear decay. The reality of these forms of randomness is that
they often require significant resources to generate relatively low amounts of random data. In short,
random data tends not to be cost-effective.

This downside of random data has lead to the widespread use of pseudorandom data. The applications
that need randomness often require the random data to be generated quickly and in large amounts.
Accordingly, pseudorandom algorithms are designed to take as input small amounts of true random
data and then apply various PRNG algorithms to produce high volumes of pseudorandom data. These
pseudorandom algorithms are of course deterministic in nature, so the pseudorandom data that is
produced is not truly random. However, if the following two conditions are met, the pseudorandom
data will be “random enough” for most applications:

1) The true random string provided as input is sufficiently long and comes from a highly
unpredictable source. This true random string needs to be regenerated each time the PRNG
algorithm is used to prevent predictable patters in successive generations of pseudorandom
data.

2) The pseudorandom algorithm has been confirmed to produce pseudorandom data that an
attacker bounded by polynomial space and time cannot differentiate from true random
data.

When evaluating sources of true random data and pseudorandom algorithms, the developer is advised
to use tests offered by the National Institute of Standards and Technology (NIST). The NIST website
offers a suite of tests that evaluate and provide quantifiable statistics on the data’s level of randomness.
NIST has certified that these tests provide an accurate estimation of how random the data is. For
example, it is reasonable to expect that true random binary data should have approximately the same
number of ones and zeros. One of the NIST randomness tests is therefore to determine if the total
number of ones and zeros versus the length of the binary string falls within an acceptable range of
randomness.

Solution Implemented and Justification

The preceding sections have provided a detailed overview of the solution implemented and the
justifications for the decisions made. What remains is to discuss which PRNG algorithms were selected
for the weak and strong algorithms (LFSR and AES, respectively), and justify these selections. The
following two lists of points provide these justifications.

Weak PRNG: Linear Feedback Shift Register (LFSR)

* Involves manipulations of bits (often with the EOR operation) within 8-bit or 16-bit registers, so
it is ideal for the Atmel microcontroller

* Asaresult, LFSRs are readily implemented in hardware, which works well in this project; this will
also demonstrate to the students what it means to be easily implemented in hardware, which
will solidify the point for them when they hear that term with respect to algorithms such as DES

* Qutput is a stream of ones and zeroes, which can be readily input into the NIST suite of
randomness tests

* LFSRs are used in the real world for such applications as GPS, digital broadcasting and
communications systems, and some gaming consoles, so the student would not be learning an
antiquated algorithm that is solely used for pedagogical purposes

* Relatively simple to understand and code, so it will provide a good starting point for the
students to learn and build their confidence (as opposed to the strong PRNG, which will require
more time to understand)

* Efficient and fast, so time will not be a significant issue when running this PRNG

* Involves concepts of polynomials to map sequences of transformations and concepts of
periodicity, so it will be a good review for the students of the mathematics involved in

cryptography

Involves a caveat of which to be mindful during implementation (ensure that the sequence does
not reach an all-zero state, after which point there will be no change); this will be an excellent
demonstration to the students of how secure PRNGs can become insecure if not implemented

properly

Outputs of LFSRs are linear, which means that they are susceptible to cryptanalysis; this will
perfectly demonstrate to the students the difference between this weak PRNG and a strong
PRNG (cryptographically speaking)

Note: this linear weakness has been corrected in some implementations of LFSR, but the
stronger implementations will not be used in order to highlight the difference between a weak
and strong PRNG

Strong PRNG: AES

Considered to be one of the most cryptographically secure (if not the most cryptographically
secure) PRNGs available

Thus, it will do very well on NIST’s suite of randomness tests, which will demonstrate the
differences to the students between weak and strong PRNGs

Will demonstrate to the students the need to use openly and freely available cryptographic
algorithms that have been thoroughly tested, as opposed to relying on obscurity by using lesser-

known algorithms
Will demonstrate the level of complexity that students can expect from top-tier block ciphers

Because the students will not be coding AES themselves as they will with LFSR (but will instead
get the code from a site like http://point-at-infinity.org/avraes/ as referenced in

http://www.cdc.informatik.tu-darmstadt.de/~dahmen/papers/MerkleMicro.pdf), they will learn

how to securely implement code from an external source. There will surely be implementation
errors associated with this process, so the students will gain experience with dealing with these

types of issues.

As a short side assignment, students should be expected to write a short report on the history of
AES; this will familiarize them with the modern process of developing cryptographically secure
PRNGs, as the story of AES does this exceedingly well

Detailed Description of the Implementation with Flowcharts and Code Snippets

The implementation of this project can be divided into four sections: 1) RNG; 2) Weak PRNG (LFSR); 3)
Strong PRNG (AES); 4) suite of the randomness tests offered by NIST and subsequent results.

RNG

A flowchart of the RNG is shown below:

—No RNGCounter = 8?

[——————— =

OverFlowReg =

The basis of the RNG is to read data from the thermometer on board the AT90USB1287 microcontroller.
The on-board thermometer is a resistor that displays various levels of resistance that are directly

affected by the temperature of the microcontroller. The resistance of this resistor increases as the
temperature decreases, which is referred to as a Negative Temperature Coefficient (NTC). This resistor
is consequently labeled as a temperature-sensitive resistor, or more commonly as a thermistor.
Because the values read from the thermistor fluctuate in proportion to the temperature of the
microcontroller, the thermistor can be effectively used as a thermometer for the microcontroller. The
assumption behind the RNG is that the temperature of the microcontroller, or at the very least the least
significant bits of the temperature, will be consistently fluctuating and sufficiently unpredictable to
serve as a source of randomness. Should this premise be correct, RNG data can be obtained by reading
values from the thermistor.

Data can be read from the thermistor using the on-board 8-channel Analog Multiplexer. The 8-channel
Analog Multiplexer is connected to 8 voltage inputs from one of the microcontroller’s ports. These
voltage inputs are labeled ADCO, ADC1, ADC2, ADC3, ADC4, ADC5, ADC6, and ADC7. The thermistor is
the ADCO voltage input. ADCO sends analog voltage data to the 8-channel Analog Multiplexer, which
then sends this analog data to the on-board Analog-to-Digital Converter (ADC). The ADC converts the
analog data from the Multiplexer into 10-bit values. This system of the ADC and 8-channel Analog
Multiplexer is referred to as the ADMUX. The digital data from the ADMUX is the sent to the ADC Data
Register. Because the ADC generates 10-bit values, the ADC Data Register is comprised of two 8-bit
registers, labeled ADCH (ADC High) and ADCL (ADC Low). ADCL contains the least significant 8 bits of the
ADC output; ADCH contains the 2 most significant bits of the ADC output in bits 0 and 1 of the ADCH
register. The programmer can then read data from this system through the ADC Data Registers (ADCH
and ADCL). In the specific case of the thermistor, temperature data can be read by configuring the
ADMUX to read data from ADCO (the voltage input of the thermistor) and then reading in data from the
ADC Data Registers (ADCH and ADCL).

The remainder of this section will be dedicated to a thorough explanation of the RNG code. Code

snippets will be shown first and will be followed by an evaluation of what these snippets signify.

.org 0x0000
rimp main

.org 0x003A
call ADC_ISR

The org directive in Assembler is an abbreviation for “origin” and indicates to the compiler to which
address within the code segment to direct the flow of execution for a specific routine. In this case, the
first line shows that the program will start at address 0x0000 within the code segment. This is typically
done because the processor begins execution at address 0000. Address 0x0000 is therefore referred to
as the “reset vector”. The next line is a relative jump to the label of the “main” routine to begin the
program.

The last two lines of the code snippet above relate to the ADC interrupt routine. The purpose of an
interrupt is to stop program execution in order to perform a specified routine. After the interrupt
routine has completed, it is required that program control be transferred back to the location where

program execution was originally stopped. This requirement necessitates the use of the stack in order
to store the address to which program execution must be returned after the interrupt routine has
completed (named the return address).

The “.org 0x003A” informs the compiler of the address of the ADC interrupt vector. As discussed above,
because the processor begins execution at address 0000, address 0x0000 is referred to as the “reset
vector”. The vectors that follow the reset vector within program space are addresses 0x0001, 0x0002,
0x0003, etc. These vectors are labeled “interrupt vectors”. If an interrupt is triggered, program control
is transferred to the position in program space given by interrupt vector that corresponds to the type of
interrupt triggered. The specific interrupt vectors that correspond to each type of interrupt are
hardware-dependent. For the AT90USB1287, the programmer can use Atmel’s usb1287def.inc file to
find this information. The usb1287def.inc file contains the following line that is pertinent to the ADC
interrupt vector:

.equ ADCCaddr = 0x003a ; ADC Conversion Complete

This line indicates that the address of the ADC Conversion interrupt vector is 0x003A. This is why the
.org directive shown above specifies 0x003A as the address to which to direct program control in the
event of an interrupt. The line that follows uses a call statement to give the compiler the name of the
routine to execute if this interrupt is triggered. As a result, if the ADC Conversion interrupt is triggered,
the ADC_ISR routine will be executed and then program control will be redirected to the return address.
More information on the ADC_ISR routine will be given below.

It is important to note that the command immediately following the org directive to the reset vector
(.org 0x0000) has to be a relative jump (rjmp main) in order to jump over the interrupt vectors that are
listed below (in this case, the ADC Conversion interrupt).

These lines of code begin the ADC_ISR routine. The ADC_ISR routine will be called whenever there is an
interrupt triggered by a reading from the thermistor:

push rl6
inrl6, SREG
push rl6
push r17

Recall that an interrupt stops program execution, performs a specific routine, and then transfers
program execution to the original location where it was stopped. It is very important to ensure that the
state of the program that is not related to the interrupt is not modified by the interrupt routine. Most
notably, the interrupt should not permanently modify any registers (including the status register) that
the interrupt uses. As a result, it is common practice to push the values of any registers used by the
interrupt onto the stack before performing any other actions. These values remain on the stack until
the interrupt is completed, after which these values are popped off the stack into the corresponding
registers. When program control is transferred back to the return address, the registers (including the
status register) have the same values as they did immediately before the interrupt was triggered.

Because the stack is a Last-In-First-Out (LIFO) operation, values must be popped off in the reverse order
as they were pushed on. This is why the last lines of the ADC_ISR routine are the following:

pop rl7

pop rl6

out SREG, rl16
pop rl6

reti

Note that reti is the command used to indicate that an interrupt has finished and that program control
should be transferred back to the return address.

Ids r16, ADCL
Ids r17, ADCH

This indicates that the value of ADCL (least significant eight bits) is being read into the r16 register and
the value of ADCH (most significant two bits) is being read into the r17 register.

Isl RNGSeed

RNGSeed is the register that holds the eight bits of randomness that have been gathered so far by the
RNG. Every time the ADC Conversion interrupt is called, the bit of randomness that was least recently
added to RNGSeed (i.e., the oldest) is removed, and new bit of randomness is extracted from the
thermistor and added to RNGSeed. This is analogous to a First-In-First-Out (FIFO) method. Bits of
randomness are added to RNGSeed from right to left using the Isl command, as shown in the code
snippet above. In other words, if the bits of a register are labeled from left to right at Bit 7, Bit 6, Bit 5,
Bit 4, Bit 3, Bit 2, Bit 1, and Bit 0, a new bit of randomness is added to RNGSeed by shifting all of the bits
over one bit to the left. Bit 6 is moved to Bit 7, Bit 5 is moved to Bit 6, Bit 4 is moved to Bit 5, Bit 3 is
moved to Bit 4, Bit 2 is moved to Bit 3, Bit 1 is moved to Bit 2, Bit 0 is moved to Bit 1, and a zero is placed
in Bit 0. This effectively pops off Bit 7, slides everything over to the left one bit, and places a zero in Bit
0, which is what the Isl command does. The new bit of randomness extracted from the ADC Conversion
interrupt can then be added to Bit 0, as will be described below.

andi r16, 0b00000001
andi RNGSeed, 0b11111110
or RNGSeed, ri16

The above code snippet is the algorithm used to add the newest bit of randomness to Bit 0 of RNGSeed.
Recall that r16 contains the 8 least significant bits of the 10-digit digitized value of the latest thermistor
reading. Empirical data from this study showed that the readings of the thermistor tended to be largely
homongenous. This was quite detrimental to this study because of the need for highly unpredictable
data to be used as the RNG. In order to remedy the homogeneity observed from the thermistor, only
the least significant bit (LSB) of the readings from the thermistor was used in the RNG. The assumption
was that the LSB would be the bit that would be fluctuating most frequently and unpredictably. As a
result, the goal of this algorithm is to copy Bit 0 of r16 (the LSB of the data read from the thermistor)
into Bit 0 of RNGSeed (now that the Isl command has made RNGSeed ready to accept the newest bit of
randomness into its Bit 0).

The algorithm shown above makes use of the following four facts: 1) Performing an AND operation with
any binary digit and zero always yields zero; 2) Performing an AND operation with any binary digit and
one always yields the original binary digit; 3) Performing an OR operation with any binary digit and zero
always yields the original binary digit; 4) Performing an OR operation with any binary digit and one
always yields one. The first step of the algorithm shown above, “andi r16, 0b00000001”, zeroes Bits 1-7
of r16 and allows Bit O of r16 to keep its original value. The second step, “andi RNGSeed, 0b11111110”,
allows Bits 1-7 of RNGSeed to keep their original values and zeroes Bit 0. Because Bits 1-7 of r16 are
zero and because Bits 1-7 of RNGSeed are their original values, performing an OR operation on RNGSeed
and r16 and storing the result in RNGSeed ensures that Bits 1-7 of RNGSeed retain their original values.
Because Bit 0 of rl6 is its original value and Bit 0 of RNGSeed is zero, performing an OR operation on
RNGSeed and r16 and storing the result in RNGSeed ensures that Bit 0 of RNGSeed takes on the value of
Bit 0 of r16. This was indeed the goal of this algorithm. Note that in order to ensure that the result of
the OR operation is copied to RNGSeed, RNGSeed had to be the first operand in the OR statement, as
shown in the last line of this algorithm.

mov PRNGSeed, RNGSeed

Because PRNGSeed is the first operand of the mov command, this command copies the contents of the
RNGSeed register into the PRNGSeed register. This command is present within the ADC Conversion
interrupt so that PRNGSeed always contains the latest version of RNGSeed. As will be discussed later,
when the PRNG functionality of this program is called, the PRNGSeed register is used as the seed to the
PRNG algorithm. Due to this, it is vital that PRNGSeed be updated immediately after RNGSeed is
updated so that the PRNG algorithm can make use of the latest randomly generated numbers.

inc RNGCounter

As will be described later, in order to generate large volumes of random data for NIST testing, bytes of
data generated from the ADC Converstion interrupt are written to EEPROM memory within the
interrupt. EEPROM is a component on the AT90USB1287 microcontroller that functions as a type of
memory. EEPROM is used in this code to record the random data that is generated by the thermistor to
be evaluated later by the NIST tests. Recall, however, that each run of the interrupt only generates one
bit of randomness, not one byte. If the RNGSeed register were copied into EEPROM every time the
interrupt was run, patterns of bits would emerge. This can be observed from the following example.
Suppose that at any given time, RNGSeed contained the following byte: 10010101. Suppose that the
next run of the interrupt generated a 0 for the random digit. RNGSeed would then become 00101010.
If each run of the interrupt contained code to write the contents of RNGSeed into EEPROM, EEPROM
would then contain the following string of data: 1001010100101010. Observe that Bits 1-7 (0010101,
counting from right to left) and Bits 8-14 (0010101) are identical.

The solution implemented in this code is to only write to EEPROM for every eight runs of the interrupt.
This ensures that all bits of RNGSeed will have been replaced by new random bits from the thermistor
before writing to EEPROM. Because nothing is written to EEPROM before all bits have been replaced
with newly generated values from the thermistor, no patterns should form. This solution is
implemented by placing a counter register in the interrupt, named RNGCounter. RNGCounter is
initialized to zero in the main routine and is incremented every time the interrupt is run. When
RNGCounter reaches eight, Bits 0-7 will have been rewritten with newly generated values from the
thermistor, and RNGSeed is then written to EEPROM. Later in the code, RNGCounter is reset to zero to
begin the next byte generation of RNGSeed.

cpse RNGCounter, EightRegister
rimp finishinterrupt

writerngeeprom:

This segment of code is designed to test whether RNGCounter has reached eight. If so, RNGSeed should
be written to EEPROM and RNGCounter should be reset to zero, as described above. The register
EightRegister is declared to be 0x08 in the main routine and is not changed at any other point in the
code. RNGCounter is compared to EightRegister to determine if RNGCounter equals eight. If so, the
cpse command evaluates as true, skips the next statement (rjmp finishinterrupt), and begins the
writerngeeprom routine. If RNGCounter is not equal to eight, the next statement is executed (rjmp
finishinterrupt). Program control is thus transferred to the finishinterrupt routine, in which the ADC
Converstion interrupt is ended without writing anything to EEPROM.

writerngeeprom:

sbic EECR,EEPE
rimp writerngeeprom

This segment of code is a loop that verifies that EEPROM is not currently being written to before writing
RNGSeed to EEPROM. EEPROM offers a register named EEPROM Control Register (EECR) that holds the
status of EEPROM. Bit 1 of the EECR is the EEPE EEPROM Programming Enable (EEPE) bit. When the
programmer is ready to write to EEPROM, the EEPE bit must be set to one. After setting the EEPE bit to
one, the CPU is halted for two cycles before the next instruction is executed. It is very important that
the program not attempt to write to EEPROM while another write to EEPROM is already taking place.
Due to this, the code shown above contains a loop that continues to loop until the EEPE bit is zero. The
first line of the loop (sbic EECR, EEPE) skips the next instruction if the bit in question (EEPE) is clear,
meaning that it is set to zero. The translation is that if EEPE is set to zero, there is no other EEPROM
write taking place, so the rjmp writerngeeprom instruction can be skipped. This prevents the loop from
looping again and continues with the next instruction in the writerngeeprom routine. If EEPE is not set
to zero, the rjmp writerngeeprom instruction is not skipped and is thus exectuted, which begins the loop
again. This is referred to as a polling looop. As a side note, the programmer must be sure that an
interrupt not take place during an EEPROM write. However, because this EEPROM write is occurring
inside of an interrupt, this is not a concern for this code.

Idi RNGCounter, 0x00

If program execution has entered the writerngeeprom routine, it is because RNGCounter became equal
to eight. Now RNGCounter must be reset to zero so that the tally on the next byte of RNGSeed can
begin.

out EEARH, r26
out EEARL, r25

In the AT90USB1287, EEPROM is 4096 bytes in size (approximately 4KB). The byte addresses of EEPROM
therefore range from 0 to 4095. Because the maximum number that one byte can represent is 255 (if all
bits are 1, as in 11111111), the full range of EEPROM addresses requires two bytes. Accordingly, the

AT90USB1287 has two registers to represent EEPROM addresses, named EEARH (high byte) and EEARL
(and low byte). EEARL represents EEPROM addresses 0 — 255 and EEARH represents EEPROM addresses
256 — 4096. EEARH only needs the use of its Bits 0-3 because 4096 can be represented with 12 bits (8
from EEARL and Bits 0-3 of EEARH).

r25 and r26 hold the addresses of EEARL and EEARH, respectively, that correspond to the byte of
EEPROM to which the next byte of data will be written. In order to maximize the amount of data that
can be stored in EEPROM, this program begins writing to EEPROM at address 0. R25 and r26 are
accordingly set to zero in the main routine. R25 and r26 are incremented accordingly in the interrupt to
ensure that bytes of data are written to EEPROM sequentially. This ensures that every byte of EEPROM
is written to in numerical order. The steps shown above (out EEARH, r26 and out EEARL, r25) load the
proper values into EEARH and EEARL so that data is written to the correct byte in EEPROM.

out EEDR, RNGSeed

EEPROM contains a data register named EEPROM Data Register, or EEDR. EEDR contains the byte of
data to be written to EEPROM. The statement above loads the contents of RNGSeed into EEDR so that
RNGSeed may be written to EEPROM.

sbi EECR,EEMPE
sbi EECR,EEPE

Bit 2 of EEPROM is the EEPROM Master Programming Enable (EEMPE) bit. As discussed above, when
the programmer is ready to write to EEPROM, the EEPE bit must be set to one. However, no writing to
EEPROM will occur unless the EEMPE bit is also set to one. The EEMPE bit is reset to zero in four cycles
after the EEMPE bit is set to one. Consequently, after the EEMPE bit is set, writing to EEPROM will occur
only if the EEPE bit is set to one within four clock cycles. If not, EEMPE will time out and be set to zero.
This is why the EEPE bit is set to one (using the sbi command) immediately after EEMPE is set to one
(using the sbi command). After performing both of these commands, the byte in the EEDR register
(which contains the contents of the RNGSeed register) will be written to the next byte in EEPROM. This
is how random data generated by the thermistor is written to EEPROM.

cp r25, FullRegister
breq overflowrng

This segment of code is designed to address the overflow issue in EEPROM. As discussed above, the full
range of byte addresses in EEPROM requires the use of two registers, EEARH and EEARL. In this
program, the registers r25 and r26 hold the values of the next byte in EEPROM to which the current
value of RNGSeed is written. R25 and r26 correspond directly to EEARL and EEARH, respectively.
Because of the need for two registers, a simple increment will not suffice. There has to be some method
of organization between r25 and r26 to ensure that all byte addresses in EEPROM are used. Consider
the following example. Suppose r25 is currently set to 11111111 (OxFF) and r26 is currently set to
00000000 (0x00). This corresponds to byte address 255 (recall that byte addresses in EEPROM range
from 0 to 4095, for a total of 4096 bytes). The next byte address should be 256, which would
correspond to r25 being set to 00000000 (0x00) and r26 being set to 00000001 (0x01). However, simply
incrementing r25 will not convert 11111111 (OxFF) to 00000000 (0x00) [for r25] and 00000000 (0x00) to
00000001 (0x01) [for r26]. An overflow mechanism must therefore be implemented for situations such
as this. The overflow mechanism is only necessary when r25 equal 11111111 (OxFF) because that is

when the increment needs to overflow into r26. The lines of code shown above address this situation.
The FullRegister register is set to OxFF in the main routine and is not changed at any location in the code.
The cp command compares the value of r25 to the static value of FullRegister (which is always OxFF in
this code). If the two registers are equal, the breq command branches and program control is sent to
the overflowrng routine. Overflowrng handles the overflow and returns program control to the next
line of code after the “breq overflowrng” line (writerngeepromii:). Note that in order to return control
to the line of code following “breq overflowrng”, that line of code has to be a routine so that the rjmp
command has a routine to which to perform a relative jump. Rjmp cannot perform a relative jump to a
line of code that is not the label of a routine. If the r25 and FullRegister registers are not equal, the

“breq overflowrng” line of code is skipped altogether and the line of code after “breq overflowrng”
(writerngeepromii:)is executed.

In order to effectively demonstrate the logic of the code, the overflowrng routine will now be examined.
overflowrng:

incr26

Idi r25, 0x00

Idi OverFlowReg, OxFF

rimp writerngeepromii

The proper method of handling the overflow is to increment r26 and reset r25 to zero, as shown in the
overflow example given above. The first two lines of code in overflowrng handle these tasks. The next
line of code is “Idi OverFlowReg, OxFF”. The OverFlowReg register is a status flag that indicates whether
an overflow has just been performed. If OverFlowReg is zero, no overflow has just taken place; if
OverFlowReg is OxFF, an overflow has just taken place. Because an overflow has just taken place in the
overflowrng routine, the OverFlowReg register is set to OxFF in the “Idi OverFlowReg, OxFF” command.
Lastly, as described above, program control is transferred to the writerngeepromii routine using the
“rimp writerngeepromii” command.

writerngeepromii:

cpse OverFlowReg, FullRegister
incr25

Idi OverFlowReg, 0x00

The “cpse OverFlowReg, FullRegister” command determines whether an overflow has just been
performed. It does so by testing whether OverFlowReg is equal to FullRegister, the latter of which is
always set to OxFF. If so, an overflow has just been performed (as described above), and so the cpse
statement skips the next command (inc r25). “Inc r25” must be skipped in the event of an overflow
because r25 is reset to zero in the overflowrng routine. If r25 were then incremented again, a byte in
EEPROM would be missed entirely. This is obviously not the proper method to handle an overflow, so
the “inc r25” command is skipped if OverFlowReg equals FullRegister (i.e. in the event of an overflow). If
there has been no overflow, “cpse OverFlowReg, FullRegister” evaluates to false and thus “inc r25” is

executed. This is done so that the next byte of EEPROM will be written to during the next interrupt.
Lastly, now that the overflow has been properly handled (if one has taken place), the OverFlowReg
status flag is reset to zero, which indicates no overflow for the next time an interrupt occurs.

finishinterrupt:

pop rl7

pop rl6

out SREG, rl16
pop rl6

reti

As described above, the finishinterrupt routine finishes the interrupt and returns control to the return
address where program control was stopped to perform the interrupt. All registers used in the interrupt
(i.e. SREG, r16, and r17) are reset to the values they held before the interrupt by popping these saved
values off the stack. The “reti” command returns program control to the return address, which is saved
on the stack.

Main

Below is the first portion of the main routine:

main:
wdr ; Reset watchdog timer
Idi r16, OxFO ; Enable R16's bits 7-4 (1111 0000)
out DDRD, r16 ; Set PortD[7-4] as output (leds)
Idi r16, OxCF ; Disable R16's bits 5-4 (1100 1111)
out DDRE, r16 ; Set PortE[5-4] as input (Joystick: Right & Down)
Idi r16, Ox1F ; Disable R16's bits 7-5 (0001 1111)
out DDRB, r16 ; Set PortB[7-5] as input (Joystick: Select,Up & Left)

; Reset joystic's ports

Idi r16, 0x30 ; Enable R16's bits 5-4 (0011 0000)
out PortE, r16
Idi r16, OxEO ; Enable R16's bits 7-5 (1110 0000)

out PortB, r16

This portion of main was copied verbatim from the Lights program that was given and explained to
students in the first week of the Computer Security Architecture course. It is therefore assumed that
any reader of this report will have had experience with this segment of code. No further discourse on
the subject is needed as a result.

Idi r16, low(RAMEND)
out SPL, r16
Idi r16, high(RAMEND)

out SPH, r16

The purpose of this code segment is to initialize the stack for use. The use of the stack is necessary in
this program because this program implements interrupts, as discussed in the RNG section. When using
the AT90USB1287 microcontroller, the on-board static RAM (SRAM) memory is used to function as the
stack. The stack must first be initialized before use by properly configuring the stack pointer (SP). The
SP is a two-byte pointer that can be accessed in the same manner as a port. The two bytes of SP are
Stack Pointer High (SPH) and Stack Pointer Low (SPL). SPH holds the most significant address byte
(MSB); SPL holds the least significant address byte (LSB). This is similar to the EEARH and EEARL bytes of
EEPROM.

The code segment above initializes the stack by setting the SP to the highest address of SRAM, labeled
RAMEND. As is traditionally true with stack architecture, the stack of the AT90USB1287 grows
downward, starting from higher addresses and moving downward toward lower addresses. This is why
the SP is initialized to the highest address of SRAM and not the lowest address. RAMEND represents the
highest address of SRAM and is hardware-specific. The aforementioned usb1287def.inc file for the
AT90USB1287 hardware has the following line to give the two-byte address of RAMEND:

.equ RAMEND = Ox20ff

O0x20FF is therefore the highest address of SRAM in the AT90USB1287. The MSB and LSB of this address
are 0x20 and OxFF, respectively. Due to this, high(RAMEND) evaluates to 0x20 and low(RAMEND)
evaluates to OxFF. These addresses are loaded into SPH and SPL, respectively, using the code segment
shown above. Once SPH and SPL are initialized, the programmer can make use of the stack.

Idi r16, 0b01000000
sts ADMUX, r16

Recall from the RNG section the ADMUX component of the AT90USB1287. This segment of code sets
the configuration of ADMUX that define how ADMUX will be used throughout the program. The
usb1287def.inc file shows that the bits of ADMUX represent the following configurations:

; ADMUX - The ADC multiplexer Selection Register

.equ MUX0 =0 ; Analog Channel and Gain Selection Bits
.equ MUX1 =1 ; Analog Channel and Gain Selection Bits
.equ MUX2 =2 ; Analog Channel and Gain Selection Bits
.equ MUX3 =3 ; Analog Channel and Gain Selection Bits
.equ MUX4 =4 ; Analog Channel and Gain Selection Bits
.equ ADLAR =5 ; Left Adjust Result

.equ REFSO =6 ; Reference Selection Bit 0

.equ REFS1 =7 ; Reference Selection Bit 1

The numbers 0 -7 shown above correspond to the eight bits of the ADMUX register. Setting any of these
bits to 1 enables the corresponding feature; setting any of these bits to 0 disables the corresponding
feature. The code segment shown above indicates that the “Reference Selection Bit 0” (Bit 6) was
enabled and that the remaining features (Bit 1-5 and Bit 7) were disabled. Research from various sites
such as those given in the “References” section of this report suggested to disable all of the features of

ADMUX. Unfortunately, this did not produce the intended results. Trial and error ultimately provided
the solution, which was to enable the Reference Selection Bit O.

Idirl6, 0b11101111
sts ADCSRA, r16

The ADCSRA register is a register associated with the ADC compononent of the AT90USB1287, just as is
the ADMUX register. As with the ADMUX register (discussed above), the bits of the ADCSRA register all
represent various configurations that can be enabled or disabled. The usb1287def.inc file gives the
following text regarding the ADCSRA register’s bits:

; ADCSRA - The ADC Control and Status register

.equ
.equ
.equ
.equ
.equ
.equ
.equ
.equ

ADPSO =0 ; ADC Prescaler Select Bits
ADPS1 =1 ; ADC Prescaler Select Bits
ADPS2 =2 ; ADC Prescaler Select Bits
ADIE =3 ; ADC Interrupt Enable
ADIF =4 ; ADC Interrupt Flag
ADATE =5 ; ADC Auto Trigger Enable
ADSC =6 ; ADC Start Conversion
ADEN =7 ; ADC Enable

Just as with the ADMUX register, each of these features can be enabled by setting the bit to one, and
disabled by setting the bit to zero. The code segment shown above gives the configuration used in this
project. Below is an explanation of each:

Bits 0-2 “determine the division factor between the XTAL frequency and the input clock to the
ADC”, as stated at http://www.analoglab.com/adc.html. What this quote means is beyond the
scope of this project and this report. It is sufficient to say that empirical testing and data
showed that the optimum configuration of these three bits for the goals of this project was
111.

Bit 3 is the ADC Interrupt Enable. This bit must be enabled for the ADC Conversion interrupt to
trigger, so obviously this must be set to one.

Bit 4 is the ADC Interrupt Flag. The hardware of the AT90USB1287 modifies this bit based on
whether an ADC converstion interrupt has been completed. As such, the programmer need
not concern himself/herself with this bit. This bit should be disabled (zero) at first because no
interrupt has yet taken place.

Bit 5 is the ADC Auto Trigger Enable. Setting this bit to one enables Free Running mode, in
which the ADC continuously updates the hardware with new values. Because the programmer
needs to generate large amounts of random data, this bit needs to be enabled. The alternative
(setting the bit to zero) represents Single Conversion mode, in which only one interrupt routine
is triggered.

Bit 6 is the ADC Start Conversion. This bit should be set when the programmer is ready to begin
the first ADC converstion interrupt, so it should be set to one.

Bit 7 is the ADC Enable. Setting this bit enables the ADC in general, so this bit should be set to
one.

Idi RNGSeed, 0x00
Idi PrevSeed, 0x00

Idi TempSeed, 0x00
Idi PRNGSeed, 0x00
Idi ZeroCounter, 0x00
Idi RNGCounter, 0x00
Idi FullRegister, OxFF
Idi r26, 0x00

Idi r25, 0x00

Idi OverFlowReg, 0x00
Idi EightRegister, 0x08

This list is simply the initializations of all registers used in this program.
Sei

Sei is the command needed to enable the Interrupt bit on the Status Register (SREG). If the Interrupt bit
on SREG is clear, no interrupts can take place. If the Interrupt bit on SREG is set, interrupts can begin
taking place. Obviously, this bit needs to be set.

loop:
wdr

inrl7, PinB
inrl8, PinE

sbrsrl7, 6
rjimp prng

sbrsrl8, 4
rjimp prng

sbrsrl7,7
rjimp prng

sbrsrl§, 5
rjimp prng

sbrsrl7,5
rjimp prng

rimp loop

This loop is analogous to the “LedLoop” of the Lights program that students analyzed in the first week of
the Computer Security Architecture class. The purpose of this loop is twofold. First, because the last
line of this loop is “rimp loop”, it ensures that the program runs continuously without stopping. This is
vital because the RNG needs to gather large amounts of data. If the program stops, no more data can
be gathered. Adding the “loop: ... rjmp loop” statements to this program ensures that the program will
run indefinitely. Second, this loop gives the user the option to move the joystick in any direction to

jump to the prng routine. As will be discussed below, when the prng routine is accessed, all RNG and
interrupt functionality ceases, and pseudorandom data is generated.

Weak PRNG (LFSR)

A flowchart of the weak PRNG (LFSR) algorithm is shown below:

R25 = 0xFF?

R26

0x000100007?

Yes

OverFlowReg =

prng:

cli
sts ADCSRA, ZeroCounter

These are the first two lines of the prng routine. The first priority of the prng routine is to completely
disable all interrupts. When the prng routine is called, it is assumed that the user has finished gathering
random data using the ADC Conversion interrupt routine, and would like to use that random data as
input into the PRNG. No further random data need be collected; the interrupt functionality should be
disabled as a result. Disabling the interrupt functionality is also necessary to avoid disrupting or
interfering with the prng routine. Accordingly, the cli command clears the Interrupt bit on the Status
Register (SREG). This is the opposite effect of the sei command. When the Interrupt bit on SREG is
cleared, no further interrupts can take place. Although it should not be necessary, this program also
clears all of the ADC enable bits of the ADCSRA register as a redundant means of canceling the ADC
Conversion interrupt.

Idi r25, 0x00
Idi r26, 0x00
Idi OverFlowReg, 0x00

These are standard initializations to prepare for the prng routine.
writeprngeeprom:

sbic EECR,EEPE
rimp writeprngeeprom

wdr

This is the beginning of the writeprngeeprom routine. The first two lines of this routine are the polling
loop to ensure that the EEPE bit of EECR is clear (see the RNG section for more details). The next
command, wdr, simpl clears the watchdog.

Idi PRNGCounter, 0x08

Recall from the RNG section that RNGSeed was not written to EEPROM until all of the eight bits in the
RNGSeed byte were rewritten with fresh random data. This was done to prevent unnecessary patterns
from forming. The same methodology is used for the prng routine. PRNGCounter is the counter that
stores the number of bits of PRNGSeed that have been replaced with fresh pseudorandom data.
PRNGCounter is set to eight and is decremented every time a new bit is added to PRNGSeed. When
PRNGCounter reaches zero, PRNGSeed is written to EEPROM.

mov PRNGByteForEEProm, PRNGSeed

out EEARH, r26
out EEARL, r25

out EEDR, PRNGByteForEEProm

sbi EECR,EEMPE
sbi EECR,EEPE

As discussed above, when PRNGCounter reaches zero, PRNGSeed is written to EEPROM. The code
segment shown above is the algorithm used to do this. It is mostly identical to the algorithm used in the
RNG section to write RNGSeed to EEPROM. In this case, PRNGSeed is first copied to another register
(PRNGByteforEEProm), and that register (PRNGByteforEEProm) is then written to EEPROM.

cp r25, FullRegister
breq overflowprng

writeprngeepromii:

cpse OverFlowReg, FullRegister
incr25

Idi OverFlowReg, 0x00
Because the prng routine writes to all bytes of EEPROM (address bytes 0 — 4096), just as does the RNG
routine, it uses the same methodology and algorithms as does the RNG routine to write to EEPROM.
The code segment shown above is identical to the corresponding code segment in the RNG routine
because the algorithm is exactly the same. For a more detailed discussion on what this code segment
does, the reader is encouraged to review the RNG section.
Ifsr:

mov PrevSeed, PRNGSeed

mov TempSeed, PRNGSeed

Isl TempSeed
Isl TempSeed

eor PrevSeed, TempSeed
Isl TempSeed
eor PrevSeed, TempSeed
Isl TempSeed
eor PrevSeed, TempSeed
The code segment shown above is the beginning of the Ifsr routine. The Ifsr routine is where the Linear

Feedback Shift Register (LFSR) algorithm is actually performed. In order to understand the Ifsr routine, it
is necessary to review the general LFSR algorithm.

The Fibonacci LFSR algorithm works as follows:

1) A register containing a predetermined number of bits is filled with ones and zeroes. This is the
seed of the LFSR. In this project, because the AT90USB1287 offers 8-bit registers, the LFSR seed
was determined to have 8 bits.

2) The “taps” are chosen. The taps are the bits within the register that will be used to determine
the next bit generated by the LFSR. The list of taps in the LFSR is referred to as the tap
sequence.

3) It is to the user’s advantage to choose taps that produce a maximum LFSR. A maximum LFSR
will cycle through all possible states of ones and zeroes that the register can assume (except for
the state in which all bits are zero, which will never change, no matter how many iterations)
before repeating a state. Increasing the number of unique states that the LFSR produces before
repeating a state is advantageous so that patterns do not form in the pseudorandom data. The
user is thus advised to choose taps that produce a maximal LFSR. In this project, the tap
sequence is the gt bit, the 6" bit, the 5t bit, and the 4t bit, which is labeled [8, 6, 5, 4].

4) The values of the taps are EORed together to form the next bit to be added to the register.
Because the [8, 6, 5, 4] tap sequence was chosen for this project, the Sth, 6th, Sth, and 4" bits are
EORed together to produce the next bit to be added to the register.

5) The bits of the register are shifted either one bit to the left or one bit to the right. The bit
generated in step four is copied into the vacant bit that remained from the shift of this step.

6) This procedure is repeated to continuously generate pseduorandom data.

To return to the code of this project:
Ifsr:
mov PrevSeed, PRNGSeed
mov TempSeed, PRNGSeed

The contents of PRNGSeed are copied to the PrevSeed and TempSeed registers so that these two
registers can perform the LFSR algorithm.

Isl TempSeed
Isl TempSeed

eor PrevSeed, TempSeed

Because the tap sequence is [8, 6, 5, 4], the first step is to EOR the 8™ and 6" bits. TempSeed is shifted
to the left twice to isolate Bit 6 of TempSeed in the leftmost bit position. Now PrevSeed holds the 8" bit
of PRNGSeed in its leftmost bit position, and TempSeed holds the 6" bit of PRNGSeed in its leftmost
position. The EOR operation between PrevSeed and TempSeed will EOR these two leftmost bits and
store the result in the leftmost bit of PrevSeed. PrevSeed now holds the result of the EOR operation of
the 8" and 6" bits of PRNGSeed, as desired.

Isl TempSeed

eor PrevSeed, TempSeed

TempSeed is now shifted left so that the 5™ bit of PRNGSeed is now in the leftmost bit position of
TempSeed. This bit is EORed with PrevSeed and stored in PrevSeed. This is equivalent to taking the
result of the EOR of the 8" and 6™ bits of PRNGSeed (the step just completed) and EORing it with the 5t
bit of PRNGSeed. The result is stored in PrevSeed because PrevSeed is the first operand in the EOR
command.

Isl TempSeed
eor PrevSeed, TempSeed

Lastly, TempSeed is shifted left so that the 4™ bit of PRNGSeed is now in the leftmost bit position of
TempSeed. This bit is EORed with PrevSeed and stored in PrevSeed. This is equivalent to taking the
result of the EOR of the 8", 6™, and 5" bits of PRNGSeed (the step just completed) and EORing it with
the 4" bit of PRNGSeed. This completes the tap sequence, as the 8th, 6”‘, Sth, and 4™ bits of PRNGSeed
have now been EORed. The result of this operation is stored in the leftmost bit of PrevSeed.

Isr PRNGSeed

andi PrevSeed, 0b10000000
andi PRNGSeed, 0b01111111
or PRNGSeed, PrevSeed

Essentially, the purpose of this algorithm is as follows. PRNGSeed is shifted to the right once to make
room for the newest bit generated in the steps above. This means that Bit 7 (leftmost bit) is now vacant
and ready to accept the newest generated bit. The three lines of code that follow copy the leftmost bit
of PrevSeed (newest generated bit, as described above) into the leftmost bit of PRNGSeed. This
algorithm is identical to that used in the RNG routine. The reader is encouraged to review that section
in the RNG explanation for more detail.

dec PRNGCounter

Now that a new bit of pseudorandom data has been added to PRNGSeed, the PRNGCounter can be
decremented.

cpse ZeroCounter, PRNGCounter
rimp Ifsr

rimp writeprngeeprom

The first statement of the code segment shown above tests to see if ZeroCounter is equal to
PRNGCounter. ZeroCounter is a register that statically stores 0x00. ZeroCounter was initialized in the
main routine to hold 0x00 and its value is never changed throughout the program. As a result,
comparing ZeroCounter to PRNGCounter is actually a test to determine if PRNGCounter equals 0x00. If
PRNGCounter does equal zero, it means that the Ifsr routine has been performed eight times. This
means that each of the eight bits in the PRNGSeed byte has been replaced by freshly generated
pseduorandom data. If this is the case, the “cpse ZeroCounter, PRNGCounter” statement will evaluate
to true, which will cause program control to skip the next statement (rjmp Ifsr). Program control will

therefore be transferred to the “rimp writeprngeeprom” statement. The writeprngeeprom routine will
then be executed; as discussed above, this will cause PRNGSeed to be written to EEPROM. On the other
hand, if PRNGCounter is not equal to 0x00, it means that Ifsr has not been yet been performed eight
times. In this case, the Ifsr needs to be run again. The “cpse ZeroCounter, PRNGCounter” statement will
evaluate to false, the “rjmp Ifsr” statement will not be skipped and will be executed this time, and
program control will be transferred to the Ifsr routine to be run again.

overflowprng:
Idi RNGSeed, 0b00010000

cp r26, RNGSeed
breq endprogramloop

incr26

Idi r25, 0x00

Idi OverFlowReg, OxFF

rimp writeprngeepromii
endprogramloop:

rimp endprogramloop

The last portion of code is the overflow routine used for the prng (overflowprng). This routine is almost
identical to the overflow routine used for the rng (overflowrng), with one exception. With the RNG, the
program allows EEPROM to be overwritten indefinitely. As long as the user does not terminate the
program, EEPROM will continue to write over itself. This is not the case with the PRNG in order to
provide the programmer with built-in debugging and testing. When the PRNG routine is called, the
program first writes out the seed used for the PRNG to EEPROM at byte address zero. This is a good test
to determine if the PRNG is working correctly because the first byte of EEPROM should always be the
seed of the PRNG. If the program allows the PRNG to freely overwrite EEPROM as does the RNG, this
seed at byte address zero will be overwritten. The code segment shown above includes the following
code to prevent this from happening:

Idi RNGSeed, 0b00010000

cp r26, RNGSeed
breq endprogramloop

endprogramloop:
rimp endprogramloop

As previously described, EEPROM ranges from byte addresses 0 — 4095. In order to prevent EEPROM
from being overwritten, the program needs to stop when the EEARH and EEARL registers evaluate to
4096. Recall that this program controls EEARH and EEARL with registers r26 and r25, respectively.
Consequently, when r26 and r25 evaluate to 4096, the program should terminate. R26 and r25 evaluate
to 4096 when r26 is equal to 0b00010000 and r25 is equal to 0b00000000 because 2 A 12 = 4096 (the bit
that is set to one in r26 is the 12" bit of r26 and r25).. It is sufficient, though, to simply test to
determine if r26 is equal to 0b00010000. This is what the first two lines of the sub-code snippet shown
above does. |If r26 does not equal 0b00010000, the program control follows the same overflow
algorithm as used in the RNG. If r26 does equal 0b00010000, program control is transferred to a routine
named endprogramloop. The purpose of endprogramloop is to run indefinitely, but not perform any
actions, until the user terminates the program.

Results of NIST Randomness Tests on Weak and Strong PRNGs

All of the tests executed on the weak and strong PRNGs were developed by the NIST Random Number
Generation Technical Working Group (NIST RNG-TWG). These tests were implemented because this
group’s test suite if often cited as the industry standard and state-of-the-art in random number
generation. The tests listed below were chosen for this project.

* Frequency test

®* Runs test

¢ Cumulative Sums (Forward) test
* Cumulative Sums (Reverse) test
* Linear Complexity test

* Overlapping Templates test

For each of these tests, a test statistic named the p-value is generated. NIST considers data to be
sufficiently random is the p-value is greater than 0.01.

The Frequency (Monobit) Test was chosen because, as stated in the NIST RNG-TWG software
documentation, “It is recommended that the Frequency test be run first, since this supplies the most
basic evidence for the existence of non-randomness in a sequence, specifically, non-uniformity.” Due to
the fact that the Frequency (Monobit) Test was chosen, the use of the Frequency (Block) Test was
excluded because these two tests examined the same type of non-randomness, namely having too many
ones or zeroes.

The Runs and the Longest-Run-of-Ones (Block) Tests both examine the oscillation of ones and zeroes
within a string to determine randomness. The Runs Test measures the total number of runs within the
target string, whereas the Longest-Run-of-Ones (Block) Test measures the longest run of ones within
blocks of the target string. The Runs Test was chosen because the sample size is relatively low (4096
bytes).

Both the Overlapping Template Mapping Test and the Non-overlapping Template Test determine if a
pre-specified target substring occurs too frequently for the entire string to be considered random. If the

target substring is found beginning at a certain bit within the entire string, the Non-overlapping Test
continues checking by proceeding to the bit after the last bit of the target substring match. The
Overlapping Test instead proceeds to only the bit after the first bit of the target substring match. The
Overlapping Test was chosen to ensure that all possible matches were considered. It was accepted for
the purposes of this study the NIST RNG-TWG's suggested default template length of 9 bits.

The Cumulative Sums Test evaluates the partial summations of the terms in the target string, provided
that the zeros are converted to (-1). The absolute value of the difference between these cumulative
partial summations and zero is compared to what would be expected from a truly random string of the
same size. This test was chosen because its examination of sequential dependence is relatively different
from the nature of the other tests. There was no use of the Random Excursions Test or the Random
Excursions Variant Test because these tests were very similar in nature to the Cumulative Sums Test.
The use of any two of these tests would have generated redundant results.

Weak PRNG: LFSR

The original intention of this project was to use the thermistor to produce random data that would serve
as a seed for the two PRNGs (i.e. LFSR and AES). Unfortunately, the thermistor did not generate data
was sufficiently random for the purpose of evaluating the effectiveness of PRNG algorithms. If a PRNG
accepts as input a seed that is not sufficiently random, the resulting pseudorandom data will be highly
predictable. This will certainly cause the PRNG algorithm to fail the NIST tests.

The main goal of this study was to provide a thorough evaluation of two PRNG algorithms. In order to
ensure that the evaluation is an accurate representation of the best results to be expected from each
algorithm, the random data generated by the thermistor was not used. Instead, a seed created by the
programmer was hard-coded into the code for each PRNG. The PRNG then used these hard-coded
seeds as input to the PRNG algorithm. These seeds were designed to be as random as possible.

The hard-coded random seed for the weak PRNG (LFSR) was 10010110. The code given in the Appendix
was modified to use this string as the random seed and to fill EEPROM will 4096 bytes of pseudorandom
data. This data was then run against the NIST tests. The modified code to test the LFSR algorithm with
the hard-coded seed was as follows:

.include "usb1287def.inc"
.device AT90USB1287

.DEF RNGSeed = R19
.DEF PrevSeed = R20
.DEF TempSeed = R21
.DEF PRNGSeed = R22
.DEF PRNGCounter = R23
.DEF PRNGByteForEEProm = R24
.DEF ZeroCounter = R27
.DEF RNGCounter = R28
.DEF FullRegister = R29
.DEF OverFlowReg = R30
.DEF EightRegister = R31

.org 0x0000
rimp main

main:
wdr

Idi r16, low(RAMEND)
out SPL, r16

Idi r16, high(RAMEND)

out SPH, r16

Idi RNGSeed, 0x00

Idi PrevSeed, 0x00

Idi TempSeed, 0x00
Idi PRNGSeed, 0x00
Idi ZeroCounter, 0x00
Idi RNGCounter, 0x00
Idi FullRegister, OxFF
Idi r26, 0x00

Idi r25, 0x00

Idi OverFlowReg, 0x00
Idi EightRegister, 0x08

prng:
Idi r25, 0x00
Idi r26, 0x00
Idi OverFlowReg, 0x00
Idi PRNGSeed, 0010010110

writeprngeeprom:

sbic EECR,EEPE
rimp writeprngeeprom

wdr
Idi PRNGCounter, 0x08
mov PRNGByteForEEProm, PRNGSeed

out EEARH, r26
out EEARL, r25

out EEDR, PRNGByteForEEProm

sbi EECR,EEMPE
sbi EECR,EEPE

cp r25, FullRegister
breq overflowprng

writeprngeepromii:

Ifsr:

cpse OverFlowReg, FullRegister
incr25

Idi OverFlowReg, 0x00

mov PrevSeed, PRNGSeed
mov TempSeed, PRNGSeed

Isl TempSeed
Isl TempSeed

eor PrevSeed, TempSeed
Isl TempSeed
eor PrevSeed, TempSeed
Isl TempSeed
eor PrevSeed, TempSeed

Isr PRNGSeed

andi PrevSeed, 0b10000000

andi PRNGSeed, 0b01111111
or PRNGSeed, PrevSeed

dec PRNGCounter

cpse ZeroCounter, PRNGCounter
rimp Ifsr

rimp writeprngeeprom

overflowprng:

Idi RNGSeed, 0b00010000

cp r26, RNGSeed
breq endprogramloop

incr26

Idi r25, 0x00

Idi OverFlowReg, OxFF

rimp writeprngeepromii
endprogramloop:

rimp endprogramloop:

It should be noted that the JTAG device for the AT90USB1287 was used to read data from EEPROM. The
use of this device was invaluable to this project because there was no other way to read EEPROM as
easily. The one drawback of the JTAG device was that it appeared to add metadata to EEPROM when
saving this data to a file. In order to remove this metadata, the following grep command was used on all
EEPROM data files generated by the JTAG device:

grep -0 ".\{34\}$" test.hex | ./scrb OxOA | ./htobin > test.out

This grep statement also converted the EEPROM hex file into a binary file, which is what worked best
with NIST’s test.

Below are the results of NIST’s tests on the weak PRNG (LFSR). Recall that in order for the tests to be
successful, p must be greater than 0.01:

* Frequency test produced a p-value of 0.661749 (SUCCESSFUL)

* Runs test produced a p-value of 0.041918 (SUCCESSFUL)

¢ Cumulative Sums (Forward) test produced a p-value of 0.378538 (SUCCESSFUL)
* Cumulative Sums (Reverse) test produced a p-value of 0.160236 (SUCCESSFUL)
* Linear Complexity test produced a p-value of 0.609283 (SUCCESSFUL)

* Overlapping Templates test produced a p-value of 0.397277 (SUCCESSFUL)

Strong PRNG: AES

The Advanced Encryption Standard (AES) is widely considered to be one of the strongest (if not the
strongest) encryption algorithm in use today. It is therefore appropriate that AES be used as the strong
PRNG algorithm. However, the AES algorithm is quite complex. It would be far beyond the scope of any
undergraduate project for the student to code the AES algorithm in Assembler. Instead, students of this
project are required to download Assembler coding of the AES Fantastic algorithm from http://point-at-
infinity.org/avraes/ in order to use AES on the AT90USB1287. As a side note, this should teach to the
students the value of only using open-source and freely tested cryptographic algorithms for their

encryption needs. It will also teach students how to learn and incorporate into their projects an
algorithm written by another programmer. This is a skill that they will often need to use in the future.

In the Appendix, the reader will find the AES Fantastic code given at http://point-at-infinity.org/avraes/
with modifications used to write the AES pseudorandom data to EEPROM. All modifications are clearly
marked in the comments directly adjacent to the code. All of the techniques used in the modified AES
Fantastic code were used in either the RNG or weak PRNG code given in the project (or both). As a
result, no further explanation of the modified AES Fantastic code will be given in this section to avoid
redundancy. The reader is encouraged to read the code explanations in the RNG or weak PRNG sections
to obtain more details.

The AES Fantastic code at http://point-at-infinity.org/avraes/ hard-codes a 16-byte plaintext string into
registers rO — r15 of the AT90USB1287. The modified AES Fantastic code writes this plaintext string into
the first 16 bytes of EEPROM. The AES Fantastic code then performs AES encryption on the 16 bytes of
plaintext and produces the corresponding 16 bytes of ciphertext. The modified AES Fantastic code then
writes this ciphertext to EERPOM. In order to completely fill EEPROM with pseudorandom data created
with AES, the 16 bytes of ciphertext are then re-encrypted with AES to produce an additional 16 bytes of
ciphertext. The additional 16 bytes of ciphertext are then written to EEPROM. This process of taking as
input the 16 bytes of ciphertext produced by the last step, re-encrypting them with AES, and writing the
resultant new 16 bytes of ciphertext to EEPROM is repeated until EEPROM is full (4096 bytes in total).

Unfortunately, the modified AES Fantastic code did not appear to work correctly. There were several
checks set up to test whether the modified AES fantastic code was successful, such as: 1) Was all of
EEPROM being filled? 2) Was all of EEPROM being filled only once? 3) Were the first 16 bytes of
EEPROM the original 16-byte plaintext coded into the AES fantastic code? 4) Did any patterns emerge
in the resulting pseudorandom data that could be detected by eye? Etc. The modified AES Fantastic
code passed all of these checks with the exception of one (but possibly the most important one). A
debugger was used to step through the modified AES Fantastic code line-by-line to determine what the
first 16 bytes of ciphertext should be (the ciphertext produced after the first round of AES encryption).
All signs from the debugger indicated that these 16 bytes of ciphertext should have been written
correctly to EEPROM. However, the corresponding 16 bytes in EEPROM did not match what the
debugger reported. It is possible that the aforementioned metadata that the JTAG device produces
could have caused this discrepancy, but this has not yet been confirmed or denied. Further study will be
required to determine the cause of the discrepancy.

Because all other checks of the modified AES Fantastic code passed, the pseudorandom data that was
produced was run against the NIST tests. Below are the results (recall that a test passes if p is greater
than 0.01):

* Frequency test produced a p-value of 0.434655 (SUCCESSFUL)

* Runs test produced a p-value of 0.083891 (SUCCESSFUL)

¢ Cumulative Sums (Forward) test produced a p-value of 0.445366 (SUCCESSFUL)
* Cumulative Sums (Reverse) test produced a p-value of 0.091001 (SUCCESSFUL)
* Linear Complexity test produced a p-value of 0.576198 (SUCCESSFUL)

* Overlapping Templates test produced a p-value of 0.246770 (SUCCESSFUL)

It should be noted that the results of the strong PRNG (AES) tests cannot be fully trusted until the
discrepancy described above is resolved. These numbers were generated purely as a troubleshooting
and/or curiosity measure.

Despite this setback, the lesson that the students were supposed to learn was to observe that the p-
values of the strong PRNG (AES) should have been higher than those of the weak PRNG (LFSR). It is
helpful to note, however, that the p-values of the weak PRNG (LFSR), which can be trusted, were all
relatively high. This is quite reassuring considering the fact that the LFSR algorithm is still in use today as
a PRNG algorithm.

Difficulties Experienced

The two main difficulties experienced in this project have been described in detail in the sections above.
Namely, 1) the on-board thermistor of the AT90USB1287 did not produce sufficiently random data; 2)
the code used to write to EEPROM the pseudorandom data generated by the AES Fantastic code did not
pass all accuracy checks. More details on these difficulties can be found in the RNG and Strong PRNG
sections of this report, respectively.

Additional difficulties experienced were the following: 1) coding a secure PRNG algorithm in Assembler;
2) verifying that it is working properly on the AT90USB1287. Although | do have experience coding
cryptographic algorithms such as RC4 in high-level languages such as C++ and Java, | did not have any
Assembler experience before enrolling in the Computer Security Architecture course. This situation is
exacerbated by the fact that Assembler is so different in design and structure than languages such as
C++ and Java.

Moreover, when selecting a strong PRNG algorithm, | had to perform further research to determine its
most secure form. There are relatively secure cryptographic algorithms that have known weaknesses if
not implemented properly. A good example of this is the RC4 algorithm. RC4 operates at a fast speed
and has the capability to provide strong encryption with pseudorandom data. However, it has been
shown that if RC4 is not implemented properly, a known plaintext attack can reveal information about
the key.

Lastly, in my experience with coding cryptographic algorithms, | always had access to input/output
systems that allowed me to view the values that my program generated. This allowed me to confirm
with a high degree of confidence that my program was working as intended. The limited input/output
interface of the AT90USB1287 made this process more challenging. The use of the JTAG device with the
AT90USB1287 was absolutely essential with respect to this matter.

Suggestions for Improvement and Future Work

There are two main suggestions for future work: 1) improve the RNG to provide data that is more
random; 2) revise the strong PRNG code (AES Fantastic) so that it works as intended. With respect to
the former, this could consist of researching better ways to use the on-board thermistor so that it
produces data with a higher level of unpredictability. This could also consist of finding an entirely
different source of random data, such as a different hardware component of the AT90USB1287. With

respect to the revisions of the strong PRNG code, this will require further debugging of the code given in
the Appendix of this report.

Conclusions

The purpose of this report is to provide students with a better understanding of programming in
Assembler and of random and pseudorandom data. Both of these topics are covered in detail so as to
demonstrate to the student their importance in modern practice. Sample code and detailed
explanations are given to the student of how to program the following: 1) a RNG using the on-board
thermistor of the AT90USB1287; 2) a weak PRNG using the LFSR algorithm; and 3) a strong PRNG using
the AES algorithm. It is hoped that by the end of this report, students will understand all three
components, how they fit together, and why they are important to the modern practice of coding and

cryptography.

Unfortunately, not every component of this project went accordingly to plan. The on-board thermistor
ultimately did not provide data that was sufficiently unpredictable, so random strings had to be hard-
coded into the PRNG algorithms. In addition, the strong PRNG code (AES Fantastic) did not pass all
checks for accuracy, so its results could not be trusted. Both of these discrepancies will be resolved by
the time this report is used in an undergraduate course in the Fall 2008 semester.

References

“Security and Privacy”. Lecture course offered at the Johns Hopkins University Information Security
Institute by Dr. Aviel D. Rubin. Fall 2007 Semester.

http://en.wikipedia.org/wiki/Rc4. “RC4”. Article published by Wikipedia.

http://csrc.nist.gov/rng. NIST Randomness Tests offered on the NIST website.

http://www.atmel.com/dyn/resources/prod documents/doc7608.pdf

http://www.atmel.com/dyn/resources/prod documents/doc7627.pdf

http://www.atmel.com/dyn/resources/prod documents/doc7593.pdf

http://www.avr-asm-download.de/beginner en.pdf

http://www.atmel.com/dyn/resources/prod documents/7593S.pdf

http://www.avrbeginners.net/architecture/adc/m8 adc example.html

http://en.wikipedia.org/wiki/Linear feedback shift register

http://point-at-infinity.org/avraes/

http://www.analoglab.com/adc.html

Appendices

-Source Code

No comments have been included in this source code because each line of code has been thoroughly
commented in the sections above.

RNG and Weak PRNG (LFSR)

.include "usb1287def.inc"
.device AT90USB1287

.DEF RNGSeed = R19
.DEF PrevSeed = R20
.DEF TempSeed = R21
.DEF PRNGSeed = R22
.DEF PRNGCounter = R23
.DEF PRNGByteForEEProm = R24
.DEF ZeroCounter = R27
.DEF RNGCounter = R28
.DEF FullRegister = R29
.DEF OverFlowReg = R30
.DEF EightRegister = R31

.org 0x0000

rimp main

.org 0x003A

call ADC_ISR

ADC_ISR:
push rl6
inrl6, SREG
push rl6
push r17
Ids r16, ADCL
Ids r17, ADCH
Isl RNGSeed

andi r16, 0b00000001

andi RNGSeed, 0b11111110
or RNGSeed, ri16

mov PRNGSeed, RNGSeed

inc RNGCounter

cpse RNGCounter, EightRegister
rimp finishinterrupt

writerngeeprom:

sbic EECR,EEPE
rimp writerngeeprom

Idi RNGCounter, 0x00

out EEARH, r26
out EEARL, r25

out EEDR, RNGSeed

sbi EECR,EEMPE
sbi EECR,EEPE

cp r25, FullRegister
breq overflowrng

writerngeepromii:

cpse OverFlowReg, FullRegister
incr25

Idi OverFlowReg, 0x00
finishinterrupt:

pop rl7

pop rl6

out SREG, rl16

pop rl6

reti
overflowrng:

incr26

Idi r25, 0x00

Idi OverFlowReg, OxFF

rimp writerngeepromii

main:

loop:

wdr

Idi r16, OXFF
out DDRD, r16

Idi r16, OxCF
out DDRE, r16

Idi r16, Ox1F
out DDRB, r16

Idi r16, 0x30
out PortE, r16

Idi r16, OXEO
out PortB, r16

Idi r16, low(RAMEND)
out SPL, r16
Idi r16, high(RAMEND)
out SPH, r16

Idi r16, 0b01000000
sts ADMUX, r16

Idirl6,0b11101111
sts ADCSRA, r16

Idi RNGSeed, 0x00

Idi PrevSeed, 0x00

Idi TempSeed, 0x00
Idi PRNGSeed, 0x00
Idi ZeroCounter, 0x00
Idi RNGCounter, 0x00
Idi FullRegister, OxFF
Idi r26, 0x00

Idi r25, 0x00

Idi OverFlowReg, 0x00
Idi EightRegister, 0x08

sei

wdr

inrl7, PinB

inrl8, PinE

sbrsrl7, 6
rjimp prng

sbrsrl8, 4
rjimp prng

sbrsrl7,7
rjimp prng

sbrsrl§, 5
rjimp prng

sbrsrl7,5
rjimp prng

rimp loop
prng:
cli
sts ADCSRA, ZeroCounter
Idi r25, 0x00
Idi r26, 0x00
Idi OverFlowReg, 0x00

writeprngeeprom:

sbic EECR,EEPE
rimp writeprngeeprom

wdr
Idi PRNGCounter, 0x08
mov PRNGByteForEEProm, PRNGSeed

out EEARH, r26
out EEARL, r25

out EEDR, PRNGByteForEEProm

sbi EECR,EEMPE
sbi EECR,EEPE

cp r25, FullRegister
breq overflowprng

writeprngeepromii:

Ifsr:

cpse OverFlowReg, FullRegister
incr25

Idi OverFlowReg, 0x00

mov PrevSeed, PRNGSeed
mov TempSeed, PRNGSeed

Isl TempSeed
Isl TempSeed

eor PrevSeed, TempSeed

Isl TempSeed

eor PrevSeed, TempSeed

Isl TempSeed

eor PrevSeed, TempSeed

Isr PRNGSeed

andi PrevSeed, 0b10000000
andi PRNGSeed, 0b01111111
or PRNGSeed, PrevSeed

dec PRNGCounter

cpse ZeroCounter, PRNGCounter
rimp Ifsr

rimp writeprngeeprom

overflowprng:

Idi RNGSeed, 0b00010000

cp r26, RNGSeed
breq endprogramloop

incr26

Idi r25, 0x00

Idi OverFlowReg, OxFF

rimp writeprngeepromii
endprogramloop:

rimp endprogramloop

Strong PRNG (AES)

My modifications to the original code have been clearly marked in the adjacent comments.

; Copyright (C) 2006 B. Poettering

; This program is free software; you can redistribute and/or modify

; i1t under the terms of the GNU General Public License as published by
; the Free Software Foundation; either version 2 of the License, or

; (at your option) any later version. Whenever you redistribute a copy
; of this document, make sure to include the copyright and license

; agreement without modification.

; This program is distributed in the hope that it will be useful,
; but WITHOUT ANY WARRANTY; without even the implied warranty of
; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

; GNU General Public License for more details.

; You should have received a copy of the GNU General Public License

; along with this program; if not, write to the Free Software

; Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
; The license text can be found here: http://www.gnu.org/licenses/gpl.txt

; http://point-at-infinity.org/avraes/

; This AES implementation was written in November 2006 by B. Poettering.
; It is published under the terms of the GNU General Public License. If
; you need AES code, but this license is unsuitable for your project,

; feel free to contact me: avraes AT point-at-infinity.org

rrrrrrrrrrrr L LT LI rr I LI LI LI LI LI L r L r I LI L r L r LI rrrrrrrrrrrrs

; RijndaelFantastic

; This is a microcontroller implementation of the Rijndael block cipher,
better

; known as AES. The target device class is Atmel's AVR, a family of very fast
; and very powerful flash MCUs, operating at clock rates up to 16 MHz,

; executing one instruction per clock cycle (16 MIPS). The implementation

given here is optimized for RAM requirement, and achieves an encryption
rate of about 63 kByte/sec (on a 16MHz MCU). Decryption is done with
55 kByte/sec.

The implemented algorithm is restricted to block and key sizes of 128 bit.
Larger key sizes can be obtained by altering the key scheduling code, which
should be easy.

This implementation makes extensive use of the AVR's "lpm" instruction,
which loads data bytes from program memory at given addresses (the s-boxes
are realized that way). Some members of the AVR family don't offer that
instruction at all (e.g. AT90S1200), others only in a restricted way
(forcing the target register to be r0). The code below requires the least
restricted lpm instruction (with free choice of the target register).

The ATmegal6l devices meet the above mentioned requirements.

Statistics:
16 MHz MCU | clock cycles | blocks per second | bytes per second

encryption | 4059 | 3942 | 63070
decryption | 4675 | 3422 | 54759

(key preprocessing time is not considered)

This source code consists of some routines and an example application,
which encrypts a certain plaintext and decrypts it afterwards with the
same key. Comments in the code clarify the interaction between the key
expansion and the encryption/decryption routines.

encourage to read the following Rijndael-related papers/books/sites:
] "The Design of Rijndael", Daemen & Rijmen, Springer, ISBN 3-540-42580-2
] http://www.esat.kuleuven.ac.be/~rijmen/rijndael/

] http://www.esat.kuleuven.ac.be/~rijmen/rijndael/rijndaeldocV2.zip

] http://www.esat.kuleuven.ac.be/~rijmen/rijndael/atmal.zip

1

I
[
[
[
[
[http://csrc.nist.gov/CryptoToolkit/aes/rijndael/

1
2
3
4
5

[1] is *the* book about Rijndael, [2] is the official Rijndael homepage,
[3] contains the complete Rijndael AES specification, [4] is another
Rijndael-implementation for AVR MCUs (but much slower than this one,
taking 3815 clock cycles per encryption), [5] is the official NIST AES
site with further links.

AVR and ATmega are registered trademarks by the ATMEL corporation.

See http://www.atmel.com and http://www.atmel.com/products/avr/ for
further details.

.include "usbl287def.inc"

.def H1 = rlo6
.def H2 = rl7
.def Rcon = rl8

.def OverFlowReg = r2l1 ; THIS IS MY CODE
.def FullRegister = r22 ; THIS IS MY CODE
.def HighByteOverflow = r27; THIS IS MY CODE

main: cli ; initialize stack
1di r31,high (RAMEND)
out SPH,r31
1di r31, low (RAMEND)
out SPL,r31

1di ZH, high (key<<1) ; load key to RAM position $0060
1di ZL, low(key<<1l)
1di YH, high($0060)
1di YL, low($0060)
main0: lpm rl6, Z+
st Y+, rl6
cpi YL, low($0060+16)
brne main0

1di ZH, high(text<<1l) ; load plaintext to r0-rl5
1di ZL, low(text<<l)
lpm r0, Z+

lpm rl, Z+

lpm r2, Z+

lpm r3, Z+

lpm r4, Z+

lpm r5, Z+

lpm r6, Z+

lpm r7, Z+

lpm r8, Z+

lpm r9, Z+

lpm rl0, Z+

lpm rll, ZzZ+

lpm rl2, Z+

lpm rl3, Z+

lpm rl4d, ZzZ+

lpm rl5, Z+

; MY INSERTED CODE BEGINS HERE
; THIS CODE IS TO WRITE THE PLAINTEXT TO EEPROM BEFORE IT IS ENCRYPTED

1di r19, 0x00

1di r20, 0x00

1di OverFlowReg, 0x00
1di FullRegister, OxFF
wdr

writetexteepromi:

sbic EECR,EEPE
rijmp writetexteepromi

out EEARH, r20
out EEARL, rl9

out EEDR, rO
inc rl9

sbi EECR, EEMPE

sbi EECR, EEPE
wdr
writetexteepromii:

sbic EECR,EEPE
rjmp writetexteepromii

out EEARH, r20
out EEARL, rl19

out EEDR, rl
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromiii:

sbic EECR,EEPE
rijmp writetexteepromiii

out EEARH, r20
out EEARL, rl19

out EEDR, r2
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromiv:

sbic EECR,EEPE
rijimp writetexteepromiv

out EEARH, r20
out EEARL, rl9

out EEDR, r3
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

writetexteepromv:

sbic EECR,EEPE
rjmp writetexteepromv

out EEARH, r20
out EEARL, rl9

out EEDR, r4
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromvi:

sbic EECR,EEPE
rjmp writetexteepromvi

out EEARH, r20
out EEARL, rl9

out EEDR, r5
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromvii:

sbic EECR,EEPE
rijimp writetexteepromvii

out EEARH, r20
out EEARL, rl9

out EEDR, r6
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writeeepromviii:

sbic EECR,EEPE
rijmp writeeepromviii

out EEARH, r20
out EEARL, rl9

out

inc

sbi
sbi

wdr

EEDR, r7
rl9

EECR, EEMPE
EECR, EEPE

writetexteepromix:

sbic EECR,EEPE
rijimp writetexteepromix

out
out

out

inc

sbi
sbi

wdr

EEARH, r20
EEARL, rl9
EEDR, r8
rl9

EECR, EEMPE
EECR, EEPE

writetexteepromx:

sbic EECR,EEPE
rijimp writetexteepromx

out
out

out

inc

sbi
sbi

wdr

EEARH, r20
EEARL, rl9
EEDR, r9
rl9

EECR, EEMPE
EECR, EEPE

writetexteepromxi:

sbic EECR,EEPE
rjmp writetexteepromxi

out
out

out

inc

sbi
sbi

EEARH, r20
EEARL, rl9
EEDR, rl0

rl9

EECR, EEMPE
EECR, EEPE

wdr
writetexteepromxii:

sbic EECR,EEPE
rijmp writetexteepromxii

out EEARH, r20
out EEARL, rl9

out EEDR, rll
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromxiii:

sbic EECR,EEPE
rjimp writetexteepromxiii

out EEARH, r20
out EEARL, rl9

out EEDR, rl2
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromxiv:

sbic EECR,EEPE
rijimp writetexteepromxiv

out EEARH, r20
out EEARL, rl9

out EEDR, rl3
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromxv:

sbic EECR,EEPE

rijimp writetexteepromxv

out EEARH, r20
out EEARL, rl9

out EEDR, rl4
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr
writetexteepromxvi:

sbic EECR,EEPE
rijimp writetexteepromxvi

out EEARH, r20
out EEARL, rl19

out EEDR, rlb5
inc rl9

sbi EECR, EEMPE
sbi EECR,EEPE

; MY INSERTED CODE ENDS HERE

1di YH, high($0060) ; encrypt the plaintext
1di YL, low($0060)

; MY INSERTED CODE BEGINS HERE
; THIS IS TO CONTINUOSLY RUN AES AND WRITE THE RESULTS TO EEPROM

1di FullRegister, OxFF
1di OverFlowReg, 0x00

myloop:

rcall AESEncryptl28
rcall AESKeyRewind

writecipheepromi:

sbic EECR,EEPE
rjmp writecipheepromi

out EEARH, r20
out EEARL, rl9

out EEDR, rO

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngi

writeciphitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromii
overflowprngi:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramone

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphitwo
endprogramone:

Jjmp endprogram
writecipheepromii:

sbic EECR,EEPE
rjmp writecipheepromii

out EEARH, r20
out EEARL, rl9

out EEDR, rl

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngii

writeciphiitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromiii
overflowprngii:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramtwo

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphiitwo
endprogramtwo:

Jjmp endprogram
writecipheepromiii:

sbic EECR,EEPE
rjmp writecipheepromiii

out EEARH, r20
out EEARL, rl9

out EEDR, r2

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngiii

writeciphiiitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromiv
overflowprngiii:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramthree

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rjmp writeciphiiitwo
endprogramthree:

Jjmp endprogram
writecipheepromiv:

sbic EECR,EEPE
rijmp writecipheepromiv

out EEARH, r20
out EEARL, rl19

out EEDR, r3

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngiv

writeciphivtwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromv
overflowprngiv:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramfour

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphivtwo
endprogramfour:

jmp endprogram

writecipheepromv:

sbic EECR,EEPE
rjmp writecipheepromv

out EEARH, r20
out EEARL, rl9

out EEDR, r4

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breqg overflowprngv

writeciphvtwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromvi
overflowprngv:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breqg endprogramfive

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphvtwo
endprogramfive:

Jjmp endprogram
writecipheepromvi:

sbic EECR,EEPE
rjmp writecipheepromvi

out EEARH, r20
out EEARL, rl9

out EEDR, r5

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngvi

writeciphvitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromvii
overflowprngvi:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breq endprogramsix

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphvitwo
endprogramsix:

Jjmp endprogram
writecipheepromvii:

sbic EECR,EEPE
rjmp writecipheepromvii

out EEARH, r20
out EEARL, rl9

out EEDR, r6

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngvii

writeciphviitwo:

cpse OverFlowReg, FullRegister

inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromviii
overflowprngvii:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramseven

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rjmp writeciphviitwo
endprogramseven:

Jjmp endprogram
writecipheepromviii:

sbic EECR,EEPE
rjmp writecipheepromviii

out EEARH, r20
out EEARL, rl9

out EEDR, r7

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngviii

writeciphviiitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rijmp writecipheepromix
overflowprngviii:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow

breq endprogrameight

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rjmp writeciphviiitwo
endprogrameight:

Jjmp endprogram
writecipheepromix:

sbic EECR,EEPE
rijmp writecipheepromix

out EEARH, r20
out EEARL, rl9

out EEDR, r8

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngix

writeciphixtwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rijmp writecipheepromx
overflowprngix:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breq endprogramnine

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF
rijmp writeciphixtwo

endprogramnine:

jmp endprogram
writecipheepromx:

sbic EECR,EEPE
rijmp writecipheepromx

out EEARH, r20
out EEARL, rl9

out EEDR, r9

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breqg overflowprngx

writeciphxtwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromxi
overflowprngx:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramten

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphxtwo
endprogramten:

Jjmp endprogram
writecipheepromxi:

sbic EECR,EEPE
rjmp writecipheepromxi

out EEARH, r20
out EEARL, rl9

out EEDR, rl0

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngxi

writeciphxitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromxii
overflowprngxi:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogrameleven

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphxitwo
endprogrameleven:

Jjmp endprogram
writecipheepromxii:

sbic EECR,EEPE
rjmp writecipheepromxii

out EEARH, r20
out EEARL, rl9

out EEDR, rll

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngxii

writeciphxiitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromxiii
overflowprngxii:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramtwelve

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rjmp writeciphxiitwo
endprogramtwelve:

Jjmp endprogram
writecipheepromxiii:

sbic EECR,EEPE
rjmp writecipheepromxiii

out EEARH, r20
out EEARL, rl9

out EEDR, rl2

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngxiii

writeciphxiiitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00
rjmp writecipheepromxiv
overflowprngxiii:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breq endprogramthirteen

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rjmp writeciphxiiitwo
endprogramthirteen:

Jjmp endprogram
writecipheepromxiv:

sbic EECR,EEPE
rjmp writecipheepromxiv

out EEARH, r20
out EEARL, rl9

out EEDR, rl3

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngxiv

writeciphxivtwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rijmp writecipheepromxv
overflowprngxiv:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogramfourteen

inc r20
1di r19, 0x00
1di OverFlowReg, OxFF

rjmp writeciphxivtwo

endprogramfourteen:
jmp endprogram
writecipheepromxv:

sbic EECR,EEPE
rijmp writecipheepromxv

out EEARH, r20
out EEARL, rl9

out EEDR, rl4

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breqg overflowprngxv

writeciphxvtwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00

rjmp writecipheepromxvi
overflowprngxv:

1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breq endprogramfifteen

inc r20

1di r19, 0x00

1di OverFlowReg, OxFF

rijmp writeciphxvtwo
endprogramfifteen:

Jjmp endprogram
writecipheepromxvi:

sbic EECR,EEPE
rjmp writecipheepromxvi

out EEARH, r20

out EEARL, rl9
out EEDR, rlb5

sbi EECR, EEMPE
sbi EECR,EEPE

wdr

cp rl9, FullRegister
breq overflowprngxvi

writeciphxvitwo:

cpse OverFlowReg, FullRegister
inc rl9

1di OverFlowReg, 0x00
rijmp myloop
overflowprngxvi:
1di HighByteOverflow, 0b00010000

cp r20, HighByteOverflow
breg endprogram

inc r20
1di r19, 0x00
1di OverFlowReg, OxFF
rijmp writeciphxvitwo
endprogram:
rijmp endprogram
; MY INSERTED CODE ENDS HERE

; I AM COMMENTING THIS OUT B/C WE DO NOT NEED DECRYPTION

/*
1di YH, high($0060) ; prepare key for decryption
1di YL, low($0060)
rcall AESKeyDecPreprocess
rcall AESDecryptl28 ; decrypt the cipher text
*/
mainl: rjmp mainl ; stop
text:
.db $32,543,%$f6,$a8,5$88,%5a,$30,5$8d,$31,$31,$98,%a2,%e0,$37,507,$34
key:

.db $2b, $7e,$15,$16,5%28, Sae, $d2, $Sab, Sab, $f7,$15,5$88,509, Scf, $4f, $3c

;**

* *

; Encrypt the 16 byte block defined by r0-rl5 under the 128 bit key [Y].
; Note that calling this function modifies [Y]. Therefore, before encrypting
a
; second block with the same key [Y] has to be restored. This can be done by
; calling the function AESKeyRewind, but it is faster to simply backup the
; original key somewhere to RAM and to restore it after calling
AESEncryptl28.
; Touched registers: Rcon, H1l, H2, Z
AESEncryptl28:
1di Rcon, 1
AESEncl:rcall AddRoundKey
rcall RAMIncKeyl28
rcall ShiftRowsSubBytes
cpi Rcon, Ox6c
breg AddRoundKey
rcall MixColumns
rjmp AESEncl

;**

* *

; Rewind the key given in [Y]. See AESEncryptl28 for more details.
; Touched registers: Rcon, H1l, H2, Z
AESKeyRewind:
1di Rcon, 0x36
AESKeyR:rcall RAMDecKeyl28
cpi Rcon, O
brne AESKeyR
ret

;**

* *

; Preprocess the key given in [Y] for use for decryption. See AESDecryptl28
; for more details.

; Touched registers: Rcon, H1l, H2, Z

; I AM COMMENTING THIS OUT B/C WE DO NOT NEED DECRYPTION

/*
AESKeyDecPreprocess:

1di Rcon, 1
AESKeyF:rcall RAMIncKeyl28

cpi Rcon, Ox6c

brne AESKeyF

ret

;**

* x

; Decrypt the 16 byte block defined by r0-rl5 under the 128 bit key [Y].
; The decryption key has to be preprocessed by AESKeyDecPreprocess before
; calling this funtion. Like in AESEncryptl28 [Y] is modified by this

; function, but the key can be restored by calling AESKeyDecPreprocess.
Again,

; backing up the key to RAM will be faster.

; Note that AESKeyRewind and AESKeyDecPreprocess are the inverses of each

; other. In other words: if encryption and decryption are performed in

; strictly alternating order, the calls to AESKeyRewind and AESKeyPreprocess
; can be ommitted.

; Touched registers: Rcon, H1l, H2, Z

AESDecryptl28:
1di Rcon, 0x36
rcall AddRoundKey
rcall RAMDecKeyl28
rcall ShiftRowsSubBytesInverse
AESDecl:rcall AddRoundKey
rcall RAMDecKeyl28
rcall MixColumnsInverse
rcall ShiftRowsSubBytesInverse
cpi Rcon, O
brne AESDecl
*/

;**

* *

; The following subroutines are for internal use only. They shouldn't be
; called by any client application directly.

;**

* %

.def ST11 = r0
.def ST21 =rl
.def ST31 = r2
.def ST41 = r3
.def ST12 = r4
.def ST22 = rb
.def ST32 = rb6
.def ST42 = r7
.def ST13 = r8
.def ST23 = r9
.def ST33 = rl0
.def ST43 = rll
.def ST14 = rl2
.def ST24 = rl3
.def ST34 = rl4
.def ST44 = rlb
AddRoundKey: ; Touched registers: ST11-ST44, H1

1d H1, Y
eor ST11, HI1

1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
1dd
eor
ret

MixColumnsInverse: ;

1di
mov
eor
lpm
lpm
eor
eor
mov
eor
lpm
lpm
eor
eor

mov
eor
lpm
lpm
eor
eor
mov
eor
lpm

H1, Y+1
ST21, H1
H1, Y+2

ST31, H1
H1, Y+3

ST41, H1
H1, Y+4

ST12, H1
H1, Y+5

ST22, H1
H1, Y+6

ST32, H1
H1, Y+7

ST42, H1
H1, Y+8

ST13, H1
H1, Y+9

ST23, HI1
H1, Y+10
ST33, HI1
H1, Y+11
ST43, H1
H1, Y+12
ST14, H1
H1, Y+13
ST24, H1
H1, Y+14
ST34, H1
H1, Y+15
ST44, H1

ZH, high (xtime<<1)
ZL, ST11
zL, ST31
7L, 2
7L, 2
ST11l, zL
ST31, ZL
ZL, ST21
ZL, ST41
7L, 2
7L, 2
ST21, zZL
ST41, zL

7L, ST12
zL, ST32
2L, 2
2L, 2
ST12, ZL
ST32, ZL
7L, ST22
7L, ST42
2L, 2

Touched registers:

ST11-ST44, H1, H2,

u = xXtime(xtime(a[0] ~ al[2]))
a[0] "= u
al[2] "= u
v = xtime (xtime(a[l] ~ al[31))

lpm
eor
eor

mov
eor
lpm
lpm
eor
eor
mov
eor
lpm
lpm
eor
eor

mov
eor
lpm
lpm
eor
eor
mov
eor
lpm
lpm
eor
eor

MixColumns: ;

1di
mov
eor
mov
eor
eor
mov
lpm
eor
eor
mov
eor
lpm
eor
eor
mov
eor
lpm
eor
eor
mov
eor
lpm
eor
eor

2L, 2
ST22, ZL
ST42, ZL

zL, ST13
zL, ST33
ZL, 2
2L, 2
ST13, ZL
ST33, ZL
zL, ST23
zL, ST43
2L, 2
ZL, 2
ST23, ZL
ST43, ZL

7L, ST14
zL, ST34
2L, 2
2L, 2
ST14, ZL
ST34, ZL
7L, ST24
7L, ST44
2L, 2
2L, 2
ST24, ZL
ST44, ZL

ZH, high (xtime<<1)
H1, ST11
H1, ST21
7L, H1
H1, ST31
H1, ST41
H2, ST11
7L, Z ;
ST11l, ZL
ST11l, HI1
ZL, ST21
zL, ST31
7L, 2
ST21, ZL
ST21, H1
zL, ST31
ZL, ST41
7L, 2
ST31, ZL
ST31, HI1
ZL, ST41
7L, H2
7L, 2
ST41, ZL
ST41, H1

Touched registers:

; Tmp

; save a
Tm = xtime (a

; alo]

ST11-ST44,

[0] for later use
[0] ~ afl])
= Tm ~ Tmp

mov
eor
mov
eor
eor
mov
lpm
eor
eor
mov
eor
lpm
eor
eor
mov
eor
lpm
eor
eor
mov
eor
lpm
eor
eor

mov
eor
mov
eor
eor
mov
lpm
eor
eor
mov
eor
lpm
eor
eor
mov
eor
lpm
eor
eor
mov
eor
lpm
eor
eor

mov
eor
mov
eor
eor
mov

H1, ST12
H1, ST22
zL, H1

H1, ST32
H1, ST42
H2, ST12
2L, 2

ST12, ZL
ST12, H1
7L, ST22
7L, ST32
2L, 2

ST22, ZL
ST22, H1
7L, ST32
7L, ST42
ZL, 2

ST32, ZL
ST32, HI1
7L, ST42
7L, H2

2L, 2

ST42, ZL
sT42, H1

H1, ST13
H1, ST23
zL, H1

H1, ST33
H1, ST43
H2, ST13
2L, 2

ST13, ZL
ST13, H1
zL, ST23
zL, ST33
2L, 2

ST23, ZL
ST23, HI1
zL, ST33
zL, ST43
2L, 2

ST33, ZL
ST33, H1
zL, ST43
7L, H2

2L, 2

ST43, ZL
ST43, H1

H1, ST14
H1, ST24
7L, H1

H1, ST34
H1, ST44
H2, ST14

lpm ZL, 2
eor ST14, ZL
eor ST14, HI1
mov ZL, ST24
eor ZL, ST34
lpm ZL, 2
eor ST24, ZL
eor ST24, H1
mov ZL, ST34
eor ZL, ST44
lpm ZL, 2
eor ST34, ZL
eor ST34, H1
mov ZL, ST44
eor 4L, H2
lpm ZL, 2
eor ST44, ZL
eor ST44, HI1
ret

ShiftRowsSubBytes: ; Touched registers: ST11-ST44, H1l, Z
1di ZH, high (sbox<<1)
mov ZL, ST11
lpm ST11, Z
mov ZL, ST12
lpm ST12, Z
mov ZL, ST13
lpm ST13, Z
mov ZL, ST14
lpm ST14, Z
mov H1, ST21
mov ZL, ST22
lpm ST21, Z
mov ZL, ST23
lpm ST22, Z
mov ZL, ST24
lpm ST23, Z
mov ZL, HI1
lpm ST24, Z
mov H1, ST31
mov ZL, ST33
lpm ST31, Z
mov ZL, HI1
lpm ST33, Z
mov H1, ST32
mov ZL, ST34
lpm ST32, Z
mov ZL, HI1
lpm ST34, Z
mov H1, ST44
mov ZL, ST43
lpm ST44, Z
mov ZL, ST42
lpm ST43, Z
mov ZL, ST41
lpm ST42, Z

mov ZL, HI1
lpm ST41, Z
ret

ShiftRowsSubBytesInverse: ; Touched registers: ST11-ST44, H1l, Z
1di ZH, high (isbox<<1)
mov ZL, ST11
lpm ST11, Z
mov ZL, ST12
lpm ST12, Z
mov ZL, ST13
lpm ST13, Z
mov ZL, ST14
lpm ST14, Z
mov H1l, ST21
mov ZL, ST24
lpm ST21, Z
mov ZL, ST23
lpm ST24, Z
mov ZL, ST22
lpm ST23, Z
mov ZL, HI1
lpm ST22, Z
mov H1, ST31
mov ZL, ST33
lpm ST31, Z
mov ZL, HI1
lpm ST33, Z
mov H1, ST32
mov ZL, ST34
lpm ST32, Z
mov ZL, HI1
lpm ST34, Z
mov H1, ST44
mov ZL, ST41
lpm ST44, Z
mov ZL, ST42
lpm ST41, Z
mov ZL, ST43
lpm ST42, Z
mov ZL, HI1
lpm ST43, Z
ret

RAMIncKeyl28: ; Touched registers: Rcon, H1l, H2, Z
1di ZH, high (sbox<<1)
ldd H2, Y+12
ldd zL, Y+13
lpm ZL, 2
eor ZL, Rcon
1s1l Rcon
brcc PC+2
1di Rcon, 0xlb
rcall RAMIncl
ldd zL, Y+13

RAMDecl:1dd 2L,

lpm ZL, 2
rcall RAMIncl
ldd zL, Y+13
lpm ZL, 2
rcall RAMIncl
mov ZL, H2
lpm ZL, 2
rcall RAMIncl
sbiw YL, 4
ret

RAMIncl:1d H1, Y

eor ZL, HI1
st Y+, ZL
ldd H1, Y+3
eor ZL, HI1
std Y+3, ZL
1ldd H1, Y+7
eor ZL, HI1
std Y+7, ZL
1ldd H1, Y+11
eor ZL, H1
std Y+11, ZL
ret

RAMDecKeyl28: ;

Touched registers:

1di ZH, high (sbox<<1)

1di H1, 4

ldd H2, Y+8
eor 4L, H2
std Y+12, ZL
1dd ZL, Y+4
eor H2, ZL
std Y+8, H2
1ld H2, Y+
eor 4L, H2
std Y+3, ZL
dec HI

brne RAMDecl

Y+12

ldd zL,
lpm ZL,
1ld H1,
eor HI,

st Y, HI

ldd zL,
lpm ZL,
1ld H1,
eor HI,

st Y, HI

ldd zL,
lpm ZL,
1ld H1,
eor HI,

st Y, HI

ldd ZL,
lpm ZL,
1d HI,

Y+
Z

-Y

ZL

Y+
Z

-Y

ZL

Y+
Z

-Y

ZL

Y+
Z

-Y

8

12

12

12

Rcon,

H1,

H2,

eor H1l, ZL

eor H1, Rcon
st Y, HI

lsr Rcon

cpi Rcon, 0x0d
brne PC+2

1di Rcon, 0x80
ret

rorors

AR A AR A A A A A A AR A A AR A A A A A A A A A AR A KA AR A AR A AT A A I AR I AR A A A kA kA kA A kA Ak kA kA ko k&

; ;5 SBOX and "xtime" tables

;7; The following tables have to be aligned to a flash position with lower
;;; address byte equal to $00. In assembler syntax: low(sbox<<l) ==

;;; To ensure the proper alignment the assembler directive .ORG should be
;77 used. The order of the tables is arbitrary. They even do not have to be
;77 allocated in adjacent memory areas.

.CSEG
.ORG $800 ; ensure proper alignement

sbox:

.db $63,$7c,$77,$7b,$f2,$6b,S$6f,S$ch,$30,%$01,%67,5%2b, $fe, $d7, $Sab, $76
.db $ca, $82,$c9,$7d,$fa, $59,%$47,5$£0, $ad, $d4, Sa2, $af, $9c, Sa4,$72,5c0
.db $b7,$fd, $93,$26,%$36,$3f,$f7,S$cc, $34, $a5,$e5,5$f1,%71,5$d8,$31,5%15
.db $04,$c7,%23,5%c3,518,5%96,505,%9a,$07,$12,$80, $e2, Seb, $27,$b2,$75
.db $09,$83,32¢c, $1a, $1b, $6e, $5a, $al, $52, $3b, $d6, $b3, $29, $e3,$2f, $84
.db $53,%d1,$00, $ed, $20, $fc, Sbl, $5b, $6a, Scb, Sbe, $39, $4a, $S4c, $58, $cf
.db $d0, Sef, Saa, $fb, $43, $4d,$33,5$85,%$45,$£9,$02,$7£f£,$50, $3c, $9f, $a8
.db $51,%a3,$40,$8f,%$92,%9d,$38,5$f5, $bc, $b6, $da, $21,$10, $£f,S$£3, $d2
.db $cd, $0c, $13, Sec, $5f£,$97,$44,5$17,%c4,%a7l,S$7e,5$3d,%$64,5$5d,$19,5%73
.db $60,$81,%4f, $dc, $22,%2a, 590,588,546, See, $Sb8, $14, $de, $5¢e, $0b, $db
.db $e0,$32,%$3a,5$0a,%49,306,$24,55¢c, $c2,$d3, Sac,$62,591,$95,5%e4,579
.db $e7,5%c8,$37,5%6d, $8d, $d5, $4e, $a9, $6c, $56,S$f4, Sea, $65, $7a, Sae, $08
.db $ba, $78,$25,$%2e,5$1c, $Sa6,Sb4d, S$co, $e8, $dd, $74,5%1£f, $4b, Sbd, $8b, $8a
.db $70,$3e, $b5, $66,$48,503,5f6, $0e,$61,$35,5$57,$b9, $86, $cl, $1d, $9%e
.db $el,$f8,$98,511,5%69,5d9, $8¢e,594,5$9b, $1le, $87, $e9, Sce, $55, $28, sdf
.db $8c, $al, $89,5$0d, $bf, Se6,$42,5$68,541,$99,$2d,$0f, $b0, $54, $bb, $16

isbox:

.db $52,%009, $6a, $d5, $30, $36, $a5,$38, $Sbf, $40, $Sa3,$9%e,$81,$£3,35d7, $fb
.db $7c, $e3,$39,$82,5%9b,$2f,S$ff,$87,534,$8e,5$43,5%44,5c4, Sde, $e9, Scb
.db $54,%$7b,$94,$32,%a6,5$c2,$23,5$3d, See, $4c, $95,50b, $42, S$fa, $c3, S4de
.db $08,$2e,%al, $66,$28,5d9, $24,5%b2,$76,$5b, $a2,$49,$6d, $8b, $d1, $25
.db $72,5f8,5f6,564,586,568,598,516,$d4, $Sa4, $5c, Scc, $5d, $65, $b6, $92
.db $6¢,$70,$48,$50,$fd, $Sed, $b9, $da, $5e, $15, $46,5$57, $a7, $8d,$9d, $84
.db $90,$d8, $ab, $00, $8c¢, $bc, $d3,5$0a, $f7, $e4, $58, 505, $b8, $b3, $45, 506
.db $d0, $2c, $le, $8f, $ca, $3£,5$0£,5$02, $c1, $af, Sbd, $03,$01,$13,$8a, $6b
.db $3a,$91,$11,%41,%4f,%67,$dc, Sea, $97,$f2,Scf, Sce, $£0, Sb4d, Se6, 573
.db $96, Sac,$74,$22,%e7, $ad, $35,$85, $e2,$f9,$37,5%e8,%1c, $75, $df, $ee
.db $47,$f1,%1a,$71,5%1d, %29, 5c5,5%89,$6f,S$b7,5$62,S$0e, Saa, $18, Sbe, $1b
.db $fc,$56,$3e,$4b, $c6,5d2,$79,5$20, %$9a, $db, $c0, $fe, $78, $Scd, $5a, $f4
.db $1f, $dd, $a8,$33,%88,%07,%c7,$31,5%b1,$12,5$10,5%59,%27,5$80, Sec, $5f
.db $60,$51,$7f,%a9,%19, $b5, $4a, $0d, $2d, $e5, $7a, $9f, $93, $c9, $9c, Sef

.db
.db

$a0, $e0, $3b, $4d, Sae, $2a, $£5, $b0, $c8, Seb, Sbb, $3¢c, $83, $53,$99, $61
$17,%$2b,$04,$7e,8ba, $77,5$d6, $26,5e1,5$69,514,563,$55,%$21,%0c, $7d

Xtime:

.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db
.db

$00,$02,%04,%06,%08,$0a, $0c, $0e,$10,512,514,5%16,518, S$1a,S1c, Sle
$20,%$22,%$24,%$26,%28,%2a, $2c, $2e,$30,%32,534,5$36,5$38,$3a, $3c, $3e
$40,%$42,544,546, 548, $4a, $4c, $S4e, $50, $52,$54, 556, $58, $5a, $5¢, $5e
$60,$62,%$64,5$66,568,S6a, $6¢c, $6e,570,572,574,5$76,578,%7a,S$7c,S$7e
$80,$82,%$84,%$86,588, $8a, $8¢c, $8e,$90,5$92,594,596,598, $9%a, $9c, $9e
$a0, $a2, $a4, Sa6, $a8, Saa, Sac, Sae, $b0, $b2, $Sb4, $b6, $b8, Sba, $Sbc, $Sbe
$c0, $c2, $c4,Sc6,5c8, Sca, Scc, Sce, $d0, $d2, $d4, $do6, $d8, $Sda, $dc, $de
$e0, $e2, Se4d, Seb, $e8, Sea, Sec, See, $£0,$£2,5$f4,5f6,$£8, $fa, $fc, Sfe
$1b, $19,%1f,$1d,%13,%11,%17,%15,5%0b,509,50£f,5$0d,5$03,5%01,%07,%05
$3b, $39,$3f,$3d,$33,%31,$37,$35,5%2b,529, $2f,$2d,$23,5$21,%$27,%$25
$5b, $59, $5f, $5d, $53, $51, $57, $55, $4b, $49, $4f, $4d, $43,$41,$47, %45
$7b, $79,%$7£,$7d,$73,%71,%$77,%75,%$6b, $69,56f,5$6d,5$63,561,567,$65
$9b, $99,$9f,$9d, $93,$91,$97, $95, $8b, $89, $8f, $8d, $83, $81,$87, $85
S$bb, $b9, $Sbf, $bd, $b3, $bl, $b7, $b5, $ab, $a9, $af, $ad, $a3, $al, $a7, $ab
$db, $d9, $df, $dd, $d43, $d1, $d7, $d5, $cb, $c9, $cf, $cd, $c3, $cl, $c7,$ch
$fb, $£9,$ff,S$fd, $£3,$f1,$£f7,S$£5, $eb, $e9, Sef, $Sed, $e3, $el, Se7, $eb

