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Here we present experimental and theoretical results for how a stratified fluid, initially
rotating as a solid body with constant angular velocity, Ω, within a closed cylinder of
square cross-section, is spun-up when subject to a small, impulsive increase, ∆Ω, in the
cylinder’s rotation rate. The fluid’s adjustment to the new state of solid rotation can be
characterised by (1) an inviscid, horizontal starting flow which conserves the vorticity
of the initial condition, (2) the eruption of Ekman layer fluid from the perimeter region
of the cylinder’s base and lid, (3) horizontal-velocity Rayleigh layers that grow into the
interior from container’s sidewalls, and (4) the formation and decay of columnar vortices
in the vertical corner regions. Asymptotic results describe the inviscid starting flow, and
the subsequent interor spin-up that occurs due to the combined effects of Ekman suction
through the base and lid Ekman layers, and the growth of the sidewall Rayleigh layers.
Attention is focussed on the flow development over the spin-up time scale Ts = E− 1

2Ω−1,
where E is the Ekman number. (The spin-up process over the much longer diffusive time
scale, Td = E−1Ω−1, is not considered here.) Experiments were performed using particle
imaging velocimetry (PIV) to measure horizontal velocity components at fixed heights
within the flow interior and at regular stages during the spin-up period. The velocity
data obtained is shown to be in excellent agreement with the asymptotic theory.

1. Introduction

Consider a bounded, viscous, incompressible fluid rotating as a solid body with con-
stant angular velocity Ω. The process by which the fluid adjusts to a uniform change, ∆Ω,
in the rotation rate of the flow boundaries is commonly known as spin-up (∆Ω/Ω > 0)
or spin-down (∆Ω/Ω < 0). Given their significance to the dynamics controlling many
geophysical and astrophysical flows, the spin-up and spin-down mechanisms have been
studied for a variety of flow configurations and geometries, as well as for homogeneous,
stratified and conducting fluids, resulting in a truly vast literature on the subject. Here,
we choose not to attempt a summary of any but the most directly relevant work, since
there have appeared two comprehensive reviews, first in Benton & Clark (1974) and,
more recently, in Duck & Foster (2001).
Greenspan & Howard (1963) were the first to provide a theoretical description of linear

spin-up (i.e. with 0 < ϵ ≪ 1, where ϵ = ∆Ω/Ω is the Rossby number) for the case of a
homogeneous fluid confined within a closed, axially symmetric container. They showed
that the increase in rotation rate of the container results in the formation of thin, quasi-
steady viscous Ekman layers at the horizontal base and lid, within which spun-up fluid
is transported radially outward. To compensate for this radial mass flux, a weak axial
flow (commonly referred to as Ekman suction) draws low angular momentum fluid from
the inviscid interior into the upper and lower Ekman layers, which is in turn replaced by



2 M. R. Foster & R. J. Munro

fluid from greater radii so that mass is conserved. Consequently, a secondary meridional
circulation is established within the inviscid interior, drawing fluid radially inwards which,
by conservation of angular momentum, acquires a greater rotational (or zonal) velocity.
In addition, at the container corners, where the horizontal and vertical boundaries meet,
the outward radial Ekman flux is deflected by the sidewall and discharged into, and
transported by, the sidewall boundary layer (Stewartson 1957). The subsequent exchange
of fluid from the Stewartson sidewall layer to the inviscid interior provides the inward
radial mass flux needed to balance the axial flux into the Ekman layer.

Greenspan & Howard (1963) showed the spin-up timescale for a homogeneous fluid to

be Ts = E− 1

2Ω−1, where E = ν/ΩL2 is the dimensionless Ekman number, L a character-
istic length scale and ν the kinematic viscosity of the fluid. That is, on this timescale the
fluid is spun up by the action of the Ekman-layer driven secondary circulations described
above. Eventually, the secondary circulations decay as the fluid approaches the spun-up
state. Any small-scale residual oscillations that remain within the interior after this time
are gradually damped by purely viscous effects over a diffusive timescale Td = E−1Ω−1.
That is, during this final diffusive stage the vertical extent of the Ekman layer has grown
to effectively fill the container. It is important to note that E ≪ 1 in most practical
situations, and so the diffusive timescale, E−1Ω−1, is typically much longer than the
corresponding spin-up timescale, E− 1

2Ω−1.

Walin (1969) and Sakurai (1969) considered the linear spin-up (and spin-down) of
a linearly stratified rotating fluid within a closed circular cylinder, and showed that
the fluid’s vertical density gradient acts to inhibit the secondary Ekman-layer driven
circulations described above. In particular, the presence of the fluid’s density gradient
means that the sidewall boundary layer is unable to transport the deflected radial Ekman
flux (Duck & Foster 2001), giving rise to a source-like eruption of spun-up Ekman-layer
fluid from the corner region, into the interior. Despite this notable difference, Walin
(1969) showed that the characteristic spin-up timescale for a stratified fluid is effectively

the same as that for the homogenous case (i.e. Ts = E− 1

2Ω−1). However, unlike the
homogenous case, the Ekman layer acts to spin-up the stratified fluid to a state of spatially
non-uniform rotation, and the final uniform rotation rate is only attained on a much
longer diffusive timescale of O(σE−1Ω−1), where σ = ν/κ is the Schmidt number with
κ denoting the diffusion coefficient of the stratifying agent.

The majority of spin-up studies (theoretical and experimental) have focussed primarily
on axisymmetric configurations. However, van Heijst (1989) used experiments to analyze
the non-linear spin-up from rest of a homogeneous free-surface fluid in a variety of non-
axisymmetric containers, including a semi-circular cylinder and an annular region with a
radial barrier. This work was further extended by van Heijst et al. (1990) who considered
the spin-up from rest of both homogeneous and linearly stratified fluids in a rectangular
container (with length-to-width ratios of between 2 and 5), and by van de Konijnenberg
& van Heijst (1997) who analysed the spin-up from rest of a homogeneous fluid in a
cylinder of square cross-section, with attention focussed on how free-surface deformation
affects the evolution of the interior flow. Each of these studies found that the fluid’s ad-
justment to a state of solid rotation could be characterised by three key stages, which are
summarised here in relation to the pertinent case of a rectangular container (van Heijst
et al. 1990). Firstly, at early times the boundary layers are still forming and so, relative
to the inertial reference frame, the resulting starting flow is effectively inviscid and has
zero absolute vorticity (when spun up from rest). In the co-rotating reference frame the
starting flow takes the form of a single, central anticyclonic cell with closed streamlines
that fill the flow domain. Furthermore, in the absence of Ekman suction, the starting
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flow is horizontal. During the second stage the boundary layers are established and the
anticyclonic starting-vortex is now stretched by Ekman suction. Moreover, the boundary
layers along each sidewall are observed to separate and detach near the corner regions,
leading to the formation of corner cells consisting of vertical, cyclonic line vortices which
extend over the tank depth. The cells downstream of the two long sides subsequently
grow and interact with the central anticyclonic cell, giving rise to a three-dimensional,
chaotic flow structure. During the final stage the background rotation leads to an even-
tual transition to two-dimensional motion, so that energy is transferred from small to
large scales (i.e. the inverse energy cascade), resulting in the formation of an organised
flow pattern consisting of an array of alternately cyclonic and anticyclonic cells, which
gradually decay as the fluid is spun-up (and spun-down) by the Ekman layer below each
cell.
This paper reports a combined theoretical and experimental investigation into the

linear spin-up of a linearly stratified fluid contained in a (closed) square cylinder, which is
initially in a state of solid rotation. In common with the flow described in the related study
by van Heijst et al. (1990), the flow reported here is predominantly horizontal in nature.
Hence, here, the experiments used two-dimensional particle imaging velocimetry (PIV)
to measure the horizontal fluid velocity components in a horizontal plane section within
the fluid’s interior. Velocity measurements were taken throughout the flow development,
from the initial starting flow following adjustment of the cylinder’s rotation rate, and for
a period of up to at least 2 hrs (which typically corresponded to at least eight spin-up
time scales, Ts). The velocity data were used for direct (quantitative) comparison with
the theoretical results reported in this article. The PIV technique uses digital images
taken of small particles suspended in the fluid interior, which act as a passive tracer.
Hence, further insight into the qualitative features of the flow was obtained by recording
streaklines (or time exposures) of the tracer particles, which provide estimates for the
flow streamlines. The streakline data will be used to illustrate to the reader the key stages
of the flow development.
There are a number of substantial differences between the dynamics of the flow reported

here and that for an axisymmetric container, as reported in Walin (1969). A matter of
great importance in all spin-up problems is the manner in which spun-up fluid in the
Ekman layers affects spin-up in interior of the fluid. Let (u∗, v∗) be dimensional horizontal
velocity components – either Cartesian or polar. Then, the flow rate in the d∗-direction,
per unit lateral distance, for example on the lower horizontal boundary, is

Q∗
d∗ = −1

2

( ν

Ω

)
1

2

(u∗ + v∗ − u∗
b − v∗b ) , (1.1)

where (u∗
b , v

∗
b ) are the boundary velocity components and d∗ is in the x∗-direction in

Cartesian coordinates, or the radial r∗-direction in polar coordinates. (For the standard
spin-up problem, where the adjustment in rotation rate is applied equally to all flow
boundaries, we have u∗

b = 0, v∗b = 0.) As Walin (1969) correctly points out, there is an

Ekman-layer eruption in the axisymmetric case, over a region of width
√
νΩ t∗, so that

on the spin-up time scale, the fluid exchange between the Ekman layer and the invisicid
interior occurs over an order-one region – because the radial Coriolis acceleration is zero
at the vertical wall, and hence the azimuthal velocity component v∗ is zero there. If
there is a differential rotation between the bottom surface and the sidewall, however, so
that u∗

b ̸= 0 and v∗b ̸= 0, then eruption persists over all time scales (Spence et al. 1992).
The situation here is different: Because of the non-zero pressure-gradient parallel to the
sidewall at x∗ = 0, for example, the tangential horizontal velocity component v∗ there
does not vanish, and hence there is non-zero Ekman flux into the corner on the spin-
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up time scale, which must erupt into the interior. Accounting for these eruptions is an
essential ingredient in getting the flow dynamics correct. So, the asymptotic theory for
the spin-up problem considered in this article incorporates delta-function singularities in
the corner regions.
Also, a prominent feature of the observed motion is the formation and decay of cyclonic

corner eddies. These eddies form, as noted above, because the laminar boundary layer
on the sidewalls has a finite-time eruption due to an adverse pressure gradient, and its
cyclonic vorticity is shed into the corners. We show here that such eddy formation will
occur at any Rossby number, no matter how small, at sufficiently long times. By contrast,
in homogeneous spin-up in a rectangular tank, there is a critical Rossby number that
scales with E

1

2 , below which there is no eddy formation.
The structure of the paper is as follows: In §2, we describe the experiment apparatus,

methodology and measurement techniques, and we discuss the observed flow features as
they develop in time. In §3, we present the theoretical treatment of the linearized spin-
up problem in this geometry, including the boundary layers on the sidewalls. We also
present here detailed comparisons of horizontal velocity profiles from the experiments
and the theory. In §4, we turn briefly to the nonlinear sidewall boundary layers and their
connection to eddy formation. Final discussions and concluding remarks are presented
in §5.

2. Experiment apparatus and observations

2.1. Apparatus and flow measurement

Figure 1 shows a sketch of the basic apparatus and set-up. Each experiment was per-
formed in a closed cylinder with a square cross-section of internal width L = 38.0 cm and
heightH = 51.0 cm. The cylinder was mounted on a variable-speed turntable with its cen-
tral vertical axis aligned with the rotation axis of the table. A standard double-reservoir
system (Oster 1965) was used to fill the cylinder with a linearly stratified salt-water

solution with buoyancy frequency N = [g(ρb − ρℓ)/ρℓH]
1

2 , where ρb and ρℓ denote the
fluid densities at the base and lid of the cylinder, respectively. The turntable was then
gradually brought, from rest, to the initial, steady rotation rate, Ω, by applying small
incremental increases in angular velocity over a time interval of 9-12 hrs. (In all experi-
ments reported here the table was set to rotate in the clockwise direction.) The table and
cylinder were then left to spin at the initial rotation rate Ω for a period of at least 16 hrs
(≈ 0.4E−1Ω−1) to allow the fluid to attain a state of near solid-rotation. Any small-scale
circulations still evident after this period were insignificant.
With this set-up procedure complete, each experiment was initiated (at time t∗ = 0)

by applying a small, quasi-impulsive increase, ∆Ω, in the rotation rate of the table. The
resulting relative motion of the fluid was observed and measured using particle imaging
velocimetry (PIV), which is described in detail below. The important parameters for the
experiments reported here are listed in table 1, where note that attention was focussed
on the case of small Rossby number ϵ = ∆Ω/Ω (in the range 0.01-0.11) with the Burger
number S = (N/Ω)2 of order one. Here, the Ekman number is defined as E = ν/ΩL2

and in all cases was O(10−5). For the range of salt concentrations used the kinematic
viscosity (ν) and salt diffusivity (κ) were constant, giving a constant Schmidt number
σ = ν/κ ≈ 670 (Munro et al. 2010). Henceforth, we denote the aspect ratio of the
cylinder’s height and width by h = H/L, which here was fixed at h = 1.34.
As the fluid adjusts to the increased rotation rate of the cylinder, the induced flow is

predominantly horizontal. Hence, two-dimensional PIV was used to obtain measurements
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Figure 1. Sketch of the basic flow configuration and experiment set up. Also shown is the
dimensional coordinate system, (x∗, y∗, z∗), used to describe the flow.

of the fluid velocity field in a fixed horizontal plane within the tank interior during the
spin-up period, and in the coordinate frame rotating with the cylinder. Small, reflective
seeding particles (with mean density 1.026 g/cm

3
) were added to the stratified solution

during the filling process, and allowed to settle into suspension at their neutral-buoyancy
level within the fluid interior, at a mean height z0 above the cylinder base. Several values
of z0 were used (see the penultimate column of table 1), which was set by adjusting
the reference densities ρb and ρℓ. A slotted light box, containing two xenon arc lamps
equipped with cylindrical optics, was mounted on the turntable and used to generate a
thin light sheet directed through the container sidewall to illuminate the seeding particles
within the horizontal plane at height z0 (see figure 1). As the fluid was spun-up, the
relative motion of the illuminated seeding particles was recorded using a co-rotating
digital video camera (with 1280× 1024 pixel resolution and sampling at 30Hz) attached
to the turntable and positioned to view vertically down into the tank interior (see figure
1). The camera was controlled by a remotely operated laptop mounted on the turntable,
which prevented the need for any physical contact with the table during the experiments.
Image sequences were captured in bursts of between 30-90 sec and then transferred from
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Exp Ω [rad/s] ∆Ω [rad/s] N [1/s] ϵ S E
1

2 z0/H Ts [min]

A 0.180 0.0193 0.924 0.107 26.4 0.00621 0.363 14.9

B 0.319 0.00906 0.924 0.0284 8.40 0.00466 0.363 11.2

C 0.428 0.0149 0.934 0.0348 4.76 0.00403 0.386 9.68

D 0.610 0.00674 0.934 0.0110 2.34 0.00338 0.386 8.11

E 0.405 0.00821 0.797 0.0203 3.88 0.00414 0.588 9.95

F 0.524 0.00820 0.797 0.0157 2.31 0.00363 0.588 8.75

G 0.374 0.00840 0.822 0.0225 4.84 0.00430 0.167 10.4

H 0.494 0.0101 0.810 0.0204 2.69 0.00374 0.167 9.01

Table 1. The important experiment parameters, where Ts = E−
1

2Ω−1.

the camera to the laptop for storage. Each experiment ran for at least 2 hrs (i.e. for

ΩE
1

2 t∗ ≈ 8 to 15), with the image bursts captured every 2-3mins during the initial
stages and then every 10-30mins during the later stages as the fluid approached the
spun-up state. At the end of each experiment the velocity data were generated from
the raw images using standard PIV software. To provide additional insight into the flow
structure and development, the raw images were also used to visualise flow streamlines
by recording the streaklines (or time exposures) of the seeding particles. In each case,
the streaklines were generated from exposures recorded over a duration of 30 sec.
Figures 2 and 3 show typical samples of streakline images taken at various times during

experiments C and H (see captions for details). Figure 4 shows a selection of velocity and
vorticity data, also taken from experiment C. Here,we have chosen to show experiments
C and H as they illustrate the flow evolution near both the cylinder’s mid height and the
near-base region (at z0 = 0.386H and z0 = 0.167H, respectively), and are representative
of the behaviour observed in all experiments listed in table 1. For reference purposes we
henceforth let (x∗, y∗, z∗) denote the dimensional Cartesian coordinate system defined
relative to the new rotating frame of the cylinder (as shown in figure 1), with the z∗-axis
directed vertically upwards and the central rotation axis of the table and cylinder located
along (x∗, y∗, z∗) = (L/2, L/2, z∗). The base plane of the cylinder is at z∗ = 0. We now
describe the key stages of the flow development.

2.2. Observations

As discussed previously in van Heijst et al. (1990), the increase in rotation rate of the
cylinder results in a starting flow which, relative to the co-rotating reference frame, takes
the form of a single, symmetric anticyclonic cell centred about the cylinder’s rotation
axis, with closed streamlines that fill the flow domain. The key features of the starting
flow are shown figures 2(a), 3(a) and 4(a), where, recall, here the anticyclonic direction
is anticlockwise. During the first one or two rotation periods the Ekman layers and
sidewall boundary layers are still forming and so, as yet, have no significant influence on
the interior flow. As a consequence, at early times the starting flow within the interior
is effectively inviscid and, in the absence of Ekman suction, remains horizontal. Hence,
relative to the co-rotating reference frame, the interior inviscid starting flow preserves the
vorticity of the initial condition, which for the case of clockwise rotation considered here
is given by ω

∗ = (0, 0, ϖ∗) = 2∆Ωẑ, where ẑ denotes the unit vector in the z∗-direction
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Figure 2. Experiment C (Ω = 0.428 rad/s, ϵ = 0.0348, S = 4.76, z0 = 0.386H): A selection
of streakline images (obtained from 30 sec exposures) taken at various times throughout the
experiment: Images (a)–(f) correspond, respectively, to dimensionless times Ωt∗ = 8.6, 43, 120,

370, 650 and 1200 (or, ΩE
1

2 t∗ = 0.035, 0.17, 0.47, 1.5, 2.6 and 4.7).
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Figure 3. Experiment H (Ω = 0.494 rad/s, ϵ = 0.0204, S = 2.69, z0 = 0.167H): A selection
of streakline images (obtained from 30 sec exposures) taken at various times throughout the
experiment: Images (a)–(f) correspond, respectively, to dimensionless times Ωt∗ = 8.4, 82, 160,

300, 590 and 900 (or, ΩE
1

2 t∗ = 0.031, 0.30, 0.58, 1.1, 2.2 and 3.4).
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Figure 4. Experiment C (Ω = 0.428 rad/s, ϵ = 0.0348, S = 4.76, z0 = 0.386H): A selection of
PIV measurements of the horizontal-plane velocity components (u∗, v∗) and the corresponding
vertical vorticity ϖ∗ = v∗x∗ −u∗

y∗ , obtained at various times during the experiment: Plots (a)–(d)

correspond, respectively, to dimensionless times Ωt∗ = 8.6, 43, 120, and 650 (or, ΩE
1

2 t∗ = 0.035,
0.17, 0.47, and 2.6), and to the streakline images shown in figures 2(a), 2(b), 2(c) and 2(e). The
colour scale for the dimensionless vorticity ϖ∗/∆Ω is shown at the side of plot (d).

and ϖ∗ = v∗x∗−u∗
y∗ is the vertical vorticity component. Note that, in figure 4 the vorticity

scale is shown in dimensionless form (i.e. ϖ∗/∆Ω).
After several rotation periods the Ekman and sidewall boundary layers are now estab-

lished, and for subsequent times the vorticity of the starting flow is stretched by Ekman
suction. Within the first few rotation periods the sidewall boundary layers separate and
eventually detach upstream of each corner region, ejecting cyclonic vorticity which is ad-
vected by the retrograde interior flow to accumulate within the sidewall corner regions.
This leads to the formation of cyclonic line vorticies in each of these corner regions, which
can be seen clearly in figures 2(b) and 3(b). As is the case with the initial starting flow,
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Figure 5. Experiment C (Ω = 0.428 rad/s, ϵ = 0.0348, S = 4.76, z0 = 0.386H):
Measured values of the horizontal velocity component v∗ extracted across the diagonal
q∗ = {(x∗, y∗) : y∗ = x∗ for x∗ ∈ [0, L]}. Plots (a)-(c) correspond, respectively to dimen-

sionless times Ωt∗ = 43, 120 and 370 (or, ΩE
1

2 t∗ = 0.17, 0.47 and 1.5). Here, q∗ has been made

dimensionless by the diagonal length L
√
2, and v∗ by the velocity scale ϵΩL. The error bar

shown in each plot is characteristic of the variability observed in each data set.



Stratified spin-up in a square cylinder 11

(a)

−0.4

−0.2

0

0.2

0.4

0 0.5 1.0

v∗

ϵΩL

(b)

−0.4

−0.2

0

0.2

0.4

0 0.5 1.0

v∗

ϵΩL

(c)

−0.4

−0.2

0

0.2

0.4

0 0.5 1.0

v∗

ϵΩL

q∗/L
√
2

Figure 6. Experiment H (Ω = 0.494 rad/s, ϵ = 0.0204, S = 2.69, z0 = 0.167H):
Measured values of the horizontal velocity component v∗ extracted across the diagonal
q∗ = {(x∗, y∗) : y∗ = x∗ for x∗ ∈ [0, L]}. Plots (a)-(c) correspond, respectively to dimen-

sionless times Ωt∗ = 82, 160 and 300 (or, ΩE
1

2 t∗ = 0.30, 0.58 and 1.1). Here, q∗ has been made

dimensionless by the diagonal length L
√
2, and v∗ by the velocity scale ϵΩL. The error bar

shown in each plot is characteristic of the variability observed in each data set.
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Figure 7.Measured values of the horizontal velocity component v∗ extracted across the diagonal
q∗ = {(x∗, y∗) : y∗ = x∗ for x∗ ∈ [0, L]}. Plot (a) shows data from experiment C at time

ΩE
1

2 t∗ = 2.6 (or, Ωt∗ = 650, which corresponds the streakline data in figure 2e), and plot

(b) shows data from experiment H at time ΩE
1

2 t∗ = 2.2 (or, Ωt∗ = 590, which corresponds
the streakline data in figure 3e). Here, q∗ has been made dimensionless by the diagonal length

L
√
2, and v∗ by the velocity scale ϵΩL. The error bar shown in each plot is characteristic of the

variability observed in each data set.

the vertical axis of these corner vorticies extends over the container depth. For the ex-
periments reported here the presence of the corner cells was typically first observed after
Ωt∗ ≈ 30 (i.e. four or five rotation periods). As more cyclonic vorticity accumulates in
these regions the four corner cells grow in cross-section, while remaining equal in size to
one another, and gradually deform the outer perimeter of the central cell (figures 2c and
3c). Further illustration of the corner-cell development is provided by figures 5 and 6,
which show measured values of the horizontal velocity component v∗ extracted along the
diagonal q∗ = {(x∗, y∗) : y∗ = x∗ for x∗ ∈ [0, L]}, at three separate times (see captions
for details). The velocity profiles shown in figure 5, which are taken from experiment C,
correspond to the respective streakline images shown in figures 2(b), 2(c) and 2(d). Like-
wise, the profiles shown in figure 6 are from experiment H and correspond, respectively,
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to figures 3(b), 3(c) and 3(d). In both cases, the corner cells are clearly evident by the
change in sign of v∗ within the corner regions, which also confirms that the vorticity of
the corner cells is cyclonic compared to the anticyclonic vorticity of interior, central cell.
Figures 5 and 6 also highlight that the measured peak flow speeds in the four corner cells
were always significantly smaller (typically less than 20% for the experiments reported
here) than the corresponding peak flow speeds observed within the interior, central cell.

At the later times shown in figures 5(c) and 6(c), which corresponds to ΩE
1

2 t∗ ≈ 1, we
see that the corner cells have reached an essentially fully spun-down state, while there
remains notable motion within the central cell, which is still being spun-up.

Eventually, a quasi-steady state is reached, as shown in figures 2(d) and 3(d), where
the flow consists of the deformed anticyclonic central cell, which due to the symmetry of
the corner-cell formation is now essentially circular in cross-section, and the four spun-
down corner regions. At heights away from the cylinder’s base (and lid), this basic flow
structure persists for subsequent times, as the relative flow of the central cell is gradually
spun-up by the combined action of Ekman suction through the base and lid Ekman-
layers and, as will be shown in §3, by the horizontal growth of the sidewall boundary
layers into the interior region. Figures 2(d-f) show the gradual decay of the central cell at
height z0 = 0.386H, over several spin-up timescales, and this is typical of the behaviour
observed in experiments A to F, each of which correspond to heights about the cylinder’s
mid-plane.

A somewhat different behaviour is observed at heights close to the cylinder’s base (and
lid). This is best illustrated by the streakline data shown in figure 3 (from experiment
H, at height z0 = 0.167H), and by comparing the two velocity profiles in figure 7,
which show measured values of the horizontal velocity component v∗, extracted along
the diagonal q∗, taken from (a) experiment C (z0 = 0.386H) at time ΩE

1

2 t∗ = 2.6, and

(b) experiment H (z0 = 0.167H) at time ΩE
1

2 t∗ = 2.2. Note that the data in figures
7(a) and 7(b) correspond, respectively, to the streakline images shown in figures 2(e)

and 3(e). As stated above, at time ΩE
1

2 t∗ ≈ 1 the flow shown in figure 3(d) consists of
the central anticyclonic cell with the four spun-down corner regions. However, at time
ΩE

1

2 t∗ ≈ 2 (figures 3e and 7b) we see that equally sized cyclonic cells have reformed
in each of the corner regions. In particular, note that the peak flow speeds within the
corner cells are similar to those observed at earlier times (which is evident by comparing
figures 6b and 7b), but now are comparable to the peak flow speeds observed within the
central anticyclonic cell at this time. We reiterate here that this phenomenon was only
observed in experiments G and H (at z0 = 0.167H), and not at the mid-heights considered
in experiments A to F. For example, the velocity profile in figure 7(a) (experiment C,

z0 = 0.386H) at time ΩE
1

2 t∗ = 2.6 shows that once the corner cells are spun-down at
this height, they subsequently remain spun-down. (See, also, the streakline image for
experiment C in figure 2f.)

The reasons for the corner-cell reformation in the region close to cylinder’s base (and
lid) was not clear from the experiment observations. However, it is likely they are caused
by ejected fluid, not from the sidewall boundary layers, but from the eruption of Ekman-
layer fluid from the perimeter-region of the cylinder’s base (and lid). The erupted fluid
is advected by the retrograde central cell and accumulates in the sidewall corner-regions
adjacent to the base (or lid). After several spin-up timescales (i.e. ΩE

1

2 t∗ ≈ 2) enough
Ekman-layer fluid has erupted and entered these regions for the corner cells to have
grown sufficiently in the vertical direction to be observed at height z0 = 0.167H, as
shown in figure 3(f). The “reformed” corner cells were observed to gradually decay over

several spin-up timescales, so that after ΩE
1

2 t∗ ≈ 3 or 4 the flow in the region above
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the cylinder’s base again consists of the central anticyclonic cell and the four spun-down
corner regions, as shown in figure 3(f). Note that, at this time, the central cell is much
weakened and approaching the spun-up state. Furthermore, comparing figures 2(f) and
3(f) shows that the fluid in the near-base region approaches the spun-up state more
rapidly than the fluid around the cylinder’s mid height, a feature in common with the
case of axisymmetric spin-up of a stratified fluid (Walin 1969).
Finally, it is worth highlighting that the behaviour described here is notably different

from that observed in the case of spin-up from rest in a rectangular container (van Heijst
et al. 1990), where during the separation stage the corner cells form in an asymmetric
way, with larger cells developing downstream of the long sides and small cells downstream
of the short sides. As the larger corner cells grow they deform and eventually interact
with the central anticyclonic cell, which leads to the formation a quasi-steady array of
alternating cyclonic and anticyclonic cells which fill the container interior (the number
of which depends on the aspect ratio of the container).

3. Linear theory

3.1. Overview

There are parametric restrictions in the theoretical analysis presented in this section.
Unlike the situation for homogeneous spin-up problems, these restrictions are related
to certain characteristic phenomena as they occur in time. In particular, there is the
usual “spin-up time scale”, Ts = E− 1

2Ω−1, and as is well known in stratified spin-up, the
final processes occur over a diffusive scale, Td = E−1Ω−1. However, as discussed in §2.2,
separation of the sidewall boundary layers leads to the formation of corner eddies, and
that turns out to occur on a time scale Tf = ϵ−1Ω−1. So, here, we require

Ts ≪ Tf ≪ Td, (3.1)

which then leads immediately to

ϵ ≪ E
1

2 ≪ 1, (3.2)

which will be assumed to hold throughout the theoretical analysis presented in this
section. Referring to table 1 shows that E

1

2 /ϵ ≈ 0.06 to 0.31 for the experiments reported
here. Despite this contradiction with the condition (3.2), we will show that the theoretical
analysis based on (3.2) still shows good quantitative agreement with the experimental
data.

3.2. Problem formulation

The flow configuration has been described in §2 and is shown schematically in figure
1. In addition, the stratified fluid will henceforth be assumed to be incompressible and
Boussinesq. If the potential of the centrifugal force is neglected, the dimensional density
(ρ∗) and pressure (p∗) can be written relative to the rotating coordinate system as

ρ∗(x∗, t∗) = ρℓ + ρ∗s(z
∗) + ρ∗(x∗, t∗), (3.3a)

p∗(x∗, t∗) = p∗s(z
∗) + p∗(x∗, t∗), (3.3b)

where ρ∗s and p∗s denote the contributions associated with the background stratification,
ρℓ is a constant reference density (taken here to be the initial density at the container
lid), and ρ∗ and p∗ are the perturbations arising due to the increase in rotation rate of
the cylinder. It is assumed throughout that ρ∗ ≪ ρ∗s, ρℓ. If the following dimensionless
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Figure 8. A sample of contours for the streamfunction p(x, y) defined in equation (3.15).

variables

u =
u∗

ϵΩL
, x =

x∗

L
, t = Ωt∗, ρ =

gρ∗

ϵρℓΩ2L
, p =

p∗

ϵρℓΩ2L2
, (3.4)

are introduced, where u(x, t) is the velocity vector with components (u, v, w), the time-
dependent governing equations may be written in dimensionless form as

∇ · u = 0, (3.5a)

ut + ϵ(u · ∇)u+ 2(ẑ× u) + ρẑ+∇p = E∇2u, (3.5b)

ρt + ϵ(u · ∇)ρ− Sw = (E/σ)∇2ρ, (3.5c)

where the dimensionless Rossby (ϵ), Ekman (E), Burger (S) and Schmidt (σ) numbers
are, as noted above, defined as

ϵ =
∆Ω

Ω
, E =

ν

ΩL2
, S =

(

N

Ω

)2

, σ =
ν

κ
. (3.6)

The buoyancy frequency N is assumed to remain constant throughout. Also, recall that
the aspect ratio of the cylinder’s height and width has been denoted by h = H/L, which
for the experiments reported here is fixed at h = 1.34. The corresponding initial and
boundary conditions can be written (in dimensionless form) as

u = ẑ× (x− x0) =
(

1
2 − y, x− 1

2 , 0
)

, ρ = 0 for t = 0, x ∈ D, (3.7a)

u = 0,
∂ρ

∂n
= 0 for x ∈ ∂D, t > 0, (3.7b)

where x0 denotes the position vector of the cylinder-base centre, D = {(x, y, z) : x, y ∈
[0, 1], z ∈ [0, h]} is the flow domain, ∂D the domain boundary, and n is used to represent
the normal direction at each boundary.
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Figure 9. The solid lines show the theoretical solution for the starting-flow velocity components
u(x, y) and v(x, y), defined by equations (3.15) and (3.17) (with m,n = 150), compared with
corresponding data obtained from experiments A (�), C (◦), E (△) and G (♢): (a) shows u(y)
(along x = 1/2) plotted against y, and (b) shows v(x) (along y = 1/2) plotted against x. The
experimental data were obtained at dimensionless times t = Ωt∗ = 1.80 (Exp A), 2.14 (Exp C),
1.21 (Exp E) and 1.12 (Exp G). The error bar in each plot is characteristic of the variability
observed in all of the data shown.

3.3. The inviscid interior flow

If we now take E, ϵ to be small, and ignore regions of large gradient, then the equations
(3.5) take the inviscid form

∇ · u = 0, (3.8a)

ut + 2(ẑ× u) + ρẑ+∇p = 0, (3.8b)

ρt − Sw = 0. (3.8c)
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A formal asymptotic expansion may be used, and these equations are valid for terms up
to O(E). Taking the curl and the divergence of (3.8b), one obtains equations involving
pressure, vertical vorticity and vertical velocity. Then, the z-component of (3.8b) may be
used to eliminate the vertical velocity, and the resulting vorticity equation and Poisson
equation for the pressure may be combined to give

∂3

∂t3
(

∇2p
)

+
∂

∂t

(

S∇2
1p+ 4pzz

)

= 0, (3.9)

where in the second term ∇2
1 ≡ ∂2/∂x2+∂2/∂y2 is the horizontal Laplacian. The velocity

components are related to the pressure, in general, by

utt + 4u = −pxt − 2py, vtt + 4v = −pyt + 2px, wtt + Sw = −pzt. (3.10)

The boundary condition at each horizontal wall is no-penetration, so long as the time
scale is shorter than E− 1

2 . The last of the above equations then gives

pzt = 0 at z = 0, h, for t = o(E− 1

2 ). (3.11)

Equation (3.9) itself is valid for all times short of the diffusive time scale.

3.4. The starting flow: t ≪ E− 1

2

Suppose that we wish to investigate the flow at early times, shortly after the container is
spun up to its new angular velocity. Because of the lower and upper wall boundary con-
ditions, (3.11), the solution for all t smaller than the spin-up time scale is z-independent.
Therefore, since, from the initial conditions both ∇2pt and ∇2ptt are zero, and the initial
value of ∇2

1p is 4, equation (3.9) reduces simply to

∇2
1p = 4, (3.12)

subject to the boundary conditions deduced from (3.10). Note that, on the x = 0 bound-
ary, for example, for t ≪ 1,

px = 0. (3.13)

Such Neumann conditions all around lead to a double Fourier cosine series solution of
the Poisson equation (3.12). It turns out all terms except the average term are zero–that
is, no spin-up has yet begun at times of this order. For t = O(1), there clearly are mixed
boundary conditions, but for 1 ≪ t ≪ E−1/2, the boundary condition becomes py = 0,
and therefore p = 0 on x = 0. Such a Dirichlet condition is then the correct one all
around the boundary, and hence, for these times,

p = 0 on x = 0, 1, 0 6 y 6 1 and on y = 0, 1, 0 6 x 6 1. (3.14)

This formulation is equivalent to that found in van Heijst (1989) and van Heijst et al.

(1990) for other asymmetric geometries. The solution to (3.12) and (3.14) is

p = −
∞
∑

m=1

∞
∑

n=1

4γmn

(m2 + n2)π2
ϕm(x)ϕn(y), (3.15)

where

ϕk(x) ≡ sin(kπx), γmn = qmqn, qn =
2

nπ
[1− (−1)n] . (3.16)

From this solution, (3.10) indicates that, in this time range, the velocity components are
clearly given by

u = −py
2
, v =

px
2
. (3.17)
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This solution provides the initial condition for the E− 1

2 time-scale solution.
Figure 8 shows a sample of contours for the starting-flow stream function, p(x, y),

defined in equation (3.15). Comparing these streamlines with the streak path image
shown in figure 2(a), we see there is excellent qualitative agreement between theory and
experiment at early times. A quantitative comparison is presented in figure 9, which
shows the starting-flow velocity components u(x, y) and v(x, y), defined by equations
(3.17) and (3.15), plotted with corresponding experimental data. To avoid saturation
of data points and to allow the theoretical solution (indicated by the solid lines) to be
clearly seen, measurements from four of the eight experiments are shown (see caption
for details). Figure 9(a) shows the velocity profile u(y) along the central symmetry axis
x = 1/2, plotted against y. Similarly, figure 9(b) shows v(x) along the symmetry axis
y = 1/2, against x. Again, the agreement between experiment and theory is excellent.
(Measurements from the four experiments not shown in figure 9 exhibit the same level
of agreement with the theory.)
It is worth highlighting that the theoretical solution for starting flow presented in this

section is an inviscid approximation based on free-slip conditions (but no penetration)
at each of the container sidewalls. As a consequence, the theoretical solutions for u and
v, defined in (3.17), attain peak absolute values along the sidewalls (parallel to their
direction). Of course, in reality, thin viscous shear layers develop along the sidewall
boundaries through which the no-slip condition is satisfied. The effect of these shear
layers is evident figure 4(a), by the thin layers of cyclonic vorticity that develop adjacent
to the sidewalls, and in figure 9 by the rapid decay of the measured values of u and v
near the sidewalls at, respectively, x = 0, 1 and y = 0, 1.

3.5. Motion on the spin-up timescale for t ∼ O(E− 1

2 )

The equation of motion is as before (3.9), but on this long time scale, the first term
in that equation is negligible, and integrating the second term leads to the equation of
motion on this time scale,

∇2
1p+

4

S
pzz = 4. (3.18)

However, the boundary conditions on the base and lid of the cylinder are altered from
(3.11), since now Ekman suction needs to be accounted for. It is well known that the
Ekman layers impose compatibility conditions on the outer velocity components, which
are

w = ±1

2
E

1

2 (vx − uy) on z =

{

0,

h.
(3.19)

Taking the time to be scaled as t = E− 1

2 τ , expanding all quantities as

u(x, y, z, τ) = u0(x, y, z, τ) + E
1

2u1(x, y, z, τ) + . . . , (3.20)

and substituting into (3.8) leads to

u0 = −p0y
2

, v0 =
p0x
2

, w0 = 0, ρ0 = −p0z, w1 = −p0zτ
S

. (3.21)

Then, the leading-order Ekman conditions (3.19) become

p0zτ = ∓S

4
∇2

1p0 on z =

{

0,

h,
(3.22)

which provide boundary conditions for (3.18).
The well-known result, reported in Walin (1969), that there is no boundary layer
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capable of transporting fluid vertically, means that there can be no penetration at the
vertical boundaries, which then gives the additional sidewall boundary conditions

p0 = 0 on x = 0, 1, 0 6 y 6 1 and on y = 0, 1, 0 6 x 6 1. (3.23)

A significant consequence of this boundary condition is that the tangential velocity com-
ponent at the vertical walls is non-zero, which then means, according to (1.1), that the
Ekman layers are not empty as they collide with those walls, so there is an eruption
of fluid at the intersections of vertical and horizontal walls. Since as noted no vertical
boundary layer can transport this erupting fluid, it must re-enter the interior by means
of singular eruptions at those corners (Walin 1969). Hence, to account for this, (3.22)
must be modified as

p0zτ = ∓S

4
∇2

1p0 + E on z =

{

0,

h,
(3.24)

where E denotes the singular eruptions. E must guarantee that there is no net vertical
transport at either the bottom or top boundaries. Since p0zτ is the vertical velocity, E
must be such that, at both z = 0, h,

∫ 1

0

∫ 1

0

p0zτ dx dy = 0. (3.25)

For convenience, we denote this requirement by p0zτ = 0. So, E in (3.24) must be taken
to assure that

p0zτ = 0 on z =

{

0,

h.
(3.26)

Construction of a solution to (3.18) under conditions (3.23), (3.24) and (3.26) requires
the following ansatz :

p0(x, τ) = P (x, y, z, τ) + z2G(τ) + zJ(τ) +K(x, y, τ), (3.27a)

P (x, τ) =

∞
∑

m=1

∞
∑

n=1

Amn(z, τ)ϕm(x)ϕn(y), (3.27b)

Amn(z, τ) = cmn(τ) cosh [µmn(z − h/2)]− Sγmn

µ2
mn

, (3.27c)

∇2
1K = − 8

S
G, (3.27d)

µ2
mn ≡ S

4
(m2 + n2)π2. (3.27e)

Substitution into the averaged boundary condition (3.26) gives

Jτ + Pzτ

∣

∣

z=0
= 0, (3.28a)

Jτ + 2hGτ + Pzτ

∣

∣

z=h
= 0. (3.28b)

Comparing with the early-time solution in §3.4, the initial condition for this set of equa-
tions is

cmn(0) = 0. (3.29)

Subtracting (3.28a) from (3.28b) and integrating with respect to τ gives

G = − 1

4h

∞
∑

r=1

∞
∑

s=1

γrsµrsQrscrs, (3.30)
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since G must also be zero at τ = 0. For convenience, we introduce

Pmn = cosh(µmnh/2), Qmn = sinh(µmnh/2). (3.31)

Integrating (3.28a) with respect to τ gives

J =
1

4

∞
∑

r=1

∞
∑

s=1

γrsµrsQrscrs = −Gh. (3.32)

Then, we may solve (3.27d) for K, which gives

K = 2G
∞
∑

m=1

∞
∑

n=1

γmn

µ2
mn

ϕm(x)ϕn(y). (3.33)

Returning to (3.24), and using the orthogonality of the sine functions, we eventually
obtain

µmnQmncmnτ + µ2
mnPmncmn =

1

4
γmn

∞
∑

r=1

∞
∑

s=1

γrsµrsQrscrsτ

+ Sγmn +
γmn

2h

∞
∑

r=1

∞
∑

s=1

γrsµrsQrscrs. (3.34)

Note that, since E is singular in the corner, it has zero Fourier sine component, and so
does not come into this equation.
We write the solution to (3.34) as

cmn(τ) =
Cmn + Cmn(τ)

µmnQmn
, (3.35)

where Cmn is the particular solution, which is shown in Appendix A to be given by

Cmn =
Sγmn

λmn(1− σ)
, σ =

∞
∑

r=1

∞
∑

s=1

γ2
rs

2hλrs
, (3.36)

where

λmn ≡ µmn coth(µmnh/2). (3.37)

The homogeneous solutions for Cmn have time dependence exp(Λτ), and the eigenvalues
shown in Appendix A to be solutions of

Λh+ 2

4h

∞
∑

m=1

∞
∑

n=1

γ2
mn

Λ + λmn
= 1, (3.38)

where it is also shown that all solutions are real and negative. In Appendix B, we indicate
how these eigenvalues are computed. The first three eigenvalues for the experiments listed
in table 1 are shown in table 2.
The eigenfunction for a given Λα, is given by

C(α)
mn =

Λαh+ 2

Λα + λmn
. (3.39)

The question of how these solutions may be combined to generate a solution that satisfies
the initial condition is discussed in detail in Appendix B.
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Exp S Λ1 Λ2 Λ3

A 26.4 -19.2 -33.2 -36.5

B 8.40 -10.6 -18.7 -20.5

C 4.76 -7.89 -14.0 -15.9

D 2.34 -5.42 -9.78 -10.7

E 3.88 -7.08 -12.7 -13.9

F 2.31 -5.38 -9.72 -10.6

G 4.84 -7.96 -14.1 -15.5

H 2.69 -5.83 -10.5 -11.5

Table 2. The three smallest values of |Λα| for each of the eight experiments listed in table 1.

3.6. Large-τ solution

Since all members of {Λα} are real and negative, the particular solution corresponds to
the large-τ limit, which can be shown from (3.36) to be

lim
τ→∞

p0 =
∞
∑

m=1

∞
∑

n=1

Cmn

µmnQmn

{

cosh [µmn(z − h/2)]− cosh (µmnh/2)
}

ϕm(x)ϕn(y)

− 1

4

∞
∑

r=1

∞
∑

s=1

γrsCrs
[

z(h− z)

h

]

. (3.40)

Inspection clearly shows that p0, and hence u0 = −p0y/2, v0 = p0x/2 vanish at the top
and bottom walls, and the central portion is the last to be spun up. In fact, this quantity
evaluated at the center of the tank, z = h/2, is, apart from a constant,

lim
τ→∞

p0
∣

∣

z=h/2
= −

∞
∑

m=1

∞
∑

n=1

Sγmn

µ2
mn

[

1− sech(µmnh/2)

1− σ

]

ϕm(x)ϕn(y). (3.41)

From this result, we may obtain the vertical vorticity at z = h/2, averaged over the
square, as

(vx − uy)
∣

∣

h/2
=

1

2
∇2

1p0
∣

∣

h/2
=

2

1− σ
− 1

2(1− σ)

∞
∑

m=1

∞
∑

n=1

γ2
mnsech(µmnh/2),

which may easily be proved to be larger than 2, the initial vorticity of the background
rigid rotation. Thus, the vorticity at the center of the tank is actually larger than the
initial vorticity–so the fluid there is less spun up than the initial, impulsive motion. To
understand why, note that the leading-order vorticity equation for the interior motion is

(vx − uy)t = 2wz,

with new vorticity created out of stretching. Integrating this equation from bottom to
top,

∂

∂t

∫ h

0

(vx − uy) dz = 2
(

w
∣

∣

z=h
− w

∣

∣

z=0

)

.
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Then integrating over the square x-y domain, and recalling that the net vertical transport
must be zero at each horizontal wall,

∂

∂t

∫ h

0

(vx − uy) dz = 0 ⇒ Z ≡
∫ h

0

(vx − uy) dz = 2h.

As the regions near the horizontal walls become spun up, on the E− 1

2 time scale, (vx − uy)

goes to zero there, and so to keep Z invariant in time, (vx − uy) must be larger than 2
at least somewhere in the tank. This invariance of Z seems to be a consequence of the
Kelvin Theorem.

3.7. Rayleigh layers on the sidewalls

Unlike axisymmetric spin-up, where the tangential velocity and normal velocity at the
outer wall are zero, and the non-zero vertical velocity must be taken to zero at the
walls, here the tangential horizontal velocity component is non-zero at the vertical walls,
and must be brought to zero there in a viscous layer. It turns out that, on this time
scale, the side-wall layer is simply a Rayleigh layer. No viscous force/vortex-stretching
distinguished limit can occur, since the vertical velocity is so small (see below) in this

layer. To explore this boundary layer, on, say x = 0, we write x = ξ E
1

4 , and scale the
velocity components and pressure as follows:

u = E
1

4 û, v = v̂, w = E
3

4 ŵ, p = E
1

4 p̂. (3.42)

Then, each hatted quantity is expanded in an asymptotic series

ϕ̂ = ϕ̂0 + E
1

4 ϕ̂1 + E
1

2 ϕ̂2 + ϵϕ̂3 + . . . , ϵ ≪ E1/2. (3.43)

Leaving out some details, it turns out on substitution into the full equations of motion
that

û0 = − p̂0y
2

, v̂0 =
p̂0ξ
2

, ŵ0 = − p̂0zτ
S

,

û1 = − p̂1y
2

+A(y, z, τ), v̂1 =
p̂1ξ
2

,

and v̂0 satisfies the differential equation

v̂0τ +Ay = v̂0ξξ, (3.44)

which is clearly the equation for a Rayleigh layer. We note here that the nonlinear term
is missing from this equation for ϵ ≪ E

1

2 , since the asymptotic theory explored so far
requires that restriction, (3.2). Examination of the outer solution shows that to match
Ay = −v0τ (0, y, z, τ), so the equation

v̂0τ − v0τ (0, y, z, τ) = v̂0ξξ, (3.45)

may be solved by Laplace transforms,

v̂0 = L−1
{

L
{

v0(0, y, z, τ)
}

(

1− e−
√
s̄ξ
)}

. (3.46)

It is apparent from table 2 that even at relatively small S, the last transient, due to Λ1,
has died away for τ & O(1), so that Cmn is vanishingly small and only the “long-time”
limit of the interior solution, Cmn, remains numerically significant. In contrast, Rayleigh
layers are still growing and developing for τ = O(1). Hence, to facilitate comparison with
experimental data, we adopt the following approach. Using (3.40) and (3.21) we see that
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the large-τ limit for v0 is given by

V0(x, y, z) = lim
τ→∞

v0(x, y, z, τ) =
∞
∑

m=1

∞
∑

n=1

Cmnmπ

2µmnQmn

{

cosh[µmn(z − h/2)]

− cosh(µmnh/2)
}

ζm(x)ϕn(y), (3.47)

where

ζm(x) = cos(πmx). (3.48)

Hence, using the above argument, we have for τ = O(1)

v̂0 ≈ V0(0, y, z) erf

(

ξ

2
√
τ

)

. (3.49)

For comparison with the experiments, using results from §3.6, we have the leading-order
composite solution that includes the boundary layers on x = 0, 1 as

v(x, y, z, τ) ≈
∞
∑

m=1

∞
∑

n=1

Cmnmπ

2µmnQmn

{

cosh[µmn(z − h/2)]− cosh(µmnh/2)
}

ζm(x)ϕn(y)

− V0(0, y, z)erfc

(

x

2
√

E
1

2 τ

)

− V0(1, y, z)erfc

(

1− x

2
√

E
1

2 τ

)

. (3.50)

Notice that this solution is valid anywhere in the interior, except in the corner regions
where there is a two-dimensional Rayleigh zone, whose solution is much more complicated
than a simple error function. An expression similar to (3.50) may be written down for the
velocity component in the x-direction, u, for which there are boundary layers on y = 0
and y = 1.
We now compare the theoretical, composite solution (3.50) with the velocity data

obtained from the experiments. Note that, (3.50) accounts for the effects of Ekman
suction and for the inward growth of the sidewall Rayleigh layers. It does not, however,
account for the separation of the sidewall boundary layers, or the formation of, and flow
within the corner-cell regions. Hence, a meaningful comparison of experimental data and
theory along the (horizontal-plane) diagonal q = {(x, y) : y = x for x ∈ [0, 1]} is not
possible. However, it is possible to make meaningful comparisons along the symmetry
axes x = 1/2 or y = 1/2, where we expect the interior flow to be little affected by
the corner cells. Here, we have chosen to show comparisons for the horizontal velocity
profile v(x) along the symmetry axis y = 1/2, and at heights z corresponding to the
experimental data. So that results for a range of Burger numbers (S) and heights (z)
can be shown, measurements of v(x) taken from experiments A (S = 26.4, z = 0.363h),
D (S = 2.34, z = 0.386h), E (S = 3.88, z = 0.588h) and H (S = 2.69, z = 0.167h)
are plotted against x in figures 10, 11, 12 and 13, respectively, and are compared with
the corresponding theoretical velocity profiles (solid lines) generated using (3.50), again
evaluated along y = 1/2, and with values for S and z matched with the respective
experiment parameters (see captions for details). As already noted, we expect (3.50) to
be valid for τ = O(1), and so the comparisons shown in each figure are for times between
τ = 1 and 5.
Figures 10, 11 and 12, correspond to heights about the cylinder’s mid-depth. For

these cases, the level of agreement between theory and experiment is generally excellent
at each time shown. Moreover, a comparable level of agreement was also observed at
intermediate times within this range, and for times up to τ ≈ 8. The comparisons at



24 M. R. Foster & R. J. Munro

τ = 1 were generally not as good as those at later times, where there was a slight,
but noticeable over-prediction of the measurements by the theoretical profile. A possible
cause for this discrepancy could be that the effects of Ekman suction remain notable at
this time, with the interior flow still approaching the large-τ limit defined by equation
(3.40). However, as already noted, we believe this is unlikely given the large, negative
values of the principal eigenvalues, Λ1 (see table 2).
The comparisons shown in figure 13 correspond to the region close to the cylinder’s

base (at z = 0.167h). In this case, good agreement between theory and experiment was
observed for times between τ ≈ 1 and τ ≈ 2: Again, there was a slight but noticeable
discrepancy evident at τ = 1, but excellent agreement for later times up to τ ≈ 2. This
was not the case for times τ & 2, where the theory is seen to significantly over-predict
the observed velocity data, as shown in figure 13(c). In §2.2 we showed that, for times
τ & 2, the interior flow in the near-base region is notably affected by the reformation of
cyclonic cells in each of the four corner regions, which are clearly evident in the streakline
image shown in figure 3(e) (which corresponds to τ = 2.2). The result of the corner-cell
reformation, which is not accounted for in (3.50), is that the fluid in the near-base region
is spun-up more rapidly. In particular, note how the influence of the reformed corner
cells is evident in the experimental data shown in figure 13(c) (which extracted along the
symmetry axis y = 1/2) by the change in sign of v in the regions near the x = 0 and
x = 1 sidewalls.
Finally, it is worth reiterating here that the theoretical results derived in §3 are based

on the condition given in (3.2), i.e. that ϵ ≪ E
1

2 ≪ 1. However, the experiments reported

here correspond to E
1

2 /ϵ ≈ 0.06 to 0.31, which clearly contradicts (3.2). Despite this, the
theory and experimental data, in general, exhibit a remarkable level of correspondence.

4. Sidewall boundary layers and eddy formation

At this point, we have worked through the spin-up-time-scale dynamics, and the
Rayleigh layers on the sidewalls. However, with a view to the parametric regime of this
analysis, (3.2), we now investigate the time scale specified by t = ϵ−1t̄. In a layer in which

x = (E/ϵ)
1

2 x̄, we make the following scalings:

u = (E/ϵ)
1

2 ū, v = v̄, w = (ϵE)
1

2 w̄, p = (E/ϵ)
1

2 p̄, (4.1)

and then the equations with the leading-order terms under a typical boundary-layer
approximation become

ūx̄ + v̄y + (ϵE)
1

2 w̄z = 0, (4.2a)

(ϵ3/E)
1

2

[

vt̄ + ūv̄x̄ + v̄v̄y + (ϵE)
1

2 w̄v̄z

]

+ 2ū+ p̄y = (ϵ3/E)
1

2 vx̄x̄ (4.2b)

−2v̄ + p̄x̄ = O((ϵE)
1

2 ), (4.2c)

p̄zt̄ = −Sw̄. (4.2d)

Suppose for now that

ϵ = o(E
1

3 ), (4.3)

which includes the parametric restriction (3.2) in all of the foregoing theory. Writing the
asymptotic expansion in this layer as

v̄ = v̄0 + (ϵ3/E)
1

2 v̄1 + . . . , (4.4)
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Figure 10. Experiment A (Ω = 0.180 rad/s, ϵ = 0.107, S = 26.4, z0 = 0.363H): The solid lines
show the composite solution v(x, y, z, τ), given by equation (3.50), evaluated along the symmetry
axis y = 1/2, at height z = 0.363h and at dimensionless times (a) τ = 1.0, (b) τ = 2.0 and (c)
τ = 4.0. Each curve is compared with corresponding experimental data (◦). The errorbar shown
in each plot is representative of the variability observed in the experimental data.
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Figure 11. Experiment D (Ω = 0.610 rad/s, ϵ = 0.0110, S = 2.34, z0 = 0.386H): The solid lines
show the composite solution v(x, y, z, τ), given by equation (3.50), evaluated along the symmetry
axis y = 1/2, at height z = 0.588h and at dimensionless times (a) τ = 1.0, (b) τ = 2.5 and (c)
τ = 5.0. Each curve is compared with corresponding experimental data (◦). The errorbar shown
in each plot is representative of the variability observed in the experimental data.
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Figure 12. Experiment E (Ω = 0.405 rad/s, ϵ = 0.0203, S = 3.88, z0 = 0.588H): The solid lines
show the composite solution v(x, y, z, τ), given by equation (3.50), evaluated along the symmetry
axis y = 1/2, at height z = 0.588h and at dimensionless times (a) τ = 1.0, (b) τ = 2.0 and (c)
τ = 4.0. Each curve is compared with corresponding experimental data (◦). The errorbar shown
in each plot is representative of the variability observed in the experimental data.
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Figure 13. Experiment H (Ω = 0.494 rad/s, ϵ = 0.0101, S = 2.69, z0 = 0.167H): The solid lines
show the composite solution v(x, y, z, τ), given by equation (3.50), evaluated along the symmetry
axis y = 1/2, at height z = 0.588h and at dimensionless times (a) τ = 1.0, (b) τ = 2.0 and (c)
τ = 2.6. Each curve is compared with corresponding experimental data (◦). The errorbar shown
in each plot is representative of the variability observed in the experimental data.
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the leading-order equations simply reiterate p̄0 as a streamfunction, that is,

v̄0 =
1

2
p̄0x̄, ū0 = −1

2
p̄0y. (4.5)

To next order, so long as ϵ ≫ E, we obtain first

−2v̄1 + p̄1x̄ = 0. (4.6)

Substituting into the continuity equation (4.2a) to this order, and integrating, we find
that

ū1 = −1

2
p1y +A(y, z, t̄). (4.7)

The equation for v̄1 is

v̄0t̄ + ū0v̄0x̄ + v̄0v̄0y + 2ū1 + p̄1y = v̄0x̄x̄. (4.8)

Substituting from (4.7) into this equation leads to the Prandtl boundary-layer equation

v̄0t̄ + ū0v̄0x̄ + v̄0v̄0y +Ay = v̄0x̄x̄. (4.9)

We see, on identifying Ay with −v0v0y in the steady-state interior solution, this equa-
tion is precisely the Prandtl boundary-layer equation. Therefore, since the pressure gra-
dient is adverse past y = 1/2, the boundary layer will have a finite-time singularity on
this time scale at some ys < 1/2, presumably causing the formation of the eddies that
are seen in the experiments in the corners.

Notice that, if ϵ is of the same order as E
1

3 , then the result is the same–the two terms
in the series simply merge together. Suppose, however, that ϵ ≫ E

1

3 but still smaller than
order one. In that case, the scalings may be re-done, the series recast, ending in precisely
the same limit equation (4.9). So, it appears that the conventional Prandtl boundary-
layer equation is the proper limit equation in this rotating frame for all small Rossby
numbers. Finally, notice that if, as is the case in many of the experiments, ϵ/E

1

2 is order
one, then the spin-up time scale and the “eddy-formation time scale” of this section are
identical, so there is in fact no Rayleigh layer on the spin-up time scale. That is to say,
the sidewall boundary layer is fully nonlinear on the spin-up time scale. (Nonetheless, as
noted elsewhere, using the composite expansion (3.50) which incorporates the Rayleigh
layers gives good agreement with experiment!)

There is something important here that we believe has not been noted previously:
In homogeneous spin-up, because of the vortex-stretching term (which is suppressed in
our stratified case), it is easily confirmed that for Rossby number sufficiently small –

smaller than O(E
1

2 ) – there can be no such eddy formation. However, here, the Prantdl
boundary-layer equation is always the proper boundary-layer equation regardless of the
order of the Rossby number. That is, in the case of the problem considered here, eddies
will always form at sufficiently long times, regardless of the order of ϵ.

Finally, unlike axisymmetric spin-up, where the vertical-velocity layer is a standard
“buoyancy layer”, the non-zero w̄ at the base of the Rayleigh layer can be shown to
satisfy, on the spin-up time scale, the following equation:

w̄x̂x̂τ − S(w̄ − w̄w) = 0, x̂ =
S

1

2x

E
3

4

, (4.10)

where w̄w is the value of w̄ from the Prandtl layer, evaluated at ξ = 0.
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5. Summary and final remarks

In this paper, we have reported on a series of experiments in which linearly stratified
fluid, initially rotating as a solid body within a closed square cylinder, is spun up to a
new, slightly faster rotation rate. All experiments were conducted in the linear regime,
where the Rossby number, ϵ = ∆Ω/Ω, was small. We have presented quantitative and
qualitative comparisons of the experimental observations with an asymptotic linear the-
ory. Both the theory and experiments focussed on the early time flow development, for
times up to O(Ω−1), and on the subsequent flow development for times on the order

of the spin-up time scale Ts = E− 1

2Ω−1, which for the experiments reported here was
typically between 10-15mins. Note, the flow development on the much longer diffusive
time scale Td = E−1Ω−1, which here was typically 40 hrs, was not considered.

At early times, the flow adjustment is similar to that reported previously by van
Heijst et al. (1990), for stratified spin-up from rest in a rectangular container, where it
was shown that the initial flow is characterised by zero absolute vorticity. In the case
considered here, where likewise the sidewall and Ekman boundary layers are still forming
at early times, the relative flow is effectively inviscid, two-dimensional and conserves the
vorticity of the initial condition, which for clockwise rotation is ω∗ = 2∆Ωẑ. Moreover,
the relative flow is determined by the pressure field, which is a streamfunction with
u∗ = −p∗y∗/2, v∗ = p∗x∗/2 and satisfies ∇∗2p∗ = 4∆Ω, with p∗ = 0 at the boundaries. The
solution of this equation is straightforward and takes the form of a single anticyclonic
cell, centred about the cylinder’s axis, with closed streamlines that fill the flow domain.
Comparisons between theory and experimental exhibit an excellent level of agreement
on this time scale.

The next stage of the flow development is characterised by the formation and sub-
sequent decay of weak columnar vortices in the cylinder’s vertical corners, which were
clearly evident in all of the experiments. It is shown that for times of order Tf = ϵ−1Ω−1,
the horizontal-velocity boundary layers on the vertical sidewalls are described by Prandtl
boundary-layer equations. Moreover, we conjecture that corner-cell formation is a result
of a finite-time singularity in these Prandtl equations, developing in the region of adverse
pressure upstream of corner regions. So, the cyclonic boundary-layer vorticity erupts from
the sidewalls, resulting in the accumulation of separated fluid with cyclonic vorticity in
each of the corner regions. Note that, in the experiments reported here Tf/Ts = 0.06 to
0.31, and so the cyclonic corner cells are seen to form before Ekman suction has had a
notable effect.

For times of order Ts = E− 1

2Ω−1 the growth of the corner cells has deformed the
perimeter of the central anticyclonic cell, which is now circular in cross-section. Further-
more, the horizontal-velocity boundary layers on the vertical sidewalls are Rayleigh layers
on this timescale. The subsequent spin-up of the central cell is due to the combined ac-
tions of Ekman suction through the base and lid boundary layers, and the inward growth
of the sidewall Rayleigh layers. Furthermore, the eruption of spun-up, Ekman-layer fluid
from the perimeter region of the cylinder’s base and lid is crucial in the development
of the spin-up dynamics on this time scale. An asymptotic result is formulated that ac-
counts for each of these effects which is shown to exhibit excellent agreement with the
experimental data, except very near the base (and lid) of the cylinder.

It is worth repeating here that the asymptotic theory is based on the condition that
0 < ϵ ≪ E

1

2 ≪ 1. In fact, in the experiments the time scale Tf = ϵ−1Ω−1 is significantly

smaller than Ts = E− 1

2Ω−1 and so, as noted above, the corner cells form first on the
spin-up time scale. Hence, the good experiment-theory agreement is very surprising.
One difficulty is that conventional ordering arguments are very imprecise: Two terms in
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a given asymptotic series might have quite different “orders,” but the term of smaller
order could, for a given finite value of the small parameter, be numerically larger because
the coefficient of the term of larger order turns out to numerically small. Since asymptotic
series constructed in the fashion presented here are at this point in the development of
the subject largely ad hoc, it is impossible to make any a priori estimate of a wider range
of validity. Such methods have sometimes led to results that are valid in unexpectedly
large regions of the parameter space. (See, for example, Jobe & Burggraf (1974), whose
“triple-deck” asymptotic correction to the Blasius formula for trailing-edge effects in flat-
plate drag agrees with experiment to Reynolds numbers of around a hundred, whereas
the standard ordering arguments require a Reynolds number of several million.)
This work was supported by a Royal Society travel grant for MRF (grant number

TG100245). The authors gratefully acknowledge Evgenia Korsukova for assisting with
some of the experiments, and for the technical support provided by Damien Goy.

Appendix A

In §3.5, we have summarized the structure of the solution to the set of ordinary differ-
ential equations (3.34). Here, we articulate the details of those results.

A.1. Particular solution to equation (3.34)

Equation (3.34) obviously has a particular solution that obeys

λmnCmn =
γmn

2h

∞
∑

r=1

∞
∑

s=1

γrsCrs + Sγmn, (A 1)

where Cmn is defined in equation (3.35). Dividing by λmn and multiplying by γmn, then
summing over m and n determines the infinite sum in (A 1) to be given by

[

1−
∞
∑

r=1

∞
∑

s=1

γ2
rs

2hλrs

] ∞
∑

m=1

∞
∑

n=1

γmnCmn = S

∞
∑

m=1

∞
∑

n=1

γ2
mn

λmn
. (A 2)

Inserting this result into (A 1) and simplifying, we find that

Cmn =
Sγmn

(1− σ)λmn
, (A 3)

where

σ ≡
∞
∑

r=1

∞
∑

s=1

γ2
rs

2hλrs
. (A 4)

A.2. Homogeneous solution to equation (3.34)

Since equation (3.34) has constant coefficients, we know that the homogeneous solu-
tions have time dependence exp(Λτ), and substitution of that time dependence gives the
nonlinear eigenvalue problem

(Λ + λmn)Cmn =
γmn

4h
(Λh+ 2)

∞
∑

r=1

∞
∑

s=1

γrsCrs. (A 5)

Solving for Cmn, then multiplying by γmn and summing over m and n leads to the
eigenvalue equation (3.38),

Λh+ 2

4h

∞
∑

m=1

∞
∑

n=1

γ2
mn

Λ + λmn
= 1. (A 6)
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Equation (A 5) may be rewritten as

Λ + λmn

Λh+ 2
Cmn =

γmn

4h

∞
∑

r=1

∞
∑

s=1

γrsCrs. (A 7)

Multiplying by C∗
mn and summing over m and n leads to

∞
∑

m=1

∞
∑

n=1

Λ + λmn

Λh+ 2
|Cmn|2 =

1

4h

∑

m,n,r,s

γmnγrsC
∗
mnCrs, (A 8)

where the
∑

notation on the right denotes a quadruple sum from 1 to ∞ over m, n, r,
and s. Taking the complex conjugate of equation (A 7) by Cmn, then summing over m
and n gives the equation

∞
∑

m=1

∞
∑

n=1

Λ∗ + λmn

Λ∗h+ 2
|Cmn|2 =

1

4h

∑

m,n,r,s

γmnγrsCmnC
∗
rs. (A 9)

Interchanging m with r and n with s on the right side summations gives a result identical
to the right side of (A 8). Subtracting this equation from (A8) gives

(

Λ− Λ∗)
∞
∑

m=1

∞
∑

n=1

hλmn − 2

|Λh+ 2|2 |Cmn|2 = 0. (A 10)

It may be easily shown that hλmn−2 > 0 for all values of m and n, so the sum is positive
and hence the only possibility is that Λ is real.
Returning to equation (A 6), notice that the quantity λmn > 2/h, as follows from the

properties of the hyperbolic cotangent. Take Λ > 0, and then, Λ + λmn > Λ + 2/h.
Therefore,

(Λ + 2/h)
∞
∑

m=1

∞
∑

n=1

γ2
mn

Λ + λmn
<

∞
∑

m=1

∞
∑

n=1

γ2
mn, (A 11)

but this sum is equal to 4 from elementary considerations. Thus, we have

1

4
(Λ + 2/h)

∞
∑

m=1

∞
∑

n=1

γ2
mn

Λ + λmn
< 1. (A 12)

However, (A 6) indicates that this quantity must be equal to one, giving a contradiction.
Therefore, Λ < 0. So all modes are damped, that is:

All members of {Λα} are real and negative.

Appendix B

There are two remaining questions related to the solution of the initial-value problem,
detailed below.

B.1. Numerical computation of {Λα}
We need to compute solutions to (A 6), which is done by series truncation. So, we replace
‘∞’ in the double sum by N , which for convenience be now take to be odd only. Exami-
nation of this equation indicates that the polynomial obtained from (A6) by terminating
the sums at N is N , where N = (N + 1)(N + 3)/8, so for example, if N = 5, there
are 6 values for Λ. Typical results are shown in table 2, where N = 151 was used. As is
typical with such series truncations, the modes with smallest |Λα| are insensitive to N .
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Changing to N = 201 gives a change in Λ1, for S = 1, of 0.006%. It is easy to confirm
that N is even, and, from the computations, that Λ1 and ΛN are individual, but the N2

other eigenvalues are in pairs, both in the neighborhood of particular values of (−λmn).
Once the eigenvalue has been determined, then the eigenvector is given, from (A8), by

Cmn = constant×
(

γmn

Λα + λmn

)

. (B 1)

Note that the constant is independent of m and n.

B.2. Initial-value problem solution

So, the general homogeneous solution for Cmn is then a sum over all eigenvalues, for a
given N , and so is given by

Cmn =
N
∑

α=1

χαγmn

Λα + λmn
eΛα t̄. (B 2)

Then, noting the initial condition (3.29), we find that the requirement is

N
∑

α=1

χαγmn

Λα + λmn
= −Cmn = − Sγmn

λmn(1− σ)
, (B 3)

which may be written as

γmn

[ N
∑

α=1

χα

Λα + λmn
+

S

λmn(1− σ)

]

= 0. (B 4)

Note that this equation is identically satisfied if either m or n is even. So, we have the
following set of linear equations for the determination of {χα},

N
∑

α=1

χα

Λα + λmn
= − S

λmn(1− σ)
, for odd m,n. (B 5)

Examination of problem (B 5) shows that the series is slowly convergent, but because of
the relatively large values of |Λα|, good and instructive comparisons, shown in Figures
10, 11, 12 and 13, can be achieved without obtaining {χα}.
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