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We examine the T=0 phase diagram of a thin ferromagnetic film with a strong out-of-plane anisotropy �e.g.,
Co/Pt multilayers� in the vicinity of the reorientation phase transition. The phase diagram in the anisotropy–
applied-field plane is universal in the limit in which the film thickness is the shortest length scale. It contains
uniform fully magnetized and canted phases, as well as periodically nonuniform states: weakly modulated
spin-density waves and strongly modulated stripes. We determine the boundaries of metastability of these
phases and point out the existence of a critical point at which the difference between the spin-density wave and
striped phases vanishes. Out-of-plane magnetization curves exhibit hysteresis loops caused by the coexistence
of one or more phases. Additionally, we study the effect of a system edge on the orientation of nearby stripes.
We compare our results with recent experiments.
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I. INTRODUCTION

Recent experimental studies have revealed rich physics of
thin ferromagnetic films with an easy axis of magnetization
normal to the film plane.1–8 Such films possess several mag-
netic phases in which the magnetization can be uniformly
normal to the plane, canted, or periodically modulated in one
direction �striped�. Magnetization curves exhibit intricate
magnetic hysteresis indicating coexistence of phases. Mag-
netic probes with submicron resolution provide detailed in-
formation about nucleation and growth of new domains dur-
ing the magnetization reversal.1 These developments fuel the
need for a theoretical understanding of ferromagnetism in
thin films.

Theoretical studies of thin films with magnetic moments
pointing out of the plane date back to the 1980s.9 The sim-
plest model describes Ising spins with local ferromagnetic
exchange and long-range dipolar interactions. A competition
between these forces makes the uniform ferromagnetic states
unstable toward the spontaneous formation of magnetic
stripes with an alternating sign of the magnetization. The
stripe period is a mesoscopic length determined by the rela-
tive strengths of exchange and dipolar interactions.

A major drawback of the dipolar Ising model is the ne-
glect of the in-plane components of magnetization, which
become important when the magnetization rotates away from
the plane normal, a process known as the reorientation phase
transition �RPT�. A minimal model must therefore use a
three-dimensional vector of magnetization whose magnitude
M is considered fixed well below the Curie temperature and
whose orientation is given by the colatitude � and azimuth �:
M=M�sin � cos � , sin � sin � , cos �� with the z axis normal
to the film plane xy. In a state with uniform magnetization,
the energy density contains the easy-axis anisotropy
−K cos2 � and the demagnetizing term ��0 /2�M2 cos2 � due
to the magnetic field. In the absence of an applied field or
modulation of the magnetization, the RPT occurs when the
anisotropy drops below the critical strength K0=�0M2 /2.

The assumption of uniform magnetization breaks down in
the vicinity of the RPT: as in the dipolar Ising model, the
competition between local and long-range forces leads to the

formation of stripes with a mesoscopic period that depends
on the effective anisotropy K−K0, exchange strength A, and
the film thickness t.10 Depending on the anisotropy and on
the strength of an applied magnetic field, the stripes can ap-
pear as a weak spin-density wave �SDW� in the background
of uniform magnetization or as fairly wide domains of uni-
form magnetization separated by narrow domain walls.

The presence of the in-plane components of magnetiza-
tion leads to an important distinction of domain walls from
their counterparts in the Ising model: the vector of magneti-
zation rotates between the �mostly� upward and downward
directions. Thus, domain walls are endowed with in-plane
magnetization, a fact with important topological conse-
quences. The domain walls are of the Bloch type: the in-
plane magnetization on them points along the wall. In con-
trast to Néel walls �in-plane magnetization normal to the
wall�, Bloch walls do not generate stray magnetic field and
thus have a lower magnetic energy. We will therefore spe-
cialize to magnetization configurations in which the vector of
magnetization depends on a single coordinate x and lies in
the yz plane:

M = M„0,sin ��x�,cos ��x�… . �1�

Using a variational approach, Berger and Erickson11 ob-
tained a phase diagram of such a one-dimensional model as a
function of the anisotropy K−K0 and an applied out-of-plane
field H�. It exhibits several phases with both first- and
second-order transitions between them. Berger and Erickson
focused on thermodynamic transitions and did not provide
boundaries of metastability. Such boundaries are important
for the understanding of magnetic hysteresis in thin films.
Often thermal activation is insufficient to initiate the decay
of a metastable phase and magnetization reversal begins only
when that phase becomes locally unstable.

Of the several results described in this work, our main
achievement is the determination of out-of-plane magnetiza-
tion curves M��H�� that can be directly compared with ex-
perimental data. We show that, for sufficiently thin films, the
shape of the magnetization curve depends on a single param-
eter that is a function of the dimensionless effective aniso-
tropy �= �K−K0� /K0, film thickness t, and the magnetic ex-
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change length �=�2A /�0M2. This universality is the
consequence of a scaling property of the free energy in the
thin-film limit. A proper rescaling of the anisotropy � and
magnetic field H� yields a universal phase diagram. We
point out the existence of critical points of the liquid-gas
type that terminate lines of thermodynamic first-order phase
transitions between striped and SDW phases. Finally, we dis-
cuss the behavior of stripes near the edge of the film. We find
a tendency for stripes to meet an edge perpendicularly, inde-
pendent of the particular shape of stripe.

The formalism used in this work is minimization of the
free energy. The average out-of-plane magnetization in a
sample with stripes is chiefly dependent on the average pe-
riod of those stripes rather than their orientational or transla-
tional order. We thus neglect the influence of thermal fluc-
tuations, which tend to disrupt the orientational and
translational orders in the stripe phase.12,13

The paper is organized as follows. In Sec. II, we derive
the functional of magnetic free energy specialized to one-
dimensional variations, describe its scaling properties in a
thin-film limit, and introduce appropriately rescaled vari-
ables. We illustrate its use by finding the lines of instability
of the uniform phases in the anisotropy–applied-field phase
diagram. In Sec. III, we determine the boundaries of meta-
stability of nonuniform phases and magnetization curves us-
ing a numerical minimization. We also find the location of
the stripe-SDW critical points in the �K ,H�� plane. Section
IV deals with the behavior of stripes near the film edge.
Some useful intermediate results are described in the appen-
dixes.

II. MODEL

A. Free energy

The free-energy functional for a thin ferromagnetic film
of thickness t can be separated into local and long-range
parts. The local part includes the exchange, uniaxial aniso-
tropy, and Zeeman energies:

Elocal = t� d2r�A��m̂�2 − Kmz
2 − �0MH · m̂� , �2�

where m̂= �sin � cos � , sin � sin � , cos �� is the three-
dimensional unit vector pointing along the magnetization and
�= ��x ,�y� is the two-dimensional gradient in the plane of the
film. The long-range part is due to dipolar interactions:

Edipolar =
�0M2

4�
� d2r� d2r�mz�r�V�r − r��mz�r�� , �3�

where the dipolar kernel V�r�=1/r−1/�r2+ t2 reflects the in-
teraction of magnetic charges with densities ±Mmz�r� in-
duced on the top and bottom surfaces of the film. The ex-
pression for the dipolar energy �3� is valid provided that
there are no magnetic charges in the bulk of the film, i.e.,
�xmx+�ymy =0. This condition is compatible with Eq. �1�,
which describes a system with Bloch domain walls. Domain
walls of the Néel type generate additional dipolar terms.

Specializing to one-dimensional configurations without
bulk magnetic charges �1�, and with magnetic field applied

perpendicular to the plane of the film, we obtain the energy

E

Lyt
=� dx�A�d�/dx�2 − K cos2 � − ��0MH cos ���

+
1

2
�0M2� dx� dx� cos ��x�V�x − x��cos ��x�� ,

�4�

where Ly is the width of the system in the y direction. The
one-dimensional kernel V�x�= �1/2�t�ln�1+ t2 /x2� obtained
by integrating Eq. �3� over y has the Fourier transform

Ṽ�k� =
1 − e−�k�t

�k�t
= 1 −

�k�t
2

+ O�t2� . �5�

The Taylor expansion �5� is justified when the film thickness
t is the shortest length scale in the problem. The zeroth-order

term Ṽ0�k�=1 can be interpreted as a contact part of the
dipolar interaction that simply shifts the anisotropy: K�K

−K0. The first-order term Ṽ1�k�=−�k�t /2 represents the effect
of the stray dipolar field. Its inverse Fourier transform V1�x�
diverges at short length scales and requires a short-range
cutoff. It has the following properties:

V1�x� �
t

2�x2 as x → �, � dxV1�x� = 0. �6�

B. Scaling property of the free energy

It is convenient to use natural scales for various physical
units: K0=�0M2 /2 for the effective anisotropy � and volume
energy density, and M for magnetic field:

� = �K − K0�/K0, h = H/M . �7�

In these units,

Elocal

�0M2Lyt
=� dx	�2

2

d�

dx
�2

−
�

2
cos2 � − h cos �� �8�

and

Estray

�0M2Lyt
=

1

2
� dx� dx� cos ��x�V1�x − x��cos ��x�� ,

�9�

where �=�A /K0 is the exchange length.
The free energy, given by the sum of these terms, is in-

variant under a scaling transformation

x � bx, t � t, � � b1/2�, � � b−1�, h � b−1h .

�10�

This symmetry indicates that the state of the film depends on
the effective anisotropy and magnetic field through scale-
invariant variables � /�0 and h /�0, where �0= t2 / �4��2 is an
effective anisotropy scale whose significance will be clarified
shortly. It also yields a characteristic length scale 8��2 / t,
which determines the period of the stripes—see Eq. �12� be-
low.

CLARKE, TRETIAKOV, AND TCHERNYSHYOV PHYSICAL REVIEW B 75, 174433 �2007�

174433-2



The free energy is scale invariant only to the lowest order
in the film thickness t. Inclusion of higher-order terms in the
dipolar kernel �5� violates this property. The scaling works as
long as the thickness t is small compared to all other length
scales, in particular, the exchange length �5 nm �for Co�.

Note that this scaling law applies more generally to two-
dimensional configurations with an applied field in any di-
rection, as the energies associated with bulk magnetic
charges and in-plane fields are also invariant under Eq. �10�
when t is small.

C. Uniform phases

Let us first discuss the uniform phases and their instabili-
ties in the case that the applied field is normal to the plane.
The case ��0 is trivial: only the upward and downward
polarized states are stable. Both are locally stable in the re-
gion �h�	�. The coexistence leads to a hysteresis in magne-
tization curves mz�h�.

The situation is more interesting for �	0, where magne-
tization prefers the in-plane direction. In a uniform state, the
stray field vanishes and the energy is proportional to
−�� /2�cos2 �−h cos �. In a strong field, �h�� ���, the film is
fully polarized, cos �=sgn�h�. Below the critical strength,
�h�	 ���, the magnetization is canted, cos �=h / ���. The
uniform-to-canted transitions at h= ±� are continuous.

Consider the free energy of small fluctuations around a
canted state, cos ��x�=−h /�+
�x�:

�E =
�0M2Lyt

2
� dk

2�

 �2k2

sin2 �0
− � −

�k�t
2
��
̃�k��2 + O�
4� ,

�11�

where 
̃�k� is the Fourier transform of 
�x� and cos �0

=−h /� is the equilibrium value for the canted state. The
softest mode has the wave number

k0 =
t sin2 �0

4�2 . �12�

A spin-density wave develops in the canted background on
the line

�h/��2 = 1 + �/�0, �13�

where �0= t2 / �4��2. An expansion to the order O�
4� reveals
a positive-definite quartic term. Thus, the canted-SDW tran-
sition is also continuous. Note that the scaling arguments are
confirmed: the wavelength is indeed set by the scale 8��2 / t
and the critical line �13� contains the rescaled variables h /�0
and � /�0.

Since no uniform solution is stable inside the semicubic
parabola �13�, this region must be occupied by an inhomo-
geneous state, which one might easily guess to be a stripe
phase �see Fig. 1�. However, the situation is somewhat more
complicated. A further analysis shows that the stripe phase
remains �at least locally� stable outside the semicubic curve.
In addition, we find a region of coexistence between a
strongly inhomogeneous striped state and a weakly inhomo-
geneous SDW state. Like a liquid and a gas, the two phases

differ from each other only quantitatively. Indeed, there is a
critical point at which the differences vanish continuously, as
we will discuss below.

III. STRIPE PHASE

In this section, we describe the striped state in various
regions of the h-� plane. We determine the approximate
boundaries of stability of the striped phase and show how the
metastability of the stripe phase leads to the hysteresis curves
observed in experiments.

A. Numerical determination of metastability limits
for the stripe phase

In order to find the boundaries of stability of the striped
phase, we performed a numerical simulation of the system
described by Eqs. �8� and �9�. The simulation was conducted
on a chain of 2048 magnetization vectors of unit length de-
scribed by the angle ��x�. Periodic boundary conditions were
applied. We used specific values for the exchange length and
thickness of five and three lattice spacings, respectively.
However, based on the scaling arguments described in Sec.
II B, we expect the results to be universal for thin films.
Equation �8� was minimized using a relaxation method,14

where h was replaced by heff�x�=h−�dx�V1�x−x��cos ��x��
to account for the dipolar stray field. This heff was recalcu-
lated after a number of iterations of the relaxation method.
The process continued until the Lagrange equation,

�2�d2�/dx2� = � cos � sin � + heff sin � , �14�

was satisfied at each point. Random noise was then added to
the system and h was incremented. In this way, the algorithm
moved the state of the system along the local minimum of
energy. Sweeps of the magnetization were conducted from
positive to negative values of h and the average magnetiza-
tion was recorded. The hysteresis loops shown in Fig. 3 were
produced from these single sweeps by rotating the data
points to produce the upward sweep and superimposing it on

FIG. 1. �Color online� Phase diagram showing the regions of
stability of uniform phases. Up �U� and down �D� phases coexist in
the region on the right. Solid and dashed lines denote continuous
and discontinuous transitions, respectively.
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the downward one. Discontinuous jumps in the magnetiza-
tion mark the system’s entry into and exit from the striped
phase. In what follows, we interpret the resulting phase dia-
gram �Fig. 2� for various values of the effective anisotropy.

An important feature of phase diagram revealed by the
numerical simulation is the existence of liquid-gas-like criti-
cal points at �c−0.82�0 and hc ±0.3�0 �Fig. 2�. To the
right of this point, a distinction can be made between a
striped phase, with large modulation around a small average
magnetization, and a spin-density wave phase, which has a
small modulation around a larger average magnetization.
Boundaries of metastability extend from the critical points,
surrounding regions of coexistence between the striped and
SDW phases. To the left of �c, the two phases merge into one
and magnetization curves proceed in a reversible manner. It
is important to note that for �c	�	0, the second-order
phase transition line out of the canted phase is very close to
the first-order phase transition line into the striped phase. As
such, this second-order transition may be difficult to detect
as it is hidden by the nearby first-order jump.

In the remainder of this section, we describe the results of
a sweep of the applied magnetic field beginning in high posi-
tive field normal to the sample and moving to a high negative
field. The results of such a sweep depend on the anisotropy
constant � /�0 describing the system.

For strong enough in-plane anisotropy, �	−�0, the
striped phase is never seen. A sweep of magnetic field from

high positive to high negative fields would find a completely
reversible magnetization curve, with the uniform upward
phase beginning to cant at h=−� and following the field
smoothly and linearly. The magnetization will be −h /� until
the field is decreased to the h=� line, from which point
onward the sample is downwardly polarized.

For anisotropy values only slightly greater than the RPT
value �=−�0, a modulation of the magnetization will appear
in low fields. The magnetization curve will still be reversible,
but no longer exactly linear. Once the magnetic field crosses
the curve h=−��1+� /�0 from above, a small modulation
out of the canted phase develops continuously. That modula-
tion fades again at the lower curve h=��1+� /�0, and the
system proceeds as before from the canted to the uniform
down phase.

For anisotropy values greater than �c, the system shows
history dependence in the magnetization curve. At a slightly
smaller value of h than h=−��1+� /�0, while the amplitude
of the spin-density wave is still on the order of 10−3, the
system undergoes a first-order transition from a state with
small modulation and large average magnetization to one
with small average magnetization and a large amplitude
modulation. This stripe phase remains as the field decreases
until finally the system undergoes a first-order transition in
which the periodic modulation disappears. The boundary of
stability of the striped phase crosses h=�, the line beyond
which the downwardly magnetized state is stable, so that for
more negative values of �, the striped phase decays to a
canted phase, while for more positive � values, the system
enters the downwardly polarized state. For example, in Fig.
3, the �=−0.81�0 and �=−0.65�0 magnetization curves
show the striped phase decaying into the canted phase, while
the other loops show a decay directly into the fully polarized
phase.

For a small ��0, as we conduct a downward sweep of
the field beginning at large positive values, the system un-
dergoes a first-order phase transition out of the upwardly
polarized state at h=−�. There is no canted or spin-wave
phase after the transition, but the simulations indicate that
there is an intervening stable state with nonconstant magne-
tization before the system decays into the downwardly polar-
ized state. The limitations of the simulation become evident
here. The periodic boundary conditions imposed in the simu-
lation do not allow us to distinguish between a periodic state
with a long period and a state with an isolated region of
unfavored magnetization �soliton�. Only a small number of
solitons appeared within the period forced by the simulation.
The considerations of Secs. III B 1 and III B 2 indicate that
for large enough �, the isolated-soliton state is stable while
the striped state is not. Whether this holds at small ��0 has
not been determined.

The nonuniform state resulting from the first-order phase
transition out of the upwardly polarized state persists until it
vanishes in a first-order transition to the downward state �at
h−0.5�0 in the simulation�. If one were to reverse course
and increase the field again before reaching this second tran-
sition, the upward regions that had been unfavored would
grow slowly rather than the system returning immediately to
the totally upwardly polarized phase. This behavior accounts
for the “fading contrast” seen in experiments with Co/Pt
multilayers.8

FIG. 2. �Color online� Numerically determined boundaries of
the nonuniform phases are shown as symbols. The striped phase can
coexist with the canted �C�, up �U�, down �D�, and spin-density
wave �SDW� states in various regions of the phase diagram. Solid
and dashed lines denote continuous and discontinuous transitions,
respectively.
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If ��0 is large enough, we expect that the transition will
proceed directly from an upwardly polarized state to a down-
wardly polarized state at h=−�. For very large �, neither a
striped nor an isolated-soliton phase can form from the decay
of the upwardly polarized state, as neither will be stable in
the high fields required for the uniform state to become un-
stable �see Secs. III B 1 and III B 2�.

There is a caveat on this expectation, however. If topo-
logically nontrivial domains of reversed magnetization form
during the transition out of the upwardly polarized phase, it
may be that they are stable even in these large fields. A
topologically nontrivial domain in our case is one for which
the magnetization angle � at the left end of the domain dif-
fers by a nonzero multiple of 2� from the magnetization

angle at the right end. It is not unreasonable to expect the
formation of such domains: if two downward regions form
during the transition by rotating in opposite directions away
from �=0, then the upwardly polarized region between them
will be topologically nontrivial. Since these downward re-
gions may be initially well separated, their rotation directions
are essentially independent, and so a nontrivial upward do-
main will form between them roughly half the time. These
nontrivial domains are the one-dimensional analog of
skyrmion-type domains in two dimensions.15 Skyrmions may
be the cause of the asymmetric domain nucleation observed
in Co/Pt multilayers.16

The magnetization curve would look nearly the same in
the case that topologically nontrivial solitons form as it

FIG. 3. �Color online� Numeri-
cal simulation of the out-of-plane
hysteresis curves for several val-
ues of � /�0. The locations of
these sweeps in the phase diagram
are shown by vertical lines in the
bottom panel.
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would if they do not. The topologically nontrivial solitons
would have small width when the field is large and so change
the magnetization by a negligible amount. However, when
the field is reversed after the transition, these soliton domains
would grow. This would cause the system to proceed through
the striped phase rather than staying downwardly polarized
until h=�. Hysteresis, then, would not be observed unless
the applied field is strong enough to force the width of topo-
logical solitons down to the lattice scale, allowing them to
decay.

B. �š�0, the wide-stripe approximation

When the out-of-plane anisotropy is strong, the magneti-
zation pattern is expected to consist of long up- or down-
wardly pointing regions, separated by short regions in which
the magnetization changes rapidly from one domain type to
the other. We refer to such a configuration as a “wide-stripe”
phase. �Note, however, that this “phase” is continuously con-
nected to the modulated phase at negative �, and so is not a
truly distinct phase.�

It is well known that an energy advantage can be gained
over a purely uniform phase through such modulation. In
fact, when the out-of-plane anisotropy is very strong, the
zero-field model differs little from the dipolar Ising model
discussed by Garel and Doniach.9 The two significant differ-
ences lie in the energy costs of the kinks and in topological
considerations. The topological consequences of the model
will be discussed in Sec. III B 2.

The wide-stripe configuration can be thought of as a pe-
riodic array of Bloch domain walls. These walls can be
treated as elementary objects with some internal energy cost
and long-range interactions with other walls through the
stray dipolar field. The interaction energy of two walls is
logarithmic in their separation. If we define the orientation of
a wall as a vector pointing from the upwardly magnetized
side of the wall to the downwardly magnetized side, we find
that the magnetic interaction is attractive for walls with the
same orientation and repulsive for walls of opposite orienta-
tion. For a periodic structure, walls always have orientation
opposite that of their nearest neighbors. It is this nearest-
neighbor repulsion caused by the stray magnetic field that
allows for the stability of a striped phase despite the cost of
the walls in exchange energy and the exchange force acting
between nearby walls.

These considerations can be used to derive an analytic
expression for the magnetization curve in the wide-stripe
phase:

�mz� =
2

�
arcsin	 h̃�2

4��̃
exp
�

2
��̃�� , �15�

where we have used the rescaled variables

�̃ =
�

�0
, h̃ =

h

�0
. �16�

Note that this magnetization curve is consistent with the scal-
ing property described in Sec. II B. Details of the derivation,
including an analytic expression for the stripe period, can be
found in Appendix A.

1. Zero-soliton-density transition

As the external magnetic field is varied, the wide-stripe
phase becomes dominated by the regions of magnetization
favored by the magnetic field. For a strong enough magnetic
field, the striped phase has only narrow, widely separated
regions of the unfavored magnetization �solitons�. As Eq.
�A15� shows, the period of the wide-stripe phase tends to

infinity along the curve h̃=−�4/�2���̃ exp�−���̃ /2�. That is,
the density of the unfavored solitons reaches zero. For fields
above this curve, there is no stable structure with evenly
spaced domains of unfavored magnetization. Note that the
field at which the solitons are expelled from the system de-
creases exponentially with �. For large �, the region in
which stripes exist is extremely narrow. As the field varies
from down to up across this region, a system that is nearly all
down with a few isolated upward solitons will move quickly
through the striped phase to a state that is nearly all up with
a few isolated downward solitons.

2. Collapse of isolated solitons

In a perfectly isotropic sample, the field drives all the
regions of unfavored magnetization to the edge of the system
during the zero-soliton-density transition described above. A
real sample, however, may have pinning centers where re-
gions of opposing magnetization would be localized. These
isolated solitons will persist into a much higher field, and
their collapse is dependent on their topological character.

The edges of such regions interact with each other
through two distinct forces. There is a long-range repulsion
between them due to the dipolar stray field and a short-range
exchange interaction that may be attractive or repulsive de-
pending on the topology of the region. In addition, there is a
force from the applied magnetic field that acts to increase or
decrease the width of the soliton based on its polarization. If
the exchange force is attractive, the boundary of stability of
the isolated-soliton phase is found at the field that will
squeeze the soliton boundaries enough that the exchange
force takes over and the solitons collapse. If the exchange
force is repulsive, the soliton must be forced to a width
smaller than the lattice spacing in order to collapse, so that a
phase difference of 2� between neighboring sites may be
ignored as physically meaningless.

The exchange force between two domain walls a distance
w apart is

F̃ex�w̃� � ± 8�̃ exp�− ��̃w̃� as ��̃w̃ → � , �17�

where w̃=��0w /� �see Appendix B�. The force is attractive
if the kinks form a nontopological soliton and repulsive if the
soliton is topological.

To determine the field necessary to collapse a nontopo-
logical soliton, we take the Zeeman energy of the soliton and
the energy of the stray field to be

Ẽ�w̃� = const + 2h̃w̃ −
8

�
ln w̃ �18�

for a single downward soliton of width w �see Eq. �A20��.
We use here the ��̃w̃�1 approximation, as we expect the
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collapse width of a nontopological soliton to be large com-
pared to the size of the walls that border the soliton.

As the field h̃ increases, the soliton is squeezed:

2h̃ =
8

�w̃
− 8�̃ exp�− ��̃w̃� . �19�

Note that as w̃ shrinks, the restoring force on the right-hand
side of Eq. �19� increases at first and then reaches a maxi-
mum at

w̃ �
ln �̃

2��̃
as �̃ → � . �20�

A further increase in the field leads to a collapse of the soli-
ton, as the restoring force can no longer balance the force
due to the field. This justifies the approximation of large
width, since for the collapse width ��̃w̃��1/2�ln �̃�1.
Hence, in a field

h̃ �
8��̃

� ln �̃
as �̃ → � , �21�

the �nontopological� soliton will collapse.
If, however, the soliton consists of a full 2� rotation of

the magnetization, the restoring force never reaches a maxi-
mum. While the dipolar contribution to the force effectively
disappears as the soliton width decreases to the order of the
domain-wall width, the repulsive exchange force increases
without bound. The soliton can then only collapse when its
width

w =
w̃�

��0

=
2�

�� + �h�
arcsinh 
�1 +

�

�h�
� , �22�

derived in Appendix B, reaches the lattice scale.

IV. STRIPES NEAR AN EDGE

In this section, we consider the orientation of stripes near
a system edge. Although we begin with a variational solution
with a sinusoidal modulation, the final result is applicable to
a general profile for the magnetization. We find that stripes
oriented with their domain walls perpendicular to the edge
are energetically favored over all other orientations except
possibly that with stripes exactly parallel to the edge. For
simplicity, we consider only the case of no applied field. The
results are entirely similar when a field is applied. In particu-
lar, there is no change to Eq. �25�, below. We compare these
results with recent experiments on thermally evaporated Ni
films.

We use the trial solution

mz = a sin�q · x − � . �23�

Here a is the amplitude of oscillations; the stripe wave vector
q= �q cos � ,q sin �� has a fixed length q; the angle in the
plane � ranges from 0 for stripes normal to the edge to � /2
for stripes parallel to the edge; the phase  will be important
only for stripes parallel to the edge. In order to represent an
edge at y=0, we include a step function ��y� in all y inte-
grals.

The energy associated with the presence of an edge comes
from two sources. First, stripes at the edge generate a stray
magnetic field. Second, depending on the sign of the effec-
tive anisotropy �, the system can lower the energy by having
an extra node or antinode near the edge. �The latter works
only for stripes parallel to the edge.�

The long-range nature of the dipolar forces requires a cer-
tain amount of care in evaluating the edge energy. The value
of the dipolar energy is sensitive to three length scales: the
film thickness t, the width Ly, and the stripe period 2� /q. On
a computational level, keeping t and Ly finite is required to
avoid ultraviolet and infrared divergences. Fortunately, the
difference in the energies between stripes with different ori-
entations �parametrized by the angle �� is insensitive to these
length scales, as long as ��� /2. This simplifies the com-
putation greatly. Details of the calculation can be found in
Appendix C.

For ��� /2, the energy difference

�E = E��,q� − E�0,q� �24�

has no ultraviolet or infrared divergences, and is, in fact,
independent of q �Fig. 4�:

�E���
�0M2t2Lx

=
a2

8�
�sin � ln�1 + sin �� + �1 − sin ��ln cos �� .

�25�

If �=� /2, the stripes are oriented exactly parallel to the
edge. In that case, there is a cutoff dependent term in the
stray field energy difference proportional to

−
a2

8�
ln�qt�cos 2 . �26�

As long as the wavelength of the mode under consideration
is larger than the thickness, the logarithm is negative. This
term is therefore minimized when =� /2 and so acts to
attract the crests of the spin wave to the system edge.

There is also an additional term associated with the local
part of the free energy that appears only when �=� /2. It is
proportional to

FIG. 4. Energy as a function of the angle the stripe wave vector
makes with the system edge. Energy here is measured in units of
�a2 /8���0M2t2Lx.
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a2

8
��2q2 + ��

sin�2�
qt

. �27�

If the coefficient in the parentheses is positive �negative�,
this term acts to minimize the number of nodes �crests� of the
spin wave that are present in the system, since each node
�crest� has a cost in the exchange and anisotropy energy. The
competition between the terms �26� and �27� will determine
the phase of a spin-density wave parallel to the edge.

The addition of the phase-dependent terms above may
mean that stripes parallel to the edge end up being the global
minimum of energy. However, this minimum takes the form
of a downward spike in the energy that occurs at an angle
that would otherwise be a maximum of the energy �see Fig.
4�. Even if the state with stripes parallel to the edge is the
global minimum of energy, a low-temperature system that
begins with stripes at a random orientation is more likely to
evolve toward the �metastable� minimum at �=0.

Since the angular dependence of the energy for ��� /2 is
independent of the wave number q, this result holds for any
stripe profile that may be made up of higher harmonics. In
that case, a2 /2 should be interpreted as the average value
�cos2 �� of the striped state. The result is also independent of
any of the material parameters because it is the energy of the
stray field that causes the effect.

This result is consistent with observations made in ther-
mally evaporated thin nickel films17 and numerical simula-
tions �Fig. 5� that indicate that walls meet the edges of the
film at a 90° angle.

V. DISCUSSION

We have examined the properties of thin ferromagnetic
films with a strong easy-axis anisotropy KK0=�0M2 /2 fa-
voring the out-of-plane component of the magnetization,
with Co/Pt films as a prototype. We have found a scaling
property that applies in the limit where the film thickness is
the shortest length scale in the problem. In such a case, the
phase diagram in the field-anisotropy plane is universal if the
applied field H and effective anisotropy K−K0 are properly

rescaled. The proper variables are h̃=H / ��0M� and �̃= �K
−K0� / ��0K0�. The parameter �0= �t /4��2 is determined by
the film thickness t and the exchange length �=�2A /�0M2.

The universal phase diagram in the case of an applied
field normal to the plane was determined through a combi-
nation of analytical and numerical methods focused on uni-
form states and on states with a one-dimensional modulation
of the magnetization, such as magnetic stripes observed near
the reorientation phase transition �KK0�. In addition to
fully magnetized and canted uniform states, at least two non-
uniform magnetic states were found: a spin-density wave and
a striped phase. These two states are found to coexist in parts
of the phase diagram �like a gas and a liquid�. The coexist-
ence of various phases �e.g., stripes and SDW or stripes and
canted� explains the rich hysteretic behavior of magnetiza-
tion observed in these films. We have determined the bound-
aries of stability and metastability of these phases and ob-
tained out-of-plane magnetization curves M��H��, which
have universal shapes determined by the rescaled anisotropy
�̃.

In addition to developing the zero-temperature phase dia-
gram near the reorientation phase transition, we have ex-
panded on previous work in the case of large out-of-plane
anisotropy by finding analytic expressions for the stripe pe-
riod and magnetization as functions of the applied field. We
have shown that the range of field values for which a struc-
ture of evenly spaced stripes is stable is exponentially small
for large anisotropy. The period of such a structure tends to
infinity at a small value of the applied field. Stripes are un-
likely to be found, then, at large anisotropies.

We have investigated the behavior of stripes near the film
edge and found that the energy of the dipolar stray field is
minimized when the stripes are perpendicular to the edge, as
recently observed in Ni films. At the same time, we find that
a state with stripes parallel to the edge provides an opportu-
nity to lower other terms in the free energy, e.g., the mag-
netic anisotropy, by registering the nodes or antinodes of
magnetization at the system edge.

The behavior of the striped phase in an out-of-plane mag-
netic field depends on the topology of the stripes, i.e., on the
direction of rotation of the magnetization. If in the absence
of an applied field the colatitude angle � oscillates between
�nearly� 0 and �, the topology is trivial. As the strength of
the applied field increases, the stripes of the “wrong” orien-
tation first shrink and then disappear, leaving behind a uni-
form state. However, if the domain walls delineating a wrong
domain wind in the same direction �say from 0 to � and from
� to 2��, this domain has a nontrivial topology. As its walls
are pushed together, they feel strong repulsion mediated by

FIG. 5. �Color online� A stationary configuration obtained from
a random initial state in a disk of thickness of 14 nm and diameter
of 400 nm. Magnetization length M =1.4�106 A/m, exchange
constant A=3.3�10−11 J /m, exchange length �=5.2 nm, and easy-
axis anisotropy K=1.5�106 J /m3 yield �=0.22 and �0=0.45.
Magnetization points up in the red �light gray� regions and down in
the blue �dark gray� regions. Numerical simulation using OOMMF

�Ref. 18�.
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exchange. As a result, such a domain will not decay until its
size reaches a microscopic scale �presumably on the order of
a lattice constant�, at which point the phase increase from 0
to 2� can be repaired through a phase slip. These nontrivial
domains are the one-dimensional analog of the skyrmion,15 a
texture with a nonzero O�3� winding number. Skyrmions
may play a role in the magnetization reversal of thin films
with high anisotropy.16
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APPENDIX A: PERIODIC STRUCTURE OF WIDE STRIPES

When walls between uniform regions are well separated,
we can treat them as nearly free defects interacting with one
another mostly via their stray magnetic fields. The stray
fields of other walls are thus substantially weak and can be
neglected when determining the structure of a well-isolated
wall. Furthermore, its own stray field can be neglected as
well: the energy associated with the stray field is O�t2�,
whereas all the other energies are O�t�. Finally, when the
anisotropy highly favors out-of-plane magnetization, the
characteristic width of the domain walls is small compared to
that of the stripes, so that the energy to be gained by deform-
ing the domain walls in the presence of an external magnetic
field is far outstripped by the energy to be gained by moving
them. Hence, the external field may be neglected as well
when determining the domain-wall structure.

It is convenient to use dimensionless variables for the
effective anisotropy, field, coordinate, and wave number:

�̃ =
�

�0
, h̃ =

h

�0
, x̃ =

x��0

�
, k̃ =

k�

��0

. �A1�

In terms of these variables, the energies �8� and �9� can be
expressed as

Elocal

�0M2Lyt
2 =

1

4
� dx̃	1

2

d�

dx̃
�2

−
�̃

2
cos2 � − h̃ cos ��

�A2�

and

Estray

�0M2Lyt
2 = −

1

4
� dk̃

2�
�k̃��m̃z�k̃��2, �A3�

where we use the Fourier transform of the out-of-plane mag-
netization

m̃z�k̃� =� dx̃eik̃x̃ cos ��x̃� . �A4�

We neglect for the moment the effects of the external and
stray magnetic field in order to find the internal structure of a

domain wall. A domain wall that interpolates between
cos �=−1 and cos �=1 and minimizes the sum of exchange
and effective anisotropy terms in the energy above obeys

��2 = �̃ sin2 � . �A5�

The derivative here is with respect to x̃. This is solved by
mz=cos �= ±tanh���̃x̃�. The internal energy of each such
wall is �0M2t2Ly

��̃ /2, not counting the interaction energy
due to the stray field.

When calculating the stray field energy, it is easier to
work with the x̃ derivative of the magnetization, and use the
form

Estray

�0M2Lyt
2 = −

1

4
� dk̃

2�

�m�˜ z�k̃��2

�k̃�
. �A6�

If the walls have small spatial extent relative to the dis-
tance between them, a periodic structure can be approxi-
mated as a sum of alternating upward and downward kinks.
As such, we describe a periodic structure with period l

= l̃� /��0 and upward length w= w̃� /��0 in each period by
the variational solution

mz��x̃� =� du��w̃, l̃, x̃ − u�
d

du
�tanh���̃u�� , �A7�

where

��w̃, l̃,u� = �
n=−�

�


�u − nl̃� − 
�u − nl̃ − w̃� . �A8�

By substituting Eq. �A7� into Eq. �A6�, we arrive at

Estray

�0M2V�0
= −

16�3

�̃l̃3
�
j=0

�

j
sin2��jw̃/l̃�

sinh2��2j/��̃l̃�

=
4�2�/l̃�3

�̃

d

d�
�
j=0

�

�
n=1

�

sin2��jw̃/l̃�e−2�jn,

�A9�

where �=�2 /��̃l̃ and V= tLxLy is the volume of the film.
Summing over j leads to an expression that can be ap-

proximated by an integral over n if ��1. We thus obtain

Estray

�0M2V�0
= −

4

�l̃
	ln�1 + f� +

2f

1 + f
� , �A10�

where

f�w̃, l̃� =
l̃2�̃

�4 sin2
�w̃

l̃
� . �A11�

The total internal energy of the kinks in this structure �in-
cluding exchange and anisotropy� is
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Ekinks

�0M2V�0
=

4��̃

l̃
, �A12�

since there are two kinks in each period. The final contribu-
tion to the energy is the interaction with the applied magnetic
field, described by the energy density

Eext field

�0M2V�0
= −

2h̃w̃

l̃
. �A13�

Minimizing the sum of these three terms with respect to l̃
and w̃ leads to the following expressions for the equilibrium

period and upward width of the stripes �for l̃��̃ sin��w̃ / l̃�
�1�:

cos
�w̃

l̃
� = −

h̃�2

4��̃
exp
�

2
��̃� �A14�

and

l̃��̃ sin��w̃/l̃� = �2 exp
�

2
��̃� . �A15�

Note that Eq. �A15� justifies the approximation that

l̃��̃ sin��w̃ / l̃��1, since ��̃ is large in this region of the
phase diagram.

These equations can be solved to give

w̃ =
4 arccos�− h̃/h̃0�

��h̃0
2 − h̃2

�A16�

and

l̃ =
4

�h̃0
2 − h̃2

, �A17�

with h̃0= �4/�2���̃ exp�−���̃ /2�.
For h̃=0, the above equations reduce to w̃= l̃ /2 �i.e., no

net magnetization�, and a stable period of

l =
�l̃
��0

=
�2�

��
exp
�

2
� �

�0
� . �A18�

Since the average magnetization �mz�=2w̃ / l̃−1, Eq.
�A14� can be rewritten to give the magnetization curve for
large �:

�mz� =
2

�
arcsin	 h̃�2

4��̃
exp
�

2
��̃�� . �A19�

Further, note that as h̃→−h̃0, the period l̃ tends to in-
finity while the upward width stays finite �w̃
→ �� /4��̃�exp����̃ /2��. For larger fields there is no stable
periodic structure of this type.

If, instead of a periodic structure, we are interested in the
energy of a single soliton, we take l→Lx�w in Eqs.

�A10�–�A13�, so that f�w̃ , l̃� �̃w̃2 /�2, leading to

4E

t2Ly�0M2  4��̃ − 2h̃w̃ −
4

�
	ln
1 +

�̃w̃2

�2 � +
2�̃w̃2

�2 + �̃w̃2�
 const − 2h̃w̃ −

8

�
ln w̃ �A20�

for an upward soliton of width w when �̃w̃2�1.

APPENDIX B: SOLITONS AND THE EXCHANGE
FORCE BETWEEN DOMAIN WALLS

The energy of a single soliton given above by Eq. �A20�
does not take into account the exchange interaction between
the domain walls bounding the soliton. This interaction will
become important as the walls move closer together.

If we wish to find the effective force due to the exchange
interaction, we must first find stable soliton solutions to the
Lagrange equation associated with the energy �A2�. We will
ignore the effects of the stray magnetic field �in the limit of
large � with t�� /��− �h��. Since the force on the walls due
to the magnetic field is known, the stable width of a soliton
can be used to find the effective exchange force between the
walls that must be acting to oppose the field.

We will apply the boundary conditions ��±��=� and
���±��=0, thus describing an upward soliton in a down-
wardly polarized background. We obtain from Eq. �A2� that

��2

2
=

1

2
�̃ sin2 � − h̃�1 + cos �� , �B1�

where �̃=� /�0, h̃=h /�0, and x̃=x��0 /�, as in Eqs. �A2� and
�A3�.

We expect different solutions to this equation for h̃�0

and h̃	0. If h̃�0, then the soliton is favored by the field,
and the background is unfavored, held in place only by the
out-of-plane anisotropy. In order to balance the force of the
field, the exchange interaction in this case will attract the
walls of the soliton to one another.

The corresponding solution to Eq. �B1� at h̃�0 is

cos � = − 1 +
2�1 − h̃/�̃�

1 + �h̃/�̃�sinh2�kx̃�
, �B2�

where k=��̃− h̃.

Note that cos ��0�=1−2h̃ / �̃ is the maximum value of
cos � in this solution. Nowhere is there full upward polariza-
tion, so this solution describes a nontopological soliton, in
which there is no net rotation of the magnetization between
the ends of the system.

If, on the other hand, h̃	0, then the background is fa-
vored by the field and the soliton is not. The exchange force
between the walls of the soliton must be repulsive in order to
balance the force of the field squeezing the walls together.
This is accomplished by a topological soliton solution, in
which the magnetization rotates by a full 2� between the
ends of the system. The solution to Eq. �B1� in this case

�h̃	0� is
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cos � = − 1 +
2�1 − h̃/�̃�

1 − �h̃/�̃�cosh2�kx̃�
. �B3�

Again, k=��̃− h̃.

Note that in this case, cos ��0�=1 for any value of h̃. The
2� rotation of the magnetization forces the magnetization to
point upward in the center of the soliton in any field. This is
the reason for the repulsive exchange force. If the soliton is
squeezed, the magnetization is forced to move from down to
up and back in a shorter distance.

If we set cos �=0 in Eq. �B2� to find the locations ±x̃0 of
the kinks bounding the nontopological soliton, we obtain

h̃ =
�̃

1 + cosh2�x̃0
��̃ − h̃�

 4�̃ exp�− 2��̃x̃0� �B4�

for large �̃. Since the force of the field is 2h̃ acting to sepa-
rate the kinks, the �rescaled� exchange force in the nontop-
ological case is

F̃ex = − 8�̃ exp�− ��̃w̃� . �B5�

Note that w̃=2x̃0, since the kinks are at x̃= ± x̃0.
Similarly, if we set cos �=0 in Eq. �B3�, we obtain

− h̃ =
�̃

− 1 + sinh2�x̃0
��̃ − h̃�

 4�̃ exp�− 2��̃x̃0� �B6�

for large �̃ and moderate width. Since the force of the field is
now acting to compress the kinks, the �rescaled� exchange

force in the case in which the soliton is topological is F̃ex

= +8�̃ exp�−��̃w̃�, a repulsive force.
If the field is very high, the kinks in the topological case

will be forced close together, so that the large ��̃w̃ approxi-
mation is no longer valid. The soliton will not collapse, how-
ever, until the width �obtained by solving Eq. �B6� for w̃
=2x̃0�

w =
w̃�

��0

=
2�

�� + �h�
arcsinh
�1 +

�

�h�
� �B7�

is on the order of the lattice spacing.

APPENDIX C: ENERGY OF STRIPES NEAR AN EDGE

The energy of a two-dimensional thin-film system with
magnetic field oriented normal to the plane of the sample and
no bulk charge is

E

�0M2t
=� d2x	 �2��mz�2

2�1 − mz
2�

−
�

2
mz

2 − hmz�
−

t

4
� d2k

�2��2 �k��mz�k��2. �C1�

Here, mz�k� represents the two-dimensional Fourier trans-
form of mz. In order to include the effects of a system edge,
we will include a step function ��y� as a factor in all the y
integrals that appear. For simplicity, we discuss the case of
zero applied field, h=0, only.

We use a trial solution with a single wave number and
propagation direction. We will be comparing the energy of
solutions with different values of the angle between the
propagation direction and the system edge. We label this
angle �. Our trial solution is

mz = a sin�q · x − � , �C2�

where a is the modulation amplitude, q= �q cos � ,q sin ��,
and � ranges from 0 for stripes running perpendicular to the
edge to � /2 for stripes running parallel to the edge. In order
to evaluate the energy, we use the form

��y� =� dp

2�

− ieipy

p + i�
�C3�

for the step function in order to regularize the infrared diver-
gence. Here, Ly =1/� is the extent of the system in the y
direction. Where necessary, we also use the inverse of the
sample thickness as an ultraviolet cutoff in momentum space
integrals.

1. �Å� /2

As long as stripes are not parallel to the edge, trial solu-
tions with different values of  are related to one another by
a translation in the x direction. Since the integration in Eq.
�C1� is carried out over all x, the energy is independent of the
phase . Further, the total contribution of the local terms in
the energy is the same for any orientation other than �
=� /2. The dependence of energy on the orientation then
reflects the effect of the dipolar stray field alone.

By inserting the trial solution �C2� into the stray field term
in Eq. �C1� using the form �C3� for the step function, we
obtain directly that the contribution of the stray field to the
energy is

Estray��,q�
E0

= −
a2

16
� dp

2�

�q2 + 2qp sin � + p2

p2 + �2

+
�q2 − 2qp sin � + p2

p2 + �2 � , �C4�

where we introduce a characteristic energy scale

E0 = �0M2t2Lx. �C5�

This integral requires both infrared and ultraviolet cutoffs.
The inverse thickness 1/ t serves to cut off the ultraviolet
divergence in the integral and �=1/Ly the infrared. However,
the difference Estray�� ,q�−Estray�0,q� is not sensitive to these
cutoffs and can be evaluated in the limits t→0 and 1/�
=Ly→�. Remarkably, the difference is also independent of
the wave number q. By subtracting Estray�0,q� /E0 from Eq.
�C4� and performing the p integration, we obtain

Estray��,q� − Estray�0,q�
E0

=
a2

8�
f��� , �C6�

where the function

f��� = sin � ln�1 + sin �� + �1 − sin ��ln�cos �� �C7�

has a minimum at �=0, when the stripes are normal to the
edge.
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2. �=� /2

When stripes are parallel to the edge, the energy also de-
pends on the phase . To leading order in t and �,

E��/2,q� − E�0,q�
E0

=
a2

8�
	��� + �2q2�sin�2�

qt
+ ln�2�

− ln�qt�cos�2�� . �C8�

In addition to the energy of the stray field, this expression

reflects the energy of anisotropy and exchange, both of
which are sensitive to the positions of nodes relative to the
edge.

The overall energy dependence, including a dip at �
=� /2, is shown in Fig. 4. Depending on the parameters of
the film, the global minimum may be either at �=0 or at �
=� /2. However, even if the global minimum is at � /2, the
system may not easily find that configuration and remain in
the metastable state with the stripes normal to the edge
��=0�.

1 J. E. Davies, O. Hellwig, E. E. Fullerton, G. Denbeaux, J. B.
Kortright, and K. Liu, Phys. Rev. B 70, 224434 �2004�.

2 L. B. Steren, J. Milano, V. Garcia, M. Marangolo, M. Eddrief, and
V. H. Etgens, Phys. Rev. B 74, 144402 �2006�.

3 O. Schulte, F. Klose, and W. Felsch, Phys. Rev. B 52, 6480
�1995�.

4 O. Donzelli, D. Palmeri, L. Musa, F. Casoli, F. Albertini, L.
Pareti, and G. Turilli, J. Appl. Phys. 93, 9908 �2003�.

5 A. Marty, Y. Samson, B. Gilles, M. Belakhovsky, E. Dudzik, H.
Durr, S. S. Dhesi, G. van der Laan, and J. B. Goedkoop, J. Appl.
Phys. 87, 5472 �2000�.

6 T. Shono, T. Hasegawa, T. Fukumura, F. Matsukura, and H.
Ohno, Appl. Phys. Lett. 77, 1363 �2000�.

7 G. Xiang, A. W. Holleitner, B. L. Sheu, F. M. Mendoza, O. Mak-
simov, B. Stone, P. Schiffer, D. D. Awschalom, and N. Samarth,
Phys. Rev. B 71, 241307�R� �2005�.

8 X. M. Cheng, V. I. Nikitenko, A. J. Shapiro, R. D. Shull, and C.
L. Chien, J. Appl. Phys. 99, 08C905 �2006�.

9 T. Garel and S. Doniach, Phys. Rev. B 26, 325 �1982�.
10 Y. Yafet and E. M. Gyorgy, Phys. Rev. B 38, 9145 �1988�.

11 A. Berger and R. P. Erickson, J. Magn. Magn. Mater. 165, 70
�1997�.

12 A. B. Kashuba and V. L. Pokrovsky, Phys. Rev. B 48, 10335
�1993�.

13 Ar. Abanov, V. Kalatsky, V. L. Pokrovsky, and W. M. Saslow,
Phys. Rev. B 51, 1023 �1995�.

14 W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes in C: The Art of Scientific Computing �Cam-
bridge University Press, New York, 1988�.

15 A. A. Belavin and A. M. Polyakov, Zh. Eksp. Teor. Fiz. Pis’ma
Red. 22, 503 �1975� �JETP Lett. 22, 245 �1975��.

16 Y. L. Iunin, Y. P. Kabanov, V. I. Nikitenko, X. M. Cheng, D.
Clarke, O. A. Tretiakov, O. Tchernyshyov, A. J. Sharpiro, R. D.
Shull, and C. L. Chien, Phys. Rev. Lett. 98, 117204 �2007�.

17 S. H. Lee, F. Q. Zhu, N. Markovic, and C.-L. Chien �unpub-
lished�.

18 M. J. Donahue and D. G. Porter, OOMMF User’s Guide, Version
1.0, in Interagency Report NISTIR 6376 �NIST, Gaithersburg,
1999�, http://math.nist.gov/oommf/

CLARKE, TRETIAKOV, AND TCHERNYSHYOV PHYSICAL REVIEW B 75, 174433 �2007�

174433-12


