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We investigate theoretically the phase diagram of a classical Heisenberg antiferromagnet on the pyrochlore
lattice perturbed by a weak second-neighbor interaction J2. The huge ground-state degeneracy of the nearest-
neighbor Heisenberg spins is lifted by J2 and a magnetically ordered ground state sets in upon approaching
zero temperature. We have found a new, partially ordered phase with collinear spins at finite temperatures for
a ferromagnetic J2. In addition to a large nematic order parameter, this intermediate phase also exhibits a
layered structure and a bond order that breaks the sublattice symmetry. Thermodynamic phase boundaries
separating it from the fully disordered and magnetically ordered states scale as 1.87J2S2 and 0.26J2S2 in the
limit of small J2. The phase transitions are discontinuous. We analytically examine the local stability of the
collinear state and obtain a boundary T�J2

2 /J1 in agreement with Monte Carlo simulations.
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I. INTRODUCTION

Magnets with geometrical frustration1 have received
much attention as models of strongly interacting electronic
systems with unusual ground states, thermodynamic phases,
and excitations. The hallmark of strong frustration is a con-
spicuously large degeneracy of the classical ground state:
essentially, a finite fraction of the degrees of freedom re-
mains unconstrained to the lowest temperatures. For discrete
spins, this manifests itself in the number of ground states
scaling exponentially with the system volume and thus giv-
ing rise to a nonzero entropy density at absolute zero tem-
perature. Well-known examples of that are the Ising antifer-
romagnet on the triangular lattice2,3 and spin ice.4 For
continuous spins—most saliently for the Heisenberg antifer-
romagnet on the pyrochlore lattice—the classical ground
states form a manifold whose dimension is proportional to
the system volume.5 In that particular case, the classical
model exhibits strong short-range spin correlations but fails
to exhibit any form of conventional magnetic order down to
the lowest temperatures accessible in Monte Carlo simula-
tions. The strong correlation between the local motions of
spins in this liquidlike phase manifests itself as an emergent
gauge structure in the low-temperature limit and results in a
dipolar form of the asymptotic spin correlations at large
separations.6,7

At the same time, the large degeneracy of the ground state
makes this system susceptible to all kinds of perturbations,
which certainly exist in real compounds. For instance, the
spin-lattice coupling, arising from the dependence of ex-
change strength on the atomic displacements,8 lifts the de-
generacy through a spin analog of the Jahn-Teller effect9

observed in spinels ZnCr2O4 �Ref. 10� and CdCr2O4.11

This naturally leads one to ponder the following ques-
tions. Can the interplay of a weak perturbation with strong
frustration lead to interesting ordered phases? Are there any
�intermediate� partially ordered phases? What is the nature of
the phase transitions between such phases? In this paper we
discuss these questions in the context of a classical Heisen-
berg antiferromagnet on the pyrochlore lattice with interac-

tions going beyond nearest neighbors. Following previous
work by Reimers et al.12 and by Tsuneishi et al.,13 we con-
sider the classical Heisenberg antiferromagnet on the pyro-
chlore lattice with the Hamiltonian

H = J1�
�ij�

Si · S j + J2 �
��ij��

Si · S j , �1�

where �ij� and ��ij�� indicate pairs of first and second neigh-
bors, respectively. Given the short-range nature of exchange
forces, we work in the limit J2�J1. It is reasonable to expect
that the influence of J2 becomes noticeable only at low tem-
peratures of order J2S2, when the system is already in the
strongly correlated paramagnetic state, in which it is con-
strained to fluctuate around the ground states of the nearest-
neighbor exchange. Using a combination of Monte Carlo
simulations and analytical arguments, we have mapped out
the phase diagram in the J2−T plane shown in Fig. 1.

Antiferromagnetic second-neighbor exchange, J2�0, sig-
nificantly reduces the frustration by selecting states in which
spins within any of the four fcc sublattices, comprising the
pyrochlore lattice, are parallel to one another. We find a col-
linearly ordered phase of the type �S0�=−�S1�=−�S2�= �S3�,
where the subscripts enumerate the fcc sublattices �Figs. 2
and 3�a��. The transition between the paramagnetic and anti-
ferromagnetic phases is discontinuous.

Ferromagnetic second-neighbor exchange, J2�0, leaves
the system strongly frustrated. A mean-field calculation by
Reimers et al.12 predicted a ground state with incommensu-
rate magnetic order. While Tsuneishi et al.13 indeed observed
Bragg peaks in the spin structure factor obtained through a
Monte Carlo simulation for J2=−0.1J1, they also noted that
the spins remained dynamic, failing to freeze. We show that
the observed locations of the Bragg peaks are compatible
with the results of Reimers et al., so that the low-temperature
phase is most likely magnetically ordered.

The main focus of our paper is a peculiar partially or-
dered phase sandwiched between the paramagnet and the
magnetically ordered state for weak enough ferromagnetic
J2, namely −0.09J1�J2�0. In the intermediate phase, the
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spins display collinear order; furthermore, they exhibit mag-
netic order within a thin 	100
 layer but no order across
different layers. The partial order can be characterized by a
combination of a director n̂ specifying a global spin axis, a

Potts �Z3� variable q= �100�, �010�, or �001� specifying the
direction of the layers, and an Ising �Z2� variable �n for each
layer identifying one of the two possible spin orientations
within a layer. The order is partial in the sense that the Ising
variables 	�n
 randomly pick values of +1 and −1 with no
discernible correlations between adjacent layers. The par-
tially ordered state is bounded by first-order transitions on
both the high- and low-temperature sides.

Similar partial order has been previously found in a 1 /S
treatment of the Heisenberg antiferromagnet on the checker-
board lattice, also known as the square lattice with crossings,
a two-dimensional �2D� analog of the pyrochlore.15 In both
systems, the distinct layered states are not related to one
another by a symmetry of the Hamiltonian and simply arise
as different local minima of the free energy. Free-energy bar-
riers separating them may be large enough in practice for the
system not to be ergodic and instead to remain in one of
these minima forever.

Since the energy of the partially ordered collinear state is
greater than that of the low-temperature multiple-q magnetic
order, entropic selection plays a crucial role in the stabiliza-
tion of the intermediate phase. This is consistent with the
general observation that states with collinear spins tend to
have softer thermal fluctuations and therefore have a lower
free energy at finite temperatures.5,16 A similar collinear
phase has been reported in the Monte Carlo study of a J-J�
model which interpolates between the pyrochlore and the fcc
lattices.17

While we have focused on the role of second-neighbor
exchange J2 in the formation of magnetic order on the pyro-
chlore lattice, our results also shed light on the role of third-
neighbor interactions J3 �see Fig. 2�. In view of strong cor-
relations between nearest-neighbor spins developing at
temperatures well below J1S2, the properties of the system
depend not on J2 and J3 separately but on their linear com-
bination J2−J3. Indeed, the relative shift in energy for any
pair of ground states of the nearest-neighbor exchange due to
a small J3 is identical to the effect of a J2 of the same mag-
nitude and opposite sign. Thus our findings should also be of
relevance for the more general case of a pyrochlore antifer-
romagnet with small J2 and J3.

The remainder of this paper is organized as follows. In
Sec. II we briefly discuss the nature of magnetically ordered
phases at low temperatures for both signs of the second-
neighbor coupling J2. Section III presents the main subject of
this work, the partially ordered phase found at intermediate
temperatures on the ferromagnetic side of J2. Stability of the
partially ordered state and its phase boundaries are examined
in Sec. IV. We conclude with a discussion of these results in
Sec. V.

II. LOW-TEMPERATURE ORDERED PHASES

Since the phase transitions shown in Fig. 1 are strongly
discontinuous and occur at very low temperatures, the meta-
stable states close to the coexisting region are rather long-
lived. Conventional histogram methods with local Metropo-
lis updates are ineffective in determining the critical points
due to a large energy barrier separating the metastable state
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FIG. 1. �Color online� Phase diagram of the model with antifer-
romagnetic first and weak second-neighbor exchange of either sign
on the pyrochlore lattice. Open circles are numerically determined
locations of thermodynamic phase transitions �all first order�; filled
circles denote the stability boundary of the collinear phase. Solid
lines are interpolated phase boundaries; the dashed line is a bound-
ary of local stability of the collinear phase. The wave number of the
incommensurate magnetic phase is h�3 /4.
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FIG. 2. �Color online� Second- and third-neighbor pairs on the
pyrochlore lattice. Since exchange paths giving rise to J3 and J3� are
inequivalent, the two couplings may be different. Numbers from 0
to 3 label the four fcc sublattices.
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from the true ground state. Instead, we settled on using a
method proposed by Creutz et al.,18 in which a mixed phase
with the two coexisting states each occupying half the lattice
is constructed first. By thermalizing the mixed phase at vari-
ous temperatures, the critical point is determined when nei-
ther of the two states prevail the system during the relaxation
process. Since the multiple-q magnetic order has an extended
unit cell with a period of about 4 cubic lattice constants,
systems used in our mixed-phase simulations contain 83 cu-
bic unit cells, with a total spin N=16�83.

A. Antiferromagnetic J2: Low frustration

In the limit J2�J1, magnetic ordering takes place at a
temperature Tc=O�J2S2�. The nature of this ordering is best
understood by appealing to the fact that a weak third-
neighbor coupling J3�J1 �Fig. 2� selects among the nearest-
neighbor ground states in the same way as a second-neighbor
coupling J2 of the same strength and opposite sign, as ex-
plained in Appendix A. �We here note in passing that, since
the strength of coupling depends on the exchange paths and
not the interatomic distance alone, sometimes J3 may be as
big as J2. For instance, ab initio calculations show that in
CdCr2O4 J3 exceeds J2 in magnitude.14,19� This insight is
useful as the resulting ordered pattern can be understood in a
more straightforward way by analyzing the effect of J3. To
see that, note that the pyrochlore lattice consists of four fcc
sublattices and that third neighbors on the pyrochlore lattice
belong to the same fcc sublattice �Fig. 2�. Thus a ferromag-
netic exchange J3�0 is not frustrated and will be absolutely
minimized by a state where spins within the same fcc sub-
lattice are parallel to one another.

A translationally invariant four-sublattice ground state
was predicted for the pyrochlore antiferromagnet with a fer-
romagnetic J3 by Reimers et al.12 The same can be expected
for an antiferromagnetic second-neighbor coupling J2�0. In
both cases the energy of the further-neighbor exchange is
minimized by a ferromagnetic order �Si� within the indi-
vidual sublattices. Consequently any configuration satisfying
�i=0

3 �Si�=0 is a ground state at the mean-field level. Thermal
fluctuations nonetheless favor those with collinear spins.5

This is indeed what we obtained in the Monte Carlo simula-
tions �Fig. 3�: a q=0 Néel state with an up-up-down-down
spin configuration on every tetrahedron is found to be the
ground state for an antiferromagnetic J2. This collinear mag-

netic state is separated by a discontinuous transition line
from the high-temperature cooperative paramagnetic state.
As shown in Fig. 3�b�, both the energy density � and the
staggered magnetization L3= �S0−S1−S2+S3� /4S show a
clear jump at the transition temperature Tc�3.2J2S2.

B. Ferromagnetic J2: High frustration

The case of a ferromagnetic second-neighbor coupling,
J2�0, is similar to that of J3�0. An antiferromagnetic cou-
pling on an fcc lattice is frustrated, so that this time one may
expect a more complex magnetic order. Indeed, Reimers’
mean-field calculation yields an incommensurate magnetic
order with a wave vector q=2��h ,h ,0� in the case of a
ferromagnetic J2.

We have performed Monte Carlo simulations on the py-
rochlore lattice with periodic boundary conditions measuring
8 cubic unit cells in each direction. The simulations were
done for J2=−0.1J1. They revealed a state with magnetic
Bragg peaks at incommensurate lattice momenta near
2�	3 /4,3 /4,0
 and other equivalent positions. Figure 4�a�
shows two inequivalent Bragg peaks, q�2��3 /4,3 /4,0�
and −2��3 /4,3 /4,0�, the rest being related to these two by a
reciprocal lattice vector. Bragg peaks with comparable inten-
sities are found at other wave vectors related to the above
two by point-group symmetries. This multiple-q Néel order
is consistent with the ground states of Eq. �1� in the spherical
approximation, in which the local length constraints �Si�=S
are replaced by a global one, �i=1

N �Si�2=NS2. Introducing the
Fourier transform Si=�qSm�q�eiq·ri �the site index i= �m ,ri�,
where m is the sublattice index�, the exchange interaction �1�
becomes

H =
N

4 �
q

�
m,n=0

3

Jmn�q�Sm�q� · Sn�− q� . �2�

The Fourier components Sm�q� are subject only to a global
constraint �m,q�Sm�q��2=S2. The matrix Jmn�q� is the Fourier
transform of the exchange interaction Jij =Jmn�ri−r j�. Its ex-
plicit form with interactions up to the fourth nearest neigh-
bors can be found in Ref. 12.

Expanding Sm�q�=�aUq,m
a �q

a in terms of the eigenvectors
Uq,m

a of the exchange matrix Jmn�q� yields the energy as a
function of the expansion coefficients �q

a:
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(a) FIG. 3. �Color online� �a� A q
=0 Néel order for model with an
antiferromagnetic J2 �ferromag-
netic J3�. The order parameter is
one of the three staggered magne-
tization L3= �S0+S1−S2−S3� /4S
�Ref. 14�. �b� The phase transition
between the paramagnetic and an-
tiferromagnetic phases for J2

=0.01J1. The simulated system
has 16�83 spins. The energy den-
sity �= �E−E0� /6Ns, where E0=
−NsJ1 is the ground-state energy
of nearest-neighbor interactions.
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E =
N

4 �
q

�
a=1

4

	q
a��q

a�2, �3�

where 	q
a is the corresponding eigenvalue of Jmn�q�. With the

normalization �m=0
3 �Uq,m

a �2=1, the vectors �q
a satisfy

�q�a��q
a�2=S2. The ground-state energy of Eq. �2� is thus

E0=NS2	min, where 	min is the lowest eigenvalue 	q
a.

For the nearest-neighbor interaction only, the two lowest
eigenvalues are q-independent, 	q

1 =	q
2 =−J1, reflecting the

degenerate nature of the magnetically ordered ground state.
This degeneracy is lifted by the introduction of J2 as dis-
cussed by Reimers et al.12 A contour plot of the lowest ei-
genvalue of the exchange matrix as a function of the wave
vector q=2��h ,h , l� for J2�0 is shown in Fig. 4�b�. It can
be seen from Fig. 4 that the peaks of the spin structure factor
appear at the same locations as the minima of exchange en-
ergy, namely at 12 incommensurate wave vectors q�

=2�	h� ,h� ,0
, where h��3 /4 depends weakly on the ratio
J2 /J1. For small J2 /J1, h�=a0+a1�J2 /J1�+O��J2 /J1�2�,
where

a0 =
1

�
arccos��43 − 9�/3� = 0.7427,

a1 =
44

3�9654 + 55743
= 0.0336. �4�

The magnetic order is described by the order parameter
composed of 12 vector amplitudes �q�.12 A detailed charac-
terization of this magnetic state is deferred to a future pub-
lication. Figure 5 shows the temperature dependence of the
energy density � and the magnitude of the order parameters

M =�q���q��2. Both exhibit a clear jump at Tc�0.95�J2�S2,
indicating a first-order transition. This is also confirmed
by a double-peak structure in the energy histogram at the
transition temperature. Similar results were obtained for
J2�−0.09J1 where the magnetic phase is separated from the
high-temperature spin liquid phase by a first-order phase
transition as indicated in Fig. 1.

III. PARTIALLY ORDERED PHASE

As discussed in Sec. I, an intermediate phase with collin-
ear spins exists at finite temperatures for a small ferromag-
netic coupling J2�0. The appearance of collinearity is not
totally unexpected as it is well known that collinear states are
in general favored by thermal fluctuations in magnets with
frustrated exchange interactions.16 The fact that the system
remains frustrated even in the presence of a ferromagnetic J2
makes the existence of the nematic phase possible. From
another perspective, the classical nearest-neighbor Heisen-
berg spins on the pyrochlore lattice evade the thermal selec-
tion only marginally.5 The introduction of a ferromagnetic J2
reduces the dimension of ground-state manifold, thus permit-
ting thermal fluctuations to stabilize collinear states.

A. Nematic order

To demonstrate that spins indeed become collinear in the
intermediate phase, we have obtained from Monte Carlo
simulations the nematic order parameter Q defined as the
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largest eigenvalue of the traceless tensor Q�= �S�S /S2

−�� /3�,20 where S� represents Cartesian components of a
spin. It vanishes in a totally disordered state and attains the
maximal value of 2/3 for parallel spins.

The thermodynamic behavior of the system with J2=
−0.01J1 in the vicinity of the phase transitions is illustrated
in Fig. 6. The simulation was done on the pyrochlore lattice
with periodic boundary conditions measuring 4 cubic unit
cells in each direction, giving a total of N=16�43=1024
spins. To improve the equilibration process, we employed
parallel tempering21,22 with 30 replicas. The energy density �
and the nematic order parameter Q are shown as functions of
temperature near Tc1 �paramagnet to partially ordered phase;
see Fig. 6�a�� and Tc2 �partially ordered phase to antiferro-
magnet; see Fig. 6�b��. The energy density shows a clear
discontinuity at both transitions. Extrapolating the energy
curve from the partially ordered phase to T=0 yields a den-
sity �L=−�J2� /3 characteristic of a layered state to be dis-
cussed below. Likewise, the order parameter Q extrapolates
to the maximal attainable value of 2/3 characteristic of col-
linear spins. Below Tc2, the antiferromagnetic state seems to
have a residual nematic order with Q�0.05, which may be
intrinsic to the low-temperature ordered state, or a finite-size
effect.

B. Bond order

Nematic order alone does not provide a full characteriza-
tion of this phase: four spins on a tetrahedron have three
distinct collinear states not related to each other by a global
rotation of the spins. They are labeled red, green, and blue in
Fig. 7. These states differ from one another by the location of

frustrated bonds �ij� that involve parallel spins. Since the
global direction of the spins is already captured by the nem-
atic order parameter Q�, further characterization can be
made by using scalar quantities, such as bond variables f ij
��Si ·S j�. At temperatures well below J1S2 only two �out of
six� bond variables of a tetrahedron are independent:9

f1 =
f01 + f23 + f02 + f13 − 2f03 − 2f12

12
,

f2 =
f01 + f23 − f02 − f13

2
. �5�

The vector f= �f1 , f2� takes on values in a triangular domain
with the three collinear states in its corners.

What kind of bond order might one expect in the interme-
diate phase? To answer this question, let us again use the
equivalence between a ferromagnetic J2 and an antiferro-
magnetic J3. The latter promotes antiparallel orientations for
spins 3 and 3� �Fig. 2�, which means—for a collinear state of
spins—that one of the bonds 03 and 03� is frustrated and the
other is satisfied. �Bergman et al.23 showed that such states—
satisfying the “bending rule” for frustrated bonds in zero
applied field—are also favored by quantum fluctuations of
spins.� In other words, adjacent tetrahedra will be in states of
different colors. This is reminiscent of the antiferromagnetic
Potts model with three states: red, green, and blue in Fig. 7.
A collinear state of the pyrochlore antiferromagnet is fully
specified by the global spin director and the colors of all
tetrahedra. Note however that colors of tetrahedra are not
completely independent: the number of satisfied bonds
�Si ·S j =−S2� must be even along any closed loop. Nonethe-
less, the parametrization in terms of Potts variables serves a
useful purpose. One of the phases of the antiferromagnetic
Potts model on a bipartite lattice has a broken sublattice
symmetry �BSS�: one sublattice is dominated by one color,
while the other is randomly populated by the two remaining
colors.24,25 With this state in mind, we have measured the
average bond variables in the intermediate phase in the
Monte Carlo simulations.

The Monte Carlo averages of the bond doublet �Eq. �5��
for sublattices A and B are shown in Fig. 8. The value of f for
sublattice A is narrowly distributed in the vicinity of the
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FIG. 6. �Color online� Transitions between �a� the paramagnetic and nematic phases, and �b� the nematic and Néel phases, for J2=
−0.01J1. A parallel-tempering Monte Carlo method was employed to simulate a system with 16�43 spins. The normalized energy density
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collinear blue state, indicating that all tetrahedra of sublattice
A are in this state. There are no blue tetrahedra on sublattice
B, as one might expect from the analogy with the antiferro-
magnetic Potts model. For the BSS phase, where each site is
red or green with equal probabilities, one expects a continu-
ous distribution of f in the middle of the opposing edge of
the triangle connecting the green and red corners. Instead, we
find that sublattice B has discrete fractions of red tetrahedra,
e.g., 0, 1/4, 1/2, 3/4, and 1 in a system with eight layers of
tetrahedra in one sublattice �Fig. 8�a��.

This discreteness is a finite-size effect. An examination of
individual microstates shows that the intermediate phase has
a layered structure for bond variables on sublattice B: tetra-
hedra within the same layer in the xy plane have the same
color. The origin of the layered structure on one of the sub-
lattices can be traced to the same constraint on the colors
around a closed loop; see Appendix B or details. For ex-
ample, the simulated system of Fig. 8�a� contained eight lay-
ers of tetrahedra within a sublattice. If the layers could be
colored red and green independently of one another, one
would expect to find the fractions of either color proportional
to 1/8. However, periodic boundary conditions create con-
straints on the number of satisfied bonds in the direction
perpendicular to the layers, so that each lattice can only have
an even number of layers of either color. Hence the fractions
are proportional to 1/4. Similarly, for a system in which each
sublattice has six layers of tetrahedra, the fraction of red
layers is 0, 1/3, 2/3, and 1 �Fig. 8�b��.

To verify this observation more directly, we performed a
replica-exchange Monte Carlo simulation on a system with
43 conventional cubic cells. 16�43 spins are divided into
eight layers of tetrahedra in each sublattice. A particular lay-
ered state with collinear spins is described by a sequence of
Ising variables 	�1 ,�2 , ¯�8
 �see Appendix C�. With peri-
odic boundary conditions, 17 distinct configurations are used
in a replica-exchange Monte Carlo simulation. The Ising se-
quences corresponding to these 17 layered states are listed in
Table I. In each exchange cycle, a fixed number of Metropo-
lis sweeps are performed on individual replicas of the sys-

tem, each of which corresponds to a particular layered state.
Then different replicas are exchanged according to detailed
balance, thus ensuring thermodynamic equilibrium. A histo-
gram of the occurrence of the 17 configurations in a chosen
replica is shown in Fig. 9. The almost equal probability of
occurrence implies a vanishing spin order after averaging
over the different configurations.

The layered structure of the intermediate phase spontane-
ously breaks the rotational and translational symmetries of
the pyrochlore lattice. A collinear Néel order exists within an
individual layer of tetrahedra but not across the layers if the
colors on one sublattice are indeed random. At the mean-
field level, the collinear states in the partially ordered phase
belong to a larger class of �generally noncollinear� layered
states with the same exchange energy. A discussion of the
general layered states is presented in Appendix C. As already
mentioned previously, since collinear spins tend to have
softer magnon spectrum, those layered states with collinear
spins are favored by thermal fluctuations.

The two phase boundaries enclosing the intermediate
phase are both discontinuous transitions. The critical tem-
peratures determined by the mixed-phase method18 are linear
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FIG. 8. �Color online� The distribution of bond vector of the two sublattices fA and fB in the nematic phase. The simulated system has
�a� eight layers and �b� six layers of tetrahedra in one sublattice. The bond vector f has been normalized such that the three collinear states,
blue, red, and green, are at vertices �−1,0�, � 1

2 ,
3
2 �, and � 1

2 , −3
2 �, respectively.

TABLE I. Ising sequences of the 17 distinct layered states for a
pyrochlore lattice with eight layers subject to periodic boundary
conditions.

No. Ising sequence No. Ising sequence

1 ++ + + + + ++ 10 −+−+−+ ++

2 −+ + + + + ++ 11 −+ +−+ +−+

3 −−+ + + + ++ 12 −−−−+ + ++

4 −+−+ + + ++ 13 −−−+−+ ++

5 −+ +−+ + ++ 14 −−−+ +−++

6 −+ + +−+ ++ 15 −−+−+−++

7 −−−+ + + ++ 16 −−+−+ +−+

8 −−+−+ + ++ 17 −+−+−+−+

9 −−+ +−+ ++
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in J2: Tc1�1.87�J2�S2 and Tc2�0.26�J2�S2 as T→0. Our nu-
merical simulations seem to indicate that the intermediate
phase is globally stable in the temperature regime Tc2�T
�Tc1: in the mixed state, the collinear phase gradually takes
over the entire lattice. We do not have analytical arguments
to back up the global stability of the intermediate collinear
phase: such an analysis would require knowledge of the free
energy of the magnetically ordered phase, which has not yet
been obtained.

IV. LOCAL STABILITY OF THE PARTIALLY ORDERED
PHASE

Even an analysis of the local stability of the partially or-
dered collinear phase is not exactly straightforward. The
standard large-S method of computing the magnon contribu-
tion to the free energy fails because of the existence of un-
stable modes with a negative stiffness at zero temperature.
The instability merely reflects the fact that the collinear
states are not a local minimum of energy �1�. The instability
is avoided at a �sufficiently high� finite temperature: the free
energy of spin fluctuations contributes a positive term to the
spin stiffness. In this section we analyze the local stability of
the collinear phase.

A. Unstable modes

To analyze the stability of a collinear state, we express the
energy of the system in terms of transverse spin fluctuations
�i� n̂. By substituting Si�S�1−�i

2 /2S2��in̂+�i into Eq.
�1� we obtain a spin-wave Hamiltonian in the harmonic ap-
proximation,

H�2� = EL + �J1 − 2J2��
i

�i
2 +

1

2�
i,j

Jij�i · � j , �6�

where EL is the energy of the layered state. The Ising vari-
ables 	�i
 specifying the direction of a spin are absent from
the harmonic Hamiltonian �6�. They affect the dynamics of
the system through the canonical commutation relations for
the transverse components of the spins.

The quadratic form �6� must be positive definite to guar-
antee stability of the collinear state. Its eigenvalues � are
obtained by making the Fourier transform and then diagonal-
izing a 4�4 matrix �the pyrochlore lattice is an fcc with a
basis of four sites�:

�q
a = �J1 − 2J2� + 	q

a , �7�

where 	q
a are eigenvalues of Jmn�q� defined in Sec. II B. The

dispersion has degenerate zero modes along lines q
=2�	1,h ,0
 corresponding to magnetic spirals along one of
the three cubic axes. These spirals belong to the degenerate
manifold of noncollinear layered states discussed in Appen-
dix C. Furthermore, there are regions in momentum space
with �q�0, as shown in Fig. 10. The most unstable modes
are found at wave vectors q�=2�	h� ,h� ,0
 with h� given by
Eq. �4�. For small J2 /J1, the lowest eigenvalue is

�min

J1
= �28 − 163�

J2

J1
+

32

3
�563 − 97�� J2

J1
�2

+ ¯ .

Since �min�0 for a ferromagnetic J2, the collinear ground
states are unstable at zero temperature.

B. Hartree-Fock calculation

At finite temperatures the collinear layered states are sta-
bilized by thermal fluctuations. To demonstrate this, we go
beyond the harmonic term of the classical Holstein-
Primakoff expansion and consider the interactions between
spin waves,26
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FIG. 9. �Color online� Histogram of 17 distinct collinear layered
structures obtained by replica-exchange Monte Carlo simulation.
The system has 16�43 spins. The configuration number labels 17
topologically distinct layered states subject to the periodic boundary
condition.
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FIG. 10. �Color online� �a�
The energy dispersion of the spin-
wave band with unstable modes.
�b� Regions in momentum space
q=2��h ,h , l� where the spectrum
of energy fluctuations has nega-
tive eigenvalues �q
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H�4� =
1

8S2�
i,j

Jij��i� j�i
2� j

2 −
1

2
�i · � j��i

2 + � j
2�� . �8�

Since the system is unstable at the harmonic order, a pertur-
bation expansion based on the quadratic Hamiltonian �6� is
not possible. Instead, following Hizi and Henley,26 we con-
struct an effective �mean-field� quadratic Hamiltonian

HMF = �
i,j

H̃ij
�2��i · � j �9�

that provides the best approximation to H�2�+H�4�. To this
end, we use the standard mean-field recipe to decouple the
quartic Hamiltonian. We first write every possible pair of
operators in H�4� in terms of its thermal average plus a fluc-
tuation term. Dropping terms quartic in the fluctuations
yields the quadratic form �9� with the following coefficients

H̃ij
�2�:

�J1 − 2J2� +
1

2S2�k
Jik��i�kGkk − Gik� �i = j� ,

1

2
Jij�1 +

1

S2�i� jGij −
1

2S2 �Gii + Gjj�� �i � j� . �10�

Here Gij = ��i
x� j

x�= ��i
y� j

y� is the correlation function of spin
fluctuations calculated self-consistently in the thermal en-
semble of the mean-field Hamiltonian �10�,

Gij =
� D��i

x� j
xe−�HMF

� D�e−�HMF

. �11�

Numerically, an iteration process is used to obtain the
correlation functions Gij. After self-consistency is reached,
the energy of the magnet is given by

EMF = EL + 2�
i

�J1 − 2J2�Gii + �
i,j

JijGij

+
1

2S2�
i,j

Jij��i� j�GiiGjj + Gij
2 � − Gij�Gii + Gjj�� .

�12�

Figure 11�a� shows the computed energy density as a func-
tion of temperature. The result agrees very well with that

obtained from Monte Carlo simulations. Both the simulation
and calculation were done for J2=−0.01J1 on a pyrochlore
lattice with a size of 16�43 spins and periodic boundary
condition on each side. The self-consistent method can also
be used to compute the nematic order parameter. For
n̂= + ẑ, the tensor �S�S� becomes diagonal with elements

�SxSx�= �SySy�=2Ḡ and �SzSz�=1–2Ḡ, where Ḡ=�iGii /N.
The nematic order parameter is then

Q =
2

3
−

2

NS2�
i

Gii. �13�

The result is shown in Fig. 11�b� and the agreement with that
obtained from Monte Carlo simulation seems satisfactory:
the discrepancy between the two methods is less than 3%.
The nearly saturated nematic order parameter Q observed in
Monte Carlo simulations implies �2�1, justifying the
Holstein-Primakoff expansion about the collinear state.

Below a certain temperature T� the energy spectrum of
spin waves acquires some negative eigenvalues and the col-
linear phase gives way to the low-temperature ordered state.
Since the transition is first order, the E−T diagram exhibits
hysteresis. The thermodynamic transition takes place at a
temperature Tc2�T�, at which the collinear phase is still lo-
cally stable.

The dependence of T� / �J2� on the ratio �J2� /J1 obtained
from the Hartree-Fock calculation is shown in Fig. 12. The
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FIG. 11. �Color online� �a� Energy density � and �b� nematic order parameter as a function of temperature obtained using Monte Carlo
simulations and a Hartree-Fock self-consistent calculation. The calculation was done with J2=−0.01J1. The dashed line is a linear fit to the
Monte Carlo data. Note that the transition temperature obtained from Monte Carlo simulation is Tc2�0.076�J2�S2.
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FIG. 12. �Color online� Stability boundary T� obtained using the
Hartree-Fock calculation and the Monte Carlo simulations. The er-
ror bars shown for the Monte Carlo data are equal to the tempera-
ture step �T used in the simulation.
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points collapse perfectly on a linear curve implying a scaling
relation T��J2

2 /J1. A numerical estimate of the stability
boundary T��J2�, obtained as the lowest temperature at which
the intermediate phase was still observed in Monte Carlo
runs, is also plotted in Fig. 12; the result is in satisfactory
agreement with that of the mean-field calculation.

C. Analytic results: Red-and-green state

An analytical derivation of the stability temperature T�

�J2
2 /J1 is difficult to obtain for the most general layered

state. We have evaluated the stability for the simplest state of
this kind, where all of the layers have the same colors. A
state of this sort �sublattice A is red and sublattice B is green�
was studied in Ref. 14. This particular state has a higher
symmetry than a typical layered structure: the color variables
violate only the inversion symmetry exchanging the two sub-
lattices of tetrahedra.

In the mean-field Hamiltonian �10�, the main effect of the
quartic interaction H�4� is to renormalize the first-neighbor
exchange J1 to Jij =J1+�Jij, which is now bond dependent:

�Jij = −
J1

2S2 �Gii + Gjj − 2�i� jGij� . �14�

Assuming that exchange renormalizations �Jij respect the
symmetries of the red-and-green state, we have three inde-
pendent variational parameters �J01, �J02, and �J03 �Fig. 13�.
If we further assume that the correlations Gij are dominated
by the pyrochlore zero modes, the number of variational pa-
rameters reduces to two. This is so because zero modes sat-
isfy �i=0

3 �i=0, hence ��0�1�=−��0
2�− ��0�2�− ��0�3�. It fol-

lows then that �J01=�J02+�J03. We parametrize the
exchange renormalizations in terms of K1 and K2 such that

�J01 = �J23 = − K1 − K2,

�J02 = �J31 = − K1,

�J03 = �J12 = − K2 �15�

on the red sublattice.
We then compute the spectrum and the eigenmodes of

energy fluctuations with the renormalized exchange interac-
tion. The two zero-energy bands that were flat in the absence

of J2 and Ki now acquire a dispersion; one becomes gapped
��q

a is strictly positive�, while the other has a vanishing en-
ergy at the wave vector q0=2��0,0 ,1�. This zero mode cor-
responds to a global rotation of spins. Correlation functions
are dominated by fluctuations in the lowest band in the vi-
cinity of q0. For small k, the energy eigenvalue is

�q0+k �
1

32
�2K1k�

2 + �8�J2� + K2�kz
2� , �16�

where k�
2 =kx

2+ky
2.

In order to obtain the correlations Gij, we need first to
obtain the eigenmodes. To this end, we use an orthonormal
basis of the two zero modes of J1 for given values of k. We
then treat Ki and J2 as perturbations and use degenerate per-
turbation theory to obtain the eigenmodes. To the lowest or-
der in k, they are

u0�q0 + k� = − i/2 − �kx − ky + kz�/16,

u1�q0 + k� = + 1/2 − i�kx + ky + kz�/16,

u2�q0 + k� = − 1/2 − i�kx + ky − kz�/16,

u3�q0 + k� = + i/2 − �kx − ky − kz�/16. �17�

As can be easily checked, the total spin of a tetrahedron
�m�m=�mumei�q0+k�·rm =0 at this order of k. The spin corre-
lation function is

Gmn =
1

N�
�
q

T

�q
um

� �q�un�q�ei�q�·�rm−rn�, �18�

where N�=N /4 is the number of unit cells, and m, n are
sublattice indices. By expanding to the second order of k and
using Eq. �14�, we obtain the following self-consistency
equations for K1 and K2:

J1T

4N�S2�
k

kz
2

2K1k�
2 + �8�J2� + K2�kz

2 = K1, �19�

J1T

2N�S2�
k

k�
2

2K1k�
2 + �8�J2� + K2�kz

2 = K2. �20�

Although these equations can be solved numerically, we
are interested in an approximate solution of K1 and K2 in the
low-temperature regime, T� �J2�S2. Since the effective spin
stiffness K is generated by thermal fluctuations, they are ex-
pected to be small compared to J2. To the lowest order we
neglect K1 and K2 in Eq. �19� and obtain

K1 �
J1T

32�J2�S2 . �21�

On the other hand, because the integral for K2 is divergent as
K1→0, we must keep K1 in Eq. �20�. Substituting the result
for K1 into Eq. �20�, we obtain

K2 �
�

32S
J1T �22�

to the lowest order in T.

y
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3 1

0 2

31

x

FIG. 13. �Color online� Renormalized nearest-neighbor bonds of
the red-and-green state in the mean-field calculation. The renormal-
ized first-neighbor exchange constants: J1−K1−K2 �dashed bonds�,
J1−K1 �dashed-dotted bonds�, and J1−K2 �solid bonds�.
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These results provide a glimpse into the physics of the
transition between the intermediate and low-temperature
phases. Figure 14 shows the renormalized dispersion �q0+k

�Eq. �16�� along the line q=2��h ,h ,1� at various tempera-
tures. As the temperature decreases, a dip of the dispersion
curve starts to develop at h�0.2. Eventually this local mini-
mum touches zero at the critical temperature Tc2. Below T�

the collinear state is unstable: it decays by emitting spin
waves with q�2��1 /4,1 /4,1�, which is related to
2��3 /4,3 /4,0� by a reciprocal lattice vector.

It should be noted that the scenario displayed in Fig. 14 is
only a qualitative description of the real transition. Our self-
consistent treatment only takes into account spin waves close
to the q0=2��0,0 ,1� Goldstone mode. This is valid at tem-
peratures well above T� since these spin waves are the
lowest-energy excitations of the magnet. However, as T
→Tc2, spin waves with wave vectors q�2��3 /4,3 /4,0� be-
come soft and should also be included in a self-consistent
calculation. Additionally, we have studied the energy of spin
waves as a proxy for the instability, whereas the proper cal-
culation at a finite temperature should involve the free en-
ergy. We do this next.

D. Stability boundary: Red-and-green state

We now provide an estimate of the stability temperature
T� by computing the magnon contribution to the system free
energy. An expression �Eq. �D9�� for the change in free en-
ergy associated with an unstable mode is derived in Appen-
dix D. Here we apply the result to the red-and-green state.
We consider the most dangerous modes, namely those with
wave vectors near q�=2�	h� ,h� ,0
 where h��3 /4. In the
presence of such an unstable mode with amplitude 
 super-
imposed on the red-and-green state, the free energy changes
by an amount given by

�F = ���S2 + �
mn

Gmn�nm�
2, �23�

where the correlation function Gmn is given by Eq. �18�, and
�mn is the perturbation to the mean-field Hamiltonian HMF

caused by the unstable mode. In our case, the real-space
eigenvector of the unstable mode with q�=2��h� ,h� ,0� is

mn�r� = Un
��x̂ cos�q� · r� + ŷ sin�q� · r�� , �24�

where the corresponding momentum-space eigenvector for
q� is

U� = �cos �,− sin �,− sin �,cos ��/2, �25�

with ��0.27� and weakly dependent on J2. We write the
energy of the unstable mode as ��=−��J2�, where ��0.2 is
a dimensionless number. The change in free energy is then

�F/
2 = − ��J2�S2 +
J1T

4N�
�
k

�k

2K1k�
2 + �8�J2� + K2�kz

2 ,

�26�

where

�k = �
m,n

�mnun
��k�um�k�ei�q0+k�·�rm−rn�. �27�

Since in most cases �k��+O�k2� for h�=1 /4, we neglect
the k dependence of �k in the following as a lowest order
approximation. With the aid of Eqs. �19� and �20�, the inte-
gral evaluates to

2�

16�
J1T . �28�

The condition �F=0 thus gives an estimate of the stability
temperature

T� = �16��S
2�

�2J2
2

J1
. �29�

This expression overestimates �by a factor of about 10� the
stability temperature compared with numerical results. How-
ever, as mentioned previously, the discrepancy is due to the
fact that we neglect contributions from the unstable modes
themselves when approaching the transition temperature.
Those modes with wave vector centered about the 12 un-
stable q�=2�	h� ,h� ,0
 become extremely soft as T→T� and
should be included in the calculation in a self-consistent way.
Nevertheless, Eq. �29� provides an upper bound of the sta-
bility boundary and gives a scaling relation consistent with
the numerical data.

V. DISCUSSION

We have studied the classical Heisenberg antiferromagnet
on the pyrochlore lattice with first- and second-neighbor ex-
change interactions. Ferromagnetic second-neighbor ex-
change J2�0 is frustrated and lifts the vast degeneracy of
the nearest-neighbor model only partially, setting the stage
for a nontrivial phase diagram in the �J2 ,T� plane. We have
used a combination of Monte Carlo simulations and analyti-
cal calculations to characterize the phases of this model. In
our opinion, the low-temperature phase, discussed previously
by Tsuneishi et al.,13 is the incommensurate, and likely non-
collinear, ordered phase predicted earlier by Reimers et al.12
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FIG. 14. �Color online� Variation of spin-wave energy � in unit
of �J2� along the q=2��h ,h ,1� line. The calculation was done with
a J2=−0.01J1. The curves correspond to temperatures T / �J2�
=0.018,0.0165,0.01526,0.0145,0.013 �from top to bottom�, T�

=0.01526�J2�S2 corresponding to the temperature where the q=0
mode becomes unstable.
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A full characterization of its magnetic order remains to be
done, and its fate in the presence of strong quantum fluctua-
tions is an interesting topic for future study.

Our simulations have uncovered the existence of another
partially ordered phase at intermediate temperatures for a
weak enough �J2�. In the intermediate phase, the spins are on
average collinear, which is manifested by a nonzero nematic
order parameter. The order is fully characterized by a com-
bination of a global nematic director n̂ and a three-state Potts
variable �color� on every tetrahedron indicating the location
of frustrated bonds �Fig. 7�. The second-neighbor interaction
J2�0 acts like an antiferromagnetic Potts coupling forcing
unlike colors on neighboring tetrahedra.

The color structure of this phase resembles the ordered
state with BSS of the antiferromagnetic Potts model:24 one
sublattice of tetrahedra is dominated by one color �say, blue�
while the other exhibits a mixture of the remaining two col-
ors �red and green�. However, unlike in the BSS state, the
two colors on the second sublattice are not distributed in a
completely random way: they form uniform layers in the
plane associated with the colors �in this case, xy�. The colors
of individual layers appear to be random, hence partial order.

The partial order can be described by an individual Z2
variable �i for each such layer—in addition to a global di-
rection of the spins n̂ and the color of the other sublattice.
States with different sets of 	�i
 are local minima of the free
energy. Accessing one such minimum from another by
means of a uniform rotation of spins within one layer of
tetrahedra requires climbing over a free-energy barrier that
grows as the number of spins in that layer and thus becomes
impossible in the thermodynamic limit. A more plausible
route to changing the color of a layer is by nucleating a
bubble of the opposite �i, which will grow if the new state
has a lower free energy once the bubble is large enough for
the gain in bulk energy to outweigh the cost in interface
energy. Since the distinct layered states are not related by
symmetry, their free energies are generally different and the
nucleation route may well lead to a selection within this set
of states. Since such nucleation can go along with large en-
ergy barriers, it can be tricky to observe,27,28 and indeed we
have not found it in our simulations.

It is worth stressing that the ideal collinear states do not
minimize the exchange energy—either globally or locally.
They owe their stability to thermal fluctuations, which effec-
tively renormalize exchange couplings and turn these spin
configurations into minima of the free energy. As the tem-
perature falls, the couplings return to their bare values and
the collinear states become locally unstable at a temperature
T�=O�J2

2 /J1�, in agreement with our Monte Carlo simula-
tions. The most unstable spin-wave mode has approximately
the same wave number as the low-temperature incommensu-
rate magnetic order. The simulated phase transition is
strongly discontinuous.

Simulations on the high-temperature side show that the
intermediate phase persists up to a temperature O�J2�. A dis-
continuous phase transition takes it into the paramagnetic
phase. The presence of strong local spin correlations in the
paramagnetic phase means that the effect of third-neighbor
couplings J3 �but not of J3�; see Fig. 2� is equivalent, up to a
change in sign, to that of the second-neighbor coupling, at

least to the first order. Therefore we expect that the state of
our system depends on these couplings mostly through their
difference J2−J3. If correct, this observation would extend
the results of our study to a broader class of pyrochlore an-
tiferromagnet with both J2 and J3 present.
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APPENDIX A: EQUIVALENCE OF J2 AND −J3 IN THE
STRONGLY CORRELATED PARAMAGNET

At temperatures T�J1S2 spins on every tetrahedron ap-
proximately satisfy the constraint

�
i=0

3

Si = 0. �A1�

Consider the effective magnetic field on the site labeled 3� in
Fig. 2:

H3� = − �H/�S3� = − J1S0 − J2�S1 + S2� + . . . , �A2�

where we have explicitly written out the contributions from
the spins of the adjacent tetrahedron 0123. Let us now turn
off the second-neighbor exchange, J2=0, and turn on the
third-neighbor coupling J3 �Fig. 2�. Doing so changes the
effective field to

− J1S0 − J3S3 � − �J1 − J3�S0 + J3�S1 + S2� , �A3�

where we used constraint �A1�. In this setting, a comparison
of Eqs. �A2� and �A3� shows that adding a third-neighbor
coupling J3 is indeed energetically equivalent to the second-
neighbor exchange of the same magnitude and opposite sign.
This result does not extend to the excited states, which vio-
late Eq. �A1�, so that the physics of fluctuations need not be
simply related.

APPENDIX B: CONSTRAINT ON COLORS (BOND
VARIABLES)

Consider the hexagonal loop abcdef shown in Fig. 15.
Suppose that tetrahedra of sublattice A are in the blue state
and that one tetrahedron B1 of the other sublattice is red.
Then it can be seen that tetrahedron B2, which has the same
z coordinate, must also be red. This can be proved as fol-
lows. In the collinear state, spins can be represented by an
Ising variable; i.e., Si=S�in̂ and n̂ is an arbitrary unit vector.
Obviously, the product of the six bond variables �i� j on the
hexagon loop is +1; i.e.,

��a�b���b�c� ¯ ��e� f��� f�a� = + 1. �B1�

Among the six bonds, sublattice A contributes two antiferro-
magnetic and one ferromagnetic bond; this makes its total
contribution +1. Therefore the product of the three bonds on
sublattice B must be +1 as well. We know that � f�a= +1 �B1
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is red� and �b�c=−1 �B3 is not blue�. Hence �d�e=−1,
which means that B2 is not green. Since B2 is not blue, it
must be red.

Thus, if sublattice A is blue, the above proof shows that
sublattice B has uniform color green or red in each layer z
=const. However, the colors of individual B layers are ran-
dom. This is similar to the BSS phase of antiferromagnetic
Potts model where individual sites on one sublattice have
random colors.

APPENDIX C: MAGNETIC STRUCTURE OF THE
LAYERED STATE

At the mean-field level, the collinear BSS-like states of
the intermediate phase are degenerate with a larger class of
layered state with noncollinear spins in general. Here we
describe the magnetic structure of the general layered state.

At temperatures well below the Curie-Weiss constant, the
magnetic state of a tetrahedron is determined by three stag-
gered magnetizations Li, where L1= �S0+S1−S2−S3� /4, and
so on.14 Here we choose to specify the Néel vectors of layers
belonging to sublattice A. Because each spin is shared by two
tetrahedra from different sublattices, the magnetic state of
tetrahedra of sublattice B is encoded in the staggered mag-
netizations of the four surrounding tetrahedra of sublattice A.

Choosing the normal of the layers to be the z axis, the
staggered magnetizations of a tetrahedron with in-plane co-
ordinate vector r� in the kth layer are

L1 = L2 = 0, L3 = Sn̂ke
iq�·r�, �C1�

where q�=2��1,0� or 2��0,1� which are equivalent with
respect to the 2D square lattice of tetrahedra with the same z
coordinate, and n̂k is an arbitrary unit vector. Figure 16
shows an example of the 2D Néel order. Once the spin order
within the layers is specified, the magnetic structure of a
general layered state is described by a sequence of the unit
vectors n̂k.

The bond order of the layered state is similar to the BSS
state of three-state Potts model. In the example given above,
sublattice A is in the collinear blue state while tetrahedra in
sublattice B in general have coplanar spins; their bond order
is determined by the Néel vectors of the two A layers enclos-
ing it:

fB =
4S2

3
�1

2
,
3

2
n̂k · n̂k+1� . �C2�

For arbitrary n̂k, the bond vector fB spreads uniformly on the
edge of the triangle domain which connects the two vertices
corresponding to the red and green states; the average color
is again yellow.

The energy of a layered state is independent of the direc-
tion n̂k of spins in the individual layers:

EL = − N�J1 − 2J2�S2. �C3�

This energy corresponds to the extrapolated zero-temperature
energy density �L=−�J2� /3 of the nematic phase in Fig. 6.
Although all layered states are degenerate at the mean-field
level, thermal fluctuations apparently prefer the collinear
ones as shown by the Monte Carlo simulations.

In the collinear layered states, a common direction n̂ is
selected and the unit vectors n̂k→�kn̂ with the Ising variable
�k= �1. The magnetic structure of a layered state is then
specified by a sequence of Ising variables:
	�1 ,�2 , ¯ ,�k ,¯
. For a pyrochlore lattice with eight layers
of tetrahedra in each direction, there are 17 distinct layered
states that are not related to each other by translations and
inversions of the Ising variables �Table I�. However, some of
these states may be related by other symmetries of the lattice.
For example, both states 1 and 17 represent the red-and-
green state.

APPENDIX D: FREE ENERGY OF THE UNSTABLE MODE

Below we derive a Holstein-Primakoff Hamiltonian for
spin waves in a state with nearly collinear spins and compute
the free energy to test the local stability of the collinear state.
We focus specifically on the previously identified unstable
modes.

In a general state with noncollinear spins Si=Sn̂i, we in-
troduce a local reference frame defined by three orthonormal
vectors: êi

x, êi
y, and n̂i. A small deviation from this state can

1

B2

B3

B

b

c

f

a

d

e

FIG. 15. �Color online� A fragment of a collinear state. Frus-
trated bonds are shown as colored dashed lines.

FIG. 16. �Color online� Noncollinear layered state projected
along the x axis. The normal of the layers is parallel to the z axis.
Frustrated bonds are shown as dashed lines.
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then be expressed using the Holstein-Primakoff expansion:

Si = S�1 −
�i

2

2S2�n̂i + �
�=x,y

�i
�êi

� + O��3� . �D1�

Here �i= ��i
x ,�i

y� whose components denote fluctuation
along the two orthogonal local axes. The exchange Hamil-
tonian then becomes

H = �
i,j

Jijn̂i · n̂ j + �
i,j

�
�,�

Hij
���i

�� j
�, �D2�

with

Hij
�� = �−

1

2�k
Jikn̂i · n̂k�

�� �i = j�

1

2
Jijêi

� · ê j
� �i � j� .� �D3�

For collinear states in the nematic phase, n̂i=�iẑ, and êi
x= x̂,

êi
y = ŷ, Eq. �D3� reproduces the harmonic Hamiltonian �6�.

Next we compute the increase in the free energy resulting
from a small deviation from a collinear state in the direction
of an unstable mode of the bare Hamiltonian �6�. Let 
 be
the amplitude of the unstable mode and 	mi
 the correspond-
ing �normalized� real-space eigenvector. The deformed spin
configuration is

Si = Sn̂i = Sẑ�i�1 − 
2mi
2/2� + S
mi. �D4�

Given this local spin axis n̂i, there is arbitrariness in the
choice of the other two unit vectors êi

�. In order to apply the
perturbation method, we choose

êi
x = x̂�1 − 
2 �mi

x�2

2
� − ŷ
2mi

xmi
y

2
− ẑ�i
mi

x,

êi
y = − x̂
2mi

xmi
y

2
+ ŷ�1 − 
2 �mi

y�2

2
� − ẑ�i
mi

y . �D5�

Substituting these expressions into Eq. �D3�, we obtain
Hij

��=���Hij
�2�+
2�ij

��, where Hij
�2� is the magnon Hamil-

tonian of the collinear state and the perturbation �ij
�� is given

by

�ij
�� = �−

1

2�k
Jik�mi ·mk −

1

2
�i�k�mi

2 +mk
2����� �i = j�

1

2
Jij��i� jmi

�mj
� −

1

2
�mi

�mi
� + mj

�mj
��� �i � j� .�

�D6�

Since the bare harmonic Hamiltonian contains unstable
modes as discussed in Sec. IV, we replace Hij

�2� by the one
renormalized by spin-wave interactions, given in Eq. �10�.
We may then approximate the free energy of the system as

e−�F � e−��EL+��S2
2� � ��
D�e−��i,j�H̃ij

�2��i·�j+
2�ij
���i

��j
��

= Z̃e−��EL+��S2
2��e−�
2�i,j�ij
���i

��j
�
�

� Z̃e−��EL+��S2
2�e−�
2�i,j�ij
����i

��j
��. �D7�

Here EL is energy of the layered state, Z̃ is the partition

function of the renormalized Hamiltonian H̃�2�, �¯� means

Boltzmann averaging with respect to the Hamiltonian H̃�2�,
and ���0 is the bare energy of the unstable mode mi. The
prime in the integral indicates that we only integrate out the
low-energy magnons close to the Goldstone mode of the col-
linear state.

Upon expanding the fluctuations in terms of spin-wave
eigenvectors �i

�=�n�n
�un,i, we obtain the spin correlation:

��i
�� j

�� = ����n
� ���n�2�un,i

� un,j = ����n
� T

�n
un,i

� un,j = ���Gij .

�D8�

Here �n is the energy of the nth eigenmode of the renormal-

ized Hamiltonian H̃ij
�2�. Substituting this result back into Eq.

�D7� yields the free energy �Eq. �23�� associated with the
unstable mode 
,

F � const + ���S2 + �
i,j

Gij� ji�
2 + O�
4� , �D9�

where �ij =���ij
��.

1 R. Moessner and A. P. Ramirez, Phys. Today 59�2�, 24 �2006�.
2 G. H. Wannier, Phys. Rev. 79, 357 �1950�.
3 R. M. F. Houtappel, Physica �Amsterdam� 16, 425 �1950�.
4 S. T. Bramwell and M. J. P. Gingras, Science 294, 1495 �2001�.
5 R. Moessner and J. T. Chalker, Phys. Rev. B 58, 12049 �1998�.
6 S. V. Isakov, K. Gregor, R. Moessner, and S. L. Sondhi, Phys.

Rev. Lett. 93, 167204 �2004�.
7 C. L. Henley, Phys. Rev. B 71, 014424 �2005�.
8 C. Kittel, Phys. Rev. 120, 335 �1960�.
9 O. Tchernyshyov, R. Moessner, and S. L. Sondhi, Phys. Rev. B

66, 064403 �2002�.
10 S.-H. Lee, C. Broholm, T. H. Kim, W. Ratcliff II, and S.-W.

Cheong, Phys. Rev. Lett. 84, 3718 �2000�.

11 J.-H. Chung, M. Matsuda, S.-H. Lee, K. Kakurai, H. Ueda, T. J.
Sato, H. Takagi, K.-P. Hong, and S. Park, Phys. Rev. Lett. 95,
247204 �2005�.

12 J. N. Reimers, A. J. Berlinsky, and A.-C. Shi, Phys. Rev. B 43,
865 �1991�.

13 D. Tsuneishi, M. Ioki, and H. Kawamura, J. Phys.: Condens.
Matter 19, 145273 �2007�.

14 G. W. Chern, C. J. Fennie, and O. Tchernyshyov, Phys. Rev. B
74, 060405�R� �2006�.

15 O. Tchernyshyov, O. A. Starykh, R. Moessner, and A. G.
Abanov, Phys. Rev. B 68, 144422 �2003�.

16 C. L. Henley, Phys. Rev. Lett. 62, 2056 �1989�.
17 C. Pinettes, B. Canals, and C. Lacroix, Phys. Rev. B 66, 024422

PARTIAL ORDER FROM DISORDER IN A CLASSICAL… PHYSICAL REVIEW B 78, 144418 �2008�

144418-13



�2002�.
18 M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D 20, 1915

�1979�.
19 A. N. Yaresko, Phys. Rev. B 77, 115106 �2008�.
20 P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics �Cambridge University Press, Cambridge, En-
gland, 2000�.

21 K. Hukushima and K. Nemoto, J. Phys. Soc. Jpn. 65, 1604
�1996�.

22 S. Trebst, D. A. Huse, and M. Troyer, Phys. Rev. E 70, 046701
�2004�.

23 D. L. Bergman, R. Shindou, G. A. Fiete, and L. Balents, Phys.
Rev. B 74, 134409 �2006�.

24 G. S. Grest and J. R. Banavar, Phys. Rev. Lett. 46, 1458 �1981�.
25 S. Lapinskas and A. Rosengren, Phys. Rev. Lett. 81, 1302

�1998�.
26 U. Hizi and C. L. Henley, J. Phys.: Condens. Matter 19, 145268

�2007�.
27 A. J. Leggett, Phys. Rev. Lett. 53, 1096 �1984�.
28 P. Schiffer, M. T. O’Keefe, M. D. Hildreth, Hiroshi Fukuyama,

and D. D. Osheroff, Phys. Rev. Lett. 69, 120 �1992�.

CHERN, MOESSNER, AND TCHERNYSHYOV PHYSICAL REVIEW B 78, 144418 �2008�

144418-14


