
Obit, Joe Henry and Landa-Silva, Dario and Ouelhadj,
Djamila and Khan Vun, Teong and Alfred, Rayner (2011)
Designing a multi-agent approach system for distributed
course timetabling. In: Proceedings of the 2011 IEEE
Hybrid Intelligent Systems Conference (IEEE-HIS 2011),
5-8 December 2011, Melacca, Malaysia.

Access from the University of Nottingham repository:
http://eprints.nottingham.ac.uk/32606/1/dls_hais2009.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of
Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may
be reused according to the conditions of the licence. For more details see:
http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of
record. If you wish to cite this item you are advised to consult the publisher’s version. Please
see the repository url above for details on accessing the published version and note that
access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk

mailto:eprints@nottingham.ac.uk

Evolutionary Non-Linear Great Deluge for

University Course Timetabling

Dario Landa-Silva and Joe Henry Obit

Automated Scheduling, Optimisation and Planning Research Group
School of Computer Science, The University of Nottingham, UK

{jds, jzh}@cs.nott.ac.uk

Abstract. This paper presents a hybrid evolutionary algorithm to tackle
university course timetabling problems. The proposed approach is an
extension of a non-linear great deluge algorithm in which evolutionary
operators are incorporated. First, we generate a population of feasible
solutions using a tailored process that incorporates heuristics for graph
colouring and assignment problems. That initialisation process is capable
of producing feasible solutions even for the large and most constrained
problem instances. Then, the population of feasible timetables is sub-
ject to a steady-state evolutionary process that combines mutation and
stochastic local search. We conduct experiments to evaluate the perfor-
mance of the proposed hybrid algorithm and in particular, the contri-
bution of the evolutionary operators. Our results show that the hybrid
between non-linear great deluge and evolutionary operators produces
very good results on the instances of the university course timetabling
problem tackled here.

Key words: hybrid evolutionary algorithm, non-linear great deluge,
course timetabling.

1 Introduction

Finding good quality solutions for timetabling problems is a very challenging task
due to the combinatorial and highly constrained nature of these problems [10].
In recent years, several researchers have tackled the course timetabling problem,
particulary the set of 11 instances proposed by Socha et al. [14]. Among the
algorithms proposed there are: a MAX-MIN ant system by Socha et al. [14]; a
tabu search hyper-heuristic strategy by Burke et al. [7]; an evolutionary algo-
rithm, ant colony optimisation, iterated local search, simulated annealing and
tabu search by Rossi-Doria et al. [13]; fuzzy multiple heuristic ordering by As-
muni et al. [5]; variable neighbourhood search by Abdullah et al. [1]; iterative
improvement with composite neighbourhoods by Abdullah et al. [2, 4]; a graph-
based hyper-heuristic by Burke et al. [9] and a hybrid evolutionary algorithm by
Abdullah et al. [3].

This paper proposes a two-stage hybrid meta-heuristic approach to tackle
course timetabling problems. The first stage constructs feasible timetables while

the second stage is an improvement process that also operates within the feasible
region of the search space. The second stage is a combination of non-linear great
deluge [12] with evolutionary operators to improve the quality of timetables by
reducing the violation of soft constraints.

The rest of this paper is organised as follows. In Section 2, the subject prob-
lem and test instances are described. Then, Section 3 gives details of the pro-
posed hybrid evolutionary algorithm. Results and experiments are presented
and discussed in Section 4 while conclusions are given in Section 5. The key
contributions of this paper are: an initialisation heuristic that generates feasible
timetables everytime and a simple yet effective hybrid evolutionary algorithm
that is very competitive with much more elaborate algorithms already presented
in the literature.

2 University Course Timetabling

In general, university course timetabling is the process of allocating, subject to
predefined constraints, a set of limited timeslots and rooms to courses, in such a
way as to achieve as close as possible a set of desirable objectives. In timetabling
problems, constraints are commonly divided into hard and soft. A timetable is
said to be feasible if no hard constraints are violated while soft constraints may
be violated but we try to minimise such violation in order to increase the quality
of the timetable. In this work, we tackle the course timetabling problem defined
by Socha et al. [14] where there are: n events E = {e1, e2, . . . , en}, k timeslots
T = {t1, t2, . . . , tk}, m rooms R = {r1, r2, . . . , rm} and a set S of students. Each
room has a limited capacity and a set F of features that might be required by
events. Each student must attend a number of events within E. The problem is
to assign the n events to the k timeslots and m rooms in such a way that all
hard constraints are satisfied and the violation of soft constraints is minimised.

Hard Constraints. There are four in this problem: (1) a student cannot
attend two events simultaneously, (2) only one event can be assigned per timeslot
in each room, (3) the room capacity must not be exceeded at any time, (4) the
room assigned to an event must have the features required by the event.

Soft Constraints. There are three in this problem: (1) students should not
have exactly one event timetabled on a day; (2) students should not have to
attend more that two consecutive events on a day; (3) students should not have
to attend an event in the last timeslot of the day.

The benchmark data sets proposed by Socha et al. [14] are split according to
their size into 5 small, 5 medium and 1 large. For the small instances, n = 100,
m = 5, |S| = 80, |F | = 5. For the medium instances, n = 400, m = 10, |S| = 200,
|F | = 5. For the large instances, n = 400, m = 10, |S| = 400, |F | = 10. For all
instances, k = 45 (9 hours in each of 5 days). It should be noted that although
a timetable with zero penalty exists for each of these problem instances (the
data sets were generated starting from such a timetable [14]), so far no heuristic
method has found the ideal timetable for the medium and large instances. Hence,
these data sets are still very challenging for most heuristic search algorithms.

3 Evolutionary Non-linear Great Deluge Algorithm

3.1 The Hybrid Strategy

We now describe the overall hybrid strategy, an extension of our previous algo-
rithm which maintains a single-solution during the search [12]. Here, we extend
that algorithm to a population-based evolutionary approach by incorporating
tournament selection, a mutation operator and a replacement strategy.

Generate

Population

Pool of Solutions

Non-Linear Great

Deluge

Mutation

Tournament

Selection

Discard the solution

Replace the worst

individual solution

If the new solution is

better than one of the

solutions in the pool

If the new solution is

worst

Fig. 1. Evolutionary Non-linear Great Deluge Algorithm

Figure 1 shows the components of this hybrid algorithm. It begins by gener-
ating an initial population which becomes the pool of solutions. Then, in each
generation the algorithm works as follows. First, tournament selection takes place
where 5 individuals are chosen at random and the one with the best fitness is
selected (xt). Then, a mutation operator is applied to xt while maintaining fea-
sibility obtaining solution xm. This is followed by applying the non-linear great
deluge algorithm to xm to obtain an improved solution xi. Then, the worst so-
lution in the pool of solutions, xw (ties broken at random) is identified and if xi

is better than xw then xi replaces xw. This hybrid algorithm is executed for a
pre-determined amount of computation time according to the size of the prob-
lem instance. Note that this is a steady-state evolutionary approach that uses
non-linear great deluge for intensification and a mutation operator for diversifi-
cation. The following subsections describe each of the algorithm components is
more detail.

3.2 Initialisation Heuristic

The pseudo-code for the initialisation heuristic is shown in Algorithm 1. Two
well-known graph colouring heuristics are incorporated. Largest degree (LD)
refers to the event with the largest number of conflicting events. Saturation
degree (SD) of an event refers to the number of available timeslots to timetable
that event without conflicts in the current partial solution.

Algorithm 1: Initialisation Heuristic for Course Timetabling
Input: set of events in the unscheduled events list E

Sort unscheduled events list using LD
while (unscheduled events list is not empty) do

Choose event Ej with the LD
Calculate SD for event Ej

if (SD equals zero) then

Select a timeslot t at random
From those events already scheduled in timeslot t (if any), move those that conflict
with event Ej (if any) to the rescheduled events list
Place Ej into timeslot t

for (each event Ei in the rescheduled events list with SD different to zero) do

Find a timeslot t at random to place Ei

Recalculate SD for all events in the rescheduled events list

Move all events that remain in the rescheduled events list (those with SD equal to
zero) to the unscheduled events list

else

Find a timeslot t at random to place Ej

if (unscheduled events list is not empty and timeU has elapsed) then

One by one, place events from the unscheduled events list into any random selected
timeslot

while (solution not feasible) do

Select move move1 or move move2 at random and then perform Local Search
if (solution not feasible and loop >10) then

Identify an event Ei that violates hard constraints
Apply Tabu Search for tsmax iterations using move move1 to reschedule Ei (loop
is reset to zero at the end of each tabu search)

loop++;

Output: A feasible solution (timetable)

In the first while loop, the initialisation heuristic attempts to place all events
into timeslots while avoiding conflicts. In order to do that, the heuristic uses
the saturation degree criterion and a list of rescheduled events to temporarily
place conflicting events. The heuristic tries to do this for a given timeU but once
that time has elapsed, all remaining unscheduled events are placed into random
timeslots. That is, if by the end of the first while loop the solution is not yet
feasible, at least the penalty due to hard constraint violations is already very low.
In the second while loop, the heuristic uses simple local search and tabu search
to achieve feasibility. Two neighbourhood moves move1 and move2 (described
below) are used. The local search attempts to improve the solution but it also
works as a disturbing operator, hence the reason for the maximum of 10 trials

before switching to tabu search. The tabu search uses the move move1 only
and is carried out for a fixed number of iterations tsmax. In our experiments,
this initialisation heuristic always finds a feasible solution for all the problem
instances considered.

3.3 Mutation Operator

With a probability equal to 0.5, the mutation operator is applied to the solution
selected from the tournament (xt). The mutation operator selects at random 1
out of 3 types of neighbourhood moves in order to change the solution while
maintaining feasibility. These moves are described below.

– move1. Selects one event at random and assigns it to a feasible timeslot and
room. Note that in the tabu search step of Algorithm 1, move1 selects only
events that violate hard constraints.

– move2. Selects two events at random and swaps their timeslots and rooms
while ensuring feasibility is maintained.

– move3. Selects three events at random, then it exchanges the position of the
events at random and ensuring feasibility is maintained.

3.4 Non-linear Great Deluge

The standard great deluge algorithm was developed by Dueck [11]. The basic
idea behind this approach is to explore neighbour solutions accepting those that
are not worse than the current one. Otherwise, the candidate solution is accepted
only if its penalty is not above a pre-defined water level which decreases linearly
as the search progresses. The water level determines the speed of the search.
The higher the decay rate the faster the water level goes down and the faster
the algorithm terminates. Burke et al. [6] proposed to initialise the water level
equal to the initial cost function. The decay rate at each iteration is constant
and they interpreted the parameter as a function of the expected search time
and the expected solution quality. To calculate the decay rate B, they first
estimate the desired result (solution quality) f(S

′

) and then calculate B =
B0 − f(S

′

)/Number of moves. In our previous work [12], we proposed a great
deluge approach in which the decay rate of the water level is non-linear and is
determined by the following expression:

B = B × (exp−δ(rnd[min,max])) + β (1)

The parameters in Eq. (1) control the speed and the shape of the water level
decay rate. Therefore, the higher the values of min and max the faster the water
level decreases. In return, the improvement is quickly achieved but it will suffer
from this greediness by trapping itself in local optima. To counterbalance this
greediness, floating the water level (relaxation) is necessary. Then, in addition
to using a non-linear decay rate for the water level B, we also allow B to go
up when its value is about to converge with the penalty cost of the candidate

solution. We increase the water level B by a random number within the interval
[Bmin, Bmax]. For all instances types, the interval used was [2, 4]. Full details of
this strategy to control the water level decay rate in the modified great deluge
can be seen in [12].

Then, the non-linear great deluge component in Figure 1 is our previous
single-solution approach which produced very good results on the same instances
of the course timetabling problem considered here (see [12]). In this paper we
show that by incorporating some components from evolutionary algorithms, the
resulting hybrid approach produces some better results than those currently
reported in the literature.

4 Experiments and Results

We now evaluate the performance of the proposed hybrid algorithm. For each
type of dataset, a fixed computation time (timemax) in seconds was used as
the stopping condition: 2600 for small problems, 7200 for medium problems and
10000 for the large problem. This fixed computation time is for the whole process
including the construction of the initial population. In the initialisation heuristic
(Algorithm 1), we set timeU to 0.5, 5 and 25 seconds for small, medium and large
instances respectively and tsmax = 500 iterations for all problem instances. We
executed the proposed hybrid algorithm 10 times for each problem instance.

Table 1 shows the average results obtained by the previous Non-linear Great
Deluge, the Evolutionary Non-linear Great Deluge proposed here, and the results
from other algorithms reported in the literature. For each dataset, the best
results are indicated in bold. The main goal of this comparison is to assess
whether extending the non-linear great deluge to a hybrid evolutionary approach
helps to produce better solutions for the course timetabling problem.

We can see in Table 1 that the hybrid evolutionary algorithm described here
(ENGD) clearly outperforms our previous single-solution algorithm (NGD). It
is also evident that the tailored mutation operator makes a significant contribu-
tion to the good performance of ENGD as the results obtained by ENGD(-m)
are considerably worse. The proposed hybrid evolutionary approach matches the
best known solution quality for almost all small problem instances except S2 and
improves the best known results for most medium instances except M4. Only
on the case of the large problem instance, we see that our algorithm does not
match the best known result. It is also important to stress that the proposed ini-
tialisation heuristic is an important component of this hybrid algorithm because
finding a feasible solution is crucial when tackling course timetabling problems.

Overall, this experimental evidence shows that by combining some key evolu-
tionary components and an effective stochastic local search procedure, we have
been able to produce a hybrid evolutionary approach that is still quite simple
but much more effective (than the single-solution stochastic local search) in gen-
erating best known solutions for a well-known set of difficult course timetabling
problem instances. The proposed algorithm seems particularly effective on small
and medium problem instances.

Table 1. Comparison of results obtained by the approach proposed in this paper
against the best known results from the literature on the course timetabling problem.
ENGD is the Evolutionary Non-Linear Great Deluge proposed here, ENGD(-m) is
ENGD without Mutation, NGD is the Non-Linear Great Deluge in [12], MMAS is the
MAX-MIN Ant System in [14], CFHH is the Choice Function Hyper-heuristic in [7],
VNS-T is the Hybrid of VNS with Tabu Search in [2], HEA is the Hybrid Evolutionary
Algorithm in [3]. In the first column, S1-S5 are small problem instances, M1-M5 are
medium problem instances, while L1 is the large problem instance.

NGD ENGD(-m) ENGD Best Known

S1 3 3 0 0 (VNS-T)

S2 4 2 1 0 (VNS-T)

S3 6 2 0 0 (CFHH)

S4 6 3 0 0 (VNS-T)

S5 0 0 0 0 (MMAS)

M1 140 157 126 146 (CFHH)

M2 130 178 123 147 (HEA)

M3 189 240 185 246 (HEA)

M4 112 152 116 164.5 (MMAS)

M5 141 142 129 130 (HEA)

L1 876 995 821 529 (HEA)

5 Conclusions

Solving timetabling problems remains a challenge to many heuristic algorithms.
In this paper, we tackled a well-known set of benchmark instances of the uni-
versity course timetabling problem. Previous to this work, several algorithms
ranging from relatively simple iterative neighbourhood search procedures [2] to
more elaborate hyper-heuristic approaches [9] have been applied to this problem.
We extended our previous approach, a single-solution non-linear great deluge al-
gorithm, towards an evolutionary variant by incorporating some key operators
like a population of solutions, tournament selection, a mutation operator and
a steady-state replacement strategy. The results from our experiments provide
evidence that our hybrid evolutionary algorithm is capable of producing best
known solutions for a number of the test instances used here. The tailored mu-
tation operator which uses 3 neighbourhood moves seems to make a substantial
contribution to the good performance of the proposed algorithm. Obtaining the
best timetables (with penalty equal to zero) for the medium and large instances
is still a challenge. Our future work contemplates the investigation of cooperative
strategies and information sharing mechanisms to tackle these university course
timetabling problems.

References

1. Abdullah, S., Burke, E.K., McCollum, B.: An Investigation of Variable Neighbour-
hood Search for University Course Timetabling. In: Proceedings of MISTA 2005:
The 2nd Multidisciplinary Conference on Scheduling: Theory and Applications,
pp. 413–427 (2005).

2. Abdullah, S., Burke, E.K., McCollum, B.: Using a Randomised Iterative Improve-
ment Algorithm with Composite Neighbourhood Structures for University Course
Timetabling. In: Proceedings of MIC 2005: The 6th Meta-heuristic International
Conference, Vienna, Austria, August 22-26 (2005).

3. Abdullah, S., Burke, E.K., McCollum, B.: A Hybrid Evolutionary Approach to the
University Course Timetabling Problem. In: Proceedings of CEC 2007: The 2007
IEEE Congress on Evolutionary Computation, pp. 1764–1768 (2007).

4. Abdullah, S., Burke, E.K., McCollum, B.: Using a Randomised Iterative Improve-
ment Algorithm with Composite Neighborhood Structures for University Course
Timetabling. In: Metaheuristics - Progress in Complex Systems Optimization, pp.
153–172, Springer, Heidelberg (2007).

5. Asmuni, H., Burke, E.K., Garibaldi, J.: Fuzzy Multiple Heuristic Ordering for
Course Timetabling. In: Proceedings of the 5th United Kingdom Workshop on
Computational Intelligence (UKCI 2005), pp. 302–309 (2005).

6. Burke, E.K., Bykov, Y., Newall, J., Petrovic, S.: A Time-predefined Approach to
Course Timetabling. Yugoslav Journal of Operations Research (YUJOR), 13(2),
139–151 (2003).

7. Burke, E.K., Kendall, G., Soubeiga, E.: A Tabu-search Hyperheuristic for
Timetabling and Rostering. Journal of Heuristics, 9, 451–470 (2003).

8. Burke, E.K., Eckersley, A., McCollum, B., Petrovic, S., Qu, R.: Hybrid Vari-
able Neighbourhood Approaches to University Exam Timetabling. Technical Re-
port NOTTCS-TR-2006-2, University of Nottingham, School of Computer Science,
2006.

9. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A Graph Based
Hyper-heuristic for Educational Timetabling Problems. European Journal of Op-
erational Research, 176, 177–192 (2007).

10. Cooper, T., Kingston, H.: The Complexity of Timetable Construction Problems. In:
Burke, E.K., Ross, P. (eds.) PATAT 1995. LNCS, Vol. 1153, pp. 283–295, Springer,
Heidelberg (2006).

11. Dueck, G.: New Optimization Heuristic: The Great Deluge Algorithm and the
Record-to-record Travel. Journal of Computational Physics, 104, 86–92 (1993).

12. Landa-Silva, D., Obit, J.H.: Great Deluge with Nonlinear Decay Rate for Solving
Course Timetabling Problems. In: Proceedings of the 2008 IEEE Conference on
Intelligent Systems (IS 2008), pp. 8.11-8.18, IEEE Press, Los Alamitos (2008).

13. Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo, M., Gam-
bardella, L., Knowles, J., Manfrin, M., Mastrolilli, M., Paechter, B., Paquete, L.,
Stuetzle, T.: A Comparion of the Performance of Different Metaheuristics on the
Timetabling Problem. In: Burke, E.K., De Causmaecker, P. (eds.) PATAT 2002.
LNCS, Vol. 2740, pp. 333–352, Springer, Heidelberg (2003).

14. Socha, K., Knowles, J., Sampels, M.: A Max-min Ant System for the University
Course Timetabling Problem. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.)
Ant Algorithms 2002. LNCS, Vol. 2463, pp. 1-13, Springer, Heidelberg (2002).

