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ABSTRACT

This extended abstract outlines four hybrid heuristics to gener-

ate initial solutions to the University course timetabling problem.

These hybrid approaches combine graph colouring heuristics and

local search in different ways. Results of experiments using two

benchmark datasets from the literature are presented. All the four

hybrid initialisation heuristics described here are capable of gener-

ating feasible initial timetables for all the test problems considered

in these experiments.

Keywords: Course timetabling, Hybrid heuristics, Event schedul-

ing, Constructive heuristics

1. INTRODUCTION

We refer to the University course timetabling problem as described

by Socha et al. [1] with: n events E = {e1,e2, . . . ,en}, k timeslots

T = {t1, t2, . . . , tk}, m rooms R = {r1,r2, . . . ,rm} and a set S of

students. Each room has a limited capacity and some additional

features. Each event requires a room with certain features. Each

student attends a number of events which is a subset of E. The

problem is to assign the n events to the k timeslots and m rooms in

such a way that all hard constraints are satisfied and the violation

of soft constraints is minimised.

The hard constraints that must be satisfied for a timetable to be

feasible are as follows. HC1: a student cannot attend two events si-

multaneously, i.e. events with students in common must be

timetabled in different timeslots. HC2: only one event may be as-

signed per timeslot in each room. HC3: the room capacity must be

equal to or greater than the number of students attending the event

in each timeslot. HC4: the room assigned to an event must satisfy

the features required by the event. The soft constraints that are de-

sirable to satisfy in order to assess the quality of a timetable are as

follows. SC1: students should not have only one event timetabled

on a day. SC2: students should not attend more that two consecu-

tive events on a day. SC3: students should not attend an event in

the last timeslot of a day.

It has been shown in the literature that a sequential heuristic method

can be very efficient for generating initial solutions [2, 3]. A

sequential heuristic assigns events one by one, starting from the

event which is considered the most difficult to timetable in some

sense. The ‘difficulty’ of scheduling an event can be measured by

different criteria (i.e. the number of other conflicting events or the

number of students attending the event). However, a sequential

heuristic alone does not guarantee that feasible solutions will be

found even with the combination of more than one heuristic. For

example, Abdullah et al. [4] proposed a method, based on a se-

quential heuristic, to construct initial timetables. However, their

method failed to generate a feasible solution for the large instance

of the Socha et al. problem instances [1].

We propose hybrid heuristics to create initial feasible timetables

for the University course timetabling problem described above.

We combine traditional graph colouring heuristics with various lo-

cal search methods including a simple tabu search. In the exper-

iments of this work we use the 11 benchmark data sets proposed

by Socha et al. [1] and also the set of problem instances from the

International Timetabling Competition (ITC) 2002 [5]. The pro-

posed heuristics generate feasible timetables for all the instances

in our experiments. However, these methods do not tackle the sat-

isfaction of soft constraints. Then, we obtain feasible solutions

that might still have relatively high number of soft constraint vi-

olations. The rationale for this is to allow flexibility for another

algorithm, that seeks to improve the satisfaction of constraints, to

start the search from the feasible timetables. This has proven to be

beneficial in our related work helping the improving algorithm to

achieve extremely good results [6, 7]. It is difficult to compare the

results in this paper with the literature because most other works

(e.g. [3]) incorporate the construction of initial timetables within

the overall method to solve the problem, i.e. constructing initial so-

lutions and improving them are combined into a single approach.

The next section describes the proposed hybrid heuristics.

2. GENERATING INITIAL TIMETABLES

In order to develop effective algorithms for tackling hard con-

straints in the subject problem, we combine techniques such as

graph colouring, local search and tabu search. We found that the

search components incorporated in the hybrid methods are inter-

dependent on their ability to produce a feasible timetable. In other

words, when one of these components is disabled or removed, the

remaining components are not able to produce feasible solutions

in particular for medium and large instances. Therefore, the hy-

brids described next are effective tailored mechanisms to generate

feasible timetables for the subject problem.

2.1. Largest Degree, Local Search and Tabu Search (IH1)

We adopted the heuristic proposed by Chiarandini et al. [8] and

added the Largest Degree heuristic to Step one as described next.

Largest Degree refers to the event with the largest number of con-

flicting events (events that have at least one student in common).

Step one - Largest Degree Heuristic. In each iteration, the un-
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scheduled event with the Largest Degree is assigned to a timeslot

selected at random without respecting conflicts between events.

Once all events have been assigned into a timeslot, the maximum

matching algorithm for bipartite graph is used to assign each event

to a room. At the end of this step, there is no guarantee for the

timetable to be feasible. Then, steps one and two below are exe-

cuted iteratively until a feasible solution is constructed.

Step two - Local Search. We employ two neighbourhood moves

in this step. Move one (M1) selects one event at random and as-

signs it to a feasible pair timeslot-room also chosen at random.

Move two (M2) selects two events at random and swaps their

timeslots and rooms while ensuring feasibility is maintained. That

is, neighbourhood moves M1 and M2 seek to improve the timetable

generated in Step one. A move is only accepted if it improves the

satisfaction of hard constraints (because the moves seek feasibil-

ity). This step terminates if no move produces a better (closer to

feasibility) solution for 10 iterations.

Step three - Tabu Search. We apply a simple tabu search using a

slight variation of move M1 above. Here, M1 only selects an event

that violates hard constraints. The motivation is that the algorithm

should now only target events that violate hard constraints instead

of randomly rescheduling other events like in Step two. The tabu

list contains events that were assigned less than tl iterations before

calculated as tl = rand(10)+ δ × nc, where 0 ≤ rand(10) ≤ 10,

nc is the number of events involved in hard constraint violations in

the current timetable, and δ = 0.6. The usual aspiration criterion

is applied to override tabu status, i.e. accept the move when a best

known solution is found. This step terminates if no move produces

a better (closer to feasibility) solution for ts iterations.

2.2. Saturation Degree, Local Search and Tabu Search (IH2)

This heuristic uses Saturation Degree, which refers to the number

of resources (timeslots and rooms) still available to timetable a

given event without conflicts in the current partial solution. In

the previous heuristic IH1 the assignment of events in Step one is

done without checking conflicts. The difference in heuristic IH2

is that we first check conflicts between the unassigned event and

those events already assigned to the selected timeslot. If there are

timeslots with no-conflicting events already assigned (saturation

degree of the event to assign is greater than zero), the event is

assigned to a feasible timeslot selected at random. If there are no

such timeslots (saturation degree of the event to assign is zero),

the events already assigned to the timeslot are ejected and put in

a list of events to re-schedule. The heuristic then attempts to re-

assign these ejected events into conflict free timeslots if possible.

Otherwise, these ejected events are put into random timeslot-room,

even if conflicts arise, then later the local and tabu search of Step

two and Step three as described above, will deal with these ejected

events and the remaining conflicting assignments. In essence, in

addition to using Saturation Degree instead of Largest Degree, this

second heuristic IH2 tries to fix some conflicts in the timetable

before starting Steps two and three.

2.3. Largest Degree, Saturation Degree, Local Search and Tabu

Search (IH3)

This heuristic incorporates both Largest Degree and Saturation De-

gree. The difference with heuristic IH2 is that in Step one, events

are first sorted based on Largest Degree. After that, we choose the

unassigned event with the Largest Degree and calculate its Satura-

tion Degree. Then, Step one of this heuristic IH3 proceeds as in

heuristic IH2, but when attempting to re-assign the ejected events,

only those ejected events with Saturation Degree greater than zero

(still available timeslots and room) are assigned to any feasible

timeslot-room. All ejected events with Saturation Degree zero are

moved from the re-schedule list to the list of unscheduled events.

After each re-assigning, we re-calculate the Saturation Degree for

all ejected events in the re-schedule list. This process in Step one

continues and if after some given computation time there are still

events in the unscheduled list, these events are then assigned to

random timeslot-room without respecting conflicts. Steps one and

two as described above follow implementing the local and tabu

search respectively. In essence, compared to heuristic IH2, this

heuristic IH3 combines Saturation Degree and Largest Degree in

Step one trying to re-scheduled ejected events with less resources

first. Algorithm 1 shows the pseudo-code for the hybrid heuristic

IH3, which in a sense, is the most elaborate one among methods

IH1, IH2 and IH3.

2.4. Constraint Relaxation Approach (IH4)

In this fourth heuristic approach, we introduce extra dummy times-

lots to place events with zero Saturation Degree and in this way

enforce the no-conflicts constraint by relaxing the availability of

timeslots. The number of extra dummy timeslots needed is deter-

mined by the size of the problem instance. This heuristic works as

follows. First, we sort the events using Largest Degree. The event

with the Largest Degree is chosen to be scheduled first. If the

event has zero Saturation Degree, the event is assigned randomly

to one of the extra dummy timeslots. Once the algorithm assigns

all events in the valid timeslots plus the extra dummy timeslots

without conflicts, we then perform great deluge search [6] using

moves M1 and M2 to reduce the number of timeslots down to 45

valid timeslots if necessary. In this local search, only the 45 valid

timeslots are considered, so no events are allowed to move into

any of the extra dummy timeslots. This hybrid heuristic is much

slower that the other three methods above, mainly due to the great

deluge search. Algorithm 2 shows the pseudo-code for the hybrid

heuristic IH4, which in a sense, is the most different among all

methods described here.

3. RESULTS AND DISCUSSION

The proposed hybrid heuristic initialisation methods were applied

to the Socha et al. [1] instances and also to the ITC 2002 in-

stances [5]. We did not impose time limit as a stopping condition,

each algorithm stops when it finds a feasible solution.

All methods successfully generate initial solution for small in-

stances in just few seconds. The medium and large Socha et al. in-

stances are more difficult as well as all ITC 2002 instances. How-

ever, the proposed methods generated feasible solutions for all in-

stances demonstrating that the hybridisation compensates weak-

ness in one component with strengths in another one in order to

produce feasible solutions in reasonable computation times.

Table 1 and Table 2 compare the performance of each method on

the Socha et al. and the ITC 2002 instances respectively. The first

column in each table indicates the problem instance. The next four

columns give the best objective function value (soft constraints vi-

olation) obtained by each heuristic. The last column in each table

indicates the best computation time in seconds and the correspond-

ing heuristic.

The results show that none of the heuristics clearly outperforms

the others in terms of the objective function value (soft constraints

violation) obtained. Each of the four heuristics outperforms the

other three in some of the problem instances. With respect to com-

putation time we can see in Table 1 that for the Socha et al. prob-

lems, the heuristic that achieved the best objective value was al-

most never the fastest one (except in problem instance M2). How-

ever, for the ITC 2002 problems, we see in Table 2 that in several

cases the heuristic producing the best objective value was also the
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Algorithm 1: Initialisation Heuristic 3 (IH3)

1 Input: List of Unscheduled events E;

2 Sort E by non-increasing Largest Degree (LD);

3 while (E is not empty) do

4 Choose event e from E with LD (random tie-break);

5 Calculate SD for event e;

6 if (SD = 0) then

7 Select a timeslot t at random;

8 Move events scheduled (if any) in timeslot t that

conflict with event e (if any) to the Reschedule list;

9 Assign event e to timeslot t;

10 for (each event in Reschedule list with SD > 0) do

11 Select feasible timeslot t for event e at

random;

12 Re-calculate SD for all events in Reschedule

list;
13 end

14 Move all events with SD = 0 that remain in

Re-schedule list to the Unscheduled list E;
15 end

16 else

17 Select a feasible timeslot t at random for event e;

18 end

19 if (Unscheduled list E is not empty and time has

elapsed) then

20 One by one, place events from the Unscheduled

list into any random selected timeslot without

respecting the conflict between the events;

21 end

22 end

23 S = current solution;

24 loop = 0;

25 while (S not feasible ) do

26 if (loop < 10) then

27 if ( coin f lip()) then

28 S∗ = M1(S); // apply M1 to S

29 end

30 else

31 S∗ = M2(S); // apply M2 to S

32 end

33 if ( f (S∗)≤ f (s)) then

34 S← S∗ // accept new solution;

35 end

36 end

37 else

38 EHC = set of events that violate hard constraints;

39 e = randomly selected from EHC;

40 S∗ = M1(S, e); // perform one Tabu Search

iteration with move M1 using event e;

41 if ( f (S∗)< f (S) then

42 S← S∗; // accept new solution

43 end

44 if (loop >= ts ) then

45 loop = 0;

46 end

47 end

48 loop++;

49 end

50 Output: S feasible solution (timetable);

Algorithm 2: Initialisation Heuristic 4 (IH4)

1 Input: List of Unscheduled events E;

2 Generate dummy timeslots according to problem instance;

Sort events in E by non-increasing Largest Degree (LD);

3 while (Unscheduled list E is not empty) do

4 Choose event e from E with the LD (random tie-break);

5 Calculate SD for event e;

6 if (SD = 0) then

7 Select dummy timeslot at random for event e;

8 end

9 else

10 Chose any feasible timeslot for event e;

11 Update the new solution;

12 end

13 end

14 S = current solution;

15 Calculate initial cost function f (S);
16 Initial water level B = f (S);
17 ∆B = 0.01;

18 while (dummy timeslots are not empty) do

19 if ( coin f lip()) then

20 S∗ = M1(S); // apply M1 to S

21 end

22 else

23 S∗ = M2(S); // apply M2 to S

24 end

25 if ( f (s∗)≤ f (s)) or ( f (s∗)(≤ B)) then

26 S← S∗; // accept new solution

27 end

28 B = B−∆B; // lower the water level

29 if (B - f(S) ≤ 1) then

30 B = B+5; // increase the water level

31 end

32 end

33 Output: S feasible solution (timetable);

fastest. As indicated above, the hybrid initialisation heuristic (IH4)

that uses dummy timeslots to deal with conflicts and then great del-

uge as the local search to bring the solution to feasibility, is never

the fastest approach. However, this heuristic IH4 was capable of

producing the best solutions for two of the Socha et al. instances

and six of the ITC 2002 instances.

In our preliminary experiments, we implemented a sequential heuris-

tic (see [2, 3]) but were able to generate feasible timetables only

for the small instances of the Socha et al. dataset (in fact, these

small instances are considered to be easy). Even after consider-

ably extending the computation time, the sequential heuristic was

not able to generate feasible solutions for the medium and large

Socha et al. instances or the ITC 2002 datasets.

4. CONCLUSIONS

Many approaches have been proposed in the literature to tackle

the University course timetabling problem. In this extended ab-

stract we have outlined four variants of hybrid heuristics designed

to generate initial feasible solutions to this problem. These hy-

brid approaches combine traditional graph colouring heuristics,

like Largest Degree and Saturation Degree, with different types

of local search. The four hybrid variants were tested using two

sets of benchmark problem instances, the Socha et al. [1] and the

International Timetabling Competition 2002 [5] datasets.

All the hybrid initialisation heuristics described here were capa-

ble of producing feasible timetables for all the problem instances.
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Problem IH1 IH2 IH3 IH4 Min Time

S1 173 198 207 200 0.077 (IH2)

S2 211 217 189 208 0.078 (IH2)

S3 176 190 188 209 0.062 (IH2)

S4 250 174 203 192 0.047 (IH1)

S5 229 238 226 217 0.078 (IH2)

M1 817 772 802 774 5.531 (IH3)

M2 793 782 784 802 6.342 (IH2)

M3 795 867 828 817 6.64 (IH3)

M4 735 785 811 795 5.828 (IH2)

M5 773 771 784 769 16.670 (IH1)

L 1340 1345 1686 1670 300.0 (IH1)

Table 1: Results obtained with each hybrid initialisation heuristic

(IH1 to IH4) on the 11 Socha et al. problem instances, best results

indicated in bold.

Problem IH1 IH2 IH3 IH4 Min Time

Com01 805 786 805 805 1.93 (IH3)

Com02 731 776 731 778 1.36 (IH3)

Com03 760 812 760 777 1.14 (IH2)

Com04 1201 1178 1201 1236 4.46 (IH2)

Com05 1246 1243 1246 1135 2.11 (IH3)

Com06 1206 1219 1206 1133 1.33 (IH3)

Com07 1391 1388 1391 1265 2.10 (IH3)

Com08 1001 968 1001 1006 1.81 (IH2)

Com09 841 859 841 843 1.46 (IH1)

Com10 786 816 786 799 4.64 (IH3)

Com11 852 877 852 839 1.05 (IH1)

Com12 814 831 814 788 2.21 (IH2)

Com13 1008 1010 1008 1009 2.26 (IH1)

Com14 1040 1032 1040 1355 3.71 (IH2)

Com15 1165 1162 1165 1161 1.56 (IH3)

Com16 887 911 887 888 1.09 (IH3)

Com17 1227 1032 1227 1199 1.13 (IH2)

Com18 793 724 793 763 1.29 (IH3)

Com19 1184 1212 1184 1209 3.22 (IH3)

Com20 1137 1161 1137 1205 0.08 (IH3)

Table 2: Results obtained with each hybrid initialisation heuristic

(IH1 to IH4) on the 20 ITC 2002 problem instances, best results

indicated in bold.

None of the approaches showed to be clearly better that the others.

For a given instance, the heuristic producing the best quality ini-

tial timetable is often not the fastest among the four approaches.

However, for all the problem instances there is at least one hybrid

heuristic capable of generating a feasible timetable in very short

time, from less than a second to few seconds depending of the

problem instance. The exception is the largest Socha et al. in-

stance which is still regarded in the literature as a very challenging

problem. Having some methods capable of generating feasible so-

lutions for the University course timetabling problem is important

because the effort of more elaborate methods can then be focused

on tackling the violation of soft constraints in order to improve the

timetable quality.

In a following more detailed description on this research, we in-

tend to present a statistical comparison between the proposed ini-

tialisation heuristics, compare these approaches against other pro-

cedures to generate feasible solutions to the University course

timetabling problem and analyse the effect of each component in

the four hybrid heuristics.
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