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We discuss the structure of the so-called “vortex” domain walls in soft magnetic nanoparticles. A
wall of this kind is a composite object consisting of three elementary topological defects: two edge
defects with winding numbers −1/2 and a vortex with a winding number +1 between them. We
provide a qualitative model accounting for the energetics of such a domain wall. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2167049�

Magnetic nanoparticles generate considerable interest as
prospective building blocks for nonvolatile random-access
memory.1 Storing of information bits is made possible by the
existence of two �or more� stable magnetic configurations.
Switching between the two stable states can be achieved by
applying an external magnetic field or by injecting current.
In either case the switching process proceeds through the
formation of complex transient patterns of magnetization.2

Building fast and reliable magnetic memory thus requires a
thorough understanding of magnetization dynamics in these
nanomagnets.

In magnetic nanoparticles with the geometry of strips
and rings the switching creates domains in which the mag-
netization is forced by the magnetostatic forces to be parallel
to the edge. These domains grow and shrink at the expense
of one another until one of them occupies the entire
sample.2,3 This process can also be viewed as the creation,
propagation, and annihilation of domain walls. Thus the
question of local stability and dynamics of the magnetic con-
figurations can be answered by studying the static and dy-
namic properties of domain walls.

Domain walls in submicron rings and strips have a con-
siderably complex structure. For instance, McMichael and
Donahue4 have observed, among others, configurations
termed “transverse” and “vortex” domain walls. In a previ-
ous paper5 we pointed out that the transverse walls are com-
posite objects built from two elementary topological defects.
In the limit where exchange interaction is the dominant force
�thin and narrow strips or rings�, the two elementary defects
are vortices with fractional winding numbers +1/2 and
−1/2; these defects are confined to the edges because of their
fractional topological charges. These edge defects were dis-
cussed by Moser6 and Kurzke.7

In this paper we analyze the structure of domain walls in
a strip in a different limit where the dominant forces are
magnetostatic. This limit, in which both the thickness and
width of a strip exceed the exchange length �=�A /�0M0

2,8 is
relevant to the ongoing experimental studes.2,3 The nonlocal
nature of the dipolar interactions8 makes the analysis consid-
erably more difficult. Valuable information concerning the
global structure of a domain wall is provided by topological

considerations.5 Under very general circumstances, a domain
wall in a nanostrip is a composite object containing several
elementary topological defects, some of which reside in the
bulk and others at the edge. The topology restricts possible
compositions of a domain wall, thus providing a basis for
selecting appropriate trial states.

In a companion paper9 we have identified three elemen-
tary topological defects that survive the transition from the
exchange limit to the magnetostatic regime: the vortex
�winding number n= +1�, the antivortex �n=−1�, and one of
the edge defects �n=−1/2�. Bare-bones versions of these de-
fects can be constructed using van den Berg’s method10

wherein the exchange energy is initially neglected and the
magnetostatic energy is minimized absolutely by preventing
the appearance of magnetic charge −� ·M. �The meat can be
grown by including the exchange interaction perturbatively.�
Only the vortex retains its original shape; the antivortex mor-
phs into a cross tie �two intersecting 90° Néel walls�; the
−1/2 defect looks like a cross tie pinned at the edge. The
+1/2 edge defect likely has a high magnetostatic energy. We
have also shown9 that the simplest domain wall in this limit
is expected to contain two −1/2 edge defects and a vortex.
We next discuss the structure of a domain wall in this limit.

A head-to-head domain wall carries a fixed nonzero
amount of magnetic charge �2M0tw in a strip of width w�,
with a finite density in the bulk, −� ·M�0, or at the film
edge, n̂ ·M�0 �or, most likely, both�. Therefore van den
Berg’s method is not, strictly speaking, applicable. Nonethe-
less, an examination of the detailed structure of a vortex wall
�bottom panel of Fig. 1�4 shows that it indeed contains two
−1/2 edge defects and a +1 vortex in the middle. The edge
defects share one of their Néel walls; the vortex resides at its
middle point.

In what follows we consider a model of the vortex do-
main wall that is free of bulk magnetic charge. Thus all of the
charge 2M0tw is expelled to the edges. Under this restriction
it is possible to construct a vortex domain wall by piecing
together the vortex and two −1/2 edge defects, as shown in
Fig. 1. The resulting structure contains domains with uniform
and curling magnetization. In a strip �y��w /2 with the
shared Néel wall x=y and the vortex core at �� ,��, the two
curling domains in the regions ±�� ±y�w /2 are separated
by parabolic Néel walls �x−��2= �2y±w��2�±w� from do-
mains with horizontal magnetization; they also merge seam-a�Electronic mail: olegt@jhu.edu
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lessly with other uniform domains along the lines x=� and
y=�.

This trial state exaggerates the accumulation of surface
magnetic charge, thereby overestimating the normal compo-
nent of magnetization n̂ ·M at the edge. Nonetheless it cap-
tures the major features of a vortex domain wall.

The construction of a domain wall out of the three de-
fects is not unique and has �at least� one degree of freedom:
the vortex can be placed anywhere along the shared Néel
wall x=y. When the vortex core reaches the edge, it is ab-
sorbed by the −1/2 edge defect. Their fusion creates an edge
defect with the winding number +1−1/2= +1/2 �Fig. 2�. As
can be seen from the figure, the +1/2 defect is rather ex-
tended �length 2w� and, in accordance with our previous re-
marks, contains magnetic charge �all of it at the edge in this
model�. This structure is topologically equivalent to the
transverse domain wall in the exchange limit,5 where both
edge defects are pointlike. The transverse walls observed in
the experiments3 and simulations4 are midway between these
two extremes: the +1/2 defect definitely has a wider core,
although its extent is less than 2w.

To determine the equilibrium configuration of the com-
posite wall we computed the total energy of the composite
wall and minimized it with respect to the vertical coordinate
� of the vortex. The energy is the sum of the following terms.

The magnetostatic energy coming from the Coulomb-
like interaction of the magnetic charges spreads along the

edges with the line densities �1,2= tM · n̂1,2= ± tM0 sin � for
the upper and lower edges, respectively. It includes the inter-
action of magnetic charges on the same edge and on different
edges:

Eii =
�0

8�
� �i�x��i�x��

�x − x��
dxdx�,

�1a�

Eij =
�0

8�
� �i�x�� j�x��

�w2 + �x − x��2
dxdx�.

The total magnetostatic energy �i=1
2 � j=1

2 Eij is of the order
Aw�t2 /�2�log�w / t�. It represents the dominant contribution
in sufficiently wide and thick strips.

The energy of the Néel walls can be computed as a line
integral

Ewalls = t� ����d� , �1b�

where d� is a line element of the wall. The wall surface
tension � depends on the angle of rotation across the wall,
which stays at 90° along straight segments and varies along
parabolic ones. See Ref. 9 for details of the calculation. This
term is of the order Atw /�.

The exchange energy

Eexchange = At�
�

����2dxdy , �1c�

where � is the area around the vortex where magnetization
curles. This term is of the order At log�w /��.

An investigation of the phase diagram and a quantitative
comparison of this model with the numerical and experimen-
tal results is currently under way. In what follows we report
some preliminary findings.

The evolution of the energy curve E��� at a fixed width
w and varying thickness t is shown in Fig. 3. For substan-
tially wide and thick strips, the one and only minimum of
energy is achieved with the vortex in the middle of the strip,
in agreement with numerical simulations.4

FIG. 1. Top: a magnetization configuration free of bulk magnetic charges,
−� ·M=0, and containing two −1/2 edge defects and a +1 vortex in the
middle. Parabolic segments of Néel walls are shown by dashed lines. Bot-
tom: a head-to-head vortex wall obtained in a micromagnetic simulation
using OOMMF �Ref. 11� in a permalloy strip of width w=500 nm and thick-
ness t=20 nm.

FIG. 2. Top: a model vortex wall with the vortex absorbed by the edge.
Bottom: a transverse wall observed in a numerical simulation �Permalloy,
w=80 nm, t=20 nm�.

FIG. 3. Energy of the vortex domain wall as a function of the vortex posi-
tion � at a fixed strip width w=50 nm for several thicknesses t.
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As the cross section decreases, a local minimum devel-
ops with the vortex core at the edge of the strip. In this
configuration �Fig. 2� the vortex and the −1/2 edge defect
have merged to form an extended +1/2 edge defect. The
configuration is highly reminiscent of the transverse wall4

that is known to coexist with the vortex wall over a range of
cross sections.3 The transverse wall becomes a global mini-
mum of energy when the cross section becomes small
enough. The vortex wall remains locally stable until it be-
comes a local maximum of energy.

�The reader should note that the curve for thickness t
=1 nm shown in Fig. 3 is only an extrapolation: the energet-
ics of the Néel wall in very thin films is a nonlocal problem8

to which our estimate based on Eq. �4� in the companion
paper9 does not apply. Nonetheless, the overall trend re-
flected by the shape of the curve is correct: in the exchange
limit domain walls containing three defects are locally un-
stable.�

In addition to these two wall configurations, which have
been previously discussed in the literature, we have found
two metastable states that correspond to the local minima of
energy E���. One of them has the vortex core rather close to
but not exactly at the edge �top panel of Fig. 4�. We have
observed domain walls of this kind in numerical simulations
�bottom panel of Fig. 4�. The other metastable state occurs
when the energy curve E��� has two symmetric minima
around �=0. This is a vortex wall with the vortex core
slightly off center. Because the off-center minima are rather
shallow it may be difficult to observe such states in practice:
even slight imperfections of the nanoparticle can change the
potential landscape E���.

The simple model of a domain wall in the magnetostatic
limit presented in this paper shows a qualitative agreement
with the observations. Its quantitative comparison with the
available experimental and numerical data is in progress. At
a minimum, the model provides an insight into the nature of
the vortex domain walls in a regime relevant to the experi-

ments. It corroborates our earlier suggestion5 that domain
walls in nanostrips can be viewed as composite objects,
which may be helpful in understanding their dynamical prop-
erties.
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FIG. 4. Top: a model vortex wall with the vortex near the edge. Bottom: a
similar configuration observed in a numerical simulation �Permalloy, w
=200 nm, t=20 nm�.
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