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We describe neutron-scattering data for SrCrs _ XGa, + X 0 ,s, a layered compound containing 
planes of S = 3/2 Cr3 f ions which form Kagome lattices. Despite strong antiferromagnetic 
interactions (&w z - 500 K), fluctuations account for more than 75% of the free 
ion moment at 1.5 K. The spectrum (averaged over reciprocal space) is gapless and 
resembles that of a 2D long-range-ordered antiferromagnet, as does the low-temperature 
specific heat of the compound. Even so, the static correlation length does not exceed 7 f 2 A. 
Monte-Carlo simulations of the antiferromagnetic three-state Potts model on the KagomC 
lattice show that this model does not have a finite temperature phase-transition. Even 
at T = 0, there does not seem to be true long-range antiferromagnetic-order. However, the 
magnetic correlations decay algebraically rather than exponentially. The implications 
of this result for the ground-state of SrCrs _ ,Ga, + XO19 is discussed. 

I. INTRODUCTION 

Closely related to the absence of conventional long- 
range magnetic order in one dimension is the occurrence of 
quantum effects, most notably the Haldane gap. Apart 
from low dimensionality, also disorder, nonmagnetic dilu- 
tion and geometrical frustration suppress the development 
of long-range order. Whereas the former two mechanisms 
often lead to spin-freezing and rather classical properties, 
geometrically frustrated antiferromagnets (AFM) may 
present interesting analogies to the 1D spin liquid. 

Recently, Obradors et al.’ discovered a spinel-related 
insulator SrCrs _ XGa4 + X 0 t9 [SCGO(x)] with an extreme 
degree of magnetic frustration. The magnetic properties of 
this compound are due to AFM coupled Cr3 + ions which, 
surrounded by weakly distorted oxygen octrahedra, are 
good realizations of S = 3/2 Heisenberg spins. Obradors et 
al. showed that despite a Curie-Weiss temperature 6ow 
= - 492 K, long-range magnetic order does not occur to 
the lowest temperature (4.2 K) investigated. Ramirez et 
aL2 discovered spin glass transitions in SCGO(x) at 
x-dependent temperatures T”,” between 3.5 and 7 K. They 
also suggested that the geometrical frustration in this ma- 
terial arises from layers of Cr3 + arranged in Kagome lat- 
tices. Figure 1 (a) shows the Cr3 + sites in SCGO(x) t 
which form a stack of dense KagomC (labeled 12k) lattices 
separated by more dilute triangular lattices (2a and 4f >. 

The Kagome lattice [see Fig. 1 (b)] can be viewed as a 
triangular lattice with lattice parameter a/2 with vacancies 
at the sites of a triangular superlattice with lattice param- 
eter a. The AFM Ising model on the KagomC lattice has 
been studied analytically3 and it has been proven that there 
is no phase-transition even at T = 0, where the correlation 
length remains finite, Lj = 1.7a, and the entropy large 
S = 0.7239-R In 2. The ground state for quantum spins is 
of great current interest. Elser4 has considered the S = l/2 
AFM on the Kagome lattice in the context of nuclear mag- 
netism in 3He films, and predicted a phase transition from 
a spin liquid of singlets to a valence bond solid. Ritchie et 

aL5 and Chandra and Coleman6 describe the ground state 
as a spin nematic with long-range order not in the stag- 
gered magnetization but in the so-called twist. 

In this paper we describe neutron-scattering data from 
SCGO(x) which establish that the correlations in this 
compound are two-dimensional, very short ranged (6~7 
A), and with local order which corresponds to tripartition 
of the KagomC lattice. Our data are consistent with spin- 
freezing for T < Tdg” = 5 K but 75% of the net moment 
remains fluctuating to the lowest temperatures, thus pre- 
cluding a description in terms of a conventional spin glass. 
Also the local magnetic fluctuation spectrum resembles 
that of a long-range ordered two-dimensional Heisenberg 
AFM. We furthermore show by Monte-Carlo simulation 
on the KagomC lattice that the three-state Potts model, 
which is closely related to vector spin models, does not 
have a finite-temperature phase transition, but displays al- 
gebraically decaying AFM correlations with the same local 
order as we find in SCGO(x). 

II. SAMPLE AND EXPERIMENTAL TECHNIQUE 

The sample used in this experiment was 50 g of powder 
made by cooling SrCr03, Cr203, and Gaz03 in a SrO- 
B203 solvent. The neutron powder diffraction at 1.5 K 
could be indexed by the hexagonal structure previously 
reported* with lattice parameters a = 5.80 A and c = 22.7 
A. Susceptibility measurements in the Curie-Weiss regime 
showed that the Cr concentration in our sample was 11% 
less than in ceramic SCGO(0) samples produced by solid- 
state reaction.’ Since even the x = 0 samples have partial 
occupancy of Ga on Cr sites’ it is reasonable to assume 
that the Cr deficiency in our sample arises from further 
substitution of nonmagnetic Ga for Cr. Assuming that the 
Cr concentration on sites of different symmetry is reduced 
by the same fraction, the Cr occupancy of the 12k, (Kag- 
ome), 2a, and 4f layers is 80%, 90%, and 80%, respec- 
tively. The Cr concentration in all layers is above the 2D 
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FIG. 1. (a) Location of Cr atoms (filled and open circles) in SCGO(x). 
12 K layers containing filled circles are Kagom6 planes. (b) KagomC 
lattice. A, B, and C indicate sublattices in the periodic tripartition of the 
lattice. (From Ref. 8.) 

percolation threshold so that in a naive sense, dilution does 
not limit the correlation length. 

The neutron-scattering experiments were performed 
using the TAS-1 triple-axis spectrometer in the DR-3 re- 
actor at Ris$ National Laboratory in Denmark. Cold neu- 
trons were monochromated and vertically focused on the 
sample by pyrolytic graphite crystals set for their (002) 
Bragg reflection [PG(002)]. Be or PG filters were used to 
remove /z/n components of the incident beam. The scat- 
tered neutrons were analyzed for scattering angle and en- 
ergy distribution by a flat PG(002) crystal. The energy 
transfer to the sample ti = El - El was varied by chang- 
ing the final energy, Ef, at a fixed incident energy E;; 

We normalize inelastic scattering data taken with dif- 
ferent configurations to A (002) A where A (002) is the 
Q-integrated intensity of the (002) Bragg peak of 
SCGO(x) and A is the full width at half maximum 
(FWHM) of the incoherent energy resolution. Further- 
more, inelastic data from each configuration were cor- 
rected by an %-dependent factor to take into account the 
dependence of the analyzer tr’ansmission on the varying 
final energy, Ep Elastic scattering was normalized to 
A (002). Table I summarizes the different configurations 
used. 

III. STATIC SPIN-CORRELATIONS 

In agreement with previous neutron-scattering experi- 
ments on SCGO (0)) no magnetic Bragg peaks develop in 
our sample down to the lowest temperature (1.5 K) ac- 
cessed. However, the difference between field-cooled and 
zero-field-cooled dc susceptibility below Tg in SCGO(x) 
indicate that static or quasi-static spin-correlations are 

TABLE I. Configurations used with corresponding peak and Q-integrated 
intensity of (002) and energy resolution. 

Conf. E, 
No. meV 

Collimation I(OO2) A(002) n 
minutes ctss-’ A-‘ctss-’ meV 

1 5 60’-60’-62’-67 48 1.41 0.2 
2 3.6 60’-30’-28’-67’ 10 0.15 0.1 
3 13.9 60’-60’-62’-104’ 79 4.9 1.2 
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FIG. 2. Difference between elastic scattering at T= 1.5 K < Tg and 
T  = 20 K %  TB. Data from configuration No. 1 (see Table I for details of 
configurations). (After Ref. 8.) 

present at low temperatures. Such correlations give rise to 
elastic magnetic scattering. In search of these, we mea- 
sured the difference between elastic scattering at 1.5 K 
( Tg and 20 K & Tr The result is shown as a function of 
momentum transfer, Q, in Fig. 2. Rather than being con- 
fined to sharp Bragg peaks, the elastic scattering forms a 
broad peak extending over the full range of Q accessed. 
Thus, the static correlations which develop have only very 
short range. To extract more specific information we must 
take into account that the scattering from a powder sample 
is proportional to the spherically averaged two-spin corre- 
lation function. The dashed line in Fig. 2 is a spherically 
averaged three-dimensional Lorentzian which would be 
relevant if the correlations were isotropic. This function 
does not account well for the data. If we instead assume 
that the short range order is two dimensional, correspond- 
ing to rods of scattering parallel to the c axis and confined 
according to a two-dimensional Lorentzian around a char- 
acteristic q. in the basal plane, the spherically averaged 
cross section (solid line) yields a satisfactory agreement 
between model and data. In both calculations we have 
taken the spins to be isotropically polarized as is appropri- 
ate for Heisenberg S = 3/2 spins. Since the distance be- 
tween spins within KagomB planes is close to that between 
spins displaced along the c axis [Fig. 1 (a)], it is not obvi- 
ous that magnetic correlations in this material should be 
two dimensional. The effective two dimensionality may be 
the result of the three times lower Cr3 + concentration in 
the triangular lattice planes which separate KagomC planes 
and the frustration of interactions between spins occupying 
different planes. From the best fit to the data we extract a 
two-dimensional correlation length c = 7 f 2  w corre- 
sponding to just twice the nearest neighbor separation in 
the KagomC plane. We  also deduce the wave vector for the 
short range order: [goI = 1.4 f 0.1 A - ‘. If the correla- 
tions exist only in the Kagomk planes of SCGO(x), q. 
itself must lie in the basal plane and should correspond to 
a high symmetry point in the hexagonal reciprocal lattice 
with lattice parameter a* = 47r/v%z = 1.25 A- ‘. The 
modulus 1901 is indeed indistinguishable from (3 3) the fun- 
damental wave vector of the fi/5xfl superlattice inherited 
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FIG. 3. ti dependence of x” (Q,o) at T = 1.5 K, Q = 1.4 A, and 
Q = 2.25 A derived from inelastic magnetic neutron scattering. q and Cl 
are from configuration No. 1, 0 from configuration No. 2, and A and n 
from configuration No. 3. 

by the KagomC lattice from its (xy) magnetically ordered 
triangular lattice parent [see Fig. 1 (b)]. 

IV. MAGNETIC FLUCTUATIONS AT T ( T, 

In a previous publication’ we have shown that the 
Q-dependence of the inelastic magnetic scattering is quite 
similar to that of the elastic scattering of Fig. 2 for energy 
transfer &<8 meV. This- result confirms expectations, 
based on the large negative Curie-Weiss temperature, that 
the energy scale of the interactions giving rise to the AFM 
correlations is well above 8 meV. Figure 3 shows x”(Q,w) 
vs zio at Q = 1.4 A - i = Iqel. The spectrum was derived 
via the fluctuation-dissipation theorem’ from constant-Q 
scans which measure S( Q,w) . To interpret these data, note 
that for Iti] ;5 8 meV it is a good approximation for our 
powder sample to express x”CQ,o) as 
x”(Q,w) aC(Q)x”(w> where ,x”(cli) = SdqX”(q,w). The 
data of Fig: 3 are thus a measure of the w dependence of 
the q averaged, or local, response function, x” (w). Thus, 
x”(w) is a monotonically decreasing function up to 8 meV, 
the only identifiable energy scale being around ti* ~3 
meV where the decrease is steepest. It is interesting that 
whereas kBTg = 0.4 meV(ti* and kBl&wl = 37 
meV,ti*, &Z/C = 5 meV, where c is the velocity one may 
derive from the limiting T2 dependence of the specific 
heat,“’ is of the same order as ti*. If propagating excita- 
tions involving a hidden, but ordered degree of freedom 
exist in SCGO(x), it is conceivable that the frequency of 
the excitations with wavelengths of order E would define a 
characteristic energy for x# (w): 

Our neutron-scattering data provide a rigorous mea- 
sure of the relative amount of frozen and fluctuating mo- 
ment. The q integrated magnetic neutron scattering cross 
section is proportional to 

S(0) = 
s 

d@(w) 

1 
=- 

2lT+i s 
dt x (S#USLt>) expWt). (1) 

1 
In a powder sample, spherical averaging has already taken 

2 i;i 8 L ii’ =2 1 T=1.5K 

HyT=20K ( 

/ T=58K 1 

FIG. 4. x” (Qo,w) for fi0<2 meV at three temperatures. Solid lines rep- 
resent best fits to JIq. (5). Open symbols are from configuration No. 1, 
filled symbols configuration No. 2. (From Ref. 8.) 

place’ SO S(o) a SdQ S( Q,o). The Q-integrated nominally 
elastic magnetic powder scattering measured with the 
energy-resolution function R (+&/A) is 

N(p2+i~/<A= 
J 

- + * doR(ti/A)S(w). (2) 
-00 

Since 

lim (p2) [ lfiml <A= ( l/N) C lim (SLO)S/(t) > 
A-O+ I t-m 

we can interpret (,u’> I lfitol < A as the mean square moment 
frozen on the time-scale t = 2&i/A given by the energy 
resolution of the experiment. Analogously 

wJ2h,*= s ,Plo,,h dmS(w) (3) 

is the mean squared moment fluctuating at frequencies 
I&l > A. Combining normalized elastic and inelastic con- 
stant &B and constant Q scans for tiw < 8 meV we obtain 

e(A=O.2 meV) = $!;iri’i> 4. 
WC 

Ground-state quantum fluctuations thus account for more .~~~~ 
than 75% of the squared free ion moment in SCGO(x). In 
fact, our data are consistent with lim~,oe(A) = r~) which 
would imply a spin-liquid ground state for SCGO(x). 
However, the presence of hysteresis in dc susceptibility 
data’ probably excludes this scenario. 

The low-energy limit of x” (0) is of special interest 
because it is related to the T -+O limit of the magnetic 
contribution to thermodynamic properties. Figure 4 shows 
,JJ” (w) for &J < 2 meV at three temperatures. Focusing 
first on the data at T = 1.5 K Q Tp we note that there is 
no evidence of a gap in the excitation spectrum down to 
+i~ = 0.15 meV. This result, which is consistent with the 
absence of exponential behavior in thermodynamic prop- 
erties below Tp indicates that as expected for Heisenberg 
or xy spins, there is no anisotropy gap in the magnetic 
excitation spectrum. More surprising is that at 1.5 K, 
x” (0) is indistinguishable from constant for 0.15 

4970 J. Appl. Phys., Vol. 69, No. 8.15 April 1991 Broholm eta/. 4970 



meV <ti < 2 meV. Closely related to this result is the 
finding by Ramirez et al. that the specific heat of SCGO(x) 
is proportional to T2 as T+O. The specific heat data imply 
that the density of states p(w) aw. Naively, one might 
expect that ,x”(w) ap(o> for w-to. This is the case for 
ferromagnets and the few spin glasses where measurements 
from which these quantities can be derived are available.” 
However, for SCGO(x) this simple relation does not hold. 
To appreciate what this implies for the ground state of 
SCGO(x), recall that the response function not only in- 
volves the density of states, but also the matrix element of 
the relevant operator between the ground and excited 
states. More precisely, at T=O, x” (0) 
a ~j~~l( f ISjlO>l”S(E~ - ti> whereas P(W) 
= X$(E’ - w). In general we can therefore write 
x”(w) a (1w2(o))p(w> where (rW2(w>) can be inter- 
preted as the average squared matrix element of the spin 
operator at site j, Sjs between the ground state IO} and 
excited states 1 f ) at energy Ef = &. The combination of 
our data for x” (0) (Fig. 4) and the specific heat data of 
Ramirez et aL217 Therefore show that (M2(fiiw>) a l/w 
for o 40 in SCGO(x). A more familiar example of an 
w-dependent average matrix element is the long-range or- 
dered AFM where it is well established” that 
(iw2(.tiw)) cc l/w. Although such behavior is not expected 
in a system with short-range AFM order only, it may be 
due to long-range order in a continuous degree of freedom 
not directly probed by neutron-scattering. 

V. TEMPERATURE DEPENDENCE OF THE MAGNETIC 
FLUCTUATIONS 

Apart from the development of weak elastic magnetic 
scattering, Fig. 4 shows that the freezing transition is pre- 
ceded and accompanied by modifications in the w depen- 
dence of x” (0). Note first that the Q width of constant & 
scans does not increase substantially below. 58 K.i2 We can 
therefore interpret the o dependence of x” ( Qo,w ) for 
TS 60 K as that of the local response-function .x”(w). 
Figure 4 shows that at T = 58 K, x” (w).~ w indicating 
that a single exponential relaxation process dominates for 
+ico < 2 meV. At 20 K, x” (w ) deviates beyond error from 
proportionality with w, and for T ~20 K, it evolves into 
the low-temperature w independent form described in IV. 
To characterize this temperature-dependence further, we 
have measured x” (w) at several temperatures and fitted 
the data to 

high temperatures and becomes indistinguishable from 0 
corresponding to x” (0) a constant below Tg Not surpris- 
ingly, l/$(O) is linear in T at high temperatures and the 
spin-glass transition is associated with this quantity tend- 
ing to zero. Note that the temperature Tg = 8 K which is 
indicatedeby a dashed line in Fig. 5 is larger than c = 5 K 
derived from susceptibility data.7 That the temperatures at 
which anomalies occur depend on the time-scale of the 
measurement is a well-known property of spin glasses. In 
summary; not only does a small static moment develop at 
Tg but the entire low energy part of x” (w) characterizing 
the large magnetic fluctuations develops into the anoma- 
lous w independent form at Tg 

VI. MONTE-CARLO SIMULATION OF THE AFM 
KAGOMk LATTICE 

x”(w) =x’!W sign(w) (Iwl/o,).“, (5) 

We have shown that SCGO(x) is a system with many 
unusual properties, which we suspect are due to the 
KagomC lattice structure of the constituent layers. As 
pointed out in the introduction, there has been exact work3 
on the Ising model on the KagomC lattice, and some phe- 
nomenological descriptions of what might occur for con- 
tinuous classical spins and low-spin quantum AFMs on 
Kagomk lattices.ti However, we are unaware of any re- 
sults which satisfactorily describe the nature of the order 
(if any) in a classical Heisenberg or xy KagomC AFM. 
Thus, before taking on the challenges of quantum mechan- 
ics (S = 3/2 for Cr3 f ) and random dilution which are 
surely relevant for SCGO(x), we consider the classical 
models on a fully occupied lattice. 

which provides excellent fits at all temperatures investi- 
gated. A Kramers-Kronig transformation of (5) within 
the high-energy cutoff ti, (fixed at 2 meV) shows that 
x’( 0) is the real part of the ZocaZ susceptibility correspond- 
ing to ,y” (0). Figure 5 shows the temperature-dependence 
of Y and l/x’(O) along with that of the elastic scattering at 
Q = 1.4 rf - ‘. The elastic scattering at high temperatures is 
incoherent nuclear scattering. Upon cooling there is ini- 
tially a weak increase which we associate with critical 
slowing down followed by a sharper approximately linear 
increase below T, = 8 K. Y decreases gradually from 1 at 

0 COOLING 
l HEATING 

T(K) 

FIG. 5. Temperature dependence of elastic scattering at Q = 1.4 8, (con- 
figuration No. 1) and the parameters Y and l/x’ of F!&(5) which char- 
acterize the low energy dependence of x” (w) . 

The starting Hamiltonian is 

4971 J. Appl. Phys., Vol. 69, No. 8,15 April 1991 Broholm eta/. 4971 



(6) 

where the sum is over pairs of nearest neighbors on the 
lattice. Unlike the situation for the square lattice, it is im- 
possible simultaneously to minimize the energy for all pairs 
of neighboring spins. However, it is possible simulta- 
neously to minimize the energies of all triangles of adjacent 
spins. The latter is accomplished by insisting that the spins 
at the vertices of each constituent triangle are coplanar and 
120” apart. Thus, any ground state of the system can be 
described as a particular choice at each site from among 
three spin directions. Thus, once a triad Si, S2, S3 of spin 
directions has been selected, breaking the continuous sym- 
metry, the Hamiltonian (6) reduces to the three state Potts 
model, which we have proceeded to study as the simplest 
departure point for understanding the new physics in 
SCGO(x). The Hamiltonian is 

ET=; IJI c wwj>, (7) 
i#j 

where 6 is the Kronecker delta function. At each site i of 
the KagomC lattice, we define a discrete variable Izi which 
can take on three different values, 1, 2, or 3, corresponding 
Sr, S2, or S3, respectively. For comparison with neutron- 
scattering data, the quantity of greatest interest is the 
Fourier-transformed two-spin correlation-function 

F@(q) =f z Sn(r)Sa(r’) exp[iq*(r - r’)] , 
i 1 

(8) 

where r and r’ are sites in the KagomC lattice, N is the 
number of sites, P(r) is the ath Cartesian component of a 
vector spin at site r and (. . . > denotes thermodynamic av- 
eraging. We relate this expression to the q,-state Potts 
model by letting S”(r) take on qp = 3 values Sz, it 
= 1,2,..q, which satisfy B,Jg = 0 and ): ,S nn nn z$$S’$ 
= q/2&p These conditions are clearly satisfied for qp 
= 3 by three spins separated by 120” in a single plane. 
Defining P( ryl,r’d) as the probability that Sa( r) = SE and 
s”(r’) = S’$ the configuration average can be written as 

F-@(q)=; c c PC m,r’n’>S~Sf, exp[iq* (r - r’)]. 
nn’ rr( 

(9) 
Using the sum-rule &P(m,r’n’) = l/qp and the Ansatz, 
based on the symmetry of the underlying Hamiltonian, 
that for n’#n and n”#n, P(m,r’n’) = P(m,r’n”), .we can 
write 

P(m,r’n’) =t 
( 

SnnZeq(r,r’) + (1 - S,,) 
1 - iP,,(r,r’) 

) Bp-1 ’ 
(10) 

where P&r,r’) is the probability that sites r and r’ are in 
the same spin state. Inserting ( 10) in (9) we obtain 

saB(q)=&@ 1,; G 
( 

9~&,r’) - 1 

=?=r ’ 9p- 1 

Xexp[iq(r -r’)] 
) 

. (11) 
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FIG. 6. Specific heat vs temperature for the three states Potts model on 
the Ragomk lattice determined by Monte-Carlo simulation on a 24X24 
(0) and 72X72 (0) lattice. Insert shows internal energy vs inverse 
temperature. 

We determined P.Jr,r’) from TzO states generated 
by gradual cooling of randomly generated high- 
temperature states by the Metropolis technique. I3 To speed 
convergence to thermal equilibrium, especially at low tem- 
peratures, single spin-flips and rotations of clusters of six 
spins forming hexagons [Fig. 1 (b)] were attempted in al- 
ternation. During cooling we measured the energy (E)/ 
([J/N) defined by (6), the specific heat per spin 
C( T)/k, = ( (E2) - (E)2)/(NkiT2), and the average 
number of hexagons with a Potts-state sequence nn' nn' 
nn'. Starting from the equilibrium state at the previous 
temperature, a sequence of states was generated by at- 
tempting to flip each spin and rotate each hexagon in the 
lattice. Equilibrium at each temperature was declared 
when none of these quantities determined by averaging 
over K/2 states differed more than R% (typically l%- 
5%) from the average obtained from the next K states. The 
latter averages were then recorded as the thermal equilib- 
rium values and R as the relative error. Lattices from 
24x 24 to 72X72 were studied with periodic boundary 
conditions and typically K varied between 4096 and 32768. 

VII. SPECIFIC HEAT 

Figure 6 shows the C(T) for a 24~24 and a 72X72 
lattice. There is a broad peak centered around k,T/IJI 
= 0.4. Since the results for lattices with linear dimensions 
differing by a factor of 3 coincide, we conclude that the 
results for the 72X72 lattice are representative for the in- 
finite lattice. Since most of the entropy is removed in a 
broad specific-heat peak, not by a phase-transition. Figure 
6 indicates that the AFM three-state Potts model does not 
have a finite-temperature phase-transition on the KagomC 
lattice. The insert shows (E)/( I JIN) in a logarithmic plot 
demonstrating that for TdO, (E)/( IJIN) is exponentially 
activated, as must be the case for any system with a dis- 
crete local symmetry. The activation energy, E, = 1.3 
* 0.1 I JI for the 72 X 72 lattice. An upper bound on E, is 
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1--- .I’.’ I IX. SUMMARY AND CONCLUSIONS 

0.6 

h tr. P.u.] 

We have shown that despite strong AFM interactions, 
SCGO(x) has a strongly fluctuating and short-range or- 
dered ground-state. The two-dimensionality and wave veo 
tor qtri of the order confirms the conjecture by Ramirez et 

a1.2 that magnetic frustration on the Kagome lattice is the 
origin of this anomalous ground-state. Monte Carlo simu- 
lation of the three-state Potts model on the KagomC lattice 
show that the model is critical at T  = 0 with algebraic 
correlations of the staggered magnetization at q = qtri. 
Comparison with the experimental system suggests that for 

FIG. 7. Monte-Carlo data for S(q) on a 72x72 lattice along the (hh) 
direction at k$‘/lJJ = 0.01 (solid line) and for the corresponding LRO 
state on the same lattice (dashed line which is reduced by a factor of 20). 
Insert shows S(qte) vs lattice size for the same states. 

S = $ Heisenberg spins, quantum fluctuations, which are 
strong in our experiment, destroy even the algebraically 
decaying two-spin correlations. Even so, an interesting 
property of AFMs with long-range order remains, namely 
a i divergence of the overlap (M2(w) ) between the 

the energy, 2[J( required to flip a single spin at T  = 0. The groundstate with a single spin-flip and the excited states. 
lower vaIue of E, results from correlations between spin Whether this is a characteristic property of geometrically 
flips. frustrated quantum AFMs remains to be seen. 

VIII. STATIC CORRELATION FUNCTION 

The static correlation function in the state obtained by 
the cooling sequence of Fig. 6, Sap(q) was calculated from 
( 11) . We  determined Pe,(r,r’) in an irreducible zone com- 
patible with the local symmetry by averaging over each site 
the probability of an equal spin at each other site in the 
lattice. To improve statistics, averaging was also performed 
over 5 lattices obtained by random rotation of symmetric 
hexagons in the low-temperature state. Figure 7 shows 
Saa( q) for the 72 X 72 lattice. The momentum q is indexed 
in the hexagonal reciprocal lattice a* = 6* = 47r/V3a, 
y = 60”, a being the Kagome lattice parameter. There are 
sharp peaks at qtti = ($ f) indicating that antiferromagnetic 
order corresponding to the periodic tripartition of the 
Kagomi: lattice occurs with a substantial correlation 
length. For comparison, the dashed line shows SOLa for 
the long-range ordered (LRO) state. The width of this 
peak is due to the finite size of the 72X72 lattice. The 
relative intensity of the ($5) and () 4) peaks are the same 
for the two states, indicating that the AFM structure is 
similar. However, the mean square staggered magnetiza- 
tion Sa”[+,$] of the gradually cooled state is 20 times less 
than that corresponding to LRO, indicating substantial 
disorder, as anticipated due to the large ground-state de- 
generacy. Furthermore, although the FWHM of the peaks 
for the two states is similar, the peaks of the gradually 
cooled state have substantial tails. These observations are 
consistent with the presence of algebraically decaying cor- 
relations. Another indication of this comes from the lattice 
size dependence of Saa[$,$] shown in the inset. For corre- 
lations decaying according to IYJ - q and for sufficiently 
large LX L( = N) lattices ,Saa( qtg) cc Ly, where 
y = d - 71, d = 2 being the lattice dimensionality.r3 For 
the long-range ordered state, y = 2.0&O. 1 as anticipated, 
whereas y = 0.6 AO.3 corresponding to 77 = 1.4 AO.3 for 
the state obtained by gradual cooling. 
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