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Abstract

Combinatorial group theory is a part of group theory that deals with groups given

by presentations in terms of generators and defining relations. Many techniques

both algebraic and geometric are used in dealing with problems in this area.

In this thesis, we adopt the geometric approach. More specifically, we use so-

called pictures over relative presentations to determine the asphericity of such

presentations. We remark that if a relative presentation is aspherical then group

theoretic information can be deduced.

In Chapter 1, the concept of relative presentations is introduced and we state the

main theorems and some known results.

In Chapter 2, the concept of pictures is introduced and methods used for checking

asphericity are explained.

Excluding four unresolved cases, the asphericity of the relative presentation P=

⟨G, x|xmgxh⟩ for m ≥ 2 is determined in Chapter 3. If H = ⟨g, h⟩ ≤ G, then the

unresolved cases occur when H is isomorphic to C5 or C6.

The main work is done in Chapter 4, in which we investigate the aspheri-

city of the relative presentation P= ⟨G, x|xaxbxcxdxexf⟩, where the coefficients

a, b, c, d, e, f ∈ G and x /∈ G and prove the theorems stated in Chapter 1.
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Chapter 1

Introduction

1.1 Relative group presentations

The notion of relative group presentations was introduced by Bogley and Pride

in [5], who also introduced the notion of asphericity for relative group presenta-

tions.

Definition 1.1.1. A relative group presentation is a presentation of the form

P= ⟨G, x|r⟩, where G is a group and x is a set disjoint from G. Denoting the

free group on x by ⟨x⟩, r is a set of cyclically reduced words in the free product

G ∗ ⟨x⟩. The group defined by P is Ĝ= G ∗ ⟨x⟩/N , where N is the normal closure

in G ∗ ⟨x⟩ of r .

Remark 1.1.2. In the above definition, G and ⟨x⟩ are called the factors of the

free product G ∗ ⟨x⟩. If R ∈ r then R = ĝ1ĝ2 . . . ĝn, where no successive ĝi, ĝi+1

(subscripts mod n) are in the same factor. Also, ĝ1 and ĝn are in different factors.

Example. Let G be any group. Then the following is an example of a relative

presentation: ⟨G, x, y|x−1g1xyg2, xg1xg2, x
2g1y

2g2y⟩, where g1, g2 ∈ G.

1



Chapter 1: Introduction

The presentation P= ⟨G,x|r⟩ is said to be slender if for each R ∈ r, R∗ ∩ r = R,

where R∗ is the set of all cyclic permutations of R ∪ R−1; and P is orientable if

it is slender and no element of r is a cyclic permutation of it’s inverse. Moreover

P is said to be aspherical if every spherical picture over it contains a dipole. The

notions of spherical picture and dipole will be explained later on.

The group theoretic problem that is of interest in the study of relative presenta-

tions is to determine how G interacts with r to determine the structure of Ĝ. As

an example if P is aspherical then some group theoretic consequences about Ĝ

can be deduced. More precisely the following theorem holds.

Theorem 1.1.3. [5] Let Ĝ be the group defined by P= ⟨G, x|r⟩. If P is an

orientable and aspherical relative presentation, then the following hold:

1. The natural homomorphism G → Ĝ is injective.

2. For R ∈ r, write R = (Ṙ)n, where Ṙ is not a proper power, and n is a

positive integer. Let CR be the subgroup of Ĝ generated by ṘN . Then any

finite subgroup of Ĝ is contained in a conjugate of G or a conjugate of one

of the subgroups CR(R ∈ r).

3. The homology and cohomology [18] of Ĝ in dimensions ≥ 3 is determined

by that of G and the subgroups CR(R ∈ r). In particular, there are iso-

morphisms Gn(Ĝ,−) ∼= Gn(G,−) ⊕
(⊕

R∈r

Gn(CR,−)
)

Gn(Ĝ,−) ∼= Gn(G,−) ⊕
(∏
R∈r

Gn(CR,−)
)

for all n ≥ 3.

There has been much interest in determining asphericity of P particularly when

x = {x} and r = {r} both consist of a single element. Thus r = xε1g1 . . . x
εkgk

2



Chapter 1: Introduction

where gi ∈ G, εi = ±1 and gi = 1 implies εi + εi+1 ̸= 0 (1 ≤ i ≤ k, subscripts

mod k). If k ≤ 3 or r ∈ { xg1xg2xg3xg4, xg1xg2xg3x
−1g4, xg1xg2xg3xg4xg5,

(xg1)
l1(xg2)

l2(xg3)
l3(li > 1, 1 ≤ i ≤ 3)}, then the asphericity of P has been de-

termined (modulo some exceptional cases) in [5], [10], [4], [1], [2], [12] and [19].

This list includes xmgx−1h (g, h ∈ G\{1}) for 1 < m ≤ 3, and when m ≥ 4

asphericity (modulo exceptional cases) has been determined in [9].

In Chapter 3 we consider xmgxh (g, h ∈ G\{1}), where m ≥ 2. If m = 2 then a

complete classification of when P is aspherical has been obtained in [5]. Modulo

some exceptions the cases m = 3 and m = 4 were determined in [4] and [12]

respectively.

In Chapter 4 is the main work of the thesis where we consider r = xg1 . . . xgk.

The cases k=3, 4 and 5 were considered in [5], [4] and [12] respectively. Thus we

consider k=6 and determine when P is aspherical with some exceptional cases.

The special case when G is torsion-free was studied in [13], [14] for k=6.

1.2 Statement of results

1.2.1 r = xmgxh (m ≥ 5)

Before we state our main result in Chapter 3, we list the following excep-

tional cases (observe that the exceptional cases and the results are modulo

(g, h) ↔ (h−1, g−1) [see Remark 3.1.1]).

(E1) g = h2, |h| = 5.

(E2) g ∈ {h2, h3, h4}, |h| = 6.

Theorem 1.2.1. Let P be the relative presentation P =⟨G, x|xmgxh⟩, where

3



Chapter 1: Introduction

m ≥ 5, x /∈ G, g, h ∈ G\{1} . Suppose that none of the conditions in (E1)

or (E2) holds. Then P is aspherical if and only if (modulo (g, h) ↔ (h−1, g−1))

none of the following holds:

1. g = h±1 and g has finite order.

2. g = h2 and |h| ≤ 4.

3. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

4. |g| = 2, |h| = 3 and [g, h] = 1 (H = gp{g, h} ∼= C2 × C3).

1.2.2 r = xaxbxcxdxexf

We consider the relative presentation P= ⟨G, x|xaxbxcxdxexf⟩, where the coef-

ficients a, b, c, d, e, f ∈ G and x /∈ G. We first consider the case a = c = e.

Theorem 1.2.2. P= ⟨G, x|xaxbxaxdxaxf⟩ is aspherical if and only if Ṕ=

⟨G, x|xba−1xda−1xfa−1⟩ is aspherical.

Since a complete classification of when Ṕ is aspherical is obtained in [5], we will

assume that a = c = e does not hold in what follows.

Remarks 1.2.3.

1. All exceptional cases and results are stated up to so-called equivalence (which

will be described in full detail in Subsection 4.1.2).

2. The exceptional cases and results are listed in terms of which pairs of

a, b, c, d, e, f are equal in G. For example a=d, b=e only means that

no other pairs from a, b, c, d, e, f are considered. Clearly a=b=d, c=f only

is the same as a=b, a=d, b=d, c=f only.

4



Chapter 1: Introduction

Definition 1.2.4. Throughout what follows we define the subgroup H of G by

H= ⟨ba−1, ca−1, da−1, ea−1, fa−1⟩.

Definition 1.2.5. A group T with the presentation ⟨x, y|xn, ym, (xy)l⟩, where
1
n
+ 1

m
+ 1

l
> 1 is called a finite triangle group. If (n,m, l)= (2, 2, k < ∞), (2,

3, 2), (2, 3, 3), (2, 3, 4), (2, 3, 5)(respectively), then T ∼= D2k, S3, A4, S4, A5

(respectively), where D2k= ⟨x, y|x2, y2, (xy)k⟩ (k < ∞).

Theorem 1.2.6. If H is neither finite triangle nor finite cyclic, then P is as-

pherical unless one of the following holds:

1. (a=d, b=e only) and |ca−1(fa−1)−1| < ∞.

2. (a=b=d, c=f only) and |ea−1| < ∞.

3. (a=b=d=e only) and |ca−1(fa−1)−1| < ∞.

This theorem shows a similarity with the case r = xaxbxcxd and a difference

with the case r = xaxbxcxdxe as can be seen from the following theorems.

Theorem 1.2.7. [4, Theorems 2,3,4(special cases)] Consider the relative

presentation L= ⟨G, x|xaxbxcxd⟩, where the coefficients a, b, c, d ∈ G and x /∈ G.

If H= ⟨ba−1, ca−1, da−1⟩ is neither finite triangle nor finite cyclic, then L is as-

pherical unless (a=c only) and |ba−1(da−1)−1| < ∞.

Theorem 1.2.8. [12, Theorem A] Consider the relative presentation Ĺ=

⟨G, x|xaxbxcxdxe⟩, where the coefficients a, b, c, d, e ∈ G and x /∈ G. If H=

⟨ba−1, ca−1, da−1, ea−1⟩ is neither finite triangle nor finite cyclic, then Ĺ is as-

pherical.

Remark 1.2.9. Observe that ⟨ba−1, ca−1, da−1, ea−1⟩= ⟨ab−1, bc−1, cd−1, de−1⟩.

5



Chapter 1: Introduction

For the next theorem, we list the following exceptional cases:

(E1) (a=b, c=e, d=f only), (|ca−1|, |da−1|) = {(2, 3)} and 1
|ca−1| +

1
|ca−1da−1| +

1
|da−1| > 1, where 1

∞ := 0 (H ∼= S3, A4, S4, A5).

(E2) (a=b=d, c=e only), (ca−1)2 = (fa−1)2 = 1 and |ca−1fa−1| ∈ {2, 3} (H ∼=

D4, D6).

Theorem 1.2.10. Assume that none of the conditions in (E1) or (E2) holds. If

H is finite triangle, then P is aspherical unless one of the following holds:

1. (a=b, c=d, e=f only) and 1
|ca−1| +

1
|ca−1(ea−1)−1| +

1
|ea−1| > 1.

2. (a=b, c=e, d=f only), (ca−1)2 = (da−1)2 and |ca−1da−1| < ∞.

3. (a=d, b=e only) and |ca−1(fa−1)−1| < ∞.

4. (a=b=c, e=f only) and 1
|da−1| +

1
|da−1(ea−1)−1| +

1
|ea−1| > 1.

5. (a=b=d, c=f only) and |ea−1| < ∞.

6. (a=b=c=d only) and 1
|ea−1| +

1
|ea−1(fa−1)−1| +

1
|fa−1| > 1.

7. (a=b=d=e only) and |ca−1(fa−1)−1| < ∞.

For the next theorem, we list the following exceptional cases:

(E3) (a=b, c=d, e=f only), ca−1 = (ea−1)−1 and |ea−1| = 3 (H ∼= C3).

(E4) (a=b, c=e, d=f only) and one of the following holds.

(i) da−1 = (ca−1)2 and |ca−1| ∈ {4, 6} (H ∼= C4, C6).

(ii) da−1 = (ca−1)−1 and 4 ≤ |ca−1| < ∞ (H ∼= Ck, 4 ≤ k < ∞).

(iii) ca−1 = (da−1)2 and |da−1| ∈ {4, 6} (H ∼= C4, C6).

(iv) (ca−1)−1 ∈ {(da−1(ca−1)−1)3, (da−1(ca−1)−1)4} and |da−1(ca−1)−1| = 6

(H ∼= C6).

(E5) (a=b=c, e=f only) and one of the following holds.

(i) da−1 ∈ {(ea−1)−1, (ea−1)2} and |ea−1| ∈ {4, 6} (H ∼= C4, C6).

6



Chapter 1: Introduction

(ii) (|da−1|, |ea−1|) ∈ {(2, 3), (3, 2)} and [da−1, ea−1] = 1 (H ∼= C2 × C3).

(iii) ea−1 ∈ {(da−1)2, (da−1)3, (da−1)4} and |da−1| = 6 (H ∼= C6).

(iv) da−1 ∈ {(ea−1)3, (ea−1)4} and |ea−1| = 6 (H ∼= C6).

(E6) (a=b=d, c=e only) and one of the following holds.

(i) ca−1 = (fa−1)−1 and |fa−1| ∈ {4, 5, 6} (H ∼= C4, C5, C6).

(ii) ca−1 = (fa−1)2 and |fa−1| = 4 or fa−1 = (ca−1)2 and |ca−1| ∈ {4, 6}

(H ∼= C4, C6).

(E7) (a=b=d, e=f only), ca−1 ∈ {(ea−1)2, (ea−1)3} and |ea−1| = 4 or ea−1 =

(ca−1)2 and |ca−1| = 4 (H ∼= C4).

(E8) (a=b=c=d only) and one of the following holds.

(i) ea−1 = (fa−1)2 and |fa−1| ∈ {5, 6} (H ∼= C5, C6).

(ii) ea−1 ∈ {(fa−1)3, (fa−1)4} and |fa−1| = 6 (H ∼= C6).

Theorem 1.2.11. Assume that none of the conditions in (E3)-(E8) holds. If H

is cyclic, then P is aspherical unless one of the following holds:

1. (a=b, c=e, d=f only), da−1 = (ca−1)2 and |ca−1| = 3.

2. (a=d, b=e only) and |ca−1(fa−1)−1| < ∞.

3. (a=b=c, d=f only), ea−1 = (da−1)−1 and |da−1| < ∞.

4. (a=b=c, e=f only) and the following holds.

da−1 = (ea−1)2 and |ea−1| = 3 or ea−1 = (da−1)2 and |da−1| ∈ {3, 4}.

5. (a=b=c, d=e=f only) and |da−1| < ∞.

6. (a=b=d, c=e only) and ca−1 = (fa−1)−1 where |fa−1| = 3.

7. (a=b=d, c=f only) and |ea−1| < ∞.

8. (a=b=d, e=f only) and ca−1 = (ea−1)−1 where |ea−1| = 3.

9. (a=b=d, c=e=f only) and |ca−1| < ∞.

7



Chapter 1: Introduction

10. (a=b=c=d only) and one of the following holds.

(i) ea−1 = (fa−1)±1 and |fa−1| < ∞.

(ii) ea−1 = (fa−1)2 and |fa−1| = 4.

(iii) |ea−1| = 2, |fa−1| = 3 and [ea−1, fa−1] = 1 (H ∼= C2 × C3).

11. (a=b=d=e only) and |ca−1(fa−1)−1| < ∞.

Corollary 1.2.12. Assume that H is cyclic and |H| > 6. Also assume the

following does not hold: (a=b, c=e, d=f only), da−1 = (ca−1)−1 and 6 < |ca−1| <

∞ (H ∼= Ck, 6 < k < ∞). Then P is aspherical unless one of the following holds:

1. (a=d, b=e only) and |ca−1(fa−1)−1| < ∞.

2. (a=b=c, d=f only), ea−1 = (da−1)−1 and 6 < |da−1| < ∞.

3. (a=b=c, d=e=f only) and 6 < |da−1| < ∞.

4. (a=b=d, c=e only) and ca−1 = (fa−1)−1 where 6 < |fa−1| < ∞.

5. (a=b=d, c=f only) and |ea−1| < ∞.

6. (a=b=d, c=e=f only) and 6 < |ca−1| < ∞.

7. (a=b=c=d only), ea−1 = (fa−1)±1 and 6 < |fa−1| < ∞.

8. (a=b=d=e only) and |ca−1(fa−1)−1| < ∞.

1.3 Some known results

Here we list some of the known results that we have used in our work.

Lemma 1.3.1. [4, Lemma 3] The relative presentation ⟨G, x|xg1 . . . xgn⟩ is

aspherical if xg1 . . . xgn is not a proper power in the free product G ∗ ⟨x⟩ and

g1, . . . , gn are all contained in an infinite cyclic subgroup of G.

8
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Lemma 1.3.2. [19, Lemma 1] The relative presentation ⟨G, x|xk(xg)m⟩, where

k,m > 1 is aspherical if and only if g has infinite order.

Lemma 1.3.3. The relative presentation ⟨G, x|xmg⟩ (m > 1 and g ̸= 1) is

aspherical if and only if g has infinite order.

Proof. If g has infinite order then the result follows from Lemma 1.3.1, while if

g has finite order then so has x. Now since m > 1, the result follows from Lemma

2.2.9.

9



Chapter 2

Method of Proof

2.1 Pictures over relative presentations

Throughout this chapter we mean by P the presentation P= ⟨G,x|r⟩, except

when otherwise stated. The definitions of this section are taken from [5]. For

more details, the reader is referred to [5] and [4].

A picture P is a finite collection of pairwise disjoint discs {D1, . . . , Dm} in the

interior of a disc D2, together with a finite collection of pairwise disjoint simple

arcs {α1, . . . , αn} embedded in the closure of D2 −
∪m

i=1Di in such a way that

each arc meets ∂D2 ∪
∪m

i=1Di transversely in it’s end points. The boundary of

P is the circle ∂D2, denoted by ∂P. For 1 ≤ i ≤ m, the corners of Di are the

closures of the connected components of ∂Di−
∪n

j=1 αj, where ∂Di is the bound-

ary of Di. The regions ∆ of P are the closures of the connected components of

D2 −
(∪m

i=1Di ∪
∪n

j=1 αj

)
. An inner region of P is a simply connected region

of P that does not meet ∂P. The picture P is non-trivial if m ≥ 1, is connected

if
∪m

i=1Di ∪
∪n

j=1 αj is connected, and is spherical if it is non-trivial and if none

of the arcs meets the boundary of D2. The number of edges in ∂∆ is called the

10



Chapter 2: Method of Proof

degree of the region ∆ and is denoted by d(∆). If P is a spherical picture, the

number of different discs to which a disc Di is connected is called the degree of

Di, denoted by d(Di). The discs of a spherical picture P are also called vertices

of P.

Suppose that the picture P is labelled in the following sense: each arc αj is

equipped with a normal orientation, indicated by a short arrow meeting the arc

transversely, and labelled by an element of x ∪ x−1. Each corner of P is oriented

clockwise (with respect to D2) and labelled by an element of G. If κ is a corner

of a disc Di of P, then W (κ) will be the word obtained by reading in a clockwise

order the labels on the arcs and corners meeting ∂Di beginning with the label

on the first arc we meet as we read the clockwise corner κ. If we cross an arc

labelled x in the direction of it’s normal orientation, we read x, else we read x−1.

A picture over P is a picture P labelled in such a way the following are satisfied:

1. For each corner κ of P, W (κ) ∈ r∗, the set of all cyclic permutations of

elements of r ∪ r−1 which begin with a member of x ∪ x−1.

2. If g1, ..., gn is the sequence of corner labels encountered in anticlockwise

traversal of the boundary of an inner region ∆ of P, then the product

g1g2...gn=1 in G. We say that g1g2...gn is the label of ∆, denoted by l(∆)

= g1g2...gn.

A connected spherical picture P over P is called strictly spherical if the product

of the corner labels of any region of P defines the identity in G.

Example 1. Let P=⟨C3, x|x3gx2gxg⟩, where g generates C3. Then a strictly

spherical picture over P is given by Figure 2.1, where g−1 is denoted by ḡ.

11
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Figure 2.1: An example of a strictly spherical picture.

A dipole in a labelled picture P over P consists of corners κ and κ′ of P together

with an arc α joining the two corners such that κ and κ′ belong to the same region

and such that if W (κ)= Sg where g ∈ G and S begins and ends with a member

of x ∪ x−1, then W (κ′)= S−1g−1 (see Figure 2.2). The picture P is reduced if it

does not contain a dipole (for more details see [7]).

g2

g
1 gng

1

g2

gn

corner κcorner κ

α

x

x

x

x

x x

Figure 2.2: A dipole in P.

We are now ready to state the following important definition.

Definition 2.1.1. A relative presentation P is called aspherical if every con-

nected spherical picture over P contains a dipole. If P is not aspherical then there

is a non-trivial reduced spherical picture over P.

12



Chapter 2: Method of Proof

Remark 2.1.2. In our proofs, amongst the finite set of all spherical pictures with

a fixed minimal number of discs(vertices), we consider a spherical picture P over

the given presentation.

Definition 2.1.3. (Bridge moves in a picture). Let ∆ be a region of P with

l(∆) = uw1vw2, where w1 and w2 are products of corner labels, such that uw1v =

1. Then a bridge move can be done by a cut across e1 and e2 as shown in Figure

2.3 (observe that this changes P).

e1e2

v u

*

*

v u

∆

Figure 2.3: Bridge moves in pictures.

2.2 Methods used for checking asphericity

In this section P= ⟨G,x|r⟩ is assumed to be an orientable relative presentation

(note that both ⟨G, x|xmgxh⟩(m ≥ 5) and ⟨G, x|xaxbxcxdxexf⟩ are orientable).

Amongst the methods used for checking asphericity, in our results we mainly used

weight test and curvature distribution method. To explain some of these methods

the definition of star graph is needed.

Definition 2.2.1. ( star graph Pst of P) The star graph Pst of a relative

presentation P is a graph whose vertex set is x ∪ x−1 and edge set is r∗. For

R ∈ r∗, write R = Sg where g ∈ G and S begins and ends with a member of

x ∪ x−1. The initial and terminal functions are given as follows: ι(R) is the first

symbol of S, and τ(R) is the inverse of the last symbol of S. The inverse edge

13



Chapter 2: Method of Proof

R̄ of R is obtained from S−1g−1 in the same way. For orientable presentation

S−1g−1 ̸= Sg. The labelling function on the edges is defined by λ(R) = g−1 and

is extended to paths in the normal way, where a path in Pst is a sequence of

edges, for which we write p = e1 . . . el, l ≥ 1, such that for 1 ≤ i ≤ l, ei+1 begins

where ei ends. The path is closed if it begins and ends at the same vertex. A

closed path p is cyclically reduced if no cyclic permutation of e1 . . . el contains the

subword ee−1. A non-empty cyclically reduced cycle (closed path) in Pst will be

called admissible if it has a trivial label in G.

Remark 2.2.2. The way that Pst is defined ensures that the label of each inner

region of a reduced picture over P yields an admissible cycle in Pst.

Example 2. Let P=⟨G, x|xaxbxcxdxexf⟩. Then Pst is given by Figure 2.4,

where α ↔ a, β ↔ b, γ ↔ c, δ ↔ d, ε ↔ e and ζ ↔ f . If ab−1 = dc−1 then

αβ−1γδ−1 is admissible.

x
1 x

α

β

ζ

ε

δ

γ

Figure 2.4: Star graph of ⟨G, x|xaxbxcxdxexf⟩.

2.2.1 Small cancellation hypothesis.

Let m be a positive integer. An m-wheel over P (see Figure 2.5) is a non-trivial

connected picture O over P that has discs {∆0,∆1, . . .∆m} such that the following

are satisfied:

1. Each arc of O meets a disc ∆i for some i ∈ {1, . . . ,m}.

14



Chapter 2: Method of Proof

2. Each arc of O either meets ∆0 or ∂O.

3. Each disc of O has a corner which lies in a region of O that meets ∂O.

∆ ∆1

∆2

∆ m

0

Figure 2.5: A typical m-wheel.

Definition 2.2.3. Let p be a positive integer. Then we say that the presentation

P satisfies C(p) if there are no reduced m-wheels over P for m < p.

Definition 2.2.4. Let q be a positive integer. Then we say that the presentation

P satisfies T (q) if there are no admissible cycles in Pst of length k such that

3 ≤ k < q.

Theorem 2.2.5. (for example see Theorem 2.2 in [5]) If P satisfies C(p) and

T (q) where 1
p
+ 1

q
= 1

2
, then P is aspherical.

Example 3. Let P=⟨G, x|xaxbxcxdxexf⟩. Then P satisfies T (4) (admissible

cycles can only have even length). If a = b and c = f are the only allowed

equalities amongst a, b, c, d, e, f , then P also satisfies C(4) [see Lemma 4.1.4].

Therefore in this case P is aspherical.

15



Chapter 2: Method of Proof

2.2.2 Weight test

This method is due to Bogley and Pride [5]. A weight function θ is a real-valued

function on the set of edges of Pst that satisfies θ(Sg) = θ(S−1g−1) where Sg =

R ∈ r∗. The weight of a closed cycle is the sum of the weights of the constituent

edges. A weight function is weakly aspherical if the following conditions hold:

1. Let R ∈ r∗, with R = xε1
1 g1 . . . x

εn
n gn. Then

n∑
i=1

(1− θ(xεi
i gi . . . x

εn
n gnx

ε1
1 g1 . . . x

εi−1

i−1 gi−1)) ≥ 2.

2. Each admissible cycle in Pst has weight at least 2.

Theorem 2.2.6. [5, Lemma 1.7] If Pst admits a weakly aspherical weight func-

tion and if the natural map of G into Ĝ is an embedding, then P is aspherical.

Remark 2.2.7. In [15] Levin asserts that any relative presentation of the form

P= ⟨G, x|xg1xg2...xgn⟩ is injective. Therefore, in our case if Pst admits a weakly

aspherical weight function, then P is aspherical.

Example 4. Let P= ⟨G, x, s|xgxs−1, xsxhsh⟩. Figure 4.8 shows Pst, where the

edges α, β, γ, δ, ε, ζ and η (respectively) are labelled by 1, 1, h, 1, g, 1 and h

(respectively).

s−1

x−1

ζ

ε

γ
δ

x

s

0

α

1/2

1/2

1/2

1/2 1/2
η

β
1/2

Figure 2.6: Star graph of ⟨G, x, s|xgxs−1, xsxhsh⟩.
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Chapter 2: Method of Proof

Assign θ to Pst with θ(α) = θ(β) = θ(γ) = θ(δ) = θ(ζ) = θ(η) = 1
2
, and

θ(ε) = 0. Assume that g and h are non-trivial elements of G and g ̸= h. Now

let R1 = xgxs−1 and R2 = xsxhsh. Then 1 − θ(xgxs−1) + 1 − θ(xs−1xg)+

1 − θ(s−1xgx)= 1 − θ(ε) + 1 − θ(δ) + 1 − θ(α)=2. Also, 1 − θ(xsxhsh) +

1− θ(sxhshx) + 1− θ(xhshxs) + 1− θ(shxsxh)= 1− θ(β) + 1− θ(ζ) +1− θ(γ)

+1 − θ(η) =2. So Condition 1 of weakly aspherical function is satisfied. Now

any admissible cycle of length ≥ 4 not including the edge ε has weight at least 2.

However, the assumptions on g and h ensures Condition 2 for admissible cycles

of length less than 4 and for the cycles of length ≥ 4 that include the edge ε. Thus

θ is weakly aspherical and so P is aspherical.

2.2.3 Curvature test

Let P be any spherical picture over P . An angle function α on P is a real-valued

function on the set of corners of P. Associated to α is a curvature function c

defined on the discs(vertices) v of P by

c(v) = 2π −
∑
κ⊆ ∂v

α(κ)

and on faces(regions) ∆ of P by

c(∆) = 2π −
∑

κ⊆ ∂∆

(π − α(κ)),

where κ denotes a corner in the boundary of a vertex v or a region ∆. Observe

that c(∆) = (2 − n)π +
∑

κ⊆ ∂∆

α(κ), where n is the degree of the region ∆. Nor-

mally in our calculation of c(∆) we use the last formula.

Lemma 2.2.8. (Fundamental curvature formula) Let P be a connected, simply

connected spherical picture. Then c(P) =
∑
v

c(v) +
∑
∆

c(∆) = 4π, where the

sum is taken over all the vertices and regions of P.

17
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Proof. Let V , E and F (respectively) denote the number of vertices, edges and

faces of P (respectively). Observing that P has twice as many corners as edges,

then

c(P) =
∑
v

c(v) +
∑
∆

c(∆)

=
∑
v

(
2π −

∑
κ⊆ ∂v

α(κ)

)
+
∑
∆

(
2π −

∑
κ⊆ ∂∆

(
π − α(κ)

))
=

∑
v

2π −
∑
κ⊆ P

α(κ) +
∑
∆

2π −
∑
κ⊆ P

π +
∑
κ⊆ P

α(κ)

= 2πV + 2πF − π2E = 2π(V − E + F ) = 4π.

As a consequence of Lemma 2.2.8, for any angle function on any connected spher-

ical picture, some vertex or region has positive curvature. The curvature method

is used as follows. Assign to the corners of P an angle function in such a way

that the sum of the angles of the corners of any vertex v of P is exactly 2π, that

is c(v) = 0 for any vertex v of P. In this case we say that P is flat at v. Thus

there exists a region ∆ of P with positive curvature. Since ∆ is a region in P with

c(∆) > 0, the possibilities of the labels of the corners of ∆ can be calculated.

Now since l(∆) = 1 in G, we get some restrictions on elements of G.

2.2.4 Curvature distribution method

This method is due to Edjvet [10] and it is applicable after the curvature test.

Let P be a reduced spherical picture over P . As above, our method of associating

angles ensures that vertices have zero curvature and so
∑

c(∆) = 4π, where the

sum is taken over all the regions ∆ of P. The next step is to locate each ∆

satisfying c(∆) > 0 and distribute c(∆) to a neighbouring regions ∆̂ of ∆ which

have negative curvature. For such regions ∆̂ define c∗(∆̂) to equal c(∆̂) plus all

18
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the positive curvature ∆̂ receives during this process. Our strategy is to show that

the positive curvature can be sufficiently compensated by the negative curvature

by showing that c∗(∆̂) ≤ 0. Since the total curvature of P is at most
∑

c∗(∆̂),

this yields a contradiction which implies that P is aspherical.

2.2.5 Finiteness of element x

Lemma 2.2.9. Consider the relative presentation P=⟨G, x|xε1g1x
ε2g2 . . . x

εngn⟩,

where the relator is not a proper power. Assuming that P is an orientable present-

ation, if l = ε1+ε2+. . .+εn ̸= ±1 and x has finite order, then P is not aspherical.

Proof. Let Ĝ be the group defined by P . Now Theorem 1.1.3 says that if P is

aspherical then every finite subgroup of Ĝ is contained in a Ĝ-conjugate of G.

Let Gc denote the normal closure of G in Ĝ. Now observe that the factor group

Ĝ/Gc is cyclic generated by xGc of order l (if l=0 then it has infinite order).

Also observe that since l ̸= ±1, then clearly x /∈ Gc. Therefore the gp{x} is not

contained in any Ĝ-conjugate of G and so P is not aspherical.

Example 5. Let P= ⟨G, x|xmgxg−1⟩, where m ≥ 2 and gk = 1. Then x−m =

gxg−1 implies x = x(−m)k (see proof of Lemma 3.2.2). Thus x has finite order

and so P is not aspherical.

2.2.6 Change of presentations

As an example of this method, we consider the relative presentation

P1=⟨G, y|ayaycydycyfy⟩. Apply the following changes on P1 so that we get

Ṕ1: P1= ⟨G, y|ayaycydycyfy⟩= ⟨G, y, x|x(ay)−1, x2ca−1xda−1xca−1xfa−1x⟩=

⟨G, x|x3ca−1xda−1xca−1xfa−1⟩= ⟨G, x|x3gxhxgxk⟩= ⟨G, x, s|xgxs−1, x2shsk⟩=

Ṕ1, where g = ca−1, h = da−1 and k = fa−1. We aim to show that if Ṕ1 is

aspherical then so is P1.
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Chapter 2: Method of Proof

Assume that P is a reduced spherical picture over P1. Convert P to Ṕ by trans-

forming each vertex of P as shown in Figures 2.7 and 2.8 (the first step of this

transformation for negative vertices is given by Figure 2.8, where the rest of the

transformation can be done similarly as positive vertices). One can observe that

Ṕ is a reduced spherical picture over Ṕ1.

Remarks 2.2.10.

1. Let l(∆) = w1w2 . . . w2k be the label of a region ∆ in P, where w1 is a corner

of a positive disc in ∂∆. After applying the above process, ∆ transforms to

another region, say ∆́. Observe that l(∆́) = w1a
−1aw2w3a

−1aw4 . . . w2k and

so l(∆́) = 1.

2. Observe that P1 is the presentation we dealt with in Case 1 (see Subsec-

tion 4.2.1). Similarly the result holds for other presentations with similar

changes (such as Case 4(see Subsection 4.2.2 )).
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Figure 2.7: converting positive vertices of P to vertices of Ṕ.
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Figure 2.8: converting negative vertices of P.
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2.3 Notation

In this section we clarify some of the notation we have used throughout our work.

• If there are m − 1 consecutive regions of degree 2, then the m arcs in the

boundary of these regions constitute an m-bond (see Figure 2.9). We will

refer to 1-bond as single bond.

4−bond 2−bond

Figure 2.9: Examples of m-bond.

• kk−1-bond is a bond of the form given by Figure2.9. For simplicity the

labels of 11−1-bond will be omitted.

kk

Figure 2.10: kk−1-bond.

• The degree of a region ∆ is the number of corners included in ∆. A region

of degree n will be denoted by n-region.

• w-corner will denote a corner with label w.

• U-region, where U is a word in the alphabet {g±1, h±1, 1} is a region ∆ such

that ∆ has label U and we write l(∆) = U .

• l(∆) = w{ū, v̄} means l(∆) = wū or wv̄.

• c(n1, n2, . . . , nk) is the curvature of a region ∆ of degree k such that ni (

1 ≤ i ≤ k) are the degrees ( greater than 2) of the corners of ∆.
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Chapter 3

The Asphericity of a Family of

Relative presentations

3.1 Statement of Result

In this chapter we study the asphericity of the relative presentation P=

⟨G, x|xmgxh⟩ for m ≥ 5, where x /∈ G, g, h ∈ G and g, h ̸= 1 (For if g = 1

or h = 1, then it is done by Lemma 1.3.3). If m = 1, then the presentation

⟨G, x|xgxh⟩ =⟨G, t|t2g−1h⟩ is aspherical if and only if |g−1h| = ∞. For m = 2, 3

and 4 we list the results below.

Remark 3.1.1. Observe that xmgxh = 1 if and only if x−mh−1x−1g−1 = 1, so

replacing x−1 by x, g−1 by g and h−1 by h we can work modulo (g, h) ↔ (h−1, g−1).

For example, the result that we obtain for P when g = h2 and h5 = 1 is the same

when h = g2 and g5 = 1.

Theorem 3.1.2. [5, Theorem 3.1(special case)] The relative presentation P2

=⟨G, x|x2gxh⟩ is aspherical if and only if none of the following holds:
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Chapter 3: The Asphericity of a Family of Relative presentations

1. Let H = gp{g, h}, p > 2 and 0 ≤ k < p. Then one of the following holds:

(i) H = gp{g}, |g| = p and gh−1 = g−k;

(ii) H = gp{gh−1}, |gh−1| = p and h = (gh−1)k;

(iii) H = gp{h}, |h| = p and g−1 = hk;

where either k = 1; or p = k + 2; or p = 2k + 1; or p = 6 and k = 2, 3.

2. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

Before stating the next result we list the following exceptional cases.

(T1) g ∈ {h2, h3, h4} and |h| = 6.

(T2) |g| = 2, |h| = 4 and H = gp{g, h} ∼= C2 × C4.

(T3) |g| = 2, |h| = 5 and H = gp{g, h} ∼= C2 × C5
∼= C10.

Theorem 3.1.3. [4, Theorem 4]. Let P3 be the relative presentation P3

=⟨G, x|x3gxh⟩, where x /∈ G, g, h ∈ G and 2 ≤ |g|, |h| ≤ ∞ in H = gp{g, h}.

Suppose that none of the exceptional conditions (T1)-(T3) holds. Then P3 is

aspherical if and only if none of the following holds:

1. g = h±1 and g has finite order.

2. g = h2 and |h| ∈ {4, 5}.

3. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

4. |g| = 2, |h| = 3 and H = gp{g, h} ∼= C2 × C3
∼= C6.

Remark 3.1.4. By following the proof of Lemma 3.2.6(3), Lemma 8(3) in [4]

can be amended as follows: if |g|=2, |gh−1| ≥ 4, |h| ≥ 4 and g ̸= h2, then P3 is

aspherical even if [g, h] = 1; and so in the exceptional cases (T2) and (T3) above

P3 is also aspherical.
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Theorem 3.1.5. [12, Theorem 2] The relative presentation P4 =⟨G, x|x4gxh⟩

is aspherical unless one of the following holds:

1. g = h±1 and |g| < ∞.

2. g = h2 and |h| ∈ {4, 5}.

3. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

4. H = gp{g, h} is cyclic of order 6 generated by gh−1.

5. H = gp{g, h} is cyclic of order 6 generated by g or h.

In Cases 1, 2, 3 and 4, the presentation P4 is not aspherical.

We now state our main theorem in this chapter. We list the following as excep-

tional cases.

(E1) g = h2 and |h| ∈ {5, 6}.

(E2) g = h3 and |h| = 6.

(E3) g = h4 and |h| = 6.

Theorem 3.1.6. (Main Theorem) Let P be the relative presentation P

=⟨G, x|xmgxh⟩, where m ≥ 5, x /∈ G, g, h ∈ G and 2 ≤ |g|, |h| ≤ ∞ in

H = gp{g, h}. Suppose that none of the exceptional conditions (E1)-(E3) holds.

Then P is aspherical if and only if (modulo (g, h) ↔ (h−1, g−1)) none of the

following holds:

1. g = h±1 and g has finite order.

2. g = h2 and |h| = 4.

3. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.
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4. |g| = 2, |h| = 3, H = gp{g, h} ∼= C2 × C3.

The proof of Theorem 3.1.6 is given in Section 3.2. For the rest of this section

we give results for the relative presentation Q =⟨G, x|xngx−1h⟩, where x /∈ G,

g, h ∈ G. If n=1, Q is not aspherical if and only if |g| = |h| < ∞ in H = gp{g, h},

where Q defines an HNN- extension. For n=2, 3, 4, respectively, the asphericity

of Q has been determined modulo some open cases in [10], [2] and [9] respectively.

We list the results below.

Theorem 3.1.7. [10, Theorem 1.1(special case)] Consider the relative present-

ation Q =⟨G, x|x2gx−1h⟩, where x /∈ G, g, h ∈ G, 1 < |h| ≤ |g| < ∞ and

(|g|, |h|) /∈ {(8, 4), (9, 3)}. Then Q is aspherical if and only if none of the follow-

ing holds:

1. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

2. gh = 1.

3. g2h = 1 or gh2 = 1.

4. |h| = 2 and gh = hg.

5. |g| = 3, |h| = 2 and (gh)2(g−1h)2 = 1.

6. |g| = |h| = 3 and gh = hg.

7. |g| = 6 and h = g2.

8. |g| = |h| = 7 and either h = g2 or g = h2.

9. |g| = |h| = 9 and either h = g2 or g = h2.
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Remark 3.1.8. There is no loss in assuming |h| ≤ |g| in the above theorem;

and if |g| = ∞ then Q is aspherical [5]. (Indeed, xngx−1h = 1 if and only if

h−1xg−1x−n = 1 if and only if x−nh−1xg−1 = 1 so replacing x−1 by x it follows

xnhx−1g = 1, where |g| ≤ |h|).

In the next theorem, we will refer to the following as open cases.

(T) |g| = 2, |h| = 4 and [g, h] = 1.

(T1) g = h2 and |h| = 6.

(T2) g = h4 and |h| = 6.

(T3) g = h4 and |h| = 8.

Theorem 3.1.9. [2, Theorem 1.1, Theorem 1.2(special case)] Let Q

=⟨G, x|x3gx−1h⟩, where x /∈ G, g, h ∈ G\{1}. Let H = gp{g, h}. Then (modulo

(g, h) ↔ (h−1, g−1)) the following hold:

1. Assume H is non-cyclic and the open case (T) does not hold. Then Q is

aspherical if and only if none of the following holds:

(i) |g| = |h| = 2 and gh = hg.

(ii) 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

2. Suppose that H is cyclic and none of the open cases (T1)-(T3) is satisfied.

Then Q is aspherical if and only if either H is infinite or H is finite and

none of the following conditions holds:

(i) gh±1 = 1;

(ii) |g| = |h| = 2;

(iii) |g| = 2 and |h| = 3;

(iv) 4 ≤ |g| ≤ 5 and g2h = 1;

(v) |g| = 6 and g3h = 1.

Before stating the next result, we list the following as exceptional cases.
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(E1) g = h2 and 3 < |h| < ∞.

(E2) g = h−2 and 3 < |h| < ∞.

(E3) g2 = h and 3 < |g| = |h| < ∞.

(E4) g = h3 and |h| = 9.

Theorem 3.1.10. [9, Theorem 1.1, Theorem 1.2] Let Q =⟨G, x|xngx−1h⟩, where

n ≥ 4, x /∈ G, g, h ∈ G. The following are satisfied:

1. If g = h, then Q is aspherical if and only if |g| = ∞ in H = gp{g, h}.

2. Let g ̸= h and 3 ≤ |g| ≤ |h|. Assume that none of the exceptional cases

(E1)-(E4) holds. Then Q is aspherical if and only if none of the following

conditions holds:

(i) 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0;

(ii) g = h−1 and |g| < ∞.

Remark 3.1.11. There is no loss in assuming |g| ≤ |h| in the above theorem.

3.2 Proof of Theorem 3.1.6

Assume that m ≥ 5. We first state a series of lemmas followed by their proofs.

Recall that we assume g, h ∈ G\{1}.

Lemma 3.2.1. If P is not aspherical, then at least one of the following conditions

holds:

1. g = h±1.

2. g = h2 or h = g2.
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3. 2 ∈ {|g|, |h|}.

4. |gh−1| = 2 and 3 ∈ {|g|, |h|}.

Lemma 3.2.2. If g = h±1, then P is aspherical if and only if g has infinite order.

Lemma 3.2.3. Let g = h2. If |h| = 4, then P is not aspherical, while if |h| > 6,

then P is aspherical.

Assume for Lemmas 3.2.4 and 3.2.5 that g /∈ {h±1, h2}.

Lemma 3.2.4. If 1
|g| +

1
|gh−1| +

1
|h| > 1, then P is not aspherical.

Lemma 3.2.5. If |gh−1| is infinite, then P is aspherical.

Lemma 3.2.6. Suppose that |g| = 2.

1. If |gh−1| = 2 and |h| = ∞, then P is aspherical.

2. If |gh−1| = 3, |h| ≥ 6 and P is not aspherical, then g = h3, in particular

|h| = 6.

3. If |gh−1| ≥ 4, |h| ≥ 4 and g ̸= h2, then P is aspherical.

4. If |gh−1| ≥ 6 and |h| = 3, then P is not aspherical if and only if [g, h] = 1.

Lemma 3.2.7. If |g| = 3, |gh−1| = 2, |h| ≥ 6 and P is not aspherical, then

g = h4 and |h| = 6.

The proofs of the above lemmas are given in the coming sections. Here we assume

that they are true and prove Theorem 3.1.6.

Proof of Theorem 3.1.6.

The ‘only if’ direction of Theorem 3.1.6 follows from Lemmas 3.2.2, 3.2.3, 3.2.4
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and 3.2.6(4). For the rest of the proof, we assume that none of the Conditions

(1)-(4) of Theorem 3.1.6 is satisfied. We show that either P is aspherical or ex-

ceptional.

If none of the conditions of Lemma 3.2.1 holds, then P is aspherical. Assume that

Condition 1 of Lemma 3.2.1 holds. Then |g| = ∞ (since Condition 1 of Theorem

3.1.6 does not hold), and so P is aspherical by Lemma 3.2.2. So assume from

now on that g ̸= h±1.

If Condition 2 of Lemma 3.2.1 holds, then it can be assumed without any loss

that g = h2. Then |h| ≥ 5 (by the negation of Condition 2 of Theorem 3.1.6).

If |h| ∈ {5, 6}, then P is exceptional of type (E1); and if |h| ≥ 7, then P is

aspherical by Lemma 3.2.3. So assume from now on that g ̸= h2.

If Condition 3 of Lemma 3.2.1 holds, then it can be assumed without any loss

that |g| = 2. Since g ̸= h, |gh−1| ≥ 2. If |gh−1| = 2, then |h| = ∞ (Condition

3 of Theorem 3.1.6) and it follows that P is aspherical by Lemma 3.2.6(1). If

|gh−1| = 3, then |h| ≥ 6 (Condition 3 of Theorem 3.1.6). By Lemma 3.2.6(2),

P is aspherical if g ̸= h3, while if g = h3 then P is exceptional of type (E2).

If |gh−1| = 4 or 5, then |h| ≥ 4 (Condition 3 of Theorem 3.1.6), and so P is

aspherical by Lemma 3.2.6(3). Now, suppose that |gh−1| ≥ 6. By Lemma 3.2.5,

if |gh−1| = ∞ then P is aspherical, so assume otherwise. Then |h| ≥ 3 (Con-

dition 3 of Theorem 3.1.6). If |h| = 3 then [g, h] ̸= 1, otherwise Condition 4 of

Theorem 3.1.6 holds and so P is aspherical by Lemma 3.2.6(4). If |h| ≥ 4, then

P is aspherical by Lemma 3.2.6(3).

Finally, if Condition 4 of Lemma 3.2.1 is satisfied then it can be assumed without

loss that |g| = 3 and |gh−1| = 2. Hence, |h| ≥ 6 (else, Condition 3 of Theorem
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3.1.6 applies). If g = h4 and so h6 = 1 then P is exceptional of type (E3);

otherwise P is aspherical by Lemma 3.2.7.

3.3 Construction of pictures and defined angle

functions

For this section we assume g ̸= h±1. Let P be a reduced spherical picture over

P=⟨G, x|xmgxh⟩. Then each vertex(disc) in P has one of the forms given by

Figure 3.1(i) and (ii); and the the star graph Pst of P is given by Figure 3.1(iii).

Note that when drawing figures the edge arrows and labels shown in Figure 3.1

will often be omitted.

(i)

1

1

h

g

+

_
h

g

(ii)

_
_

_
1

1
_

m  arcs m  arcs

(iii)

g

h

1

1

xx −1

m−1 edges

x

x

x x

x

x

Figure 3.1: + disc , - disc and Pst.

Given that g ̸= h±1 there are ( up to inversion) only two types of (m−1)-bonds in

a reduced picture P (see Figure 3.2). For simplicity, in our figures (m− 1)-bonds

will be drawn as bold 2-bonds (see Figure 3.2). Note that there are no m-bonds

or (m + 1)-bonds in P, indeed a vertex of degree 2 can only occur in a reduced

picture if g = h or g = 1 or h = 1. Also, for simplicity, the vertex of degree 3 of

the form shown in Figure 3.3 (i) will be drawn as shown in Figure 3.3 (ii), where

m1 ≥ 2, m2 ≥ 2 and m1 +m2 = m.
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1)

2)

h

g

1

g

h

1 _
g

h
_

g
_

h
_

_
1

1
_

m−2 regions

m−2 regions

Figure 3.2: (m− 1)-bond.

m  −1  regions1

m  −1  regions2

g

h 1

(ii)(i)

g

h 1

m  −bond1

m  −bond2

Figure 3.3: A vertex of degree 3.

Remarks 3.3.1.

1. Each arc connects a + disc to a - disc, and so each region has even degree.

2. A word w obtained from reading the labels on the edges of a cyclically reduced

cycle in Pst does not contain (up to cyclic permutation and inversion) gg−1

or hh−1 although it can contain 11−1 provided different edges in Pst are

used. We will call such words w cyclically reduced.
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3. Each region in a reduced spherical picture P over P supports a cyclically

reduced word in {g, h, 1}.

There are (up to inversion) three types of vertices of degree 3 and these are shown

in Figure 3.4.

g
_

∆ 8

∆ 7∆ 1

1

1 g

Type 1

∆ ∆ ∆ ∆

∆

∆
2 3 5

1

g

h

Type 2

6

4

9

g

1

Type 3

h
h

h
_ _

_

_

1

1

_
1

Figure 3.4: Types of vertices of degree 3.

Remark 3.3.2. Up to inversion, each region with a vertex of degree 3 included

in it’s boundary could be one of ∆i, i ∈ {1, ..., 9}. For example, if ∆ = ∆2, then

∆ is shown in Figure 3.5.

1

1

h

g

∆

h
_

g
_

_

Figure 3.5: ∆ = ∆2.

For the proofs, we define the following angle functions on the vertices v of P. The
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angle function α is defined as follows. Each corner within a 2-bond has angle

zero, while each of the other corners has angle 2π
d(v)

. We will refer to α as the

standard angle function.

The angle function α1 is defined as follows. Again, corners within 2-bonds have

angle zero. Each corner that is adjacent to an (m − 1)-bond, but not within a

2-bond has angle 3π
4

. The remaining corner in a vertex with an (m− 1)-bond has

angle π
2

(see Figure 3.6). For vertices of degree 3 of Type 3, α1 is given by Figure

3.6. If d(v) ≥ 4, then each corner (not in a 2-bond) in v has angle 2π
d(v)

.

g
_

< π/2

< π/2

1

Type 1

h

g3π/4 3π/41

π/2

1

Type 2

1

g

h

π/2

Type 3

gh

1

3π/4 3π/4

3π/4
3π/4

π/2

h
_ _

_

_

_

1

1

Figure 3.6: Angle function α1 for vertices of degree 3.

Define an angle function α2 on P as follows. Corners within 2-bonds have angle

zero. In vertices of degree 3, corners labelled by h±1 have angle π, each of the

other two corners has angle π
2

(see Figure 3.7). Corners (not within 2-bonds) in

vertices of degree > 3 have angle 2π
d(v)

.
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g
_

1 1

Type 1 Type 2 Type 3

π/2

g
h

1 g

h

π/2 π/2

π

1hπ

π/2

π/2
g

1

π

π/2

h
_ _

_
1

_
1

_

Figure 3.7: Angle function α2 for vertices of degree 3.

Finally, the angle function α3 on P is given as follows. Corners within 2-bonds

have angle zero. For vertices of degree 3, corners labelled by 1±1 have angle π,

each of the other two corners has angle π
2

(see Figure 3.8). Corners (not in a

2-bond) in vertices of degree > 3 have angle 2π
d(v)

.

g
_

< π/2

< π/2

< π/2

< π/2

1

Type 1

h

g1

π/2

1

Type 2

1

g

h

Type 3

gh

1

π/2 π/2

π π/2 π/2 π
π/2

π

h
_ _ _

1
_

_
1

Figure 3.8: Angle function α3 for vertices of degree 3.

Remarks 3.3.3.

1. The corners in each 2-bond have angle 0 in each of the above angle functions.

It follows that the curvature of regions of degree 2 is 0, and so we can treat

each k-bond as a single bond.
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2. By assigning the angle function α1 to the corners of P, the following are

satisfied:

(i) Since (2− 8)π + 8.3π
4
= 0, positive regions can only have degree 4 or 6.

(ii) Both corners adjacent to the (m − 1)-bond in a boundary of a region

have angle 3π
4
; while the two corners adjacent to the m1-bond or m2-bond

in a boundary of a region cannot both have angle 3π
4
(see Figure 3.6).

3. By assigning the angle function α2 to the corners of P, the following are

satisfied:

(i) In any region ∆ of P, there are no consecutive corners with angle π, else

P is not reduced. Hence, c(∆) ≤ (2 − n)π + n
2
.π + n

2
.π
2
= π(8−n

4
), and so

positively curved regions can only be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region, then it has at least one corner labelled by

h±1 with angle π (otherwise c(∆) ≤ −2π + 4.π
2
= 0 ).

(iii) If ∆ is a positive 6-region, then it contains at least three h±1- corners

each with angle π (else c(∆) ≤ −4π + 2π + 4.π
2
= 0 ).

4. By assigning the angle function α3 to the corners of P, the following are

satisfied:

(i) There are no consecutive corners with angle π in the boundary of a region

∆ of P (otherwise P is not reduced). Thus, c(∆) ≤ (2− n)π + n
2
.π + n

2
.π
2
=

π(8−n
4
), and so positive regions can only be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region then it contains at least one corner labelled

by 1±1 with angle π (otherwise c(∆) ≤ −2π + 4.π
2
= 0 ).

(iii) If ∆ is a positive 6-region then it contains three occurrences of 1±1-

corners each with angle π (else c(∆) ≤ −4π + 2π + 4.π
2
= 0 ).
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3.4 Proof of Lemma 3.2.1.

Let P be a reduced spherical picture over P . It can be assumed without any loss

of generality (A) that the number of regions of degree 4 cannot be decreased by

bridge moves. Suppose that none of the Conditions 1, 2 or 3 holds. That is,

g ̸= h±1, g ̸= h2, h ̸= g2 and both g and h have order at least 3.

First assign the standard angle function α to the vertices of P. By the curvature

formula, there is a positively curved region ∆ in P. Also, the maximum curvature

of any n-region in P is π
(
6−n
3

)
, and hence c(∆) > 0 only if n = 4.

A positively curved 4-region ∆ has at least one vertex of degree 3. If ∆ ∈ {∆i :

1 ≤ i ≤ 8} which are shown in Figure 3.4, then at least one corner of ∆ is not

labelled by 1±1. By considering all cyclically reduced words of length at most 4

in the alphabet {g±1, h±1} (which are compatible with our hypotheses on g and

h), we must have l(∆) = (gh−1)±2. If ∆= ∆9 then l(∆) gives a contradiction or

∆ is the positive 4-region shown in Figure 3.9. Since m1 > B (the ∗-corner is

labelled by 1−1 while the •-corner is labelled by g) a sequence of bridge moves

transforms ∆ into a region of degree > 4 without creating a new region of degree

4. This contradicts assumption (A) and so by assigning α we obtain |gh−1| = 2.

m  −bond
1

1

1 1

11

∆

h

1

2
m  −bond

B −bond  

g *

Figure 3.9: ∆= ∆9 and l(∆) = 11−111−1.
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Now apply the angle function α1. By Remark 3.3.3.(2)(i), positively curved

regions can only be 4-regions or 6-regions. A positively curved 4-region ∆

has at least one corner with angle 3π
4

in it’s boundary, and so ∆ = ∆i for

i ∈ {2, 3, 5, 6, 7, 8}. This implies that ∆ has at least one corner not labelled

by 1±1. Also, it implies that l(∆) ̸= (gh−1)±2. All other choices contradict our

assumptions on g and h and so there are no positive 4-regions. It follows that ∆

is a 6-region which contains at least five corners with angle 3π
4

in it’s boundary

(else, c(∆) ≤ (2 − 6)π + 4.3π
4
+ 2.π

2
= 0). By Remark 3.3.3(2)(ii) ∆ contains

at least two (m− 1)-bonds in it’s boundary and a third bond which is either an

(m− 1)-bond, an m1-bond or m2-bond. If the (m− 1)-bonds in the boundary of

∆ are inwardly oriented (that is, towards ∆), then l(∆) = (g1−1)±3, while if the

(m−1)-bonds are oriented outward (that is, away from ∆), then l(∆) = (h1−1)±3.

It follows that |gh−1| = 2 and 3 ∈ {|g|, |h|} which is Condition 4, as required.

3.5 Proof of Lemma 3.2.2.

If g = h then xmgxh = 1 if and only if xm−1(xg)2 = 1. By Lemma 1.3.2, P is

aspherical if and only if |g| = ∞.

If g = h−1 and g has infinite order, then Lemma 1.3.1 applies to show that P is

aspherical. So, we may assume that g = h−1 and gk = 1.

The relator xmgxh = 1 gives that xmgxg−1 = 1 ⇒ x−m = gxg−1. Therefore

x = gkxg−k = gk−1gxg−1g−(k−1) = gk−1x−mg−(k−1) = gk−2gx−mg−1g−(k−2)=

gk−2x(−m)2g−(k−2)= . . . = x(−m)k ,

and so x has finite order. Therefore, by Theorem 1.1.3, P is not aspherical.
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3.6 Proof of Lemma 3.2.3.

Let g = h2. For |h| = 4 there is the sphere shown in Figure 3.10. On the other

hand if |h| > 6, then the ordinary presentation ⟨x, h|xmh2xh = 1 = hr⟩ is a

C(4)-T(4) presentation, hence P is aspherical (for more details see [4]).
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Figure 3.10: g = h2 and |h| = 4.

3.7 Proof of Lemma 3.2.4.

We aim to construct reduced spherical pictures over P under the assumption
1
|g| +

1
|gh−1| +

1
|h| > 1. Without loss of generality, we may assume that 2 ≤ |g| ≤ |h|

and 2 ≤ |gh−1|. Thus we have the following cases, where n ≥ 2:

(|g|, |gh−1|, |h|) ∈ { (2, 2, n), (2, n, 2), (2, 3, 3), (2, 3, 4), (2, 3, 5), (2, 4, 3), (2,
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5, 3), (3, 2, 3), (3, 2, 4), (3, 2, 5)}.

The desired spherical pictures are constructed from platonic solids (except for the

cases |g| = 2 and {|gh−1|, |h|} = {2, n}, where the spheres are given by Figure

3.11).
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Figure 3.11: |g| = 2 and {|gh−1|, |h|} = {2, n}).

As an example, we construct the sphere illustrated in Figure 3.12 for case

(|g|, |gh−1|, |h|) =(2, 3, 4) as follows. Start with a regular tessellation T of the

sphere where each vertex has degree 3 and each face has degree 4 (i.e T is a

cube). Surround each vertex of T with a (gh−1)3- region in such a way that each

face of T meeting that vertex contains two discs of the surrounding (gh−1)3-region

and labelled as shown in Figure 3.13. Now join the discs v1 and v2 by an (m−1)-

bond. Do the same for the discs v3 and v4. This creates a g−2-region along the

edge e. Continue in a similar way so that each edge of T supports a g−2-region.

Observe that this creates an h4-region within each face of T . Similarly, we con-

struct spheres for each of the remaining possibilities when |g| = 2.
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If |g| = 3, we construct a sphere (see Figure 3.14) for the case (|g|, |gh−1|, |h|)

=(3, 2, 4). In a similar way we construct spheres for the remaining 2 cases (|h|=

3 or 5). Each vertex of the tessellation has degree 3 and each face has degree

4. Surround each vertex of the tessellation with a g−3-region such that the three

(m−1)-bonds does not cross the edges of the tessellation. Within each face of the

tessellation, join loose ends in such a way that each face contains an h−4-region.

This creates a (gh−1)−2-region along each edge of the tessellation.
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Figure 3.12:
(
|g|, |gh−1|, |h|

)
= (2, 3, 4).
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Figure 3.13: Using the tessellation of cube to construct a sphere for Case(
|g|, |gh−1|, |h|

)
= (2, 3, 4).
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Figure 3.14:
(
|g|, |gh−1|, |h|

)
= (3, 2, 4).

3.8 Proof of Lemma 3.2.5.

Suppose that |gh−1| is infinite. If we have a relation of the form (gh−1)kg = 1

or h−1(gh−1)k = 1 in G, then we get that H = gp{g, h} is an infinite cyclic gen-

erated by gh−1, and so P is aspherical by Lemma 1.3.1. Indeed, if for example

(gh−1)kg = 1, then g = (gh−1)−k and h = (gh−1)−k−1, which implies that H is

an infinite cyclic generated by gh−1. Therefore, we may assume that there are no

relations of the form (gh−1)kg = 1 or h−1(gh−1)k = 1.
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Define the following weight function θ on Pst (see Figure 3.1(iii)): θ(eg)= 0=

θ(eh) and θ(si) = 1 for (1 ≤ i ≤ m − 1), where eg, eh, si (1 ≤ i ≤ m − 1) are

the edges of Pst labelled g, h, 1 (respectively). Clearly Condition 1 of weakly

aspherical weight function is satisfied. The assumptions on g and h imply that

each admissible cycle in Pst must involve at least 2 edges labelled by the identity,

and so has weight at least 2. Therefore θ is a weakly aspherical weight function

which proves that P is aspherical (Remark 2.2.7).

3.9 Proof of Lemma 3.2.6(1): Case(2, 2,∞)

In this case, |g| = 2, |gh−1| = 2 and |h| = ∞. Suppose by way of contradiction

that there is a (non-trivial reduced connected) spherical picture P over P .

Assign the angle function α2 to the corners of P. By Remark 3.3.3 (3)(i), positive

regions can only be 4-regions or 6-regions. By Remark 3.3.3 (3)(iii), positive

6-regions involve three occurrences of h±1-corners and each possible label yields

a contradiction. For instance, if g = h3, then h6 = 1, a contradiction. However,

by Remark 3.3.3 (3)(ii), a positive 4-region must contain h±1 forcing the label

(gh−1)±2. For instance, if g = h2, then h4 = 1, a contradiction. Hence, there are

(up to inversion) two types of positive regions as shown in Figure 3.15, where the

corners of angle π are given.
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Figure 3.15: Positively curved regions in Case(2, 2,∞).

Remark 3.9.1. Note that the maximum possible curvature is always indicated.

We adopt the notation of [4] and define the following distribution scheme (dis-

tributing positive curvature from ∆ to ∆̂) which is given in Figure 3.16:

Γ(∆, ∆̂) =



c(∆) if 0 < c(∆) ≤ π
2

and ∆ is separated from ∆̂ by a single

bond S that is oriented from ∆ to ∆̂ such that S is

adjacent to an h±1-corner in ∆ with angle π

c(∆)/2 if π
2
< c(∆) and ∆ is separated from ∆̂ by a single

bond that is oriented from ∆ to ∆̂

0 otherwise
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Figure 3.16: Distribution scheme in Case(2, 2,∞).

Let Γ(∆, ∆̂) > 0, then as shown in Figure 3.16, (h1−1h)±1 is a sublabel of ∆̂

and so d(∆̂) > 4. Let r be the number of corners of angle π in ∆̂. By Re-

mark 3.3.3(3)(i), r ≤ n
2
, where n = d(∆̂). Let c be the curvature function

associated to the angle function α2 on P. Also let ∆̂ be a region such that

c∗(∆̂) > c(∆̂) and c∗(∆̂) > 0, where c∗ is the distributed curvature function. Set

Γ2= Γ2(∆̂) = |{∆ : Γ(∆, ∆̂) = π
2
}| ≤ n

2
(since ∆̂ receives π

2
only across edges that

are oriented inwards - see Figure 3.16).

Remark 3.9.2. Assuming that both Γ2 and r equals n
2
, c∗(∆̂) ≤ (2−n)π+ n

2
.π+

n
2
.π
2
+ n

2
.π
2
= 2π. So, if we show that Γ2 and r are decreased in such a way that

c∗(∆̂) is decreased by 2π, then c∗(∆̂) ≤ 0.

If Γ2 =
n
2

or n
2
− 1, then the labelling of ∆̂ implies that either h

n
2 = 1 or g = h

n
2 ,

contradicting |h| = ∞. Thus, we may assume that ∆̂ receives at most (n
2
− 2)π

2

and so c∗(∆̂) ≤ (2−n)π+ rπ+(n− r)π
2
+(n

2
− 2)π

2
=π

(
2−n+ r+ n

2
− r

2
+ n

2
− 1

)
=π(1− n

4
+ r

2
). Therefore, c∗(∆̂) > 0 gives that 1− n

4
+ r

2
> 0 which implies that

r > n
2
− 2. This means that r = n

2
− 1 or r = n

2
. If r = n

2
− 1, then Γ2 = n

2
− 2

(else, c∗(∆̂) < 0 ), while if r = n
2
, then Γ2 =

n
2
− 2 or Γ2 =

n
2
− 3.
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First assume that r = n
2
− 1. The fact that Γ2 = n

2
− 2 means that ∆̂ does not

receive 2.π
2

either across consecutive or across non-consecutive inwardly oriented

edges in ∂∆̂ (see Figure 3.17). Form (i) in Figure 3.17 shows the first case, which

yields that l(∆̂) = h
n
2
−1w1w2w3, where w1, w3 ∈ {1−1, g−1} and w2 ∈ {1, g, h}.

If at most one of w1, w2 or w2 is g−1, then l(∆̂) forces |h| to be finite, a contra-

diction. Hence, l(∆̂) has the form g−1h
n
2
−1g−1w2. This implies that h

n
2
−1 = 1

or h
n
2
−2 = 1, a contradiction. In the second case, there are two possibilities for

the arrangement of corner labels in ∆̂. One possibility is Form (ii) in Figure

3.17, the other is Form (iii) which yields that P is not reduced. Form (ii) gives

that l(∆̂) = z1h
α1z2h

α2 , where z1, z2 ∈ {1−1, g−1}. If z1 = 1−1 or z2 = 1−1 then

|h| < ∞, a contradiction, so assume otherwise. But if z1 = g−1 in Figure 3.17

Form (ii) then either the h-corner in the vertex v1 has angle ≤ π
2
, or ∆1 contains

an m-bond in it’s boundary and so it cannot be either of the positive regions

shown in Figure 3.15 (i.e ∆̂ does not receive π
2

from ∆1). Either way, c∗(∆̂) will

be decreased by π
2
. Similarly, if z2 = g−1, then c∗(∆̂) will be also decreased by π

2

and so c∗(∆̂) ≤ 0.

Now let r = n
2
. Since g2=(gh−1)2=1, hg = gh−1 and h−1g = gh it follows that

any word in g and h can be rewritten in the form gα1hα2 . If there are no occupan-

cies of g±1 in l(∆̂) then h
n
2 = 1. If g±1 appears an odd number of times in l(∆̂)

then |h| < ∞. Also, if g±1 occurs at least four times in l(∆̂), then Γ2 ≤ n
2
− 4

and so c∗(∆̂) ≤ 0. Therefore g±1 appears exactly twice in l(∆̂). Since r = n
2
,

each of these two g−1-corners is adjacent to two h-corners in ∂∆̂. Thus either

l(∆̂)=(g−1h)2(1−1h)s (s ≥ 1) which implies |h| < ∞, a contradiction, or arguing

as in the case z1 = z2 = g−1 implies that c∗(∆̂) ≤ 0 for this case also.
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Figure 3.17: r = n
2 − 1.

3.10 Proof of Lemma 3.2.6(2): Case(2, 3̄, 6̄)

Here we assume that |g| = 2, |gh−1| ≥ 3 and |h| ≥ 6. Suppose that P

=⟨G, x|xmgxh⟩ is not aspherical. We show that H = gp{g, h} is cyclic of or-

der 6 generated by h and g = h3. Let P be a reduced spherical picture over P to

which we assign the angle function α2. All possible labels for a positive 4-region
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give a contradiction since, by Remark 3.3.3 (3)(ii), each must involve h±1. For

positive 6-regions, by Remark 3.3.3 (3)(iii), there are three occurrences of h±1

and the only possible labels yield (gh−1)±3 = 1 or g = h3 (and we are done).

For example, if h(g−1h)2 = 1, then g = (gh−1)3 and h = (gh−1)2 implies that

h3 = 1, a contradiction. Therefore there is (up to inversion) only one positive

region which is shown in Figure 3.18 and so |gh−1| = 3.
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Figure 3.18: Positively curved region in Case(2, 3̄, 6̄).

Apply the following distribution scheme:

Γ(∆, ∆̂) =


c(∆)/3 if c(∆) > 0 and ∆ is separated from ∆̂ by a single

bond that is oriented from ∆ to ∆̂

0 otherwise
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Figure 3.19: Distribution scheme in Case(2, 3̄, 6̄).

As shown in Figure 3.19, if Γ(∆, ∆̂) > 0, then (h1−1h)±1 is a sublabel of ∆̂.

If the distributed curvature function is denoted by c∗, then there is a region

∆̂ of P such that c∗(∆̂) > c(∆̂) and c∗(∆̂) > 0. For a fixed region ∆̂ set

Γ6=Γ6(∆̂) = |{∆ : Γ(∆, ∆̂) = π
6
}|.

Remarks 3.10.1.

1. Since ∆̂ receives π
6

only across edges that are oriented towards ∆̂, Γ6 ≤ n
2
.

2. For each π
6

that ∆̂ receives, there is an (m− 1)-bond in the boundary of ∆̂

which gives (h1−1)±1 as a sublabel of ∆̂.

3. l(∆̂) = h1−1hw and so d(∆̂) > 4.

Observe that c∗(∆̂) ≤ (2− n)π+ n
2
.π+ n

2
.π
2
+ n

2
.π
6
. The fact that c∗(∆̂) > 0 gives

that π
(
2− n+ n

2
+ n

4
+ n

12

)
> 0, which implies that n < 12.

Let ∆̂ = (n, r) denote a region of degree n with Γ6 = r. We need to check c∗(∆̂)

for ∆̂= (n, r)= (10, 5), (10, 4), (10, 3), (10, 2), (10, 1), (8, 4), (8, 3), (8, 2), (8, 1),
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(6, 3), (6, 2) and (6, 1). The region (n, r) ̸= (10, 5), (8, 4) or (6, 3) else it gives

h±5 = 1, h±4 = 1 or h±3 = 1 (respectively) contradicting |h| ≥ 6.

All possible labels for ∆̂=(n, r)= (10, 4), (8, 3) or (6, 2) yields a contradiction or

implies that g = h3. For example, ∆̂= (8, 3) gives either h±4 = 1 or g = h4:

the first contradicts that |h| ≥ 6; the second g = h4 ⇒ h8 = 1. Also, it gives

that gh−1 = h3 ⇒ h9 = 1. But this together with h8 = 1 implies that h = 1, a

contradiction. For ∆̂= (10, r ≤ 3), c∗(∆̂) ≤ (2− 10)π + 5π + 5.π
2
+ 3.π

6
= 0.

Now since (2− 8)π + 3π + 5.π
2
+ 2.π

6
=−π

6
< 0, c∗(∆̂) > 0 for ∆̂= (8, r ≤ 2) only

if it contains 4 corners with angle π (up to inversion ∆̂ is shown in Figure 3.20),

and each possible l(∆̂) yields a contradiction. For example, h3g−1hg−1 = 1 ⇒

(gh−1)2h−2 = 1
(gh−1)3=1
======⇒ hg−1h−2 = 1 ⇒ g = h−1, a contradiction.
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Figure 3.20: ∆̂= (8, r ≤ 2) with c∗(∆̂) > 0.

This leaves (n, r) = (6, 1). Observe that (2 − 6)π + π + 5.π
2
+ π

6
= −π

3
< 0,

and so it remains to check c∗(∆̂) for ∆̂= (6, 1) with at least 2 corners with angle

π. Up to inversion, ∆̂ has one of the forms shown in Figure 3.21 where the two

corners with angle π are in bold. It follows that the label of ∆̂ either gives a

contradiction or g = h3. For example, Form (i) gives g = h3, and Form (ii) gives

h2g−1hg−1 = 1 ⇒ (gh−1)2h−1 = 1
(gh−1)3=1
======⇒ g = 1, a contradiction.
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Figure 3.21: ∆̂= (6, 1) with c∗(∆̂) > 0.

3.11 Proof of Lemma 3.2.6(3): Case(2, 4̄, 4̄)

Here we assume that |g| = 2, |gh−1| ≥ 4 and |h| ≥ 4. Suppose there is a

non-trivial reduced connected spherical picture P over P , we get a contradiction.

Assign the angle function α2 to the corners of P. By Remark 3.3.3(3)(i) positive

region ∆̂ can only have degree 4 or 6. It follows from Remarks 3.3.3(3)(ii) and

(iii) that l(∆̂) yields a contradiction. For example, if g = h3, then (gh−1)3 = 1,

which contradicts that |gh−1| ≥ 4. Therefore, in this case P is aspherical.

3.12 Proof of Lemma 3.2.6(4): Case(2, 6̄, 3)

In this case |g| = 2, |gh−1| ≥ 6 and |h| = 3. If [g, h] = 1 (which implies that

|gh−1| = 6 as will shown later), then P is not aspherical. This result has been

obtained by Bogley and William [6] as follows: consider the group K defined by

the presentation K= ⟨b, x|xs−1b3xb2, b6⟩ for s ≥ 2. The following are satisfied:

1. (i)(xsb2)2 = 1.

(ii) bxsb−1 = x−sbxs.

52



Chapter 3: The Asphericity of a Family of Relative presentations

2. The presentation K is not aspherical.

Proof.

1. (i) xs−1b3xb2 = 1 ⇒ xs−1 = b−2x−1b−3 ⇒ xs = b−2x−1b−3x ⇒ b2xs =

x−1b−3x ⇒ (b2xs)2 = (x−1b−3x)2=1.

(ii) xs−1 = b−2x−1b−3 ⇒ xs = xb−2x−1b−3 ⇒ xsb3 = xb−2x−1. This implies

(xsb3)3 = 1.

Now by 1)(i) xsb2 = b−2x−s, and so (xsb3)3 = 1 ⇒ xsb2bxsb2bxsb3 = 1

⇒ b−2x−sb−1x−sbxsb3 = 1

⇒ x−sbxs = (bx−sb−1)−1 = bxsb−1.

2. The abelianization Kab= ⟨b, x|b6, xsb−1⟩= ⟨x|x6s⟩. The element b has order

6 in Kab, so b has order 6 in K. By 1)(ii) bxsb−1 = x−sbxs and so xs and b

are conjugates in K by the element xsb. Thus x has order 6s. The element

x can be conjugate to an element of ⟨b|b6⟩ only if s = ±1. However s ≥ 2

and so K is not aspherical by Theorem 1.1.3.

In our case, if [g, h] = 1, then (gh−1)6 = g6h−6 = 1. This gives that

|gh−1| ≤ 6, together with the assumption |gh−1| ≥ 6 we get |gh−1| =

6. Now (gh−1)3= g3h−3 = g. Similarly, h = (gh−1)2. Thus, Ĝ =

⟨G, x|xmgxh⟩= ⟨G, x|xm(gh−1)3x(gh−1)2, (gh−1)6⟩. Thus by the above argument

P =⟨G, x|xmgxh⟩ is not aspherical when [g, h] = 1. So it can be assumed that

[g, h] ̸= 1. We prove that P =⟨G, x|xmgxh⟩ is aspherical. To this end let P be a

non-trivial reduced spherical picture over P with the assumption (A) stated in

the proof of Lemma 3.2.1 and assign the angle function α3. By Remark 3.3.3(4)(i)

the degree of a positive region ∆ can only be 4 or 6. If ∆ is a positive 4-region

with an h±1-corner, then l(∆) yields a contradiction, so assume otherwise. If now

∆ has a g±1-corner then l(∆) yields the 4-regions shown in Figure 3.22. This
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leaves l(∆)=11−111−1 which contradicts (A) as in the proof of Lemma 3.2.1.

If ∆ is a 6-region, then either there is a contradiction or l(∆) ∈ {1−111−111−11,

1−111−1g1−1g, 1−1h1−1h1−1h}. The first two cannot be positive, while the last

gives the positive 6-region shown in Figure 3.22.
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Figure 3.22: Positively curved regions in Case(2, 6̄, 3).

Define the following distribution scheme which is given in Figure 3.23:
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Γ(∆, ∆̂) =



c(∆)/2 if c(∆) = π and ∆ is separated from ∆̂ by a single

bond that is oriented from ∆ to ∆̂

c(∆) if 0 < c(∆) ≤ π
2
, ∆ is separated from ∆̂ by a single

bond S that is oriented from ∆ to ∆̂ and S is

adjacent to a 1-corner in ∆ with angle π

π/6 if c(∆) = π
2

and ∆ is separated from ∆̂ by a single

bond that is oriented from ∆̂ to ∆

0 otherwise
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Figure 3.23: Distribution scheme in Case(2, 6̄, 3).

Let r be the number of corners of angle π in ∆. Then r ≤ n
2

(by Remark

3.3.3(4)(i)). Let s denote the number of pairs (π
2
, π
6
) or (π

6
, π
2
) such that ∆̂ re-
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ceives π
2

and π
6

across adjacent edges in ∂∆̂, with the understanding that each π
2

and π
6

that ∆̂ receives appears at most once in these pairs. Denote the remaining

number of π
2

that ∆̂ receives by s1. Also, let s2 denote the remaining number of
π
6

that ∆̂ receives. As an example to show how to get the values s, s1 and s2 see

Figure 3.24.

π/2

π/6

π/2

π/2

π/2π/2

π/6

π/6

π/6

Figure 3.24: n = 16, s = 2, s1 = 3, s2 = 2.

Remarks 3.12.1.

1. As shown in Figure 3.23, l(∆̂) ∈ {hg−1w, h−1gw} ⇒ d(∆̂) > 6 for otherwise

l(∆̂) yields a contradiction.

2. For each increase of s, s1 or s2, the value of r decreases by 1 (r ≤ n
2
− (s+

s1 + s2)).

3. Note that s ≤ n
2

and if s2 increases by 1, then s decreases by 1 (also s2 ≤ n
2
)

and so s+ s2 ≤ n
2
.

For a fixed region ∆̂ set Γ2(∆̂) = |{∆ : Γ(∆, ∆̂) = π
2
}| and Γ6(∆̂) = |{∆ :

Γ(∆, ∆̂) = π
6
}|. Let ∆̂ be a region such that c∗(∆̂) > 0. Then c∗(∆̂) ≤
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(2− n)π +
[
n
2
− (s+ s1 + s2)

]
π + (n

2
+ s+ s1 + s2)

π
2
+ s(1

2
+ 1

6
)π + s1.

π
2
+ s2.

π
6
=

24−3n+2s−4s2
12

, and so c∗(∆̂) > 0 implies 24−3n+2s−4s2 > 0 ⇒ 3n < 24−4s2+2s

≤ 24−4s2+2(n
2
− s2)= 24−6s2+n ⇒ 2n < 24−6s2 ⇒ n < 12− 3s2 ⇒ n < 12.

Let n = 10. Then c∗(∆̂) > 0 ⇒ 24− 3(10) + 2s > 4s2 ≥ 0 ⇒ s > 3. If s=4 or 5,

then l(∆̂)= (g−1h)4g−1{1, h} or {1, g}h−1(gh−1)4 and we get a contradiction.

This leaves n = 8. But checking the possible labels shows that l(∆̂)=

hg−11g−1h1−1h1−1. Clearly Γ2, Γ6 ≤ 1. Also if Γ2=0 or Γ6=0, then c∗(∆̂) ≤

(2 − 8)π + 3π + 5.π
2
+ Γ2.

π
2
+ Γ6.

π
6
≤ 0. Thus Γ2 = Γ6 = 1 and ∆̂ is shown in

Figure 3.25. However r ≤ 2 and so c∗(∆̂) ≤ −6π + 2π + 6.π
2
+ π

2
+ π

6
= −π

3
.

< π/2

g
_

_
1

1
_

∆^
π/6

π/2

h

1
h

g
_ h

Figure 3.25: n = 8.

3.13 Proof of Lemma 3.2.7: Case(3, 2, 6̄)

Here, we assume that |g| = 3, |gh−1| = 2 and |h| ≥ 6. Let P be a reduced

spherical picture over P . Let c be the curvature function associated to the angle

function α1 on P. Observe that if c(∆̂) > 0, then l(∆̂) ∈ {1−1gw, h1−1w} (see

Figure 3.6). It follows that all positively curved regions are shown in Figure 3.26.
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Figure 3.26: Positively curved regions in Case(3, 2, 6̄).

Define the following distribution scheme which is given in Figure 3.27:

Γ(∆, ∆̂) =


π/6 if c(∆) = π

2
and ∆ is separated from ∆̂ by an (m− 1)-bond

c(∆)/2 if 0 < c(∆) ≤ π
4

and ∆ is separated from ∆̂ by an (m− 1)-bond

0 otherwise
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Figure 3.27: Distribution scheme in Case(3, 2, 6̄).

Let ∆̂ be a region such that c∗(∆̂) > c(∆̂) and c∗(∆̂) > 0, where c∗ is the distrib-
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uted curvature function. For a fixed region ∆̂ set Γ6(∆̂)= |{∆ : Γ(∆, ∆̂) = π
6
}|.

Remarks 3.13.1.

1. The region ∆̂ receives each π
6

across an (m−1)-bond in it’s boundary which

gives (1h−1)±1 as a sublabel of ∆̂.

2. ∆̂ receives π
6

only across edges that are oriented outwards ∆̂ and so ∆̂ does

not receive π
6

across consecutive edges in it’s boundary (Γ6 ≤ n
2
). Also, for

each π
6

that ∆̂ receives, there are two corners in ∆̂ with angle 3π
4
. Therefore,

Γ6 ≤ r
2
, where r is the number of corners with angle 3π

4
in the boundary of

∆̂.

3. As shown in Figure 3.27, l(∆̂) = 1h−1w, which implies that d(∆̂) > 4 for

otherwise l(∆̂) yields a contradiction.

By using Γ6 ≤ r
2
, c∗(∆̂) ≤ (2−n)π+r.3π

4
+(n−r)π

2
+ r

2
.π
6

= π
(
2−n+ 3r

4
+n

2
− r

2
+ r

12

)
=

π
(
2 − n

2
+ r

3

)
and so c∗(∆̂) > 0 gives that 2 − n

2
+ r

3
> 0 ⇒ 12 − 3n + 2r > 0

⇒ 2r > 3n− 12. Since r ≤ n, this implies that n < 12.

Let ∆̂ = (n, r) denote a region of degree n with r corners of angle 3π
4

and assume

that c∗(∆̂) > 0. Since 2r > 3n− 12 it follows that if n = 10 then r = 10; if n = 8

then r = 7 or 8; and if n = 6 then r = 4, 5 or 6.

If (n, r)= (10, 10), (8, 8) or (6, 6) (respectively) then l(∆̂) implies that h5 = 1,

h4 = 1 or h3 = 1 (respectively) contradicting |h| ≥ 6. Now let (n, r) = (8, 7).

Since c∗(∆̂) > c(∆̂) it follows that ∆̂ contains three (m− 1)-bonds in it’s bound-

ary and an m1-bond (see Figure 3.28). However l(∆̂) implies that h4 = 1, a

contradiction. In a similar way, if (n, r) = (6, 5), then h3 = 1, a contradiction.
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This leaves (n, r) = (6, 4). Up to inversion, different forms of (n, r) = (6, 4) are

shown in Figure 3.29 ( The 4 corners with angle 3π
4

have been highlighted). All

possible labels for ∆̂ give either a contradiction or the exceptional case (E3).
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Figure 3.28: (n, r) = (8, 7).
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Figure 3.29: (n, r) = (6, 4).
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Chapter 4

Asphericity of Length Six Relative

Group Presentations

4.1 Reduction to special cases

In this chapter we study the asphericity of the relative presentation P=

⟨G, x|xaxbxcxdxexf⟩, where the coefficients a, b, c, d, e, f ∈ G and x /∈ G. Let Ĝ

denote the group defined by P and let H= ⟨ba−1, ca−1, da−1, ea−1, fa−1⟩.

4.1.1 Construction of pictures

Let P be a (non-trivial reduced) spherical picture over P=⟨G, x|xaxbxcxdxexf⟩.

Then each vertex(disc) in P has one of the forms given by Figure 4.1(i) and (ii);

and Figure 4.1(iii) shows the star graph Pst of P with the labels α ↔ a, β ↔ b,

γ ↔ c, δ ↔ d, ε ↔ e and ζ ↔ f . Note that when drawing figures the edge arrows

and labels shown in Figure 4.1 will often be omitted.
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Figure 4.1: + disc, - disc and Pst.

Remark 4.1.1. Each arc connects a + disc to a - disc and so each region of P

has even degree (see Figure 4.1 (iii)).

4.1.2 Reduction to special cases

Recall that P=⟨G, x|xaxbxcxdxexf⟩.

Theorem 4.1.2. If the set {a, b, c, d, e, f} contains at least five different elements,

then the relative presentation P=⟨G, x|xaxbxcxdxexf⟩ is aspherical.

Proof. The assumptions of Theorem 4.1.2 imply that no reduced m-wheels over

P for m < 4 and so P satisfies C(4). On the other hand, the smallest admissible

cycle in Pst of length > 2 is of length 4 and so P satisfies T (4). Thus by Theorem

2.2.5, P is aspherical.

Remark 4.1.3. Observe that a relative group presentation of the form

⟨G, x|xa1xa2...xan⟩ (a1, a2, ...an ∈ G) always satisfies T (4). (clear from the star

graph of the presentation).
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Let r(x)=xaxbxcxdxexf . By applying cyclic permutation

r(x) = xaxbxcxdxexf = 1

⇔ xfxaxbxcxdxe = 1

⇔ xexfxaxbxcxd = 1

⇔ xdxexfxaxbxc = 1

⇔ xcxdxexfxaxb = 1

⇔ xbxcxdxexfxa = 1.

Now by applying cyclic permutation, inversion, x → x−1 and gi → g−1
i (gi ∈

{a, b, c, d, e, f}), we get that:

r(x) = xaxbxcxdxexf = 1

→ xfxexdxcxbxa = 1

→ xaxfxexdxcxb = 1

→ xbxaxfxexdxc = 1

→ xcxbxaxfxexd = 1

→ xdxcxbxaxfxe = 1.

→ xexdxcxbxaxf = 1.

→ xaxbxcxdxexf = 1.

Thus, in checking the asphericity of P , the number of cases can be reduced. For

example, the case a = b only is equivalent to the five cases: b = c only, c = d

only, d = e only, e = f only and lastly f = a only. To avoid repeating same cases

and by the above equalities, we can use the table given below. For example, the

case a = b and c = e only is equivalent to the cases: f = a and b = d only, e = f
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and a = c only, d = e and f = b only, c = d and e = a only, b = c and d = f

only, f = e and d = b only, a = f and e = c only, b = a and f = d only, c = b

and a = e only, d = c and b = f only and finally e = d and c = a only.

a b c d e f

1 f a b c d e

2 e f a b c d

3 d e f a b c

4 c d e f a b

5 b c d e f a

6 f e d c b a

7 a f e d c b

8 b a f e d c

9 c b a f e d

10 d c b a f e

11 e d c b a f

It follows, in view of Theorem 4.1.2 and up to cyclic permutation, inversion,

x → x−1 and gi → g−1
i (gi ∈ {a, b, c, d, e, f}), that there are 33 cases to be

considered according to the coincidences amongst a, b, c, d, e and f . These cases

are listed below.

• a=b, c=d only,

• a=b, c=e only,

• a=b, c=f only,

• a=b, d=e only,
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• a=b, c=d, e=f only,

• a=b, c=e, d=f only,

• a=b, c=f, d=e only,

• a=c, b=d only,

• a=c, b=e only,

• a=c, d=f only,

• a=c, b=e, d=f only,

• a=d, b=e only,

• a=d, b=e , c=f only,

• a=b=c only,

• a=b=c, d=f only,

• a=b=c, e=f only,

• a=b=c, d=e=f only,

• a=b=d only,

• a=b=d, c=e only,

• a=b=d, c=f only,

• a=b=d, e=f only,

• a=b=d, c=e=f only,

• a=c=e only,

• a=c=e, b=d only,
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• a=c=e, b=d=f only,

• a=b=c=d only,

• a=b=c=d, e=f only,

• a=b=c=e only,

• a=b=c=e, d=f only,

• a=b=d=e only,

• a=b=d=e, c=f only,

• a=b=c=d=f only,

• a=b=c=d=e=f.

Lemma 4.1.4. For six of the above cases namely a = b, c = d only, a = b, c = f

only, a = b, d = e only, a = c, d = f only, a = b = c only and a = b = d only, P

is aspherical.

Proof. Remark 4.1.3 says that the presentation P satisfies the condition T (4).

In fact P also satisfies C(4), and so by Theorem 2.2.5, P is aspherical. Indeed,

in the case a = b, c = f only, for example, if v is a vertex in a reduced spherical

picture P over P , then v is adjacent to at least four other different vertices and so

d(v) ≥ 4 (see Figure 4.2). Thus P satisfies C(4) in this case. Similar arguments

apply for the remaining five cases which completes the proof.
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Figure 4.2: P satisfies C(4) in the case a = b, c = f only.

The above lemma leaves the following 27 cases to be considered:

• a=b, c=e only,

• a=b, c=d, e=f only,

• a=b, c=e, d=f only,

• a=b, c=f, d=e only,

• a=c, b=d only,

• a=c, b=e only,

• a=c, b=e, d=f only,

• a=d, b=e only,

• a=d, b=e , c=f only,

• a=b=c, d=f only,

• a=b=c, e=f only,

• a=b=c, d=e=f only,

• a=b=d, c=e only,
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• a=b=d, c=f only,

• a=b=d, e=f only,

• a=b=d, c=e=f only,

• a=c=e only,

• a=c=e, b=d only,

• a=c=e, b=d=f only,

• a=b=c=d only,

• a=b=c=d, e=f only,

• a=b=c=e only,

• a=b=c=e, d=f only,

• a=b=d=e only,

• a=b=d=e, c=f only,

• a=b=c=d=f only,

• a=b=c=d=e=f.

However we collect the last 11 cases into 3 cases and so we have the the following

19 cases:

Case 1: a=b, c=e only,

Case 2: a=b, c=d, e=f only,

Case 3: a=b, c=e, d=f only,

Case 4: a=b, c=f, d=e only,

Case 5: a=c, b=d only,

Case 6: a=c, b=e only,
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Case 7: a=c, b=e, d=f only,

Case 8: a=d, b=e only,

Case 9: a=d, b=e , c=f only,

Case 10: a=b=c, d=f only,

Case 11: a=b=c, e=f only,

Case 12: a=b=c, d=e=f only,

Case 13: a=b=d, c=e only,

Case 14: a=b=d, c=f only,

Case 15: a=b=d, e=f only,

Case 16: a=b=d, c=e=f only,

Case 17: a=c=e,

Case 18: a=b=c=d,

Case 19: a=b=d=e.

These 19 cases have been partitioned into Groups I, II, III and IV. Group I in-

cludes the cases in which P is aspherical, Group III includes the cases in which the

results have been obtained by Theorem 4.4.1. The cases with some exceptional

subcases are included in Group IV. Finally, the remaining cases are included in

Group II. These groups are listed below.

• Group I: Cases 1, 4, 5, 6, 7 and 9.

• Group II: Cases 8, 10, 12, 14 and 16.

• Group III: Cases 17 and 19.

• Group IV: Cases 2, 3, 11, 13, 15 and 18.

In each case 1-19, P i will denote the presentation P in which x is replaced by y.
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4.2 Group I

The first group contains the cases: 1, 4, 5, 6, 7 and 9. In each of these cases P is

aspherical.

4.2.1 Case 1: (a=b, c=e only)

P1= ⟨G, y|ayaycydycyfy⟩= ⟨G, y, x|x(ay)−1, x2ca−1xda−1xca−1xfa−1x⟩=

⟨G, x|x3ca−1xda−1xca−1xfa−1⟩= ⟨G, x|x3gxhxgxk⟩, where g = ca−1, h = da−1

and k = fa−1 (and so by assumption, g, h, k ∈ G\{1}, g ̸= h, h ̸= k and g ̸= k).

Lemma 4.2.1. P1 is aspherical.

Proof. P1=⟨G, x|x3gxhxgxk⟩= ⟨G, x, s|xgxs−1, x2shsk⟩. The star graph Pst
1 of

P1 is given by Figure 4.3, where the edges α, β, γ, δ, ε, ζ and η (respectively)

are labelled by 1, 1, h, 1, g, 1 and k (respectively).

x−1

s−1s

x

η

α β δ

γ

ε

ζ1/2

1
1/2 0

1/2

1/2

0

Figure 4.3: Star graph of ⟨G, x, s|xgxs−1, x2shsk⟩.

By assigning the following weights to the edges of Pst
1 , we get a weakly aspherical

weight function: θ(α) = θ(ε) = θ(ζ) = θ(η) = 1
2
, θ(β) = 1 and θ(γ) = θ(δ) = 0.

To see this let R1 = xgxs−1 and R2 = x2shsk. Then 1 − θ(s−1xgx) + 1 −

θ(xgxs−1)+ 1− θ(xs−1xg) = 1− θ(α) + 1− θ(ε) +1− θ(δ)= 1
2
+ 1

2
+ 1=2. Also

for R2, 1−θ(x2shsk)+ 1−θ(xshskx)+ 1−θ(shskx2)+ 1−θ(skx2sh)= 1−θ(ζ)+

1−θ(β)+ 1−θ(γ)+ 1−θ(η) = (1− 1
2
)+ (1−1) +(1−0)+(1− 1

2
)=2. That is, the
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first condition of weakly aspherical weight function holds. Moreover, admissible

cycles of weight less than 2 yield the relators g, h, k, gh−1, gk−1 and hk−1,

all of which contradict the assumptions. Thus the second condition of weakly

aspherical weight function is also satisfied and so P1 is aspherical.

4.2.2 Case 4: (a=b, d=e, c=f only)

P4= ⟨G, y|ayaycydydycy⟩= ⟨G, y, x|x(ay)−1, x2ca−1xda−1xda−1xca−1x⟩

= ⟨G, x|x3ca−1xda−1xda−1xca−1⟩= ⟨G, x|x3gxhxhxg⟩, where g = ca−1 and h =

da−1 (and so by assumption, g, h ∈ G\{1} and g ̸= h).

Lemma 4.2.2. P4 is aspherical.

Proof. P4= ⟨G, x|x3gxhxhxg⟩= ⟨G, x, s|xgxs−1, xshxhs⟩. Then the star com-

plex Pst
4 of P4 has the form shown in Figure 4.4, where the edges α, β, γ, δ, ε, ζ

and η (respectively) are labelled by 1, 1, h, 1, g, h and 1 (respectively).

x−1

s−1

x

s

δ 1/2

1/2

0

α

1/2

γ

ζ

1/2 η

ε

β

1/2
1/2

Figure 4.4: Star graph of ⟨G, x, s|xgxs−1, xshxhs⟩.

We obtain a weakly aspherical weight function by giving the following weights to

the edges of Pst
4 : θ(α) = θ(β) = θ(γ) = θ(δ) = θ(ζ) = θ(η) = 1

2
and θ(ε) = 0.

Indeed, the first condition of weight test holds (as in Case 1) and there are no

possible admissible cycles of Pst
4 have weight less than 2.
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4.2.3 Case 5: (a=c, b=d only)

P5= ⟨G, y|aybyaybyeyfy⟩= ⟨G, y, x|x(ay)−1, x2ba−1x2ba−1xea−1xfa−1⟩= ⟨G, x|

x2gx2gxhxk⟩, where g = ba−1, h = ea−1 and k = fa−1.

Lemma 4.2.3. P5 is aspherical.

Proof. Let P be a reduced spherical picture over P5. Then each vertex(disc) in

P has one of the forms given by Figure 4.5. There are (up to inversion) two types

of vertices of degree 3 in P and these are shown in Figure 4.6. Assign the angle

function α to the corners of P as follows: corners within 2-bonds have angle zero.

In vertices of degree 3, corners labelled by 1±1 and g±1 have angle π. Each of the

remaining corners has angle π
2

(see Figure 4.6). If d(v) ≥ 4, then each corner in

v not in a 2-bond has angle 2π
d(v)

.

Remark 4.2.4. By assigning α to the corners of P, the following are satisfied:

(i) There are no consecutive corners with angle π in the boundary of a region ∆

of P (observe that each of the vertices u and v has degree at least 4).

(ii) Since (2− 8)π + 4π + 4.π
2
= 0, positive regions can only have degree 4 or 6.

Let ∆ be a positive region. Then l(∆) = h−111−1w1 or g−1gk−1w2 and so d(∆) >

4. If d(∆) = 6 then ∆ contains three corners each with angle π, for otherwise

c(∆) ≤ −4π + 2π + 4.π
2
= 0. However each of the ∗-corner and the •-corner in

Figure 4.6 has angle ≤ π
2
. Thus there are no positive regions in Case 5 and so P5

is aspherical.
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Figure 4.5: + disc and - disc in Case 5.
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Figure 4.6: Types of vertices of degree 3 and defined angle function.

4.2.4 Case 6: (a=c, b=e only)

P6= ⟨G, y|aybyaydybyfy⟩= ⟨G, y, x|x(ay)−1, xba−1x2da−1xba−1xfa−1x⟩=

⟨G, x|x2ba−1x2da−1xba−1xfa−1⟩= ⟨G, x|x2gx2hxgxk⟩, where g = ba−1, h = da−1

and k = fa−1 (and so by assumption, g, h, k ∈ G\{1}, g ̸= h, h ̸= k and g ̸= k).

Lemma 4.2.5. P6 is aspherical.

Proof. P6=⟨G, x|x2gx2hxgxk⟩= ⟨G, x, s|xgxs−1, xsxhsk⟩. The edges of Pst
6

(given by Figure 4.7) α, β, γ, δ, ε, ζ and η (respectively) have the labels 1,

1, h, 1, g, 1 and k (respectively).
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ε0
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Figure 4.7: Star graph of ⟨G, x, s|xgxs−1, xsxhsk⟩.

Assign to Pst
6 the weight function θ in the following way: θ(α) = θ(β) = θ(γ) =

θ(δ) = θ(ζ) = θ(η) = 1
2
, and θ(ε) = 0. Then θ is weakly aspherical.

4.2.5 Case 7: (a=c, b=e, d=f only)

P7= ⟨G, y|aybyaydybydy⟩= ⟨G, y, x|x(ay)−1, xba−1x2da−1xba−1xda−1x⟩=

⟨G, x|x2ba−1x2da−1xba−1xda−1⟩= ⟨G, x|x2gx2hxgxh⟩, where g = ba−1 and h =

da−1 (and so by assumption, g, h ∈ G\{1} and g ̸= h).

Lemma 4.2.6. P7 is aspherical.

Proof. P7=⟨G, x|x2gx2hxgxh⟩= ⟨G, x, s|xgxs−1, xsxhsh⟩. Figure 4.8 shows Pst
7 ,

where the edges α, β, γ, δ, ε, ζ and η (respectively) are labelled by 1, 1, h, 1, g,

1 and h (respectively).

s−1

x−1

ζ

ε

γ
δ

x

s

0

α

1/2

1/2

1/2

1/2 1/2
η

β
1/2

Figure 4.8: Star graph of ⟨G, x, s|xgxs−1, xsxhsh⟩.
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Assign θ to Pst
7 with θ(α) = θ(β) = θ(γ) = θ(δ) = θ(ζ) = θ(η) = 1

2
, and θ(ε) = 0.

Then θ is weakly aspherical.

4.2.6 Case 9: (a=d, b=e, c=f only)

P9= ⟨G, y|aybycyaybycy⟩= ⟨G, y, |(aybycy)2⟩.

Lemma 4.2.7. P9 is aspherical.

Proof. Assume by way of contradiction that P is a non-trivial reduced spherical

picture over P9. Thus P contains a region, say ∆, of positive curvature. Therefore

∂∆ involves at least one vertex v of degree 3, for otherwise c(∆)= c(4, 4, 4, 4)=0.

However, any possibility for v gives a dipole. For example if one of the a-corners

of v is in a 2-bond, then the dipole is shown in Figure 4.9.

y

y

y

y

y

y

y

y

a a

b

b

c

cy

y
a

b

b

a

c

c

v

Figure 4.9: Example of a dipole arises from possible positive regions.

4.3 Group II

Here we consider the Cases: 8, 10, 12, 14 and 16.

4.3.1 Case 8: (a= d, b= e only)

P8= ⟨G, y|aybycyaybyfy⟩= ⟨G, y, x|x(ay)−1, xba−1xca−1x2ba−1xfa−1x⟩=

⟨G, x|x2ba−1xca−1x2ba−1xfa−1⟩.
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Lemma 4.3.1. P8 is aspherical if and only if |cf−1| is infinite.

Proof. P8= ⟨G, x|x2kxgx2kxh⟩, where k = ba−1, g = ca−1 and h = fa−1 (and

so gh−1 = cf−1). Then by assumption, g, h, k ∈ G\{1}, g ̸= h, h ̸= k and g ̸= k.

If |gh−1| < ∞ then a non-trivial reduced spherical picture over P8 is given by

Figure 4.10, and so assume |gh−1| = ∞.
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Figure 4.10: P8; |gh−1| < ∞.

Moreover P8= ⟨G, x|x2kxgx2kxh⟩= ⟨G, x, s|x2kxs−1, sgsh⟩. The star graph Pst
8

of P8 is shown in Figure 4.11 with labels α ↔ 1, β ↔ h, γ ↔ g, δ ↔ 1, ε ↔ k

and ζ ↔ 1.
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s−1

x−1x

β
0

γ

ε
0

1

ζ

α 1 δ 0

s
0

Figure 4.11: Star graph of ⟨G, x, s|x2kxs−1, sgsh⟩.

Define the following weight function: θ(α) = θ(ζ) = 1 and θ(β)= θ(γ)= θ(δ)=

θ(ε) = 0. The possible relations with weight less than 2 have the forms

gk−1(gh−1)l = 1, hk−1(hg−1)r = 1 and (gh−1)sk±1 = 1 for some integers

l, r, s > 0.

The weight function θ is weakly aspherical except if at least one of the above

three relations holds. By each of these relations if either g or h belongs to the

group generated by gh−1 then gp{g, h, k}= gp{gh−1}.

Let P be a non-trivial reduced spherical picture over P8 = ⟨G, x|x2kxgx2kxh⟩.

Then each vertex(disc) in P has one of the forms given by Figure 4.12(i) and (ii).

1

1
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k

h
k

(ii)

_
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+
1

g
k

k
h

1

Figure 4.12: + disc, - disc.
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Up to inversion, the types of vertices of degree 2 and 3 in P are given by Figure

4.13.
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Figure 4.13: Types of vertices of degree 2 and 3.

Now assume (A) that the number of 3-bonds in P is maximal( see Remark 2.1.2).

Remarks 4.3.2.

1. None of the edges ei, 1 ≤ i ≤ 8 (see Figure 4.13) is included in a 3-bond.

Thus by (A), all vertices of degree 3 transform to vertices of degree 2.

2. In this case, when counting the degree n of a region ∆ we ignore the vertices

of degree 2 in ∂∆. Thus we could have a region of odd degree which includes

at least one vertex of degree 2 in it’s boundary.

3. In P8 = ⟨G, x|x2kxgx2kxh⟩, by symmetry, the roles of g and h can be in-

terchanged.
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Now since |gh−1| = ∞, a sequence of vertices of degree 2 in boundary of a region

in P must terminate with a vertex of degree 4 at each side. Up to inversion, all

the possibilities are given by Figure 4.14, where d(vi) ≥ 4 (1 ≤ i ≤ 4) and each

sequence includes at least one vertex of degree 2.
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Figure 4.14: All possible sequences of vertices of degree 2 in ∂∆ and possible
positive regions.

If the boundary of a region ∆ contains no vertices of degree 2, then c(∆) ≤

(2− n)π + n.π
2

= (2− n
2
)π. Thus c(∆) > 0 implies n < 4, which is not the case.

Therefore a positive region is one of the ∆i (1 ≤ i ≤ 4) shown in Figure 4.14.

Observe that each of vi (1 ≤ i ≤ 4) cannot be adjacent to two vertices of degree 2

in ∂∆i (1 ≤ i ≤ 4). Therefore c(∆i) > 0 implies d(∆i) = 3 (1 ≤ i ≤ 4). However,

no two positive discs are adjacent and the same holds for negative discs. Thus

d(∆i) ≥ 4 for i = 3, 4. Therefore there are two possibilities for regions of positive

curvature given by Figure 4.15, where d(vi) ≥ 4 for 1 ≤ i ≤ 6. The ∗ − corner

is labelled by 1 or k. If (g−1h)rg−1 = 1 (r > 0), then gp{g, h, k} = gp{gh−1}.

Thus by Lemma 1.3.1, P8 is aspherical. Hence the ∗ − corner is labelled by k.
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Similarly the •− corner is labelled by k. Now assume k(g−1h)rg−1 = 1(r > 0). If

k(h−1g)sh−1 = 1 or k−1(hg−1)mh = 1 (s,m > 0), then (g−1h)rg−1h(g−1h)s = 1 or

(hg−1)mh(g−1h)rg−1 = 1, contradicting |gh−1| = ∞. Therefore positive regions

could only be of one type. By Remark 4.3.2(3), we may assume that positive

regions are of Type 1 only as shown in Figure 4.16. Distribute the curvature as

shown.
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Figure 4.15: Positive regions.
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Figure 4.16: Only one type of positive region.

Remark 4.3.3. In Figure 4.16, neither the ∗− corner nor •− corner is labelled

by h and so ∆̂ receives 0 across the edges ei (1 ≤ i ≤ 4).

Let d(∆̂) = n. By inspection, in Figure 4.16, d(vi) ≥ 4 (i=1,2). From above

v1 ̸= v2 and so n > 3. Thus by Remark 4.3.3, n ≥ 2 + 2Γ2. Hence c∗(∆̂) ≤

(2 − n)π + n.π
2
+ Γ2.

π
2

=π(2 − n
2
+ Γ2

2
). Thus c∗(∆̂) > 0 implies Γ2 = 1. Now,

c∗(∆̂) ≤ (2 − n)π + n.π
2
+ [n

3
].π

2
. Thus c∗(∆̂) ≤ 0 for n ≥ 5 and so n = 4. The

vertices v1 and v2 are positive discs and so cannot be adjacent. Thus at least

one vertex of degree 2 lies in ∂∆̂ between v1 and v2. By inspection, the possible

labelling of ∆̂ implies |gh−1| < ∞, a contradiction. Therefore if |gh−1| = ∞ then

P8 is aspherical. This completes the proof.

4.3.2 Case 10: (a=b=c, d=f only)

P10= ⟨G, y|ayayaydyeydy⟩= ⟨G, y, x|x(dy)−1, ad−1xad−1xad−1x2ed−1x2⟩=

⟨G, x|x2ed−1x2ad−1xad−1xad−1⟩.

Lemma 4.3.4. P10 is not aspherical if and only if ed−1=(ad−1)2 and |ad−1| < ∞.
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Proof. P10= ⟨G, x|x2hx2gxgxg⟩ = ⟨G, x, s|x2s−1, shsgxgxg⟩, where h = ed−1

and g = ad−1 (and so by assumption, g, h ∈ G\{1} and g ̸= h).

The star graph Pst
10 is given by Figure 4.17, where α ↔ 1, β ↔ g, γ ↔ h, δ ↔ 1,

ε ↔ 1, ζ ↔ g and η ↔ g.

ζ

δα β

−1 x

−1s

x

s
0

1

1/2

1/2
η

1/2

0
ε

1/2

γ

Figure 4.17: Star graph of ⟨G, x, s|x2s−1, shsgxgxg⟩.

Define the following weight function θ on Pst
10: θ(α) = θ(β) = θ(δ) = θ(η) = 1

2
,

θ(γ) = θ(ε) = 0 and θ(ζ) = 1. Then P10 is aspherical except if h = g2 (obtained

from the closed path εβ−1γη−1). So assume h = g2 and we may assume that

|g| < ∞, for otherwise Lemma 1.3.1 applies and so P10 is aspherical. Figure 4.18

provides non-trivial reduced spherical pictures over P10. As an example, the case

g5 = 1 is done by Figure 4.19.
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Figure 4.18: P10; h = g2 and |g| < ∞.
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Figure 4.19: P10; h = g2 and |g| = 5.
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4.3.3 Case 12: (a=b=c, d=e=f only)

P12 = ⟨G, y|ayayaydydydy⟩= ⟨G, y, x|x(ay)−1, x3da−1xda−1xda−1x⟩

= ⟨G, x|x4da−1xda−1xda−1⟩.

Lemma 4.3.5. P12 is aspherical if and only if |da−1| = ∞.

Proof. P12 = ⟨G, x|x4da−1xda−1xda−1⟩= ⟨G, x|x3(xda−1)3⟩. The result now

follows from Lemma 1.3.2.

4.3.4 Case 14: (a= b= d, c= f only)

The relative presentation P14= ⟨G, y|ayaycyayeycy⟩

= ⟨G, y, x|x(ay)−1, x2ca−1x2ea−1xca−1x⟩= ⟨G, x|x3ca−1x2ea−1xca−1⟩.

Lemma 4.3.6. P14 is aspherical if and only if |ea−1| is infinite.

Proof. P14= ⟨G, x|x3gx2hxg⟩, where g = ca−1 and h = ea−1 (and so by assump-

tion, g, h ∈ G\{1} and g ̸= h). If |h| < ∞ then the diagram given by Figure 4.20

shows that P14 is not aspherical.
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Figure 4.20: P14; |h| < ∞.

Now suppose that |h| is infinite. The presentation P14= ⟨G, x|x3gx2hxg⟩=
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⟨G, x, s|x2s−1, xsgshxg⟩. Then the star graph Pst
14 is given by Figure 4.21, where

α ↔ 1, β ↔ g, γ ↔ h, δ ↔ 1, ε ↔ g, ζ ↔ 1 and η ↔ 1.

s s
−1

x x−1

η

β

γ

ε

1

0

0

δ0α

0
1 ζ

1

Figure 4.21: Star graph of ⟨G, x, s|x2s−1, xsgshxg⟩.

We may assign the following weights to Pst
14: θ(α) = θ(ε) = θ(η) = 1 and

θ(β) = θ(γ) = θ(δ) = θ(ζ) = 0.

Clearly, the first condition of weight test holds. If ghl = 1, for an integer l ̸= 0,

then both g = h−l and h are contained in an infinite cyclic group. Thus Lemma

1.3.1 applies and so P14 is aspherical. Therefore, by assigning the weight function

θ, P14 is aspherical. (Note that the only possible admissible cycle of weight less

than 2 gives ghl = 1 and we are done).

4.3.5 Case 16: (a= b= d, c= e= f only)

The relative presentation P16= ⟨G, y|ayaycyaycycy⟩

= ⟨G, y, x|x(ay)−1, x2ca−1x2ca−1xca−1x⟩= ⟨G, x|x3ca−1x2ca−1xca−1⟩.

Lemma 4.3.7. P16 is aspherical if and only if |ca−1| is infinite.

Proof. P16= ⟨G, x|x3gx2gxg⟩, where g = ca−1. If |g| is infinite then Lemma 1.3.1

applies, and so P16 is aspherical. So assume otherwise. Then the diagram given

by Figure 4.22 is a reduced sphere over P16. As an example, the case |g| = 3 is

provided.
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Figure 4.22: P16; |g| < ∞.

4.4 Group III

Here we consider the Cases: 17 and 19. Consider the group presentation P∗=

⟨H, x|w(xk, H)⟩, where w(xk, H) is a cyclically reduced word in xk and the ele-

ments of the group H. Observe that P∗= ⟨H, x|w(xk, H)⟩= ⟨H, s|w(s,H)⟩ ∗s=xk

⟨x|xkm⟩, where m = |s| and m = 0 if and only if |s| = ∞ (this point of view is

useful because of the following theorem)(see [17] for example for definition of free

product with amalgamation).

4.4.1 Theorem 4.4.1

Theorem 4.4.1. (i) If P1=⟨H, s|w(s,H)⟩ is aspherical and |s| = ∞ in P1, then

P∗ is aspherical.

(ii) If P1=⟨H, s|w(s,H)⟩ is not aspherical, then P∗ is not aspherical.

Proof. (i) By Tietze transformations P∗=⟨H, x, s|sx−k, w(s,H)⟩. Let R1 = sx−k

and R2 = w(s,H). Assume that P1 is aspherical and |s| = ∞. Thus, any reduced

sphere P over P∗ should involve a disc whose label is a cyclic permutation of R±1
1 .
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We will refer to such discs as R1-discs.

Observe that the following two properties are satisfied in P∗.

Property 1: The letters x±1 appear in R±1
1 but not in R±1

2 . This property im-

plies that x-edges can only be common edges between R1-discs.

Property 2: The letter s occurs only once in R1 and this implies that s-edges

cannot be common edges between R1-discs, for otherwise P is not reduced.

Let SR1 be the maximal set of connected (but not necessarily simply connected)

subpictures Ki, i ∈ Z in P consists of R1-discs and R̄1-discs, where R̄1-discs are

the inverses of R1-discs. As a result of the above properties, the boundary label

of each Ki is sri (see Figure 4.23), which implies that |s| < ∞, a contradiction.

Hence P∗ is aspherical.

(ii) By Tietze transformations P∗=⟨H, x|w(xk, H)⟩=⟨H, x, s|sx−k, w(s,H)⟩. Let

P be a non-trivial reduced sphere over P1, then P is also a non-trivial reduced

sphere over P∗ by using the relator R2 = w(s,H) only in P∗.

R1

R1 R1

R1

R1 R1

R1

R1

R1s

s
s

s

s

Figure 4.23: Example of Ki.
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4.4.2 Case 17: (a=c=e)

P17= ⟨G, y|aybyaydyayfy⟩=⟨G, y, x|x(ay)−1, xba−1x2da−1x2fa−1x⟩

= ⟨G, x|x2gx2hx2k⟩, where g = ba−1, h = da−1 and k = fa−1.

Corollary 4.4.2. P17 is aspherical if and only if P̂= ⟨G, s|sgshsk⟩ is aspherical.

(Note that a complete classification of when P̂ is aspherical is obtained in [5]).

Proof. Observe that P17= ⟨G, x|x2gx2hx2k⟩= ⟨G, s|sgshsk⟩ ∗s=x2 ⟨x|x2m⟩,

where m = |s| and m = 0 if and only if |s| = ∞. Assume that P̂ is aspherical

and so |s| = ∞ (see Lemma 2.2.9). Therefore the result follows from Theorem

4.4.1 (i) and (ii).

4.4.3 Case 19: (a=b=d=e)

P19=⟨G, y|ayaycyayayfy⟩= ⟨G, y, x|x(ay)−1, x2ca−1x3fa−1x⟩= ⟨G, x|x3gx3h⟩,

where g = ca−1 and h = fa−1.

Corollary 4.4.3. P19 is aspherical if and only if |gh−1| is infinite.

Proof. The relative presentation P19= ⟨G, x|x3gx3h⟩= ⟨G, s|sgsh⟩ ∗s=x3 ⟨x|x3m⟩,

where m = |s| and m = 0 if and only if |s| = ∞. Observe ⟨G, s|sgsh⟩ is aspherical

if and only if |gh−1| is infinite. Also, note that if ⟨G, s|sgsh⟩ is aspherical then

|s| = ∞ and so the result follows from Theorem 4.4.1.

4.5 Group IV

In this section we deal with the cases which includes some exceptional subcases.

These cases are: 2, 3, 11, 13, 15 and 18.
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4.5.1 Case 2: (a=b, c=d, e=f only)

The presentation P2 = ⟨G, y|(ay)2(cy)2(ey)2⟩. Let g = ca−1 and h = ea−1, then

by assumption g ̸= h and g, h ∈ G\{1}. Before stating the result, we state the

following exceptional case.

(E) g = h−1 and |h| = 3.

Proposition 4.5.1. Suppose that (E) does not hold. Then P2 is not aspherical

if and only if 1
|a−1c| +

1
|a−1e| +

1
|c−1e| > 1, where 1

∞ := 0.

Proof. P2 is a special case of the relative presentation considered in [19], where

Theorem 2 says that P2 is aspherical except if one of the following holds.

1. 1
|a−1c| +

1
|a−1e| +

1
|c−1e| > 1, where 1

∞ := 0.

2. ae−1ac−1 = 1 and |ac−1| < ∞ [by symmetry it is the same as either of the

two cases: ca−1ce−1 = 1 and |ce−1| < ∞ or ec−1ea−1 = 1 and |ea−1| < ∞].

With the first condition it has been shown in [19] that there is a non-trivial re-

duced spherical picture over P2. Therefore we consider the second condition, that

is, P2 = ⟨G, y|(ay)2(cy)2(ey)2⟩= ⟨G, y, x|x(ay)−1, x2ca−1xca−1xea−1xea−1x⟩=

⟨G, x|x3gxgxhxh⟩, where gh = 1 and |g| < ∞.

Let P be a non-trivial reduced spherical picture over P2 = ⟨G, x|x3gxgxhxh⟩.

Then each vertex(disc) in P has one of the forms given by Figure 4.24(i) and (ii).
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Figure 4.24: + disc, - disc.

Up to inversion, the types of vertices of degree 3 in P are given by Figure 4.25.

h

g

h

g

h
1

1

g

g

g 1

1h
h

1

g

g
h

h

h

h

h

g

1
1

g
g

h
h

1
1

1
g

g

h

h

1

g
g

h

1

h

g
g

Figure 4.25: Types of vertices of degree 3.

Define an angle function α on P as follows. Corners within 2-bonds have angle

zero. In vertices of degree 3, corners (not within 2-bonds) labelled by 1±1 have

angle π, each of the other two corners has angle π
2

(see Figure 4.26). If d(v) ≥ 4,

then each corner in v not in a 2-bond has angle 2π
d(v)

.
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Figure 4.26: Angle function α for vertices of degree 3.

Remark 4.5.2. By assigning the angle function α to the corners of P, the fol-

lowing are satisfied:

(i) Clearly, there are no consecutive corners with angle π in the boundary of a

region ∆ of P and so positive regions can only have degree 4 or 6.

(ii) If ∆ is a positive 4-region then it contains at least one corner labelled by 1±1

with angle π.

(iii) If ∆ is a positive 6-region then it contains three occurrences of 1±1- corners

each with angle π.

By Remark 4.5.2 and Figure 4.26, if ∆ is a positive region then l(∆) = g−11g−1w1

or h−11h−1w2 or h−11h−11h−11. Since g ̸= h the only allowed labelling of ∆ im-

plies h3 = 1. Therefore if g = h−1 and h3 ̸= 1 then P2 is aspherical.

4.5.2 Case 3: (a=b, c=e, d=f only)

P3= ⟨G, y|ayaycydycydy⟩=⟨G, y, x|x(cy)−1, ac−1xac−1x2dc−1x2dc−1x⟩=

⟨G, x|x2dc−1x2dc−1xac−1xac−1⟩= ⟨G, x|x2gx2gxhxh⟩ =

⟨G, x, s|x2s−1, sgsgxhxh⟩, where g = dc−1 and h = ac−1 (and so by assumption,

g, h ∈ G\{1} and g ̸= h).
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Lemma 4.5.3. Let H be the subgroup of G generated by g and h. Then P3 is

aspherical unless one of the following holds.

1. g = h−1.

2. g = h2 or h = g2.

3. H is cyclic of order 6, that is, one of the following six cases holds:

(i) g = h4 and |h| = 6.

(ii) g = h3 and |h| = 6.

(iii) g = (gh−1)3, h = (gh−1)2 and |gh−1| = 6.

(iv) h = g4 and |g| = 6.

(v) h = g3 and |g| = 6.

(vi) h = (hg−1)3, g = (hg−1)2 and |gh−1| = 6.

4. 1
|g| +

1
|gh−1| +

1
|h| > 1.

Proof. The star graph of ⟨G, x, s|x2s−1, sgsgxhxh⟩ is shown in Figure 4.27, where

α ↔ 1, β ↔ g, γ ↔ g, δ ↔ 1, ε ↔ 1, ζ ↔ h and η ↔ h.

ε

γ

η

ζ

δα β

s−1 s

−1
x x

Figure 4.27: Star graph of ⟨G, x, s|x2s−1, sgsgxhxh⟩.

Assign to Pst
3 the following weight function θ: θ(α) = θ(ε) = 0, θ(β) = θ(γ) =

θ(ζ) = θ(η) = 1
2
, and θ(δ) = 1. Then the possible relations of weight less than 2

are:
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gh, h2, h3, g2, g3, hg±2 and gh±2.

We can assume that at least one of these relations hold in H, else θ is a weakly

aspherical function.

Assume that g ̸= h−1, g ̸= h2 and h ̸= g2. We will show that either P3 is

aspherical or one of the Conditions 3 or 4 holds. This leaves the following cases

to be considered:

gh2 = 1; g2 = 1; g3 = 1

hg2; h2 = 1; h3 = 1.

Provided that θ(α) = θ(ε) = 0 in all the weight functions used in the cases

gh2 = 1, g2 = 1 and g3 = 1 (respectively), we get similar results for the cases

hg2 = 1, h2 = 1 and h3 = 1 (respectively). This is done by exchanging the values

of θ(β) and θ(ζ) together with exchanging the values of θ(γ) and θ(η) in all of

the defined weight functions for the cases g2 = 1, g3 = 1 and gh2 = 1. This is

because Pst
3 can be viewed as shown in Figure 4.28, where both of the edges α

and ε are labelled with the identity of H. Therefore the roles of g and h can be

interchanged.

s−1 s x−1

x

h

h

ε

α

g

g

Figure 4.28: Star graph of ⟨G, x, s|x2s−1, sgsgxhxh⟩.

Let gh2 = 1, then define a new weight function on Pst
3 with θ(α) = θ(ε) = 0,

θ(β) = θ(γ) = 1
2
, θ(ζ) = 3

4
, θ(η) = 1

4
and θ(δ) = 1. Then the admissible cycles
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of weight less than 2 give either g2 = 1, g3 = 1 or (gh−1)2 = 1. In all cases

H is cyclic generated by h of order 4, 6 and 6 respectively. However, the first

possibility contradicts g ̸= h2 and the other two possibilities are 3(i). Thus we

may assume that gh2 ̸= 1 and so hg2 ̸= 1 by symmetry.

Now assume that g2 = 1 and assign another weight function to Pst
3 with θ(α) =

θ(γ) = θ(ε) = 0, θ(β) = θ(δ) = 1 and θ(ζ) = θ(η) = 1
2
. Then if θ is not a weakly

aspherical function one of the following holds in H:

h2 = 1, h3 = 1, (gh−1)2 = 1, (gh−1)3 = 1, gh−3 = 1 or gh−1gh−2 = 1.

If h2 = 1 and |gh−1| is finite then 1
|g| +

1
|gh−1| +

1
|h| > 1, while if |gh−1| is infin-

ite then define the following weakly aspherical weight function: θ(α) = θ(γ) =

θ(ε) = θ(η) = 0 and θ(β) = θ(δ) = θ(ζ) = 1. Similarly, if (gh−1)2 = 1 and |h|

is finite then 1
|g| +

1
|gh−1| +

1
|h| > 1, while if |h| is infinite then assign to Pst

3 the

following weakly aspherical weight function: θ(α) = θ(γ) = θ(ε) = θ(ζ) = 0 and

θ(β) = θ(δ) = θ(η) = 1.

If gh−3 = 1 then H is cyclic of order 6 generated by h and we get 3(ii). Moreover

if gh−1gh−2 = 1 then H is cyclic of order 6 generated by gh−1 and we get 3(iii).

If h3 = 1 then assign the following weight function: θ(α) = θ(γ) = θ(ε) = 0,

θ(β) = θ(δ) = 1, θ(ζ) = 2
3

and θ(η) = 1
3
. Then one of the following is satis-

fied: (gh−1)2, (gh−1)3, (gh−1)4 or (gh−1)5. Any of these four relations imply that
1
|g| +

1
|gh−1| +

1
|h| > 1.

If (gh−1)3 = 1 then define the following weight function with θ(α) = θ(γ) =

θ(ε) = 0, θ(β) = θ(δ) = 1, θ(ζ) = 1
3

and θ(η) = 2
3
. Here the possible admissible

cycles of weight less than 2 are: h2, h3, h4, h5 or g−1h3. Any of the first four
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relations give that 1
|g| +

1
|gh−1| +

1
|h| > 1. The last relation imply that H is cyclic of

order 6 generated by h. Thus we may assume g2 ̸= 1 and by symmetry h2 ̸= 1.

If g3 = 1 then assign the following weight function such that θ(α) = θ(ε) = 0,

θ(β) = θ(ζ) = 2
3
, θ(γ) = θ(η) = 1

3
and θ(δ) = 1. So the only allowed relation in

H is (gh−1)2. For this case (g3 = 1 = (gh−1)2) define a weight function in the

following way: θ(α) = θ(ε) = 0, θ(β) = θ(η) = 2
3
, θ(γ) = θ(ζ) = 1

3
and θ(δ) = 1.

Possible admissible cycles of weight less than 2 give the following relations: h3,

h4, h5. Each of which gives 1
|g| +

1
|gh−1| +

1
|h| > 1. Thus by symmetry h3 ̸= 1. This

completes the proof.

Lemma 4.5.4. In P3 the roles of h and h−1g can be interchanged.

Proof. In P3, substitute y = xg. Then the relation transforms to

yg−1y2g−1y2g−1hyg−1h. Using inversion, cyclic permutation and replacing y−1

by x we get Ṕ3= ⟨G, x|x2gx2gxh−1gxh−1g⟩. Thus all the results that apply to

P3 also apply to Ṕ3 and we can work modulo (g, h) ↔ (g, h−1g). This completes

the proof.

Let P be a non-trivial reduced spherical picture over P3 =⟨G, x|x2gx2gxhxh⟩.

Then each vertex(disc) in P has one of the forms given by Figure 4.29(i) and (ii).

1

1

g g

(ii)

h
h

_

(i)

+
h

g

h
1

1

g

Figure 4.29: + disc and - disc.
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There are (up to inversion) six types of vertices of degree 3 in P and these are

shown in Figure 4.30.
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Figure 4.30: Types of vertices of degree 3.

For the proofs, define an angle function α on the vertices v of P as follows.

Corners within 2-bonds have angle zero. In vertices of degree 3, corners (not

within 2-bonds) labelled by h±1 have angle π except the ones in vertices of degree

3 of Types 2 and 4. In these types there are two h±1-corners not in a 2-bond. The

one with angle π is the one that ensures that (1−1h)±1 is a sublabel of a positive

region (see Figure 4.31). Each of the other two corners in a vertex of degree 3

has angle π
2
. If d(v) ≥ 4, then each corner in v not in a 2-bond has angle 2π

d(v)
.
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Figure 4.31: Angle function α for vertices of degree 3.

Remark 4.5.5. By assigning the angle function α to the corners of P, the fol-

lowing holds: there are no consecutive corners with angle π in the boundary of a

region ∆ of P. Clearly this is true for the corners of vertices of Types 1, 3, 5 and

6. Figure 4.32 shows the result for Types 2 and 4 since consecutive corners of

angle π of these two types gives that P is not reduced. Therefore positively curved

regions can only be 4-regions or 6-regions.
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Figure 4.32: No consecutive corners with angle π.
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Assume that

• (A) the number of 2-bonds in P is maximal.

• (B) given (A), the number of 4-regions with the labelling (hg−1gh−1)±1 in

P is maximal.

Assign α to the corners of P. The positive 4-regions ∆ imply one of the following:

g = h−1 or h2 = 1 or g = h2 or l(∆) = 1−1hh−11. If l(∆) = 1−1hh−11 then ∆

could be one of the two regions given by Figure 4.33. As shown ∆1 contradicts the

assumptions. Similarly, ∆2 also contradicts the assumptions. By Remark 4.5.5,

positive 6-regions imply that h3 = 1. Therefore by assigning the angle function α

to the corners of P, P3 is aspherical except possibly if at least one of the following

is satisfied: g = h−1 or h2 = 1 or g = h2 or h3 = 1. Therefore, by Lemma 4.5.4,

P3 is aspherical except possibly if at least one of the following holds: h = g2 or

(g−1h)2 = 1 or g = h2 or (g−1h)3 = 1.
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Figure 4.33: Positive regions with label 1−1hh−11 do not exist.

Lemma 4.5.6. Consider the presentation P3. If h2= (gh−1)2=1 and |g| < ∞,

then P3 is not aspherical.

Proof. Assume that h2= (gh−1)2=1 and |g| < ∞. In this case non-trivial re-

duced spherical pictures over P3 are given by Figure 4.34. As an example, the

case |g| = 5 is given by Figure 4.35.
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Figure 4.34: P3, |h| = |gh−1| = 2 and |g| < ∞.
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Figure 4.35: P3, |h| = |gh−1| = 2 and |g| = 5.

Lemma 4.5.7. Consider the presentation P3. Assume that h ̸= g2 and g ̸= h2.

If h3= (gh−1)3=1, then P3 is aspherical.

Proof. Assign α to the corners of P. Assume that h ̸= g2, g ̸= h2 and h3=

(gh−1)3=1. Then a positive region ∆ has label 1−1h1−1h1−1h, where each of the

h-corners has angle π and has one of the forms shown in Figure 4.36. Observe

that c(∆) ≤ π
2

and distribute the curvature as shown in Figure 4.37. Let ∆̂ be

the region such that c∗(∆̂) > c(∆̂).
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Figure 4.37: Distribution of curvature for regions with label 1−1h1−1h1−1h.

Remarks 4.5.8.

1. l(∆̂) = g−1hg−1w and so d(∆̂) > 4.

2. Since ∆̂ receives π
6

only across edges that are oriented towards ∆̂, Γ6 ≤ n
2
.

3. For each π
6

that ∆̂ receives, Φ(∆̂) will be decreased by 1 (Φ(∆̂) is the number

of corners of ∆̂ of angle π).
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Now c∗(∆̂) ≤ (2− n)π+ (n
2
−Γ6)π+ (n

2
+Γ6)

π
2
+Γ6.

π
6
< π(2− n

4
−Γ6 +

Γ6

2
+ Γ6

2
)

= π(2− n
4
). Therefore c∗(∆̂) > 0 implies n = 6 (Remark 4.5.8(1)). Observe that

Φ(∆̂) + Γ6 ≤ 3 and if Φ(∆̂) + Γ6 ≤ 2 then c∗(∆̂) ≤ 0. Now if Γ6 = 3, then c∗(∆̂)

≤ −4π + 6.π
2
+ 3.π

6
< 0. Also if Γ6 = 2, then c∗(∆̂) ≤ −4π + π + 5.π

2
+ 2.π

6
< 0.

Thus Γ6 = 1 and Φ = 2 (see Figure 4.38). However the ∗-corner has angle ≤ π
2

since the •-corner is not labelled by 1−1. Thus c∗(∆̂) ≤ 0. This completes the

proof.

g

1
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1

∆
< π/2

< π/2

h

h

*

π/6

h

h

Figure 4.38: c∗(∆̂) ≤ 0.

Before stating the main result for Case 3 consider the following exceptional cases.

(E1) g = h−1 and |h| ∈ {4, 6}.

(E2) g = h2 and 4 ≤ |h| < ∞.

(E3) h = g2 and |g| ∈ {4, 6}.

(E4) h ∈ {g3, g4} and |g| = 6.

(E5) (|h|, |gh−1|) ∈ {(2, 3), (3, 2)} and 1
|g| +

1
|gh−1| +

1
|h| > 1.

Remark 4.5.9. Observe that modulo (g, h) ↔ (g, h−1g) (see Lemma 4.5.4) the

exceptional case (E1) is the same as (E3). Also in (E4) it is enough to con-

sider h = g3 and in (E5) it is enough to consider |h| = 2, |gh−1| = 3 and
1
|g| +

1
|gh−1| +

1
|h| > 1.

Proposition 4.5.10. Suppose that none of the exceptional cases (E1)- (E5)

holds. Then P3 is not aspherical if and only if one of the following holds:
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1. h2= (gh−1)2=1 and |g| < ∞.

2. g = h−1 and |h| = 3.

Proof. If h2= (gh−1)2=1 and |g| < ∞, then P3 is not aspherical by Lemma

4.5.6. If g = h−1 and |h| = 3, then Ĝ = G ∗G◦ K, where G◦ is the group with

the presentation ⟨h|h3⟩ and K has the presentation ⟨h, x|x2h−1x2h−1xhxh, h3⟩.

Coset enumeration shows that the order of the group K equals 55296. Also K

properly contains G◦, and so Ĝ contains a finite subgroup that is not conjugate

to a subgroup of G. Theorem 1.1.3 therefore implies that P3 is not aspherical.

Assume now that neither of the conditions holds. Then it follows from the above

that P3 is aspherical except possibly if at least one of g = h−1, g = h2, h2 = 1,

h3 = 1 holds and at least one of h = g2, g = h2, (g−1h)2 = 1, (g−1h)3 = 1 holds.

Let g = h−1. This forces |h| = 3, a contradiction, or |h| ∈ {4, 6} which is (E1). So

assume g ̸= h−1. Let g = h2 then |h| < 4 yields a contradiction and 4 ≤ |h| < ∞

is (E2). Also if |h| = ∞ then P3 is aspherical by Lemma 1.3.1, so assume g ̸= h2.

Let h2 = 1 then either h = g2 which is (E3) or |gh−1| ∈ {2, 3}. If |gh−1| = 2

then Lemma 4.5.3 implies 1
|g| +

1
|gh−1| +

1
|h| > 1 and so |g| < ∞, a contradiction.

Now if |gh−1| = 3 then Lemma 4.5.3 implies either h = g3 which is (E4) or
1
|g| +

1
|gh−1| +

1
|h| > 1 which is (E5). So assume otherwise. Finally let h3 = 1 then

either h = g2 which is (E3) or |gh−1| ∈ {2, 3}. If |gh−1| = 2 then Lemma 4.5.3

implies either h = g4 which is (E4), or 1
|g| +

1
|gh−1| +

1
|h| > 1 which is (E5). If

|gh−1| = 3 then Lemma 4.5.7 implies P3 is aspherical. This completes the proof.

4.5.3 Case 11: (a=b=c, e=f only)

The relative presentation P11= ⟨G, y|ayayaydyeyey⟩=

⟨G, y, x|x(ay)−1, x3da−1xea−1xea−1x⟩= ⟨G, x|x4gxhxh⟩, where g = da−1 and

h = ea−1 (and so by assumption, g, h ∈ G\{1} and g ̸= h).
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Before stating the main result for Case 11, we list the following exceptional cases.

(E1) g ∈ {h−1, h2} and |h| ∈ {4, 6}.

(E2) H ∼= C2 × C3 and one of the following holds: |g| = 2 and |h| = 3 or |g| = 3

and |h| = 2.

(E3) h ∈ {g2, g3, g4} and |g| = 6.

(E4) g ∈ {h3, h4} and |h| = 6.

Proposition 4.5.11. Let P11 be the relative presentation P11=⟨G, x|x4gxhxh⟩,

where g, h ∈ G\{1}. Suppose that none of the conditions in (E1)-(E4) holds.

Then P11 is aspherical if and only if none of the following holds:

1. g = h2 and |h| = 3 or h = g2 and |g| ∈ {3, 4}.

2. 1
|g| +

1
|gh−1| +

1
|h| > 1, where 1

∞ := 0.

To prove Proposition 4.5.11, we first provide a series of lemmas.

Lemma 4.5.12. If P11 is not aspherical, then at least one of the following con-

ditions holds:

1. g = h−1.

2. g = h2 or h = g2.

3. 2 ∈ {|g|, |h|}.

4. |gh−1| = 2 and 3 ∈ {|g|, |h|}.

Lemma 4.5.13. Let g = h2 and |h| = 3 or h = g2 and |g| ∈ {3, 4}, then P11 is

not aspherical.
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Lemma 4.5.14. If g = h−1 and |h| /∈ {3, 4, 6}, then P11 is aspherical.

Lemma 4.5.15. If g = h2 and |h| /∈ {3, 4, 6}, then P11 is aspherical.

Lemma 4.5.16. If h = g2 and |g| /∈ {3, 4, 6}, then P11 is aspherical.

Lemma 4.5.17. If 1
|g| +

1
|gh−1| +

1
|h| > 1, then P11 is not aspherical.

Lemma 4.5.18. The following hold:

1. If |g| = 2, |gh−1| = 2 and |h| = ∞, then P11 is aspherical.

2. If |g| = 2, |gh−1| = 3, |h| ≥ 6 and g ̸= h3 then P11 is aspherical.

3. If |g| = 2, |gh−1| ≥ 4 and |h| ≥ 4, then P11 is aspherical.

4. If |g| = 2, |gh−1| = ∞ and |h| = 2, then P11 is aspherical.

5. If |g| = 2, |gh−1| ≥ 6, |h| = 3 and P11 is not aspherical then [g, h] = 1.

6. If |g| = ∞, |gh−1| = 2 and |h| = 2, then P11 is aspherical.

7. If |g| ≥ 6, |gh−1| = 3, |h| = 2 and h ̸= g3 then P11 is aspherical.

8. If |g| ≥ 4, |gh−1| ≥ 4 and |h| = 2, then P11 is aspherical.

9. If |g| = 3, |gh−1| ≥ 6, |h| = 2 and P11 is not aspherical then [g, h] = 1.

10. If |g| = 3 , |gh−1| = 2, |h| ≥ 6 and P11 is not aspherical, then g = h4 and

|h| = 6.

11. If |g| ≥ 6, |gh−1| = 2, |h| = 3 and P11 is not aspherical, then h = g4 and

|g| = 6.

The proofs of the above lemmas are given later on. Here we assume that they

are true and prove Proposition 4.5.11.
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Proof of Proposition 4.5.11.

The ‘only if’ direction of Proposition 4.5.11 follows from Lemmas 4.5.13 and

4.5.17. For the rest of the proof, we assume that none of the conditions of Pro-

position 4.5.11 holds. We show that either P11 is aspherical or exceptional.

If none of the conditions of Lemma 4.5.12 holds, then P11 is aspherical. Sup-

pose that Condition 1 of Lemma 4.5.12 holds. Then either P11 is aspherical by

Lemma 4.5.14 or exceptional of type (E1, g = h−1)(since Condition 1 of Propos-

ition 4.5.11 does not hold). So assume from now on that g ̸= h−1.

If Condition 2 of Lemma 4.5.12 holds and g = h2. Then |h| ≥ 4 (by the negation

of Condition 1 of Proposition 4.5.11) and so either P11 is aspherical by Lemma

4.5.15 or exceptional of type (E1, g = h2). Moreover if h = g2 then |g| ≥ 5

(Condition 1 of Proposition 4.5.11) and so either P11 is aspherical by Lemma

4.5.16 or exceptional of type (E3, h = g2 ). So assume from now on that g ̸= h2

and h ̸= g2.

Assume that Condition 3 of Lemma 4.5.12 holds and |g| = 2. Since g ̸= h,

|gh−1| ≥ 2. If |gh−1| = 2 then |h| = ∞ (Condition 2 of Proposition 4.5.11) and

it follows that P11 is aspherical by Lemma 4.5.18(1). If |gh−1| = 3, then |h| ≥ 6

(Condition 2 of Proposition 4.5.11). By Lemma 4.5.18(2), P11 is aspherical if

g ̸= h3, while if g = h3 then P11 is exceptional of type (E4, g = h3). If |gh−1| = 4

or 5 then |h| ≥ 4 (Condition 2 of Proposition 4.5.11), and so P11 is aspherical by

Lemma 4.5.18(3). Now suppose that |gh−1| ≥ 6. By Lemmas 4.5.18(4), 4.5.18(5)

and 4.5.18(3), if |gh−1| = ∞ then P11 is aspherical, so assume otherwise. Then

|h| ≥ 3 (Condition 2 of Proposition 4.5.11). If |h| = 3 then [g, h] ̸= 1, otherwise

P11 is exceptional of type E2, and so P11 is aspherical by Lemma 4.5.18(5). If

|h| ≥ 4, then P11 is aspherical by Lemma 4.5.18(3).
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Assume that Condition 3 of Lemma 4.5.12 holds and |h| = 2. Since g ̸= h,

|gh−1| ≥ 2. If |gh−1| = 2 then |g| = ∞ (Condition 2 of Proposition 4.5.11) and

it follows that P11 is aspherical by Lemma 4.5.18(6). If |gh−1| = 3, then |g| ≥ 6

(Condition 2 of Proposition 4.5.11). By Lemma 4.5.18(7), P11 is aspherical if

h ̸= g3, while if h = g3 then P11 is exceptional of type (E3, h = g3). If |gh−1| = 4

or 5 then |g| ≥ 4 (Condition 2 of Proposition 4.5.11), and so P11 is aspherical by

Lemma 4.5.18(8). Now suppose that |gh−1| ≥ 6. By Lemmas 4.5.18(4), 4.5.18(9)

and 4.5.18(8) , if |gh−1| = ∞ then P11 is aspherical, so assume otherwise. Then

|g| ≥ 3 (Condition 2 of Proposition 4.5.11). If |g| = 3 then [g, h] ̸= 1, otherwise

P11 is exceptional of type E2, and so P11 is aspherical by Lemma 4.5.18(9). If

|g| ≥ 4, then P11 is aspherical by Lemma 4.5.18(8).

Finally, if Condition 4 of Lemma 4.5.12 is satisfied and |g| = 3 (|gh−1| = 2). Then

|h| ≥ 6 (else, Condition 2 of Proposition 4.5.11 applies). If g = h4 then P is ex-

ceptional of type (E4, g = h4); otherwise P11 is aspherical by Lemma 4.5.18(10).

Now if Condition 4 of Lemma 4.5.12 is satisfied and |h| = 3 (|gh−1| = 2). Then

|g| ≥ 6 (else, Condition 2 of Proposition 4.5.11 applies). If h = g4 then P11 is ex-

ceptional of type (E3, h = g4); otherwise P11 is aspherical by Lemma 4.5.18(11).

This completes the proof.

Let P be a non-trivial reduced spherical picture over P11 =⟨G, x|x4gxhxh⟩. Then

each vertex(disc) in P has one of the forms given by Figure 4.39(i) and (ii); and

the the star graph Pst
11 of P11 is given by Figure 4.39(iii).
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Figure 4.39: + disc, - disc and Pst
11.

There are (up to inversion) four types of vertices of degree 3 in P and these are

shown in Figure 4.40.
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Figure 4.40: Types of vertices of degree 3.

For the proofs, we define the following angle functions on the vertices v of P. Re-

call that the standard angle function α is defined as follows. Each corner within

a 2-bond has angle zero, while each of the other corners has angle 2π
d(v)

.

Define an angle function α1 on P as follows. Corners within 2-bonds have angle

zero. In vertices of degree 3, corners (not within 2-bonds) labelled by 1±1 have

angle π, each of the other two corners has angle π
2

(see Figure 4.41). If d(v) ≥ 4,

then each corner in v not in a 2-bond has angle 2π
d(v)

.
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Figure 4.41: Angle function α1 for vertices of degree 3.

The angle function α2 is defined as follows. Again, corners within 2-bonds have

angle zero. For vertices of degree 3, corners labelled by g±1 have angle π, each of

the other two corners has angle π
2

(see Figure 4.42). If d(v) ≥ 4, then each corner

in v not in a 2-bond has angle 2π
d(v)

.

hh

h g

1h h

h

h
h

h

h

g

h

1

h h

1 or g 1 or h

g h

1

1

1

1
g

h

Type 1

g1

h

π/2

π/2 π
h

g

h

Type 2 Type 3

π/2

g

π/2
h

11 not h

Type 4

π/2
h

h
π

π/2

π

π/2
h 11

π/2 π
g

1

Figure 4.42: Angle function α2 for vertices of degree 3.

Finally define the angle function α3 as follows. Again, corners within 2-bonds

have angle zero. In vertices of degree 3, corners labelled by h±1 have angle π,

each of the other two corners has angle π
2

(see Figure 4.43). If d(v) ≥ 4, then

each corner in v not in a 2-bond has angle 2π
d(v)

.
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Figure 4.43: Angle function α3 for vertices of degree 3.

Remarks 4.5.19.

1. By assigning the angle function α1 to the corners of P, the following are

satisfied:

(i) There are no consecutive corners with angle π in the boundary of a re-

gion ∆ of P. As shown in Figure 4.41, this is clear for Type 1 vertex. Now

if the ∗-corner in Type 2 vertex is labelled by 1−1 with angle π then P is not

reduced. The same can be deduced for Type 3 and Type 4 vertices.

(ii) Since (2− 8)π + 4π + 4.π
2
= 0, positive regions can only have degree 4

or 6.

(iii) If ∆ is a positive 4-region then it contains at least one corner labelled

by 1±1 with angle π (otherwise c(∆) ≤ −2π + 4.π
2
= 0 ).

(iv) If ∆ is a positive 6-region then it contains three occurrences of 1±1-

corners each with angle π (else c(∆) ≤ −4π + 2π + 4.π
2
= 0 ).

2. By assigning the angle function α2 to the corners of P, the following are

satisfied:

(i) In any region ∆ of P, there are no consecutive corners with angle π, else

P is not reduced (if two adjacent corners in the boundary of a region are
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labelled by g and g−1 or vice versa then it is clear from Pst
11 that P is not re-

duced ). Hence positively curved regions can only be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region, then it has at least one corner labelled by

g±1 with angle π.

(iii) If ∆ is a positive 6-region, then it contains at least three g±1- corners

each with angle π.

3. By assigning the angle function α3 to the corners of P, the following are

satisfied:

(i) There are no consecutive corners with angle π in the boundary of a

region ∆ of P (otherwise P is not reduced). Thus positive regions can only

be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region then it contains at least one corner labelled

by h±1 with angle π.

(iii) If ∆ is a positive 6-region then it contains three occurrences of h±1-

corners each with angle π.

(iv) Note that an h±1-corner in a sublabel (g−1h1−1)ϵ, ϵ = ±1 of a label of a

region in P cannot be of angle π. This is because no h-corner in the vertex

v shown in Figure 4.44 can be in a 2-bond and so d(v) ≥ 4. The case ϵ = 1

is done in Figure 4.44 and the case ϵ = −1 can be done similarly. The same

applies for an h±1-corner in sublabels (h−1hh−1)±1 and (g−1hh−1)±1.

h
_

g
_

h
_

g
_

h
_

1 or g

< π/2 < π/2< π/2

1

11

v v
h

v
hh

Figure 4.44: h±1-corner in (g−1h1−1)±1, (h−1hh−1)±1 and (g−1hh−1)±1 has
angle ≤ π

2 .

Throughout the proofs of the coming lemmas in Case 11, we assume that P is a
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non-trivial reduced spherical picture over P11. Consider the following assumption

on P:

• (A) the number of 4-regions of P is minimal.

We will adopt this assumption in some subcases and it will be clearly stated when

but in general we will not insist on it. Let c be the curvature function associ-

ated to the given angle function on the vertices of P. Let ∆ denote a positive

region in each subcase and let Γ(∆, ∆̂) > 0, where Γ is the distribution function.

If the distributed curvature function is denoted by c∗, then c∗(∆̂) > c(∆̂) and

c∗(∆̂) > 0. Moreover, set Γk(∆̂) = |{∆ : Γ(∆, ∆̂) = π
k
}|.

Proof of Lemma 4.5.12. Assume that P11 is not aspherical and assume that

(A) holds. To prove Lemma 4.5.12, suppose that none of the Conditions 1, 2 or

3 holds. That is, g ̸= h−1, g ̸= h2, h ̸= g2 and both g and h have order at least

3. We must show that Condition 4 holds.

First assign the standard angle function α to the vertices of P. By the curvature

formula, there is a positively curved region ∆ in P. Also, the maximum curvature

of any n-region in P is π
(
6−n
3

)
, and hence c(∆) > 0 only if n = 4.

A positively curved 4-region ∆ has at least one vertex of degree 3. The pos-

sible labellings for a positive 4-regions are: 11−111−1, 11−1hh−1, 1−11h−1h and

gh−1gh−1. Each of the first three labellings gives 4-regions that contradicts as-

sumption (A) as shown in Figure 4.45 and so by assigning α we obtain |gh−1| = 2.
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Figure 4.45: The regions 11−111−1, 11−1hh−1 and 1−11h−1h.

Now use the angle function α1 for the vertices of P. By Remark 4.5.19.(1)(ii),

positively curved regions can only be 4-regions or 6-regions. By Remark

4.5.19.(1)(iii) positively curved 4-regions do not exist. By Remark 4.5.19.(1)(iv)

the possible labellings for positive 6-regions give either g3 = 1 or h3 = 1 (observe

that the 1-corner in the sublabel h−11g−1 cannot have angle π and so positive

regions do not imply g = h−2 or h = g−2).
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By using the standard angle function and the angle function α1, if none of the

Conditions 1, 2 or 3 holds, then (gh−1)2=1 and one of the following is satisfied:

g3 = 1 or h3 = 1. That is |gh−1| = 2 and 3 ∈ {|g|, |h|} which is Condition 4, as

required.

Proof of Lemma 4.5.13. Coset enumeration shows that the order of the group

⟨h, x|x4h2xhxh, h3⟩ equals 342. Also the order of ⟨g, x|x4gxg2xg2, gk⟩ equals 342,

1275000 (respectively) for k = 3 and 4 (respectively).

Proof of Lemma 4.5.14 Let g = h−1 and |h| /∈ {3, 4, 6}. Let P be a non-trivial

reduced spherical picture over P11. By assigning α2 to the corners of P, the only

positive region is given by Figure 4.46. Distribute the curvature as shown.

h

1 1

g
_

h
_

h
_

1 h
_

g
_

1 or g 1
_

1

_
h

h
1

h

g

π/2

π/2
π

Figure 4.46: Positively curved region in Case g = h−1 and distribution
scheme.

Remarks 4.5.20.

1. l(∆̂) = h−11h−1w and so d(∆̂) ≥ 6.

2. Since ∆̂ receives π
2

only across edges that are oriented outwards ∆̂, Γ2 ≤ n
2
.

3. For each π
2

that ∆̂ receives, Φ(∆̂) will be decreased by 1.
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Now c∗(∆̂) ≤ (2 − n)π + (n
2
− Γ2)π + (n

2
+ Γ2)

π
2
+ Γ2.

π
2
= (2 − n

4
)π. Therefore

c∗(∆̂) > 0 implies n = 6. If Γ2 = 3 then h3 = 1, a contradiction. Thus Γ2 ≤ 2 and

so Φ(∆̂) ≥ 1. In fact Γ2 +Φ(∆̂) = 3, for otherwise c∗(∆̂) ≤ −4π + 6.π
2
+ 2.π

2
= 0

or c∗(∆̂) ≤ −4π + 5.π
2
+ π + π

2
= 0. Now if Γ2 = 2 and Φ(∆̂) = 1 then

l(∆̂) = h−11h−11h−1g which implies h4 = 1, a contradiction. This leaves Γ2 = 1

and Φ(∆̂) = 2 and so the situation shown in Figure 4.47 is forced. However since

e is not an hh−1-bond, Φ(∆̂) = 2 is not possible. Thus c∗(∆̂) ≤ 0 and so P11 is

aspherical.

hg
_

h
_

h
_

h
_

h

g
_

h
_

1

1 1

_
h

h
1g

π/2

g
π

1

gπ
h

e

Figure 4.47: Γ2 = 1 and Φ(∆̂) = 2 is not possible.

Proof of Lemma 4.5.15 Let g = h2 and |h| /∈ {3, 4, 6}. Let P be a non-trivial

reduced spherical picture over P11. By assigning α2 to the corners of P, the only

positive region is given by Figure 4.48. Distribute the curvature as shown.

h
1 h

_
h
_

g
_

g
_

h
_

1

h
_

π/2
g

h

1

π/2

1

h π

Figure 4.48: Positively curved region in Case g = h2 and distribution scheme.
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Remarks 4.5.21.

1. l(∆̂) = 1−1h1−1w and so d(∆̂) ≥ 6.

2. Since ∆̂ receives π
2

only across edges that are oriented towards ∆̂, Γ2 ≤ n
2
.

3. For each π
2

that ∆̂ receives, Φ(∆̂) will be decreased by 1.

Now c∗(∆̂) ≤ (2 − n)π + (n
2
− Γ2)π + (n

2
+ Γ2)

π
2
+ Γ2.

π
2
= (2 − n

4
)π. Therefore

c∗(∆̂) > 0 implies n = 6. If Γ2 = 3 then h3 = 1, a contradiction. Thus Γ2 ≤ 2 and

so Φ(∆̂) ≥ 1. In fact Γ2 +Φ(∆̂) = 3, for otherwise c∗(∆̂) ≤ −4π + 6.π
2
+ 2.π

2
= 0

or c∗(∆̂) ≤ −4π + 5.π
2
+ π + π

2
= 0. Now if Γ2 = 2 and Φ(∆̂) = 1 then

l(∆̂) = 1−1h1−1h1−1g which implies h4 = 1, a contradiction. This leaves Γ2 = 1

and Φ(∆̂) = 2 and so the situation shown in Figure 4.49 is forced. However since

e is not a 3-bond, Φ(∆̂) = 2 is not possible. Thus c∗(∆̂) ≤ 0 and so P11 is

aspherical.

h
h
_

g
_

h
_

1

1

h
_

g
_

1

g
h

1

g π

g π

h

π/2

e

Figure 4.49: Γ2 = 1 and Φ(∆̂) = 2 is not possible.

Proof of Lemma 4.5.16 Let h = g2 and |g| /∈ {3, 4, 6}. Let P be a non-trivial

reduced spherical picture over P11. Assign α1 to the corners of P. By assumption

(A), the only positive region is given by Figure 4.50. Distribute the curvature as

shown.
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h

1 1

h
_1

h
_

g
_

g
_

1

g
_

h
_

h
_

h
h

g

h

π/2 π/2
1 π

Figure 4.50: Positively curved region in Case h = g2 and distribution scheme.

Remarks 4.5.22.

1. l(∆̂) = h−1gh−1w and so d(∆̂) ≥ 6.

2. Since ∆̂ receives π
2

only across edges that are oriented towards ∆̂, Γ2 ≤ n
2
.

3. For each π
2

that ∆̂ receives, Φ(∆̂) will be decreased by 1.

Now c∗(∆̂) ≤ (2 − n)π + (n
2
− Γ2)π + (n

2
+ Γ2)

π
2
+ Γ2.

π
2
= (2 − n

4
)π. Therefore

c∗(∆̂) > 0 implies n = 6. If Γ2 = 3 then (gh−1)3 = 1 which implies g3 = 1,

a contradiction. Thus Γ2 ≤ 2 and so Φ(∆̂) ≥ 1. In fact Γ2 + Φ(∆̂) = 3, for

otherwise c∗(∆̂) ≤ −4π + 6.π
2
+ 2.π

2
= 0 or c∗(∆̂) ≤ −4π + 5.π

2
+ π + π

2
= 0.

Now if Γ2 = 2 and Φ(∆̂) = 1 then l(∆̂) = h−1gh−1gh−11 which implies g4 = 1,

a contradiction. This leaves Γ2 = 1 and Φ(∆̂) = 2 and so the situation shown in

Figure 4.51 is forced. However since e is not a 3-bond, Φ(∆̂) = 2 is not possible.

Thus c∗(∆̂) ≤ 0 and so P11 is aspherical.
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Figure 4.51: Γ2 = 1 and Φ(∆̂) = 2 is not possible.

Proof of Lemma 4.5.17. If 1
|g| +

1
|gh−1| +

1
|h| > 1 then there are non-trivial

reduced spherical pictures P over P11. For example if (|g|, |gh−1|, |h|) =(3, 2, 3)

then P is given by Figure 4.52 (we omit the labellings of hh−1-bonds). The other

spheres are constructed in a similar way, we omit the details.
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Figure 4.52: (|g|, |gh−1|, |h|) =(3, 2, 3).
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Remark 4.5.23. Let ∆ be a region of degree n. Also let Φ=Φ(∆) denote the

number of corners of angle π in ∆. Then by assigning the angle functions α1, α2

and α3 to the vertices of P, Φ(∆) ≤ n
2

(Remarks 4.5.19(1)(i), (2)(i) and (3)(i) ).

Proof of Lemma 4.5.18(1): Case(2, 2,∞)

Here we assume that |g| = |gh−1| = 2 and |h| = ∞. We show P11 is aspherical.

Assume that (A) holds and assign the angle function α3 to the vertices of P. By

Remark 4.5.19(3)(i) the degree of a positive region ∆ can only be 4 or 6. For pos-

itive 4-regions the allowed labelling is g−1hg−1h which gives the positive regions

shown in Figure 4.53. However the labelling for positive 6-regions contradict the

assumptions. Distribute the curvature as shown.
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1
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_
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π

π
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h
π
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1

h

π
hh

π/2 π/2

Figure 4.53: Positively curved regions in Case(2, 2,∞) and distribution
scheme.

Remarks 4.5.24.

1. Observe that for each g±1-corner in ∆̂, Γ2 is decreased by 1.

2. Let k denote the number of g±1-corners in ∆̂. Since g2 = (gh−1)2 = 1 in

gp{g, h}, k is even.
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3. Since ∆̂ receives π/2 only across edges that are oriented towards ∆̂, Γ2 ≤ n
2
.

Now l(∆̂) = h−11h−1w and so d(∆̂) > 4. If d(∆̂) = 6 then the only possible

label is h−11h−1h1−11−1h. However this implies that Φ(∆̂) = 0 and Γ2 ≤ 2

and so c∗(∆̂) ≤ 0. Thus assume d(∆̂) ≥ 8. If k ≥ 4 then Γ2 ≤ n
2
− 4 and so

c∗(∆̂) ≤ (2 − n)π + n
2
.π + n

2
.π
2
+ (n

2
− 4)π

2
=0. Thus k=0 or 2. If k=0 then

either |h| < ∞, a contradiction or l(∆̂) involves two of the sublabels h−1(11−1)kh

(k ≥ 0) which forces c∗(∆̂) ≤ 0. Hence k=2. If Φ(∆̂) ≤ n
2
− 2, then c∗(∆̂) ≤

(2−n)π+(n
2
−2)π+(n

2
+2)π

2
+(n

2
−2)π

2
= 0. Thus up to inversion, l(∆̂) = gw1g

εw2

where ε = ±1. Clearly then the maximum possible number of h±1-corners in

either w1 or w2 must have angle π, say w2. This forces w2 = h−1, ε = 1 and the

situation is shown in Figure 4.54.

1

g
_

1

h
_

1

h
_

∆

1

h

1

1
1

h
h

π

1 1

h
g

g

0

0

Figure 4.54: k = 2 and Φ(∆̂) > n
2 − 2.

Proof of Lemma 4.5.18(2): Case(2, 3, 6̄)

Here we assume that |g| = 2 , |gh−1| = 3, |h| ≥ 6 and g ̸= h3. We show that P11

is aspherical. Assign the angle function α3 on P.

By Remark 4.5.19(3)(ii), the possible labels for a positive 4-region must involve

h±1 and each yields a contradiction. By Remark 4.5.19(3)(iii), possible positive

6-regions give the labelling (hg−1)3 = 1. Therefore there is only one positive

region which is given by Figure 4.55. Distribute the curvature as shown.
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Figure 4.55: Positively curved region in Case(2, 3, 6̄) and distribution scheme.

Remarks 4.5.25.

1. l(∆̂) = h−11h−1w and so d(∆̂) > 4.

2. Since ∆̂ receives π/6 only across edges that are oriented towards ∆̂, Γ6 ≤ n
2
.

Observe that c∗(∆̂) ≤ (2− n)π + n
2
.π + n

2
.π
2
+ n

2
.π
6

= π
(
2− n+ n

2
+ n

4
+ n

12

)
. The

fact that c∗(∆̂) > 0 implies that n < 12.

Let ∆̂ be a 6-region. Then the possible label is h−11h−1h1−1h. However this

implies Φ(∆̂) ≤ 1 and so c∗(∆̂) ≤ 0. Now let ∆̂ be an 8-region. If Γ6 = 4 then

h4 = 1, a contradiction. Now ∆̂ involves 4 corners with angle π. For otherwise,

c∗(∆̂) ≤ −6π+3π+ 5.π
2
+ 3.π

6
= 0. Hence l(∆̂) = h−11h−1w1h

−1w2h
−1w3, where

w1, w2, w3 ∈ {1, g, h}. By inspection c∗(∆̂) > 0 forces wi = 1 (1 ≤ i ≤ 3) which

implies h4 = 1, a contradiction. Finally let ∆̂ be a 10-region. Assume that ∆̂

contains 5 corners with angle π, or else c∗(∆̂) ≤ −8π+4π+6.π
2
+5.π

6
< 0. Thus

as before l(∆̂) implies h5 = 1, a contradiction.
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Proof of Lemma 4.5.18(3): Case(2, 4̄, 4̄)

Here |g| = 2, |gh−1| ≥ 4 and |h| ≥ 4. Let P be a reduced spherical picture over

P11 and assign the angle function α3 to P. Then P11 is aspherical unless one of

the following conditions holds: h2 = 1 or h3 = 1 or(gh−1)2 = 1 or (gh−1)3 =

1. However each of these conditions contradicts the assumptions and so P11 is

aspherical.

Proof of Lemma 4.5.18(4): Case(2,∞, 2)

Here |g| = |h| = 2 and |gh−1| = ∞. We show P11 is aspherical. Assign the angle

function α2 to the vertices of P. By Remark 4.5.19(2)(i) the degree of a positive

region ∆ can only be 4 or 6. For positive 4-regions the only allowed labelling is

g1−1g1−1 which gives the two positive regions shown in Figure 4.56. However,

by Remark 4.5.19(2)(iii) there are three occurrences of g±1 in the labellings of

positive 6-regions, and each yields a contradiction.
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Figure 4.56: Positively curved region in Case(2,∞, 2).

Apply the following distribution scheme which is shown in Figure 4.57:
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Γ(∆, ∆̂) =



c(∆)/2 if π
2
< c(∆) ≤ π and ∆ is separated from ∆̂ by a single

bond that is oriented from ∆ to ∆̂

c(∆) if 0 < c(∆) ≤ π
2

and ∆ is separated from ∆̂ by a single

bond S that is oriented from ∆ to ∆̂ and S is

adjacent to a g±1-corner in ∆ with angle π

0 otherwise
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Figure 4.57: Distribution scheme in Case(2,∞, 2).

Remarks 4.5.26.

1. Since ∆̂ receives π
2

only across edges that are oriented towards ∆̂, Γ2 ≤ n
2
.

2. Let e denote the edge across which ∆̂ receives curvature. One of the corners

of ∆̂ that is adjacent to e is labelled by h±1, the other is labelled by 1±1 or

g±1.

3. Observe that c∗(∆̂) ≤ (2− n)π + n
2
.π + n

2
.π
2
+ n

2
.π
2
= 2π. This upper bound

for c∗(∆̂) holds by assuming that ∆̂ involves n
2

corners of angle π
2
, n

2
corners

of angle π and Γ2 =
n
2
.
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4. Since g2 = h2 = 1 and |gh−1| = ∞, if w=1 in gp{g, h} then a cyclic per-

mutation of w involves either the sublabel gg twice or the sublabel hh twice

or the sublabels gg and hh (for example, the relator hghgghgh involves gg

and hh). The possible sublabels of l(∆̂) that give gg and hh (respectively)

are: g(1−11)k1−1g(k ≥ 0) and {h(1−11)r1−1h, h(1−11)rh−1(r ≥ 0)} (respect-

ively). Note that g(1−11)kg−1(k ≥ 0) cannot occur as a sublabel of a region

in P for (up to bridge moves) P is not reduced.

Claim: If l(∆̂) includes one of the sublabels that give gg or hh, then c∗(∆̂) is

decreased at least by π.

Proof of Claim. It is enough to prove the result for the sublabels g1−1g, h1−1h,

h1−11h−1 and hh−1.

• g1−1g: by Remark 4.5.26(2), ∆̂ receives 0 across the shown edge in Figure

4.58(i). If the g-corner of vertex v has angle ≤ π
2

then we are done. Oth-

erwise v is given by Figure 4.58(ii). In this case ∆̂ receives 0 also across e

and so either each of Φ(∆̂) and Γ2 is decreased by 1 or Γ2 is decreased by

2.

• hh−1: then Φ(∆̂) is decreased by 1. By inspection (Figure 4.57) ∆̂ receives

0 across each of the edges e1 and e2 as shown in Figure 4.58(iii). Thus Γ2

is decreased by 2.

• h1−11h−1: then Φ(∆̂) ≤ n
2
− 2.

• h1−1h: then Φ(∆̂) is decreased by 1. Also either Γ2 is decreased by 1 and

we are done, or the situation shown in Figure 4.58(iii) is forced. However,

in the latter case Γ2 is also decreased by 1. This is because the corner

indicated by ∗ is labelled by h or g. Thus either ∆1 is not the positive

region (g1−1)2 shown in Figure 4.56 or d(v) ≥ 4 and so Γ(∆1, ∆̂) = 0. This

completes the proof of the claim.
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Figure 4.58: The sublabels g1−1g, hh−1 and h1−1h.

Observe that the ∗-corner in Figure 4.58(ii) is labelled by 1−1 and not g−1. Thus

if l(∆̂) involves two of the sublabels (g1−1g)±1 then c∗(∆̂) is decreased at least by

2π. Now if hh−1 occurs in l(∆̂) with any of the sublabels g1−1g, hh−1, h1−11h−1

and h1−1h then Φ + Γ2 ≤ n
2
− 4 and so c∗(∆̂) ≤ 0. It now follows from Remarks

4.5.26(3), (4), the above claim and Figure 4.58 that c∗(∆̂) ≤ 0 except possibly

when l(∆̂) involves two of the sublabels (h1−1h)±1. In this case ∆̂ is given by

Figure 4.58(iv) so that ∆̂ receives 0 across the edge e as shown. Now if ∆̂ involves

another sublabel of the form (h1−1h)±1, then by the same argument ∆̂ receives

0 across an edge, say e1. The concern is that e can coincide with e1 and so c∗(∆̂)

is decreased by 3π
2

not 2π. This can only occur in the case shown in Figure 4.59.

However, in this case Φ(∆̂) is decreased by 3 and Γ2 is decreased by 1. Thus

c∗(∆̂) ≤ 0.
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∆
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h h

0

Figure 4.59: ∆̂ involves the sublabels (h1−1h)±1 twice where the edges e and
e1 coincide.

Proof of Lemma 4.5.18(5): Case(2, 6̄, 3)

Here |g| = 2, |gh−1| ≥ 6 and |h| = 3. Assume that [g, h] ̸= 1. Then we show

P11 is aspherical. Assign the angle function α2 on P. By Remark 4.5.19(2)(i)

the degree of a positive region ∆ can only be 4 or 6. For positive 4-regions the

only allowed labelling is g1−1g1−1 which gives the two positive regions shown in

Figure 4.60. However, by Remark 4.5.19(2)(iii) there are three occurrences of

g±1 in the labellings of positive 6-regions, and each yields a contradiction. For

example, if (gh−1)2g = 1 then (gh−1)3 = 1, contradicting |gh−1| ≥ 6.

h

1 1

g
_

h
_

h
_

1

h

1 1

g
_

h
_

h
_

1

1
_

g
_

h g
_

g
_

h
_

h
_

h
_

1 1

1

h
_

g
_

h
_

h

1

_
h

1g

g

1

_
h

h
1g

h

h

1

h 1 or g 1
_

h1
1 1

g

Figure 4.60: Positively curved regions in Case(2, 6̄, 3).

Apply the following distribution scheme which is shown in Figure 4.61:
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Γ(∆, ∆̂) =



c(∆)/3 if c(∆) > 0 and ∆ is separated from ∆̂ by a 3-bond

that is oriented from ∆̂ to ∆

c(∆)/6 if π
2
< c(∆) ≤ π and ∆ is separated from ∆̂ by

a single bond that is oriented from ∆ to ∆̂

c(∆)/3 if 0 < c(∆) ≤ π
2

and ∆ is separated from ∆̂ by

a single bond S that is oriented from ∆ to ∆̂ and S

is adjacent to a g±1-corner in ∆ with angle π

0 otherwise
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1
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_
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_
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_
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π
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_
h

1gh
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g

π/6

π/3

π/2

∆

∆∆

π/6

∆

1

2

3
1∆

∆ 2

4

e e1 1

Figure 4.61: Distribution scheme in Case(2, 6̄, 3).

Claim: Curvature cannot be distributed into ∆̂ across adjacent arcs in the

boundary of ∆̂. (In particular, Γ3 + Γ6 ≤ n
2
).

Proof of Claim. Up to inversion, ∆̂ could be only one of the regions ∆1, ∆2,

∆3, ∆4, ∆′
1 or ∆′

2 that are shown in Figure 4.61. If ∆̂= ∆1 then Γ(∆2, ∆̂) = 0

since ∆2 has corner with label h−1. Also, ∆̂ = ∆1 does not receive curvature

across e1 for the same reason. We follow the same argument if ∆̂ = ∆2, ∆3, ∆4
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or ∆′
2. Now let ∆̂ = ∆′

1. Then as above Γ(∆′
2, ∆̂) = 0. Note that the edge e′1

cannot be a 3-bond and so ∆̂ = ∆′
1 does not receive any curvature across e′1. This

completes the proof of the claim.

Remarks 4.5.27.

1. If ∆̂ receives π
6

then l(∆̂) = {1−1, g−1}hg−1w1, while if it receives π
3

then

l(∆̂) = h−11h−1w2. Therefore d(∆̂) > 4.

2. By Remark 4.5.23, Φ(∆̂) ≤ n
2
. For each π

3
that ∆̂ receives, Φ(∆̂) will be

decreased by 1 and so c(∆̂) will be decreased by π/2.

3. For each π
6

that ∆̂ receives, Φ(∆̂) will be decreased by 1 or the situation

shown in Figure 4.62 holds (since d(v) = 3 forces this situation).

g
_

h
_

h
_

1
_

1

h
_

h
_

g
_

11

h

h

g
_

h

1
h

g 1
h

h

_

1

g

h
h

1
11

g

∆

π
v

Figure 4.62: l(∆̂) = hg−1hg−1w.

It follows from the claim and Remark 4.5.27(2), that if d(∆̂) = n then c∗(∆̂)

≤ (2− n)π+ n
2
.π+ n

2
.π
2
+ n

2
.π
6
≤ 0 ⇔ 2− n

4
+ n

12
≤ 0 ⇔ n ≥ 12 and so it remains

to check degrees 6, 8 and 10 only.
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Firstly, let ∆̂ be a 6-region. Then the possible labellings are: h1−1h1−1h1−1,

h−11h−1h1−1h and g−1hg−11h−11. For the region labelled by h1−1h1−1h1−1

note that Γ6 = 0 by Remark 4.5.27(1). Thus c∗(∆̂) ≤ −4π + 6.π
2
+ 3.π

3
= 0.

The same applies to the region labelled by h−11h−1h1−1h. It remains to check

the region ∆̂ shown in Figure 4.63. By Remark 4.5.27(1), Γ3 = 0 and so

Γ6 = 1. Note that d(v) ≥ 4 and so the g−1-corner of v has angle ≤ π
2
. Thus

c∗(∆̂) ≤ −4π + π + 5.π
2
+ π

6
= −π

2
+ π

6
< 0.

g
_

g
_

h
_

h
_

h
_

h

1

1

g or h

v
1

1 1

∆
1 or g

Figure 4.63: l(∆̂) = g−1hg−11h−11.

Now let ∆̂ be an 8-region. If Γ6 = 0 then by Remark 4.5.27(2), c∗(∆̂) < 0.

Moreover by Remarks 4.5.27(2), (3) and the above claim, l(∆̂) = hg−1hg−1w or

else c∗(∆̂) ≤ 0. However, l(∆̂) = hg−1hg−1w yields a contradiction. For example,

if (g−1h)3h = 1 then h = (g−1h)−3 and g = (g−1h)−4. Since g2= h3=1 this gives

that g−1h = 1, a contradiction.

Finally, let ∆̂ be a 10-region. Since (2 − 10)π + 5.π + 5.π
2
= −π

2
, it remains to

check the cases Γ6 = 5 and Γ6 = 4. The first implies (gh−1)5 = 1, a contradiction.

By Remarks 4.5.27(2), (3) and the above claim, the second implies (gh−1)5 = 1,

a contradiction.

Proof of Lemma 4.5.18(6): Case(∞, 2, 2)
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Here we assume that |h| = |gh−1| = 2 and |g| = ∞. We show P11 is aspher-

ical. Assume that (A) holds and assign the angle function α1 to the vertices of

P. By Remark 4.5.19(1)(ii) the degree of a positive region ∆ can only be 4 or

6. For positive 4-regions the allowed labelling is 1h−11h−1. This labelling gives

the positive regions shown in Figure 4.64. By Remark 4.5.19(1)(iv) the possible

labellings for positive 6-regions are 11−111−111−1 and 11−11h−11h−1. However

these labellings imply that P is not reduced.

g
_

h
_

h
_

h
_

1

g
_

h
_
h
_

h
_

g
_

h
_

1

1

h

1

1π

one in a 2−bond

hh

g

one in a 2−bond

π

1π

one in a 2−bond

hh

g

1g

h

Figure 4.64: Positively curved regions in Case(∞, 2, 2).

Apply the following distribution scheme which is shown in Figure 4.65:

Γ(∆, ∆̂) =



c(∆)/2 if π
2
< c(∆) ≤ π and ∆ is separated from ∆̂ by

a 3-bond that is oriented from ∆ to ∆̂

c(∆) if 0 < c(∆) ≤ π
2

and ∆ is separated from ∆̂ by

a 3-bond S that is oriented from ∆ to ∆̂ and

S is adjacent to an h±1-corner in ∆ with angle π

0 otherwise
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g
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π

1π
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g

1g

h

π π/2π/2 π/2 π/2

Figure 4.65: Distribution scheme in Case(∞, 2, 2).

Remarks 4.5.28.

1. Observe that for each h±1-corner in ∆̂, Γ2 is decreased by 1.

2. Let k denote the number of h±1-corners in ∆̂. Since h2 = (gh−1)2 = 1 in

gp{g, h}, k is even.

3. Since ∆̂ receives π/2 only across edges that are oriented outwards ∆̂, Γ2 ≤
n
2
.

If k ≥ 4 then Γ2 ≤ n
2
− 4 and so c∗(∆̂) ≤ (2 − n)π + n

2
.π + n

2
.π
2
+ (n

2
− 4)π

2

=0. Thus k=0 or 2. However, l(∆̂) should involve h±1-corners, for other-

wise P is not reduced or |g| < ∞. Hence k=2. If Φ(∆̂) ≤ n
2
− 2, then

c∗(∆̂) ≤ (2 − n)π + (n
2
− 2)π + (n

2
+ 2)π

2
+ (n

2
− 2)π

2
= 0. Thus up to inversion,

l(∆̂) = hw1h
εw2 where ε = ±1. Clearly then the maximum possible number of

1±1-corners in either w1 or w2 must have angle π, say w2. This forces w2 = 1−1,

ε = 1 and the situation is shown in Figure 4.66. Since c∗(∆̂) > c(∆̂), w1 must

involve at least one g±1-corner. But h2=1 and |g| = ∞ imply that w1 involves

both g− and g−1− corners and so P is not reduced. It follows that c∗(∆̂) ≤ 0.
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1 g
_
h
_

h
_

∆

h

0

g or h

h
g

1
h

0

π

Figure 4.66: k = 2 and Φ(∆̂) > n
2 − 2.

Proof of Lemma 4.5.18(7): Case(6̄, 3, 2)

Here we assume that |g| ≥ 6, |gh−1| = 3, |h| = 2 and h ̸= g3. We show that P11

is aspherical. Assign the angle function α2 on P.

By Remark 4.5.19(2)(ii), the possible labels for a positive 4-region must involve

g±1 and each yields a contradiction. By Remark 4.5.19(2)(iii), possible positive

6-regions give the labelling (gh−1)3 = 1. Therefore there is only one positive

region which is given by Figure 4.67.
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Figure 4.67: Positively curved region in Case(6̄, 3, 2).

Apply the following distribution scheme:
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Γ(∆, ∆̂) =


c(∆)/3 if c(∆) > 0 and ∆ is separated from ∆̂ by a single

bond that is oriented from ∆̂ to ∆

0 otherwise

h

h

g
_

h

h
_

h
_

1 1

1

g

1
1

1

h
_

g

g

g

1

1

1
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1
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1

1

h

h

h

h

h
g

π/2

1

g

h

π/6

π/6 π/6

Figure 4.68: Distribution scheme in Case(6̄, 3, 2).

Remarks 4.5.29.

1. Since ∆̂ receives π/6 only across edges that are oriented outwards ∆̂, Γ6 ≤
n
2
.

2. l(∆̂) = g−11g−1w and so d(∆̂) > 4.

Observe that c∗(∆̂) ≤ (2− n)π + n
2
.π + n

2
.π
2
+ n

2
.π
6

= π
(
2− n+ n

2
+ n

4
+ n

12

)
. The

fact that c∗(∆̂) > 0 implies that n < 12.

Let ∆̂ be a 6-region. Then each possible label yields a contradiction. So let

∆̂ be an 8-region. If Γ6 = 4 then g4 = 1, a contradiction. Now ∆̂ involves
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4 corners with angle π. For otherwise, c∗(∆̂) ≤ −6π + 3π + 5.π
2
+ 3.π

6
= 0.

Hence l(∆̂) = g−11g−1w1g
−1w2g

−1w3, where w1, w2, w3 ∈ {1, h}. By inspection

c∗(∆̂) > 0 forces wi = 1 (1 ≤ i ≤ 3) which implies g4 = 1, a contradiction.

Finally let ∆̂ be a 10-region. Assume that ∆̂ contains 5 corners with angle π, or

else c∗(∆̂) ≤ −8π+4π+6.π
2
+5.π

6
< 0. Hence l(∆̂) = g−11g−1w1g

−1w2g
−1w3g

−1w4,

where wi ∈ {1, h} (1 ≤ i ≤ 4). By inspection c∗(∆̂) > 0 forces wi = 1 (1 ≤ i ≤ 4)

which implies g5 = 1, a contradiction.

Proof of Lemma 4.5.18(8): Case(4̄, 4̄, 2)

Here |g| ≥ 4, |gh−1| ≥ 4 and |h| = 2. Let P be a reduced spherical picture over

P11 and assign the angle function α2 to P. Then P11 is aspherical unless one of

the following conditions holds: g2 = 1 or g3 = 1 or(gh−1)2 = 1 or (gh−1)3 = 1.

Therefore by the assumptions P11 is aspherical.

Proof of Lemma 4.5.18(9): Case(3, 6̄, 2)

Here we assume that |g| = 3, |gh−1| ≥ 6 and |h| = 2. Assume that [g, h] ̸= 1.

Then we show P11 is aspherical. Assign the angle function α2 on P. Positive

regions can be of degree 4 or 6 only (Remark 4.5.19(2)(i)). However, all possible

labellings for positive 4-regions are not allowed, while positive 6-regions give the

labelling (g1−1)3. Thus there is only one positive region which is shown in Figure

4.69.
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Figure 4.69: Positively curved region in Case(3, 6̄, 2).

Apply the following distribution scheme which is shown in Figure 4.70:

Γ(∆, ∆̂) =


π
6

if c(∆) = π
2

and ∆ is separated from ∆̂ by a single bond

that is oriented from ∆ to ∆̂

0 otherwise
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1

π/6

π/6 π/6

Figure 4.70: Distribution scheme in Case(3, 6̄, 2).

Remarks 4.5.30.
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1. Since ∆̂ receives π
6

only across edges that are oriented towards ∆̂, Γ6 ≤ n
2
.

2. l(∆̂) = g−1hg−1w and so d(∆̂) > 4.

Observe that c∗(∆̂) ≤ (2− n)π + n
2
.π + n

2
.π
2
+ n

2
.π
6

= π
(
2− n+ n

2
+ n

4
+ n

12

)
. The

fact that c∗(∆̂) > 0 implies that n < 12.

Let ∆̂ be a 6-region. Then all the possible labellings yield a contradiction. Now

let ∆̂ be an 8-region. If Γ6 = 4 then (g−1h)4 = 1, a contradiction. Since (2 −

8)π + 3π + 5.π
2
+ 3.π

6
= 0, it remains to check the case in which ∆̂ involves 4

corners with angle π. Thus l(∆̂)= g−1hg−1w1g
−1w2g

−1w3, where wi ∈ {1, h}

(1 ≤ i ≤ 3). By inspection w3 = h and since Φ = 4, l(∆̂) implies (gh−1)4=1, a

contradiction. It remains to consider the case when ∆̂ is a 10-region. If Γ6 = 5

then (g−1h)5 = 1 contradicting |gh−1| ≥ 6. Since (2− 10)π + 4π + 6.π
2
+ 4.π

6
< 0

and (2 − 10)π + 5π + 5.π
2
+ 3.π

6
= 0, it remains to check when ∆̂ includes 5

corners with angle. Thus l(∆̂)= g−1hg−1w1g
−1w2g

−1w3g
−1w4, where wi ∈ {1, h}

(1 ≤ i ≤ 4). As before w4 = h and l(∆̂) implies (gh−1)5=1, a contradiction.

Proof of Lemma 4.5.18(10): Case(3, 2, 6̄)

Here |g| = 3, |gh−1| = 2 and |h| ≥ 6. Assume that g ̸= h4. Then we show P11 is

aspherical. Assign the angle function α3 on P. Positive regions can be of degree

4 or 6 only (Remark 4.5.19(3)(i)). For positive 4-regions the possible labels give

the regions shown in Figure 4.71. However, by Remark 4.5.19(3)(iii) there are

three occurrences of h±1 in the labellings of positive 6-regions, and each yields a

contradiction.
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Figure 4.71: Positively curved regions in Case(3, 2, 6̄) and distribution
scheme.

Remarks 4.5.31.

1. l(∆̂) = 1−1g1−1w and so d(∆̂) > 4.

2. For each π
2

that ∆̂ receives, Φ(∆̂) will be decreased by 1 and so c(∆̂) will be

decreased by π
2
.

Let ∆̂ be a 6-region. Then l(∆̂) = 1−1g1−1g1−1g. Observe that if l(∆̂) implies

ghg−1h = 1, then g−1(g−1h)2 = 1 which implies g = 1, a contradiction. Thus

l(∆̂) = 1−1g1−1g1−1g and Γ2 = 3 for otherwise c∗(∆̂) ≤ −4π + 6.π
2
+ 2.π

2
= 0.

So the situation in Figure 4.72 is forced and c∗(∆̂) ≤ −4π + 6.π
2
+ 3.π

2
= π

2

is distributed as shown. Note that l(∆̂1) = h−11h−1w and so d(∆̂1) ≥ 6. If

d(∆̂1) = 6 then the possible label is h−11h−1h1−1h. However in this case Γ2 = 0

and Φ(∆̂) ≤ 1 and so c(∆̂) ≤ 0.
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Figure 4.72: l(∆̂) = 1−1g1−1g1−1g and Γ2 = 3.

Now let ∆̂ be an 8-region. Then c(∆̂) ≤ −4π + 4π + 4.π
2
= 0. Since ∆̂ does not

receive curvature across adjacent edges (because distributing is always opposite

the orientation of the labelling) in ∂∆̂ and by Remark 4.5.31(2) it can be assumed

that Γ2 = 0. If Γ6 = 4 then h4 = 1 which contradicts |h| ≥ 6, while if Γ6 ≤ 3

then Φ(∆̂) = 4 or else c∗(∆̂) ≤ −6π+ 3π+ 5.π
2
+ 3.π

6
= 0. Thus as before h4 = 1

is forced, a contradiction.

Let ∆̂ be a 10-region. As before it can be assumed that Γ2 = 0. Assume that

Φ(∆̂) = 5 since otherwise c∗(∆̂) ≤ −8π + 4π + 6.π
2
+ 5.π

6
< 0. Thus l(∆̂) forces

h5 = 1, a contradiction.

Finally assume that d(∆̂) = n ≥ 12. Again it can be assumed that Γ2 = 0. Thus

c∗(∆̂) ≤ (2− n)π + n
2
.π + n

2
.π
2
+ n

2
.π
6
= π(2− n

6
) ≤ 0. Therefore P11 is aspherical

except possibly if g = h4.

Proof of Lemma 4.5.18(11): Case(6̄, 2, 3)

Here |g| ≥ 6, |gh−1| = 2 and |h| = 3. Assume that h ̸= g4. Then we show P11 is
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aspherical. Assign the angle function α2 on P. Positive regions can be of degree

4 or 6 only (Remark 4.5.19(2)(i)). For positive 4-regions the possible labels give

the regions shown in Figure 4.73. However, by Remark 4.5.19(2)(ii) there are

three occurrences of g±1 in the labellings of positive 6-regions, and each yields a

contradiction.
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h
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h
h

1

1

g

Figure 4.73: Positively curved regions in Case(6̄, 2, 3).

Apply the following distribution scheme which is shown in Figure 4.74:

Γ(∆, ∆̂) =



c(∆)/2 if π
2
< c(∆) ≤ π and ∆ is separated from ∆̂ by

a 2-bond that is oriented from ∆ to ∆̂

c(∆) if 0 < c(∆) ≤ π
2

and ∆ is separated from ∆̂ by

a 2-bond S that is oriented from ∆ to ∆̂ and S

is adjacent to a g±1-corner in ∆ with angle π

0 otherwise
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Figure 4.74: Distribution scheme in Case(6̄, 2, 3).

Remarks 4.5.32.

1. l(∆̂) = 1−1h1−1w and so d(∆̂) > 4.

2. For each π
2

that ∆̂ receives, Φ(∆̂) will be decreased by 1 and so c(∆̂) will be

decreased by π
2
.

Let ∆̂ be a 6-region. Then l(∆̂) = 1−1h1−1h1−1h or 1−1h1−11h−11. For the first

possibility, c(∆̂) ≤ −4π + 6.π
2
= −π and so if Γ2 = 2 then c∗(∆̂) ≤ 0. Thus

∆̂ should have the form shown in Figure 4.75 and c∗(∆̂) ≤ −π + 3.π
2
= π

2
is

distributed as shown. Note that l(∆̂1) = 1g−11{g−1, h−1}w and so d(∆̂1) > 6. If

l(∆̂) = 1−1h1−11h−11 then Γ6 = 0 and Γ2 ≤ 2 and so c∗(∆̂) ≤ −4π+6.π
2
+2.π

2
= 0.
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Figure 4.75: l(∆̂) = 1−1h1−1h1−1h and Γ2 = 3.

Now let ∆̂ be an 8-region. Then c(∆̂) ≤ −4π+4π+4.π
2
= 0. Since ∆̂ does not re-

ceive curvature across adjacent edges (because distributing is always in the same

orientation of the labelling) in ∂∆̂ and by Remark 4.5.32(2) it can be assumed

that Γ2 = 0. If Γ6 = 4 then g4 = 1 which contradicts |g| ≥ 6, while if Γ6 ≤ 3

then ∆̂ contains 4 corners with angle π or else c∗(∆̂) ≤ −6π+3π+5.π
2
+3.π

6
= 0.

Thus l(∆̂) = 1g−11g−1w1g
−1w2g

−1, where w1, w2 ∈ {1, h}. However, each of these

possibilities contradicts the assumptions.

Let ∆̂ be a 10-region. As above it can be assumed that Γ2 = 0. Assume that ∆̂

involves 5 corners with angle π since otherwise c∗(∆̂) ≤ −8π+4π+6.π
2
+5.π

6
< 0.

Thus l(∆̂) = 1g−11g−1w1g
−1w2g

−1w3g
−1, where w1, w2, w3 ∈ {1, h}. Each of

these possibilities yields a contradiction.

Finally assume that d(∆̂) = n ≥ 12. Again it can be assumed that Γ2 = 0. Thus

c∗(∆̂) ≤ (2− n)π + n
2
.π + n

2
.π
2
+ n

2
.π
6
= π(2− n

6
) ≤ 0. Therefore P11 is aspherical

except possibly if h = g4.
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4.5.4 Case 13: (a=b=d, c=e only)

The relative presentation P13= ⟨G, y|ayaycyaycyfy⟩=

⟨G, y, x|x(ay)−1, x2ca−1x2ca−1xfa−1x⟩= ⟨G, x|x3gx2gxh⟩, where g = ca−1 and

h = fa−1 (and so by assumption, g, h ∈ G\{1} and g ̸= h).

Let P be a non-trivial reduced spherical picture over P13 =⟨G, x|x3gx2gxh⟩. Then

each vertex(disc) in P has one of the forms given by Figure 4.76(i) and (ii); and

the star graph Pst
13 of P13 is given by Figure 4.76(iii).

1

11
g

g
h

_

(iii)

g

xx −1

1

1

h

1

(i)

+

h
1

1
g

1

(ii)

g g

Figure 4.76: + disc, - disc and Pst
13.

There are (up to inversion) four types of vertices of degree 3 in P which are shown

in Figure 4.77.
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Figure 4.77: Types of vertices of degree 3.

Define an angle function α̃1 as follows. Corners within 2-bonds have angle zero.

In vertices of degree 3, corners labelled by h±1 have angle π, each of the other

two corners has angle π
2

(see Figure 4.78). If d(v) ≥ 4, then each corner in v not

in a 2-bond has angle 2π
d(v)

.

The angle function α̃2 is defined as follows. Again, corners within 2-bonds have

angle zero. In each of vertices of degree 3 of Types 1 and 4, the 1-corner in a sub-

label h−111−1 has angle π, each of the other two corners has angle π
2

(see Figure

4.79). However in each of vertices of degree 3 of Types 2 and 3, the g-corner has

angle π, each of the other two corners has angle π
2
. If d(v) ≥ 4, then each corner

in v not in a 2-bond has angle 2π
d(v)

.

The angle function α̃3 is defined as follows. Again, corners within 2-bonds have

angle zero. In vertices of degree 3, corners labelled by h±1 have angle π except

for Type 3 vertices, where g±1-corner has angle π. Each of the two remaining

corners has angle π
2

(see Figure 4.80). If d(v) ≥ 4, then each corner in v not in a

2-bond has angle 2π
d(v)

.
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Figure 4.78: Angle function α̃1 of vertices of degree 3.

g

g

11

1

h
g

1

1

gh
g

1

g h

1

g

g

1

g h

1

1 or g

g

g

g

g 1

h

1

h

1

1

g

g

g

1

h

1

Type 1

π/2 π/2 π/2

g
g

1

h

Type 2

g
gh

1

Type 3

g

1

1h

Type 4

g

π/2

π/2 π π/2π/2 π/2 πππ

Figure 4.79: Angle function α̃2 of vertices of degree 3.
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Figure 4.80: Angle function α̃3 of vertices of degree 3.
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Remarks 4.5.33.

1. By inspection, any region ∆ with vertex of degree 3 in ∂∆ has at least one

1±1- corner.

2. By assigning the angle function α̃1 to the corners of P, the following are

satisfied:

(i) There are no consecutive corners with angle π in the boundary of a

region ∆ of P (otherwise P is not reduced). Thus positive regions can only

be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region then it contains at least one corner labelled

by h±1 with angle π.

(iii) If ∆ is a positive 6-region then it contains three occurrences of h±1-

corners each with angle π.

(iv) As shown in Figure 4.78, for each h-corner with angle π in ∆, the

previous corner is labelled by 1−1 (anticlockwise direction).

3. By assigning the angle function α̃2 to the corners of P, the following are

satisfied:

(i) By inspection, a 1±1-corner with angle π cannot be adjacent to a g-

corner with angle π in ∂∆. Also since d(v) ≥ 4 in Figure 4.81, there are

no consecutive corners with angle π in ∂∆. Thus positive regions can only

be 4-regions or 6-regions.

(ii) If ∆ is a positive 4-region, then it contains at least one corner labelled

by 1±1 or g±1 with angle π.

(iii) If ∆ is a positive 6-region, then it contains three corners where each

has label 1±1 or g±1 with angle π.

4. By assigning the angle function α̃3 to the corners of P, the following are

satisfied:

(i) As shown in Figure 4.80, the g-corner with angle π cannot be adjacent
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to an h−1-corner with angle π. Thus there are no consecutive corners with

angle π in the boundary of a region ∆ of P (otherwise P is not reduced) and

so positive regions can only be 4-regions or 6-regions.

(ii) Observe that the g-corner with angle π lies in between a 2-bond and a

3-bond.

(iii) As shown in Figure 4.82, if ∆ involves a g-corner with angle π, then

the ∗-corner has angle ≤ π
2
. This is because the edge e is a single bond.

g

g

11

1

h
g

1

1

gh

<  π/2

g

g

1

h

1
π

v
g

1

1

1

h

g

g

g

g 1

h

1

h
1

g

1 <  π/2

g

1

h

g

1

h

g g

1
1

1

v

π

g

1

g h

1

g

g
1

1
1g

<  π/2

g

1

g h

1

1
1

g
<  π/2

h h
g

g
gh

1

v

π g
h

1

π
g

v

Figure 4.81: α̃2; no consecutive corners with angle π in ∂∆.
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Figure 4.82: α̃3; g-corner with angle π.

Lemma 4.5.34. Let g = h−1. If |h| = 3, then P13 is not aspherical.

Proof. Let |h| = 3. Coset enumeration shows that the order of the group

⟨h, x|x3h−1x2h−1xh, h3⟩ equals 1026 and so P13 is not aspherical.

Remark 4.5.35. From now on we may assume that if g = h−1 then |h| ̸= 3

unless otherwise is stated.

Lemma 4.5.36. If P13 is not aspherical, then at least one of the following con-

ditions holds:

1. g = h−1.

2. g = h2.

3. h2 = 1.

4. h3 = 1 and g2 = 1.

5. h3 = 1 and h = g2.

Proof of Lemma 4.5.36. Let P be a non-trivial reduced spherical picture over

P13. Assume that g ̸= h−1, g ̸= h2 and h2 ̸= 1. Also assume (A) that the num-

ber of 2-bonds of P is maximal. First assign the standard angle function to the
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corners of P. By Remark 4.5.33(1), the possible labellings of a positive region ∆

imply that g2 = 1 or h = g2 or l(∆) ∈ {1−111−11, 1−1gg−11, 1−11g−1g}. However,

by bridge moves (see Figure 4.83) and assumption (A), we can exclude the last

three labels.

Now assign the angle function α̃1 to the corners of P. By Remark 4.5.33 (2)(i),

we check only for regions of degree 4 and 6 only. By the assumptions above there

are no positive regions of degree 4. Moreover by Remarks 4.5.33(1) and (2)(iii),

the possible labellings for 6-regions imply h3 = 1 and the result follows.
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Figure 4.83: Regions with labels 1−111−11, 1−1gg−11 and 1−11g−1g.

Lemma 4.5.37. If P13 is not aspherical, then at least one of the following con-

ditions holds:

150



Chapter 4: Asphericity of Length Six Relative Group
Presentations

1. g = h−1 and |h| ∈ {4, 5, 6}.

2. h = g2.

3. g2 = 1 and g = h2.

4. g2 = 1 and h2 = 1.

Proof of Lemma 4.5.37. Let P be a non-trivial reduced spherical picture over

P13. Assign the angle function α̃2 to the corners of P and assume (A) holds.

Let ∆ be a positive region. Then l(∆) = g1−1w1 or h−111−1w2. By Remark

4.5.33(3)(i), n=4 or 6. If n = 4 then l(∆) = g1−11g−1 or l(∆) implies g = h−1

or h = g2 or g2 = 1. Now if n=6 then the possible labelling implies g3 = 1.

However by (A) and bridge moves the region labelled g1−11g−1 does not exist

(Figure 4.84). Therefore P13 is aspherical except if g = h−1 or h = g2 or g2 = 1

or g3 = 1. Observe that these conditions cannot occur together. For example if

h = g2 and g3 = 1, then h = g−1 and |h| = 3, a contradiction.
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Figure 4.84: The region labelled g1−11g−1 does not exist.

Assume that g3 = 1. Then there is only one positive region shown in Figure 4.85.

Distribute the curvature as shown.
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Figure 4.85: Positive region in case g3 = 1.
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Remarks 4.5.38.

1. l(∆̂) = g−11h−1w and so n = d(∆̂) > 4.

2. Since ∆̂ receives π
6

only across edges that are oriented outwards ∆̂, Γ6 ≤ n
2
.

3. For each π
6

that ∆̂ receives, Φ(∆̂) will be decreased by 1.

Now c∗(∆̂) ≤ (2− n)π+ (n
2
−Γ6)π+ (n

2
+Γ6)

π
2
+Γ6.

π
6
< π(2− n

4
−Γ6 +

Γ6

2
+ Γ6

2
)

= π(2 − n
4
). Therefore c∗(∆̂) > 0 implies n = 6 (Remark 4.5.38(1)). By in-

spection Γ6 < 3. Now since (2 − 6)π + π + 5.π
2
+ 2.π

6
< 0, ∆̂ contains at least

two corners with angle π. This implies l(∆̂) = g−11h−11g−11 or g−11h−111−11 or

g−11h−1g1−11, contradiction. Thus if g3 = 1 then P13 is aspherical.

Now assume that g = h−1. Then the positive regions are shown in Figure 4.86.

Distribute the curvature as shown.
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Figure 4.86: Positive regions in case g = h−1.

Remarks 4.5.39.

1. l(∆̂) = gh−1w.

2. Since ∆̂ receives π
2

only across edges that are oriented outwards ∆̂, Γ2 ≤ n
2
.
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3. For each π
2

that ∆̂ receives, Φ(∆̂) will be decreased by 1.

As above n=4 or 6. If n=4 then |h| = 4. Let n=6. If Γ2 = 3 then |h| = 6. If

Γ2 = 2 then |h| ∈ {4, 5, 6}. Thus Γ2 = 1 and ∆̂ contains at least two corners with

angle π, for otherwise c∗(∆̂) ≤ 0. Assume that (B) subject to (A), the number

of gg−1-bonds is maximal. Thus the ∗-corner in Figure 4.87 cannot have angle π,

for otherwise a cut across e1 (single bond) and e2 increases the number of gg−1-

bonds without decreasing the number of 2-bonds, a contradiction. Therefore

l(∆̂) = gh−111−1g1−1 is forced. Thus |h| = 3, a contradiction and the result

follows.

h

e1

e2

g
π/2

*

Figure 4.87: ∗-corner cannot have angle π.

Assume that g2 = 1. Then the positive regions are shown in Figure 4.88. Dis-

tribute the curvature as shown.
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Figure 4.88: Positive regions in case g2 = 1.

Remarks 4.5.40.

1. Since ∆̂ receives π
6

only across edges that are oriented towards ∆̂, Γ6 ≤ n
2
.

2. Since ∆̂ receives π
3

only across edges that are oriented outwards ∆̂, Γ3 ≤ n
2
.

3. By inspection, for each π
3

that ∆̂ receives, Φ(∆̂) will be decreased by 1.

4. Observe that ∆̂ receives π
6

only across 3-bonds, while it receives π
3

only across

1-bonds.

5. As shown in Figure 4.89, the maximum curvature that ∆̂ receives across

adjacent edges is π
6
+ π

3
. This is because ∆̂ receives 0 across e, since é́ is

not a 3-bond (see Figure 4.88). Also, ∆̂ receives 0 across é, since é is not

a 3-bond.
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Figure 4.89: Maximum curvature that ∆̂ receives in one row.

Observe that (2 − n)π + n
2
.π + n

2
.π
2
> (2 − n)π + (n

2
− Γ3)π + (n

2
+ Γ3)

π
2
+ Γ3.

π
3

= (2 − n)π + n
2
.π + n

2
.π
2
− Γ3.

π
2
+ Γ3.

π
3
. By this observation and by Remark

4.5.40(3), we may assume that Γ3 = 0 to get an upper bound for n = d(∆̂)

such that c∗(∆̂) > 0. Now either for each π
6

that ∆̂ receives, Φ(∆̂) will be

decreased by 1, or the situation shown in Figure 4.90 is forced. Also, observe

that (2−n)π+ n
2
.π+ n

2
.π
2
+ [Γ6

2
].π

6
> (2−n)π+(n

2
−Γ6)π+(n

2
+Γ6)

π
2
+Γ6.

π
6
. By

this observation, we may assume that for each π
6

that ∆̂ receives, the situation

shown in Figure 4.90 holds. Therefore, c∗(∆̂) ≤ (2−n)π+ n
2
.π+ n

2
.π
2
+ n

4
.π
6
. Thus

c∗(∆̂) > 0 implies n ≤ 8 and l(∆̂) = 1h−1w1 or 1−1hw2.
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Figure 4.90: ∆̂ receives π
6 without decreasing Φ(∆̂).

If n = 4 then h2 = 1 or g = h2. Now let n = 6. Assume that Γ6 = 0 and

so Γ3 > 1. If Γ3 = 3 then by Remark 4.5.40(3), c∗(∆̂) ≤ −4π + 6.π
2
+ 3.π

3
=

0. Now if Γ3 = 2 then l(∆̂) = 1h−11h−1w. Also ∆̂ contains one corner

with angle π, for otherwise c∗(∆̂) ≤ −4π + 6.π
2
+ 2.π

3
< 0. Thus l(∆̂) ∈

{1h−11h−111−1, 1h−11h−1g1−1, 1h−11h−11g−1}. In each case l(∆̂) implies either

h2 = 1 or g = h2. Now let Γ3 = 1. Then l(∆̂) = 1h−1w. Moreover ∆̂ contains two

corners with angle π, for otherwise c∗(∆̂) ≤ −4π+ π+5.π
2
+ π

3
< 0. Thus l(∆̂) ∈

{1h−111−11g−1, 1h−11g−11g−1, 1h−1g1−11g−1, 1h−1g1−1g1−1, 1h−111−1g1−1}.

However, each possibility yields a contradiction. Therefore Γ6 ≥ 1 and so

l(∆̂) = 1−1hw. Then l(∆̂) implies h2 = 1 or g = h2 or l(∆̂) ∈ {1−1h1−1gh−1g,

1−1h1−1h1−1h, 1−1h1−1hg−1h, 1−1hg−11h−1g, 1−1hg−1h1−1g, 1−1hg−1h1−1h,

1−1hg−1hg−11, 1−1hg−1hg−1h}. Note that the maximum curvature that ∆̂ could

receive is 2.π
3
+ 2.π

6
. Thus if Φ(∆̂) = 0 then c∗(∆̂) ≤ −4π + 6.π

2
+ 2.π

3
+ 2.π

6
=

0. If l(∆̂) ∈ {1−1h1−1h1−1h, 1−1h1−1hg−1h, 1−1hg−1h1−1h, 1−1hg−1hg−1h},

then Φ(∆̂) = 0 and we are done. If l(∆̂) ∈ {1−1h1−1gh−1g, 1−1hg−11h−1g,

1−1hg−1h1−1g, 1−1hg−1hg−11}, then Γ3 ≤ 1, Γ6 = 1 and Φ(∆̂) ≤ 1. Thus

c∗(∆̂) ≤ −4π + 5.π
2
+ π + π

3
+ π

6
= 0. This completes the case n = 6.

Finally let n = 8. If Γ6 = 4 then by Remark 4.5.40(5), Γ3 = 0. Also
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l(∆̂) = 1−1h1−1h1−1h1−1h implies Φ(∆̂) = 0. Thus c∗(∆̂) ≤ −6π+8.π
2
+4.π

6
< 0.

If Γ6 = 3 then l(∆̂) = 1−1h1−1h1−1hw and so Φ(∆̂) ≤ 2. Also by Remark

4.5.40(5), Γ3 ≤ 1. Thus c∗(∆̂) ≤ −6π+6.π
2
+2π+3.π

6
+ π

3
< 0. So assume Γ6 ≤ 2.

If Γ6 = 0 then by Remark 4.5.40(3) we are done. Moreover, if Γ3 = 4 then as be-

fore c∗(∆̂) ≤ −6π+8.π
2
+4.π

3
< 0. Also if Γ3 = 3 then Γ6 ≤ 1 and Φ(∆̂) ≤ 1 and

so c∗(∆̂) ≤ 0. Moreover, if Γ3 = 2 then c∗(∆̂) ≤ −6π+ 6.π
2
+ 2π+ 2.π

3
+ 2.π

6
= 0.

So assume Γ3 ≤ 1. If Γ3 = 1 then ∆̂ contains three corners with angle π, for oth-

erwise c∗(∆̂) ≤ −6π+4.π
2
+2π+ π

3
+2.π

6
< 0. Also since −6π+5.π

2
+3π+ π

3
+ π

6
= 0,

then Γ6 = 2. By inspection the ∗-corner in Figure 4.91 (i) cannot be a 1-corner

with angle π. So assume it is a g-corner with angle π. The situation in Figure

4.91(ii) is forced. However Φ(∆̂) ̸= 3. Thus each of the • -corners in Figure 4.91

(i) must have angle π. Here if the ∗-corner has label h, then Φ(∆̂) < 3, once

more a contradiction. Thus ∆̂ receives 0 across the edge e and 2.π
6

as shown

in Figure 4.91 (iii). However Φ(∆̂) < 3, a contradiction. This leaves Γ3 = 0

and Γ6 = 1 or 2. Then ∆̂ contains four corners with angle π, for otherwise

c∗(∆̂) ≤ −6π+5.π
2
+3π+2.π

6
< 0. However, this is impossible since the ∗-corner

in Figure 4.91 (iv) cannot be with angle π. Therefore if g2 = 1 and P13 is not

aspherical then either h2 = 1 or g = h2. This completes the case g2 = 1 and the

proof of Lemma 4.5.37.
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Figure 4.91: g2 = 1; Γ3 ≤ 1 and Γ6 = 1 or 2.

Remark 4.5.41. Now g = h−1 and |h| = 3 is allowed.

Lemma 4.5.42. If P13 is not aspherical, then at least one of the following con-

ditions holds:

1. g = h−1 and |h| ∈ {3, 4, 5, 6}.

2. g = h2 and |h| = 4 or h = g2 and |g| ∈ {4, 6}.

3. g2 = 1 and h2 = 1.
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Proof of Lemma 4.5.42. By Lemma 4.5.34, if g = h−1 and |h| = 3 then P13 is

not aspherical. Now by comparing the conditions in Lemma 4.5.36 and Lemma

4.5.37 we get the result.

Lemma 4.5.43. Assume that g2 = h2 = 1, then P13 is aspherical except possibly

when (gh−1)2 = 1 or (gh−1)3 = 1.

Proof of Lemma 4.5.43. Let P be a non-trivial reduced spherical picture over

P13. Assign the angle function α̃3 to the corners of P. Assume (A) that the

number of 4-regions of P is maximal, (B) subject to (A), the number of 6-regions

of P is maximal and (C) subject to (B), the number of 8-regions of P is maximal.

If ∆ is a positive region then l(∆) = 1−1hw1 or {g−1, 1−1}g1−1w2. By Remark

4.5.33 (4)(iii), if ∆ is a 6-region then h3 = 1, a contradiction. It follows that ∆ is

given by Figure 4.92. Distribute the curvature as shown in Figure 4.93, with the

understanding that l(∆́) ̸= 1h−11h−1. It is enough to consider the Regions (i),

(ii) and (iii) in Figure 4.92, since Region (iv) is treated by symmetry as Region

(i).
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Figure 4.92: Positive regions in case g2 = h2 = 1.
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Figure 4.93: Distribution scheme in case g2 = h2 = 1.

Also consider the positive regions shown in Figure 4.94, where in Region 5

l(∆) = h−11h−111−11 or h−11h−11g−1g . Distribute the curvature as shown

(these regions appear when we dealt with the case n = 6). Observe that the

curvature of Region 5 is distributed in a same way as Region 4. Also, up to

inversion, curvature of Region 6 is distributed in a same way as Region 1.
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Figure 4.94: Additional positive regions.

Remarks 4.5.44.

1. Note that ∆̂ receives curvature only across edges that are oriented outwards

∆̂, and so Γ2 ≤ n
2
.

2. Observe that for each π
2

that ∆̂ receives, Φ(∆̂) is decreased by 1, or the

situation shown in Figure 4.95 is forced (in this case ∆̂ receives curvature

from Region 3).

3. Observe that in Figure 4.95, e2 is not a 3-bond. Also e3 is not a 11−1-

bond. Thus ∆̂ does not receive π
2

across either e1 or e3 without Φ(∆̂) being

decreased by 1 in each case. Therefore there are no consecutive outward

edges in ∂∆̂ such that ∆̂ receives π
2

across each of them and Φ(∆̂) does not

decrease by 1.

4. If ∆̂ receives curvature across e3 (Figure 4.95), then it must be from a

Region 1 or 6 and this is shown in Figure 4.96.
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Figure 4.95: The case when ∆̂ receives π
2 without decreasing Φ(∆̂).
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Figure 4.96: ∆̂ receives curvature across e3 in Figure 4.95.

By Remarks 4.5.44, to find an upper bound for n, we may assume that ∆̂

receives curvature from Region 3 only without decreasing Φ(∆̂). Therefore

c∗(∆̂) ≤ (2 − n)π + n
2
.π + n

2
.π
2
+ n

4
.π
2
. So c∗(∆̂) > 0 implies 2 − n

8
> 0 and

so n ≤ 14. However if n = 14 then c∗(∆̂) ≤ −12π + 7π + 7.π
2
+ 3.π

2
= 0. Thus

n ≤ 12.
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Let n = 12. Observe that 2π − n
8
.π − π

2
> 0 implies that n < 12. Thus by

Remarks 4.5.44, l(∆̂) ∈ {1h−111−11h−111−11h−111−1,1h−11w11h
−11w21h

−11w3,

1h−11w41h
−11w51h

−111−1, 1h−11w61h
−111−11h−111−1}, where each of the

corners labelled wi(1 ≤ i ≤ 6) must have angle π. However the region

1h−111−11h−111−11h−111−1 implies h3 = 1, a contradiction. Consider ∆̂ of Fig-

ure 4.97 and assume that the ∗-corner is labelled by wi. If wi = g−1, then the

edge e is a single bond. Thus by Remark 4.5.33(4)(ii) , the ∗-corner has angle

≤ π
2
. So assume wi = h−1 as shown. Then d(v) ≥ 4 and once more the ∗-corner

has angle ≤ π
2
. This contradiction completes the case.
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Figure 4.97: n = 12.

Let n = 4. Then l(∆̂) ∈ {h−111−1w, gh−1w, 1h−1w, 1−1hg−1w} and this gives a

contradiction (since it is assumed that l(∆́) ̸= 1h−11h−1 for Region 3).

Now let n = 6. If ∆̂ receives curvature from Region 1 or 6, then l(∆̂) = h−111−1w.

The possible labelling is h−111−11h−11 and ∆̂ is shown in Figure 4.98(i). If ∆̂
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receives curvature across e1, then e1 is not a single bond. Thus a cut across e1 and

e3 would increase the number of 4-regions, a contradiction, so assume ∆̂ receives

0 across e1. Now if the ∗-corner has angle π, then l(v) must be as shown in Figure

4.98(ii) and so the •-corner must have angle ≤ π
2

(e2 is a single bond). Hence

Φ(∆̂) = 1 and so if Γ2 = 1 then c∗(∆̂) ≤ 0. Thus ∆̂ is shown in Figure 4.99,

where c∗(∆̂) ≤ π
2
. Distribute the curvature as shown (note that ∆̂ is the same as

Region 6).
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Figure 4.98: ∆̂ receives curvature from Region 1 or Region 6.
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Figure 4.99: Distribution if 0 < c∗(∆̂) ≤ π
2 .

Now if ∆̂ receives curvature from Region 2, then l(∆̂) = gh−1w. Thus l(∆̂)

∈ {gh−11g−1gg−1, gh−11h−1g1−1, gh−1gg−1hg−1, gh−11h−11g−1}. For the pos-

sibility gh−11g−1gg−1, Γ2 = 1 and Φ(∆̂) ≤ 1. Also if l(∆̂) = gh−11h−1g1−1,

then Γ2 ≤ 2 and Φ(∆̂) = 0. Moreover, if l(∆̂) = gh−1gg−1hg−1, then

Γ2 ≤ 2 and Φ(∆̂) = 0. Therefore in all these cases c∗(∆̂) ≤ 0. This leaves

l(∆̂) = gh−11h−11g−1. Then Γ2 ≤ 2 and Φ(∆̂) ≤ 2. However if the ∗-corner in

Figure 4.100 has angle π, then the •-corner must have angle ≤ π
2

(e1 is forced to

be a single bond as shown) and so Φ(∆̂) ≤ 1. Thus ∆̂ must receive curvature

across e2 and c∗(∆̂) ≤ π
2

(for otherwise Γ2 = 1 and Φ(∆̂) ≤ 1). Distribute the

curvature as shown (note that ∆̂ is the same as Region 5).

167



Chapter 4: Asphericity of Length Six Relative Group
Presentations

g
g

1h

1

1

g

h

e1

1

h

g
11 g

h

1

g

g 1

g

e 2

h

∆
g

g

1g

h

π h

g

1
g

1

g

h

g

g

h

g

1

π/2

π/2

π/2

1
1

g

*

Figure 4.100: ∆̂ receives curvature from Region 2.

Now if ∆̂ receives curvature from Region 3, then l(∆̂) = 1h−1w. Hence l(∆̂)

∈ {1h−11h−1gg−1, 1h−1g1−1gh−1, 1h−1gg−1gg−1, 1h−1gg−11h−1, 1h−111−11h−1,

1h−11h−111−1, 1h−11g−1gh−1}. If l(∆̂) = 1h−11h−1gg−1 or 1h−1g1−1gh−1, then

either Γ2 = 2 and Φ(∆̂) = 0 or Γ2 = 1 and Φ(∆̂) ≤ 1. Moreover if

l(∆̂) = 1h−1gg−1gg−1, then Γ2 = 1 and Φ(∆̂) = 0, while if l(∆̂) = 1h−1gg−11h−1,

then Γ2 ≤ 2 and Φ(∆̂) = 0 (observe that the edge e1 in Figure 4.93 is a single

bond). Therefore in these cases c∗(∆̂) ≤ 0. Now let l(∆̂) = 1h−111−11h−1. Then

Γ2 ≤ 3 and Φ(∆̂) ≤ 1 (observe that the ∗-corner in Figure 4.101 has angle ≤ π
2
).

However if c∗(∆̂) ≤ π
2
, then distribute the curvature as shown in Figure 4.101

(note that ∆̂ is the same as Region 5). So assume that Γ2 = 3 and so ∆̂ is

given by Figure 4.102. But now a cut across e1 and e2 increases the number of

4-regions, a contradiction.
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Figure 4.102: l(∆̂) = 1h−111−11h−1 and Γ2 = 3.

Now if l(∆̂) = 1h−11h−111−1, then Γ2 ≤ 3 and Φ(∆̂) ≤ 2. If ∆̂ receives curvature

across e1 in Figure 4.103 then we are are back to the previous case, so assume

otherwise. If Γ2 = 2 then ∆̂ is given by Figure 4.103, and so a cut across e2 and

e3 contradicts (A). Thus Γ2 = 1 and Φ(∆̂) = 2 and so ∆̂ is given by Figure 4.104.

Distribute the curvature as shown (note that ∆̂ is the same as Region 6).
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Figure 4.103: ∆̂ receives curvature from Region 3.
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Figure 4.104: l(∆̂) = 1h−11h−111−1.

Finally if l(∆̂) = 1h−11g−1gh−1, then Γ2 ≤ 2 and Φ(∆̂) ≤ 2 (observe that the

∗-corner in Figure 4.105 has angle ≤ π
2
). However if c∗(∆̂) ≤ π

2
, then distribute

the curvature as shown in Figure 4.105 (note that ∆̂ is the same as Region 5). So

assume Γ2 = 2 and Φ(∆̂) = 2. However, since e in Figure 4.106 is a single bond,

Φ(∆̂) ≤ 1, a contradiction.
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Figure 4.106: l(∆̂) = 1h−11g−1gh−1 and Φ(∆̂) ≤ 1.

Now if ∆̂ receives curvature from Region 4 or 5, then l(∆̂) = 1−1hg−1w. Thus

l(∆̂) = 1−1hg−11g−1h or 1−1hg−1g1−1h. If l(∆̂) = 1−1hg−11g−1h, then Γ2 ≤ 2

and Φ(∆̂) = 0 and so c∗(∆̂) ≤ 0. Also if l(∆̂) = 1−1hg−1g1−1h, then Γ2 = 1

(since e2 in Figure 4.93 is not a 11−1-bond) and Φ(∆̂) ≤ 1 . Again this implies

c∗(∆̂) ≤ 0. This completes the case n = 6.

If for each π
2

that ∆̂ receives, Φ(∆̂) is decreased by 1, then c∗(∆̂) ≤ (2 − n)π +

(n
2
− Γ2)π + (n

2
+ Γ2)

π
2
+ Γ2.

π
2

= (2− n
4
)π. Thus c∗(∆̂) > 0 implies n < 8. Thus
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for n=8 or 10, ∆̂ is shown in Figure 4.95 and so l(∆̂) = 1h−11w.

Now let n = 8. If ∆̂ receives 2.π
2

without decreasing Φ(∆̂) by 1 for each π
2
, then

either l(∆̂) = 1h−111−1h1−1w and so P is not reduced, or l(∆̂) = 1h−11w11h
−11w1

(for otherwise l(∆̂) ̸= 1). Since (gh−1)2 ̸= 1, either w1 = h−1 or 1−1. However

if w1 = h−1 then a cut across e1 and e3 contradicts (A) (see Figure 4.107 ).

Moreover if w1 = 1−1 then ∆̂ receives curvature across at least one of e2 or e4, for

otherwise c∗(∆̂) ≤ −6π + 2π + 6.π
2
+ 2.π

2
= 0. By symmetry say across e2 and so

e2 is not a single bond. Thus a cut across e2 and e3 contradicts (B). Therefore

assume that ∆̂ receives at most π
2

without decreasing Φ(∆̂) by 1.

h

1 g

g

h
w1

e1

g e3

w1

g
11

g h

e2e 4 ∆

g

1

gπ

g

h

π/2

π

1

π

1

g

π/2

g

1

1

Figure 4.107: ∆̂ receives 2.π2 without decreasing Φ(∆̂) by 1 for each π
2 .

Now note that the edge e2 in Figure 4.95 is a single bond. Then by

inspection the ∗-corner has angle ≤ π
2
. Thus ∆̂ must receive curvature

across e1, for otherwise c∗(∆̂) ≤ −6π + 3π + 5.π
2

+ π
2

= 0 (once

again Remark 4.5.44(2) ensures that c∗(∆̂) ≤ 0). Therefore l(∆̂) ∈

{gh−11h−11w1, hg−11h−11w2, 1h−11h−11w3, 1−1hg−11h−11w4}. Hence l(∆̂) ∈

{gh−11h−11g−1gg−1, gh−11h−11g−111−1, gh−11h−111−1g1−1, gh−11h−111−11g−1,
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1h−11h−11h−11h−1, 1h−11h−111−111−1, 1h−11h−11g−1g1−1, 1h−11h−11g−11g−1,

1h−11h−111−1gg−1}. If l(∆̂) ∈ {gh−11h−11g−1gg−1, gh−11h−11g−111−1,

1h−11h−11g−1g1−1}, then Γ2 = 2 and Φ(∆̂) ≤ 2. Moreover if l(∆̂) =

1h−11h−111−111−1 or 1h−11h−111−1gg−1, then Γ2 ≤ 3 and Φ(∆̂) = 1. In all these

cases c∗(∆̂) ≤ 0. Now if l(∆̂) = gh−11h−111−1g1−1 or gh−11h−111−11g−1, Γ2 ≤ 3

and Φ(∆̂) ≤ 2. If Φ(∆̂) = 2 and l(∆̂) = gh−11h−111−1g1−1, then ∆̂ is shown in

Figure 4.108, where the edge e1 is not a single bond (Remark 4.5.33 (4)(ii)). Thus

a cut across e1 and e2 increases the number of 6-regions (without affecting the

number of 4-regions). Also, if Γ2 = 3, Φ(∆̂) = 2 and l(∆̂) = gh−11h−111−11g−1,

then ∆̂ is shown in Figure 4.109. As before a cut across e3 and e4 in Figure 4.109

yields a contradiction so Γ2 + Φ(∆̂) ≤ 4 and c∗(∆̂) < 0.
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Figure 4.108: l(∆̂) = gh−11h−111−1g1−1.
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Figure 4.109: l(∆̂) = gh−11h−111−11g−1.

Finally, if l(∆̂) = 1h−11h−11h−11h−1 or 1h−11h−11g−11g−1, then a cut across e1

and e2 in Figure 4.110 contradicts (A). This completes the case n = 8.
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Figure 4.110: l(∆̂) = 1h−11h−11h−11h−1 or 1h−11h−11g−11g−1.

This leaves n = 10. Observe that ∆̂ receives 2.π
2

without decreasing Φ(∆̂), for

otherwise −8π+5π+5.π
2
+ π

2
= 0 and Remark 4.5.44(2) ensures that c∗(∆̂) ≤ 0.

Now by Remark 4.5.44(3), ∆̂ receives these 2.π
2

across non-consecutive outward

oriented edges in ∂(∆̂). Then ∆̂ is one of the regions shown in Figures 4.111 and
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4.112. Consider the first case (Figure 4.111). In this case Remark 4.5.33 (4)(i)

implies that Φ(∆̂) ≤ 4. Observe that Φ(∆̂) + Γ2 ≤ 7 and if Φ(∆̂) + Γ2 ≤ 6, then

c∗(∆̂) ≤ 0. Now if ∆̂ receives curvature across e2, then the situation is shown in

Figure 4.96. Therefore the •-corner has label 1−1 and so the ∗-corner cannot have

label h which implies Φ(∆̂) + Γ2 ≤ 6. Therefore assume that the •-corner has

angle π and ∆̂ receives curvature across e4. So the •-corner has label h−1(note

that if it has label g−1 then e2 is a single bond) and ∗-corner has label 1 (see

Figure 4.111 (ii)). However the •-corner has angle ≤ π
2

since e3 is a single bond,

a contradiction.
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Figure 4.111: ∆̂ for n = 10.

Now let ∆̂ be as shown in Figure 4.112. Observe that the •-corner has angle

≤ π
2
. Indeed, if it has label g−1 then e1 is a single bond. Also if it is an h−1-

corner then e2 is a single bond. Therefore ∆̂ must receive curvature across e1

(see Figure 4.96), for otherwise Φ(∆̂) + Γ2 ≤ 6 and so c∗(∆̂) ≤ 0. In this case

l(∆̂) = 1h−111−11h−11w and so a cut across e1 and e3 contradicts (C). This com-
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pletes the case n = 10.
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Figure 4.112: ∆̂ for n = 10.

Before stating the main result for case 13, we list the following exceptional cases.

(E1) g = h−1 and |h| ∈ {4, 5, 6}.

(E2) g = h2 and |h| = 4 or h = g2 and |g| ∈ {4, 6}.

(E3)g2 = h2 = 1 and |gh−1| ∈ {2, 3}.

Proposition 4.5.45. Consider the presentation P13. Suppose that none of the

conditions in (E1)-(E3) holds. Then P13 is not aspherical if and only if g = h−1

and |h| = 3.

Proof of Proposition 4.5.45. The ‘ if’ direction of Proposition 4.5.45 follows

from Lemma 4.5.34. Now by comparing the conditions in Lemma 4.5.42 and

Lemma 4.5.43 we get the result.
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4.5.5 Case 15: (a=b=d, e=f only)

The relative presentation P15= ⟨G, y|ayaycyayeyey⟩=

⟨G, y, x|x(ay)−1, x2ca−1x2ea−1xea−1x⟩= ⟨G, x|x3gx2hxh⟩, where g = ca−1 and

h = ea−1 (and so by assumption, g, h ∈ G\{1} and g ̸= h).

Let P be a non-trivial reduced spherical picture over P15 =⟨G, x|x3gx2hxh⟩. Then

each vertex(disc) in P has one of the forms given by Figure 4.113(i) and (ii); and

the the star graph Pst
15 of P is given by Figure 4.113(iii).

1
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h
h

_

(iii)

g

xx −1

1

1

h

h

1

(i)

+
h

h
1

1
g

1

g

(ii)

Figure 4.113: + disc, - disc and Pst
15.

There is (up to inversion) only one type of vertex of degree 3 in P which is shown

in Figure 4.114.

h

1
1

1

g
h

1 or h

h

h

1

g

1 or g

g or h

1 or h

Figure 4.114: Type of vertices of degree 3.

177



Chapter 4: Asphericity of Length Six Relative Group
Presentations

Define an angle function ά1 on P as follows. Corners within 2-bonds have angle

zero. In vertices of degree 3, corners (not within 2-bonds) labelled by 1±1 or h±1

have angle 3π
4

, the remaining corner (labelled by g±1 ) has angle π
2

(see Figure

4.115). If d(v) ≥ 4, then each corner in v not in a 2-bond has angle 2π
d(v)

.

h

1
1

1

g
h

1 or h

h
1

g

1 or g

g or h

1 or h

π/2

3π/4

h3π/4

Figure 4.115: Angle function ά1 for vertex of degree 3.

Define another angle function ά2 on P as follows. Corners within 2-bonds have

angle zero. In vertices of degree 3, corners (not within 2-bonds) labelled by g±1

have angle π, each of the other two corners (labelled by 1±1 and h±1 ) has angle
π
2

(see Figure 4.116). If d(v) ≥ 4, then each corner in v not in a 2-bond has angle
2π
d(v)

.
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g
h

1 or h

< π/2

1 or h < π/2

h
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g

1 or g

g or h

hπ/2

π/2

π

Figure 4.116: Angle function ά2 for vertex of degree 3.

Remarks 4.5.46.

1. By assigning the angle function ά1 to the corners of P, the following are

satisfied:
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(i) There are no consecutive corners with angle 3π
4

in the boundary of a

region ∆ of P. This is because d(v1) ≥ 4 (see Figure 4.117). Also, the

∗-corner in vertex vi is labelled by g±1 or d(vi) ≥ 4 (i=2,3). Either way

implies that the ∗-corner has angle ≤ π
2
.

(ii) Note that (2− n)π + n
2
.3π
4
+ n

2
.π
2
> 0 implies that n ≤ 4 and so positive

regions can only have degree 4.

2. By assigning the angle function ά2 to the corners of P, the following are

satisfied:

(i) Let ∆ be a region of degree n. Also let Φ(∆) denote the number of

corners of angle π in ∆. There are no consecutive corners with angle π in

the boundary of a region ∆ of P (see Figure 4.116). Thus Φ(∆) ≤ n
2
.

(ii) If ∆ is a positive 4-region, then it has at least one corner labelled by

g±1 with angle π.

(iii) If ∆ is a positive 6-region, then it contains at least three g±1- corners

each with angle π.

(iv) As shown in Figure 4.118, in the sublabel (g1−1g)±1, at least one of the

g±1-corners has angle ≤ π
2
. Same holds for the g±1-corners in the sublabel

(gh−1g)±1.
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3π/4 π/2

Figure 4.117: Angle function ά1; no consecutive corners with angle 3π
4 in ∂∆.
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Figure 4.118: Angle function ά2; sublabels (g1−1g)±1 and (gh−1g)±1.

Before stating the result for Case 15 consider the following exceptional cases.

(E) g ∈ {h−1, h2} and |h| = 4 or h = g2 and |g| = 4.

Proposition 4.5.47. Let P15 be the relative presentation P15=⟨G, x|x3gx2hxh⟩,

where x /∈ G, g, h ∈ G\{1}. Suppose that (E) does not hold. Then P15 is not

aspherical if and only if g = h−1 and |h| = 3.

Lemma 4.5.48. Let g = h−1. If |h| = 3, then P15 is not aspherical. Otherwise

P15 is aspherical or P15 is exceptional of type (E).

Proof. Let |h| = 3. Coset enumeration shows that the order of the group

⟨h, x|x3h−1x2hxh, h3⟩ equals 666 and so P15 is not aspherical. Now let |h| ̸= 3.

Assume by way of contradiction that P is a non-trivial reduced spherical picture

over P15. Assign the angle function ά2 to the corners of P. Positive 4-regions

imply that g = h−1 or g = h2 or h = g2 or g2 = 1 or (gh−1)2 = 1. By Remarks

4.5.46 (2)(iii) and (iv), no positive 6-regions exist.

Now if g = h−1 and g = h2 or h = g2 or g2 = 1, then we get a contradiction. Also

g = h−1 and (gh−1)2 = 1 imply (E). Therefore the only possible positive region
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is given by Figure 4.119. Distribute the curvature as shown in Figure 4.120.
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Figure 4.119: g = h−1; the only possible positive region.
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Figure 4.120: g = h−1; distribution of curvature.

Remarks 4.5.49.

1. As shown in Figure 4.120, if the ∗-corner is labelled by g, then this corner

has angle ≤ π
2
.

2. l(∆̂) = h−11h−1w and so d(∆̂) > 4.

3. For each Γ2, Φ(∆) is decreased by 1.
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Now c∗(∆̂) ≤ (2−n)π+(n
2
−Γ2)π+(n

2
+Γ2)

π
2
+Γ2.

π
2
= π(2−n

4
). Therefore c∗(∆̂) > 0

implies n < 8 and so n = 6. Now if Γ2 = 3 then h3 = 1 and we are done. If Γ2 = 2

then l(∆̂) = (h−11)2h−1{1, g, h}. This implies one of the following: h2 = 1, a con-

tradiction, or h3 = 1 or l(∆̂) = (h−11)2h−1g. However if l(∆̂) = (h−11)2h−1g then

by Remark 4.5.49(1), Φ(∆̂) = 0. Thus c∗(∆̂) ≤ −4π + 6.π
2
+ 2.π

2
= 0. Therefore

assume that Γ2 = 1 and Φ(∆̂) = 2, for otherwise c∗(∆̂) ≤ −4π+π+5.π
2
+ π

2
= 0.

However by Remark 4.5.49(1), Φ(∆̂) = 2 is impossible. Therefore c∗(∆̂) ≤ 0 and

so P15 is aspherical.

Remark 4.5.50. In view of Lemma 4.5.48, we may assume that g ̸= h−1 until

otherwise stated.

Lemma 4.5.51. If g = h2 then either P15 is exceptional of type (E) or P15 is

aspherical.

Proof. Assign the angle function ά2 to the corners of P. Positive 4-regions imply

that g = h2 or g = h−1 or h = g2 or g2 = 1 or (gh−1)2 = 1. By Remarks 4.5.46

(2)(iii) and (iv), no positive 6-regions exist. Now assume that g = h2. If h = g2

then g = h−1. Moreover if g2 = 1 then h4 = 1 which gives (E). Also if (gh−1)2 = 1

then g = 1, a contradiction. Therefore there is (up to inversion) only one type

of positive region which is shown in Figure 4.121. Distribute the curvature as

shown.
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Figure 4.121: g = h2.
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Remarks 4.5.52.

1. l(∆̂) = 1−1h1−1w and so d(∆̂) > 4.

2. For each Γ2, Φ(∆̂) is decreased by 1.

As above, c∗(∆̂) > 0 implies n = 6. Now if Γ2 = 3 then h3 = 1, contradicting

g ̸= h−1. Moreover if Γ2 = 2 then l(∆̂) = (1−1h)21−1{1, g, h}. This implies

h2 = 1 or (E) or h3 = 1. Therefore Γ2 = 1 and Φ(∆̂) = 2, for otherwise

c∗(∆̂) ≤ −4π + π + 5.π
2
+ π

2
= 0. Hence l(∆̂) = 1−1h1−1g{1−1, h−1}g. However,

by Remark 4.5.46 (2)(iv), Φ(∆̂) ≤ 1. Therefore P15 is aspherical.

Remark 4.5.53. In view of Lemma 4.5.51, we may assume that g ̸= h2 until

otherwise stated.

Lemma 4.5.54. If P15 is not aspherical then h2 = 1 together with one of the

following holds: h = g2 or g2 = 1 or (gh−1)2 = 1.

Proof. Assume that P is a non-trivial reduced spherical picture over P15. Assign

ά1 to the corners of P. By Remark 4.5.46 (1)(ii), positive regions have degree

4. Moreover a positively curved 4-region ∆ has at least one corner with angle 3π
4

and so l(∆) = h−11{g−1, h−1}w1 or {1−1, g−1}h1−1w2. Thus l(∆) implies h2 = 1.

Now assign the angle function ά2 to the corners of P. A positive 4-region implies

that h = g2 or g2 = 1 or (gh−1)2 = 1. By Remarks 4.5.46 (2)(iii) and (iv), no

positive 6-region exists and the result follows.

Lemma 4.5.55. If P15 is not aspherical then h2 = 1 and h = g2.

Proof. Assign ά2 to the corners of P. Positive regions imply that h = g2 or

g2 = 1 or (gh−1)2 = 1 and these regions are shown in Figure 4.122. If h = g2
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and g2 = 1 or h = g2 and (gh−1)2 = 1, then h = 1, a contradiction. Suppose

that at least one of the following holds: g2 = 1 or (gh−1)2 = 1. Then the possible

positive regions are of Types 1 and 2 only. Distribute the curvature as shown in

Figure 4.123. Thus l(∆̂) = g−1h1−1w1 or h−11g−1w2 and so d(∆̂) > 4.
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Remark 4.5.56. If ∆̂ receives π
2

across consecutive edges in ∂∆̂, then the situ-

ation shown in Figure 4.124 is forced. By inspection, ∆̂ receives 0 across the four

edges shown in Figure 4.124. Also observe that Φ(∆̂) is decreased by 2.
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Figure 4.124: ∆̂ receives π
2 across consecutive edges in ∂∆̂.

Observe that in Figure 4.123, d(v) ≥ 4 and so the g−1-corner of v has angle ≤ π
2
.

By Remark 4.5.56 and Figure 4.123, Φ(∆̂) is decreased by 1 for each Γ2. Thus as
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before c∗(∆̂) > 0 implies d(∆̂) = 6. Assume that ∆̂ receives π
2

across consecutive

edges in ∂∆̂. Then the degree of the vertex with ∗-corner in Figure 4.124 is at

least four. So this ∗-corner has angle ≤ π
2
. Thus c∗(∆̂) ≤ −4π + 6.π

2
+ 2.π

2
= 0.

Now assume that ∆̂ receives π
2

from positive regions of Types 1 and 2 across

non-consecutive edges in ∂∆̂. Then the only possibility for ∆̂ is shown in Figure

4.125. Thus c∗(∆̂) ≤ −4π+6.π
2
+2.π

2
= 0. It remains to check for the possibility

when ∆̂ receives π
2

from only one of the Types 1 or 2 of positive regions. In both

cases, by inspection, Γ2 = 1 and the number of corners of angle π is at most 1.

Hence c∗(∆̂) ≤ −4π + π + 5.π
2
+ π

2
= 0. Therefore P15 is aspherical. By Lemma

4.5.54 we get the result.
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Figure 4.125: ∆̂ receives π
2 across non-consecutive edges in ∂∆̂.

Remark 4.5.57. g = h−1 or g = h2 is now allowed.

Proof of Proposition 4.5.47. The ‘if’ direction follows from Lemma 4.5.48.

Assume P15 is not aspherical. If g = h−1 then we are done by Lemma 4.5.48. So

assume from now on that g ̸= h−1. Now assume that g = h2. Then by Lemma

4.5.51, P15 is exceptional of type (E). So assume from now on that g ̸= h2. By
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Lemma 4.5.55, P15 is exceptional of type (E).

4.5.6 Case 18: (a=b= c=d )

The relative presentation P18= ⟨G, y|ayayayayeyfy⟩=

⟨G, y, x|x(ay)−1, x4ea−1xfa−1x⟩= ⟨G, x|x5gxh⟩, where g = ea−1 and h = fa−1

(with the assumptions g, h ∈ G\{1}). Thus this case is done by Theorem 3.1.6

(see [3]).
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