INTRODUCING

GOLDFUSION!

ColdFusionjournal.com

n
lD=el=l LOL November 12-15, 2000

=2 (D =Y}

Announcing.. Wireless

December 3-5 2000 [wP=SVL @le g

Editorial
The Wonderful World
.of Wireless
Robert Diamond page 5

Foundations
Making Assertions
Hal Helms page 14

Product Reviews
AuctionBuilder Pro!1.0
Jfrom AbleCommerce
- Carey Lilly page22
CommonSpot
Jfrom PaperThin
Dave Horan page 56

Guest Editorial

Software Development
Steven D. Drucker page 26

CF Conference

CFUN-2k = CF Party
Charles Arehart page 36

T g)

) (

SYS-CON
MEDIA

U.S. $8.99 (Canada $9.99)

Jourmal

October 2000 Volume:?2 Issue: 10

CFDJ Feature: Recursive Custom Tas i

A study of algorithms leads to superior application design \Ilmrk Cyzyk

<BF> on <CF>: ‘The Ten Commandments’ -

ReVlSlted Even the holiest rules need an update Ben Forta

Great Philosophers of |§

CED] Feature: A ColdEusion Based &
Oracle Database Monitor Limitiess possivitities with

Web-enabled client/server applications Kailasnath Awati & Mario Techera

e o 3 ga¢
2Tz LI914- :x*olnvx*****x**xx

CF Tools: Use WDDX to Store Complex =1
Variables for Clustered Web Servers

Powerful new tool helps CF developers meet Web needs

e

Alan McCullough
- o
i 42

0SMOL
N1 39V110 6091
i N
e - L) N ng Tips and Techniques
S0 g0
§§* XXX

e Training Staff &G

- i

A new, interactive column for ColdFusion users

WAP & ColdFusion: ColdFusion in [2
WAP Ar ChiteCture Create new services 3

52

have a confession to make: I wasn't a computer science major
in college — I was a philosophy major. While the two disci-
plines have much in common (conceptual acrobatics, a high
degree of abstraction, logical and analytical rigor, obtuse and
convoluted texts), I'm finding now that, as aWeb applications
developer, a study of the basic tenets of computer science can
help me create more sophisticated applications.

Case in point: the study of data structures and algorithms.

I recently had a programming problem to solve, one that lent
itself perfectly to a solution offered in any data structures text-
book. My problem was this: I was working with librarians on our
campus on a project, part of which entailed the creation of a
subject terms list. Once compiled, this hierarchical list of subject
terms would be used as a controlled vocabulary to index items in
our database. Although the list of terms the librarians came up
with consisted of two levels (a general term and a specific term),
there was no guarantee that in the future there wouldn't be a
need to further subdivide the second level into a third level, and
that level into a fourth and so on. In short, the number of levels
in the hierarchy could be variable. So how should the data for
this project be stored, and how should I then programmatically
extract it as needed?

After pondering several scenarios involving multiple tables
and confusing looping mechanisms, I decided to consult a col-
league for advice. He took one look at the situation and, having
had solid training in computer science theory, planted two buzz-
words in my head: tree and recursion. Armed with this informa-
tion, I scoured the Web and the library in search of information
about trees as data structures and how recursive functions can
be used to navigate them.

6 CFDJ OCTOBER

Storing a Tree Structure

Insofar as the list of subject terms is in a hierarchy, with a term
serving as root and subterms serving as branches, it is properly
described as a tree data structure. My solution with respect to how
it should be stored in the back-end database is to store the entire
tree in a single table consisting of three fields. The first field, “SUB-
JECTID”, serves as the primary key, uniquely identifying each row.
The second field, “SUBJECT”, holds the text of the subject term
itself, for example, “Italian Landscapes.” The third field, “PARENTID”,
serves as a pointer to the next item up the hierarchy from the cur-
rent term. Thus the parent of the term “Italian Landscapes” might
be something like “Italian Art,” and the parent of the term “Italian
Art” might be something like “Art History” and so forth. In this
manner, each term in the table is linked to its conceptual parent all
the way to the top of the tree where there are base terms that them-
selves don't have parents. These terms represent the starting points
in the tree structure and have, by default, PARENTIDs of 0. Figure 1
represents how this tree structure is stored in a table (the “lookup-
Subjects” table) in the back-end database.

Recursion

But now that the data is properly stored, the question
remains: How do we programmatically access it? For instance,
chances are at some point we'd want to print out the entire table
in outline form, with those subject terms lacking parents at the
base and other items down the branches printing in indented
form. How to do this? There must be some sort of loop involved
here, but what is the nature of this loop? How does it know, in a
structure where the length of each branch is variable, when to
stop? The conceptual key to doing this is known as recursion.

www ColdFusionJournal.com

A recursive function is a function (or method, custom tag or

other chunk of code) that calls itself. It is essentially a loop, exe-
cuting over and over again until some sort of “base condition” is
met. In fact, the tasks that many recursive functions are used to
accomplish can instead be carried out using various FOR and
WHILE loops, but using a recursive function is often thought to
be a more elegant solution.

To print out the contents of the lookupSubject table in out-
line form, I created a custom tag called “simpleBuildTree”. This
tag results in the output represented by Figure 2.

Listing 1 is the code for the cf_simpleBuildTree custom tag. It
is worth going over line by line.

cf simpleBuildTree
First, this custom tag is called in the usual way:

<cf simpleBuildTree>

Line 1 of the tag sets a default value of 0 for a variable,
#thelD#, which is used to retrieve records from the database
later on. If, however, #thelD# is being sent as an attribute to the
tag, it is rescoped in lines 3-5 so that it can simply be referred to
as #thelD# instead of #attributes.theID#.

Lines 7-12 represent the “getCurrentltems” query. This query
selects all records from the table whose PARENTIDs match the
value of the current #PARENTID# variable. This value by default is
set to 0, so the first time this query is run it will return all records
appearing at the very top of the tree structure, that is, all records
that are themselves not children of any other parent record. Refer-
ring back to Figure 1 for a minute, only two records fit this criteri-
on — the record for “Arts and Humanities” and the record for “Gen-
eral and Reference.” Thus these two entries will serve as roots in the
tree structure — and from these two roots all branches will grow.

Line 14 begins an unordered list, and line 16 begins a loop
through the records retrieved by the getCurrentltems query
(our two records).

Lines 18-20 output the current value of #getCurrentltems.sub-
ject# as a list item within the unordered list.

Line 22, however, is where the fun begins.

It's possible that the current value of #getCurrentltems.sub-
ject# does not have any children; that is, it's not the conceptual
parent of any other subject term in the table. But it’s also possi-
ble that it has conceptual children, in which case we need to tra-
verse down the tree, finding and outputting them all. The
“checkForChild” query on lines 22-26 lets us know whether or
not the current item has children attached to it. It does this by
selecting records whose PARENTIDs match the current #SUB-
JECTID#.

Online 28 the recordcount for the checkForChild query is com-
pared to 0. If it’s greater than 0 we know there must be children. If
there are children, we need to loop back through the whole
process, finding and outputting each one along the way. This is
what the recursive call on lines 29-31 does: it calls the cf_simple-
BuildTree tag itself, this time passing a new value for #theID# that
is equal to the current value of #getCurrentltems.subjectid#. At
this point execution within the tag occurs within a completely
new context — the context of the next item down the hierarchy.

Within this context line 14 begins a new unordered list nest-
ed within the unordered list a level up the hierarchy. Because
HTML deals with nested lists properly, we're presented with the
correctly indented outline illustrated in Figure 2.

To back up for a minute to our first iteration through the
getCurrentltems recordset, if the checkForChild query is run on
the current value and comes up with nothing, nothing else

www ColdFusionJournal.com

Arts mamues’ & Lo e
BN 2 General and Reference
g ! 3 Art Histary !

4 Classics |

5 English and American Literatqre; i
B French b

8 Biography
_ 9lltalian Art
10| Italian Portraiture

11 ltalian Landscapes

_ 12 Russian Art

Subject Terms - cf_simpleBuildTree

* Arts and Humanities
o Art History
n [talian Art
» [talian Landscapes
= [talian Portraiture
m Russian Art
o Classics
= Ancient Greek Literature
= Ancient Roman Literature
o English and American Literature
© Film and Media Studies
o French
e General and Reference
o Biography

-

& .' ™ FIGURE

¢ i G L DR

Tree (SUBJECTID = 9)

Subject Terms - cf_reverse

¥ ‘ Arts and Humanities - Art History - Italian Art

rSubject Terms - cf_selectboxBuildTree - Selectbox Mode

New subject:

New subjectis attop oftree (not a child
Arts and Humanities

Arts and Humanities - Art History i
Arts and Humanities - Art History - talian Art |

Arts and Humanities - Art History - talian Art- Italian Landscapes s

of any parent subject)

occurs; the code simply outputs the current value of #SUBJECT#
as a root entry in the tree and moves on to the next record.

In this manner recursion can be used to process data con-
tained in a tree structure. The important thing to remember
here is that (1) a recursive call is being used to create a loop, and
(2) there is a base condition that can be tested against to end the
loop; in this case the base condition is reached when the check-
ForChild query returns a recordcount of 0, indicating that tra-
versal down that particular branch has reached an end.

OCTOBER CFDJ

cf_buildTree and cf_reverseTree
cf_simpleBuildTree works great and
outputs the data in a nice outline form.
But suppose we wanted to additionally
output each branch as one long string?
Suppose we wanted output to look like:

Arts and Humanities
Arts and Humanities — Art History
Arts and Humanities — Art History - Italian Art

The first thing we'd need to do is put
some switches in to let the program know
whether we're in “outline” or “string”
mode, then pass in an appropriate value
indicating which mode we want. So if we
just copy cf_simpleBuildTree to a new file,
say, cf_buildTree, and make the edits, it
can be called by:

<cf_buildTree
mode="outline"
>

The output in this mode is exactly the
same as that in Figure 2.

Then it’s a matter of editing it and
putting in the aforementioned switches.
Listing 2 contains the final code for
cf _buildTree, with any code referring to
outline mode wrapped in the appropriate
conditional code.

The major change required to output
subject terms in string mode begins on line
36, within the checkForChild.recordcount
conditional. Notice that, within string mode,
this tag never actually outputs anything.
Rather, beginning on line 37, it calls another
custom tag, “cf reverseTree”, passing it a
value for the #thelD# variable.

Here’s what's going on: to output the
subject terms in a string format such as
“Arts and Humanities — Art History — Italian
Art,” the cf_buildTree tag must somehow
keep track of the entire list of these terms
as it traverses the tree. But the recursive
function it employs really doesn't do that;
once it has traversed a branch to its end, it
simply backs up one step and processes
any other children left in the previous loop.
If none are found, it keeps sequentially
backing up the hierarchy, processing each
branch, until it hits the root. Then it begins
processing the next root term and all of its
branches. The key thing to note here is that
it's not backing all the way to the root each
time — just one or two (or three or four...)
levels until it finds a child in need of pro-
cessing. Because this particular tree is an
“unbalanced tree,” that is, a tree whose
respective branches may be of differing
lengths, one cannot simply push and pop
items onto a stack and then expect that
stack to accurately represent a particular
branch in string format.

8 CFDJ OCTOBER

The recursion employed by this tag and
the cf_simpleBuildTree tag determines the
end nodes or leaves of each tree — it's
what's known as a “depth first” search.
Once we know this, we must do a reverse
lookup of the parents of the leaf all the way
back to the root. This is what the cf_reverse-
Tree tag does on lines 37-39. Code for this
tag is shown in Listing 3.

First, notice that this tag can be called
directly with the following call:

<cf_reverseTree
theID = 9
>

This results in the output shown on
Figure 3.

How does cf_reverseTree work? Pretty
much the same way that cf buildTree
does, only in reverse order. It takes as an
attribute a SUBJECTID and, based on that
SUBJECTID, it traverses up the tree to the
root. As it does this it prepends the value
of the #SUBJECT# variable to a list that is
then passed to any other recursive itera-
tion of itself. When the top of the tree is
reached, it outputs the contents of the list.
This output represents the entire branch
in string format, from root to leaf.

One last thing to note about this tag is
that, on line 25, a <CFEXIT> tag is called.
This is done so that, if there is a parent to
the current child, the contents of #the-
List# are not output; it ensures that #the-
List# is output only once, when the top of
the tree is reached.

Returning to cf_buildTree, we see that,
on lines 35-45, if checkFor Child.record-
count is not 0, and if the mode of operation
is “string” the cf_reverseTree tag is called,
which outputs the branch in string mode.
However, if there are no children to the
current node, cf_reverseTree is likewise
called. This occurs on lines 45-51.

Further Modification: cf_selectboxBuildTree
and cf_selecthoxReverseTree

How might the string mode of this tag
be used? One use for it would be to
dynamically populate an HTML selectbox.

Listings 4 and 5 illustrate the edited
cf_buildTree and cf _reverseTree (saved as
cf_selectboxBuildTree and cf_selectboxRe-
verseTree, respectively) needed to do this.
Listing 6 illustrates how this new tag is
called. Its output is represented in Figure 4.

cf_selectboxBuildTree is roughly the
same as cf_buildTree; the main difference
is the new attribute passed to the cf_select-
boxReverseTree tag on lines 40 and 52. This
attribute, named “initialID,” passes in the
value of the current SUBJECTID and will
be used later by the cf_selectboxReverse-
Tree tag to output an HTML <OPTION> tag
with the proper SUBJECTID value.

Taking a look at the code for cf_select-
boxReverseTree (see Listing 5), we see that
the value of #INITIALID# is passed to every
recursive iteration of the tag, on line 34,
without its value ever being changed.
Hence the value of the original SUBJECTID
is retained and finally output as the value
of the HTML <OPTION> tag on line 43.

In this manner a tree structure can be
processed and output in “string” mode,
and such string output can be used to
dynamically populate an HTML selectbox.

A Note on Performance

It is important to note that recursive
functions are extremely resource inten-
sive. This isn't surprising; each time a
recursive call is initiated, the tag itself
must be reexecuted while simultaneous-
ly retaining the state of previous itera-
tions. Further, in the examples offered in
this article there is the additional over-
head of having the data stored in a back-
end database. Processing a medium-
sized tree structure with a recursive cus-
tom tag could result in literally hun-
dreds of hits on the database server,
which could be very time-consuming.
Every effort should be made to speed up
or eliminate these transactions. A signif-
icant performance gain can be made, in
the cases illustrated above, by simply
caching the queries for a brief period —
especially the queries in the reverse
lookup tags — so they are not duplicated.
Then, if a query was previously run from
within a recursive iteration, it need not
be run again; rather, its results will sim-
ply and quickly be read from cache.

Even so, careful attention must be
taken when deciding to use a recursive
call to process data — and the decision to
use a recursive call should be relative to
the amount of data and the resources you
have available for processing.

www ColdFusiondJournal.com

Conclusion

Robert Lafore, in his lucid and readable
book Data Structures and Algorithms in Java,
points out that it's not enough to learn the
syntax of a programming language — one
must also learn how best to use that language
to manipulate data in an efficient manner.
And the study of data structures and the algo-
rithms appropriate for processing them is the

ultimately in superior application design. For
someone who wasn't a computer science
major in college, that’s solid advice.

Acknowledgments

The author wishes to thank his col-
leagues for their special contributions to
his understanding of data structure and
algorithms: Ian Goh for pointing the way

comments on this article in draft. Both
were computer science majors. é@'

About the Author
Mark Cyzyk is an Allaire certified ColdFusion developer
and Web developer at Johns Hopkins University and Nine
Web, LLC, where he uses ColdFusion to create dynamic
database-driven applications for his clients.

first step in that direction, a path that results and Craig Turkington for his insightful | MCYZYK@JHU.EDU
P p g g g JSRSEJOU.ED)
Listing 1: cf_simpleBuildTree gg grre o S
1 <cfparam name="theID" default="0"> 24 <cfoutput>
2 : X
3 <cfif IsDefined("attributes.theID")> P s
4 <cfset theID = attributes.theID> 27 </cfif>p
SEN<]oRdf> 28
6 S
4 W 29 <cfquery datasource=f#application.datasourcef
7 <cfquery_datas9urcg—#app11eat1on.dataﬁource# " password=fapplication.passwordf cachedwithin=#Create-
password=fapplication.password# name="getCurrentItems"> TimeSpan(0,0,0,2)# name="checkForChild">
g §EEECT zOOKUPSUBJECTS SOMEL T
10 WHERE PARENTID = #THEID# g | e
P 32 WHERE PARENTID = #GETCURRENTITEMS.SUBJECTID#
11 ORDER BY SUBJECT 33 </cfquery>
12 </cfquery> o query
iz s 35 <cfif checkForChild.RecordCount gt 0>
15 L 36 <cfif mode IS "string">
37 <cf reverseTree
ig e R R 38 theID = "#GETCURRENTITEMS.SUBJECTID#"
SO,
18 <cfoutput> 2 lefit>
19 fsubjectf Z? <céc£;£ldTree
e 42 theID = "4GETCURRENTITEMS.SUBJECTID"
a i "
22 <cfquery datasource=fapplication.datasource# 22 §ode g
password=fapplication.passwordf# cachedwithin=fCreate- 5kt telnes
TimeSpan(0,0,0,2)# name="checkForChild"> WOREE TTF Dode IS NstrimetS
23 SELECT SUBJECTID o L e
24 FROM LOOKUPSUBJECTS = — "
25 WHERE ~ PARENTID = #GETCURRENTITEMS.SUBJECTIDY Zg SR S L
% sleaius 50 </cfif>
28 <cfif checkForChild.RecordCount gt 0> g; fe i
29 <cf simpleBuildTree
30 thelD = "4GETCURRENTITEMS.SUBJECTID" Rt
S : " el ;
32 </cfif> 55 <cfif mode IS "outline"><[cfif>
33 Listing 3: cf_reverseTree
gé </cfloop> 1 <cfparam name="theList" default="">
2
36 sful> 3 <cfif IsDefined("attributes.theID")>
4 <cfset theID = attributes.theID>
Listing 2: cf_buildTree 2 <[etif>
1 <cfparam name="theID" default="0"> 7 <cfif IsDefined("attributes.theList")>
2 <cfparam name="mode" default="outline"> 8 <cfset theList = attributes.theList>
3 9 </cfif>
4 <cfif IsDefined("attributes.theID")> 10
5 <cfset thelD = attributes.theID> 11 <cfquery datasource=fapplication.datasourcef
6 <[efif> password=f#application.password# cachedwithin=#Create-
7 TimeSpan(0,0,0,2)# name="getCurrentItems">
8 <cfif IsDefined("attributes.mode")> 12 SELECT *
9 <cfset mode = attributes.mode> 13 FROM LOOKUPSUBJECTS
10 </cfif> 14 WHERE SUBJECTID = #THEID#
11 15 </cfquery> |
| 12 <cfquery datasource=fapplication.datasource# 16 |
password=fapplication.password# name="getCurrentItems"> 17 <cfset theltem = fgetcurrentitems.subjectf> |
13 SELECT * 18 <cfset thelList = listPrepend(thelist, "f#theltem#")> {
14 FROM LOOKUPSUBJECTS 19
| 15 WHERE PARENTID = #THEID{# 20 <cfif #getcurrentitems.parentIDf IS NOT 0>
| 16 ORDER BY SUBJECT 21 <cf reverseTree
| 17 </cfquery> 22 theID = "#GETCURRENTITEMS.PARENTID#"
|18 23 theList = "ftheList#"
19 <cfif mode IS "outline"></[cfif> Dl
20 25 <cfexit>
21 <cfloop query="getCurrentItems"> 26 </cfif>
10 CFDJ OCTOBER www ColdFusionJournal.com

LyuiliLGUiIVWLU L G LALJ‘E¥

<cfset theList = attributes.theList>

<[cfif>

<cfif IsDefined("attributes.mode")>
<cfset mode = attributes.mode>
<[cfif>

<cfif IsDefined("attributes.initialID")>
<cfset initiallD = attributes.initialID>
<[cfif>

<cfquery datasource=fapplication.datasource#
password=fapplication.password# cachedwithin=#Create
TimeSpan(0,0,0,2)# name="getCurrentItems">

SELECT *

FROM LOOKUPSUBJECTS

WHERE SUBJECTID = #THEID#

<[cfquery>

<cfset theltem =

#getcurrentitems.subject#>

<cfset theList =

listPrepend(thelList, "#theIltem#")>

<cfif #getcurrentitems.parentID# IS NOT 0>
<cf selectboxReverseTree
theID = "#GETCURRENTITEMS.PARENTID#"

theList = "#THELIST#"
mode = "#MODE#"
initialID = "#INITIALID#"
>
<cfexit>
<[cfif>

<cfset thelList = listChangeDelims(theList, " - ")>
<cfoutput>

<cfif mode IS "selectbox">

<option value=#INITIALID#>

<[cfif>

#theList#

</cfoutput>

<cfif mode IS NOT "selectbox">

<[cfif>

Listing 6: A form calling cf_selectboxBuildTree

27 8
28 <cfset theList = listChangeDelims(theList, " - ")> 9
29 10
30 <cfoutput> 11
31 #thelistf#
 12
32 </cfoutput> 13
s
1 <cfparam name="theID" default="0"> 16
2 <cfparam name="mode" default="outline"> 17
3
4 <cfif IsDefined("attributes.theID")> ig
5 <cfset theID = attributes.theID>
6 <[cfif>
{ 20
8 <cfif IsDefined("attributes.mode")> 21
9 <cfset mode = attributes.mode> 29
10 </cfif>
11 23
12 <cfquery datasource=fapplication.datasource# 24
password=fapplication.password# name="getCurrentItems"> 25
13 SELECT * 26
14 FROM LOOKUPSUBJECTS 27
15 WHERE PARENTID = #THEID{# 28
16 ORDER BY SUBJECT 29
17 </cfquery> 30
18 31
19 <cfif mode IS "outline"></cfif> 32
20 33
21 <cfloop query="GetCurrentItems"> 34
22 35
23 <cfif mode IS "outline"> 36
24 <cfoutput> 37
25 j}subjecti 38
26 <[cfoutput> 39
%; <[cfif> 40
41
29 <cfquery datasource=f#application.datasourcef 42
password=fapplication.password# cachedwithin=f#Create- 43
TimeSpan(0,0,0,2)# name="checkForChild"> I
30 SELECT SUBJECTID 45
31 FROM LOOKUPSUBJECTS 46
32 WHERE PARENTID = #GETCURRENTITEMS.SUBJECTID# 47,
33 </cfquery> 48
34
35 <cfif CheckForChild.RecordCount IS NOT 0> 49
36 <cfif (mode IS "string") OR (mode IS "selectbox")>
37 <cf selectboxReverseTree
38 theID = "#GETCURRENTITEMS.SUBJECTID#" L
39 mode = "{#MODE#" .
40 initialID = "#GETCURRENTITEMS.SUBJECTID#" 3
Lleiigs
42 <[cfif> 4
43 <cf selectboxBuildTree 5
44 theID = "#GETCURRENTITEMS.SUBJECTID#" 6
45 mode = "#MODE#" 7
46 >
47 <cfelse> 8
48 <cfif (mode IS "string") OR (mode IS "selectbox")> 9
49 <cf selectboxReverseTree 10
50 “theID = "#GETCURRENTITEMS.SUBJECTID#"
51 mode = "#MODE#" I
52 initialID = "#GETCURRENTITEMS.SUBJECTID#" 12
53 > 18
54 ‘<[cfif> 14
gg <[cfif> 15
16
gg </cfloop> 17
59 <cfif mode IS "outline"></cfif> ig
1 <cfparam name="theList" default="">
2
3 <cfif IsDefined("attributes.theID")>
4 <cfset theID = attributes.theID>
5 [<[cEif>
6
7 <cfif IsDefined("attributes.theList")>
12 CFDJ OCTOBER

<fieldset>

<legend>Subject Terms - cf selectboxBuildTree - Select
box Mode</legend>

<p>

<cfform action="action.cfm">

<d1>

<dt>New subject:

<dd><cfinput name="subject" size=25 required message="You
must include a subject!">

<dt>New subject is the child of:

<dd><select name="parentID" size=5">

<option value=0 selected>New subject is at top of tree
(not a child of any parent subject)

<cf selectboxBuildTree

mode="selectbox"

>

<[select>
<p>
<input type="submit" value="Submit">
<[cfform>

<p>

<[fieldset>

The code listing for
this article can also be located at

www.ColdFusionJournal.com

www ColdFusionJournal.com

