
ColdFusionJou rnal

U.S. $8.99 (Canada $9.99)

Bltehrcr'I
Jntlrnal

October 2000 Volume:2 lssue: l0

l1
.com

l|$l[]f
Attnonncing,,,

huenher 3-5, 2000

CFDI Feafi,re: Recursive Custom Tags 6
A study of algorithms leads to superior applicatio" d"tr&_Norlgy

<BF> on <CF>;'Th
RgViSit ed trrn the hotiest rules need an update Ben Forta

Web- enabled clientlseruer applications Kailasnath Awati & Mario Techera

Powerful new toolhelps CF deuelopers meetWeb needs

Charles Arehart

48

CFDI Feature: A ColdFusion Based
Oraclg Databasg Monitor Limittess possibitities with

\ -'-*----o *
Anew, interactiue columnfor ColdFusion users

WAP & Coldtusion: ColdFusion in
BruceVan Horn

52

Ruseeu

Fn r-r-- llwenba | 2-l 5, n00
2@@@ -- .

WAP Architecturg create new seruices

have a confession to make: I wasnt a computer science major
in college - I was a philosophy major. \dhile the two disci-
plines have much in common (conceptual acrobatics, a high
degree ofabstraction, logical and analytical rigor, obtuse and
convoluted texts), I'm finding now that, as aWeb applications
developer, a study of the basic tenets of computer science can
help me create more sophisticated applications.

Case in point: the study of data structures and algorithms.
I recently had a programming problem to solve, one that lent

itself perfectly to a solution offered in any data structures text-
book. My problem was this: I was working with librarians on our
campus on a project, part of which entailed the creation of a
subject terms list. Once compiled, this hierarchical list of subject
terms would be used as a controlled vocabulary to index items in
our database. Although the list of terms the librarians came up
with consisted of two levels (a general term and a specific term)'
there was no guarantee that in the future there wouldnt be a
need to further subdivide the second level into a third level, and
that level into a fourth and so on. In short, the number of levels
in the hierarchy could be variable. So how should the data for
this project be stored, and how should I then programmatically
extract it as needed?

After pondering several scenarios involving multiple tables
and confusing looping mechanisms, I decided to consult a col-
Ieague for advice. He took one look at the situation and, having
had solid training in computer science theory, planted two buzz-
words in my head: tree and recursion. Armed with this informa-
tion, I scoured the Web and the library in search of information
about trees as data structures and how recursive functions can
be used to navigate them.

6 cru ocToBER

Sbdru all€c Sftrcturu
Insofar as the list of subject terms is in a hierarchy, with a term

serving as root and subterms serving as branches, it is properly
described as a tree data structue. My solution with respect to how
it should be stored in the back-end database is to store the entire
tree in a single table consisting of three fields. The fust field, "SUB-

IECTID", serves as the primary key, uniquely identi$ing each row.
The second field, "SUBIECT", holds the text of the subject term
itself, forexample, "Italian I-andscapes." The third field, "PARENTID",

seryes as a pointer to the next item up the hierarchy from the cur-
rent term. Thus the parent of the term "Italian Landscapes" might
be something like "Italian Art," and the parent of the term "Italian
Art' might be something like "Art History" and so forth. In this
manner, each term in the table is Iinked to its conceptual parent all
the way to the top of the tree where there are base terms that them-
selves dont have parents. These terms represent the starting points

in the tree structure and have, by default, PARENTIDs of 0. Figure I
represents how this tree structure is stored in a table (the "lookup-
Subjects'table) in the back-end database'

Recurclon
But now that the data is properly stored, the question

remains: How do we programmatically access it? For instance,
chances are at some point wed want to print out the entire table
in outline form, with those subject terms lacking parents at the
base and other items down the branches printing in indented
form. How to do this? There must be some sort of loop involved
here, but what is the nature of this loop? How does it know in a
structure where the Iength of each branch is variable, when to
stop? The conceptual key to doing this is knovrm as recursion'

www GoldFuslonJournal.com

A recursive function is a function (or method, custom tag or
other chunk of code) that calls itself. It is essentially a loop, &e_
cuting over and over again until some sort of ,,base condition', is
met. In fact, the tasks that many recursive functions are used to
accomplish can instead be carried out using various FOR and
WHILE loops, but using a recursive function is often thought to
be a more elegant solution.

To print out the contents ofthe lookupSubject table in out_
line form, I created a custom tag called,,simpleBuildTree,,. This
tag results in the output represented by Figure 2.

Listing 1 is the code for the cf_simpleBuildTree custom tag. It
is worth going over line by line.

cf_s impleBuildTree

First, this custom tag is called in the usual way:

<cf_s inpleBuildTree>

Line I of the tag sets a default value of 0 for a variable,
#thelD#, which is used to retrieve records from the database
later on. If, however, #thelD# is being sent as an attribute to the
tag, it is rescoped in lines 3-5 so that it can simply be referred to
as #thelD# instead of #attributes.thelD#.

Lines 7-12 represent the "getCurrenfltems,, query. This query
selects all records from the table whose pARENTIDs *utch tt e
value of the current #PARENTID# variable. This value by default is
set to 0, so the first time this query is run it will retum all records
appearing at the very top of the tree structure, that is, all records
that are themselves not children of any other parent record. Refer_
ring back to Figure I for a minute, only two records fit this criteri_
on - the record for "Arts and Humanities', and the record for,,Gen_
eral and Reference." Thus these two entries will serve as roots in the
ftee structure - and from these two roots all branches will grow

Line 14 begins an unordered list, and line 16 begins uloop
through the records retrieved by the getCurrentltims query
(our two records).

Lines lB-20 output the current value of #getCurrenfltems.sub_
ject# as a list item within the unordered list.

Line 22, however, is where the fun begins.
It's possible that the current value of #getCurrentltems.sub_

ject# doe_s not have any children; that is, it's not the conceptual
parent of any other subject term in the table. But it's also pbssi_
ble that it has conceptual children, in which case we need to tra_
verse dovrm the tree, finding and outputting them all. The
"checkForChild" query on lines 22-26 lets us know whether or
not the current item has children attached to it. It does this by
selecting records whose pARENTIDs match the current #SUB_
]ECTID#.

Online 28 the recordcount forthe checkForChild queryis com_
pared to 0. If it's greater than 0 we know there must bi children. If
there are children, we need to loop back through the whole
process, finding and outputting each one along the way. This is
what the recursive call on lines 29-31 does: it calls the cf_simple_
BuildTiee tag itself, this time passing a new value for #theIO+ that
is equal to the current value of #getCurrentltems.subjectid#. At
this point execution within the tag occurs within a iompletety
new context - the context of the next item dovrm the hierarchv.

Within this context line 14 begins a new unordered list nest_
ed within the unordered list a level up the hierarchy. Because
HTML deals with nested lists properly, we,re presented with the
correctly indented outline illustrated in Figure 2.

To back up for a minute to our first iteration through the
getcurrentltems recordset, if the checkForChild query is run on
the current value and comes up with nothing, nothing else

unmnr GoldFusionJournal.com

occurs; the code simply outputs the current value of #SUBIECT#
as a root entry in the tree and moves on to the next record.

In this manner recursion can be used to process data con_
tained in a tree structure. The important thing to remember
here is that (1) a recursive call is being used to create a loop, and
(2) there is a base condition that can be tested against to end tt e
Ioop; in this case the base condition is reached when the check_
ForChild query returns a recordcount of 0, indicating that tra-
versal down that particular branch has reached an end.

a*
4 .

f
F

OCTOBER CFIIJ

cf_bulltilltee and cf-rcuerceffee
cf-simpleBuildTree works great and

outputs the data in a nice outline form.
But suppose we wanted to additionally
output each branch as one long string?
Suppose we wanted output to look like:

futs and Humanities
tuts and Humanities -tut History
Arts and Humanities -Art History-ItalianArt

The first thing wed need to do is Put
some switches in to let the program know
whether we're in "outline" or "string"
mode, then pass in an appropriate value
indicating which mode we want. So if we
just copy cf-simpleBuildTree to a newfile,
say, cf-buildTree, and make the edits' it
can be called by:

<cf_buildTree

mode=I'outllnel

The output in this mode is exactly the
same as that in Figure 2.

Then it's a matter of editing it and
putting in the aforementioned switches.
Listing 2 contains the final code for
cf-buildTree, with any code referring to
outline mode wrapped in the appropriate
conditional code.

The major change required to output
subject terms in string mode begins on line
36, within the checkForChild.recordcount
conditional. Notice that, within string mode,
this tag never actually outputs anything.
Rather, beginning on line 37, it calls another
custom tag, 'tf-reverseTree", passing it a
value for the #thelD# variable.

Here's what's going on: to output the
subject terms in a string format such as
"Arts and Humanities - Art History - Italian
Art," the cf-buildTree tag must somehow
keep track of the entire list of these terms
as it traverses the tree. But the recursive
function it employs really doesnt do that;
once it has traversed a branch to its end' it
simply backs up one step and processes
any other children left in the previous loop.
If none are found, it keeps sequentially
backing up the hierarchy, processing each
branch, until it hits the root. Then it begins
processing the next root term and all of its
branches. The key thing to note here is that
it's not backing all the way to the root each
time - just one or two (or three or four.. .)
levels until it finds a child in need of pro-
cessing. Because this particular tree is an
"unbalanced tree," that is, a tree whose
respective branches may be of differing
lengths, one cannot simply push and pop
items onto a stack and then expect that
stack to accurately represent a particular
branch in string format.

8 CFDJ OCTOBER

The recursion employed by this tag and
the cf-simpleBuildTree tag determines the
end nodes or leaves of each tree - it's
what's known as a "depth first" search.
Once we know this, we must do a reverse
lookup of the parents of the leaf all the way
back to the root. This is what the cf-reverse-
Tree tag does on lines 37-39. Code for this
tag is shown in Listing 3.

First, notice that this tag can be called
directly with the following call:

<c f_reverseTree

thelD - 9

This results in the output shown on
Figure 3.

How does cf-reverseTree work? Pretty
much the same way that cf-buildTree
does, only in reverse order. It takes as an
attribute a SUBIECTID and, based on that
SUBJECTID, it traverses up the tree to the
root. As it does this it prepends the value
of the #SUBIECT# variable to a list that is
then passed to any other recursive itera-
tion of itself. When the top of the tree is
reached, it outputs the contents of the list.
This output represents the entire branch
in string format, from root to leaf.

One last thing to note about this tag is
that, on line 25, a <CFEXIT> tag is called.
This is done so that, if there is a parent to
the current child, the contents of #the-
List# are not output; it ensures that #the-
List# is output only once, when the top of
the tree is reached.

Returning to cf-buildTree, we see that,
on lines 35-45, if checkFor Child.record-
count is not 0, and if the mode of operation
is "string" the cf-reverseTree tag is called,
which outputs the branch in string mode.
However, if there are no children to the
current node, cf-reverseTree is likewise
called. This occurs on lines 45-51'

Futrer Modlfi ca[on: cf-sdecfroxBulldlhe
and sf_selecfr oxnatl|selhe

How might the string mode of this tag
be used? One use for it would be to
dpamically populate an HTML selectbox'

Listings 4 and 5 illustrate the edited
cf-buildTree and cf-reverseTree (saved as
cf-selectboxBuildTree and cf-selectboxRe-
verseTree, respectively) needed to do this.
Listing 6 illustrates how this new tag is
called. Its output is represented in Figure 4.

cf-selectboxBuildTree is roughly the
same as cf-buildTree; the main difference
is the new attribute passed to the cf-select-
boxReverseTree tag on lines 40 and 52' This
attribute, named "initiallD," passes in the
value of the current SUBIECTID and will
be used later by the cf-selectboxReverse-
Tree tag to output an HTML <OPTION> tag
with the proper SUBIECTID value.

Taking a look at the code for cf-select-
boxReverseTree (see Listing 5), we see that
the value of #INITTALID# is passed to every
recursive iteration of the tag, on line 34,
without its value ever being changed.
Hence the value of the original SUBJECTID
is retained and finally output as the value
of the HTML <OPTION> tag on line 43.

In this manner a tree structure can be
processed and output in "string" mode,
and such string output can be used to
dynamically populate an HTML selectbox.

A llote on Porfomance
It is important to note that recursive

functions are extremely resource inten-
sive. This isn't surprising; each time a
recursive call is initiated, the tag itself
must be reexecuted while simultaneous-
ly retaining the state of previous itera-
tions. Further, in the examples offered in
this article there is the additional over-
head of having the data stored in a back-
end database. Processing a medium-
sized tree structure with a recursive cus-
tom tag could result in literally hun-
dreds of hits on the database server'
which could be very time-consuming.
Every effort should be made to speed up
or eliminate these transactions. A signif-
icant performance gain can be made, in
the cases illustrated above, by simply
caching the queries for a brief period -

especially the queries in the reverse
lookup tags - so they are not duplicated.
Then, if a query was previously run from
within a recursive iteration, it need not
be run again; rather, its results will sim-
ply and quickly be read from cache.

Even so, careful attention must be
taken when deciding to use a recursive
call to process data - and the decision to
use a recursive call should be relative to
the amount of data and the resources you
have available for processing.

unvwGoldFusionJournal.com

Gonclusion
Robert Lafore, in his lucid and readable

book Data Structuru and Algoithms in Jaua
points out that it's not enough to leam the
syntax of a programming language - one
must also leam howbest to use that language
to manipulate data in an efficient manner.
And the studyof data structures and the algo-
rithms appropriate forprocessing them is the
first step in that direction, a path that results

ultimately in superior application design. For
someone who wasnt a computer science
major in college, that's solid advice.

Acknowledgmenb
The author wishes to thank his col-

leagues for their special contributions to
his understanding of data structure and
algorithms: Ian Goh for pointing the way
and Craig Turkington for his insightful

comments on this article in draft. Both
were computer science majors. *&

About the Author
Mork Cyzyk is on Alloire cerafied ColdFusion developer
andWeb developer ot lohns Hopkins University ond Nine
Web,LLC,where he uses ColdFusion to creote dynamic
dotobosedriven opplicailons for his clents.

v

t)

-t)

i
).)

I <cfpararn name=trthelDrr default=tr0'r>
2
3 <cfi f IsDefined("attr ibutes.thel
4 <cfset thelD = attr ibutes.thelD>
5 < /c f i f>
6
7 <cfquery datasource=#application

pas sword=#application. pas sr^rord#
8 SELECT *
9 FROM LOOKUPSUBJECTS
IO WHERE PARENTID = #THEID#
Ii ORDER BY SUBJECT
l2 </cfquery>
I 3
14 <u1>
I5
I6 <cf loop query="GetCurrentltensrr>
I 7
18 <cfoutput>
19 <l i>/ lsubject#
20 </cfoutput>
2 I
22 <cf qrery datasource=#application. datasource#

password=#applicaLion.password# cachedwithin=#Create-
TimeSpan(0' 0' 0 ; 2) I nsag=tt gheckForChild">
SETECT SUBJECTID
FROM LOOKUPSUBJECTS
l'lHERE PARENTID = #GETCIJRRENTITEMS.SUBJECTID#
< / cfquery>

<cfif checkForChild.RecordCount gt 0>
<cf_s imp leBuildTree

thelD = il#GETCI,RRENTITEMS. SUBJECTID#N

< / cf i f>

< / c floop>

< /u l>

I <cfparam nane=rrthelDrr defaul!=rt0tr>
2 <cfparam nane=trmoderr default=rtoutlinett>
3
4 <cf i f IsDef ined(' rat t r ibutes, thelD'r)>
5 <cfset thelD = at t r ibutes. thelD>

!
< / c f i f >

8 <cf i f IsDef ined("at t r ibutes.moder ')>
9 <cfset roode = at t r ibutes.node>
l0 < / c f i f >
I I
l2 <cfquery datasource=#application.datasource#

password=#application. password# name="getCurrentltens ">
13 SETECT *
14 FROM LOOKUPSUBJECTS
15 I'IIIERE PARENTID = #TIIEID#
16 ORDER BY SUBJECT
l7 </cfquery>
I 8
19 <cfi f mode IS 'routl inerr><u1></cf i f>
20
2l <cfloop query=t 'getCurrentl temsrr>

<cfif rnode IS "outline">
<cfoutput>
<1i>#subj ect#
</ cfoutput>
< / c f i f>

<cfquery datasource=/lapplication. da!asource#
password=#application. password# cachedwithin=#Create-
TlmeSpan(0'0'012)l n31ns=ttgheckforChild">

30 SEIECT SUBJECTID
3I FROM IOOKUPSUBJECTS
32 WHERI PARENTID = #GETCITRRENTITEMS.SUBJECTID#
33 </cfquery>
34
35 <cfif checkForChild.RecordCount gt 0>
36 <cfi f node IS "str ing">
37 <cf reverseTree
38 th;ID = "/IGETCURRENTITEMS.SUBJECTID#N
39
40 < /c f i f>
4l <cf bui ldTree
42 rh6ro = tr#GETCI,RRENTITEMS,SUBJECTID#il
43 mode = "#M0DE#"
44
45 <cfelse>
46 <cfif mode IS rrstring'r>
47 <cf reverseTree
48 thCTO = tr#GETCIJRRENTITEMS.SUBJECTID#N
49
50 < /c f l f>
51 < /c f i f>
52
53 </cf loop>
54
55 <cfi f node IS rroutl inerr></u1></cf i f>

I <cfparam nane=ttthelist" default=uu>
2
3 <cf i f IsDef ined("at t r lbutes. thelD")>
4 <cfset thelD = at t r ibutes. thelD>
5 < / c f i f >
6
7 <cf i f IsDef ined("at t r ibutes.rhel is t")>
8 <cfset thel is t = at t r ibures. thel is t>
9 < / c f i f >
l 0
I I <cfquery datasource=#appl icat ion.datasource#

password=#applica!lon. password# cachedwithin=/lCreate-
TimeSpan (0, 0, 0 I 2) I nsns=tt get0urrentltems rr>

12 SELECT *

13 FROM TOOKUPSUBJECTS

D u) >

. datasource#
nane=rr getCurrentlterns tr>

22
23
24
z5
26
27
28
29

23
z4
25
25
27
28
29
30
3 l
32
33
J 4

35
36

14 l,lHERE
l5 </cfquery>
I O

l7 <cfset theltern = #getcurrenti tems.subject#>
18 <cfset thel ist = l istPrepend(thel ist, ' ,#theltem#")>
I 9
20 <cfif #getcurrentitens,parentlD# IS NOT 0>
2I <cf reverseTree
22 ThAID =''#GETCURRENTITEMS.PARENTID#il
23 thelisr = r'#thellsr/1"
24
25 <cfexit>
26 <lcf.Lf>

SUBJECTID = #THEID#

ld
t i
t i
l l
t , l
I Tr l

t 0 CFIIJ OCTOBER wwwGoldFusionJournal.com

z7
28
29
30
3 l
32

<cfset thel is t = l is tchangeDel ins(thel is t , " - "))

<cfouEput>
#thelist#

< / cfoutput>

<cfparam narne=rrthelDrr default=tt0">
<cfparan name=t'nodet' default=ttoutllne">

<cf i f IsDef ined(rrat t r ibutes. thelDr ')>
<cfset thelD = at l r ibuEes, thelD>
< / c f l f>

<cf i f IsDef ined("aEtr ibutes.moderr)>
<cfset mode = at t r ibutes.mode>
< /c f i f >

<cf query datasource=#application. datasource#
password=#application. password# name=" getCurrentltensr'>
SELECT *

FROM IOOKUPSUBJECTS
WHERE PARENTID = /ITHEID/I
ORDER BY SUBJECT
< / cfquery>

<cf l f mode IS rrout l inerr></cf i f>

<cf loop query=rrGetCurlentltemsrr>

<cf i f mode IS rrout l inerr>

<cfoutput>
<1i>#subj ect#
< / cfoutput>
< / c f i f >

<cf query datasource=#application. datasource#
password=#applicaLion.password# cachedwithin=#Create-
TirneSpan (0' 0' 0, 2) # name=u checltForChild">
SEIECT SUBJECTID
FROM LOOKUPSUBJECTS
WIERE PARENTID = #GETCIJRRENTITEMS.SUBJECTID#
< / cfquery>

<cfif CheckForChild.RecordCount IS NOT 0>
<cf l f (node IS' rst r ingr ') 0R (rnode ISrrselectbox' i)>
<cf selectboxReverseTree

th;ID = "/IGETCURRENTITEMS,SUBJECTID/Itr
mode = "#M0DE#"
iNiTiAI ID = ' '#GETCIJRRENTITEMS.SUBJECTID#i l

< / c f i f>
<cf selectboxBuildTree

thAID = N#GETCURRENTITEMS.SUBJECTID#N

mode = "//MODE#"

<cfelse>
<c f i f (mode IS r r sL r i ng r r) 0R (node IS r r se lec tbox r r)>

<cf selectboxReverseTree
theto = n#cETcuRRxNTrrEMs.suBJEcrrD#"

mode = "#M0DE#"
iNitiAlID =''#GETCURRENTITEMS.SUBJECTID#tr

< / c f i f>
< / c f i f >

</ cf loop>

<cf i f node IS "ou! l ine ' r></u1></cf i f>

<cfpararn name=rrthelisttt default=tttt>

<cf i f IsDef ined("at t r ibutes. thelD")>
<cfset thelD = at t r ibutes. thelD>
< / c f i f>

<cf i f IsDef ined ("at t r ibutes. thel is t r r)>

I

2
3
4

o

7
8
9
l 0
I I
I 2

1 3
I 4
l5
l 6
L 7
I 8
I 9
20
2 I
22
23
24
25
z o
27
28
29

30
3 l
32
33
34
35
J O

37
38
39
40
4 1
42
43
44
45
46
47
48
49
50
5 1
52
53
54
5 5
)o
57
58
59

I
2

4

6
7

<cfset thel is t = a l l r ibules. thel ls t>
< / c f i f>

<cf l f IsDef ined(r 'at t r ibutes.rnode")>
<cfset node = attributes.node>
< /cf i f>

<cf i f IsDef lned("al t r lbutes. ln l t la l lDtr)>
<cfset initiallD = attributes.iniEiallD>
</ cf l f>

<cfquery daLasource=#applicatlon.datasource#
password=#application.password# cachedwithin=/iCreate
TirneSpan (0, 0, 0, 2) I namg= " get0urrentltens ">

20 SE],ECT *
2I FROM I.OOKUPSUBJECTS
22 WHERE SUBJECTID = #TIIEID#
23 </cfquery>
24
25 <cfset thelten = #getcurrentiteros.subject#>
z o
27 <cfset thel is t = l ls tPrepend(thel is t , r r#thel ten#rr)>

z8
29 <cfif. #getcurrentltems.parentlD# IS NOT 0>
30 <cf selectboxReverseTree
3I thEID = T#GETCURRENTITEMS.PARENTID#N

32 thelist = rr#TIIELIST#rl

33 mode = "#MODE#''
34 initiallD = r#INITIALID#il

35
35 <cfexit>
37 < /c f t f>
38
39 <cfset thel lst = l lstchangeDelims(thel ist, " - "))
40
4I <cfoutput>
42 <cfif mode IS rrselectboxrr>

43 <option value=#INITIALID#>
44 <lcf i f>
45 /lthellst#
46 </cfoutput>
47 <cfIf node IS NOT "selectbox">
48

49 <lcf i f>

I <f ie ldset>
2 <legend>SubJect Terms - cf selectbox3uildTree - Select

box Mode</ legend>
3 <p>
4 <cfform actlon=rtaction.cfnrr>
5 <d1>
5 <dt>New subject :
7 <dd><cfinput name=rrsubjectrr size=25 required nessage=rrYou

nust inc lude a subject ! r '>
8 <dt>New subject is the child of:
9 <dd><select nane=rrparentlDrr size=51>
l0 <option value=0 selected>New subject ls at top of tree

(not a child of any parent subject)
11 <cf selectboxBuildTree
12 node="se1ectbox"
I 3
14 </select>
15 <pt
I6 <input type=rrsubnitrr value=rrSubnitr'>
l7 </cf forn>
l8 <p>
l9 </ f ie ldset>

8
9
l 0
I I
1 2
13
I4
l5
1 6
T7
l8
I 9

l 2 GFIIJ OCTOBER www GoldFusionJournal.com

