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Abstract 

As projections of future climate raise concerns over water availability 

and extreme hydrological events, global hydrology models are 

increasingly being employed to better understand our global water 

resources and how they may be affected by climate change. Being a 

relatively recent development in hydrological science, global hydrology 

modelling has not yet undergone the same level of assessment and 

evaluation as catchment scale hydrology modelling. Until now, global 

hydrology models have presented just one deterministic model output 

for use in scientific research. Multi-model ensembles have compared 

these outputs for different global models, but the uncertainties within 

individual models have yet to be understood. 

This study demonstrates a rigorous uncertainty investigation of the 123 

parameters within the Mac-PDM global hydrology model over 21 global 

river catchments. Mac-PDM was selected for its relative simplicity 

amongst global hydrology models, and its suitability for application 

using high performance computer clusters. A new version of the model, 

Mac-PDM.14 is provided, with updated soil and vegetation 

classifications. This model is then subjected to a 100,000 parameter 

realisation Generalised Likelihood Uncertainty Estimation (GLUE) 

experiment, requiring 40 days of high performance computing time, and 

outputting over 2Tb of data. The top performing model parameterisation 

from this experiment provides an annual average error of 47% when 

compared to observed records, a 45% improvement over the previous 

version of the model, Mac-PDM.09. The soil parameters (field and 

saturation capacity) are shown to be the most sensitive parameters in 

the model. Given the computational expense of such an experiment, 

smaller sample sizes of parameter realisations are explored. Whilst the 

top performing parameterisation in a sample size as small as 1,000 can 

perform almost as well as that from 100,000 parameterisations, the 



 iii 
 
number of good parameterisations is fewer, and the range of model 

uncertainty may therefore be significantly underestimated. 

Mac-PDM.14 is shown to have a lower mean absolute relative error 

than all models involved in both the Water and Global Change 

(WATCH) project and the Inter-Sectoral Impacts Model Intercomparison 

Project (ISI-MIP). Parameter uncertainty is compared to model 

uncertainty, and the uncertainty range between the models within the 

WATCH and ISI-MIP projects is comparable to the parameter 

uncertainty within Mac-PDM.14. Catchment specific calibrations of the 

global hydrology model are explored, and it is demonstrated that the 

model performance is improved by 22 to 92%, for the Niger and the 

Yangtze respectively, with catchment specific parameter values over a 

global calibration. Approximate Bayesian Rejection is applied to explore 

the catchment specific parameter values that result in good parameter 

performance. Few trends can be identified from this analysis, which 

suggests that Mac-PDM may be over-parameterised. Catchment 

specific calibrations in both high latitude and arid to semi-arid regions 

show significant improvement over global calibration, which indicate a 

deficiency in model structure; the addition of a glacier component to 

Mac-PDM is recommended. Model calibrations are validated using the 

ISI-MIP forcing dataset, and the best model performance gives an error 

of 44%. This is a betterment on the performance with the WATCH 

forcing data used in calibration, and so implies that models not need to 

be recalibrated every time new forcing datasets are employed.  

This research highlights that the performance of global hydrology 

models can be significantly improved by running a parameter 

uncertainty assessment, and that in catchment scale studies, catchment 

specific calibration should be carefully considered. Furthermore, the 

uncertainty within individual global hydrology models is an important 

consideration that should not be overlooked as these models are 

increasingly included in ensembles and interdisciplinary studies. 
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1 Chapter One: 

Global Hydrology Modelling 

and Uncertainty 
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1.1 Introduction 

Global Hydrology Models (GHMs) can help us understand the global 

hydrological cycle, and the ways in which it might be altered by climate 

change. The hydrological cycle is complex, made up of processes that 

drive the hydrosphere within the atmosphere, biosphere and 

lithosphere. These processes include precipitation, runoff, 

condensation, infiltration, interception, evaporation, transpiration, 

evapotranspiration, and groundwater flow. Studying the hydrological 

cycle is very difficult due to issues of both temporal and spatial scale. In 

addition, there are limitations in hydrological measurement techniques 

(Beven, 2012). Thus, models are required to provide a means of 

quantitative prediction that is required for decision making.  

Hydrology models seek to describe the processes of the hydrological 

cycle as well as stores of water within the hydrological cycle. Dingman 

(2002) defines three types of model: “Physical Models” – which are 

tangible constructed representations of a portion of the natural world; 

“Analog Models” – which use observations of one process to simulate a 

physically analogous natural process. For example, the flow of 

electricity given by Ohm’s Law is directly analogous to Darcy’s Law of 

groundwater flow; and “Mathematical Models” – which are explicit 

sequential sets of equations and logical steps that convert numerical 

inputs, representing flow rates or states of storage, to numerical 

outputs, representing other flow rates of storage states. Dooge (1986) 

aptly refers to models, specifically simulation models, as a 

representation of a portion of the natural or human constructed world, 

“which is simpler than the prototype system and which can reproduce 

some but not all of the characteristics thereof.” 

Many modelling studies are carried out purely for research purposes, in 

order to gain better understanding of hydrological processes. It is 

through discrepancies in model output with observed data that model 

revisions are made, and hydrological understanding progresses. 
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However, the ultimate aim of hydrological modelling is to help inform 

decisions in water resource management, and to forecast and manage 

extreme events. This chapter will briefly review the history of 

hydrological science, and the development and progression of 

hydrology models. It will then introduce the issue of uncertainty, and 

how this influences modelling studies. Some examples of previous work 

that investigated uncertainties in hydrology modelling will be reviewed, 

before the research questions for this thesis are presented at the end 

the chapter. 

1.2 Rainfall-Runoff Modelling 

Hydrology models are often referred to as ‘Rainfall-Runoff’ models, 

since they use precipitation data to estimate runoff or river discharge. 

They vary hugely in complexity, from simple equations used to predict a 

single hydrograph peak, to extensive computer coded programs made 

up of suites of equations to describe sequences of hydrological 

processes. There are two broad categories of hydrological model: the 

simple “empirical” or “black box” models, those that seek to verify 

observations using past data, without much concern to the processes 

within the model; and the more complex “conceptual” or “physically-

based” models which represent individual hydrological processes in 

series’ of governing equations in an attempt to represent natural 

behaviour as we understand it. Both of these categories fall under the 

classification of “deterministic” models. Deterministic models are those 

which produce a fixed output, given a specific set of inputs, and have no 

random element to them. The converse of a deterministic model is a 

“stochastic” model, which does contain an element of randomness (e.g. 

when disaggregating precipitation data to a finer temporal resolution). 

Stochastic models may produce slightly different outputs even if the 

inputs are kept exactly the same. Many essentially deterministic models 

contain small stochastic subroutines such as this.  
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Most models use “variables” and “parameters” to drive them. Models 

seek to define a relationship between entities that are of interest. These 

entities are variables. Variables are generally time varying, and may be 

a model input, output, or the result of an equation that changes 

continuously over time. In rainfall runoff models, rainfall and runoff are 

variables, as is potential evapotranspiration which is the result of 

several process equations. Parameters however, are usually constants. 

They are values that are required within equations of the model in order 

to derive the relationships between variables. They are sometimes, 

physically meaningful, but also sometimes statistical scaling factors that 

do not have a tangible meaning. In rainfall runoff models, parameters 

may represent factors such as the height of a specific vegetation type, 

or the temperature at which snow begins to melt.      

1.3 Hydrology Modelling: A Historic Review 

A diagrammatic representation of the history of hydrology modelling, 

and the introduction of global hydrology models is shown in Figure 1.1. 

The origins of hydrological modelling can be traced back to the work of 

Mulvany (1851). Thomas James Mulvany developed the ‘rational 

method’, a simple equation which was used to predict the peak of a 

hydrograph. This was followed by the ‘event model’ by Édouard 

Imbeaux (1892) which was perhaps the first attempt to produce a 

distributed hydrological model. Imbeaux divided the Durance River in 

France into zones, and then estimated the travel time for the runoff from 

each zone to the outlet to produce a prediction of the hydrograph. This 

time-area concept was advanced in 1932 by Sherman who developed 

the “unitgraph”, which later became the ‘unit hydrograph’ (Sherman, 

1949), and is still popular today.  

The unit hydrograph is a simple method that does not require the 

division of the catchment into different time increments, but instead 

uses a transfer function to relate effective rainfall to total catchment 

runoff response in a unit of time.  
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However, the unit hydrograph method had a problem of linearity, as 

routing rainfall is a nonlinear problem that is influenced by rainfall 

intensity, soil properties, and antecedent conditions (Beven, 2012). Just 

a year after Sherman’s paper, Robert Horton published a paper that 

went some way toward tackling this problem, which is still an issue in 

today’s models. Horton (1933) developed a theory of infiltration to 

estimate rainfall excess and improve hydrograph separation techniques 

(Singh and Woolhiser, 2002). Horton’s work on infiltration was preceded 

by the very well-known and still popular formula of Green and Ampt 

(1911). Horton is most famous for his final paper in 1945, which built 

upon his concept of infiltration excess overland flow, now known as 

“Hortonian overland flow” (Horton, 1945). 

Alongside these works, Fair and Hatch (1933) developed a relationship 

to describe the permeability of soil, and Theis (1935) related heat-flow 

equations to groundwater problems (Kasenow, 2001). Theis’ paper 

became the foundations of groundwater hydrology. Evapotranspiration 

was tackled by two equally popular papers by Thornthwaite (1948) and 

Penman (1948). Penman’s work continued to develop the combined 

Penman-Monteith equation (Penman, 1956, Monteith, 1965, Allen et al., 

1998), the modification of which is one of the two most popular potential 

evapotranspiration equations used in models today. The other is the 

simpler Priestley-Taylor equation (Priestley and Taylor, 1972) which 

requires less observational data. The mid-1950’s saw some significant 

advances in hydrological research. The mathematicians Lighthill and 

Whitham (1955) established kinematic wave theory for flow routing in 

long rivers. Also applicable to traffic on long roads, this theory is a 

foundational mathematical development and is now a standard tool for 

modelling overland flow and other hydrologic processes (Singh and 

Woolhiser, 2002). Nash (1957) proposed the “instantaneous unit 

hydrograph” and Dooge (1959) developed the “generalized unit 

hydrograph”. In 1965, Amerman introduced the “Unit Source Area” 

concept. This conceptual model categorises similar areas of a 
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catchment, by overlaying spatial databases in Geographic Information 

Systems (GIS), and assumes that if they are sufficiently alike, that they 

will respond in a similar manner. “Unit Source Areas” are now referred 

to as “Hydrologic Response Units” (HRUs), and are used in the popular 

catchment model SWAT (Spruill et al., 2000). Also in 1965, Dawdy and 

O’Donnell introduced model parameter optimisation in the need to 

progress away from trial and error approaches (Todini, 2007), this was 

a major advance in model assessment techniques.  

1966 saw the arrival of the first model that attempted to simulate the 

hydrological cycle holistically; it was the Stanford Watershed Model 

(SWM), and is documented in Crawford and Linsley (1966). This was 

closely followed by the semi-distributed “tank” models by Sugawara 

(1967), and the work of Freeze and Harlan (1969) who conceived a 

three dimensional catchment model, which included all of the key 

hydrological processes such as precipitation, surface runoff, channel 

flow and their interactions with groundwater, evaporation, transpiration 

and more. This model was beyond the computational capabilities of the 

time, but became the foundations of the Système Hydrologique 

Europeen (SHE) model (Abbott et al., 1986).   

The late 1960’s marked the beginning of a series of important advances 

in data measurement techniques and database releases.  Tracers were 

first used to improve understanding of rainfall runoff processes by 

Pinder and Jones (1969). LANDSAT-1, the first civilian satellite to 

conduct scientific and exploratory studies of the Earth’s surface, was 

launched in 1972, and the FAO-UNESCO digital soil map of the world 

was released in 1974. The first 1-degree resolution land cover map was 

not released until 1994 however (the AVHRR Global Land Cover 

Dataset). The GRACE twin satellites were launched in 2002; this project 

uses gravity measurements to derive several indicators of hydrological 

mass balance, and has proven very valuable to hydrological research. 
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Research interest in catchment modelling increased dramatically in the 

1980s, after TOPMODEL was released by Beven and Kirkby (1979). 

The SHE (Abbott et al., 1986), IHDM (Calver et al., 1995) and ARNO 

(Todini, 1996) models which were released throughout the 1980’s and 

1990’s, are also popular catchment models, but have been significantly 

revised since their initial development. Rapid advances in 

computational power have allowed for the development from small 

scale catchment hydrology models to regional and global models to 

become possible. Vörösmarty et al. (1989) developed the first 

conceptually based macro-scale model. Many Global Hydrology Models 

(GHMs) have been developed since then including VIC (Wood et al., 

1992), Xinanjiang  (Zhao and Liu, 1992), GWAVA (Meigh et al., 1999), 

WaterGAP (Döll et al., 1999), MacPDM (Arnell, 1999) and DBH (Tang, 

2006). 

1.4 Global Hydrology Models: A Comparison and Critique 

Interest in global and macro-scale hydrology modelling has increased 

substantially since the first macro-scale Water Balance Model (WBM) 

was proposed by Vörösmarty et al. (1989). The increase in published 

works on global or macro-scale hydrology models is presented in Figure 

1.2. Currently, there are 8 popular GHMs in hydrological research, as 

detailed in Table 1.1. In this section, each of the 8 hydrological models 

will be briefly introduced and their similarities and differences 

discussed. Land surface models (LSMs) and coupled biosphere-

hydrology models will also be mentioned, though they are not an 

essential component of this review.  

There are several distinguishing features of GHMs, which are outlined 

in Table 1.1. These include: the soil moisture, evaporation and 

snowmelt scheme that they use; whether they model both water and 

energy balance; whether they consider anthropogenic factors, or 

whether they model “naturalised flows” (flows not including abstractions, 
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reservoir implications etc.); their routing method, if any; and the spatial 

and temporal resolution on which they operate. 

GHMs model continental scale river basins and most operate on a 0.5 

by 0.5 degree longitude-latitude grid scale at a (quasi-) daily time step. 

Global hydrology models are driven by General Circulation Models’ 

(global climate models or GCMs) output data that provides estimates of 

variables such as precipitation, temperature, relative humidity and wind 

speed. Since land surface is very important in the behaviour of the 

hydrological cycle, gridded data on vegetation cover and soil types are 

often also required. Model outputs vary depending on the model’s 

objective and most models output a variety of hydrological indicators. 

All hydrological models output either runoff or river discharge but 

additional outputs depend on the model; for example, Mac-PDM.09 

outputs purely hydrological data, including extreme flow values and flow 

duration curve statistics, whilst WaterGAP outputs more socially driven 

information such as water availability, water withdrawals and water 

exploitation index.  

 

Figure 1.2 Number of papers published each year since 1989 under the 

search term “Global hydrology” OR “Macroscale hydrology” AND model* in 

Google Scholar.  Search performed on 23rdJanuary 2016.  
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1.4.1 WBM and WBMplus 

The Water Balance Model (WBM) was one of the first examples of a 

global hydrology model that existed separately to a GCM. First 

developed by Vörösmarty et al. (1989), WBM was designed as part of a 

global biogeochemistry study, and consisted of a water balance and 

water transport model. WBM originally operated on a 0.5° grid cell size, 

and used precipitation, temperature, potential evapotranspiration (PET), 

vegetation, soil and elevation data to predict soil moisture, 

evapotranspiration and runoff. WBM calculates soil moisture in a bucket 

scheme. During wet months, soil moisture can increase up to a 

maximum field capacity determined by the soil texture and rooting 

depth. During dry periods, soil water stocks are depleted according to a 

soil moisture retention function. For each wet month, soil moisture is 

calculated by incrementing antecedent values by the excess of 

available water over PET. This recharge may or may not be sufficient to 

bring the soil to field capacity at the end of the following wet season 

(Vörösmarty et al., 1989). Whenever field capacity is reached, excess 

water is transferred to subsurface pools, and runoff is generated as a 

linear function of the existing pool size (Vörösmarty et al., 1989). 

Vörösmarty et al. (1998) conducted an investigation into the potential 

evaporation functions used by the model, comparing 11 methods to 

determine their impact on predictions made by the global model. They 

determined that the simple empirical Hamon method was appropriate, 

whereas Thornthwaite had been used previously.  

WBM has been developed into WBMplus (Vörösmarty et al., 1998, 

Rawlins et al., 2003, Federer et al., 2003) and is described in Wisser et 

al. (2010). WBMplus is a fully coupled water balance and transport model 

that simulates the vertical water exchange between the land surface 

and the atmosphere, and the horizontal water transport along a 

prescribed river network (Wisser et al., 2010). WBMplus can operate on 

a finer spatial resolution of 30 x 30 min (longitude x latitude), a daily 
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time step, and routes the runoff using the Muskingham-Cunge flood 

routing scheme. Compared to previous versions of WBM, WBMplus 

includes modules that explicitly account for human activities such as 

irrigation water abstractions and reservoir operation that directly affect 

the water cycle process (Wisser et al., 2010). Döll et al. (2003) criticised 

the WBM model for the use of a correction factor in model validation, 

rather than parameter calibration. Fekete et al. (2004)  suggest that 

WBM does not perform well in water-stressed semi-arid regions, where 

there is significant sensitivity of runoff to precipitation, and the 

processes are highly non-linear. 

1.4.2 H08 

H08 (Hanasaki et al., 2008a) is another model that uses a bucket soil 

moisture scheme, though in this case it is enhanced to a ‘leaky bucket’, 

where soil moisture can drain continuously, not just when the soil is at 

field capacity. The H08 leaky bucket is 15cm deep, uniformly across all 

vegetation and soil types. H08 was developed with the primary purpose 

to assess global water availability and use at a sub-annual timescale, 

thus H08 simulates both natural hydrological processes and major 

human activities related to water use. It consists of six sub models: land 

surface hydrology, river routing, crop growth, reservoir operation, water 

withdrawal, and environmental flow requirement (Chen et al., 2011). 

H08 is one of the few GHMs that simulates both energy and water 

balance on the land surface. Runoff is routed using the Total Runoff 

Integrating Pathways (TRIP) model, which provides a digital river map 

formed from flow direction. H08 includes a comprehensive crop module, 

which is similar to the Soil Water Integrated Model (SWIM), and 

simulates over 50 crop types. This model also simulates the operation 

of 452 reservoirs, totalling 4140km3, each of which is ascribed its own 

operating rules which influences streamflow simulation. Environmental 

flow requirement is simulated in H08 as well as anthropogenic water 

withdrawal. 
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Hanasaki et al. (2008b) successfully applied the H08 model in a global 

water resources assessment. The model performed well in estimating 

the crop calendar and irrigation withdrawal and it highlighted regions of 

water stress that have been previously undetected. However, the 

original model assumes that water is only withdrawn from channels, 

excluding the significant abstractions from groundwater, lakes, ponds 

and glacial meltwater. Reservoirs smaller than 109 m3 were also 

excluded from the model. Hanasaki et al. (2010) enhanced the model in 

order to estimate global virtual water flow. These changes included 

changing the spatial resolution from 1° to 0.5° longitude latitude, adding 

medium sized reservoirs (3x106 to 1x109 m3), and adding a conceptual 

water source, to represent deep groundwater, lakes, glaciers, water 

diversion and desalinization. This conceptual store (referred to as 

NNBW – non-local, non-renewable blue water) is however limitless, as 

the capacity of these sources is unknown, and is assumed to be 

available at all times in all places worldwide. This is unrealistic, but the 

process allowed for the comparison of geographical distribution of 

NNBW with estimated groundwater exploitation reports (Postel, 1999) 

for qualitative assessment and with aquifer withdrawal in the USA 

(Maupin and Barber, 2005) for quantitative assessment, which showed 

good results.  

1.4.3 WaterGAP 

The Water – Global Assessment and Prognosis (WaterGAP) model, 

sometimes referred to as the WaterGAP Global Hydrology Model 

(WGHM), is a water availability model that preceded H08. It was the 

first global model to compute both water use and availability on a basin 

scale (Alcamo et al., 2000), and the original model (WaterGAP1.0) is 

presented in Alcamo et al. (1997). The model takes into account basic 

socio-economic factors that lead to domestic, industrial and agricultural 

water use, and physical and climate factors that lead to river runoff and 

groundwater recharge (Alcamo et al., 1997). WaterGAP 1.0 was quickly 
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developed into WaterGAP 2.0 (Alcamo et al., 2000, Döll et al., 2003), 

WaterGAP 2.1 (Alcamo et al., 2003), and to the most recent WaterGAP 

2.2 (Müller Schmied et al., 2014). These revisions are mostly 

synonymous with those of H08, and included algorithms of reservoir 

operation, groundwater recharge optimization, a variable flow velocity 

algorithm and consideration of the sources of water abstraction. Werth 

et al. (2009) also integrated water storage variation data from the 

GRACE satellite mission to reduce error in WaterGAP.    

WaterGAP 2 consists of a global hydrology model and a global water 

use model which are linked in order to compute water stress indicators 

and to calculate the reduction of river discharge due to consumptive 

water use (Döll et al., 2003). The model operates on a 0.5° x 0.5° grid, 

forming 66896 cells worldwide, excluding Antarctica. Similarly to H08, 

runoff is routed using a global drainage direction map (DDM30). Soil 

moisture is modelled, taking into account the water content of the soil 

within the effective root zone, the effective precipitation, the actual 

evapotranspiration and the runoff from the land surface (Döll et al., 

2003). Runoff is computed as a function of effective precipitation, and a 

calibrated runoff factor, which follows the approach of Bergström (1995) 

from the HBV model. With this approach, runoff increases with 

increasing soil wetness.  

The water use part of the WaterGAP 2 model is divided into three 

sectors: domestic, industry and agriculture. The domestic and industry 

sectors take into account the effect of structural and technological 

changes on water use as a country develops, and the agricultural sector 

accounts for the effect of climate on irrigation water requirements 

(Alcamo et al., 2003). Alcamo et al. (1997) stated that despite 

calibration and testing against existing data, WaterGAP1.0 contains 

many limitations and so should only be used for the consideration of 

global scale trends, and not for individual watersheds. Whilst the model 

has progressed significantly since its initial development, WaterGAP 2 
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still needs work to improve its approach. WaterGAP 2 may be used to 

compare basins with catchment scale indicators such as total water 

withdrawals and total water availability. However, the reliability of 

modelled monthly flows needs to be improved to estimate critical high 

and low flow conditions (Alcamo et al., 2003).  

1.4.4 GWAVA 

GWAVA (the Global Water Availability Assessment model) is a third 

global hydrology model that is focused upon water use and availability, 

though it is used for prediction of water resources scarcity at continental 

and global scales (Dumont et al., 2010). Developed by Meigh et al. 

(1999), it applies monthly rainfall data to a probability distributed rainfall-

runoff model (PDM, (Moore, 1985)) to generate monthly river flows and 

water availability statistics. The PDM model is utilised by many global 

hydrology models, as it allows a spatially variable distribution of soil 

moisture capacity described by a statistical probability distribution. This 

allows runoff to be generated in more than one part of a catchment, or 

grid cell, at any one time, rather than delaying runoff until the entire cell 

is saturated. This method is popular, as it enhances runoff production 

simulation without the requirement of additional data. However, the 

spatial allocation of soil moisture storage capacity is not influenced by 

vegetation or soil type. The PDM is described in detail in Moore (2007), 

and is also presented in Chapter 2 of this thesis. 

Monthly water demands are estimated in GWAVA using population and 

per capita consumption data, combined with industrial and agricultural 

water requirements (Wallace and Gregory, 2002). GWAVA produces a 

water scarcity index, which is normalised to present -1 as little to no 

water to meet demands up to +1, representing more than sufficient 

water to meet demands. GWAVA takes groundwater into account as a 

water supply, and estimates groundwater availability as either a 

seasonally variable recharge or an aquifer yield (Wallace and Gregory, 

2002). The model has been improved by Folwell and Farquharson 
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(2006) and Fung et al. (2006), and has been developed several times to 

include a water quality module (Dumont et al., 2010), a pollutant 

concentration module (Dumont et al., 2012). GWAVA has been applied 

to Eastern and Southern Africa, West Africa, the Caspian Sea Basin, 

South America, and the Ganges-Brahmaputra basin, and is currently 

being applied on a continental scale in Europe as well as globally (CEH, 

2014).   

1.4.5 Mac-PDM 

The Macro-Scale – Probability Distributed Model (Mac-PDM) is a 

probability distributed model, as in GWAVA, that is designed to simulate 

the land surface hydrological dynamics of continental scale river basins 

with a daily water balance approach (Cloke and Hannah, 2011). It was 

first developed by Arnell (1999) as a simple macro-scale hydrological 

model which could be applied repeatedly over a large geographic 

domain without the need for calibration at the catchment scale. The 

model was significantly revised by Gosling and Arnell (2011) to produce 

the Mac-PDM.09 version of the model. These revisions included:  

a) the ability to calculate average hydrological output from n model 

repetitions when forced with monthly data in order to account for 

model stochasticity;  

b) the ability to read observed values of the coefficient of variation of 

daily rainfall, which was previously set as a constant 1.5, and;  

c) the ability to read in daily climate data, rather than being forced by 

monthly data.  

Mac-PDM.09 operates on a 0.5° x 0.5° grid and does not attempt to 

route runoff into channels. It therefore models runoff from two sources, 

quickflow and slowflow, in mm/day on the earth’s surface, which if 

necessary can be converted runoff to catchment-wide discharge values 

for a given upstream contributing area. Mac-PDM also omits 

anthropogenic influences on hydrology, thus modelling ‘naturalised’ 

flows, that do not take account of water abstractions or reservoir 
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operational influences. The model uses gridded data for soil types and 

land cover classifications, and calculates evapotranspiration using the 

Penman-Monteith equation.  

Despite the lack of anthropogenic consideration in Mac-PDM, the model 

has been applied in many studies of water availability (e.g. Fung et al., 

2011) and water stress (e.g. New et al., 2011) which have used external 

calculations of water requirements and compared them to Mac-PDM 

runoff outputs. Mac-PDM has the advantage that it is a relatively simple 

model, and can therefore be used when running large ensembles of 

climate scenarios, such as those undertaken by Gosling et al. (2010) 

and Arnell and Gosling (2014). 

1.4.6 MPI-HM 

The Max-Planck Institute Hydrological discharge Model (MPI-HM) is 

another relatively simple macro-scale hydrology model. It consists of 

the simplified land surface (SL) scheme (Hagemann and Gates, 2003), 

which computes vertical water fluxes, and the hydrological discharge 

(HD) model (Hagemann and Gates, 2001), that globally simulates the 

lateral freshwater fluxes at the land surface (Chen et al., 2011). MPI-HM 

was developed by Hagemann and Dümenil (1997) in order to improve 

the hydrological balance module of the MPI ECHAM4 GCM. Several 

approaches to model structure for the HD model were explored by 

Hagemann and Dümenil (1997), the result of which was a three 

component model that uses runoff, drainage and grid cell inflow as 

inputs, to produce overland flow, baseflow and riverflow respectively. 

The sum of these three processes gives the outflow of the cell, which is 

routed using topography to create a flow direction map. The SL scheme 

is used to produce the inputs for the HD model, which comprises the 

main components of the hydrological cycle, including: separation of 

precipitation into rain and snow; snowmelt using the degree-day 

formula; potential evapotranspiration using the Thornthwaite formula; 
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and evapotranspiration, runoff, infiltration and drainage according to the 

ECHAM models (Hagemann and Gates, 2001).  

Hagemann and Gates (2003) updated MPI-HM by developing an 

Improved Arno (IA) scheme to simulate soil moisture capacity. The 

original Arno scheme is very similar to the PDM, both of which assume 

that the soil water capacity distribution within the grid cell starts at zero 

and follows a continuous distribution defined by: 

  (E1.1) 

where s/S is the percentage of the grid cell area S in which the soil 

water capacity is less than or equal to an assigned value Ws. WSmax is 

the mean soil water capacity of a model grid cell. The parameter b 

defines the shape of the soil water capacity distribution curve. 

The Improved Arno scheme adjusts this equation by allowing the 

specification of a minimum local (subgrid) soil water capacity Wmin that 

is not necessarily zero. Wmax is the maximum local soil water capacity, 

and Wact is the subgrid water content that corresponds to the fractional 

saturation of s/S of the grid cell, so that: 

  (E1.2) 

The Improved Arno scheme also allows the b parameter to be modified 

by an orographic shape parameter to account for the fact that on steep 

terrain, the probability of soil water capacities reaching saturation is 

higher (Hagemann and Gates, 2003). 

1.4.7 PCR-GLOBWB 

The PCRaster Global Water Balance Model (PCR-GLOBWB) also uses 

the Improved Arno scheme for soil moisture calculation. PCRaster 

(Wesseling et al., 1996) is the dynamic scripting language that the 
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model is coded in; it uses spatio-temporal operators with intrinsic 

functionality for constructing spatio-temporal models, and enables 

efficient manipulation of raster-based maps. Van Beek and Bierkens 

(2008) present the general outline of the model. Operating on a 0.5° x 

0.5° grid scale, and daily time step, PCR-GLOBWB consists of two 

vertically stacked soil layers and an underlying groundwater layer, with 

subgrid parameterisation used to represent tall and short vegetation, 

surface water and the IA soil moisture scheme. Runoff is routed using 

kinematic wave theory, and the drainage network is taken from the 

drainage direction map DDM30 (Sperna Weiland et al., 2010). The 

model also calculates interception and snow storage (Wada et al., 

2011).  

Like Mac-PDM, PCR-GLOBWB calculates naturalised flows, and does 

not consider anthropogenic water use, however van Beek et al. (2011) 

adapted the model to include a surface water energy balance and 

reservoir operation scheme to calculate green and blue water 

availability. In part 2 of the same study, Wada et al. (2011) assessed 

global water stress at the monthly time scale. Wada et al. (2010) also 

used PCR-GLOBWB alongside the Global Groundwater Information 

System (GGIS) to estimate global depletion of groundwater resources. 

Gruber et al. (2011) added four regions with significant glacier mass to 

the model, in addition to the land masses of Greenland and Antarctica 

in a fluid mass motion experiment. Sperna Weiland et al. (2012) used 

PCR-GLOBWB to make a thorough global assessment of the effects of 

climate change on hydrological regimes and their associated 

uncertainties. Sperna Weiland et al. (2010), in their study on the 

usefulness of data from GCMs for hydrological studies, discovered that 

PCR-GLOBWB showed good results in comparison with observed river 

discharge data, however it performed less well in arid and mountainous 

areas. 
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1.4.8 VIC 

The Variable Infiltration Capacity (VIC) model is perhaps the best 

known model in this review selection; however both VIC and H08 are 

technically Land Surface Models (LSM) rather than GHMs. Land 

surface models, which can be coupled to atmospheric models, tend to 

describe the vertical exchanges of heat, water and sometimes carbon in 

considerable details. GHMs however are traditionally more focused on 

water resources and lateral transfer of water (Haddeland et al., 2011). 

VIC has been extensively used for hydrological modelling, and has 

been included in the Water and Global Change (WATCH) project Water 

Model Intercomparison Project, as well as the Inter-Sectoral Impacts 

Model Intercomparison Project (discussed in section 1.6). VIC, originally 

developed by Liang et al. (1994), is a semi-distributed macro-scale 

model that balances both the water and surface energy budgets within 

a grid cell using a hybrid of physically based and conceptual 

components (Trambauer et al., 2013). VIC simulates sub-grid spatial 

variability in precipitation, land surface vegetation classes and soil 

infiltration capacity statistically (Nijssen et al., 2001b).  

It has developed from a single layer, to a three or more soil layer model 

and has undergone several updates (Cherkauer et al., 2003, Bowling et 

al., 2004, Bowling and Lettenmaier, 2010). VIC been adapted to allow 

representation of water management effects (Haddeland et al., 2007, 

Haddeland et al., 2006a, Haddeland et al., 2006b, Zhao et al., 2013) 

including reservoir operation and irrigation diversions and return flows 

(Gao et al., 2010). The model can be run as either a water balance or a 

water and energy balance model, depending on the users’ purpose. 

Running as just a water balance model simplifies the model and saves 

on computational expense. It uses the Penman-Monteith method of 

evapotranspiration calculation and the variable infiltration curve to 

account for the spatial heterogeneity of runoff generation, which follows 

the Arno conceptualisation (Gao et al., 2010). The runoff from each cell 



Global Hydrology Modelling and Uncertainty 21 

 
is combined using a routing scheme to produce daily and accumulated 

monthly flows at selected points. The routing model allows for the 

explicit representation of reservoirs (Trambauer et al., 2013). Mishra et 

al. (2010) demonstrated that major historical drought events were 

successfully identified and reconstructed using VIC model simulations.  

Shrestha et al. (2013) showed that the VIC model performs well when 

run with observed climate data, however when driven with GCM-derived 

data, monthly maximum and minimum flow indicators showed 

significant differences with observed values, which raises a question on 

the capability of the model to predict extreme hydrological behaviour in 

the future. 

1.4.9 Other Models 

There are several other LSMs that have been applied in global 

hydrological research, including MATSIRO (Takata et al., 2003, Koirala 

et al., 2010), HTESSEL (Balsamo et al., 2009), ORCHIDEE (de Rosnay 

and Polcher, 1998), and JULES (Cox et al., 1999, Essery et al., 2003). 

All four of these models, along with VIC, have been included in the 

multi-model ensemble of Water and Global Change (WATCH) project 

(Haddeland et al., 2011), and all except HTESSEL have been used in 

the ISI-MIP fast track research project (Warszawski et al., 2014) (see 

section 1.7). Independently, MATSIRO has been applied in projecting 

global flood and drought risk with climate change (Hirabayashi et al., 

2008), HTESSEL has been developed into a global flood alert system 

(Burek et al., 2012), and ORCHIDEE has been applied to simulate 

discharge in the Amazon (Guimberteau et al., 2012) and infiltration 

processes in west Africa (d'Orgeval et al., 2008). There are also 

coupled biosphere-hydrological models such as DBH, and WEB-DHM. 

Both DBH and WEB-DHM fully couple the biosphere scheme SiB2 with 

geomorphology based hydrological models (Wang et al., 2009b, Tang 

et al., 2007, Wang et al., 2009a).  
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Each of these different GHMs, as has been discussed, have different 

model structures, and so will output slightly different estimates of runoff 

or discharge from their simulations. This is due to the inherent 

uncertainty in hydrological modelling. All models - be they climate 

models, hydrological models or even economic models - are merely a 

set of equations attempting to express the behaviour and dynamics of 

the system under investigation. Therefore, as models are a 

manifestation of the authors understanding of this system, they are 

subject to errors, assumptions and uncertainties. 

1.5 Uncertainty and its Origins 

The word “uncertainty” is closely coupled with such negative terms as 

doubt, dubiety, scepticism, suspicion, mistrust and inconsistency 

(Kundzewicz, 1995). However, uncertainties are an important aspect of 

science, and needn’t be addressed with such negativity. Investigating, 

quantifying and presenting uncertainties can drastically improve our 

understanding of global change and can help relieve some of the 

scepticism surrounding modelling studies.  

Firstly, an understanding of the origins of uncertainties is necessary.  

Figure 1.3 shows one classification of the differing types of uncertainty. 

According to Smith and Stern (2011), there are at least four varieties of 

uncertainty in studies of the impacts of global change:  

Imprecision – or statistical uncertainty, is related to outcomes which 

we do not know precisely, but for which we believe robust, decision 

relevant probability statements can be provided;  

Ambiguity – recognised ignorance, or scenario uncertainty, is related 

to outcomes for which we are not in a position to make probability 

statements;  
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Intractability – is related to computations known to be relevant to an 

outcome, but lying beyond the current mathematical or computational 

capacity to formulate or to execute faithfully;  

Indeterminacy – is related to quantities relevant to policy-making for 

which no precise value exists. This applies, for instance, with respect to 

a model parameter that does not correspond to an actual physical 

quantity. It can also arise from the honest diversity of views among 

people, regarding the desirability of obtaining or avoiding a given 

outcome. 

Imprecision is a challenge in communication. Science aims to quantify 

imprecision and reduce ambiguity, but there is not always a clear 

division between the two. Intractability makes reducing ambiguity 

difficult from technological constraints, and sadly indeterminacy involves 

seeking an answer that does not really exist.  

In modelling studies, the origins of uncertainties can be visualised using 

the structure of a tree, with a dense network of roots and a broad 

canopy of leaves (see Figure 1.4). The roots of the tree represent all of 

the uncertain aspects that the modeller feeds into the model. 

 

Figure 1.3 A classification of types of uncertainty. After Loucks et al. (2005). 
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Figure 1.4 ‘The Modelling Tree’. A representation of the uncertainties within 

a single hydrological model. 

In hydrology models, these things include the equations that govern the 

model (for example using the Penman-Monteith or the Priestley-Taylor 

potential evapotranspiration equations); the soil and vegetation maps; 

the values of parameters, such as vegetation height and field capacity; 

the choice of the climate model for input data; and, the climate scenario 

when projecting future change. Input data is a significant source of 

uncertainty, as different values for precipitation data and other 

climatological inputs will significantly impact the resultant runoff 

simulations. Input data for the past and present is referred to as “forcing 

data” and can be developed from observed records, individual climate 
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models, or ensemble climate model averages. Input data for climate 

projections is known as “driving data”. 

All the uncertain aspects are fed into the model, are processed, and 

lead to a variation of model outputs. Each different decision made at the 

roots of the model tree will impact the output leading to a different 

result, and there are, therefore, a huge number of potential model 

“realisations” represented by the leaves of the tree. 

As previously discussed, uncertainty has often been seen in a negative 

light (e.g. Pappenberger and Beven, 2006). In response to this, Juston 

et al. (2013) give seven reasons to be positive about uncertainty in 

hydrological modelling: 1-  we learn about data, 2 - we learn about 

models, 3 - we produce more reliable and robust predictions, 4 -  we 

learn about the value of additional data, 5 - we can engender trust by 

recognising and communicating uncertainties, 6 - we deepen academic 

understanding, and 7 - uncertainty estimation is getting easier. 

1.6 Uncertainty Analyses in Hydrology Models 

Recently, investigating the uncertainty in global hydrology models has 

received a lot of attention. To some extent, each of the sources of 

uncertainty discussed in section 1.5 has been considered in previous 

studies. However, research has largely focussed upon the model 

structure (structural uncertainty), which is addressed by comparing one 

model with another. Returning to the tree analogy, each tree represents 

a single hydrology model and the uncertainties within that model. In 

global hydrology research, as discussed in section 1.4, there are many 

models available, so there are many trees. This indicates the scale of 

the issue of uncertainty in global hydrology modelling; the potential 

number of model outputs is as broad as the number of leaves in a forest 

full of trees. 

This section will review previous research on the uncertainties in global 

hydrology models. Starting with the work that has been done on multi-
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model intercomparison projects (MIPs), this review will then go on to 

outline previous efforts of global hydrology model sensitivity analysis 

and parameter estimation experiments. 

1.6.1 Multi-Model Ensembles and Model Intercomparison Projects 

Studies investigating model structural uncertainty look at comparing 

different hydrology models with each other and often form a multi-model 

ensemble (MME). Multi-model intercomparison is a concept that has 

been implemented in climate science since 1990 when the Atmospheric 

Model Intercomparison Project (AMIP) was undertaken in order to 

provide a standard experimental protocol for atmospheric general 

circulation models. A framework was put forward for model diagnosis, 

validation and intercomparison (Tebaldi and Knutti, 2007). This was 

followed by the Coupled Model Intercomparison Project (CMIP, Meehl 

et al. (2000)), which has recently completed its 5th phase (CMIP5) with 

the World Climate Research Programme (Taylor et al., 2011). One 

example of a pioneering climate model ensemble project is that of 

climateprediction.net which was launched in 2003, and uses the idle 

computer power of participating members of the public to run 

ensembles of thousands of climate models with perturbed physics 

(adjusted parameters). Using this method, climateprediction.net have 

completed many projects, such as the BBC climate change project 

(Frame et al., 2009), and have many ongoing projects such as 

“weather@home”, which will focus on how climate change may affect 

weather and the likelihood of extreme weather events. Other examples 

of climate MIPs are the EU ENSEMBLES project (of 2004-2009), and 

the ongoing QUMP (Quantifying Uncertainty in Model Predictions) 

which is run by the UK Met Office.  

In the field of hydrology, the Hydrologic Ensemble Prediction 

Experiment (HEPEX) was launched in 2004 in order to explore a range 

of issues with hydrologic model uncertainty, including: sources of 

hydrological prediction errors; coupling meteorological model 
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ensembles with hydrology model ensembles; community use of 

ensemble forecasts; and how best to use ensembles as a decision 

making tool (Schaake et al., 2007). The same year, the Distributed 

Model Intercomparison Project was formulated to compare distributed 

models among themselves, and also to a lumped model (Smith et al., 

2004). DMIP was run for the US, and included twelve catchment scale 

models, including VIC, SWAT and WATFLOOD. The project protocol 

specified three river catchments (the Elk, Illinois and Blue Rivers), 

provided the forcing data, catchment data (e.g. topography, soil texture 

and vegetation data), gauge data, and outlined the analysis strategy. 

The results of the project are published in a special edition of the 

Journal of Hydrology (vol. 298). One of the key findings was that factors 

such as model formulation, parameterization, and the skill of the 

modeller can have a bigger impact on simulation accuracy than whether 

or not the model was lumped or distributed (Reed et al., 2004). They 

also found that on average, calibrated models outperformed 

uncalibrated models during both the calibration and validation periods, 

and that defining reasonable parameters a priori from the physical 

characteristics of a watershed is more difficult than defining reasonable 

parameters for a conceptual lumped model through calibration (Reed et 

al., 2004). Finally, they found that models that combine techniques of 

conceptual rainfall-runoff and physically based distributed routing 

consistently showed the best performance. 

More recently, Phase 2 of the Distributed Model Intercomparison 

Project (DMIP2) was completed. This project focused on the Oklahoma 

region and included 16 models: 14 distributed and 2 lumped. The two 

lumped models were used to define a robust benchmark for evaluating 

the improvement of distributed models compared to the lumped models 

(Smith et al., 2012a). The results of this experiment showed that 

distributed models can account for spatial variability in basin features 

and precipitation, while successfully preserving the water balance. They 

also found that the data used in calibrating the models must be 
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stationary and unbiased, and in general, distributed models provided an 

improvement on hydrograph simulations compared to lumped models 

(Smith et al., 2012b).  

The DMIP studies evaluated model performance in comparison with 

observed data, and did not evaluate the deviations of model simulations 

with climate change projections. Velázquez et al. (2013) carried out 

such an investigation on four catchment models in two humid, mid-

latitude catchments in Québec and Bavaria. Their results showed that 

the choice of hydrological model strongly influenced the response of 

hydrological indicators to climate change, especially in the case of low 

flows, whereas high flows showed less sensitivity to model choice. The 

choice of models was deliberately broad, ranging from conceptual and 

lumped to process-based and fully distributed, however a small sample 

of 4 models does not encompass the broad range of model structures in 

existence. Najafi et al. (2011) conducted a similar experiment, 

comparing three lumped and one distributed model, however they also 

investigated the uncertainty derived from the choice of climate model 

used for input data to drive the hydrological model. They found that the 

uncertainty derived from the choice of hydrology model was much 

smaller than that derived from the choice of climate model, except 

during the dry season, and concluded that the choice of hydrology 

model is important when assessing the impact of climate change on 

hydrology.  

Gosling et al. (2011) conducted a comparative analysis of one global 

and six catchments scale hydrological models, for six catchments 

across the world. They used the models to project the impacts of 

climate change on annual average runoff, and extreme flows with seven 

different GCM inputs. In this study, each catchment model was used to 

simulate one of the six catchments, whilst the global scale model was 

used to model all catchments, and was compared to each catchment 

model individually. The results from this study agree with those of Najafi 
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et al. (2011) in that the differences in projected changes of mean annual 

runoff, as well as extreme high and low flow indicators between the 

global and catchment models, were generally relatively small in 

comparison to the range of projections across different GCMs. 

The Water and Global Change (WATCH) - Water Model 

Intercomparison Project (WaterMIP) was a very comprehensive 

intercomparison project, and was the first international project to 

develop a multi-model ensemble for global hydrology models. It was 

coordinated by the Natural Environment Research Council - Centre for 

Ecology and Hydrology in the UK. Being either semi-or fully distributed 

across the globe, GHMs require significant computational resources, 

and so comparison of such models has not been feasible until recently. 

WaterMIP included 11 global models: 6 Land Surface Models and 5 

Global Hydrology Models, which was later extended to 13 models. As 

part of the project WATCH released a forcing data set for the period 

1901-2001, and a driving data set for the years 2001-2100. All data and 

modelling for the project was done on a 0.5° x 0.5° grid scale. The 

WATCH project consisted of a thorough analysis of global water 

availability, made up of many individual research projects that ranged 

from estimating water use in energy and manufacturing (Voß and 

Flörke, 2010), to investigating the processes that impact runoff 

generation in Northern Latitudes (Blyth, 2009).  

One aspect of the WATCH project was to perform an intercomparison 

between the models. 

Figure 1.5 shows the range of thirteen model outputs for six major river 

basins when simulating past runoff for the years 1985-1999. These 

graphs show that between models, runoff simulations can vary quite 

significantly and that there is more uncertainty in some catchments than 

in others. For example, the Brahmaputra River shows quite a small 

deviation about the ensemble mean, but the Murray-Darling 

demonstrates a wide range between the model simulations. In absolute 
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terms, the range of the Murray-Darling is smaller than that of other 

catchments, as it is a low flow catchment, but in percentage terms it 

shows significant uncertainty. These graphs also highlight that the 

range between models tends to be bigger during months of high flow, 

especially in very strongly seasonal catchments. Harding and Warnaas 

(2011) explain that interestingly, the two different types of models 

(GHMs and LSMs) did not group together in over-estimation and 

underestimation, except in areas where snow is a major influence. 

Haddeland et al. (2011) compared the models on an annual timescale 

with observed records, and showed that most models overestimate 

runoff in semiarid and arid basins. This can in part be explained by 

water abstractions in these areas, since the models were all set to 

simulate naturalised flows for this comparison project, but the 

overestimation could also be explained by the lack of the models’ 

consideration of transmission loss along river channels and re-

infiltration and subsequent evaporation of surface runoff.  

 

Figure 1.5 Multi-model total runoff monthly mean in mm per day for six of the 

world’s major river basins for the period1985-1999. The shaded area 
represents the range of the thirteen models. The continuous blue line is the 
ensemble mean (Harding and Warnaas, 2011). 
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The global average runoff fractions of HTESSEL, JULES and MATSIRO 

were all lower than the other models, and GWAVA, LPJmL and 

MacPDM gave similar results, which were slightly higher than the 

others. Globally ORCHIDEE predicts the highest runoff fraction, and 

H08 and VIC are closest to the GHMs out of all of the LSMs. 

WATCH also projected future global hydrology and assessed available 

water resources. One of their key findings was the map displayed in 

Figure 1.6. This map was an amalgamation of results from eight GHMs 

and 3 GCMs, and shows the projected changes in available water 

resources for the years 2071-2100 compared to 1971-2000. The map 

shows that Europe is the largest area projected to experience the 

largest proportional decline in water resources this century. The Murray-

Darling catchment in Australia, as well as the Okavango in Africa and 

the Pearl River in China will also have their water supply halved by 

2071-2100. The Mississippi will also see a significant decrease.  

 

Figure 1.6 Changes (2071-2100 compared to 1971-2000) in available water 

resources projected by an ensemble of eight global hydrology models using 
data from three global climate models. The available water resources were 
derived by taking into account the total runoff for selected large-scale river 
basins minus an estimate of the environmental flow requirements in the 
respective basins. Taken from (Harding and Warnaas, 2011) 
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Many catchments are expected to have increased water supply, with 

the largest increases (>50%) in the high latitudes. South America, 

central Africa and all Russian catchments will have increased water 

supply. These are just a few of the research findings of the WATCH 

project. 

WATCH ended in 2011 and soon afterwards, the Inter-Sectoral Impacts 

Model Intercomparison Project (ISI-MIP), which is coordinated by the 

Potsdam Institute for Climate Impact Research (PIK), began in 2012 

with a one year fast-track project. The second phase, ISI-MIP2, was 

launched in May 2013 and is planned to last 4 years. The Fast Track 

(FT) project has contributed outcomes to the IPCC’s Fifth Assessment 

Report (AR5), and results have been published in a special edition of 

PNAS (Vol. 111, issue 9, 2014). The ISI-MIP FT brought together 28 

global impacts models from five different sectors: water, biomes, 

agriculture, health (malaria) and coastal infrastructure. The 12 

hydrology models included in the study were: LPJmL, JULES, VIC, 

H08, WaterGAP, Mac-PDM.09, WBM, MPI-HM, PCR-GLOBWB, 

MATSIRO, DBH and ORCHIDEE (Warszawski et al., 2014). Much of 

the framework for ISI-MIP FT was already in place due to the WaterMIP 

project, which allowed for the speed of the one year project. Climate 

data made use of the CMIP5 GCMs, and covered the years 1960-2099 

at 0.5° x 0.5° spatial resolution.  

Prudhomme et al. (2014) investigated the uncertainties in hydrological 

drought projections for the 21st century. In the context of drought, their 

results contradict those of Gosling et al. (2011) and Najafi et al. (2011), 

as they determined that the uncertainty due to GHM choice is greater 

than that for global climate models, and that the different 

representations of terrestrial water cycle processes in GHMs are 

responsible for much larger uncertainty in response of hydrological 

drought to climate change than previously thought. The JULES model, 

which is the only model that accounts for the dynamic response of 
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plants to CO2 and climate, and so allows vegetation to grow in 

response to its environment, simulates little or no increase in drought 

frequency, whereas other models showed maximum drought severities 

up to and exceeding a 40% change in regional deficit index.  

Figure 1.7 shows the change in Regional Deficit Index (% of area under 

drought conditions) from 7 GHMs and 5 GCMs for 17 regions across 

the world for 2070-2099 compared to 1976-2005. This figure shows that 

average changes vary between no change (Eastern Africa) and 28% 

increase (central Europe) with five regions projected to experience at 

least a 20% increase in Regional Deficit Index: South and Meso-

America, Caribbean, and Central and Western Europe. The greatest 

uncertainty is in Eastern Europe, South and Southeast Asia and 

Eastern Africa). Figure 1.7 highlights the discrepancy between JULES 

and the other GHMs. Schewe et al. (2014) used an ensemble of 11 

GHMs to assess water scarcity under climate change. They found that 

both GHMs and GCMs contributed to uncertainty in the ensemble 

projections, and that GHM uncertainty is particularly high in regions 

affected by declining water resources.  

Figure 1.8 shows two maps which present the uncertainties in the study 

performed by Schewe et al. (2014). The top map shows the change in 

annual mean discharge at 2°C, and the darker the colour, the better the 

agreement among models. This shows that there is high confidence 

that there will be a significant reduction in discharge across the 

Mediterranean, and in southern America. On the other hand there is 

good agreement that there will be substantial increases in discharge in 

the high latitudes, in India and Bangladesh, and also across Ethiopia, 

Somalia and Kenya. The bottom map shows the ratio of GCM variance 

to total variance, so areas with high values (in blue), show where the 

GCM variance was higher than the GHM variance, whilst areas in red 

show where GHM variance was higher. 
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Figure 1.7 Mean percentage changes in regional deficit index (RDI) between 
30 year simulations of reference (1976-2005) and future (2070-2099) under 
RCP8.5 for 17 world regions. Values are averaged over all of the MME 
members (All), by GCMs (central block) and by GHMs (bottom block). Taken 
from Prudhomme et al. (2014) Regions read: North, Meso and South America 
(NAm, MAm, SAm), Caribbean (Car), Western, Central and Eastern Europe (WEu, 
CEu, EEu), Central, East, South and Southeast Asia (CAs, EAs, SAs, SEAs), 
Australia and New Zealand (ANZ),  Western, Central, Southern and Eastern Africa 
(WAf, CAf, EAf, SAf) and Western Indian Ocean (WIO). 

The fact that the bottom map is predominantly blue indicates that on the 

whole, the variance in the GCMs outweighs that of the GHMs, but there 

are distinct regions where GHM uncertainty is high, which seem to be 

mostly in the tropics. These results, along with those of Prudhomme et 

al. (2014) suggest that for annual mean discharge, GHM uncertainty is 

generally smaller than GCM uncertainty, however for drought 

prediction, the choice of hydrology model plays a larger role in the 

model result.  

Studies such as this give us information about the confidence we can 

place on models; however, in many cases, these comparisons are 

being made before the uncertainties within one model have been 
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thoroughly assessed. In the concept of the tree, MMEs compare one 

tree with another, but this is done by just plucking one leaf per tree and 

comparing them. The following subsection outlines current research 

progress in assessing the uncertainties within single models, the 

concept of comparing several leaves from the same tree. 

 

Figure 1.8 Relative change in annual discharge at 2°C compared with present 
day, under RCP8.5. Upper: Colour hues show the multimodel mean change 
and saturation shows the agreement on the sign of change across all GHM-
GCM combinations (% of models agreeing on sign of change). Lower: Ratio of 
GCM variance to total variance; in red areas, GHM variance predominates, in 
blue areas GCM variable predominates. GHM variance was computed across 
all GHMs for each GCM individually, and then averaged over all GCMs; vice 
versa for GCM variance. Greenland has been masked. Taken from Schewe et 
al. (2014). 
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1.6.2 Single Model Uncertainty Estimation 

As shown in Figure 1.4, there is significant uncertainty within each 

individual model. A few studies have attempted to address these 

uncertainties, though due to the computational requirements of such 

investigations most have been fairly basic. The advantage of MIPs, 

such as those that have been discussed, is that different GHMs are 

developed and run at different institutions, thus spreading the 

computational load. The most common method of assessing the 

uncertainties within a model is to run the model with many different set 

ups, e.g. using different equation settings, or with different model 

parameter values, which places significant demand on the 

researcher/research group and the computational facilities available to 

them.  

Beven (2012) outlines the steps in developing a hydrological model as: 

1. The Perceptual Model: Deciding on the processes 

2. The Conceptual Model: Deciding on the equations 

3. The Procedural Model: Getting the code to run on a computer 

4. Model Calibration: Determining values for the parameters 

5. Model Validation: Confirming applicability and accuracy 

Steps 2 and 4 are significant sources of uncertainty. Deciding upon the 

equations to use in the model is often a subjective preference, but can 

be influenced by the amount of the data required. For example, the 

Penman-Monteith method of evapotranspiration calculation requires 

many more observed variables than the simpler Priestley-Taylor 

method. Since the availability of such data sets is becoming more easily 

accessible, the Penman-Monteith method is currently the more popular 

of the two in GHMs (see Table 1.1), but many catchment and global 

scale models still employ the Priestley-Taylor method.  

Obtaining values for model parameters is mostly achieved using 

observed data sets. This is applicable to soil and vegetation 
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parameters, such as vegetation height and hydraulic conductivity. 

However, the spatial distribution of models, particularly for global 

hydrology models, requires that observations represent large areas. 

Therefore, parameter estimation often requires generalisation of 

observed values to the model’s spatial scale. Even then it is of course 

impossible to measure parameter values for every grid square across 

the catchment, or even the globe, so parameters are ascribed to certain 

vegetation or soil classifications. The issue with this is that the modeller 

is then assuming that these classifications are consistent regardless of 

spatial location, in GHMs for example, crops in eastern Asia have the 

same physical properties (height, leaf area index, stomatal conductance 

etc.) as crops in the USA. 

On top of this, many models contain parameters that do not have a 

physical meaning, such as the spatial variability of soil moisture 

capacity parameter (b, in equation 1.1), and so cannot be estimated 

using observed data. In this situation, parameter values may be taken 

from the literature, where other models may have used the same 

equations, or they may be estimated and then optimised. Optimisation 

is a method of model calibration. Calibration usually requires 

observations of the catchment response; the modeller will run repeated 

simulations of the model, adjusting the values of the parameters 

between each run and compare the results with the observed record. 

The modeller may do this manually, or may use a computerised 

algorithm until some ‘best fit’ parameter set has been discovered 

(Beven, 2012). This process can vary significantly in complexity, from a 

few parameters varied individually in tens of adjustments, to all 

parameters varied simultaneously in hundreds or thousands of 

adjustment sets (known as “model realisations”). Varying parameters in 

this way not only provides an optimum set (or several sets) of 

parameter values, but also provides an indication of the uncertainties in 

the choice of parameter values, as different sets of parameter values 

may produce similarly ‘good’ simulations when compared to 
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observations. This concept is known as “equifinality” (Beven, 2006a), 

and will be discussed further in Chapter 3. 

In catchment hydrology, investigations into single model uncertainty 

have been fairly advanced and thorough. Catchment models have 

several advantages over global models that have enabled such rigorous 

analysis: they are usually quicker to run, and have smaller input and 

output files than global models; they cover a smaller spatial domain, so 

are likely to have fewer land cover classes and soil classifications to 

parameterise; and catchment modelling is in a more advanced stage of 

research than global hydrology modelling, due to its earlier introduction. 

Nevertheless, global hydrology models have been subjected to a range 

of calibration assessments and uncertainty analyses.   

In 1998, Vörösmarty et al. investigated the impact of different potential 

evaporation (PE) functions on the Water Balance Model (WBM). They 

applied 11 different methods to simulate the annual streamflow for 679 

gauged watersheds in the United States. The 11 methods covered both 

reference surface (e.g. Thornthwaite, Penman, and Hamon), and 

surface cover dependent (e.g. Priestley-Taylor and McNaughton and 

Black) algorithms. They found that for reference surface methods, 

simulated PE varied from approximately -100 to +100 mm yr-1, whilst for 

surface cover dependent methods the range was much smaller (-50 to 

+50 mm yr-1). Among individual methods, they found that by using 

different PE estimation methods, PE estimates can differ by hundreds 

of millimetres, with the largest differences seen in hotter, drier climates 

where PE is the highest. Vörösmarty et al. (1998) concluded that for 

contemporary climates, the Hamon method gives good results, however 

for climate change projections, the more theoretical surface cover 

dependent methods are more suited than the reference surface 

methods. 

Gosling and Arnell (2011) also investigated the impact of potential 

evaporation method, along with parameter adjustments for the 
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parameters b and FC in the GHM Mac-PDM.09. As previously 

discussed, the b parameter defines the degree of variability in soil 

moisture capacity across the grid cell. FC represents the field capacity 

of each vegetation type, which is determined from the soil texture. 

Gosling and Arnell (2011) used just two PE methods, Priestley-Taylor 

(PT) and the Penman-Monteith (PM), and a low and a high value for 

each of the parameters such that b ranged from 0.3 to 0.8 (original 

value 0.5) and FC ranged from 1.2 to 0.8 (original value 1). They 

simulated 14 parameter perturbations. They found that of the three 

parameters investigated, simulated runoff was least sensitive to FC, with 

a less than 20% change. Runoff is slightly more sensitive to b, with the 

biggest effects in catchments with low runoff. By far the greatest 

influence on runoff was with the change in PE method. In dry regions, 

the PT method produced positive runoff anomalies of around 20-60% 

relative to the PM method, with the reverse trend in wet regions. This is 

not surprising given that the two methods include different 

meteorological variables, and that humidity is not present in the PT 

method (Gosling and Arnell, 2011). 

The b parameter is also investigated in the calibration of the 

WaterGAP2 model by Alcamo et al. (2003), though in this study, the 

parameter is referred to as γ. Alcamo et al. (2003) attempted to 

calibrate the model to discharge stations at 724 locations across the 

globe for the years 1980-2010 (depending on data availability), by 

varying the b parameter. The aim was to limit the difference between 

the modelled and measured long-term average discharge over the 

calibration period to 1%. They found that by varying the b parameter 

between 0.3 and 3 (their estimate of the physically plausible range), a 

1% difference was only achieved in 385 of the basins. In 201 of the 

basins, which were mostly snow-dominated areas, the model 

underestimated the discharge, perhaps due to measurement errors in 

the amount of snow, and in the other 138 basins, the model 

overestimated the discharge, due to transmission loss, and evaporation 



Global Hydrology Modelling and Uncertainty 40 

 
from ponds. These errors were corrected using runoff coefficients using 

a multiple linear regression approach.  

The variable infiltration parameter in VIC was targeted for calibration by 

Nijssen et al. (2001b), along with other soil hydrological properties of 

the depth of the second soil layer, the saturated hydraulic conductivities 

and the exponents for the unsaturated hydraulic conductivity in the first 

and second layers. Nijssen et al. (2001b) manually calibrated the model 

using five climatic zones and nine basins to match the total annual flow 

volume and the shape of the mean monthly hydrograph. The infiltration 

parameter and the depth of the second soil layer were ascribed a 

uniform value for all grid cells in a given climate zone. The remaining 

parameters were changed from their original spatially varying values 

using a regionally uniform multiplier.  

They found that the infiltration parameter tended to be smallest in the 

arid climates, in an effort to reduce runoff production, and that the soil 

layer depth was smallest in the arctic. Nijssen et al. (2001b) then 

transferred the calibrated parameters to thirteen further basins, using 

the parameters for each cell from the relevant climatic zone calibration. 

This process was found to improve the simulated flow in six basins, 

gave little or no change in three basins, and resulted in worse 

simulations in four basins. Three of the four poorly modelled 

catchments were in the western Russian Arctic (Ob, Pechora and 

Severnaya Dvina), and had considerably higher precipitation than the 

basin immediately to the east (Yenisei), which was in the original 9, so 

they were recalibrated during the second round using an additional set 

of parameters. Once applied globally, the parameterisation led to an 

increase in global annual runoff of 9.4% and a reduction in 

evapotranspiration of 5%. 

WaterGAP2 was again assessed by Müller Schmied et al. (2014) in an 

investigation into a variety of sources of uncertainty. Müller Schmied et 

al. (2014) considered five major sources of uncertainty: climate forcing, 
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land cover input, model structure, consideration of human water use 

and calibration (or no calibration). They developed a single variant of 

the WaterGAP2.2 model in each case, to investigate the sensitivity of 

the water fluxes and water storage variations of the variants compared 

to the standard version of the model. In the climate variant, the monthly 

dataset was adjusted from the standard WATCH forcing dataset was 

swapped for the CRU TS 3.2 with GPCC v6 monthly precipitation totals. 

In the land cover variant, the MODIS land cover data was swapped for 

the GLCC and CORINE datasets. Structural adjustments involved 

removing the various model improvements that have been implemented 

in the past decade, including the reservoir operation algorithm of Döll et 

al. (2009), and the variable flow velocity algorithm of Verzano et al. 

(2012). The no-calibration version of the model was an uncalibrated 

simulation with the standard version of WaterGAP 2.2. The calibration 

approach involved again adjusting the runoff coefficient (b/γ), within the 

limits of 0.1 and 5.0, and if necessary two additional correction factors. 

The no human water use variant reflected naturalised water flows and 

storages without the impact of human water use. 

They found that the calibration of the model to 1319 gauging stations 

had the highest effect on the modelled water fluxes and led to the best 

fit of the modelled monthly and seasonal river discharge to the 

observed record. Adjusting the climate forcing had the second highest 

effect, and was stronger than that of alternative land cover inputs. The 

adjustments to the model structure showed that the modern version of 

the model has an improved fit to observed discharge. The structure 

affected globally averaged fluxes and storage values but the 

contribution of change is from a small number of grid cells. Human 

water use proved important for the global water storage trend, but the 

impacts on water fluxes were localised to areas of high water use.  

A much more comprehensive approach was adopted by Wisser et al. 

(2010) in an assessment of the water balance model (WBM). Wisser et 
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al. (2010) carried out a Generalised Likelihood Uncertainty Estimation 

(GLUE, see (Beven and Binley (1992), Freer et al. (1996))) experiment 

which aimed to assess the impact of variations in model parameters on 

simulated discharge by randomly sampling the parameters within a 

predefined range, and by then running a large number of model 

simulations with different parameter sets. They applied this method to 

the Mississippi and Danube catchment for three model parameters, and 

found that the γ parameter, that determines the fraction of excess 

rainfall that fills a runoff detention pool or that becomes runoff instantly, 

was the most sensitive parameter, along with SF, that partitions 

precipitation to rainfall and snowfall. However, they concluded that the 

impact of variations in γ, SF and β (that controls the outflow from the 

runoff pool) on annual values of predicted discharge were minimal. 

Sperna Weiland (2011) carried out a similar investigation on the PCR-

GLOBWB model. Their experiment included 10 model parameters and 

used a Latin Hypercube Sampling method (see Chapter 3) to sample 

250 model realisations. Sperna Weiland (2011) eliminated 95% of these 

250 realisations, to leave the 12 remaining best parameter 

combinations for each of 5 river catchments (Amazon, MacKenzie, 

Mekong, Murray and Rhine). They did not investigate the sensitivities of 

individual model parameters in detail, and do not present the parameter 

values that produce the “best” model simulations when compared to 

observations. However, they determined that for all catchments except 

for the Amazon, the uncertainty ranges of the LHS ensemble enveloped 

the measured discharge data. 

These papers reveal that most of the calibration and parameter 

uncertainty experiments carried out on global hydrology models have 

been focused on the potential evaporation method and the soil moisture 

storage capacity parameter. Perhaps due to computational constraints, 

in depth sensitivity and uncertainty analyses have yet to be carried out 

on global hydrology models. This should ideally be addressed before 
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GHMs are used in model intercomparison projects, as it seems 

premature to investigate the uncertainties derived from differing models 

before the uncertainties within a single model have been thoroughly 

examined. In the analogy of the tree, you want to be sure that you have 

plucked a leaf that is representative of that tree’s canopy (see Figure 

1.9), before you compare it with leaves from other trees.  

 

Figure 1.9 Two leaves plucked from the same fig tree. Image posted by 

Encanto Farms Nursery on the figs4funforum.websitetoolbox.com, permission 
granted. 

1.7 GHM Uncertainty in Policy Documents 

Presenting uncertainty is very challenging, and in the context of policy 

documents where confidence in research findings is required for 

decision making, diagrams, graphs and language must be considered 

very carefully. The Intergovernmental Panel on Climate Change (IPCC) 

have been leaders in the challenge of uncertainty presentation. 

They have been both praised and criticised for their use of verbal 

probability labels, such as Likely (66-100%), and Extremely Likely (95-

100%) in their reports (e.g. Budescu et al., 2009). In hydrology 

projections, the IPCC have used novel mapping methods to display the 

agreement between multi-model ensembles. In the fourth assessment 

report (4AR) (IPCC, 2007), runoff maps were displayed with stippling in 

the regions where 80% of models agreed on the sign of change. Whilst 
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this method was quite easy to interpret, it only allowed for one distinct 

level of certainty to be displayed with a stipple/no stipple divide. 

In the more recent fifth assessment report (5AR) (IPCC, 2014), the map 

presented by Schewe et al. (2014) (shown in the upper map of  

Figure 1.8) is reproduced. This map uses the colour scheme of Kaye et 

al. (2012), who recognised the need for care when producing bivariate 

maps, as they can be very difficult to interpret. This scheme uses both 

colour and saturation very effectively to display the pattern of change as 

well as grades of (un)certainty associated with the data. The IPCC 5AR 

mentions that GCM uncertainty, and scenario uncertainty, is generally 

higher than that of hydrology model uncertainty and hydrology model 

parameter uncertainty, however they refer to catchment hydrology 

models, and do not mention the uncertainties in GHMs. Similarly the 

IPCC Special Report on Extreme Events (SREX) (IPCC, 2012) 

discusses the uncertainties derived from hydrological model choice, but 

does not mention parameter uncertainty. 

In the WATCH project, multi-model ensembles are well addressed, and 

are presented in the Outreach Report (Harding and Warnaas, 2011). 

The graphs shown in Figure 1.5 are taken from the Outreach Report, 

and they clearly demonstrate the range of model outputs that can be 

achieved from a multi-model ensemble. However, the spatial 

distribution of this uncertainty is not demonstrated, and further maps of 

water resources do no give uncertainty bounds. The Outreach Report 

states that “we must appreciate the uncertainty in model projections and 

we must maintain a culture of on-going model improvement”, and that 

“recognising potential [of the WaterMIP project] to improve models, to 

quantify uncertainty within them, and to provide a valuable framework 

for future global water-cycle work, [WaterMIP] quickly became a major 

output of WATCH”. However, the quantification of uncertainties is 

severely lacking in the Outreach Report, so decision makers would be 

required to sift through the projects archive of technical reports and 
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resultant peer reviewed journal articles. As with the IPCC reports, 

parameter uncertainties are not discussed in detail by the WATCH 

literature. 

Another example of the use of hydrology models for policy is the AVOID 

project which sought to provide scientifically robust, policy-relevant 

answers to questions directly related to the UN Framework Convention 

on Climate Change (UNFCC) to “prevent dangerous anthropogenic 

interference with the climate system” (AVOID, 2014). The outputs from 

this project are divided into: Flyers and Presentations; Papers; Reports; 

and Media Kit. The Media Kit (which is aimed at journalists) does not 

mention uncertainty. Uncertainty in climate models is considered in the 

longer reports, but hydrology model uncertainty is not mentioned. For 

example, in the report on the implications of climate policy for avoided 

impacts on water and food security (Arnell et al., 2010), only one GHM 

was applied (Mac-PDM.09) and the parameter and structural 

uncertainties within the GHM are not discussed. By contrast, 21 GCMs 

were applied in this study, with the results from each GCM examined in 

detail. 

Presenting uncertainties is quite a challenge. Policy makers have 

previously been presented with the results from one calibration of a 

hydrology model, or perhaps a range of up to a dozen models, as part 

of a multi-model ensemble. Further information on uncertainty 

estimation can sometimes be found deeper in the project literature, but 

it is not easy to come by. Parameter uncertainty experiments can 

contain several hundred or even several thousand model realisations, 

so choosing which models to present, and how to present them, is an 

important aspect of uncertainty studies. Presentation of perturbed 

parameter ensembles could be displayed in many ways including as a 

mean, a probability statement, or a total range. Appropriate 

representation of uncertainties is essential to maintain the usefulness of 

models and not induce doubt.  
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1.8 Summary 

Hydrology modelling is an important means of understanding the 

hydrological cycle, and dates back to Mulvany’s first attempt to predict 

the peak of a hydrograph in 1850. However, holistic catchment 

modelling was first introduced in the 1960’s and several models quickly 

developed with advances in computational capabilities. Global 

hydrology modelling is especially computationally demanding, and did 

not take off until the 1990’s. There are currently 8 commonly used 

global hydrology models, which vary quite significantly in structure and 

ultimate purpose. Being such a recent area of research, global 

hydrology modelling remains a very uncertain science. Studies to 

compare different GHMs have been undertaken in the past few years, 

but investigation into the uncertainties inherent within one global 

hydrology model has been neglected. Assessments of a full range of 

model parameters, including land cover and soil parameters have yet to 

be done.  

1.9 Research Questions  

The aim of this thesis is to address the issue of uncertainties within a 

global hydrology model by analysing parameter uncertainties. 

Based upon this aim, three research questions have been developed: 

Research Question 1: How can uncertainties within global 

hydrology models be assessed and quantified? 

As previously discussed, this is a significant research gap in global 

hydrological science. Whilst common in smaller scale catchment 

models, uncertainty analysis in global models has been largely 

neglected. As such, this is the primary research question for this thesis. 

Uncertainty experiments are computationally demanding and so the 

feasibility of conducting such experiments as part of the calibration 

process is an important consideration. Different methods of uncertainty 
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estimation will be evaluated, and techniques to increase the efficiency 

of these methods will also be examined.   

Research Question 2: What is the feasibility of including rigorous 

uncertainty estimation experiments in the global hydrology model 

calibration process? 

Uncertainty experiments are notoriously computationally demanding. 

Whilst in an ideal world, all models would be thoroughly assessed and 

carefully calibrated before their publication, this may not be feasible. 

Currently, global hydrology models undergo basic calibration 

procedures and are then released for use in research. Following the 

findings of the first research question, which will demonstrate the 

methods that are available, this research will investigate the potential of 

applying such techniques to other models in order to determine the 

overall feasibility of uncertainty estimation experiments in the field of 

global hydrological research. 

Research Question 3: To what extent are “global” hydrology 

models fit for purpose? 

This research question seeks to use the findings of the first research 

question to query whether global hydrology models are being used in 

an appropriate way. Further questions that will help answer this include: 

a. How can models be evaluated and validated? 

b. How do global hydrology models perform in a catchment context?  

c. Are the uncertainties in global hydrology models acceptable? 

Ultimately, models may be highly uncertain, but they can still be useful. 

1.10 Thesis Structure 

This thesis is made up of five empirical chapters, followed by a 

discussion and a conclusion, as follows:  
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Chapter 2 - gives an in depth description of the chosen model, Mac-

PDM.09. This chapter also introduces the study catchments and details 

work done updating the vegetation and soil maps used by the model.  

Chapter 3 - explores methods for assessing uncertainties in modelling 

studies, and more specifically parameter estimation.  

Chapter 4 – presents the results of a Generalised Likelihood 

Uncertainty Estimation experiment for Mac-PDM.09.  

Chapter 5 - investigates the potential for using global hydrology models 

as catchment models.  

Chapter 6 - applies the results from this experiment to an alternative 

input data set as a validation exercise, and then discusses the results 

from Chapters 4, 5 and 6 in the context of one other.  

Chapter 7 - discusses some of the issues involved in global hydrology 

modelling and highlights some potential future research, including 

sensitivity analysis and the presentation of uncertainty to policy makers.  

Chapter 8 - reviews and conclude this thesis.



 
 

 
 

 

 

 

2 Chapter Two: 

The Macro-Scale−Probability-

Distributed Moisture Model .09 
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2.1 Introduction 

A global, or macro-scale, hydrology model (GHM) is capable of 

simulating the hydrology of the world without the constraints of 

catchment boundaries, and they are commonly applied on a gridded 

basis. In order to investigate the parametric uncertainties inherent in the 

field of global hydrological research, a GHM must first be selected for 

analysis. As discussed in Chapter 1, previous work has explored the 

uncertainties derived from different models, yet the uncertainties within 

one model have yet to be determined. Therefore, one model, Mac-

PDM.09, has been selected for interrogation in these experiments. This 

chapter justifies the choice of the Mac-PDM.09 model over the other 

popular models available (see Table 1.1) and details on the model’s 

structure and parameters are provided. Updates to the soil and 

vegetation maps, which constitute a new version of Mac-PDM (Mac-

PDM.14), are described here. The study catchments that were 

investigated throughout this study are presented and the collection of 

both climatological data for model inputs and river discharge data for 

model validation is also reviewed in this chapter.  

2.2 The Mac-PDM.09 Model 

The Macro-scale−Probability-Distributed Moisture model (Mac-PDM) 

was chosen for this study. First developed by Arnell (1999), MacPDM 

was based upon the Probability Distributed Model (PDM) of Moore 

(1985).  Since 1999, a revised version of Mac-PDM was presented by 

Arnell (2003), before the current version (Mac-PDM.09) was published 

by Gosling and Arnell (2011).  

In comparison with many of the other global hydrology models 

available, Mac-PDM.09 is a relatively simple model, which makes it 

ideal for the uncertainty analyses in this study. Mac-PDM.09 focuses on 

natural hydrological processes and does not account for anthropogenic 

influences on global hydrology, or attempt to estimate water scarcity: 
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this limitation is discussed later (see Chapter 4.4).  A full description of 

the model is given here, followed by a discussion of some of its 

limitations. The use of Mac-PDM.09 for this study is then justified. 

Written in the FORTRAN programming language, Mac-PDM.09 runs on 

a daily time-step using either monthly or daily climate data (for monthly 

data Mac-PDM.09 disaggregates some variables to a daily time-step 

using a stochastic weather generator) (Gosling and Arnell, 2011). Daily 

input data has been applied throughout this study. The model is 

capable of using climate data from a variety of sources by employing 

the appropriate sub-routine on the start-up of the model. The climate 

input variables required are: precipitation; number of wet days (for 

monthly input data); temperature; relative humidity or vapour pressure; 

net radiation (or cloud cover); and wind speed. Soil and vegetation data 

are also required in the form of spatial gridded data. The model can run 

on a range of resolutions from 10 x 10 min to 2° x 2°; in this study it has 

been run on a grid of 0.5° by 0.5°, totalling 67420 cells of land globally.  

The basic structure of the Mac-PDM.09 model is shown in Figure 2.1, 

and, like all other water balance models, can be described with the 

following equation: 

  (E2.1) 

Where Pt, AEt, Dt and Qt are precipitation, actual evaporation, delayed 

runoff and direct runoff during time interval t, respectively, and St-1 and 

St are storage in the soil, lakes and wetlands at the beginning and end 

of the time interval (Arnell, 1999).   

The following description of the components of the Mac-PDM.09 model 

is largely based upon that given by Gosling and Arnell (2011), with 

further information on the PDM soil moisture storage as described in 

Moore (2007). 
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Figure 2.1 Schematic of the Mac-PDM.09 global hydrology model. Arrows 

represent hydrological process equations. Black arrows indicate the routes of 
water to produce runoff.  

A list of the parameters used by Mac-PDM.09 is displayed in Table 2.1. 

Explanation of the use of these parameters by the model is integrated 

into the model description below.  

2.2.1 Precipitation and Snowmelt 

Below a certain temperature threshold (thresh, held at 0°C in this study) 

precipitation falls as snow, and snow that is stored on the land’s surface 

begins to melt. Once snow begins to melt, it does so at a constant rate 

per degree per day, as defined by the model parameter xmelt. When 

downscaling monthly precipitation to daily precipitation, the parameters 

CVrain (coefficient of variation of daily rainfall), and SDtemp (standard 

deviation of daily temperature from the mean) are used. Mac-PDM.09 

does not include a glacier component, nor the effect of the seasonal 

freezing and melting of permafrost. The model assumes that input 

precipitation is evenly distributed across each cell, the limitations of this 

are discussed later in this section.  
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Table 2.1 Table of Mac-PDM.09 Model Parameters 

Parameter Category Brief Description 

b Control Soil Moisture Capacity Variability 

δ (delta) Control Interception Parameter 

grout Control Groundwater Routing Parameter 

Srout Control Surface Routing Parameter 

fact Control Field and Saturation Capacity Scaling Factor 

thresh Control Temperature Threshold for Snowfall and Snowmelt 

xmelt Control Snow Melt Rate  (mm/day/°C) 

fcpc Soil Soil Field Capacity  (%vol) 

satpc Soil Soil Saturation Capacity  (%vol) 

rootg Veg. Root Depth (m) 

rsc Veg. Leaf Stomatal Resistance 

capg (γ) Veg. Interception Parameter  

(max daily interception loss) 

rlai Veg. Leaf Area Index 

hc Veg. Vegetation Height (m) 

percov Veg. Percent Cover (%) 

2.2.2 Land Cover, Interception and Evaporation 

In this study, Mac-PDM.09 uses 15 land cover classifications, which are 

used to define several parameters for the model. Vegetation type 

defines the amount of precipitation that is intercepted, as well as the 

potential evaporation rates, and the soil moisture storage capacity. 

Interception is defined using the following  equation from Calder (1990): 

  (E2.2) 

where: I is the amount of precipitation intercepted, P is precipitation, 

and γ and δ are the parameters capg and δ (delta) respectively.  
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The delta parameter is a constant value across the globe, whilst capg 

varies with land cover classification. Potential evapotranspiration is 

calculated using the Penman-Monteith method (Monteith, 1965), which 

requires two further calculations as inputs, alongside the leaf stomatal 

resistance (rsc) parameter. Firstly, the vegetation height (hc) parameter 

is used to calculate aerodynamic resistance (ra) (see Allen, 2005 p. 

181) for each vegetation type by: 

 (E2.3) 

where: zu and zT are the height above the ground surface (m) for the 

wind speed measurement and the air temperature measurement 

respectively (2m is used for both in this study), zom is the roughness 

length (m) governing the transfer of momentum from the surface 

(0.123*hc in this study), zoh is an assumed roughness length (m) 

governing the transfer of sensible heat from the surface (1/10*zom in 

this study), d is the zero plane displacement (m) of the logarithmic wind 

profile (height at which wind speed becomes near zero in the vegetation 

canopy, (2/3*hc here), k is the von-Karman constant (0.41) 

(dimensionless) and uz is the wind speed measurement at the zu height. 

The rlai (leaf area index) and rsc (leaf stomatal resistance) parameters 

are used to calculate the integrated canopy surface resistance (rs), or 

bulk resistance, for each vegetation type. This equation calculates leaf 

surface resistance and upscales it to canopy resistance. The equation 

for this is based upon the work of Grant (1975) and is given as: 

  (E2.4) 

where K is a radiation coefficient of 0.70. 
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The aerodynamic and canopy surface resistance values are then used 

in the Penman-Monteith equation to calculate potential 

evapotranspiration (mm/day) as: 

  (E2.5) 

where: Rn is the net radiation (MJ/m2/day), γ is the psychometric 

constant (0.66 hPa/°C), e is the vapour pressure (hPa), es is the 

saturation vapour pressure (hPa), ra is aerodynamic resistance (s/m), rs 

is the canopy resistance (s/m), ρa is the density of air (kg/m3), cp is the 

specific heat capacity of air (1.013 kJ/kg/°C), Δ represents the slope of 

the saturation vapour pressure temperature relationship, λ is the latent 

heat of vaporisation (MJ/kg), and ρw is the density of water 

(1000km/m3). 

Whilst this study uses the Penman-Monteith equation, the model has 

the capability of running with the Priestley-Taylor method (Priestley and 

Taylor, 1972). Mac-PDM.09 divides vegetation into ‘grass’ and ‘not 

grass’. For each ‘not grass’ land cover type, Mac-PDM.09 is ascribed a 

percentage of grass per cell (as per the model parameter percov), the 

remainder is taken up by the vegetation type itself. Again, the limitations 

of this will be discussed towards the end of this section. 

2.2.3 Runoff Generation 

Water that is not intercepted reaches the ground. If the soil is saturated, 

‘quickflow’ is generated (surface runoff, but not necessarily overland 

flow), if not, water is infiltrated into the soil. Water leaves the soil either 

by evaporation or by drainage to groundwater and ‘slowflow’ (baseflow 

runoff generation). Actual evaporation is calculated as a linear function 

of potential evaporation and the soil moisture content, using the soil 

parameters satpc (saturation capacity) and fcpc (field capacity). 

Absolute soil moisture capacity is calculated by multiplying the 
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percentage values of fcpc and satpc by the rooting depth (rootg). The 

value of rootg over lithosols or organic soils is set to 0.1m. The fact 

parameter is used as a multiplication factor for modifying the modelled 

field capacity and saturation capacity. It is applied to calculate field and 

saturation capacity under grass and vegetation from the fcpc, satpc, and 

rootg inputs. 

The soil moisture storage capacity is a very important part of the Mac-

PDM model, and is based upon the PDM model of Moore (1985). The 

PDM dictates that the soil moisture storage capacity varies statistically 

across each cell, so that a variable proportion of the cell area is 

saturated at any given time, and ‘quickflow’ is generated from this part 

of the cell. This means that runoff can be generated from at least a part 

of the cell at almost any time, unlike other water balance models that 

require the entire catchment to be saturated before runoff is generated. 

Mac-PDM.09 therefore generates runoff more rapidly in response to 

smaller precipitation events (Gosling and Arnell, 2011), as is 

demonstrated in Figure 2.2. 

Figure 2.2(a) depicts a model using a single storage tank of capacity c’, 

which takes in precipitation, P, and loses water by evaporation, E. This 

store fills and spills, generating runoff, q’, or empties and ceases to lose 

water by evaporation (Moore, 2007). Mac-PDM.09 allows the storage 

capacity to vary across a cell, so at any point c can be considered as a 

random variate with the probability density function f(c), and that the 

proportion of the cell with depths in the range (c, c + dc) is f(c)dc. If all 

of these stores were arranged in order of depth, with their open tops 

arranged at the same height, they would form a wedge shaped diagram 

as shown in Figure 2.2(b). In Figures 2.2(b) and 2.2(c) C* depicts the 

water content of the store. 
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Figure 2.2 Definition diagrams for the probability-distributed interacting 

storage capacity component (taken from Moore, 2007). 

 
Figure 2.3 Pareto distributions of the b parameter of storage capacity 
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If precipitation fell at a net rate of P for a unit duration, on an initially dry 

cell, then stores will fill to a depth of P, unless they are of a lesser depth 

than P, in which case they would produce runoff during the interval of 

precipitation. Stores of the same depth as P would begin producing 

runoff at the end of the interval, so that the upper triangular area in 

Figure 2.2(c) denotes the depth produced from stores of a different 

depth over the unit interval (Moore, 2007). There is not necessarily the 

same number of stores of different depths, so actual runoff is calculated 

by weighting the depth produced by a store of a given depth by the 

frequency of its occurrence, as expressed by f(c). Moore (2007) 

conducted trials on 5 different distributions for storage capacity (Pareto, 

rectangular, triangular, exponential, and lognormal), and decided upon 

the Pareto distribution of storage capacity which is now most widely 

used in applications of the PDM model. The Pareto distribution is 

employed in Mac-PDM.09, with the distribution function and probability 

density function as presented in equations 2.6 and 2.7. 

   (E2.6) 

   (E2.7)    

where F(c) is the proportion of the catchment with storage capacity less 

than c, cmax is the maximum storage capacity in the catchment, and b 

defines the degree of spatial variability. These functions are shown in 

Figure 2.3. 

2.2.4 Runoff Routing 

Mac-PDM.09 does not route runoff between cells, but, as previously 

mentioned, runoff is made from two sources, ‘quickflow’, and ‘slowflow’ 

(‘baseflow’). The quickflow (surface runoff) is routed through a cascade 

of two linear reservoirs to represent the delay and dispersion of runoff 

as it travels across the cell. 
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For each reservoir, the outflow qs is the product of the surface water 

routing (Srout) parameter and the surface storage, Ss; 

   (E2.8) 

The baseflow is calculated using the groundwater routing parameter 

(grout) and groundwater storage using equation 2.9, which is derived 

from the non-linear storage form of the momentum equation given in 

Moore (2007): 

   (E2.9) 

Although the model runs at a daily time step, the routing parameters 

represent ‘typical’ rather than locally realistic hydraulic and 

geomorphological condition. Therefore, simulated daily runoff is very 

‘indicative’ and monthly runoff is a more credible output (Gosling and 

Arnell, 2011). Monthly simulated runoff is used throughout this study. 

2.2.5 Model Outputs 

Mac-PDM.09 outputs a range of hydrological indicators, and these 

outputs depend on the temporal scale defined by the user. In this study, 

the “summary mode” was used, which outputs a table of 36 indicators 

for each grid cell. These include: average annual runoff, annual actual 

and potential evapotranspiration, annual rainfall and snowfall, average 

monthly runoff for January-December, the coefficient of variation (CV) 

of annual runoff , the mean and CV of maximum monthly and daily 

runoff,  parameters of a GEV (generalized extreme value) distribution 

fitted by L-moments to average annual maximum monthly and daily 

runoff, and Q5, Q10, Q50, Q90 and Q95 (the flow exceeded 5, 10, 50, 

90 and 95% of the time: Q5 is extreme high flow, and Q95 is extreme 

low flow). Each line of the model output, which describes a particular 

grid cell, is given a grid code. A separate text file then gives the 
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longitudinal and latitudinal location of each cell to enable the mapping of 

outputs, and further regional or catchment scale analysis. 

2.2.6 Potential Limitations of the Mac-PDM.09 Model  

There are several assumptions and methodological choices in the Mac-

PDM.09 model that could potentially impact model output and introduce 

structural uncertainty to this study. A few of these, which will be 

discussed in turn here, are: the uniform distribution of precipitation 

across each cell; the uniform distribution of the delta parameter across 

the globe; the distribution of vegetation across each cell; the choice of 

the Penman-Monteith evapotranspiration equation; and the lack of a 

glacier component in the model. 

It is unrealistic to have precipitation evenly distributed across a 0.5° x 

0.5° area. Precipitation is more likely to be concentrated around areas 

of high relief, which during periods of snow cover could result in an 

influence on the time lag of snowmelt, which could also then influence 

the model output. The spatial distribution of precipitation in general 

though is unlikely to have a large influence of model output in this study 

for two reasons: because the model does not route runoff between cells 

(as will be discussed later in this section), and because the monthly 

runoff output is used in this study. There is the potential of slight under 

or over-catch of precipitation due to the extrapolation of catchment 

boundaries over a 0.5° x 0.5° grid, particularly if cells only part contain 

the catchment, as these are the areas with highest relief. However, the 

inclusion of cells with areas slightly outside of the catchments is likely to 

be balanced with the exclusion of cells with areas slightly inside the 

boundary. Precipitation distribution across each cell could be integrated 

into the model by assigning a distribution according to a Digital Terrain 

Model, but this would require significant revision of the model code. 

In Mac-PDM.09, the delta parameter of interception is uniform across 

the globe whilst capg varies by vegetation type. The equation for 
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interception used is given in Equation 2.2. as: I = γ[1-exp(-δP)], where γ 

and δ are the interception parameters capg and delta respectively and P 

is precipitation. The capg parameter is described as the maximum daily 

interception loss, whilst the remainder of the equation, within the square 

brackets, is described by Calder (1999) as the fraction of the day for 

which canopies remain wet during and following rainfall (the wet day 

fraction). Whilst in a physical sense, one might expect the wet day 

fraction to vary by vegetation type, this equation (with δ being constant 

across the globe) describes it as being dependent on precipitation. As 

the wet day fraction is multiplied by capg (γ), the interception equation 

as a whole varies by vegetation type, so we would expect there to be 

little detriment to the model output from keeping δ constant across all 

vegetation types. If the wet day fraction were to be a factor in the model 

without the association to the maximum daily interception loss, it might 

be worth investigating varying δ by vegetation type, but this is not 

presently the case in Mac-PDM.09. 

The inclusion of the percov parameter, which describes the percentage 

grass in each cell, allows the model to have some variation in land 

cover across each cell. However, this is limiting in three ways: (1) there 

is only the option to have two land cover types in each cell (the 

specified vegetation type and grass); (2) there is only the option to have 

grass as the secondary land cover type; (3) the percentage cover of 

grass is not uniform across the globe, but it is uniform across each land 

cover type. Mac-PDM.09 accounts for combination vegetation types 

such as mixed forests, and wooded grasslands, which somewhat 

reduces the concern of only grass being available as a secondary land 

cover type. The uniformity of grass percentage across each vegetation 

type is rather unrealistic though, as not all areas of urban cover, for 

example, will have the same fraction of grass cover. A gridded map of 

grass percentage could be implemented to improve this aspect of the 

model, but this would again require significant alteration to the model, 
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as well as remote sensing work likely to introduce subjectivity. It is not 

known whether this would improve the model output. 

The Priestley-Taylor and the Penman-Monteith equations for Potential 

Evapotranspiration (PET) are both available for use in the Mac-PDM.09 

model code. Gosling and Arnell (2011) demonstrated the significant 

differences in model output depending on which equation was 

employed, especially in humid areas. The Priestley-Taylor equation is a 

simpler method that requires fewer input variables. However, the 

Priestley-Taylor equation does not include air humidity, and is a less 

physically meaningful method, that requires an additional model 

parameter. Priestley-Taylor is often applied when the necessary input 

data is not available for the Penman-Monteith method. In this study, the 

EU-WATCH project input data is used (as described in section 2.5 of 

this chapter), which provides all the necessary inputs for the Penman-

Monteith equation. Therefore, the Penman-Monteith equation was used 

in this study, which also enabled the comparison of the model outputs 

throughout this study, with the results of Mac-PDM.09 runs from the 

WATCH and the ISI-MIP projects. Since the Mac-PDM.09 model is 

adjusted in this study, both through mapping changes and the 

calibration from the uncertainty analysis to produce Mac-PDM.14, 

changing the PET method as well would confound the results of a 

comparative study with the original version of the model (Mac-PDM.09). 

The lack of a glacier component in Mac-PDM is a significant limitation of 

the model, especially in the global ‘water towers’ of the Himalayas and 

the Rocky mountains. In catchments that drain these areas, Mac-PDM 

is likely to underestimate runoff, and will simulate seasonal peak flows 

too early due to a lack of the delay in runoff caused by the locking up of 

precipitation in ice and snowpack. This limitation of the model is 

discussed further throughout this thesis. 
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2.2.7 Justification for the use of Mac-PDM in this Study 

The experiment that forms the foundation of this study (see chapter 3) 

involves running a large ensemble comprised of members with different 

but plausible model parameterisations. The model has many 

advantages that make it ideal for this study, including: the ease of 

parameter perturbations; appropriate model outputs (notably the ability 

to output summary data: 30 year averaged monthly data rather than full 

time series data which requires substantial disk storage); its ability to be 

run quickly and efficiently; and its previous use in multi-model 

ensembles (Ludwig and Voss, 2009, Warszawski et al., 2014). When 

running Mac-PDM, the model parameters (which are detailed in Table 

2.1) are described in three text files: the control file, the soil texture 

parameter file and the vegetation parameter file. This allows for easy 

alteration to the parameters and ensembles can be carried out using 

multiple versions of these text files, without needing to adjust the model 

code itself. The files are small in size (1KB for control and soil and 2KB 

for vegetation), which means that each parameterisation requires only 

4KB of disk space for the variable input files. The following files can 

remain the same for each run: the climate forcing data which is 64GB, 

the 183KB model code, the 2.65MB ‘files to read’ file (which lists the 

climate input files), and the 3.08MB cell properties file (which assigns 

each grid cell across the globe a cell ID, a soil and vegetation type, and 

gives the area of the cell, since 0.5° x 0.5° cells are not the same size 

on the equator as at the poles). The model code was investigated for 

any additional parameters that may have been “hard-coded” into the 

model itself, but no physically meaningful extra parameters were found. 

Outputs from Mac-PDM include global runoff average annual runoff, 

monthly average runoff and extreme flow indicators. In summary mode, 

each output file holds 21.99 MB of data, which is a manageable size for 

running a large ensemble, comprised of several thousand members. 

The output format is .txt which allows for easy analysis using software 
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such as Excel, MATLAB and ArcGIS. The Mac-PDM.09 model has 

previously been modified by Gosling et al. (2010) to facilitate its running 

on a campus grid. In this study, Mac-PDM.09 was run on a Condor 

system, which enables the use of idle computers across a campus or 

workplace to run model realisations. Since the climate data uses vast 

amounts of disk space (in this case the ClimGen data used which was 

20GB; see section 2.5 for a description of climate forcing datasets 

including ClimGen), Gosling et al. (2010) developed the model to call 

the bytes of data that were required from the main server, using the 

‘files to read’ file previously mentioned, rather than transfer the entire 

dataset to each processor at the start of a model run. This capability 

has allowed the model to be run in ensembles in several locations, such 

as at Oxford University by Fung et al. (2011), and at the University of 

Reading and the University of Nottingham for the WATCH (Ludwig and 

Voss, 2009) and ISI-MIP (Warszawski et al., 2014) projects. 

The inclusion of Mac-PDM.09 in the WATCH and ISI-MIP projects will 

allow the results of this study to be compared to the results of these 

projects. This means that it will be possible to compare the uncertainties 

within a model with the uncertainties between models. The WATCH 

ensemble will be a fair comparison as the models were run with the 

same climate data as was used in this study (see section 2.5). These 

factors demonstrate that Mac-PDM is an appropriate model for use in 

this research. However, previous applications of the model have used 

out of date land cover classification maps (deFries et al., 1998, based 

upon AVHRR satellite data, 1984), and a 5 class soil texture map from 

FAO (1995). It was decided that these maps should be updated to a 

more recent land cover map, and the more detailed, and commonly 

used 12 class soil texture classification, in order to produce a new 

version of the model, Mac-PDM.14. 
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2.3 Mapping 

2.3.1 Soil Texture Mapping 

Soil texture is the relative content of sand, silt and clay in the soil (see 

Figure 2.4). It is important in hydrology modelling as it influences the 

amount of water and air that the soil holds, and the rate at which water 

can enter and move through it (FAO, 2014b). Mac-PDM.09 originally 

used a soil texture classification from the FAO (1995), which consisted 

of 5 soil texture classifications: sand, sandy loam, silt loam, clay loam, 

and clay and a sixth classification, lithosols. A map of this soil texture 

classification across the globe is shown in Figure 2.5.  

The USDA Soil Conservation Service (1987) classification is the most 

commonly used in hydrology, and  contains 12 textural classifications: 

sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, 

clay loam, silty clay loam, sandy clay, silty clay, and clay. The relative 

proportions of sand silt and clay in each of these classifications is 

indicated in Figure 2.4. The FAO Digital Soil Map of the World (DSMW) 

remains an up to date resource, as despite its original publication in 

1974, it has undergone several updates, the last of which was in 

2007.The texture classification used in this study was defined using the 

FAO DSMW dominant soil unit map and database. The database 

contained a percentage sand, silt and clay measurement for each of the 

117 soil units. These were then correlated to the USDA soil texture 

classifications (specified in Table 2.2), and graphically presented in 

Figure 2.4) to produce the updated map shown in Figure 2.6.  

For 10 cases out of 117, the percentages could not be classified 

according to these criteria, so the nearest fit was ascribed. For 12 cases 

of the 117, percentage silt, sand and clay measurements were not 

given, in these cases the dominant soil texture for that major group was 

ascribed.  
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Figure 2.4 Soil texture classification triangle. Taken from Soil Information for 

Environmental Modeling and Ecosystem Management (2014) website. 

Table 2.2 Soil texture classification table. Figures taken from FAO (2014b) 

website. 

Soil Texture % Sand % Silt % Clay 

Sand 86-100 0-14 0-10 

Loamy Sand 70-86 0-30 0-15 

Sandy Loam 50-70 0-50 0-20 

Loam 23-52 28-50 7-27 

Silt Loam 20-50 74-88 0-27 

Silt 0-20 88-100 0-12 

Clay Loam 20-45 15-52 27-40 

Sandy Clay Loam 45-80 0-28 20-35 

Silty Clay Loam 0-20 40-73 27-40 

Sandy Clay 45-60 0-20 35-55 

Silty Clay 0-20 40-60 40-60 

Clay 0-45 0-40 40-100 
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Figure 2.5 Previous Mac-PDM.09 soil texture classification 

 

Figure 2.6 Updated Mac-PDM.09 soil texture classification 

The classifications “Lithosols” and “Rock Debris” were ascribed the 

classification “Lithosols” (a 13th classification category) and the 

Histosols group were given their own classification “Histosols” (a 14th 

classification category). Glaciers, Salt Flats, Water Bodies and No Data 

were all given a “No Data” (0) value. Lithosols represent incredibly 

shallow soils or rocky areas, whilst histosols represent organic material, 

such as peat. Lithosols and histosols were included in the previous 

classification for Mac-PDM.09; however histosols were not actually 

present on the gridded map data. 
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The most noticeable difference between the previous soil texture map 

and the updated map in Figure 2.5 and Figure 2.6 respectively is the 

replacement of the silt loam classification. Interestingly, in the updated 

map silt loam does not appear at all, but is instead commonly replaced 

with clay, loam and also sandy loam.  

The areas of lithosols remain the same, and histosols are introduced 

into areas of Canada and central Russia. Several large areas of clay 

are removed from Brazil and China, though clay is introduced to central 

Africa and Alaska. Areas of sand texture remain largely the same, 

though some are reclassified as loamy sand. Clay loam areas are 

reduced in size, and the large area over Burma is reclassified as sandy 

clay loam. Sandy clay loam is also introduced to large areas of the 

United States and Indonesia. Silt covers only minor areas of northern 

Russia. This update of the soil texture classification provides a much 

more diverse and realistic representation of global soils than applied in 

previous versions of the model (Gosling and Arnell, 2011, Fung et al., 

2011, Hagemann et al., 2013). 

2.3.2 Land Cover Mapping 

Updating the land cover classification map was also a priority for Mac-

PDM.09, since previous applications of the model have used the 

AVHRR satellite data from 1984, which is now more than 30 years out 

of date. Satellite data from AVHRR, MODIS, and many more have been 

used to develop several global land cover classification products which 

are detailed in Table 2.3. This table presents 7 readily available 

products, the last of which was not released in time for this research, 

but which demonstrates the continual advancement of land cover 

products. 
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Table 2.3 Details of available global land cover products 

Name Developer 
Satellite 

Data 

Date of 

Imagery 

# of 

Classes 
Reference 

GLCF 

(AVHRR) 

Global Land Cover 

Facility 
AVHRR 1981-1994 14 

deFries et al. 

(1998) 

GLCF 

(MODIS) 

Global Land Cover 

Facility 
MODIS 2001-2012 17 

Channan et al. 

(2014) 

GLCC 
United States 

Geological Survey 
AVHRR 1992-1993 25 

Loveland et al. 

(2000) 

GLC2000 

European 

Commission Joint 

Research Centre 

SPOT4 2000 22 
Bartholomé and 

Belward (2005) 

GLCNMO 

International Steering 

Committee for Global 

Mapping 

MODIS 

(TERRA) 
2003 20 

Tateishi et al. 

(2008) 

GlobCover 

2009 

European Space 

Agency 

ENVISAT 

(MERIS) 
2009 22 

Arino et al. 

(2010) 

GLC-

SHARE 

Food and Agriculture 

Organisation 
Composite 2014 12 

Latham et al. 

(2014) 

Mac-PDM.09 used the classification from deFries et al. (1998) which 

consists of 14 land cover types: evergreen needle-leaf forests, 

evergreen broadleaf forests, deciduous needle-leaf, deciduous 

broadleaf forests, mixed forests, woodlands, wooded 

grasslands/shrublands, closed bushlands/shrublands, open shrublands, 

grassland, cropland, bare, mosses/lichens and water/ice. A map of this 

classification is shown in Figure 2.7. Upon investigation of current 

global land cover classifications, it became clear that the Mac-PDM.09 

classification was lacking a few important land cover types: notably, 

artificial/urban areas and land that is permanently or regularly flooded. 

Mac-PDM.09 also lacks combination land covers that consist of more 

than one vegetation type (mosaics). GlobCover2009 presented the 

most appropriate and up-to-date land cover product available; however 

its classification system is over-complex for the parameterisation of a 

global hydrology model, and does not differentiate between open 

needle-leaved deciduous and open needle-leaved evergreen forest. 

Therefore, a new land cover classification was defined in order to keep 

the number of classification types to a minimum, whilst including 

important up-to-date information. 
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The list of new classification land cover types is given in Table 2.4. This 

table shows the previous AVHRR Mac-PDM.09 land cover classification 

and the GlobCover2009 classification, alongside the new classification 

system. The table demonstrates the combination of GlobCover2009 

classifications to fit the new scheme, for example “irrigated cropland”, 

and “rain-fed cropland” were combined to develop an overall “cropland” 

classification.  

As can be seen in this table, the “open needle-leaved deciduous or 

evergreen forest” (value 90) classification of GlobCover2009 needed to 

be divided into “Deciduous Needle-leaf Forest” and “Evergreen Needle-

leaf Forest”, and this was done using the Global Land Cover 2000 

dataset. However, a few of the cells with a value of 90 in 

GlobCover2009 had ambiguous classifications in GLC2000 

(herbaceous cover, tree cover – burnt, and mosaic: cropland/tree 

cover/other natural vegetation). These cells were then referred back to 

the original Mac-PDM.09 land cover. 

Again a few cells were classified as the ambiguous covers from Mac-

PDM.09, woodland and mosses/lichens, and so were given the mosaic: 

trees/vegetation and sparse vegetation classifications respectively. The 

results of this updated classification system are displayed in Figure 2.8 

(with the original classification shown in Figure 2.7). It is apparent from 

these maps that the classifications are more fragmented across the 

globe: in the previous map, there are distinct boundaries between land 

cover types, and whilst some are still evident in the new classification, 

there are generally more graded boundaries between types, with cell 

scattering of different types within areas with a dominant land cover. 

The removal of the “bushland” land cover classification is a distinct 

change; the large areas over Australia and South Africa are replaced 

with “Sparse Vegetation” and “Grassland”.  
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Figure 2.7 Previous Mac-PDM.09 land cover classification 

 

Figure 2.8 Updated Mac-PDM.09 land cover classification 

There is a general reduction of grassland across the globe, especially 

across Central Asia, which is classified as sparse vegetation or bare in 

the new land cover classification. The Congo rainforest is significantly 

smaller, which may be in part due to deforestation between 1984 and 

2009. Deforestation may be assumed due to the division of evergreen 

forest into eastern and western blocks by a band of cropland/vegetation 

mosaic; however, some of the evergreen forest reduction may be 

attributed to a reclassification of forest type to deciduous forests. India 

shows a distinct change from woodland/grassland to cropland and the 
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Middle East (excluding Saudi Arabia) sees a change from shrubland to 

sparse vegetation or bare. The forests of the Russian Arctic extend 

further north in the new land cover classification. Other than these 

distinct changes, which are mostly a result of the reclassification of 

vegetation schemes, the land covers are predominantly alike between 

maps. As previously mentioned though, fragmentation of the land cover 

types is apparent, especially the northerly bands of evergreen needle-

leaf forest. The cropland of the USA is also interspersed with shrubland 

and grassland. This fragmentation of land cover types across the globe 

is more indicative of true global land cover at a 0.5° x 0.5° resolution.  

A simulation experiment was conducted in order to compare outputs 

from the model using the new soil and vegetation maps with the original 

maps. As the model was not re-calibrated after the maps were 

changed, this experiment was primarily to check the model still yielded 

sensible outputs. The values used for the soil parameters are given in 

Table 2.5 and the land cover parameters are given in Table 2.6. Where 

the new classifications coincided with the original classifications, the 

parameter values were taken from the original input files (Arnell, 1999). 

The one exception to this was the sand parameters, which were 

matched to the source used to define the new soil classifications, taken 

from Saxton and Rawls (2006). For the vegetation parameters, those 

classifications that were retained from the Mac-PDM.09 classifications, 

were ascribed parameter values from the original input files, taken from 

Wilson and Henderson‐Sellers (1985). Parameter values for the 

“Mosaic: trees/vegetation” classification were also available from this 

source. The other classifications were extrapolated from existing 

parameter values, taking physical meaning into consideration. For 

example, “artificial areas” was set to the same values as “bare”, except 

for the percov parameter (percentage grass in each cell), which was set 

a little higher to account for parks and gardens. The “broadleaf regularly 

or permanently flooded” classification was given parameter values 

between “evergreen broadleaf” and “deciduous broadleaf”. 
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Table 2.5 Parameter values used for soil classifications in simulation 
experiment run. Italicised round brackets indicate new values not from the 
original model documentation. Square brackets indicate original values that 
were not used. 

Soil Classification 

Type/Parameter fcpc satpc 

Sand 10.0 [13.1] 46.0 [35.5] 

Loamy Sand (12.0) (46.0) 

Sandy Loam 20.0 41.3 

Loam (28.0) (46.0) 

Silt Loam 29.4 46.8 

Silt (30) (48.0) 

Clay Loam 33.1 50.4 

Sandy Clay Loam (27.0) (43.0) 

Silty Clay Loam (38.0) (51.0) 

Sandy Clay (36.0) (44.0) 

Silty Clay (14.0) (52.0) 

Clay 48.3 54.4 

Lithosols 27.0 50.0 

Histosols 50.0 100.0 

Table 2.6 Parameter values used for land cover classifications in simulation 

experiment run. Italicised round brackets indicate new values not from the 
original model documentation. 

Land Cover Classification 

Type/Parameter rootg rsc capg rlai hc percov 
Evergreen Needle-leaf 0.9 85 1.2 6 19.1 80 
Evergreen Broadleaf 1.5 130 0.7 9 29.4 90 
Deciduous Needle-leaf 0.9 85 1.0 4 10.0 80 
Deciduous Broadleaf 1.2 100 0.6 5 14.9 80 
Mixed Forest 1.1 100 0.8 6 18.0 80 
Mosaic: 
Trees/Vegetation 

(1.1) (100) (0.8) (6) (18.0) (25) 

Mosaic: Cropland/ 
Vegetation 

(0.9) (90) (0.6) (4) (7.0) (15) 

Shrubland 0.6 80 1.0 2 1.4 25 
Grassland 0.6 70 0.1 3 0.6 0 
Cropland 1.2 100 0.6 5 14.9 10 
Sparse Vegetation (0.2) (100) (0.2) (1) (0.2) (90) 
Bare 0.1 100 0.0 0 0.0 90 
Broadleaf Regularly or 
Permanently Flooded 

(1.3) (110) (0.6) (7) (22.0) (85) 

Vegetation Regularly 
Flooded 

(0.6) (90) (0.8) (4) (5.0) (15) 

Artificial Areas (0.1) (100) (0.0) (0) (0.0) (95) 
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The results of the comparison between model runs with the new and old 

soil and vegetation maps are presented in Figure 2.9. The main areas 

of difference are, unsurprisingly, some of the areas that have 

undergone the most dramatic changes in land cover classification. The 

areas that have seen the most significant increases in annual average 

runoff, of up to 13.5%, are Australia and Central Asia (Kazakhstan and 

Mongolia). In Central Asia this change was from grassland to sparse 

vegetation and bare, and in Australia the change was from bushland 

and shrubland to sparse vegetation and bare. Sparse vegetation and 

bare soils have less capacity to hold water than grassland, bushland 

and shrubland due to the lack of vegetation, and infiltration is less likely 

to occur, thus resulting in Hortonian overland flow. The lack of 

vegetation will also reduce interception. These physical factors 

contribute to the increase in runoff that can be seen in these areas.  

There is also a band of slightly reduced runoff along the southern 

Sahara desert, where the land classification was altered from bare to 

grassland. This land cover change would increase the soil moisture 

storage capacity, increase infiltration, and increase interception, thus 

reducing runoff. The attribution of these results to physical processes 

provides confidence that the updated maps are performing well with the 

Mac-PDM model, and can now be used for an uncertainty assessment. 

This uncertainty analysis will, as an integral part of the process, 

investigate the appropriate parameter values of the newly classified 

land cover and soil types, it will also act to calibrate the model to the 

new land cover and soil texture classifications. This mapping work has 

produced a new version of the model: Mac-PDM.14. 

2.4 Study Catchments 

Since this research focuses on global hydrology, study catchments are 

required in order to validate the model against observed discharge data.  
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Figure 2.9 Percentage change in average annual runoff between runs using 

the original model maps and the updated maps for this study. 

21 of the world’s largest and most significant rivers were selected for 

investigation; the locations of these catchments is shown in Figure 2.10 

and Table 2.7 gives descriptive statistics for each of the catchments. 

These study catchments were selected in order to represent the 

diversity of hydrological regimes across the globe. 

Many factors were considered including catchment size, river length, 

discharge, rainfall and the location of the river outlet. The Amazon River 

has the largest catchment in the world at 6,869,000km2
 (Barthem et al., 

2004), and has the highest average discharge of 220,800m3/s. The 

River Nile is the longest river at 6,825km. The Danube flows through 19 

countries, which makes it a significant management challenge. The 

Kolyma and the Amu Darya rivers are particularly dry in terms of 

simulated rainfall. The Murray Darling, despite its size has a very low 

river discharge. The Okavango has the lowest discharge of the selected 

catchments, but was chosen due to it being a large endorheic river 

basin (it does not flow out to the sea, but instead flows into the 

swampland of the Moremi Game Reserve. The Lena is the most 

northerly catchment which represents a snowmelt driven catchment, 

and the Murray Darling the most southerly.  
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The catchments were chosen in order to cover the globe as wholly as 

possible, including catchments from all continents, and all climates. The 

catchments’ diversity across climatic types is shown in Figure 2.11. This 

figure shows that across the catchments, nearly all of the global climate 

classifications are included in this study. The Amazon, Congo and the 

Mekong rivers are “Tropical Humid”. The Nile, Niger, Okavango and 

Euphrates rivers cover the “Dry Desert” and “Dry Steppe” environments. 

“Cool Humid” climates are represented by the Ob, Yenisey, Lena, 

Kolyma and Yukon catchments, and the Ganges, Brahmaputra, Yellow 

and Yangtze rivers are “Warm Humid”. Since the model does not have 

a glacier component, the polar climates have not been considered in 

this study. 

Several other global hydrology modelling studies have focussed on sets 

of catchments, and the majority of these have several catchments in 

common with those chosen in this study. Gosling et al. (2011) 

compared Mac-PDM.09 with catchment models for the Liard, Mekong, 

Okavango, Rio Grande, Xiangxi and Harper’s Brook catchments. 

Kavetski et al. (2006) studied uncertainty in the VIC model over the 

Potomac and French Broad river catchments. Hagemann et al. (2011) 

looked at bias correction on the MPI-HM and LPJml models over the 

Mississippi, Amazon, Parana, Congo, Nile, Ganges, Brahmaputra, 

Murray, Yangtze, Amur, Danube, Baltic Sea, Kolyma, Ob, Lena, 

Yenisey, MacKenzie and Volga catchments. Sperna Weiland et al. 

(2010) applied the PCR-GLOBWB model to the Amazon, Brahmaputra, 

Congo, Danube, Ganges, Indus, Lena, Mackenzie, Mekong and 

Mississippi catchments. One final example is Döll et al. (2003), who 

mostly focussed on smaller catchments, but also included the Yenisey, 

Danube, Okavango and Mekong in their selection of 17 catchments 

when tuning and validating the WaterGAP model. This demonstrates 

that this selection of catchments is appropriate for global hydrology 

modelling, and should provide an adequate range of catchment 

behaviours for model testing. 
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2.5 Data Collection 

This study seeks to assess the impacts of parameter uncertainty on 

model output; however both input data and validation data are also 

significant sources of uncertainty. Whilst this study will not go into detail 

on the uncertainties derived from these data sets, effort has been made 

to choose the best available data for use in this experiment.   

2.5.1 Climate Forcing Data 

Mac-PDM.09 has previously been applied using a variety of climate 

inputs or “forcing data”. It has the capability of running using ClimGen, 

NCC, ClimatePrediction, CIAS, and WATCH data, as well as single 

catchment or multiple catchment data. NCC (Ngo‐Duc et al., 2005) was 

developed for use by Land Surface Models (LSMs) in 2005 and covers 

the 53 year time period 1948-2001. The dataset is 6 hourly and 1° x 1°. 

It is based upon both the reanalysis products of NCEP/NCAR and the 

Climate Research Unit (CRU) observational data. ClimGen was 

developed by Tim Osborn of the Climate Research Unit and Tim 

Mitchell of the Tyndall Centre for Climate Change Research at the 

University of East Anglia (Osborne, 2009). This dataset uses pattern-

scaling to generate monthly climate information based on climatological 

observations and outputs from GCM simulations. The forcing dataset 

covers the period 1961-1990, at a 0.5° x 0.5° resolution (Mitchell et al., 

2004). The Climate Integrated Assessment System (CIAS) is a multi-

institution modular and flexible integrated assessment system for 

modelling climate change (Warren et al., 2008). CIAS was developed 

with impacts models in mind, and the development of the system 

included assessing the ability of model outputs to be applied as inputs 

for impacts models. CIAS used the simple climate module, MAGICC, 

with the climate scenario downscaling module, DSM. The climate data 

developed is largely based upon the ClimGen data, and covers the time 

period 1901-2001 at 0.5° x 0.5°. 
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The WATCH forcing data was chosen for use in this study for several 

reasons. Firstly, Mac-PDM.09 was one of the models that took part in 

the WATCH project, so the model had a coded option for the WATCH 

input file format. The participation of Mac-PDM.09 in this project, and 

running the uncertainty assessment using the same data will allow the 

uncertainties of the parameter assessment to be compared to the 

model structural uncertainty derived from using different hydrology 

models. If a different climate input dataset were used, then this would 

contribute additional uncertainty and not allow for a fair comparison. 

Even with these reasons aside, the WATCH forcing data is an 

exceptional dataset, derived from the ERA-40 reanalysis project with 

sequential interpolation to a resolution of 0.5° x 0.5°, elevation 

corrections and monthly-scale adjustments based on CRU and GPCC 

monthly observations (Weedon et al., 2010).  

The WATCH forcing data covers the period 1958-2001 and consists of 

eight variables, five at a 6-hourly time step (air temperature, pressure, 

specific humidity, wind speed, and long wave radiation flux) and three at 

a 3-hourly time step (short wave radiation flux, rainfall rate and snowfall 

rate). This data is also available at a daily time step, which was used in 

this study. Weedon et al. (2010) describe the key steps in the creation 

of the WATCH forcing data as:  

1. Bilinear interpolation to the CRU half-degree grid,  

2. Elevation correction of certain variables to account for differences in 

surface heights between the one- and half-degree grids, and  

3. Adjustment of certain variables at the monthly scale via the CRU 

TS2.1 observations.  

The data were compared to FLUXNET sites for additional validation, 

which showed close correspondence between the WATCH data and the 

observed data for all variables (Weedon et al., 2010). 
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2.5.2 River Discharge Validation Data 

Acquisition of river discharge data for the validation of the Mac-PDM 

model was more challenging. There are two major global databases for 

runoff data, RivDis and the Global Rivers Data Centre (GRDC). RivDis 

(SAGE: Center for Sustainability and the Global Environment, 2014) is 

freely available online and contains records for over 3000 discharge 

stations. GRDC data is free of charge, but must be requested for 

specific stations after submitting a User Declaration. The GRDC 

database contains over 9000 records (GRDC, 2014), and was chosen 

as the primary resource for discharge data for this study. Records for all 

stations within the 21 study catchments were requested.  

The spatial and temporal extent of these records is displayed in Figure 

2.12. This map shows that the records are not evenly distributed either 

across or between catchments. The Mississippi River has by far the 

most records, which are also mostly over 50 years in length. The 

Danube, Murray Darling and Niger also have a good coverage of daily 

records, although the Niger catchment records are mostly in the upper 

reaches in Mali. In order to represent as much of the catchment as 

possible, discharge stations as near to the mouth of the river as 

possible were sought. Stations in the Lena catchment are sparse, 

however the map shows a few stations near the mouth that could be 

adequate. Catchments of concern were the Euphrates, Nile, Ganges 

and Brahmaputra. Several potential stations for each catchment were 

then selected and the data were analysed for length, period and 

integrity.  

The thirty-year period 1971-2000 was selected for model validation, as 

the EU-WATCH forcing data did not extend beyond 2001 and a thirty-

year period, as is common practice in climate averages (e.g. Met Office, 

2015, NOAA, 2015), was deemed sufficient for model analysis. The 

best stations for each catchment were then selected.  
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Rivers that were highlighted as significantly lacking in data were the 

Euphrates, which had only 2 years of data, the Ganges, which had only 

3 years of data, and the Nile, which had only 14 years. Fortunately 

discharge data for the Euphrates has been published by the United 

States Geological Survey (Saleh, 2010). This provided several records, 

the most appropriate of which yielded a 28.75 year record. Following a 

British Council funded visit by the author to Bangabandhu Sheikh 

Mujibar Rahman Agricultural University in Bangladesh, the Bangladesh 

Water Development Board (BWDB) kindly provided discharge data for 

several stations on the Ganges and the Brahmaputra Rivers. Since the 

Brahmaputra record from the BWDB was superior to the GRDC record, 

it was adopted for this catchment. Sadly, no additional records for the 

River Nile could be found, so the GRDC record of 14 years was 

retained. An overview of the records for each catchment is displayed in 

Table 2.8. These records will provide valuable data for the comparison 

of Mac-PDM.14 model outputs.  

2.6 Summary 

This chapter has outlined the preparatory work required before the 

uncertainty experiment could be carried out. The Mac-PDM model has 

been selected for use in this experiment and is considered to be a good 

choice for several reasons: (a) the ease of parameter perturbation; (b) 

its inclusion in the WATCH project and therefore ease of multi-model 

ensemble runs, as well as comparison with other hydrological models; 

(c) appropriate model outputs for analysis. The model structure was 

presented in detail and the model parameters were defined. Some 

adjustments to the maps used by the model were required. The soil 

texture map was updated from a 6 type classification to a 12 type, 

according to the USDA Soil Conservation Service Classification. The 

land cover map was also updated from a 1984 vegetation classification 

to a 2000-2009 map date. 
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The land cover types were defined using a combination of several 

popular methods that would allow for a detailed representation of global 

land cover without over-parameterisation. This work produced a new 

version of the model which will, from hereon in, be referred to as Mac-

PDM.14. 21 of the world’s largest river catchments have been chosen 

as study catchments in order to represent a wide range of environments 

and catchment behaviours. WATCH climate data is used to force the 

model for the years 1971-2000, and validation data has been acquired 

from the GRDC, USGS and BWDB.  

The research presented in this chapter provides the foundations 

required to progress to the uncertainty experiment which will be 

introduced in Chapter 3. The results of this experiment are presented in 

Chapters 4 and 5. 



 
 

 
 

 

 

 

3 Chapter Three: 

Parameter Uncertainty in Global 

Hydrology Modelling Part 1 

- Methods and Experimental 

Design 
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3.1 Introduction 

“As we know, there are known knowns, there are things we know we 

know. We also know that there are known unknowns, that is to say, we 

know there are some things we do not know. But there are also 

unknown unknowns, the one’s we don’t know we don’t know” 

− Donald Rumsfeld 

The issue of uncertainties in global hydrology models was presented in 

chapter 1. Previously, global models have been assessed for their 

structural uncertainties using multi-model ensembles, but have not been 

thoroughly assessed for parameter uncertainty. Several studies have 

investigated changing the values of a few parameters, the soil moisture 

storage capacity parameter being the focus of research (e.g. Gosling 

and Arnell, 2011, Alcamo et al., 2003, Nijssen et al., 2001a); however 

few have investigated more than a few parameters, and none have 

included all model parameters. The most comprehensive assessment 

has been by Sperna Weiland (2011) who ran 250 realisations of 10 

model parameters, the results of this investigation were outlined in 

Chapter 1.6.  

Following the work detailed in Chapter 2 which provided a new version 

of the model, Mac-PDM.14, this chapter outlines the methods used to 

carry out an extensive uncertainty analysis on this GHM. In this chapter, 

the distinction between sensitivity analysis and uncertainty estimation is 

drawn, and existing methods of uncertainty estimation are reviewed. 

Methods of parameter value sampling are presented, and the method 

used in this study is detailed. Parameter distributions are used in this 

study, so the technique of distribution definition is presented. The 

results of the uncertainty experiment are presented in Chapter 4. 
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3.2 Model Calibration, Parameter Estimation, Sensitivity 

Analysis and Uncertainty Estimation 

The terms “model calibration”, “parameter estimation”, “sensitivity 

analysis” and “uncertainty analysis/estimation” are all used to describe 

very similar concepts in hydrology modelling. Model calibration can be 

defined as “the process of adjusting parameter values of a model to 

obtain a better fit between observed and predicted variables. [It] may be 

done manually or using an automatic calibration algorithm” (Beven, 

2009). Both sensitivity analysis and uncertainty estimation contain this 

process, but they go further to understand the variation of outputs that 

different parameter values achieve. The simple, traditional approach to 

model calibration, whereby trial and error is used to adjust parameter 

values until the model output best meets observed data has some 

limitations, for example: calibration assumes that there is an optimum 

set of model parameter values; calibrated model parameter values may 

only be applicable to that particular model; the choice of method of 

comparison to the observed data will affect which parameter values are 

determined to perform best, and may be biased towards the calibrator’s 

specified use of the model (e.g. flood estimation); and adjustments to 

some parameters may impact the model output more than others,  

(Beven, 2012).  

Sensitivity analysis and uncertainty estimation are both methods of 

assessing models’ responses to parameter values and structural 

changes, however they vary in their ultimate purpose. Sensitivity 

analysis can be defined as: “the study of how uncertainty in the output 

of a model (numerical or otherwise) can be apportioned to different 

sources of uncertainty in the model input” (Saltelli et al., 2008). 

Uncertainty analysis, on the other hand, focuses upon quantifying the 

uncertainty in model output. Tao (2008) states that sensitivity and 

uncertainty analyses are not explicitly related to model calibration, as 

some models may not require a formal calibration to estimate 
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parameters. In this case, uncertainty estimates may come from prior 

knowledge or past experience of the system; however, when calibration 

is required, this can be used as a posterior for uncertainty estimation. 

Saltelli et al. (2000) give six aims of sensitivity analysis, to determine: 

1. if a model resembles the system or process under study; 

2. the factors that mostly contribute to the output variability and that 

require additional research to strengthen the knowledge base; 

3. the model parameters (or parts of the model itself) that are 

insignificant, and that can be eliminated from the final model; 

4. if there is some region of the space of input factors for which the 

model variation is maximum; 

5. the optimal region within the space of the factors for use in a 

subsequent calibration study; 

6. if and which (group of) factors interact with each other. 

Sensitivity analysis can be either local or global. Local sensitivity 

analysis (LSA) explores a local area of the parameter space, centred on 

nominal values; whereas global sensitivity analysis (GSA) extensively 

explores wide ranges of parameter space (Tao, 2008). GSA therefore 

comes with a much greater computational cost than LSA. However, 

derivative-based LSA requires more of the analyst’s time to set up and 

carry out, which is difficult if the model parameters are uncertain or of 

unknown linearity (Saltelli et al., 2008, Wainwright et al., 2014). 

Common methods of sensitivity analysis include: one at a time (OAT) 

(Daniel, 1973, Daniel, 1958),  the Morris method (Morris, 1991), 

principal component analysis (PCA) (Vajda et al., 1985), Monte Carlo 

(MC) analysis, Sobol’ sensitivity indices (Sobol', 1993), and the Fourier 

Amplitude Sensitivity Test (FAST) (Cukier et al., 1973, Cukier et al., 

1978). These methods are briefly described in turn here: 

 One-at-a-time is a screening method that evaluates the effect of 

changing each parameter one by one on the model output. The output 
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of the perturbed parameter model is compared to a ‘standard’ value, 

usually in the middle of a set of parameter perturbation values.  

 The Morris method is a global method variation of OAT that moves 

around the parameter space one parameter at a time, but does not 

return the previous parameter change back to its standard value. It is an 

economic method in that the number of experimental runs is 

proportional to the number of input parameters (Saltelli et al., 2000).  

 Principal Component Analysis is a sophisticated method that uses 

linear sensitivity coefficients to extract meaningful kinetic information for 

several species of reactions at several time points (Saltelli et al., 2000). 

PCA uses eigenvectors and eigenvalues to reveal parts of the model 

that strongly interact, and their associated model response. 

 Monte Carlo analysis uses randomly selected points in the 

parameter space to run the model, and then uses the results to 

determine uncertainty in model prediction, and the contribution of 

parameter inputs to this uncertainty. Monte Carlo is a sampling strategy 

that may be used in other forms of sensitivity or uncertainty analyses.  

 Sobol’ analysis produces sensitivity indices and identifies the 

influence of each parameter, interaction of parameters and their 

combination effects on the model outputs (Sobol', 1993). It is a popular 

method in hydrological model sensitivity analysis as it considers the 

interaction of model parameters (Qi et al., 2013). 

 FAST is an alternative method to compute the same indices as the 

Sobol’ method, however calculations are often limited to the first-order, 

or main effect. 

Generally, sensitivity analysis is distinct from uncertainty analysis, 

though many studies have used a combined approach (e.g. Ratto et al., 

2001, Kiczko et al., 2007). Uncertainty analysis aims to define the entire 

set of possible outcomes, along with their associated probabilities of 

occurrence. Sensitivity analysis however, as outlined above, aims to 

define the change in model output values that result from small changes 

in input values, and thus measures change in a localised region of the 
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parameter space (Loucks et al., 2005). Loucks et al. (2005) give five 

achievable outcomes of an uncertainty analysis: 

1. a description of the range of potential outputs of the system at some 

probability level (e.g. the mean and standard deviation of the 

outputs). 

2. an estimation of the probability that the output will exceed a specific 

threshold of performance measure target value. 

3. the assignment of a reliability level to a function of the outputs, e.g. 

the range of function values that is likely to occur with some 

probability. 

4. a description of the likelihood of different potential outputs of the 

system. 

5. an estimate of the relative impacts of input variable uncertainties. 

Methods of uncertainty analysis are discussed in more detail in section 

3.4. Figure 3.1 shows the impact of both input data sensitivity and input 

data uncertainty on model output sensitivity. This figure demonstrates 

that input parameter uncertainty and model sensitivity combined can 

lead to high levels of output uncertainty. 

3.3 A One-at-a-Time Sensitivity Analysis of the Mac-PDM.09 

Model 

Sensitivity analyses can differ hugely in complexity, especially between 

local and global methods. Since this study aims to focus on model 

uncertainty, a basic one-at-a-time sensitivity analysis was carried out at 

the very beginning of the study (using Mac-PDM.09, prior to the 

development of Mac-PDM.14), in order to understand the relative 

importance of each of the model parameters for the model output. This 

sensitivity analysis could also provide insight into whether it would be 

necessary to include all of the model parameters in the uncertainty 

experiment or not.  
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Figure 3.1 The relationship between model input parameter uncertainty and 
sensitivity to model output variable uncertainty. After Loucks et al. (2005). 

The one-at-a-time sensitivity analysis varied each parameter 

systematically. The parameter values for the control file were varied by 

0-200% of their base value (the original calibration value for Mac-

PDM.09). Percentages of 0, 20, 40, 60, 80, 90, 95, 100 (BV), 105, 110, 

120, 140, 160, 180 and 200% were used in each case. This required 14 

model runs per parameter. The soil parameters were varied between 0 

and 200% of their base values, changing all soil types at once (unless 

the increase took the value above a value of 100, in which case 100 

was used), and were then varied between the values of 0 and 100 

simultaneously at increments of 10, as well as one at a time while 

keeping the other soil types at their base values. This required 103 

model runs per parameter. The vegetation parameters were also varied 

simultaneously by 0-200% of their base values and were then varied 

one by one. This required 210 models runs per parameter. The base 

values of the parameters are given in Table 3.1, 3.2 and 3.3. The fact 

parameter was excluded from this study, as well as the ultimate 

uncertainty experiment, as it is a scaling factor for the fcpc and satpc 

parameters. Thus fact was fixed at a value of 1.0 and the fcpc and satpc 

parameters were investigated individually instead.
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The results of this experiment are shown in Figure 3.2 and Figure 3.3. 

The percentage change in average annual runoff between the 

perturbed simulation and base value simulation, for the years 1971-

2000, was averaged across the cells of each catchment (taking into 

account variations in grid cell size due to latitude), and the minimum 

and maximum changes across all 21 catchments were determined for 

each parameter perturbation. 

The graphs in Figure 3.2 show this percentage change response across 

the varying parameter values for each model parameter. The range in 

colour fill areas indicates the range in response across all 21 study 

catchments. The runs that used a parameter value of 0, or 0% of the 

parameter base value were not included in these graphs, as division by 

0 results in infinity; and this led to some extreme changes in the model 

output at values of 0. The model varies in sensitivity to changes in 

parameter values. The satpc, and rootg parameters show the highest 

levels of sensitivity, reaching just under a 1.2% increase in average 

annual runoff. The rlai parameter is the least sensitive, with a maximum 

change of + 0.0435%. Of the control file parameters, the b parameter is 

the most sensitive, showing a definite decrease in average annual 

runoff with reduction in the value of b, and a notable increase with larger 

values of b. The delta and xmelt parameters also show sensitivity, but 

the grout and srout parameters show little change when perturbed 

individually. 

Of the soil types, sandy loam showed the highest sensitivity in 

perturbations of both fcpc and satpc. Silt loam was the second most 

sensitive in both parameters. The sensitivity of the model to the fcpc 

parameter is greatest at higher values; conversely, the sensitivity of the 

model to the satpc parameter is largest at lower values. This is due to 

the physical meaning of the parameters as field capacity and saturation 

capacity, and the logical requirement that saturation capacity be greater 

than field capacity for any given soil type. 
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Of the vegetation parameters, rootg (root depth) shows the highest 

sensitivity to parameter perturbations. The vegetation classification with 

the highest sensitivity is grass, which showed an increase in average 

annual runoff of 1.145% with a value at 20% (0.12) of the base value, 

and also showed a decrease with an increase in value, reaching -

0.223% at double the base value. Grass is also the most sensitive 

vegetation type for the rlai (relative leaf area index) and hc (vegetation 

height) parameters. Evergreen Needleleaf is the most sensitive 

vegetation type for the capg (interception parameter) and the percov 

(percent cover of grass) parameters. The percov graph shows steady 

rates of increase in change in average annual runoff as the parameter 

values are decreased for each vegetation type. The trend in average 

annual runoff with as percov parameter values are increased appears to 

be more complex, but can be explained by the fact that the parameter 

values were increased until they reached a value of 100 (as the 

parameter is expressed as a percentage, a value greater than 100 is 

not possible) after which they were kept at 100.  

All vegetation parameter results show changes that differ in sign as they 

pass the base value mark (100%). None of the parameters give 

parabolic results, whereby the same model output could be achieved by 

more than one value of the parameter. The capg parameter shows a 

very linear trend, with sensitivity apparent with both increases and 

decreases in the parameter values. The rlai parameter is less linear, 

with much higher sensitivities to decreases in parameter value than 

increases in parameter value. Increases in the rlai parameter values 

above 120% show little change to the model sensitivity for all vegetation 

types except grass. A similar trend can be seen from the rootg 

parameter graph. Interestingly, for the rlai parameter, Evergreen 

Broadleaf shows the opposite trend to most other vegetation types, with 

average annual runoff increasing as rlai increases. 
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The Mosses/Lichens and Bare classifications were excluded from the 

capg and rlai sensitivity graphs as they began at base value of 0, and 

thus perturbation by percentage did not result in any change. Bare was 

also excluded from the hc graph for the same reason. In the actual 

experiments, both Mosses/Lichens and Bare were varied between 0 

and 9 for the rlai parameter, which had no effect on the model output 

over any of the study catchments. For the hc parameter, Bare was 

varied between 0 and 1, which had a maximum effect of -0.126% at a 

value of 1. For capg, Mosses/Lichens and bare were both varied 

between 0 and 1, which had maximum effects of -0.11% and -0.068% 

respectively. 

Figure 3.3 shows the variation of sensitivity between parameters and 

catchments. This figure was derived from the 15 model runs per 

parameter that varied the parameters from 0-200% of the original base 

value. In these model runs, for each parameter, the soil and vegetation 

types were all varied at the same time. So, for each parameter, with 

runs at 0, 20, 40, 60, 80, 90, 95, 100, 105, 110, 120, 140, 160, 180, and 

200%, all vegetation and soil types were set at that percentage of the 

base value, whilst the other parameters remained at their base value. 

As with the previous graphs, the 0% values were excluded from this 

analysis. The figure shows the maximum response in each catchment 

from the 15 runs that were employed, the sign and size of which is 

indicated by colour. The most notable overall trend is that the fcpc and 

satpc parameters are the most sensitive. The rootg parameter is also 

very sensitive, giving significant increases in average annual runoff in 

most catchments. The rsc parameter shows the strongest negative 

response, with maximum change reducing the average annual runoff 

over most catchments. The strongest reduction in average annual 

runoff is for the rsc parameter in the Ob catchment, with a -0.37% 

decrease. It is also sensitive in the many other catchments, with no real 

trend in climatological zone.  
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Figure 3.3 Maximum sensitivity of the Mac-PDM.09 model to parameter 

adjustments (values set at 0-200% of the base value) over each catchment. 
Sensitivity is given as percentage change in catchment average annual runoff. For soil and 
vegetation parameters the results shown are from simultaneous perturbations of all soil and 
vegetation classes. Catchment codes read as follows: Ama=Amazon; AmuD=Amu Darya; 
Brah=Brahmaputra; Con=Congo; Dan=Danube; Euph=Euphrates; Gan=Ganges; Koly=Kolyma; 
LaPla=La Plata; Lena=Lena; Mek=Mekong; Miss=Mississippi; MurD=Murray Darling; Nig=Niger; 
Nile=Nile; Ob=Ob; Oka=Okavango; Yang=Yantze; Yell=Yellow; Yen=Yenisey; Yuk=Yukon.   

The strongest positive change in average annual runoff is for the satpc 

parameter over the Murray Darling catchment with an increase of 

2.57% across all catchments. The fcpc shows a similar response, but 

with slightly lower increases than satpc. The high impact of changes in 

field and saturation capacity in the Murray Darling catchment is likely 

due to the fact that the catchment has the lowest average annual 

discharge of all 21 study catchments, and it receives very low annual 

precipitation.  

As with the graphs in Figure 3.2, for the control file parameters, the b 

parameter shows the strongest trend, with decreases in average annual 

runoff, particularly in the Murray Darling and Kolyma catchments. The 

xmelt parameter shows sensitivity in the Yukon, Yenisey, Ob, Lena, 

Kolyma and Amu Darya catchments. This is unsurprising as xmelt 

defines the snow melt rate, and these are the catchments that have a 
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significant snowmelt contribution to their runoff. The srout and grout 

parameters are insensitive to change in this one-at-a-time analysis. The 

delta parameter and the capg parameter mirror each other, with delta 

showing slight increases in runoff over the Amazon, Danube, Lena, 

Mekong, Ob, Yangtze, Yenisey and Yukon catchments; whilst capg 

generally shows its strongest decreases in runoff over the same 

catchments (with the exception of the Yukon). The capg and delta 

parameters together define the amount of precipitation that is 

intercepted by vegetation, so it is reassuring that they show their 

strongest trends in the same catchments.  The rootg parameter shows a 

fairly significant (1.53%) increase in the Murray Darling catchment, and 

also shows increases over the Euphrates and Okavango catchments. 

These catchments also experience decreases in average annual runoff 

with adjustment of the percov parameter. It is apparent that the Murray 

Darling, and Euphrates catchments are the most sensitive catchments 

to parameter perturbations. The La Plata, Ob, Lena, Mississippi and 

Yenisey can also be distinguished. 

The fact that the soil parameters showed such significant sensitivity 

confirmed the requirement for an update of the model’s soil 

classification system (see Chapter 2.3). Since these parameters have 

such a dramatic influence on the model output, it is necessary to define 

the soil textures across the world as accurately as possible. Similarly, 

the Closed Bushland, Open Shrubland, and Mosses/Lichens do not 

show significant sensitivity for any parameter changes, which might 

suggest obsolete vegetation types. This, coupled with the fact that the 

original vegetation map was significantly out of date, aided the decision 

to update the model’s land cover classification system and map. 

Whilst the results of this sensitivity assessment are very interesting and 

informative, they are merely a first step in model assessment. A one-at-

a-time sensitivity analysis does not consider how the parameters 

interact with one another. It may seem that the grout and srout 
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parameters do not have much purpose in the model, as perturbations to 

these parameters do not alter the model output, however, it may be that 

these parameters interact with other parameters in the model, to have a 

secondary impact on model output. Therefore, a simultaneous 

parameter perturbation approach must be sought to achieve a 

comprehensive uncertainty assessment.  

3.4 Methods of Parameter Uncertainty Analysis 

This section will discuss five popular methods of simultaneous 

perturbed parameter uncertainty analysis: Generalised Likelihood 

Uncertainty Estimation (GLUE) (Beven and Binley, 1992), the Model-

Independent Parameter Estimation & Uncertainty Analysis software 

package (PEST) (Doherty, 2010), the Shuffled Complex Evolution 

Metropolis Uncertainty Analysis (SCEM-UA) (Vrugt et al., 2002, Vrugt et 

al., 2003a), the differential evolution adaptive metropolis scheme 

(DREAM) (Vrugt et al., 2008, Vrugt et al., 2009a), and the Bayesian 

recursive estimation technique (BaRe) (Thiemann et al., 2001). Other 

methods, that are not discussed here in detail for the sake of brevity, 

include the Dynamic Identifiability Analysis Framework (DYNIA) 

(Wagener et al., 2003), the maximum likelihood Bayesian averaging 

method (MLBMA) (Neuman, 2003), dual state parameter estimation 

methods (Moradkhani et al., 2005a, Moradkhani et al., 2005b), and the 

simultaneous optimization and data assimilation algorithm (SODA) 

(Vrugt et al., 2005). 

3.4.1 Generalised Likelihood Uncertainty Estimation 

Generalised Likelihood Uncertainty Estimation (GLUE) is by far the 

most popular method of uncertainty analysis in hydrological modelling, 

and has been applied to numerous catchment scale models (e.g. Smith, 

2011, McMichael et al., 2006, Cameron et al., 1999, Hossain et al., 

2004). The GLUE methodology was developed by Beven and Binley 

(1992), and was inspired by Hornberger and Spear’s (1981) method of 
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sensitivity analysis (Vrugt et al., 2009b). GLUE methodology aims to 

address the issue of “equifinality” in models. The equifinality concept 

originates from the notion that there can be no single correct or optimal 

model. Equifinality describes how different sets of model parameters 

may lead to an equally good model performance. A simple illustration of 

this would be to take a simple linear equation: a + b + c = d. If we had 

an observation of the value d that was 9, there are many possible 

combinations of a, b and c that could provide that answer. Using 

integers alone (0-9), there are 55 possible combinations that would 

result in the answer 9. In hydrology modelling, the same issue applies. 

Different sets of values may lead to similar model outputs, and using a 

Monte Carlo sample, one would expect to see both good and bad 

model outputs across a wide range of values for each model parameter, 

depending on the values of other parameters. This means that the 

‘goodness’ of a model does not depend upon individual parameters, but 

on the whole set of parameter values, and the interactions between the 

parameters. Given that the structure of the model is adequate, 

unrealistic parameter combinations will lead to poor model results.   

GLUE uses this theory to produce a set of ‘good’ models that are taken 

forward for use in model predictions and projections. GLUE uses prior 

distributions of parameter values to generate random sets of 

parameters using Monte Carlo simulation. The results of the model runs 

are then compared to observed data using a likelihood measure to 

assess the acceptability of each model based on the residuals. A 

specific likelihood measure is not defined, but is left for the modeller to 

determine according to their requirements. Models that reach a certain 

threshold in the likelihood measure are defined as “behavioural” and 

those that don’t, “non-behavioural”. When the model is used for 

projections, the behavioural models all contribute to the distribution of 

the projection, and are weighted according to their likelihood measure 

(Beven, 2012). Thus, there are several moments that introduce 

subjectivity in the GLUE process: when choosing feasible parameter 
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ranges and distributions; when defining a sampling strategy; when 

deciding upon a likelihood measure; and when determining the 

conditions upon which a model is accepted as behavioural or rejected 

as non-behavioural (Beven, 2012). 

There has been significant debate in the literature surrounding the 

GLUE methodology, which has focused on the fact that GLUE is not 

formally Bayesian and is rather subjective in its approach. There have 

been three central debates in the literature, between those that believe 

GLUE is a useful working methodology for assessing uncertainty, and 

those that prefer to use more formal probabilistic approaches (Vrugt et 

al., 2009b). The provoking papers in these debates were “On 

undermining the science” (Beven, 2006b), “Hydrological forecasting 

uncertainty assessment: Incoherence of the GLUE methodology” 

(Mantovan and Todini, 2006) , and “Pursuing the method of multiple 

working hypotheses for hydrological modeling” (Clark et al., 2011).  

The “On undermining science” debate was initiated by Keith Beven 

(Beven, 2006b), who asked whether uncertainties in models are 

overestimated by GLUE or other uncertainty estimation techniques, 

whether showing the results of uncertainty analyses to users and 

stakeholders would undermine their confidence in science, and how 

uncertainties could be constrained in future to improve model results. 

He concluded that uncertainty analysis need not undermine science, 

but called for better evaluation of uncertainty in hydrological models. 

Several replies suggested that whilst uncertainty need not undermine 

science, the concept of uncertainty needs to be better defined, and 

methods of uncertainty analysis better developed (Todini and 

Mantovan, 2007, Hall et al., 2007). It was also suggested that 

uncertainty is all too often an afterthought in model development (Hall et 

al., 2007) and that uncertainties need to be made explicit in 

communications with end-users (Andréassian et al., 2007).  
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The “incoherence of GLUE” debate was sparked by Mantovan and 

Todini (2006), who challenged the use of “less formal likelihoods” which 

lose the learning properties of the Bayesian inferential approach. Beven 

et al (2007, 2008) maintained that GLUE is appropriate and coherent 

according the Bayes theorem in “special cases where the modeller is 

prepared to make very strong assumptions about the nature of the 

modelling errors”. This debate continued with further challenges by 

Mantovan et al. (2007), and concluded with Beven et al. (2008) 

demonstrating the flexibility of the GLUE approach in “non-ideal cases”. 

The more recent debate with Clarke et al. (2012, 2011, Beven et al., 

2012) focussed on the superficial rejectionist nature of GLUE from a 

Bayesian perspective, and concluded with recognition of the need to 

continue improving the process of model development and evaluation. 

It is clear from the extensive literature surrounding the GLUE 

methodology, and the many applications of GLUE in hydrology models, 

as well as other earth systems models, that it is a very popular and 

flexible approach to model uncertainty evaluation. It is also clear 

however, from the many exchanges between Professor Beven and 

other hydrologists, that there are two schools of thought regarding the 

application of formal and informal Bayesian methods, therefore a few of 

the Bayesian approaches to model uncertainty assessment will be 

discussed. 

3.4.2 Bayesian Recursive Estimation 

Bayesian Recursive Estimation (BaRe) (Thiemann et al., 2001) is one 

of the alternatives to GLUE using a formal Bayesian framework. It 

makes strong, explicit assumptions about the characteristics of errors in 

the observations, using an exponential power density error model (Liu 

and Gupta, 2007). BaRe defines prior probability distributions and 

parameter ranges, and samples them using Monte Carlo simulation as 

in GLUE. BaRe employs a recursive scheme for tracking the conditional 

probabilities associated with different parameter sets (Thiemann et al., 
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2001). It predicts the outputs and the uncertainty in the outputs, and 

updates the probability of the model parameter sets as new data 

become available at the next time step. BaRe is a method that can 

estimate uncertainty even if historic observed data are not available for 

calibration, and is therefore useful for catchments that have only 

recently been gauged. However, BaRe does not separate out model 

structural and input data uncertainty, and as parameter estimation is the 

primary objective, uncertainty estimates are not updated after the 

posterior parameter distributions are obtained (Liu and Gupta, 2007). 

3.4.3 Shuffled Complex Evolution Metropolis Algorithm 

The Shuffled Complex Evolution Metropolis algorithm (SCEM-UA) 

(Vrugt et al., 2003b) is another formal Bayesian approach. It is a 

modified version of the SCE-UA algorithm developed by Duan et al. 

(1992), which combines the Metropolis algorithm, controlled random 

search, competitive evolution, and complex shuffling to update the 

parameter distribution and develop the posterior distribution. It uses 

Markov Chain Monte Carlo (MCMC) sampling to locate the high 

probability density region of the parameter space efficiently.  

3.4.4 DREAM 

The Differential Evolution Adaptive Metropolis (DREAM) (Vrugt et al., 

2008, Vrugt et al., 2009a) algorithm is a development of SCEM-UA, 

which was specially designed to estimate the posterior density function 

of hydrologic model parameters in complex, high-dimensional sampling 

problems (Vrugt et al., 2008). It maintains a detailed balance and 

ergodicity which enables it to provide an exact Bayesian estimate of 

uncertainty (Vrugt et al., 2009b). 

Vrugt et al. (2009b) compared the formal Bayesian method DREAM 

with less formal GLUE, for a hydrologic conceptual watershed model, 

HYMOD. They concluded that formal Bayesian approaches can 

generate very similar estimates of total predictive uncertainty to informal 
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Bayesian approaches. DREAM in their application showed a slightly 

smaller spread of streamflow prediction uncertainty bounds than GLUE, 

however GLUE reveals when no model can reproduce the observations 

given the available input data without compensation by a statistical error 

model or input adjustments. They found that GLUE cannot separate 

individual error sources and so it is difficult to identify structural 

deficiencies in the model. The DREAM method attempts to disentangle 

the different sources of uncertainty but suffers from interaction between 

individual error sources.  

3.4.5 PEST 

PEST is a model-independent parameter estimation and uncertainty 

analysis software package, that allows the user to undertake 

comprehensive linear and non-linear parameter and predictive 

uncertainty analysis alongside calibration, based on highly 

parameterised inversion (PEST, 2014). PEST can also identify the 

contributions of individual parameters to the uncertainty of prediction, 

and the worth of existing or new data in reducing predictive uncertainty 

(PEST, 2014). Ng et al. (2010) compared the GLUE and PEST methods 

for the hydrological model SWAT. They found that both analyses 

required some prior knowledge to be effective, which they obtained 

from deterministic calibration using a genetic algorithm. They found 

GLUE much more flexible, which makes it suitable for large complex 

models, but provides a greater level of subjectivity. PEST was found to 

be computationally frugal, and appropriate where the presence of local 

optima is not significant. 

Ultimately, it seems there are advantages and disadvantages of all 

available approaches to uncertainty assessment. GLUE is a very 

flexible and straightforward approach to uncertainty assessment and 

has been well developed and defended in the 20 years since its 

inception (Beven and Binley, 2013). Therefore, in this study the 

underlying GLUE methodology has been applied to assess the 
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uncertainty in the Mac-PDM.14 model, and special care has been taken 

with regard to the subjective aspects of the analysis. 

3.5 Defining Parameter Distributions 

The first step in GLUE analysis is to identify the model parameters and 

define ranges and plausible distributions for sampling. This step 

required an extensive literature search for appropriate parameter values 

to estimate plausible parameter distributions. With the new soil and 

vegetation maps, there were 123 model parameters to define, including 

the control parameters. Seeking global values of these parameters was 

exceedingly difficult, so any estimates, be they local scale, regional, or 

global were included, collated then analysed to calculate a distribution. 

The main sources for parameter values in the literature are detailed in 

Table 3.4. This table shows that for any parameter that is not a 

vegetation parameter, it is very difficult to obtain observed data. For the 

control file parameters, this is mostly due to the fact that many of the 

parameters do not have a physical meaning, in which case values have 

been sought from modelling studies that use a similar model structure. 

For example, values of grout and srout were obtained from a report by 

CEH and BGS (2012) that used the GWAVA model. Since GWAVA 

contains the PDM model in its structure, several of the parameters are 

comparable with those in Mac-PDM.14. In Table 3.4, the fcpc and satpc 

parameters are mostly given the category of ‘Generalised’ in terms of 

origin and scale. This is because in many cases, these parameter 

values were taken from textbooks that contained tables of data on soil 

hydrology (e.g. Ward et al., 2000, Arnell, 2002, Shaw et al., 2011, 

Dingman, 2002). These textbooks did not specify the origins of the 

values, and so they cannot be specified as observed or modelled, nor 

local or global.  
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The dominant source of data for the vegetation parameters was the 

Plant Parameter Database (PlaPaDa) by Breuer and Frede (2003). 

PlaPaDa is an online database that collates parameters from across the 

literature for ecological and hydrological models. It contains more than 

1300 values for 7 parameters: albedo, interception, leaf area index 

(LAI), plant height, rooting depth, stomatal conductance and base 

temperature. This is a very valuable resource and it provided 363 

values for the rlai parameter, 228 values for rootg, 91 values for the hc 

parameter, and 318 for rsc, A further paper by Breuer et al. (2003) 

provided additional data for stomatal resistance and rooting depth. The 

Land Data Assimilation System (LDAS) (LDAS, 1999) also provide a 

good database of parameter estimates from both observational data 

sources and land surface model simulations.  

The parameter values were all collated, and were used to define 

distributions ready for sampling. Sampling was carried out using the 

software @RISK. Box plots presenting the data found in the literature 

search are given in Figure 3.4. @RISK was chosen due to its advanced 

and easy to implement sampling capabilities. It is primarily used in 

industry for decision making purposes, and is tailored to run models 

within the programme Excel, however it is possible to input parameter 

information, form distributions and perform sampling to produce a 

spreadsheet that can then be used to code an exterior model. @RISK 

has a library of over 50 distribution functions, including Normal, 

Uniform, Poisson, Extreme Value, Laplace and Log Logistic. The 

programme has an integrated BestFit® tool which selects the best 

distribution function for each parameter. This tool uses Maximum 

Likelihood Estimators (MLEs) to find the closest matching distribution to 

the data provided. 
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Figure 3.4 Box plots representing parameter values found in the literature. 
Red lines indicate the sample mean, boxes represent the interquartile range, whiskers 
represent the remainder of the sample, except in cases with outliers, which are shown 
as red +’s. Samples with only one data point present as a red line. Soil classifications 
read as: Sa – Sand, LoSa – Loamy Sand, SaLo – Sandy Loam, Lo – Loam, SiLo – Silt 
Loam, Si – Silt, ClLo – Clay Loam, SaClLo – Sandy Clay Loam, SiClLo – Silty Clay 
Loam, SaCl – Sandy Clay, SiCl – Silty Clay, Cl – Clay, Li – Lithosols and Hi – 
Histosols. Vegetetation types read as: EN – Evergreen Needleleaf, EB – Evergreen 
Broadleaf, DN – Deciduous Needleleaf, DB – Deciduous Broadleaf, MF – Mixed 
Forest, Mtv – Mosaic: Trees/Vegetation, Mcv – Mosaic: Trees/Cropland, Sh – 
Shrubland, Gr – Grassland, Cr – Cropland, SpV – Sparse Vegetation, Ba – Bare, Bfl – 
Broadleaf trees regularly or permanently flooded, Vfl – Vegetation regularly flooded 
and AA – Artificial Areas. 

For any density distribution f(x) with one parameter α, and a 

corresponding set of n sampled values Xi, an expression called the 

likelihood can be defined as: 

  (E4.1) 

To find the MLE, maximise L with respect to α: 

  (E4.2) 

And solve for α. This can be generalized to distributions with more than 

one parameter (Palisade Corporation, 2010). @RISK provides three 

statistical indicators of fitness: Chi-squared, Anderson-Darling (A-D) 

and Kolmogorov-Smirnov (K-S). The outcomes of the distribution fitting 

for the Mac-PDM.14 parameters, along with the statistical results of the 

fitting are shown in Table 3.5. Where less than 5 values were available 

from the literature, distributions could not be fitted, so uniform or 

triangular distributions were applied as appropriate. Each distribution 
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was also inspected for visual fit, and in some cases alternative 

distributions with close rankings were applied. Following the results of 

sensitivity analysis, minimum sampling values of 0 were replaced with 

0.0001 to avoid extreme model response and infinity outputs. 

Distributions with long tails were also adjusted to truncate the minimum 

and maximum values to within a sensible range, slightly beyond the 

range of literature values. Table 3.5 shows these adjusted minimum 

and maximum values, along with the mean of the data values taken 

from the literature. This spreadsheet was then ready for use in sampling 

parameter values for the GLUE experiment. 

3.6 Sampling Methods 

GLUE traditionally uses a Monte Carlo technique for sampling the 

parameter space. Monte Carlo uses random number generation to 

sample the parameter space (Landau and Binder, 2005), and so 

requires a large number of samples to adequately fill the sample space, 

especially in a high dimensional sampling problem.   

There is no ‘rule of thumb’ as to how many samples are required per 

dimension, but since Mac-PDM.14 has 123 model parameters to 

sample, it is likely that Monte Carlo sampling would require more 

samples than would be feasible in order to achieve a good sample. 

Therefore a more efficient sampling method was sought. Latin 

Hypercube sampling (McKay et al., 1979) is an alternative sampling 

technique that has been applied in GLUE experiments of catchment 

scale hydrological models before, for example the MIKE-SHE model 

(Christiaens and Feyen, 2002), and the SWAT model (Muleta and 

Nicklow, 2005). Latin Hypercube sampling (LHS) is inspired by the Latin 

square experimental design, and is designed to ensure that each value 

of a variable is represented regardless of its resultant importance 

(Cheng and Druzdzel, 2000).  LHS requires that in a matrix of data, 

there be only one sample per column and row. Figure 3.5 demonstrates 

this concept for a two-dimensional 5 by 5 matrix. 
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5    4  

4     5 

3  1    

2 2     

1   3   

Y/X 1 2 3 4 5 

Figure 3.5 Latin hypercube sample of a 5 x 5 matrix  (after Cheng and 

Druzdzel, 2000).  

For each sample, [i,j], the sample values of X,Y are determined by:  

 

, 

where n is the sample size, εx and εy are random numbers, and Fx and 

Fy are the cumulative probability distribution functions of X and Y 

respectively. Figure 3.6 shows a comparison of Monte Carlo and Latin 

Hypercube sampling for a 2-dimensional grid of 8 samples. This 

demonstrates the space-filling properties of LHS. 

 

Figure 3.6 Comparison of sampling techniques a) Random Monte Carlo 

sampling and b) Latin Hypercube sampling.  (N=8 samples), taken from 
Oehler et al. (2012). 
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In this study, @RISK was used to generate the Latin Hypercube sample 

of the 123 parameters, using the distributions identified in Table 3.5, 

with an ensemble size of 100,000 model runs. With the assigned 

parameter distributions the grid from which to take the samples is no 

longer evenly divided, as in Figure 3.6b, but is instead divided 

according to the area underneath the distribution curve. Some 

illustrations of this are given in Figure 3.7.  

 

 

 
Figure 3.7 Illustrations of LHS samples under different distribution types. 

a) Uniform 

b) Normal 

c) Exponential 
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This figure shows that where probability densities are high, the 

sampling space is more concentrated, allowing the sample to focus on 

the more likely region of the parameter space, whilst still sampling the 

full range appropriately. 

Once the parameter values had been sampled by LHS, the model 

control, soil and vegetation files for each of the 100,000 parameter 

realisations were created using the sampled values, and the Mac-

PDM.14 model was run on the Nottingham High Performance Computer 

Cluster. The 100,000 model runs took approximately 40 days to run, 

and output just over 2 terabytes of data. The post-processing of the 

model outputs to extract catchment averaged data took a further 10 

days, and produced 479MB of data. The GLUE experiment outputs 

were assessed using a likelihood function. This process, along with the 

results of the experiment are discussed in Chapter 4. 

3.7 Summary 

This chapter has reviewed the definition of, and approaches for, 

sensitivity analysis and uncertainty assessment of numerical models. A 

one-at-a-time sensitivity analysis was performed on the Mac-PDM.09 

model. This revealed that the soil parameters, field capacity and 

saturation capacity are the most sensitive parameters in the model 

when perturbed individually. The root depth parameter also shows 

significant sensitivity over grass. The results reinforced the need to 

update the soil and vegetation maps, which was described previously in 

Chapter 2.  

Popular methods of uncertainty analysis were reviewed and critiqued. 

The GLUE technique was chosen for the assessment of the Mac-

PDM.14 model. An extensive literature review was carried out in order 

to define the ranges and distributions of the parameter values in this 

experiment. The decision making software @RISK was employed to fit 

distributions to the parameter values and to sample the parameter 
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space using a Latin Hypercube Sampling (LHS) technique.  LHS was 

employed due to its superior efficiency over the traditional Monte Carlo 

sampling technique. The results of this experiment will be presented in 

Chapter 4, after techniques of evaluating model performance are 

discussed. 



 

 
 

 

 

 

4 Chapter Four: 

Parameter Uncertainty in 

Global Hydrology Modelling 

Part 2 

- Calibration and Results 

 



Parameter Uncertainty in Global Hydrology Modelling Part 2 128 

 

 

4.1 Introduction 

Models vary in type, complexity and scale. However, regardless of their 

structure, the ultimate aim of models is to represent a physical system. 

In order to determine if they are adequate representations, models must 

be assessed for their skill in reproducing observed hydrological 

behaviour.  Krause et al. (2005) give three reasons why a hydrologist 

needs to evaluate their model’s performance: 1) to provide a 

quantitative measure of the models capability of reproducing historic 

and future catchment behaviour; 2) to provide a way of evaluating 

improvements to the model through adjustments to the parameters and 

structure, inclusion of additional data, and representation of important 

spatial and temporal characteristics of the catchment; and 3) to 

compare current modelling studies with previous efforts.   

While chapter 4 outlined the methods and experimental design of a 

Generalised Likelihood Uncertainty Estimation (GLUE) experiment, this 

chapter will present the results. However it is first necessary to review 

available objective functions which are used in hydrology for the 

purpose of comparing model realisations with observed discharge data. 

This chapter then details the method chosen to compare the Mac-

PDM.14 model realisations with the discharge data from study 

catchments. 

4.2 Objective Functions and Likelihood Measures 

Objective functions, likelihood measures, evaluation metrics, error 

measures, evaluation criteria, and ‘goodness of fit’ measures are all 

synonymous terms used to describe a numerical equation that can be 

applied to assess the skill of a model using observational data. There 

have been several reviews that have detailed multiple evaluation 

metrics, with the most comprehensive by Dawson et al. (2007) who 

developed a web-based toolbox that can be used to calculate multiple 

assessment criteria simultaneously. Other notable contributions include 
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Krause et al. (2005), Hauduc et al. (2011), Gupta et al. (1998) and 

Reusser et al. (2009). Table 4.1 gives a list of commonly used 

evaluation metrics in hydrological studies, and provides some example 

references of their application in this field. Each method has its own 

strengths and weaknesses, and each has conditions upon which it may 

be more or less suitable. A few of the most popular methods, and their 

characteristics, will be discussed here. Dawson et al. (2007) define 

three types of metric, as follows: 

1) statistical parameters of observed and modelled time series 

datasets; 

2) statistical parameters of the residual error between observed and 

modelled time series datasets; and 

3) dimensionless coefficients that contrast model performance with 

accepted norms or recognised standards. 

Within this framework, the residual error measures are the most 

diverse, but dimensionless coefficients are perhaps the most popular. 

The first of Dawson’s categories includes basic measures such as 

mean, standard deviation, minimum, maximum and skewness. The 

second category, residual error measures, can be subdivided into 

absolute and relative measures. Absolute error measures define the 

error in the same units as the variables of interest (Hauduc et al., 2011), 

whilst relative errors measures express the error in terms of ratios and 

percentages. Absolute measures include absolute mean error (AME, 

eq. 1), peak difference (PDIFF, eq. 2), mean absolute and mean error 

(MAE, eq. 3 and ME, eq. 4), root mean square error and fourth root 

mean quadrupled error (RMSE, eq. 6 and R4MS4E, eq. 8), Akaike and 

Bayesian information criterion (AIC, eq. 9 and BIC, eq. 10), and number 

of sign changes (NSC, eq. 11). Relative measures include relative 

absolute error (RAE, eq. 12), percent error in peak (PEP, eq. 14), mean 

absolute relative error (MARE, eq. 15), median absolute percentage 

error (MAPE, eq. 16), mean relative error (MRE, eq. 17), mean squared 

relative error (MSRE, eq. 18) and relative volume error (RVE, eq. 19).  



Parameter Uncertainty in Global Hydrology Modelling Part 2 130 

 

 

4.2.1 Absolute Residual Error Measures 

Mean error (ME) can identify a systematic bias in a model, where the 

model systematically overestimates, or underestimates the observed. 

However, the errors in ME may counteract each other. Mean absolute 

error (MAE) avoids this, and defines the average magnitude (but not 

sign) of the error; underestimation or overestimation is not specified. 

Absolute maximum error (AME) gives the value of maximum error in the 

time series or dataset, which could be useful if the model is required to 

maintain a threshold of goodness, but it is sensitive to outliers in the 

residuals (Hauduc et al., 2011). Peak difference (PDIFF) is a metric that 

examines the agreement in the magnitude of the highest peak in the 

dataset. The peaks need not necessarily be in the same temporal 

location in the time series, but the metric is useful in determining the 

model’s capability of producing similar ranges of forecast values to that 

of the observational data (Dawson et al., 2007).  

Root mean square error (RMSE) is a very popular evaluation metric 

(Nayak et al., 2004, McLeod et al., 1987, Coulibaly and Baldwin, 2005, 

Dawson et al., 2007); it squares the residuals in order to avoid error 

compensation, and the root returns the metric to actual units. This 

metric emphasises larger errors, and therefore tends to focus on high 

flow events in the time series. The fourth root mean quadrupled error 

puts even more emphasis on large errors (Hauduc et al., 2011). RMSE 

and MAE are fairly comparable metrics, and Willmott and Matsuura 

(2005) assessed their abilities to describe average model performance 

error. Willmott and Matsuura (2005) determined that MAE is favourable 

over RMSE as it is unambiguous, and the most natural measure of 

average error magnitude. RMSE is based on the sum of squared errors, 

and so does not describe average error adequately.  
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The final metrics among the absolute residual error group are the 

Akaike and the Bayesian information criterion (AIC and BIC). These are 

quite unique metrics that are not often used in hydrological model 

evaluation. They use a more traditional evaluation metric within them, 

which is adjusted to the number of parameters in the model, and the 

number of data points used in the calibration. They both attempt to 

account for model complexity, and seek the minimal model that best 

explains the dataset. They quantify the relative performance of a model, 

assuming that a model with many parameters will closely fit the data, 

but not have many degrees of freedom, and will therefore have limited 

application. AIC and BIC give credit to simple models, and discourage 

over-fitting (Dawson et al., 2007). 

4.2.2 Relative Residual Error Measures 

Many of the relative residual error metrics are very similar, but each has 

its own characteristics. Relative absolute error (RAE) compares the 

total absolute error to the error that would result from a forecast of the 

mean of the observed values. It gives a ratio of the overall level of 

agreement between the modelled and observed data, and is influenced 

by the spread of the observed records. Mean relative error (MRE) is 

another measure that records the overall level of agreement between 

the modelled and observed datasets, however it does not make use of 

the mean of the observed record. In the same way as mean error (ME), 

MRE is a signed metric where over and underestimations of the 

observed data may cancel each other out. Mean squared relative error 

(MSRE) is essentially the same metric, but the square of the relative 

residuals makes it more sensitive to larger errors at lower magnitudes. 

Due to the potential cancelling out of errors in both of these metrics, the 

mean absolute relative error (MARE), and median absolute percentage 

error (MdAPE) metrics are more popular (Dawson et al., 2007). MARE 

is again an overall agreement metric, but it uses the absolute value of 

the residual, and then expresses it relative to the observed value. Since 
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it is not squared, it is less sensitive to the high errors that can occur at 

high magnitudes. MARE is often expressed as a percentage, and 

referred to as MAPE. MdAPE uses median, rather than mean, and is 

therefore less affected by outliers and skewed error distributions. 

Percent error in peak (PEP) and relative volume error (RVE) are more 

specific metrics that are commonly used for single event modelling. 

4.2.3 Dimensionless Evaluation Metrics 

The third of Dawson’s categories, dimensionless evaluation metrics, 

include the very popular Nash Sutcliffe Efficiency metric (also known as 

Coefficient of Efficiency, CE eq. 21), the Coefficient of Determination 

(Rsqr, eq. 20), the Index of Determination (IoAd, eq. 22) and 

Persistence Index (PI, eq. 23). The Coefficient of Determination is the 

square of the Pearson’s product-moment correlation coefficient (R2). It 

describes the squared ratio between the covariance and the multiplied 

standard deviations of the observed and predicted variables (Krause et 

al., 2005). This efficiency metric only compares the dispersion of the 

predicted values with the dispersion of the observed values, and does 

not take the magnitude of the data into account. Thus, a model may 

significantly underestimate, or overestimate each of the observed 

records, but still result in a good r2 value if the dispersion is of a similar 

magnitude. 

The Nash Sutcliffe Efficiency metric (Nash and Sutcliffe, 1970) has 

been widely used in hydrology, and several papers have reviewed its 

capabilities of capturing goodness of fit (e.g. McCuen et al., 2006, Jain 

and Sudheer, 2008, Schaefli and Gupta, 2007, Criss and Winston, 

2008). It is defined as one minus the sum of the absolute squared 

differences between the predicted and observed variables, normalised 

by the variance of the observed values during the specified time period 

(Krause et al., 2005). Since the Nash Sutcliffe efficiency (NSE) metric 

uses squares, larger values in the time series are over-emphasised, 

and errors in lower values are neglected. Also, as Schaefli and Gupta 
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(2007) explain, the NSE compares the performance of the model with 

that of the simplest imaginable model (one that’s prediction is the mean 

of the observed variables, as does RAE). This means that, depending 

on the nature of the river’s flow regime, the meaning of the value of 

NSE can differ widely; since for strongly seasonal time series’, the NSE 

may be misleadingly high, whereas for catchments with a more 

constant mean, the model would need to explain the small fluctuations 

accurately to gain a high NSE value. Thus, Schaefli and Gupta (2007) 

suggest that a benchmark model is required in order to compare model 

performance across varying hydrologic regimes. 

The Index of Agreement (IoAd) was proposed by Willmott (1981) and is  

one minus the ratio of the sum of squared error to potential error 

(potential error being the sum of the largest quantification that can be 

obtained for each individual forecast with respect to the mean of the 

observed dataset) (Dawson et al., 2007). IoAd is an improvement over 

the Coefficient of Determination (R2), as it is sensitive to differences in 

the predicted to observed variances (Dawson et al., 2007). However, 

since the metric uses squares, again it is also sensitive to peak values 

over low values. Again, IoAd can give relatively high values for poor 

models, and the best models’ IoAd scores are not significantly higher. 

The Persistence Index is one minus the ratio of the sum of the squared 

error to what the sum of squared error would have been if the forecast 

were the last observed value. This metric suffers similar interpretation 

issues as NSE, and should be compared to  the performance of a 

benchmark model (Dawson et al., 2007). 

4.2.4 Evaluation Metrics for Mac-PDM.14 

Legates and McCabe (1999) established that correlation-based 

measures, such as the Coefficient of Determination, and the Nash 

Sutcliffe Efficiency metrics are not appropriate for the evaluation of 

model performance, due to the ability of poor models to have high 

correlation values, as well as the inherent difficulty of interpreting such 
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metrics. Therefore, absolute and relative residual error metrics were 

considered for this study. Squared error metrics were disregarded due 

to their bias towards peak flow simulation, which would focus model 

performance on the catchments with the highest flows, whilst 

disregarding the performance of the model in drier catchments. Mean 

Absolute Error is widely praised in the hydrological literature (e.g. 

Willmott and Matsuura, 2005, Legates and McCabe, 1999), however, 

due to the broad range in runoff values across the chosen catchments 

for this study, Mean Absolute Relative Error was used to evaluate Mac-

PDM.14 to allow the errors from each catchment to be fairly included in 

the overall performance score. 

4.3 Results 

The results of the 100,000 model simulations were assessed against 

the observed records obtained from the GRDC, BWDB and USGS (see 

Chapter 2.5) using the Mean Absolute Relative Error (MARE) 

evaluation metric for each catchment as follows: 

  (E 4.1) 

Where Q̂tot is the modelled average annual runoff for each catchment, 

Qtot is the observed annual average runoff for each catchment, Q̂mi is 

the modelled average monthly rainfall and Qmi is the observed average 

monthly runoff for each catchment (i = Jan-Dec). The MARE statistics 

were then averaged across catchments to give a ‘global’ average for 

the 21 catchments.  

4.3.1 Evaluation Metric Scores 

The MARE values ranged from 0.9 to 7.9, which seemed surprisingly 

high (an error of 90% for the best model). Upon investigation of the 

catchment MARE statistics, it was found that Mac-PDM.14 model 

performance was especially poor in the Murray Darling and the Nile 
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catchments, with the lowest MARE values for these individual 

catchments being 2.5 and 3.7 respectively (compared to an average 

value of 0.2, std=0.16, for the remaining 19 catchments). The maximum 

MARE values for the Murray Darling and Nile catchments were 99.7 

and 22.7 respectively (compared to an average value of 3.4, std=2.9, 

for the remaining catchments). These results suggest that the model is 

not good at simulating these catchments.  

Figure 4.1 shows the top ranking MARE model (i.e. lowest MARE), 

when the MARE was averaged across all 21 catchments, and the 

MARE when averaged across 19 catchments excluding the Murray 

Darling and the Nile, as compared to the observed record. The 

observed records for Murray Darling and Nile rivers show very low flow 

year round, which is likely the result of extensive anthropogenic 

influences on the flow regime in the form of large dams and reservoirs, 

and abstractions for irrigation. The discharge station for the River Nile 

that was used for the observed record is positioned at the outflow of the 

Aswan Dam, which impounds Lake Nasser, with a total holding capacity 

of 5.97 billion cubic meters of water. At Aswan, the Nile has the lowest 

specific discharge of any river with a catchment greater than 1 million 

km2, at 0.98 litres s-1 km-2 (Woodward et al., 2007). Of the estimated 

mean flow of 84 km3, 18.5km3 is allocated for abstraction by Sudan in 

the Nile Waters Treaty of 1959, 55.5 km3 allocated to Egypt, and the 

remainder is subject to extensive losses through seepage and 

evaporation (Woodward et al., 2007, Chauhan et al., 2014b, Sene et al., 

2001).   

The Murray Darling is the fourth longest river system in the world, after 

the Amazon, Mississippi-Missouri and the Nile (Thoms et al., 2007). It is 

also one of the world’s driest catchments, and recently experienced the 

“millennium drought” that lasted from 1995 to late 2009. Less than 

10mm of rain has been recorded in a 12 month consecutive period in 

the Darling catchment five times (Thoms et al., 2007). In addition, only 
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about 5% of rainfall reaches the river system, and 44% of runoff is 

dedicated to irrigation (Ryan, 2009). Furthermore, nearly all of the river 

system is significantly degraded from its original state, with 10% of the 

rivers total length being classified as substantially modified, and 84.5% 

being moderately modified (Thoms et al., 2007). Due to the lack of 

routing in the model, the significantly high level of transmission losses 

that would be experienced in such a large dry catchment would not be 

accurately represented. This, coupled with the substantial human 

influence in this catchment, are the main factors in the poor 

performance of Mac-PDM.14 in the Murray Darling catchment. 

Each of the study catchments is subjected to some degree of 

anthropogenic disturbance, and the implications of Mac-PDM simulating 

‘naturalised flows’ is considered in more detail in the following section. 

However, due to the severity of the disturbances in these two 

catchments, and the resultant unfluctuating low flow of the observed 

records, the Murray Darling and the Nile catchments were excluded 

from further analyses of the performance of the model. Without the 

Murray Darling and the Nile, the values of MARE ranged from 0.47 to 

2.58 across the 100,000 model realisations. 

Figure 4.1 shows that for most of the river catchments, the removal of 

the Murray Darling and the Nile from the MARE score leads to a better 

performing top ranking model when compared with the observed 

records. For the Amazon and the Amu Darya however, the 21 

catchment average top ranking model gives a better fit with the 

observed record. This is because the MARE was averaged across all 

catchments, so the significant improvement across the majority of 

catchments outweighs the worsening in others. From Figure 4.1, it can 

be seen that the model performs well in catchments with a strong 

seasonal flow regime, such as the Brahmaputra, Ganges, Mekong and 

Mississippi. 
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The high latitude catchments of the Lena, Yenisey, and Yukon are not 

so well simulated, as the model underestimates the peak flows 

significantly; this is likely due to the lack of a glacier component in Mac-

PDM, as well as the fact that the model does not consider the seasonal 

freezing and melting of permafrost. 

A comparison of the top ranking model for the 19 catchments with the 

previous version of Mac-PDM (Mac-PDM.09), before the soil and 

vegetation classifications were updated, is shown in Figure 4.2. Mac-

PDM.09 scored a MARE of 1.05 excluding the Murray Darling and the 

Nile catchments. Of the 100,000 model realisations 34,406 of the Mac-

PDM.14 models scored a MARE lower than that of Mac-PDM.09, 

meaning that the updating of the maps and calibration of the model can 

easily improve the model performance. However, by studying the 

graphs in Figure 4.2, it is apparent that the top performing 

parameterisation of Mac-PDM.14 provides a betterment over Mac-

PDM.09 in most, but not all of the catchments. For example in the 

Yenisey and Yukon, the underestimation of the peak flow is 

exaggerated. The top ranking MARE Mac-PDM.14 model performs 

significantly better than MacPDM.09 in the Euphrates catchment, the 

Okavango, and the Congo. Improvement is also evident in the Yellow, 

Mekong, Niger, Ganges, and in the Amu Darya, where the peak timing 

is still early, but the magnitude is a better fit with the observed.  

Considering just the ‘top ranking’ model however does not provide an 

appropriate evaluation of the model performance; the main reason 

being the issue of equifinality, which is described in Chapter 3.4. It is 

also worth noting here that this model calibration only considers 19 of 

the world’s catchments, and that this model parameterisation may not 

be optimum for other catchments that have not been evaluated in this 

study. 
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Therefore, groupings of model parameterisations may allow for a more 

realistic assessment of model output, taking equifinality into account, or 

the models may also be weighted according to their goodness-of-fit. 

4.3.2 Using Evaluation Metrics and Likelihood Measures 

The MARE evaluation metric (or objective function) was used to create 

a likelihood measure, which would enable the models to be weighted 

according to their goodness-of-fit and used to determine an ensemble 

weighted average. All models with a MARE value of less than 1 were 

considered to be ‘behavioural’. This meant that all models that had an 

average error across the 19 catchments of less than 100% were 

included in the weighting. This left 25,532 model realisations, which was 

26% of the ensemble. The likelihood measure was calculated by taking 

the reciprocal of the MARE value, and then dividing by the sum of the 

reciprocals for the 25,532 models, which made the likelihood measure 

values sum to 1. The simulated model values for January to December 

were then multiplied by the likelihood measure, and summed to give an 

ensemble weighted average. 

This ensemble average is shown in the cyan dashed line in the graphs 

in Figure 4.3, compared with the observed records shown in red. These 

graphs also show the ranges of outputs from all of the model 

realisations that scored a MARE value of less than 1, 0.75 and 0.5. As 

previously mentioned, 25,532 models scored less than 1, 1,238 scored 

less than 0.75 and only 2 models scored less than 0.5. As with the top 

ranking models, these graphs confirm that the Mac-PDM.14 model 

performs best for highly seasonal catchments, with good fits in the 

Brahmaputra, the Ganges, Mekong, Mississippi and Yangtze. The high 

latitude catchments show a significant underestimation of the peak flow, 

even with a fairly relaxed model acceptance of a MARE less than or 

equal to 1. For the majority of catchments, this acceptance limit 

encompasses the observed record. 
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The June peak flows of the Lena and Yenisey catchments are 

underestimated, as is the magnitude of the receding annual limb of the 

Yukon catchment in September-October. The low flows of the 

Okavango January-March, the La Plata in January and the Niger in 

June-September are overestimated by the model. This again may be 

due to abstractions, which is discussed further in the following section. 

The peak flows of the Amazon River and the Amu Darya are simulated 

several months too early, the Ob also shows an early peak by two or 

three months, and the high latitude catchments, the Lena, Yenisey, and 

Yukon, peak one month too soon. The premature simulation of peak 

flows is likely due to the fact that the model does not route the runoff, 

which in very large catchments can cause a significant delay in runoff 

production from precipitation. Delayed peaks are likely due to the lack 

of a snowmelt module in the model, so water that should be held in 

frozen stores is counted as runoff for earlier months. It is noticeable that 

the weighted average line deviates from the range of MARE<0.5, and 

provides a higher estimate of runoff than the two models that scored 

<0.5 for all of the catchments.  

The use of likelihood measures is a very subjective approach and is 

one of the criticised aspects of the GLUE methodology (e.g. Mantovan 

and Todini, 2006). The influence of deciding which models are 

classified as “behavioural”, and which are rejected upon the model 

output is significant and the impacts of this on Mac-PDM.14 is 

demonstrated in Figure 4.4, which shows a weighted average when the 

limit of behavioural models was set to MARE values of between 0.5 and 

1 at increments of 0.1. These graphs show that a steady change in 

output can be seen as the number of models included as behavioural is 

reduced, however this change does not always trend towards the 

observed record.  The Amazon, Danube, Lena, Yangtze, Yellow, 

Yenisey and Yukon all give worse results with fewer models included. 
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In each catchment, the reduction of behavioural models leads to a 

reduction in simulated average runoff, which suggests that this analysis 

is favouring the accurate modelling of those catchments that are 

overestimated by Mac-PDM.09 over those catchments that are being 

underestimated.  

Since the model is ranked using MARE, averaged across all 

catchments, it is possible that in order to maximise the performance of 

Mac-PDM.14 in some difficult catchments, where the model does not 

perform well, the performance of Mac-PDM.14 in other catchments is 

being reduced. The possibility of using Mac-PDM.14 calibrated for 

individual catchments is the focus of the next chapter, Chapter 5. For 

this reason, it seems the presentation of results through ranges, or fans, 

such as in Figure 4.3, provides a more informative representation of 

model outputs than using a weighted average by means of a likelihood 

measure. This is because a full range of potential model outputs is 

presented. For example, the Yukon catchment shown with weighted 

averages in Figure 4.4 indicates that after May, Mac-PDM.14 is 

incapable of simulating the high flows of June-October, however from 

Figure 4.3 it can be seen that some of the models with a MARE of <1 

come quite close to the observed record. 

The graphs in Figure 4.3 might lead one to believe that the model is 

more uncertain with higher flows, as the ranges of the model outputs is 

widest during periods of peak flow. As MARE is a relative metric, this 

was investigated further by averaging the Absolute Relative Error per 

month for each catchment. The results of this investigation are shown in 

Figure 4.5, which reveal that the volume of runoff does not determine 

the amount of error in the model. For example, in the Brahmaputra 

catchment, which has its widest range of model outputs in July, the 

months with the largest Relative Error are actually December and 

January. The width of the model output ranges is reasonably wide in 
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these months in Figure 4.3, and the low runoff value means that this 

error is more significant per mm than the error in July.  

The graphs in Figure 4.5 give a good indicator as to how the model 

performs through both high and low flows. The Kolyma and Mississippi 

catchments are modelled with a consistent level of accuracy year round 

(with MARE of ~0.5 and 0.2 respectively). The Brahmaputra and 

Yangtze are best simulated during high flows, whilst the Amu Darya, 

Congo, Euphrates, Ganges, Niger, Okavango and Yellow Rivers are 

best simulated during low flows. The Lena and the Ob catchments are 

simulated consistently, except for the peaks in May and April 

respectively, which are dramatically underestimated.  

It is important to note here that MARE does not account for the sign of 

change, and that understanding of over and under-estimation must be 

interpreted from the visual inspection of additional graphs (in this case 

those in Figure 4.3). To this end, the values of the MARE score on the 

y-axis of the graphs in Figure 4.5 help explain why the weighted 

averages reduce the runoff values as the MARE behavioural limit is 

made stricter. With the exception of the peak in the Lena catchment 

MARE in May, the largest of the MARE scores are all associated with 

overestimations of the observed record. The highest is the Okavango in 

February, which has an average MARE score of 11.74 for all models 

with overall MARE <1. The Ob in April is an overestimation, with 

average MARE of 8.8 for overall MARE <1, and similarly, the high 

errors of the Amu Darya, Euphrates, Ganges, Niger and Yellow are all 

associated with overestimations of the observed record. Catchments 

that are underestimated, such as the Amazon, Danube, Kolyma, 

Yangtze, Yenisey and Yukon all show small MARE values that do not 

exceed 1 for any individual month. Overall, by comparing the months of 

high and low flows with the months of greatest error, it seems that Mac-

PDM.14 is a fairly balanced model, and shows no significant trend 

towards modelling either high or low flows with more accuracy. 
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4.4 Naturalised Flow Modelling 

As previously discussed, each of the catchments has to some extent 

been modified or is subject to abstractions. Modelling such influences 

on a catchment is incredibly difficult, primarily due to lack of data, 

though some hydrological models do take anthropogenic impacts into 

account; for example, WaterGAP 2 estimates domestic, industrial and 

agricultural water use, but the results are highly uncertain (Alcamo et 

al., 2003). GWAVA also considers water use and availability but is used 

for continental and global scale investigations of water resources 

scarcity (e.g. Dumont et al., 2010). There have been several research 

efforts attempting to quantify the volumes of abstractions on a global 

scale (e.g. Shiklomanov and Rodda, 2003, Alcamo et al., 2007, Shen et 

al., 2008) alongside databases such as the commonly used 

AQUASTAT which provides country based water withdrawal data (FAO, 

2014a). 

Shen et al. (2008) used the AQUASTAT database, alongside an 

irrigation map and an urban/rural population data set, to develop a 

geographic distribution of current (2008) water withdrawals for each 

sector, domestic, industrial and agricultural. They estimated a global 

total withdrawal for all sectors of 3824.3 km3 year -1. A map of the 

spatial distribution of these withdrawals is given in Figure 4.6. This map 

shows that areas with the greatest water withdrawals are India, China 

and Japan with values up to 7km3 year-1 per grid square (0.5 x 0.5 deg). 

Europe and the USA also show substantial abstractions. This would 

suggest that of the chosen study catchments, the Brahmaputra, 

Ganges, Yangtze and Yellow Rivers would show the greatest 

discrepancies through the modelling of naturalised flows, however the 

Brahmaputra and the Ganges rivers are two of the best simulated 

catchments by the Mac-PDM.14 model. 
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Figure 4.6 Distribution of total water withdrawal (domestic, agricultural and 

industrial) estimated for the year 2008. Data kindly provided by Prof. Yanjun 
Shen, Chinese Academy of Sciences. 

The Nile and the Murray Darling catchments however, show very poor 

simulations, which were suspected to be the result of abstractions, have 

very low abstraction levels according to Shen et al. (2008). 

Rather than attempting to correct the discharge records to account for 

the removal of water by abstractions, the University of New Hampshire 

(UNH) with the Global Rivers Data Centre (GRDC) have instead 

produced composite runoff fields that combine their datasets of 

observed discharge records with simulations from the Water Balance 

Model (WBM) (Fekete et al., 1999, Fekete and Vorosmarty, 2011). 

Whilst this data does not explicitly represent ‘naturalised flows’, as it is 

constrained by observed discharge data, the data does represent 

corrected, spatially distributed runoff for comparison with modelled 

runoff. Davie et al. (2013) carried out a simple validation of the Global 

Hydrology Models that took part in the ISI-MIP project (Inter-Sectoral 

Impacts Model Intercomparison Project) using the UNH/GRDC 

composite data set. They found that the models tended to predict higher 

runoff than the GRDC data set. 
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The composite data set was used to derive monthly average runoff for 

each catchment to allow for a comparison with the observed record, 

and with the Mac-PDM.14 adjusted parameter ensemble outputs. The 

results of this analysis are shown in Figure 4.7. The Niger and the 

Yellow rivers were excluded from the ranking of GLUE realisations 

when compared to the composite data, as the composite data showed 

such negligible flow in these catchments that the MARE values were 

unreasonable (ranging from 58.9-636.9 with all 21 catchments, but from 

2.25-12.71 excluding the Niger and the Yellow). The top ranking model 

when compared to the composite data scored a MARE of 2.25, which is 

not much lower than the MARE of the worst model, when compared 

with the observed record (the best being 0.4733).  

A noticeable difference in runoff can be seen between the composite 

data and the observed record in all catchments. In the aforementioned 

Brahmaputra, Ganges, and Yangtze Rivers, where abstractions are 

estimated to be significant (Oki et al., 2001, e.g. Mekonnen and 

Hoekstra, 2011), the composite data actually shows a significant 

reduction in runoff compared with the observed record, which is 

unexpected. The Nile and the Murray Darling catchments however, for 

which Mac-PDM.14 gave unreasonable results when compared to 

observed, showed higher flows with the same temporal fluctuations that 

can be seen the Mac-PDM.14 simulations. The composite runoff for the 

Euphrates is much higher than the observed record, and indeed higher 

than the top performing Mac-PDM.14 simulations. The La Plata 

catchment also shows significantly higher runoff for the composite data 

in the months December-March. In most other catchments, the 

composite data is not dramatically different from the observed or the 

Mac-PDM.14 simulations.  It is interesting that the mistiming of the peak 

flow in the Amazon catchment is still an issue with the composite data, 

whilst in the Amu Darya the peak of the composite data is predicted to 

be 4 months prior to that of the observed record.
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Fekete and Vorosmarty (2011) explicitly state that the use of the 

composite data for validation is not recommended due to the fact that it 

is a combination of observed and modelled discharge. Therefore, whilst 

this analysis is relevant, the composite data will not be taken forward for 

use in further analyses of Mac-PDM.14. 

Naturalised flow modelling is common in hydrological research, and so 

comparisons of model output with observed records will not often 

provide strong agreement. Accurate datasets of abstractions and 

alterations to the timing of peak flows on a global scale, which are not 

yet available, are required for meaningful comparisons of observed 

discharge with model outputs.  

4.5 Parameter Uncertainty vs Model Uncertainty 

Previous research has investigated the structural uncertainty derived 

from different GHMs (e.g. Warszawski et al., 2014, Schewe et al., 

2014), however the parameter uncertainties within these models has 

not yet been well assessed. It was therefore considered appropriate to 

determine whether the magnitude of uncertainties from different 

sources are comparable. 

The EU-WATCH project ran a Multi-Model Ensemble (MME) of 11 

global models: 6 Land Surface Models and 5 Global Hydrology Models. 

The output data for 10 of these models (GWAVA, H08, Htessel, Jules, 

LPJml, MATSIRO, MPI-HM, Mac-PDM.09, Orchidee, and WaterGAP) is 

available on the FTP website hosted by the Centre for Ecology and 

Hydrology. Data from H08 was incomplete. The remaining model data 

was downloaded and analysed for comparison with the Mac-PDM.14 

parameter ensemble. Each model that participated in EU-WATCH was 

run with the WATCH Forcing Data, which enabled a fair comparison 

with the Mac-PDM.14 parameter ensemble which was run using the 

same input data. The EU-WATCH project ran all of the models under 

naturalised flow options. Even those that had the option to estimate 
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anthropogenic influences on runoff had those modules switched off to 

make for a fair comparison.  

The results of the WATCH MME, along with the Mac-PDM.14 

parameter ensemble, are shown in Figure 4.8. At first glance it is 

apparent that the models all show very similar results. The Murray 

Darling and the Nile catchments were included in Figure 4.8, as they 

show that despite a poor performance when compared to the observed 

record, the range of different models all show similar outputs. This 

indicates that either the observed records are unreliable for these 

catchments, or that all of the hydrology models exhibit similar flaws in 

their attempts to simulate the Murray Darling and the Nile catchments. 

Again it is the catchments with very strong seasonal cycles in the 

hydrological regime that are modelled with more confidence. For 

example, the models are all very close together for the monsoon-

impacted catchments of the Brahmaputra, the Ganges, the Mekong, the 

Niger and the Yangtze. The models show more variation in the rivers 

with more even flow distributions throughout the year: the Congo, the 

Danube, and the Murray Darling.  

In terms of comparison with parameter uncertainty, the range between 

models is rarely larger than the range between parameter realisations 

with a MARE <1, and the majority actually lie within boundaries of the 

models that had an overall MARE of <0.75. The Orchidee model tended 

to have the highest runoff simulations, with the biggest discrepancies 

between Orchidee and the other models being apparent in the Danube, 

Mississippi, and Yellow rivers. LPJml also shows high runoff particularly 

in the Kolyma, Ob, Okavango and Yukon catchments. MPI-HM seems 

to simulate very high peak flows, with notable peaks exhibited in the 

Danube, Lena, Mississippi and Yenisey catchments. None of the 

models appear to simulate particularly low runoff values, although 

despite the high peaks in some catchments, MPI-HM shows the lowest 

runoff in the Brahmaputra, Ganges, Nile and Yangtze. 
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The previous version of the Mac-PDM model (Mac-PDM.09, shown in 

black), seems to fit fairly centrally among the other models.  

These results indicate that, depending on the limit of acceptability 

determined by the modeller (the number of models accepted as 

behavioural), the range of uncertainty that is derived from parameter 

uncertainty, is quite similar to the range of uncertainty derived from the 

type of model employed. This means that the full range of uncertainty 

from both parameter and structural uncertainty would be rather larger 

than the ranges shown in Figure 4.8, as the parameter uncertainty of 

Orchidee will push the upper uncertainty bounds towards higher 

predictions, and those models that simulate runoff to be lower than 

Mac-PDM will push the lower boundaries wider if they were assessed 

for their parameter uncertainty. 

The bar chart in Figure 4.9 shows a comparison of the performances of 

each model in the MME using the MARE metric that was employed in 

the Mac-PDM.14 parameter ensemble analysis. This chart shows that 

on average, the models have a similar uncertainty level to the Mac-

PDM.14 ensemble results. The top performing Mac-PDM.14 model from 

the ensemble is shown on the far left, with a MARE for the 12 months of 

0.47. The ensemble average for all models that performed better than 

an overall MARE of 0.75 gave a MARE of 0.67.  

Of the MME models, MATSIRO performed the best when assessed 

against the 19 catchments, with a MARE of 0.5, and LPJml performed 

least well with a MARE of 1.6. None of the models performed better 

than the top ranking GLUE realisation of Mac-PDM.14. Htessel, Jules, 

and MATSIRO were the only models to perform better than the Mac-

PDM.14 ensemble average. These models, as well as MPI-HM and 

WaterGAP, performed better than the version of Mac-PDM used by the 

WATCH project (labelled Mac-PDM in the graph). 
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Figure 4.9 Bar chart showing the MARE for each EU-WATCH MME model 

when compared to observed records  (MARE calculated for Jan-Dec for 19 
catchments). Far left bars are the top ranking Mac-PDM.14 GLUE model and 
the weighted average for all parameter ensemble models with MARE <0.75. 

4.6 Assessment Feasibility 

This analysis of the parameter uncertainty of a Global Hydrology Model 

has been undertaken to determine whether this approach could be 

included in the calibration process in the development of GHMs. The 

choice of the number of model realisations to run is another of the 

subjective steps of an uncertainty analysis, on top of the choice of 

evaluation metric, sampling strategy and limit of acceptability, and 

depends on the computational resources available to the modeller as 

well as the number of parameters being assessed. This study 

investigated 123 model parameters, and ran an ensemble of 100,000 

parameter realisations. Using the University of Nottingham High 

Performance Computer Cluster (HPC) this took approximately 40 days, 

and output just over 2 terabytes of data. Whilst the model does not 

require significant amounts of RAM to run (less than 2.5GB), the HPC 

offered the ability to run several hundred model realisations at once, 

and to queue the jobs, which allowed efficient transitions when model 

runs had completed. The analysis of the data took additional time and 

hard disk space. Without access to such computational power, 
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assessing the parameter uncertainty of a model could take considerably 

longer; therefore, several smaller parameter ensembles were run in 

order to investigate the impact of ensemble size on the performance 

assessment of the model. Ensembles of 10,000, 5,000 and 1,000 model 

realisations were run, using the same parameter distributions and 

sampling technique as the 100,000 ensemble of model realisations. The 

mean absolute relative error (MARE) metric was used, as before, 

excluding the Murray Darling and Nile catchments.  

The distributions of the MARE scores for each parameter ensemble are 

shown in Figure 4.10. These histograms show that the MARE scores 

are similarly distributed across the different ensemble sizes, ranging 

from ~0.5 to ~2.4, with peaks between 1 and 1.1. This demonstrates 

that reducing the ensemble size does not mean that the modeller is less 

likely to obtain a “good” model. However, the smaller the sample size, 

the fewer “good” models there are to choose from, as is demonstrated 

in Table 4.2. The statistics in the table show that only the 100,000 

model ensemble achieved a MARE of <0.5. Therefore, in order to 

account for the issue of equifinality, the modeller might decide to relax 

the limit of acceptability for smaller sample sizes, rather than just accept 

the one or two models that meet a stricter criterion. 

The best model for each ensemble had MARE values of 0.59, 0.55, 

0.56 and 0.47 for the 1, 5, 10 and 100 thousand model ensembles 

respectively. This shows that increasing the number of realisations does 

reduce the MARE of the best model slightly. The top ranking model 

from each ensemble is shown in Figure 4.11. The graphs in Figure 4.11 

show that the best models for each realisation ensemble give very 

similar results, and that the model outputs do not progress towards the 

observed record with more model realisations. For example, in the 

Danube catchment, the 100,000 realisation ensemble performs much 

better than the 10,000 realisation ensemble, but the 1,000 and 5,000 

realisation ensembles are better than the 100,000.  
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Figure 4.10 Histograms of MARE scores for the 100, 10, 5 and 1 thousand 
realisation runs. 

 

Table 4.2 Number of model realisations that achieved MARE scores of 0.5 to 
1 for each of the 4 ensemble sizes 

Number of 

Realisations 

in Ensemble 

Number (and percentage of ensemble size) of Model 

Realisations with a MARE less than or equal to: 

0.5 0.6 0.7 0.8 0.9 1 

100,000 2  

(0.002) 

40  

(0.4) 

1238 

(1.238) 

3092 

(3.092) 

10656 

(10.656) 

25532 

(25.532) 

10,000 0  

(0) 

5 

(0.05) 

44 

(0.44) 

282 

(2.82) 

1102 

(11.02) 

2533 

(25.33) 

5,000 0 

(0) 

2 

(0.04) 

20 

(0.4) 

163 

(3.26) 

583 

(11.66) 

1267 

(25.34) 

1,000 0 

(0) 

1 

(0.1) 

6 

(0.6) 

33 

(3.3) 

109 

(10.9) 

242 

(24.2) 

Similarly, in the Congo catchment, the 100,000 model realisation 

ensemble performs much better than the 5,000 and 10,000 model 

ensembles, but the 1,000 ensemble also performs well. The 100,000 

realisation ensemble only performs noticeably better than the other 

ensembles in the Euphrates, Mississippi, Niger, Ob and Okavango 

catchments. 
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These results are similar to those of the weighted average results, 

where we would expect to see a trend towards the observed record as 

we “improve” the model, but the results are instead rather erratic, and 

inconstant between catchments. This is likely due to the attempt to seek 

a “globally good” model, which is pushing to increase the runoff in 

catchments such as the Amazon, Lena, Yenisey, and Yukon, whilst 

simultaneously attempting to reduce the simulated runoff in the Ganges, 

Congo, Niger and Yellow Rivers. This raises the question “is it really 

possible, or indeed sensible, to simulate global runoff using one set of 

model parameters?”  This is addressed further in Chapter 6.  

The outputs of the ensemble size experiment were analysed further to 

assess the impact of ensemble size on the best model output and the 

range of outputs within an acceptability limit (MARE <0.75). Findings for 

6 of the 19 catchments are shown in Figure 4.12 which demonstrates 

that although the top performing models give very similar outputs (as 

highlighted in the graphs in Figure 4.11), the ranges of model outputs 

within a specified limit of acceptability vary significantly with ensemble 

size. With a MARE < 0.75, the model ensembles had 1238, 116, 58 and 

18 models accepted as behavioural for the 100, 10, 5 and 1 thousand 

realisation ensembles respectively. It is evident from the graphs in 

Figure 4.12 that the smaller the ensemble size, the smaller the range of 

model outputs with a MARE < 0.75. What this means is that if a 

modeller uses smaller ensembles, they may get a similarly good top 

ranking model to that achieved from a larger ensemble, but they would 

be underestimating the parameter uncertainty within the model 

significantly. 
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4.7 Summary 

This chapter has presented a Generalised Likelihood Uncertainty 

Estimation (GLUE) analysis of the Mac-PDM.14 model, which simulated 

and analysed 100,000 model parameter perturbations. It was 

determined that the Mac-PDM.14 model does not perform well for the 

Murray Darling and Nile catchments, and when these were excluded, 

leaving 19 study catchments, the model realisation with the best 

performance across these catchments had a Mean Absolute Relative 

Error (MARE) of 0.47 (an average error of 47%). A likelihood measure 

was used to calculate weighted averages for each catchment which 

used more information from the parameter ensemble than looking at 

just the top performing model. It was found that for most catchments, 

constraining the limit of acceptability (the number of models taken as 

‘behavioural’) provided a better fit with the observed values, but due to 

the attempt to match so many catchments with different hydrological 

regimes, with Mac-PDM.14 overestimating some and underestimating 

others, not all catchments gave better results. The MARE per month for 

each catchment was investigated, which revealed that Mac-PDM.14 

does not systematically favour the more accurate simulation of either 

high or low flows, but that highest error varied temporally between 

catchments.  

The Mac-PDM.14 outputs were compared to composite runoff data from 

the University of New Hampshire/Global Rivers Data Centre in an 

attempt to account for some of the impacts of abstractions and dams on 

the observed record. The results of this comparison showed that Mac-

PDM.14 was better at simulating the observed record than the 

composite data, with the best model compared to the composite data 

having an average MARE of 2.25. The composite data indicated that 

the Murray Darling and the Nile simulations are more reasonable than 

the observed record suggests, but that the Brahmaputra and Ganges, 

that showed excellent results when compared to the observed record, 
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significantly overestimated the composite data. Since the composite 

data is a combination of modelled runoff and observed discharge 

records, the data could not be used for model validation, due to 

circularity of argument.  

The parameter uncertainty of Mac-PDM.14 was then compared to 

model structural uncertainty, using data from the EU-WATCH MME. 

The outputs of 9 models were analysed, and plotted against the ranges 

of outputs from Mac-PDM.14 with different thresholds of MARE. The 

results of this indicated that the range of outputs from different models 

closely reflected a range of a parameter ensemble of MARE<0.75. Due 

to the subjectivity of deciding upon an evaluation metric, and 

determining a limit of acceptability in a parameter ensemble, it cannot 

be said whether parameter uncertainty is higher or lower than the 

uncertainty derived from employing different models; however the 

results are comparable, and the models mostly simulate similar 

seasonal runoff cycles. The MARE range across the MME models was 

0.5 to 1.61; the range or MARE values across the entire parameter 

ensemble was 0.47 to 2.58.  

Finally, since this uncertainty analysis involved an arduous 100,000 

model realisations, several smaller experiments were run in order to 

compare the results and determine whether uncertainty experiments 

need to be so rigorous, or whether smaller scale studies could provide 

adequate insight into the parameter uncertainty of a model. It was found 

that with ensemble sizes of 1, 5, 10 and 100 thousand realisations, the 

top performing models all gave good performance, with a slight 

reduction in MARE values as the ensemble size was increased (the 

ensembles gave MARE values of 0.59, 0.55, 0.56 and 0.47 

respectively). The distribution of errors across the ensembles was also 

very similar.  

The main issue with smaller ensembles was that, despite the top 

performing model giving a good MARE score, there were far fewer 
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models with good scores. For example in the 100,000 model ensemble, 

40 models scored a MARE <0.6, whilst of the 1,000 model ensemble 

only 1 model scored a MARE <0.6. This means that if the modeller 

wishes to choose a fairly strict limit of acceptability, the range of 

uncertainty in the model output may be misleadingly low. The 

misperception of uncertainty from small ensembles has also been 

demonstrated by using a set MARE threshold, whereby the range of 

model outputs is significantly larger for larger ensembles. This shows 

that a modeller should be as rigorous as their computational capacity 

and budget allows, and should consider the fact that the uncertainty 

ranges found from a parameter ensemble will likely only be a subset of 

the true uncertainty range.  

The next chapter will review the potential of using Mac-PDM.14 as a 

catchment model, and will investigate the parameter values that result 

in good model realisations. 



 

 
 

 

 

 

5 Chapter Five: 

Parameter Estimation and 

Global Models as Catchment 

Models 
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5.1 Introduction 

The Generalised Likelihood Uncertainty Estimation (GLUE) experiment 

presented in Chapter 4 indicated that the Mac-PDM.14 model is better 

at simulating some catchments than others, and that the drive to define 

a ‘globally good’ model led to conflicting results. The catchments that 

were overestimated by Mac-PDM.14 had higher errors than the 

catchments that were underestimated, and therefore, model realisations 

that sought the lowest overall error were biased towards accurate 

simulation of these catchments. This raised the question, “how well 

could the Mac-PDM.14 model perform when calibrated for individual 

catchments, and how much better could these outputs be, over those of 

a globally calibrated model output?” Therefore, this chapter seeks to 

determine whether it is indeed sensible to simulate global runoff using 

one set of model parameters across the entire global domain, or 

whether it may be more sensible to use global hydrology models as 

catchment models. The parameter values that produce both a ‘good’ 

global, and a ‘good’ catchment model are evaluated. 

5.2 Catchment Calibration of a Global Hydrology Model 

In order to rank the model realisations for a ‘globally good’ model, the 

Mean Absolute Relative Error (MARE) evaluation metric was used. The 

30 year average annual runoff, as well as the monthly runoff statistics 

for each catchment, were compared to the observed record, and then 

averaged across catchments to give a score across all catchments. 

Going back to the individual catchment MARE scores, before averaging 

them, facilitates an assessment of how well Mac-PDM.14 could perform 

if it were to be employed for a single catchment.  

Figure 5.1 shows the percentage of models within the 100,000 

realisation ensemble that scored a MARE below several intervals up to 

a value of 1 for each catchment. Here, the taller the bar and the more 

green/blue that is visible, the better the results. It is immediately 
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apparent that the Mac-PDM.14 model performs better in some 

catchments than others. For example, in the Amazon and the Yangtze, 

all of the 100,000 model realisations present a MARE <1. The 

Brahmaputra, Kolyma, Yenisey and Yukon also come very close to this, 

whereas the Okavango only has 13 model realisations <1, and the 

Niger only 561. Figure 5.1 also indicates consistency across the model 

realisations by the length of the colour bars; for example, the 

Brahmaputra River shows 89% of its models giving a MARE between 

0.4-0.5, and the Amazon has 62% of its models between 0.3 and 0.4. 

The Mississippi, Congo and Euphrates show a more even distribution of 

MARE values across the ensemble. This perhaps suggests that the 

model is less sensitive to parameter perturbations in the Brahmaputra, 

Amazon Yangtze and Yukon catchments. The Yangtze catchment gives 

the model best performance, with one model giving a MARE value of 

<0.05, and more than half the models scoring less than 0.3. However, 

from the graph it can be seen that the Danube and the Mississippi give 

the highest number of models with MARE <0.2. 

Figure 5.2 shows the ranges in model outputs across the top 20 models 

when globally-calibrated, compared to the ranges of the top 20 models 

when calibrated against each catchment individually, for the 19 

catchments. Table 5.1 shows the monthly and annual average MARE 

values for the best globally-calibrated and catchment-calibrated model 

realisations, and shows which performed better. These graphs show 

that catchment-calibrated models perform significantly better than the 

globally calibrated models, and that improvements are seen in all 

catchments. Table 5.2 shows that the annual average MARE for each 

catchment is improved when employing the catchment-calibrated model 

over the globally-calibrated model for all 19 catchments.
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The timing of the peak flows in the Amazon, Amu Darya and Ob 

catchments, which were simulated several months too early using the 

globally-calibrated models, are much improved. Figure 5.2 shows that 

the overestimation by the globally calibrated models of the peak flows in 

the Congo, Euphrates, La Plata, Okavango and Yellow, are all reduced 

in the catchment calibrated models, giving a much better fit with the 

observed record. Table 5.2 indicates that the Okavango catchment 

gives worse results from the catchment-calibrated model than the 

globally-calibrated model for the months May-September, however 

these are the lower flow months, and the significant improvement in the 

simulation of December-April outweighs the small decrease in 

performance over the summer months. The underestimations of the 

Amazon, Danube, Kolyma, Lena, Yangtze and Yukon are also 

improved, with the catchment simulations giving higher runoff outputs.  

Despite the improvement in timing of the peak flow in the Amu Darya 

catchment, the magnitude of the peak flow is better simulated by the 

globally-calibrated model. The Brahmaputra, which was already well 

simulated, shows little change between the catchment-calibrated and 

the globally-calibrated models, and the Ganges, Niger and Yenisey 

show only a little improvement using catchment-calibrations. The 

Mekong, Mississippi and Yellow were fairly well simulated by the global 

top performing model, but the range of outputs (and hence the 

uncertainty) is reduced significantly when catchment specific model 

realisations are applied. Table 5.2 shows that the Danube, Mekong, 

Mississippi and Yangtze catchments had improvements in MARE when 

using the catchment-calibrations over all months of the year. The 

Euphrates, Kolyma, Lena, Yellow and Yukon show improvement in all 

but one month.  

In most catchments, the observed record is within the range of the top 

20 catchment calibrated models for the majority of the year. In the Amu 

Darya, Congo, Lena, Ob, and Yangtze, the observed record did not fit 
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within the 20 top global models, but does within the catchment models. 

In the Amazon, Danube, Euphrates, Ganges, La Plata, Niger, 

Okavango, Yenisey and Yukon however, there remain months that are 

not well simulated by even the catchment-calibrated models. However, 

the observational record is an average of the 30 year period of 1971-

2000, within which the runoff may have varied significantly, so some 

consideration of the natural variability of the catchment runoff should be 

taken. 

5.2.1 Natural Variability 

Figure 5.3 shows a similar evaluation of the model’s overall ‘goodness’ 

in each catchment, but investigates the range of readings within the 

observed record. Since the comparison of the models with observed 

records has so far been focused upon matching the 30 year average, 

this has not taken account of how variable the runoff in the catchments 

may be.  

One model that seems distant from the average may still be well within 

the range of ‘natural variability’ (the minimum and maximum observed 

values within the 30 year record), whilst another that seems to better fit 

the observed average may not be within the full range of the observed 

record if the river flow is very consistent year on year. 

Figure 5.3 shows the number of model realisations within the ensemble 

of 100,000 models that achieve 0-12 months within the observed 

minimum and maximum runoff values. The Danube, Kolyma, 

Mississippi and Yangtze perform the best, with 51,094 of the model 

realisations lying within the range of natural variability for the Danube 

catchment for all 12 months of the year. For the Mississippi, 27,143 

models fit all 12 months, and the Kolyma 20,342. The Congo exhibits 

the largest number of models that do not fit any of the months, at 

51,406; however more of the models manage to fit a lower number of 

months than the Yukon, where 98,824 of the models could not fit more 
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than 2 months of the year within the range of the observed values. 

Again the Brahmaputra stands out as being a consistently well 

simulated catchment across the ensemble, with 72,449 of the 

realisations achieving 6 months within the observational range. Figure 

5.3 shows which catchments give the best results when natural 

variability is taken into account, however the actual range of natural 

variability is not presented, so it may be that some catchments have 

wider bands of variability, and hence are easier to model. The true 

ranges of natural variability are shown in the hydrographs of Figure 5.4, 

alongside the ranges of the top 20 catchment-calibrated and globally-

calibrated model realisations. 

These graphs show that all catchments have significant ranges 

between the minimum and maximum observed values, and that in 

general, the largest ranges are seen during months of highest runoff. In 

addition, the maximum observed values are often further away from the 

30 year mean than the minimum observed values. The Murray Darling 

and the Nile catchments were included in this set of graphs, as the very 

large range in the observational values for the Murray Darling show that 

the outputs of the Mac-PDM.14 model, when calibrated towards that 

specific catchment, are not as bad as the global top performing model 

presented in Chapter 4 (see Fig 4.1). In fact, the top 20 catchment 

models for the Murray Darling River lie well within the maximum 

observed values of the catchment record. The River Nile however, has 

an incredibly low range across the minimum and maximum values of 

observations and so the model still performs very poorly in this 

catchment. 

From these graphs it can be seen that where the range of the top 20 

catchment models did not fit the mean observed record in the 

Euphrates, Ganges, La Plata, and Yukon catchments, the model 

outputs are within the range of individual observations. 
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The only remaining simulations that lie outside of the range of the 

minimum and maximum observations are the Niger in August and 

September, the Okavango in February and March, and the Yenisey 

peak runoff in June. The eastern Arctic catchments, the Kolyma, Lena 

and Yenisey all show very similar observational records, with a large 

peak in the runoff in June, and particularly high observational ranges for 

that month. The range in observational values varies, and Figure 5.5 

shows the mean of the minimum-maximum ranges relative to the mean 

value of each month for each catchment. This graph shows that the 

Murray Darling catchment has by far the largest observational range, of 

513%, and that the Nile has the lowest at 23%. The Euphrates, Kolyma, 

Ganges, Niger and Mississippi have ranges greater than 150% whilst 

the Amazon, Brahmaputra, Congo, La Plata, Mekong, Yangtze and 

Yukon all have ranges less than 100%. The Brahmaputra, which is the 

best simulated catchment, has a relatively small observational range of 

81%.  

It is apparent from these results that the model performs significantly 

better when calibrated to individual catchments than when calibrated as 

a global model, particularly when natural variability is taken into 

account, so the next questions are “why?”, “what is it about the 

parameter values for these realisations that make them better in each 

catchment?” and “can any similarities be found among the catchments 

with similar hydrological regimes?” In order to investigate this, the 

parameter values of the “good” models for each catchment needed to 

be examined, and compared to those of the globally “good” models. 

Firstly however, the globally “good” model parameters are compared to 

the parameter values of the original model calibration.  
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Figure 5.5 Mean relative range of observations for each catchment 

5.3 Parameter Estimation of a Global Mac-PDM.14 

The top 20 globally-calibrated model realisations were extracted, and 

the ranges of values for each parameter across the 20 realisations were 

calculated. This was then standardised against the minimum and 

maximum values of each parameter for the entire ensemble (100,000 

models) to facilitate comparison between parameters (see Figure 5.6). 

Figure 5.6 shows some interesting results as many of the bars do not 

encompass the original calibration value, and very few are centred on 

the original calibration value. The width of the bars, to some extent, 

indicate a confidence in the parameter value, as bars with a narrow 

range suggest that the parameter must be within the tightly constrained 

range to produce a good model. However, those with wide ranges show 

that the value of the parameter is uncertain, and may be insensitive or 

may depend on other parameter values. This behaviour is a sign of 

equifinality in the model. The b parameter for example shows a certain 

deviation away from the original model calibration, as the top 20 models 

are associated with a tightly constrained range much less than the 

original calibration. 
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The fcpc and satpc parameters show ranges that cover the original 

model calibration well, except for fcpc_C (clay) which indicates an 

original model calibration that was too high. The rootg parameters were 

sampled to values much higher than the original model calibration, and 

most vegetation types covered a large proportion of the range sampled, 

however the deciduous needle-leaf (DN) and deciduous broadleaf (DB) 

parameters were more closely constrained to the lower end of the 

sampled space. The grassland (GR), sparse vegetation (SpV) and 

broadleaf forest regularly flooded (BFl) ranges all lie beyond that of the 

original model calibration values.  

The rsc parameter ranges lie mostly above the original model 

calibration for all vegetation types, except grassland, which is well 

constrained. The capg parameter ranges also lie above the original 

calibration values. There is a notable stepped progression towards 

higher parameter values across the forest parameter values (evergreen 

needle-leaf, evergreen broadleaf, deciduous needle-leaf and deciduous 

broadleaf), which suggests that deciduous canopies intercept more 

precipitation in the top performing models than in the original 

calibration, and more than the evergreen canopies. The rlai and hc 

parameters have relatively narrow ranges for the majority of the 

vegetation types, when compared to other parameters. The original 

model calibration values of rlai fit well with the ranges produced by the 

parameter ensemble, and a stepped progression towards higher 

parameter values can be seen again for the forested vegetation types. 

The original model calibration values for the hc parameters also mostly 

lie within the ranges of the parameter ensemble, except for Evergreen 

Broadleaf (EB) and Cropland (Cr) which were previously overestimated, 

and Bare (B) and Artificial Areas (AA) which were underestimated. The 

percov parameter values for the top 20 global models all show wide 

ranges, which suggests that this remains an uncertain parameter. 
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5.4 Catchment Specific Parameter Estimation  

The top catchment-calibrated 20 model realisations for each catchment 

(which were used to produce the graphs in Figure 5.4) were analysed to 

find the ranges of parameter values for each catchment, which were 

then plotted in floating bar graphs. All 21 catchments were included in 

this study, as the parameter values of the best models of the poorly 

performing Murray Darling and Nile catchments may provide some 

information as to the reasoning behind the model performance. This 

resulted in 122 graphs, so only a selection that showed the most 

interesting results are presented in Figure 5.7. For example, those that 

showed significant deviation from the original model calibration value, or 

those that showed distinct variation between catchments. In these 

graphs, deviation from the dashed line shows that the ensemble 

produced parameter values for ‘good’ models that were distinctly 

different from the original model calibration value. The crosses show the 

mean of the parameter values for the top 20 models, so obvious 

variation in the crosses between catchments may suggest that different 

catchments require different values to produce a good model.  

5.4.1 Control File Parameters 

The highest variations between catchments is in the control file 

parameters: b (soil moisture capacity variability), delta (an interception 

parameter), grout (groundwater routing parameter), srout (surface water 

routing parameter), and xmelt (snow melt rate). For the majority of 

catchments, the b parameter value for the top 20 models was lower 

than that of the original model calibration, and this is to be expected 

from the strong response that could be seen in the global average 

model parameters shown in Figure 5.6. However, for the Euphrates, 

Kolyma, Yenisey and Yukon the mean value of b was higher than the 

original model calibration value. The bars for these catchments are 

particularly wide, which suggests that although the average is higher, 

there is a large amount of uncertainty in the b parameter values. The 
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Danube, Murray Darling, Niger, Nile and Okavango show particularly 

low values of b and have tightly constrained ranges. The delta 

parameter graph shows that most of the catchments closely agree with 

the original model calibration value, however, the most northerly 

catchments, the Kolyma, Lena, and Yukon display a trend to lower 

values of delta. The Ob and the Yenisey catchments are also northerly, 

and show a lower delta value than other catchments, but it is a less 

significant trend. 

The grout parameter shows significant variation between catchments 

and the ranges of values among the top 20 model realisations is 

inconsistent. It is also noticeable that the original calibration value is 

very low (value of 1), and the parameter space sampled includes a 

maximum of 210. The Kolyma and the Lena show very low values of 

grout, and have narrow ranges. The Danube and Ob also show low 

grout values, but with less certainty. The Ganges, Mekong, Okavango 

and Yangtze show very uncertain parameter ranges, which span the 

entirety of the sampled space. The srout parameter graph is highly 

variable across catchments, with the Amazon and the Ganges showing 

the lowest values with narrow ranges. The Danube shows a high value 

of srout. The lack of overlap between the Danube and the Ganges and 

Amazon catchment values suggests that this is a parameter that should 

be considered for catchment specific calibration, as a globally defined 

value may not be sufficient.  

The xmelt parameter graph shows a strong response from the Kolyma 

and the Lena catchments, as well as the Ob. The remaining catchments 

lie with mean values just below the original model calibration value, 

except the Mississippi whose mean lies just above the original value. 

This suggests that snow melt rate is slower in the more northerly 

catchments, which is to be expected, and so demonstrates that this 

parameter has appropriate physical meaning within the model. Results 

among the remaining soil and vegetation parameters were less 
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conclusive, but some deviations in parameter values in certain 

catchments could be seen for some soil and land cover types.  

5.4.2 Soil Parameters 

The fcpc (field capacity) parameter values for many of the soil types 

were quite variable across catchments, but most were centred about 

the original calibration value. The fcpc values for sand show all 

catchments conforming to the original calibration value, except for the 

Okavango catchment in which the mean value of the top 20 models was 

10% higher. The results show loamy sand should be given a higher 

parameter value across all catchments and that clay should have a 

much lower parameter value for all catchments. Similar results could be 

seen for the satpc (saturation capacity) parameter, whereby sand was 

overestimated in the original model calibration. Again, many of the 

graphs showed variation across catchments, with lithosols giving the 

most significant differences, showing a particularly low value for the 

Amu Darya catchment. 

5.4.3 Rootg Parameter 

The rootg (root depth) parameter graphs show fairly consistent results 

across catchments, and all land cover classifications show a preference 

for higher values of the parameter than the original model calibration 

values. The grassland graph is shown in Figure 5.7 as this shows an 

interesting result for the Okavango catchment; a particularly high 

parameter value with a range that does not overlap with the low values 

of the Yangtze.  

5.4.4 Rsc Parameter 

The graphs for the rsc parameter showed that there was high 

agreement between catchments on the parameter value. However, for 

eight of the land cover types, the parameter value was much higher 

than that of the original model calibration value, whilst the remaining 
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seven land cover types showed values that were still a little higher, but 

were in the lower values of the parameter space sampled. This is 

indicated by the difference in the grassland and sparse vegetation 

graphs in Figure 5.7. 

5.4.5 Capg Parameter 

The capg parameter, which is the second interception parameter in Mac-

PDM.14, showed strong variation in parameter values between 

catchments for many of the vegetation types. The strongest 

differentiation between catchments could be seen for the mosaic: 

cropland/vegetation parameter type (as shown in Figure 5.7), where the 

Euphrates gives the highest value and the Danube the lowest. The La 

Plata, Nile, Yellow and Okavango rivers also show high parameter 

values. However, unlike the xmelt parameter, and the rootg grassland 

parameter, the capg ranges overlap for all catchments, suggesting that 

although optimum solutions may benefit from single catchment 

calibration, it is not as essential for this parameter as for xmelt. The 

evergreen broadleaf vegetation type for capg also showed catchment 

differentiation, with the Congo showing a higher parameter value than 

the other catchments. 

5.4.6 Rlai Parameter 

The catchments show good agreement on parameter values for the rlai 

parameters, for which the mean of the top 20 models lies not far above 

or below the original model calibration value. The only exception is for 

bare and artificial areas, where the original model calibration value was 

0, and the model realisations give values of ~1.5 and ~3 respectively.  

5.4.7 Hc Parameter 

The hc (vegetation height) parameter graphs also showed good 

agreement between catchments, with the bare and the grassland land 

cover types showing the most variability. The cropland vegetation type 
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showed an optimum parameter value of ~1m, and none of the 

catchments ranges reached the original model calibration value of 

14.9m. This original value is far too high to be physically meaningful, 

and a value approximating 1 seems more appropriate. 

5.4.8 Percov Parameter 

The percov (percent cover) graphs exhibited some variation between 

catchments, but not significantly; all range bars overlapped. The Congo 

catchment showed a slightly higher value of percov than other 

catchments for the evergreen broadleaf land cover classification. The 

mosaic: cropland/vegetation graphs showed the greatest variability (and 

is shown in Figure 5.7, with the Danube giving a very low mean 

parameter value (27.3%), and the Nile, Euphrates and La Plata giving 

the highest values (76.7, 75.9 and 74.5% respectively).  

5.4.9 Summary of Catchment Specific Parameters 

In summary, the control file parameters showed the greatest variations 

between catchments, particularly the routing parameters and the snow 

melt rate parameter. The soil parameters showed agreement across 

catchments, but sometimes provided a different value to the original 

model calibration value. The root depth, vegetation height, leaf area 

index and stomatal resistance parameters mostly showed little variation 

between catchments, but the interception parameter capg showed more 

variable results. The catchments that most often deviated from the 

others were the Kolyma, Lena, Ob, Danube, and Okavango.  

Figure 5.7 shows the ranges and mean values of the parameters for the 

top 20 model realisations for each catchment, but Figure 5.3 shows that 

for most catchments, many more than 20 models showed good 

agreement with the range of values within the 30 year observed record. 

Therefore, the parameter values for a larger group of model realisations 

were explored further, and this was done using Approximate Bayesian 

Computation theory. 
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Figure 5.7 A selection of catchment parameter value plots for the top 20 

catchment-calibrated model realisations for each catchment. Dashed line 
indicates the original model calibration value; crosses indicate the mean of the 
parameter values from the top 20 realisations; colours help display the length 
of the line, with narrowest in blue and longest in red. Colour bar not set to a 
scale. 

5.5 Approximate Bayesian Rejection for Parameter Estimation 

Bayes theorem is a rule for updating the prior probability of a hypothesis 

when additional information becomes available. Bayes’ rule can be 

written as: 

  (EQ 5.1) 

where p(θ|Ỹ) is the posterior parameter distribution, p(θ) is the prior 

distribution, L(θ|Ỹ) ≡ p(Ỹ|θ) denotes the likelihood function, and p(Ỹ) 

represents the evidence (or normalisation constant) (Sadegh and Vrugt, 

2013). The Approximate Bayesian Computation (ABC) methodology, or 

likelihood-free inference algorithms, relax the need for an explicit 

likelihood function, L(θ|Ỹ), and instead use summary statistics to 

measure the distance of each model simulation to the data (Sadegh 

and Vrugt, 2013). ABC seeks to determine a posterior distribution of 

parameter values between the observed and simulated data that have a 

distance smaller than an error tolerance value. The Approximate 

Rejection Algorithm, which is drawn from in this study, is the most basic 

form of an ABC algorithm and is written as: 
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ABC-REJ ALGORITHM 

1) Draw  

2) Simulate  from the model  

3) Accept  if  

In words, a sample point θ is taken from the prior distribution, p(θ). This 

is used to simulate the output of the model, Y~η(θ), which is then 

compared to the simulated data, Y, using the distance function ρ(Ỹ, 

Y(θ’)). If this distance function is smaller than a tolerance value, δ, then 

the simulation is close enough to the observations and is accepted as 

being in the posterior distribution, p(θ|ρ Ỹ, Y(θ’)) ≤ δ), (Vrugt and 

Sadegh, 2013). Accepted values of θ are not from the true posterior 

distribution, but rather from an approximation to it (Wilkinson, 2013). 

The choice of distance function is a subjective decision, like it is in 

GLUE, and it needs to be carefully considered to reduce the loss of 

information. Common examples from genetic applications of ABC 

include Canberra, Euclidean and Manhattan distance, alongside the 

hydrological indicators outlined in Table 5.1, such as Nash-Sutcliffe 

Efficiency and Root Mean Square Error.  

Sadegh and Vrugt (2013) discuss two immediate similarities between 

GLUE and ABC: 1) that the distance function is similar to the informal 

likelihood measure used in GLUE to differentiate between behavioural 

and non-behavioural models, and 2) that the sampler used in the ABC-

REJ algorithm to sample from the prior distribution is similar to Latin 

Hypercube sampling, which is commonly employed in GLUE. Since 

there are many similarities in the way the modelling experiment is run, 

the 100,000 realisation model ensemble that was run as a GLUE 

experiment could be used to explore the parameter results using simple 

Bayesian theory.  
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The top 1,000 of the model realisations were extracted for each 

catchment, and the distributions of the parameter values among those 

top models were plotted and compared to the distribution given to the 

100,000 member ensemble as parameter input sample distributions. 

This provided a means of identifying if any new information was gained 

by comparing the prior (the 100,000 member Latin Hypercube Sampled 

parameter distribution) to the posterior distribution (the top 1000 models 

realisation parameter values). This provides some analytical 

advantages over the method used to produce the graphs in Figure 5.7: 

distributions show whether the mean value of the top performing 

models is a true optima, or whether it is just the mid value of an 

insensitive parameter; and the comparison with the prior distribution 

indicates whether the mean value, or the range of values could have 

been influenced by the allocation of a strong prior distribution. However, 

the comparison between catchments is less easy to distinguish as the 

distributions must be plotted on separate graphs in order to be seen 

clearly.  

The results of this investigation confirm, but extend, the findings of the 

top 20 model realisation parameter ranges and means. Again, the 

control file parameters showed distinct results, and so all catchment 

results are displayed in Figure 5.8 to Figure 5.12. The b parameter 

showed consistent goodness at low parameter values, though some 

catchments gave lower values than others; for example the Murray 

Darling catchment showed much lower values than the Amazon. The b 

parameter simulates the variability of soil moisture content across a 

catchment, so it is understandable that the very dry Murray Darling 

catchment provides an exceptionally low value.  

The delta parameter also shows a diversification of preferential values 

between catchments; with the Congo showing high peak values 

(approx. 1.6), and several other catchments showing peaks at near zero 

values, such as the Kolyma and Yukon catchments. The delta 
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parameter is an interception parameter that works alongside the capg 

parameter in the interception equation by Calder (1990). The higher the 

value of delta, the more precipitation that is intercepted by the 

vegetation. Many catchments, such as the Congo, La Plata and Niger 

showed higher values than the prior, implying that for most catchments, 

the prior was inaccurate. However, the arctic catchments of the Kolyma 

and Yukon returned low values, which could be expected due to the fact 

these are the two catchments with the lowest precipitation rates of the 

21 study catchments. The tropical catchments of the Brahmaputra and 

the Amazon also show low values, which perhaps could be explained 

by much higher precipitation rates, which push the delta value towards 

lower values to produce a reasonable overall interception amount.  

The grout and srout parameters exhibit a strong response in some 

catchments and none in others. This could not be seen clearly from the 

range plots in Figure 5.7. The only catchments that did not exhibit the 

same trend between grout and srout were the Danube and the Kolyma, 

which showed trends towards lower values for the grout parameter but 

showed less or no real trend for srout. This suggests that quick flow 

routing is more dominant in these catchments than slow flow routing. 

The distinct trend towards low values in many catchments for the grout 

and the srout parameters, when compared to the insensitivity of the 

results for the globally calibrated parameter values, demonstrate the 

need for consideration of catchment model calibration. However, this 

study does not indicate whether a low parameter value for all 

catchments would suffice. The seeming insensitivity of many of the 

catchments to parameter values would need to be investigated further. 

This is not the case for the delta parameter though, which shows 

distinctly different parameter values between catchments, with a level of 

certainty, particularly as the graph peaks deviate from the sampled 

(prior) mean value. 
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The xmelt parameter, shown in Figure 5.12, show that the majority of 

catchments maintain the peak value of the prior at 3.5, however several 

catchments, the Amu Darya, the Ob, the Lena, and to some extent the 

Ganges, show a value near 0. The Ob and the Lena would be expected 

to show lower (slower) melt rate values, as they are northerly 

catchments, it is surprising though that the Kolyma, Yenisey and Yukon 

do not also give low xmelt values.  

In the semi-arid Amu Darya catchment, snowmelt contributes 69% of its 

mean annual flow, predominantly from seasonal snowmelt (Savoskul 

and Smakhtin, 2013). Whilst the Mac-PDM model does not have a 

physically-based numerical representation of seasonal snowmelt or 

glacial meltwater specifically, snowmelt may still play an important role 

in the simulation of this catchment. The Ganges catchment, which also 

showed a peak at the prior value, but showed some trend towards lower 

values, also has a snowmelt contribution. In the Ganges this 

contribution is less distinct than in the Amu Darya catchment, where 

snowmelt accounts for approximately 7% of the mean annual flow 

(Savoskul and Smakhtin, 2013). 

Figure 5.13 shows a selection of additional distribution graphs to 

demonstrate the more distinct trends in some of the other parameters. 

In each of these cases, some catchments showed a deviation away 

from the prior distribution, and different responses could be seen 

between catchments. In most cases, not all of the catchments deviated 

from the prior, as shown in the fcpc sand parameter, where only the 

Okavango showed a higher peak than the other catchments. In some 

parameters where a uniform prior distribution was used, such as the 

capg mosaic:cropland/vegetation parameter, some catchments showed 

no response, while others showed an obvious trend. It may be that the 

catchments that showed no response are insensitive to perturbations in 

these parameters. 
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Table 5.2 summarises the trends seen in all distribution plots and 

compares them to the trends found in the range plots, in order to 

ascertain whether the conclusions from the previous plots were 

accurate. Soil and vegetation types that are not given in this table 

showed results that agreed with the prior distributions, and showed no 

differentiation in parameter values between catchments.  

The results indicate that whilst many of the posterior distributions 

agreed with the prior distributions, it is not a straightforward process 

defining parameter values for each catchment. The results in section 

5.2 demonstrate that sets of good parameter values have been 

identified for each catchment, and that these perform far better than 

globally-calibrated model realisations. However, through parameter 

estimation, it is difficult to ascertain what exact values could be used for 

each parameter. Whilst the posterior distributions of the top 1,000 

model realisations show trends towards certain values, the ranges of 

parameter values in the top 20 models are often broad. This suggests 

that these parameter sets demonstrate equifinal behaviour (Beven, 

2012). It would not be possible at this stage to pick the optimum 

parameter values individually for each parameter and compile them to 

create a set of parameters, but there are sets of specific parameter 

values that perform well.  

The tendency of the posterior parameter values to trend towards the 

prior distribution suggests insensitivity of these parameters. 

Additionally, it suggests that regardless of the value of that parameter, 

the model will produce a good calibration, and therefore the posterior 

distributions of the good models are the same as that of the prior 

distribution. Alternatively, it could just suggest that the prior distribution 

was correct. Several potentially insensitive parameters and equifinality 

issues indicate that the Mac-PDM model is likely over-parameterised.
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More analysis would need to be carried out to determine whether the 

parameters are indeed insensitive or not, and to examine the 

interactions between parameters. This analysis was considered by way 

of model emulation, but it was deemed beyond the scope of this PhD 

study. Model emulation is considered further in the Discussion Chapter 

(Chapter 7). 

The parameter values of the top performing models for each catchment, 

including the global best model parameter values from the GLUE 

experiment are given in the Appendix of this thesis. These are the 

parameterisations that were used for the line plots in Figure 5.2. 

5.6 Mac-PDM.14 in a Catchment Modelling Context 

With the retention of the results of the 100,000 model parameter 

ensemble, alongside gauged discharge records, Mac-PDM.14 could be 

calibrated for any global catchment with a small amount of analysis. 

This analysis would certainly be less time consuming than calibrating a 

catchment model each time. The question then is: “can a catchment 

calibration of a global model perform as well as a catchment model?” It 

would not be appropriate to compare the goodness-of-fit of the Mac-

PDM.14 model calibrations with catchment models without using the 

same input data. Therefore, in order to answer this question, catchment 

models would need to be acquired, calibrated, and run with either the 

WATCH or the ISI-MIP input data, which was beyond the scope of this 

PhD study. 

Whilst there have been several inter-comparisons of hydrology models 

within their respective scales (e.g. Refsgaard and Knudsen, 1996, 

Smith et al., 2004, Haddeland et al., 2011, Warszawski et al., 2014), the 

first comparison of a global scale model with catchment models was in 

2011 (Gosling et al., 2011). In this study, Mac-PDM.09 was compared 

to six individual catchment models, however the authors compared the 

results of a global calibration of Mac-PDM.09 with the catchment 
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models under climate change scenarios. Thompson et al. (2013) 

extended this analysis by comparing Mac-PDM.09 with the catchment 

models MIKE-SHE and SLURP for several locations in the Mekong 

catchment and in this case again projections of the models under 

climate change scenarios were compared. Piniewski et al. (2014) 

compared the results of the catchment scale model SWAT, and the 

global scale model WaterGAP, on projections of environmental flow 

indicators for the Narew basin in Poland. This study also focussed on 

climate change projections, and so the performance of global models 

has not yet been compared to catchment models over historic periods. 

Specific catchment calibrations of global models have also never before 

been considered.  

An obvious advantage of catchment scale hydrology models over global 

models is the finer resolution at which they operate. Global hydrology 

models most often run at a resolution of 0.5x0.5 degrees, however 

some can be run at finer resolutions, for example GWAVA can be run at 

0.1 x 0.1 degrees (Dumont et al., 2010). Catchment models, on the 

other hand, can operate at finer resolutions, from tens of meters, such 

as the 30m SWAT model (Chaubey et al., 2005), to as fine as 2m, 

which has been used for applications of TOPMODEL (Lane et al., 

2004). The main reason for the coarser resolution of global hydrology 

models is the availability of climate input data. Therefore, the 

application of catchment models on a global scale, would likely suffer 

the same issue, as regional climate model data is not available for all 

global catchments. On the other hand, global hydrology models are 

often used to simulate catchment hydrology (Loos et al., 2009, Moors et 

al., 2011, Ogata et al., 2012, Siderius et al., 2013, Green et al., 2014),  

and specific catchment calibrations could be used to dramatically 

improve the performance of the models in these circumstances. 

Calibrations of GHMs have until now used sets of catchments to carry 

out the calibration and then developed a globally averaged 
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parameterisation. For example, Mac-PDM.09 was calibrated using a 

suite of 50 worldwide catchments (Gosling and Arnell, 2011) and 

WaterGAP2 was calibrated against 724 discharge stations across the 

globe (Alcamo et al., 2003). This method does not recognise or address 

the concept that different catchments may require, or at least benefit 

from, different parameterisations. When catchment models are 

employed, they are recalibrated to the catchment in question each time, 

whilst global models lump all catchments together with globally uniform 

parameter values. The results from this chapter suggest that parameter 

values differentiated by catchment could provide much better model 

results than globally averaged parameter values. Whilst this would be 

difficult to employ for global scale studies, it would be relatively 

straightforward when global hydrology models are employed for 

catchment scale research studies. 

5.7 Summary 

This chapter has investigated the parameter values of Mac-PDM.14 in 

detail. During this study it became apparent that seeking alternate 

parameterisations of the model for each study catchment yielded 

significantly better results than applying a global set of parameter 

values. The months of peak runoff that were underestimated by the 

globally calibrated models were better simulated by catchment 

calibrated models. Similarly, the timing of peak flows that were 

simulated several months too early by the global models were improved 

with catchment calibration. The natural variability of the observed record 

was considered, as the performance of the model may have been 

misrepresented in some catchments if variability was high. This was 

found to be the case for the Murray Darling catchment; where the 

ranges of the top 20 models both catchment-calibrated and globally-

calibrated did not cover the observed mean values, but the simulated 

runoff was within the bounds of the variability of the 30 year runoff 

record. The Nile however, for which the model performs particularly 
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poorly, has a low variability within the observed record, so this analysis 

showed that the model results are still poor for the Nile catchment. 

When catchment calibrations of Mac-PDM.14 are considered alongside 

the natural variability of the catchment, the model is shown to output 

very good results, with only 5 of the total 240 months (12 months over 

20 catchments, excluding the Nile) lying outside of the ranges of 

observed monthly runoff values. 

The parameter values of the catchment model calibrations were 

investigated to see if there were any significant differences between 

catchments that would suggest a global calibration would be 

insufficient. The ranges of values of the top 20 model realisations for 

each catchment were investigated. The control file parameters (b, delta, 

grout, srout and xmelt) showed the most variation between catchments. 

The soil parameters, fcpc and satpc, showed agreement across 

parameters, but a deviation from the original calibrated value. The 

interception parameter capg also showed some variation between 

catchments. Approximate Bayesian Rejection was then used to assess 

the parameter values further, using distributions of the top 1,000 model 

realisations (top 1%) for each catchment as an acceptance limit. 

Distributions showed more detail than the range plots, and the control 

files again showed the most interesting results, as well as the capg 

parameters. Only a few catchments for a few parameters showed 

distinguishable parameter values for different catchments. Little 

consistency with climatic regime, latitude or easily distinguishably 

hydrologic characteristics could be identified to explain this behaviour. 

These results suggest that the model may be over-parameterised as 

many parameters seemed insensitive to perturbations. The sensitivity of 

parameters would need to be assessed in more detail, perhaps using 

model emulation (e.g. Lee et al., 2011) to identify parameter 

interactions and investigate equifinality (Beven and Freer, 2001). The 

parameter values of the top globally-calibrated model, as well as the top 
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catchment-calibrated model, for each of the catchments are presented 

for future applications of Mac-PDM.14. The use of global models as 

catchment models has been discussed. A comparison of the 

performance of catchment specific calibrated Mac-PDM.14 with a 

catchment model for historic periods would be an innovative step 

forward from this research. 

The next chapter validates the global and catchment calibrations of 

Mac-PDM.14 with an alternative set of climate input data, and 

compares the performance of Mac-PDM.14 with the results of the 

recent ISI-MIP multi-model ensemble.



 

 
 

 

 

 

6 Chapter Six: 

 Mac-PDM.14 Model Validation 
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6.1 Introduction 

This chapter presents the results of a validation of the Mac-PDM.14 

model with an alternate climate dataset. The findings presented in 

Chapters 4 and 5 demonstrate that the uncertainty experiment and 

subsequent calibrations of the model have significantly improved the 

model’s performance when tested against observed data. However, due 

to the nature of the calibration process, it is expected to perform better 

as the model is ‘trained’ to the observed record. Therefore, it is 

necessary to validate the model with a different set of climate input 

data, either over a different historic time period, or an alternate 

modelled climate data set of the same period, derived using a different 

method. Validation gives the new calibrations of the model a measure 

of credibility and, if the results are satisfactory, demonstrates that the 

model can be taken forward and applied using newly available input 

datasets. This chapter presents the validation datasets available, and 

compares the results of the top performing model calibrations, run with 

the original WATCH data, with those run with the validation dataset. 

The performance of the model run with the validation dataset is then 

compared to other models from a new multi-model ensemble project, 

ISI-MIP (Warszawski et al., 2014). Finally, the top 20 performing 

catchment individual model calibrations from the GLUE ensemble, run 

with the validation dataset, are reviewed. 

6.2 Validation Datasets 

Observational datasets that could efficiently be applied to the Mac-

PDM.14 model for validation were available from two sources: the 

WATCH project data that was used for calibration, applied for a different 

time period for validation purposes; and the ISI-MIP (Inter-Sectoral 

Impacts Model Inter-comparison Project) data, which could be applied 

for any time period, to provide a test for the model. The relative merits 

and limitations of each dataset will be discussed briefly in turn.  
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The WATCH data, as described in Chapter 2 and by Weedon et al. 

(2010), was derived using a reanalysis of the ERA-40 data for the 

period 1958 to 2001. The processing procedure used bilinear 

interpolation of the variables from the 1 degree ERA-40 grid to the 0.5 

degree CRU land sea mask. Furthermore, monthly averages were 

interpolated, temperatures were corrected for elevation, and the data 

was then bias corrected using CRU TS2 data. Since the ERA-40 

reanalysis data was not available prior to 1958, in order to develop a full 

twentieth century dataset, the WATCH project generated weather data 

by reordering the ERA-40 data a year at a time using a weather 

generator. By this process, the statistical characteristics of the data for 

the years 1901-1957 were the same as 1957-2001, but the timing of 

particular weather events were not accurate for any particular location 

(Weedon et al., 2010). Therefore, using the data prior to 1957 would not 

be a good test for the model since the data would produce very similar 

annual average time series to those already employed. Accounting for 

the necessary 5 year ‘spin up’ period of Mac-PDM.14, the only 

additional years in the reanalysis dataset would be the 8 year period 

1962-1970. This is a short time period, which again would not provide a 

very comprehensive validation assessment for the model. Additionally, 

only 15 of the 21 discharge stations chosen for the catchment 

calibration provide data prior to 1965. 

The ISI-MIP dataset covers the period 1960-2000 and was derived 

using a trend preserving, statistical bias correction approach developed 

specifically for the project (Warszawski et al., 2014). The ISI-MIP data is 

based upon the WATCH forcing dataset, but has adjusted the monthly 

mean and daily variability of simulated climate data to observations, 

whilst preserving the long-term climate signal. The full details of the 

correction method are provided by Hempel et al.(2013). In order to 

determine whether the ISI-MIP data was sufficiently different from the 

WATCH dataset for the years 1971-2000 to provide an adequate 

validation test for the Mac-PDM.14 model, the mean monthly rainfall 
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was plotted, and is shown in Figure 6.1. Investigating the difference 

between specific rainfall events was considered to be unnecessary as 

the mean monthly outputs have been the focus of this study, and the 

majority of global hydrology simulation studies to date.  

The graphs in Figure 6.1 show that although the overall shape of the 

monthly data for each catchment is broadly the same, there are some 

distinct differences between the WATCH and the ISI-MIP datasets. The 

very seasonal catchments such as the Brahmaputra, Ganges, La Plata, 

Lena, Niger and Yenisey rivers show the most similar rainfall data 

between WATCH and ISI-MIP, but the catchments with more complex 

annual rainfall patterns show deviations. In particular, the rainfall in 

January, February and March in the Amazon is much higher when 

estimated by the WATCH dataset, than the ISI-MIP data. Similarly 

June, July and August in the Ob catchment show higher rainfall in the 

WATCH data. The ISI-MIP data shows a high rainfall peak in the Yellow 

river in August, which is not present in the WATCH dataset, and the 

Murray Darling shows a very different record between the two. The 

peak flow in the Euphrates catchment is reached earlier in the ISI-MIP 

dataset, with the peak in February, as opposed to the peak in April for 

the WATCH data. Neither dataset seems to show consistently higher 

rainfall than the other, with several overlaps apparent in most 

catchments. These graphs suggest that the datasets show the 

similarities that would be expected of two datasets covering a long 

period of time for the same catchments, whilst showing enough 

differences to be able to test the models behaviour using different input 

data. 

6.3 Ensemble Performance with Validation Data 

The 1,238 model realisations from the GLUE experiment that resulted in 

a mean absolute relative error (MARE) less than 0.75 were run with the 

ISI-MIP data, and the model outputs were again assessed using MARE.  
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A set of three ‘best’ models were then plotted, as shown in Figure 6.2. 

As before, the Nile and the Murray Darling have been excluded due to 

their poor model performance. These top three models were: the 

original top model realisation from the GLUE experiment run with the 

WATCH input data; this same model realisation run with the ISI-MIP 

input data; and the top ranking (lowest MARE scored) model realisation 

out of the 1,238 GLUE model realisations run with the ISI-MIP data. 

This best ISI-MIP model realisation happened to be the 7th best from 

the GLUE experiment with the WATCH data. The MARE of the original 

top model realisation (of the 100,000 runs) had a value of 0.47 when 

run with the WATCH data. With the ISI-MIP data, this model realisation 

had a MARE of 0.45; so the model actually performed better with the 

ISI-MIP data. Of the 1,238, model run with the ISI-MIP data, the best 

MARE value (from the 7th best GLUE model as previously mentioned) 

was 0.44. This shows that overall, despite having calibrated the model 

to the WATCH data, the performance of the model is certainly 

satisfactory when applied using an alternative input dataset. 

The results in Figure 6.2 show that, despite the difference in rainfall 

input, the overall shape of the runoff output was similar between the 

WATCH and the ISI-MIP input datasets. This can be expected, as most 

global scale catchments are complex systems with storage and 

vegetation feedbacks with the atmosphere, so runoff may not directly 

reflect rainfall patterns, particularly when considering a 30 year 

average. There are differences however, and there are many 

catchments where the best of the 1,238 models driven with the ISI-MIP 

data shows a significant betterment over the WATCH model; for 

example in the Amazon, where the runoff is less of an underestimation 

than with the WATCH dataset. Similarly, the Danube shows runoff 

levels much nearer the observed record. In a few cases, such as the 

Yellow river, the WATCH data provided an overestimation of the 

observed record, and the ISI-MIP data has heightened that 
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overestimation. The January to March flows of the La Plata are an 

additional example of this.  

The best GLUE ensemble model, when run with the ISI-MIP data is 

presented in these graphs, and shows the results if the newly calibrated 

model parameter sets were to be applied with a different dataset, 

without further calibration, as is common practice with many GHMs 

employed by the hydrological modelling community. It is quite unlikely 

that when passed to a new model user, they would be able to run 1,238 

model parameterisations to find a new optimum model calibration with 

the new input dataset. However, as that was possible in this case, it 

was carried out in order to determine how well the model could perform 

with the ISI-MIP data. Therefore, the yellow lines on the graphs in 

Figure 6.2 would be what we might expect a user to produce in his or 

her own application of Mac-PDM.14 (and not the turquoise lines, which 

would require significant resources to define), so this is a robust test of 

whether the newly calibrated Mac-PDM.14 is ‘valid’.  

Figure 6.3 shows the MARE values for each catchment for each of the 

3 top models shown in Figure 6.2. We would expect the model to 

perform slightly worse than the WATCH optimum model with the ISI-

MIP data, since the model has not been calibrated with this dataset. 

This is the case in several of the catchments, especially the Amazon 

and the Congo, which is apparent in Figure 6.2, but there are in fact 

many catchments where the model performs better with the ISI-MIP 

data than it did with the WATCH data. The underestimation of the 

Danube catchment is less pronounced with the ISI-MIP data, and the 

overestimations of the high peaks in the Niger and the Okavango runoff 

are also reduced. These results suggest that the input data of the ISI-

MIP project is driving more realistic simulations of runoff than the 

WATCH dataset in these catchments. 

The Brahmaputra stands out in Figure 6.3 as being worse with the ISI-

MIP data, whilst the Ganges shows a distinct improvement. Neither of 
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these results are evident in Figure 6.2, perhaps due to the fact these 

are the two catchments with the highest flow magnitude. Figure 6.3 

shows that of the 19 catchments considered, 11 showed a decrease in 

model performance with the ISI-MIP data, while 8 showed an increase. 

When applying the best of the 1,238 ISI-MIP driven model realisations 

instead of the top GLUE model realisation, 10 of the catchments 

showed a better MARE value than the WATCH driven model. Whilst the 

average MARE value across all catchments was better for both ISI-MIP 

driven model realisations included in these graphs, Figure 6.3 shows 

that achieving a good global model calibration is a trade-off between 

catchments. Section 6.5 of this chapter gives the results of the 

validation of the catchment-calibrated model realisations taken from 

Chapter 5 of this thesis. 

The uncertainty in the simulations that used the WATCH and the ISI-

MIP datasets were explored by plotting the ranges in the simulations 

from the 1,238 model realisations. These were the same 1,238 model 

realisations run with both the WATCH data, as from the original GLUE 

experiment, and run with the ISI-MIP data for comparison and 

validation. Figure 6.4 displays the results. Again, where we might have 

expected to see the range of outputs from the ISI-MIP data to be wider 

than those of the WATCH data, we see that the results using this new 

dataset are actually significantly better. For all catchments, the upper 

limit of the range of outputs is lower when using the ISI-MIP data, than 

the WATCH data. There are only a few instances where the observed 

record is not encompassed by any of the top 1,238 model realisations, 

and only in the Yukon does this cover more months for the ISI-MIP data 

than for the WATCH data.  
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The uncertainty ranges of the Danube, Mekong, Mississippi, Ob and 

Yangtze are all significantly reduced with the ISI-MIP data when 

compared with the WATCH data. In the Congo catchment, the observed 

record sits more centrally within the range of the ISI-MIP driven model 

outputs, whereas for the WATCH driven models the observed record 

lies at the very bottom of the model simulation range, suggesting 

systematic overestimation. This is an important result, as modellers 

may be tempted to bias correct or post-process the results of their 

model runs to account for such overestimation. However, Figure 6.4 

suggests that such results can be due to the input data, and that 

correction could lead to worse results when different, potentially better, 

input data is applied. These results show that we can have confidence 

when applying ensemble-based model calibrations with alternative 

climate input datasets, particularly when a range of model realisations 

are considered. 

6.4 Mac-PDM.14 and the ISI-MIP MME 

As in Chapter 4 with the WATCH multi-model ensemble (MME), the top 

performing ISI-MIP data driven model has been compared with the ISI-

MIP multi-model ensemble members. The openly available outputs of 

each of the model runs from the ISI-MIP project were downloaded 

through the project website (ISI-MIP, 2015). Table 6.1 shows those 

models that were included in the WATCH and the ISI-MIP projects, 

which provided discharge data available for download. The ISI-MIP 

models provided data for the period 1971-2004, but 1971-2000 was 

used in this study to allow for comparison with the modelling carried out 

for this thesis. The MARE over each of the 19 river catchments 

(excluding the Nile and the Murray Darling) was calculated for the ISI-

MIP models. As indicated in Table 6.1, not all of the Global Hydrology 

and Land Surface Models (GHMs and LSMs) participated in both 

WATCH and ISI-MIP and provided data that could be used in this study; 

with only Jules, LPJ-ML, Mac-PDM.09, MATSIRO, and MPI-HM 
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providing data from both projects. Orchidee was used in the ISI-MIP 

project, but output data was only available post-2000. The results of the 

MARE scores averaged over the 19 catchments are shown in Figure 

6.5, which shows both the top performing model realisation from the 

GLUE ensemble, that had been calibrated with the WATCH data but 

run with the ISI-MIP data, and the top performing model realisation from 

the smaller ensemble of 1,238 model realisations, which was essentially 

recalibrated to the ISI-MIP data. These two models are indicated by the 

yellow and the green lines in Figure 6.2 respectively. When compared 

with the graph for the WATCH ensemble (shown in Figure 4.9), the 

models in the ISI-MIP multi-model ensemble (MME) had higher MARE 

values than the WATCH MME, and so did not perform as well. From the 

ISI-MIP MME, no models scored a MARE lower than WBM at 0.72, 

whilst the WATCH MME best (MATSIRO) gave a value of 0.5. 

Interestingly, MATSIRO scores a worse value within the ISI-MIP MME, 

with a MARE of 0.95. 

Table 6.1 Participation of models in the WATCH and the ISI-MIP projects. X 

indicates models which participated in the project but which could not provide 
data applicable for comparison in this study. 

Model WATCH ISI-MIP 

DBH   

GWAVA   

H08   

HTESSEL   

Jules   

LPJml   

Mac-PDM.09   

MATSIRO   

MPI-HM   

Orchidee  x 

PCR-GLOBWB   

VIC   

WaterGAP  x 

WBM   
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Figure 6.5 MARE scores of the ISI-MIP multimodel ensemble compared with 
the top performing Mac-PDM.14 model calibrations with WATCH and ISI-MIP 
data (MARE calculated for Jan-Dec for 19 catchments). The TopGLUE model 
realisation is the top performing model from the GLUE ensemble, driven with 
ISI-MIP data, and the TopISIMIP model realisation is the top perfoming model 
from the ensemble of 1,238 realisations, also driven with ISI-MIP data. 

Whilst the top performing Mac-PDM model from the GLUE ensemble 

scored only slightly better than the other WATCH MME results, Figure 

6.5 shows that Mac-PDM.14 has a much lower MARE than any of the 

other participating models in the ISI-MIP project. As previously 

mentioned, the MARE of the WATCH calibrated model run with the ISI-

MIP data was 0.45, whilst the ISI-MIP calibrated model scored a slightly 

better 0.44. The WATCH calibrated model run with the WATCH data 

had a MARE of 0.47. This shows again that despite the calibration data 

set used, the model performed better with the ISI-MIP data. However, it 

performed even better when calibrated to the ISI-MIP data. It is 

interesting to see here that the original version of Mac-PDM (Mac-

PDM.09) scored a MARE of 1.04, which highlights the significant 

improvement to the model with the updated land cover and soil maps, 

as well as the GLUE experimental calibration method. The MME results 

of the WATCH and ISI-MIP projects are considered in more detail in 
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relation to catchment-calibrated model validation in Section 6.5 of this 

chapter, and shown in the graphs in Figure 6.9. 

The graphs in Figure 6.6 show the range of the 1,238 GLUE ensemble 

models with a MARE <0.75, run with the ISI-MIP data (herein referred 

to as the parameter ensemble) compared to the ISI-MIP ensemble 

members. These graphs are remarkably similar to those seen in 

Chapter 4 (figure 4.8), which reinforces the conclusion from that 

chapter: that the range of parameter uncertainty of Mac-PDM.14 with an 

acceptable error limit (MARE <0.75) is comparable to the structural 

uncertainty from using different models for most catchments. The 

Amazon seems to be an exception to this, as the parameter ensemble 

range is much larger than the range of the ISI-MIP ensemble members. 

The Congo also shows a discrepancy between parameter and model 

structural uncertainty, as the ISI-MIP ensemble members show a high 

runoff magnitude in the top part, and above, the parameter realisations 

range. The observed record values from Figure 6.4 shows that the ISI-

MIP ensemble runs are mostly overestimating the runoff, which is 

observed to be primarily below a value of 50 mm per month. Between 

the ISI-MIP models, few conclusions can be drawn, except that DBH 

shows consistently high runoff values, whilst VIC gives simulations in 

the middle of the ISI-MIP ensemble range (except for in the Congo 

where it gives a better simulated runoff, lower than the other models). 

WBM simulates values that are close to VIC, and these are the two 

models with the best MARE scores. The Murray Darling is a catchment 

where the ISI-MIP ensemble displays higher values of runoff than the 

parameter ensemble. In Chapter 4 (Figure 4.7) it was demonstrated that 

Mac-PDM.14 overestimated the runoff on the Murray Darling 

considerably, so these results show that the other models in the ISI-MIP 

project have the same problem, particularly the Land Surface Models 

LPJml and JULES.  
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6.5 Catchment Validation 

In this subsection, the use of global models as catchment models (the 

principle introduced in Chapter 5) is validated. The top 20 models for 

each catchment, identified from the GLUE ensemble of 100,000, were 

run with the ISI-MIP climate input data. The results of this, compared to 

the top 20 models with the WATCH data, are shown in Figure 6.7. The 

ranges displayed on these graphs were derived using the same 20 

model realisations with the two different climate input datasets. The 

graphs in Figure 6.7 also show the top performing global calibration of 

the model with WATCH data, and the top performing global ISI-MIP 

model, which are not the same model realisation. 

Immediately apparent from these graphs is the gap between the 

WATCH and the ISI-MIP driven models for the Congo catchment.  The 

WATCH driven models provide better simulations compared to the 

observed data. The results in Figure 6.4 show that using a globally-

calibrated model, the ensemble of 1,238 models contained the 

observed record within the range of model outputs, which suggests that 

the globally calibrated model was capable of simulating runoff in the 

Congo; however the differentiation between the catchment-calibrated 

model outputs with the WATCH and the ISI-MIP input data indicates 

that the catchment-calibration of Mac-PDM.14 is sensitive to input data, 

particularly in the Congo. The ISI-MIP data driven simulations seem to 

perform worse in the Amazon as well. However, there are many 

catchments where the ISI-MIP data performs better than the WATCH 

data, where it gets closer to, or reaches, the observed record where the 

WATCH data does not. For example, the June peak of the Lena is just 

missed by the WATCH driven runs, but is encompassed by the ISI-MIP 

driven runs. The same is the case with the May peak in the Danube 

which is underestimated by the WATCH driven models. Also in the 

Ganges, the Niger and the Okavango, where the WATCH data 
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overestimated the observed record, the range of ISI-MIP runs reach, or 

come closer to, the observations.  

Another noteworthy result is the difference in certainty between the 

catchments. It is important to note the scale of the graphs is not the 

same so the absolute uncertainty (in mm) is difficult to determine, but 

the proportional uncertainty can still be gauged. It can be seen that the 

Brahmaputra, the Danube, the Ganges, the Kolyma, the Mekong, the 

Mississippi, the Yangtze and the Yenisey all have small ranges of 

model output, which suggests that the model simulations are quite 

certain. The Congo, the La Plata, the Lena, the Ob and the Okavango 

however, show less certain results, with wider ranges across the top 20 

catchment realisations. The ranges of model output do not seem to 

differ significantly from the WATCH to the ISI-MIP input data, except in 

the Euphrates, Lena and Ob, where the peak runoff months show a 

slightly wider range with the ISI-MIP data that with the WATCH data. 

The Amazon also shows a wider range of model outputs with ISI-MIP 

input data for the months January-July. 

The graphs in Figure 6.8 show the difference between the top 

performing catchment-calibrated and globally-calibrated models. Here 

the results show that the catchment models are significantly better than 

the global models for both the WATCH and the ISI-MIP data, except for 

the Congo and the Niger, where the difference is between the ISI-MIP 

and the WATCH models, and the catchment and the global models 

perform similarly well. The magnitude of the runoff is notably improved 

with catchment calibration in the Amazon, the Kolyma, the Lena, the 

Yangtze and the Yukon. The shape of the monthly runoff series is better 

simulated by the catchment calibrations in the Amu Darya. In most 

catchments, the best performing catchment models using the WATCH 

and the ISI-MIP data show very similar results, with only the Amazon, 

Congo, Danube, Niger and Okavango showing notable differences. 
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The error of the WATCH and the ISI-MIP driven realisations of Mac-

PDM.14 are compared to the other WATCH and ISI-MIP multi-model 

ensemble members for each catchment in Figure 6.9.  In these graphs, 

the left-hand two bars represent the WATCH and ISI-MIP driven models 

respectively. For these two bars, the height of the grey bar is the MARE 

of the top performing global calibration of the model, and the red bar is 

the MARE of the top performing catchment calibration of the model. 

Note that the catchment-calibrated models use the same model 

parameter values, whilst for the globally-calibrated models, the WATCH 

driven model is the top performing model of the GLUE 100,000 

realisation ensemble, and the ISI-MIP driven model is the top 

performing model of the 1,238 model realisations re-run with the ISI-

MIP data.  

The graphs in Figure 6.9 show the performance of each model from the 

multi-model ensemble in more detail. Interestingly, as shown in Figure 

6.3, when averaged over all the months of each catchment, sometimes 

the WATCH driven Mac-PDM.14 performs better, and sometimes the 

ISI-MIP driven Mac-PDM.14 does. The catchment calibrated model 

always performs better than the globally calibrated model, though not 

noticeably in the Mississippi. The most significant betterments between 

the catchment and the globally calibrated models are in the Amazon, 

the Brahmaputra and the Yangtze.  

Overall, the global calibrations of Mac-PDM.14 seem to show 

comparable results to the ISI-MIP and WATCH MME models. The 

Amazon catchment shows particularly bad results for globally-calibrated 

Mac-PDM.14 with WATCH data in comparison to the other WATCH and 

ISI-MIP MME models. Also, the previous version of Mac-PDM (Mac-

PDM.09) performs better than the global calibration of Mac-PDM.14. 

This is likely due to the fact the global calibration is attempting to match 

the other 18 catchments and therefore is trained away from the 

optimum calibration for the Amazon. 
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Mac-PDM.09 outperforming Mac-PDM.14 is the case in several of the 

catchments. This is explored in more detail in section 6.6 of this 

chapter.  

For each catchment, different models from the WATCH and ISI-MIP 

multi-model ensemble perform the best. The results of the models for 

each catchment show closer competition with Mac-PDM.14, than when 

averaged across all catchments, as was shown in Figure 6.5. The 

global calibrations of Mac-PDM.14 only performed better than all other 

models (including Mac-PDM.09) in 6 out of the 19 catchments: the 

Euphrates, Ganges, Lena, Mekong, Mississippi and the Niger. The 

Mississippi and Niger catchments showed the best results with the ISI-

MIP data, while the remaining four showed the best MARE when driven 

with the WATCH data. The catchment calibrations of Mac-PDM.14 

performed better than the models in all catchments except the 

Okavango, where H-TESSEL performed very well. Out of the catchment 

calibrations of Mac-PDM.14, 15 catchments had better results with the 

WATCH input data than the ISI-MIP input data. MATSIRO performed 

the best in the Amazon, Brahmaputra, Kolyma, and Yangtze. 

WaterGAP performed best in the Congo, La Plata, Yellow, and Yenisey. 
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VIC performed best in the Amu Darya, WBM in the Danube, Jules in the 

Ob, and PCR-GLOBWB in the Yukon. 

From the scales of Figure 6.6, it can be seen that some catchments 

exhibit more certainty than others; the Okavango shows high levels of 

uncertainty, as does the Ob, Lena, Euphrates, Niger and Kolyma. This 

selection of catchments matches those that showed a wide range of 

model outputs among the top 20 model realisations in Figure 6.7, so 

reinforces that these catchments exhibit higher levels of uncertainty 

than the others.  

6.6 Calibration and Validation 

As has been identified from Figure 6.9, in some catchments the 

calibration process made the model perform worse than the original 

version of the model (Mac-PDM.09). Conversely, in some catchments, 

the use of the ISI-MIP climate input data made the model perform 

better, which is unexpected. This leads to the questions:  

1. “does calibrating a model globally improve the model performance 

over the majority of the catchments?”,  

2. “can a model calibrated to one climate input dataset be sensibly 

implemented using a different dataset?”, and finally,  

3. “does the expected improvement in model performance from 

calibration, outweigh the expected decrease in performance due to 

the application of a non-calibrated climate input dataset?”  

These questions will help address a serious issue in global hydrology 

modelling, of whether models must be recalibrated to each new set of 

climate input data. Figure 6.10 shows that in the context of Mac-PDM, 

the changes in MARE are due to both calibration (the move from Mac-

PDM.09 to Mac-PDM.14), and validation (the move from WATCH to ISI-

MIP input data). This figure demonstrates the performance of the top 

performing, globally-calibrated model from the 100,000 member GLUE 

ensemble. 
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The change in model performance due to calibration is shown in Figure 

6.10 by the green arrows. Downward pointing arrows show the 

expected decrease in MARE values from Mac-PDM.09 to Mac-PDM.14. 

This expected change is shown by full shading of the arrows. The 

unexpected decrease in model performance is indicated where the 

green arrows have an upward direction, and are shaded with hatching. 

The first question “does calibrating a model globally improve the model 

performance over the majority of the catchments?” can be answered by 

studying these green arrows. 16 of the 19 catchments (the 21 study 

catchments, excluding the Murray Darling and the Nile catchments 

which have previously shown erroneous results) show a decrease in 

MARE. This suggests that calibrating the model does improve the 

model performance for the majority of catchments. The most significant 

decrease in MARE, and so the most significant increase in model 

performance, was observed in the Congo catchment, with a decrease in 

MARE of 80%. The Euphrates, Mississippi, Okavango, Yellow, Niger, 

Mekong, and La Plata all showed substantial reductions in MARE, of 

greater than 65%. The three catchments that showed a significant 

increase in MARE were the Yangtze, Amazon and Brahmaputra, with 

increases of 91, 56 and 2.7% respectively. This is a significant 

reduction in MARE for the Yangtze catchment, so a catchment 

calibration for this catchment would be an important consideration.  

The change in model performance due to input climate data is shown 

by the red arrows in Figure 6.10. In this case, the expected change 

would be an increase in MARE, as the ISI-MIP data that the model is 

not calibrated with is likely to cause a decrease in model performance. 

Therefore, the upward arrows have a solid red fill, and the downward 

arrows have a hatched red fill. Here, 9 of the 19 catchments show an 

increase in MARE with the ISI-MIP data over the WATCH data. 
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Figure 6.10 Percentage changes in model performance (MARE) for each 

study catchment due to the calibration process (from Mac-PDM.09 to Mac-
PDM.14) and due to the use of alternative climate input data (WATCH to ISI-
MIP). Error due to calibration shown in green and climate input data shown in 
red. Upward arrows indicate an increase in MARE value, downward arrows 
indicate a decrease in MARE value. Solid arrows indicate the expected 
direction of change, whilst hatch arrows indicate unexpected change. Grey 
shading is assigned to catchments where the change due to calibration is 
stronger than the change due to input data type (validation).  

The largest increase in MARE with the ISI-MIP data was in the Mekong 

catchment, an increase of 119%. The Yellow and the Brahmaputra also 

show large increases at 57 and 46% respectively. This leaves 10 

catchments where the MARE actually decreased with the ISI-MIP data, 

the most notable of which are the Danube and the Niger with 59 and 

57% reductions in MARE respectively. These results show that the 

second question: “can a model calibrated to one climate input dataset 

be sensibly implemented using a different dataset?” can also be 

affirmed, as the results in general are much better than could be 

expected.  

The final question: “does the expected improvement in model 

performance from calibration, outweigh the expected decrease in 
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performance due to the application of a non-calibrated climate input 

dataset?” can be considered by looking at the differences between the 

green and the red arrows for each catchment. The shaded background 

of the figure indicates which catchments show a larger change from the 

calibration procure than that of the change in input data. Here, 14 of the 

catchments show a larger change from calibration than data input. In 

the Amazon and the Yangtze though, the direction of the calibration 

arrow was towards a worse MARE value. In order to determine that the 

beneficial impact of the calibration procedure outweighs the detriment of 

the change in input data, the height of a downward facing green arrow 

must be larger than that of an upward facing red arrow; downward 

facing red arrows may also be included regardless of their length as 

they show an improvement. 14 of the 19 catchments show an overall 

good result, whereby the decrease in MARE from calibration process 

was not outweighed by an increase in MARE from the change in input 

data. The Amazon and the Yangtze were not included in this grouping, 

but were replaced with the Danube and the Kolyma, where the input 

data arrow (in red) was larger than the green calibration arrow, but 

because it was downward facing, showing a betterment in MARE, the 

model performed better overall than Mac-PDM.09.  

Studying the overall percentage change from Mac-PDM.09WATCH to 

Mac-PDM.14ISI-MIP, 15 of the 19 catchments showed an improvement in 

MARE. The Mekong is included in this list because although the 

percentage change from the input data is greater than the percentage 

change from the calibration effect, the total difference still resulted in a 

better model (MARE went from 0.4 to 0.14 to 0.3 for Mac-PDM.09WATCH, 

MacPDM.14WATCH and Mac-PDM.14ISI-MIP respectively). The four 

catchments that showed a worse result were the Yangtze, and the 

Brahmaputra, with high increases in MARE of 76 and 50% respectively, 

and the Yenisey and Amazon with small increases of 6 and 5% 

respectively. In the Yangtze, this was definitely the result of the 

calibration procedure, whilst in the Brahmaputra this was due to the ISI-
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MIP data. The greatest overall improvement was in the Niger 

catchment, which showed an 86% decrease in MARE from 2.16 to 0.3. 

8 of the 19 catchment showed improvements greater than 50%. These 

results are a solid conclusion that the model need not be recalibrated 

for each new dataset. 

6.7 Alternative Evaluation Metrics 

So far, this study has focused only at the MARE evaluation metric. This 

was chosen as the metric is a good all round tool, that does not place 

emphasis on high or low flows, and can be applied on summarised data 

(calculated over few data points), such as the output of Mac-PDM used 

in this study. MARE also allowed straightforward comparison of model 

performance between catchments. 4 alternative metrics have been 

applied to 6 instances of Mac-PDM for each catchment, each using the 

30 year average values of Jan-Dec:  

1. Mac-PDM.09 run as part of the WATCH project, with WATCH input 

data (globally calibrated),  

2. Mac-PDM.09 run as part of the ISI-MIP project, with ISI-MIP input 

data (globally calibrated),  

3. The top performing GLUE ensemble (100,000 realisation) model 

Mac-PDM.14 run with WATCH data (globally calibrated),  

4. The top performing ISI-MIP ensemble (1,238 realisation) model 

Mac-PDM.14 run with ISI-MIP data (globally calibrated),  

5. The top performing GLUE ensemble model Mac-PDM.14 run with 

WATCH data (catchment calibrated), and  

6. The top performing ISI-MIP ensemble model Mac-PDM.14 run with 

ISI-MIP data (catchment calibrated) 

The metrics applied were the Nash Sutcliffe Efficiency criteria (Eq 6.1), 

Percent Bias (Eq 6.2), Root Mean Square Error (Eq 6.3), and the 

Standardised Effect Size (Eq. 6.4).  
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  (E 6.1) 

  (E6.2) 

   (E6.3) 

  (E6.4) 

where Q̂i is simulated runoff at time-step i, Qi is observed runoff, Q̅ is the 

mean of the observed record, and σ(Qi) is the standard deviation of the 

observed record. Graphs showing the results of these analyses are 

presented in Figure 6.11 to Figure 6.14. The NSE and RMSE metrics 

are not likely to be reliable indicators of goodness, due to the fact they 

were applied to only 12 time-series values (one for each month of the 

year, averaged over the 30 year period 1971-2000). The NSE metric is 

at its optimum at a value of 1, and NSE values of greater than 0.7 or 0.8 

are commonly accepted as representing a ‘good’ model fit (e.g. Krause 

et al., 2005, Park and Ip, 2010). The metric may fall as low as -∞.  

The incredibly low values of NSE in many of the catchments (shown in 

Figure 6.11) for the Mac-PDM.09 models is suggestive of an issue 

using the NSE metric in this situation. However, the results show 

significant improvements in model performance in the majority of 

catchments from Mac-PDM.09 to Mac-PDM.14. As with MARE, the 

Amazon is an exception to this, with the Mac-PDM.09 models showing 

a better model performance than the global calibrations of Mac-

PDM.14. Also mirroring the results of the MARE evaluation metric, the 

Congo, Euphrates, La Plata and Okavango show the largest 

improvement as a result of the calibration process (from Mac-PDM.09 

to Mac-PDM.14). The Lena and the Yukon show the greatest 

differences between the catchment calibrations of the model and the 

global models of both Mac-PDM.09 and Mac-PDM.14. The 
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Brahmaputra and the Mekong show especially good results from all 

models, and the Yangtze, Kolyma, Lena, Ganges, Danube, Mississippi, 

Yellow and Yukon catchments all show good results with the catchment 

calibrated models. 

In the Percent Bias (PBIAS) graphs in Figure 6.12, the opposite trend is 

expected, as good model fit would be a value of 0, with +/- ∞ 

representing worse model results. These graphs again show generally 

better results from the Mac-PDM.14 models than the Mac-PDM.09 

model, which reinforces the benefit of the model calibration process. 

Again, the Amazon is a notable exception, and here the Brahmaputra, 

Lena, Kolyma, Yangtze, Yenisey and Yukon show worse results from 

the global calibration of the model. The better scoring of the catchment 

calibrations of Mac-PDM.14, using the WATCH data over the ISI-MIP 

data, is considerable in the PBIAS scoring method. The Murray Darling 

and the Nile catchments show results orders of magnitude worse than 

the other catchments, a result that can be seen in the Nash Sutcliffe 

graphs as well, and was realised early on in the thesis with the MARE 

metric.  

The Root Mean Square Error (RMSE) graphs in Figure 6.13 also 

indicate the best model performance at a value of 0, and show in 

general a slight betterment from Mac-PDM.09 to the global calibration 

of Mac-PDM.14, and then further improvement from the global 

calibration of Mac-PDM.14 to the catchment calibration. 14 of the 21 

catchments showed better results from Mac-PDM.09 to Mac-PDM.14 

global calibration, and all catchments showed improvement from the 

global calibration to the catchment calibration of Mac-PDM.14. The 

Yenisey is the only catchment where neither the global nor the 

catchment calibrations of Mac-PDM.14 perform better than Mac-

PDM.09: this is consistent with the NSE and PBIAS evaluation metrics. 

The Standardised Effect Size (SES) relates the model’s error to the 

range of the observed values, and so takes into account the variability 
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of the catchments flow regime. Again the best score of SES is 0, and 

the metric can range up to +∞. The results of this score are again 

similar to those that we have already seen. In the majority of 

catchments, Mac-PDM.14 scores better than Mac-PDM.09, and the 

catchment calibration again scores better than the global calibration in 

all catchments. In this case, as was seen in MARE metric, but not NSE, 

PBIAS and RMSE, the Yenisey shows improvement with the catchment 

calibration of Mac-PDM.14 over Mac-PDM.09. Again the Yangtze and 

the Amazon show significantly worse results from Mac-PDM.14 than 

Mac-PDM.09, but the catchment calibrations perform better. The 

improvements from Mac-PDM.09 to Mac-PDM.14 are most notable in 

the Mississippi, Congo, Okavango, Niger and Euphrates. 

The graphs in Figure 6.11 to Figure 6.14 demonstrate that despite 

some trade-offs between catchments (e.g. the Amazon), the calibration 

process significantly improved the results of the Mac-PDM model 

across a range of model evaluation metrics. Despite the fact that the 

model was calibrated using the MARE metric, the NSE, RMSE, PBIAS 

and SES scores all show significant improvements in the majority of 

catchments. Furthermore, the catchment calibrations of Mac-PDM.14 

also show improvement over the global calibration in most catchments 

for all metrics. This is an important result, because it means that the 

choice of error metric that is used in the calibration process, which is an 

inevitably subjective choice, does not dramatically influence the results 

of the calibration. The calibration process has improved the model 

regardless of the error metric employed.  
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6.8 Summary 

This chapter has demonstrated that the updated, assessed and 

recalibrated Mac-PDM.14 model can be applied with alternative climate 

input datasets with good results. The ISI-MIP dataset for the period 

1961-2000 was deemed different enough to the WATCH dataset to 

provide an adequate validation test for the model, so was applied to 

both global and catchment calibrated model realisations. The global 

model realisations with a MARE <0.75 were run with the ISI-MIP input 

data and, for the most part, the results were actually better than those 

when run with the WATCH data. There was a smaller range of 

uncertainty across the 1238 models that were run with the ISI-MIP data, 

than when run with the WATCH data for most catchments. When 

compared to the other individual members of the ISI-MIP multi model 

ensemble, Mac-PDM.14 performs much better, with a MARE score of 

0.44, compared with the best MME model (WBM) at 0.72.  

When catchment calibrations of the Mac-PDM.14 model are considered 

and investigated in detail, it is apparent that the specific catchment 

calibrations are more sensitive to input data. The model has been more 

finely tuned to the WATCH data, and the difference in the ISI-MIP data 

has more of a negative impact on the runoff outputs. However, in some 

catchments, the model again performs better with the ISI-MIP data. The 

catchment calibrations perform better than the global calibrations for all 

catchments, regardless of which climate input data is being used. 

Global calibrations of Mac-PDM.14 do not always give better outputs 

than all of the ISI-MIP multi-model ensemble members, but the 

catchment calibrations of Mac-PDM.14 do. It would be interesting in 

further research to see how the catchment calibrations of Mac-PDM.14 

performed against catchment calibrations of the other models.  

The influence of the calibration process upon the model performance in 

each catchment was assessed. This was compared to the model 

performance using the WATCH and the ISI-MIP data. It was found that 
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the influence of model calibration was greater than that of the input 

data, which suggests that the model need not be recalibrated to every 

new input dataset. Alternative model evaluation metrics were employed 

(Nash Sutcliffe, Percent Bias, Root Mean Square Error, and 

Standardised Effect Size). These metrics showed very similar results to 

the Mean Absolute Relative Error metric that was used for the 

calibration and evaluation. This indicates that the results of the 

calibration process are conclusive, and that the subjective choice of 

evaluation metric does not negate the improvements seen in the model 

performance. 

These results demonstrate that this approach to uncertainty analysis 

and the subsequent calibration of a Global Hydrology Model can be 

both beneficial and useful, and will remain relevant when new climate 

input datasets become available.  



 

 
 

 

 

 

7 Chapter Seven: 

Discussion: Global Hydrology 

Modelling – Obstacles and 

Opportunities 
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7.1 Introduction 

Several obstacles and opportunities in global hydrology modelling have 

been highlighted in this study and the following issues are addressed 

here:  

1. Simulating naturalised flow by hydrology models and the impact that 

this may have on analysis of model performance and on decision 

making from the models outputs (see chapter 4). 

2. The need for better process representation in Mac-PDM, and the 

implications of this on model results. 

3. The application of global hydrology models as catchment models, 

and the potential for further work comparing global models with 

catchment hydrology models (see chapter 5).  

4. The trade-off between catchments in a global model calibration, and 

the previously assumed need to recalibrate models to new climate 

input data (see chapter 6).  

5. The issue of computational demand in uncertainty analysis (see 

chapter 4).  

6. The possibility of applying model emulation techniques for sensitivity 

analysis, in order to reduce computational demand, and extend 

understanding of parameter interactions and optimum values (see 

chapter 5).  

7. Assessing parameter uncertainty under climate change projections, 

and previous work on the presentation of such uncertainty from the 

literature in other scientific fields.  

8. Gaining a deeper understanding of the full range of uncertainties in 

global hydrology modelling studies, and sources of additional 

uncertainty that could be investigated further. 

7.2 Naturalised Flow Simulation 

The Mac-PDM model, along with a number of other hydrological models 

(e.g. DBH, VIC, WBM, MPI-HM, WaterGAP, H08, PCR-GLOBWB which 

participated in the ISI-MIP project (Warszawski et al., 2014)) simulates 
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‘naturalised runoff’ or flow. However, these models are compared to 

observed discharge records which are subject to significant deviations 

from a natural flow regime, due to influences from abstraction and other 

human alterations to the flow. This issue was discussed and a potential 

solution to this problem was examined in Chapter 4 (see section 4.4). 

Mac-PDM.14 was compared with the UNH-GRDC Composite Runoff 

data, which attempts to provide a corrected observed time series for 

comparison with naturalised flow simulation. However, whilst the 

Composite Runoff data is useful for water resource assessments and 

validation of atmospheric models, the usage guidance of the dataset 

states that “the use of the composite runoff data for validation is not 

recommended (because it is a mixture of modelled and measured 

discharge)” (Fekete and Vorosmarty, 2011 pp. 18).  

Some hydrological models such as GWAVA (Meigh et al., 1999) and 

WaterGAP (Alcamo et al., 1997) use abstraction data to simulate water 

availability, yet abstraction data is very difficult to obtain, especially in 

the detail required to produce simulations of discharge with certainty 

levels high enough to be deemed useful. Abstraction data and reservoir 

levels are often quite sensitive and are currently unavailable to the 

public. This leads to estimated abstraction datasets, often at a national 

scale (such as AQUASTAT, FAO (2014a)), which introduce significant 

uncertainty to modelling studies.  

The difficulties that lead modellers to simulate naturalised river flow 

often encourage them to focus their efforts on catchments that 

demonstrate low levels of human influence on the flow regime, such as 

those in the UK benchmark catchment network (Bradford and Marsh, 

2003). This is often used for catchment selection in UK hydrological 

research (e.g. Hannaford and Marsh, 2008, Hannaford and Marsh, 

2006, Stahl et al., 2010). In small scale catchment studies the selection 

of catchments can often factor in this consideration. Global scale 

catchment modelling studies on the other hand, are less able to avoid 
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the impact of water withdrawals as the largest of the world’s rivers are 

often the most modified. Until detailed abstraction data become 

available globally, this issue will remain a significant challenge for 

hydrological modellers. 

7.3 Process Representation in Mac-PDM 

The results of the global calibration of Mac-PDM indicate that there are 

some structural deficiencies in the model. Significant underestimations, 

overestimations and mistiming of runoff peaks in catchments with 

distinct climatic regimes suggest that the model may need additional 

components to simulate runoff in both high latitudes, and arid to semi-

arid regions of the world.  

The underestimation of peaks in high latitude catchments such as the 

Lena, Yenisey and Yukon, and the simulation of peaks too early in 

these catchments as well as the Amazon, Amu Darya and Ob could be 

improved with the inclusion of a glacier component in the model that 

also takes into account the seasonal freezing and melting of permafrost. 

This structural issue was identified when discussing the potential 

limitations of the Mac-PDM model in Chapter 2, and became apparent 

in the results from the GLUE experiment shown in Figure 4.1. The 

mistiming of the peaks is due to the fact that in reality, much of the 

autumn and winter runoff is locked up in ice stores, and isn’t released 

until spring. This isn’t represented in the model, and so the runoff is 

simulated according to the timing of the precipitation (see Figure 6.1 for 

precipitation input), which results in an early runoff peak. Whilst the 

model does include a simple degree day scheme for snowmelt, this 

does not account for the larger scale ice processes of permafrost and 

glaciers which dominate the runoff regime in many of the study 

catchments investigated in this thesis.  

The sensitivity of the xmelt parameter values, particularly in high 

latitude catchments suggests that the model could be adjusting this 
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parameter in order to account for the lack of glacier representation. The 

routing parameters were also sensitive, possibly attempting to adjust 

the mistiming of the runoff peaks. Whilst amending the parameter 

values improves model performance when calibrated to individual 

catchments, this cannot improve the model when a global calibration is 

needed. 

Similarly, the model does not accurately represent runoff in arid and 

semi-arid catchments such as the Okavango, Murray Darling, Niger and 

Nile. In all of these catchments, the model overestimates runoff 

significantly. The performance of the model in the Murray Darling and 

Nile catchments is confounded by the exceptional influence of the 

abstractions and reservoirs on the runoff, however the overestimation in 

the Niger and the Okavango indicate that process representation in arid 

and semi-arid regions could be improved. It was harder to determine 

which model parameters led to an improvement in model performance 

in these catchments, however transmission loss and evaporation are 

likely key processes in these areas that could be explored further. 

7.4 Catchment Models or Global Models? 

This study has largely focused on the use of a global model as a 

catchment model, by calibrating the chosen model specifically for each 

catchment. The improvement in model performance using this approach 

was significant. The largest improvement was seen in the Yangtze 

catchment with an 89% reduction in MARE, from 0.33 to 0.04. All 

catchments showed an improvement, with catchment specific 

calibration showing an improvement of 33% over global calibration in 

the Niger catchment. This raises the question whether global hydrology 

models could be used in the place of catchment models. Catchment 

hydrology models (CHMs) generally include more complex 

parameterisations than global hydrology models (GHMs), and they are 

time-consuming to calibrate (Gosling et al., 2011). However, catchment 
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models operate on a higher resolution than global models which 

increases usefulness of model outputs.  

Global hydrology models have been applied in catchment specific 

research (e.g. Abdulla et al., 1996, Thompson et al., 2013, Weedon et 

al., 2014, Trambauer et al., 2013, Gain and Wada, 2014, Aus der Beek 

et al., 2011), which demonstrates that there is merit in the resolution vs 

model complexity trade-off between CHMs and GHMs. These 

applications of GHMs in catchment studies suggest that the significant 

improvements in model performance from catchment specific calibration 

found here are worth exploring further. In future a comparison of a 

chosen CHM with a GHM for the same catchment, following a similar 

calibration procedure, would be worthwhile. A comparison of GHMs and 

CHMs was carried out by Gosling et al. (2011), but this did not take into 

account the newly discovered improvement in Global models when 

calibrated specifically to each catchment. A comparison calibrating 

GHMs and CHMs in a similar way for each catchment would reveal how 

well both models performed, and may provide different cost options for 

distributed catchment modelling. 

7.5 Model Calibration and Input Climate Data 

Chapter 6 demonstrated the substantial benefit of calibrating the Mac-

PDM model. However, when evaluating the globally calibrated model, 

there were some catchments where calibrating the model made the 

output runoff worse in comparison with the observed record. When the 

MARE metric, which was used to perform the calibration, was 

considered only 3 catchments showed a worse result than the original 

version of the model (Mac-PDM.09); but for the Yangtze catchment 

there was a substantial worsening, with an increase in MARE of 91.4%. 

This demonstrates an inevitable trade-off between catchments in the 

optimisation of a global hydrology model.  
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Other evaluation metrics were calculated including NSE, PBIAS, RMSE 

and SES (see Chapter 6). Whilst all showed improvement in global 

averaged results after calibration, the number of catchments that 

showed improvement was less clear, with 11, 11, 15 and 12 out of 19 

catchments showing improvement for each metric respectively. RMSE 

and NSE have not been found to be appropriate measures for this 

study, due to the 30 year averaged output of Mac-PDM, so it is not 

surprising that the calibration did not give much improvement in these 

statistics. The improvement of more than half of the catchments with 

SES and PBIAS is reassuring though, showing that the calibration 

procedure does indeed make the model better overall, regardless of the 

metric considered. The catchment calibration of the models showed 

significant improvements from Mac-PDM.09 to Mac-PDM.14 over the 

majority of catchments for all metrics.  

In the same analysis, the benefits of model calibration were evaluated 

alongside the effects of using an alternative input dataset. This study 

suggested that the calibration process had a much stronger influence 

on the model output than the input data. This leads to the question, is 

calibration to new datasets necessary? If a rigorous calibration process 

is carried out, does it make the model good enough to negate the need 

to recalibrate to different input data? In this study, the results suggested 

that the improvement from model calibration outweighed the impact of 

changing the model input data for the majority of catchments. This may 

not always be the case though. There are some similarities in the way 

the WATCH and the ISI-MIP forcing data were derived, so a 

significantly different input dataset may yield a more substantial 

deviation in the model output. Input data may also evolve over time, 

therefore if a large calibration experiment is deemed useful for several 

input datasets, will this only be the case for a certain period of time? It 

would be valuable to explore this further with multiple input datasets of 

varying origins, as the need to recalibrate models to input data for each 
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new research project uses up considerable amounts of project 

resources. 

7.6 Computational Demand 

The increasing computational demand is a significant challenge in 

hydrological research. As datasets are produced in higher spatial and 

temporal resolution, and as models become increasingly complex to 

best represent the physical world, advances in computing technology 

struggle to keep up with the demand. Many institutions now make use 

of high performance computer (HPC) clusters, such as the one at 

Nottingham used for this research, which consist of multiple computers 

connected in a network that can run iterative or batch computations in 

parallel and provide storage for large datasets. The cluster used in this 

study consisted of a total of 2,656 CPU compute cores capable of 

running at over 46 teraFLOPS. The cluster at Nottingham, known as 

Minerva, cost approximately £1 million to set up, and costs around 

£150,000 per year to maintain. This cost is well justified by the 

widespread use of the cluster from a broad variety of research fields 

across the university, and is easier to maintain than several facilities 

spread across several sites. Clusters at other universities vary in size: 

e.g. the 2,340 core Darwin Cluster at the University of Cambridge 

(University of Cambridge, 2009), the 800 core Aquila cluster at the 

University of Bath (Chapman, 2013), and the 208 core ALICE cluster at 

University of Leicester (University of Leicester, 2015).  

Outside of universities, research institutions also have clusters. A good 

example is the JASMIN facility, funded by the Natural Environment 

Research Council (NERC) and the UK Space Agency (UKSA), which 

provides 3,500 compute cores and 13 petabytes of fast parallel disk 

storage (Bennett et al., 2014) for research by NERC scientists. So, 

whilst not all scientists have access to such systems as used in this 

study, high performance computing clusters are becoming increasingly 

popular. This means that the bar is set high for scientific research, and 
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that multiple model runs for model calibration can be expected, as well 

as multi-model ensembles for the assessment of model uncertainty. 

7.7 Sensitivity Analysis – Model Emulation 

The parameters of the Mac-PDM.14 model were investigated (see 

chapter 5) to determine whether any trends could be identified in the 

GLUE results that would indicate whether parameter values for different 

catchments could be linked to catchment characteristics. It was 

determined that no firm conclusions could be drawn from the results, 

which indicated issues with parameter insensitivity and equifinality, 

which in turn suggests that the Mac-PDM.14 model is over-

parameterised. Methods of exploring this further were discussed with 

several statisticians and it was decided that the best route forward in 

this situation would be to use model emulation. Model emulation derives 

statistical relationships between model input and output in order to 

simulate huge numbers of model runs without actually running the full 

model. This is necessary in computationally demanding climate models, 

and allows the modeller to explore the parameter space in detail and to 

carry out a variance based sensitivity analysis (Saltelli et al., 2000). 

Lee et al. (2011) describe the processes involved in Gaussian process 

emulation, the steps of which are summarised in Figure 7.1. O’Hagan 

(2006) provide a tutorial of the BACCO approach (Bayesian Analysis of 

Computer Code Outputs) to quantifying, analysing and reducing model 

uncertainty using Gaussian process model emulation, aimed at non-

mathematicians. In this study, despite having already run 100,000 

model runs, it was estimated that it would take approximately three 

months to derive a Gaussian emulation model for just one catchment 

and so this investigation was deemed outside the scope of this study. 

With increases in computing power this sort of thorough investigation is 

likely to be possible in the near future. If it were possible, the outputs of 

model emulation can bring great insight to the modeller. Sensitivity 

analysis of the emulations can produce spatial information about the 
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most important sources of uncertainty in model output (Lee et al., 

2013).  

Parameters can be ranked in order of importance for each area, and 

their contribution to uncertainty in the model output can be quantified 

over time. An example of the potential outputs from such a study is 

shown in Figure 7.2, where the results from a model emulation 

experiment on a global aerosol processes model (GLOMAP-mode) on 

the sensitivity of model inputs to CCN output are presented. This sort of 

analysis is a significant breakthrough in parameter uncertainty 

assessment; and in physically based models it enables efficient 

visualisation of the effects of specific physical processes on model 

output processes. 

7.8 Climate Change Projections and the Cascade of 

Uncertainty 

The opportunity of investigating the impacts of parameter uncertainty on 

climate change impacts projections is one potential next step. Having 

assessed the parameter uncertainty of the Mac-PDM.14 model, and 

validated the top selected parameterisations with alternative input 

climate data over a historic period, it would be a novel next step in 

global hydrology modelling to assess how this parameter uncertainty 

contributes to runoff projections under different climate projections. 

Parameter uncertainty in catchment hydrology model projections has 

been researched (e.g. Wilby, 2005, Wilby and Harris, 2006), as has 

global multi-model uncertainty on projections (Haddeland et al., 2011), 

but parameter uncertainty contribution to climate impacts projection 

uncertainty from global hydrology models has yet to be addressed.  
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Figure 7.1 Flow chart of the basic steps in an emulation study. After Lee et 

al. (2011). 

 

Figure 7.2 Example of the possibilities of model assessment outputs using 

model emulation (taken from Lee et al., 2013). “Time series of mean emulator 
predicted CCN concentration with 2σ error bars (top graphs) and the main 
effect sensitivities (the percentage of CCN variance due to each parameter) 
(bottom graphs) across the year 2008 for different locations. Parameters with 
main effect < 5% are shown in grey. The white space filling the bars to 100% 
shows the fraction of variance due to interactions between the parameters, 
since with no interactions the main effect sum to 100%” (Lee et al., 2013). 
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Wilby and Dessai (2010) presented a ‘cascade of uncertainty’ that 

demonstrated the propagation of uncertainty from climate scenarios, 

through greenhouse gas emissions, climate models, regional scenarios, 

impacts models, and local impacts, to adaptation responses (see Figure 

7.3). This cascade is a ‘top-down’ assessment of climate risks and has 

a long history, beginning with the “CO2 Pyramid” (Schneider, 1983). 

This was developed into the “uncertainty explosion” (see Figure 7.4) 

(Schneider and Kuntz-Duriseti, 2002) which was presented in the IPCC 

Third Assessment Report (McCarthy, 2001). Hawkins (2014) adopted 

the visualisation from Wilby and Dessai (2010) and applied it to the 

work of CMIP5 using actual data (see Figure 7.5). This study used three 

cascade levels to represent 1) the emissions pathway – the 

Representative Concentration Pathways (RCPs), 2) the different climate 

model results from the same forcing, and 3) the role of internal climate 

variability resulting from multiple realisations from the same forcing 

pathway (Hawkins, 2014). The same approach has also been applied to 

sea-ice extent from CMIP5 in Swart et al. (2015).  

When impacts models are taken into account, the cascade by 

(Hawkins, 2014) represents only the first few levels of the cascade, and 

hydrology models and their realisations can be added as two additional 

levels to the bottom of this cascade. Alternatively, in an individual study 

of hydrology model uncertainty, the same cascade could be applied 

with the different climate model inputs in the place of the RCP input 

presented here. This cascade concept is a novel idea for easily 

interpretable presentation of uncertainty in complex multi-scenario, 

multi-model and multi-realisation climate projection studies. 

7.9 Presenting Uncertainty 

In addition to quantifying uncertainty, presenting uncertainty is a 

significant challenge in scientific research. The way in which scientific 

results are presented to decision makers determines which party is 

taking the most risk.  
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Figure 7.3 The Cascade of Uncertainty (taken from Wilby and Dessai, 2010). 

“A cascade of uncertainty proceeds from different socio-economic and 
demographic pathways, their translation into concentrations of atmospheric 
greenhouse gas (GHG) concentrations, expressed climate outcomes in global 
and regional models, translation into local impacts on human and natural 
systems, and implied adaptation responses. The increasing number of 
triangles at each level symbolise the growing number of permutations and 
hence expanding envelope of uncertainty. For example, even relatively 
reliable hydrological models can yield very different results depending on the 
methods (and observed data) used for calibration” (Wilby and Dessai, 2010). 

 

Figure 7.4 The “Uncertainty Explosion”. The ranges in major uncertainties 

typical in impact assessments, multiplies to encompass a comprehensive 
range of future consequences, including physical, economic, social, and policy 
responses (Modified after Jones (2000) and the “cascading pyramid of 
uncertainties” in Schneider (1983). 
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Figure 7.5 CMIP5 Cascade of Uncertainty for global mean surface 

temperature over different time period (Hawkins, 2014). “The three levels of 
the pyramid highlight the uncertainty due to choice of RCP, GCMs and 
realisation of climate variability. Unfortunately not all the simulations have 
multiple realisations, resulting in a vertical line in the lowest layer. The 
intersection on the top row for each time period is the multi-scenario, multi-
realisation mean” (Hawkins, 2014). 

Decision makers prefer to receive a single estimate such as a multi-

model mean, which places the risk with the scientist. Scientists 

however, prefer to present their results with a range of uncertainty and 

allow the decision makers to make their decisions with as much 

information as possible, therefore placing the risk with the decision 

maker. So what is the best compromise? 

There are many blogs dedicated to visualising uncertainty (e.g. 

www.visualisingdata.com, 

www.understandinguncertainty.org/visualising-uncertainty) as well as 

several blog posts on wider data science blogs. Probabilistic 

http://www.visualisingdata.com/
http://www.understandinguncertainty.org/visualising-uncertainty
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representations are commonly in use now, as they present the full 

range (or as far as can be estimated) of uncertainty, whilst maintaining 

a best estimate for the decision maker. Spiegelhalter et al. (2011) 

examine the success of graphic visualizations for communicating 

probabilities to a wider public. This research made use of graphs that 

displayed the best estimate, bounded by shaded areas that gave a 

range of uncertainty from a suite of top performing models. Due to the 

size of the ensemble developed in this study, there was difficulty in 

employing methods that displayed the full ensemble, especially as even 

the matrices of data for 21 catchments were too large to be stored in 

the memory of a desktop computer for analysis and plotting. 

If this were not the case, fan graphs would have been a good option, 

which show the mean with shading indicating ranges of uncertainty. Fan 

graphs have originated from economic forecasts, an example of which 

is shown in Figure 7.6. This type of graph is an improvement on the 

‘spaghetti’ graph that just plotted individual lines for each model 

forecast. In a blog post about visualising data uncertainty, Krusz (2013) 

present a shaded alternative to error bars, which provides more 

information about the uncertainty distribution about the point. Examples 

of such plots are given in Figure 7.8. This idea could be extended to line 

graphs, with some interpolation to present uncertainty that may not be 

evenly distributed for all data points. 

One recent advance in uncertainty presentation in mapping was the 

progression from stippling areas where models agree, to increasing the 

saturation of colour where there is more confidence. This technique was 

introduced in 2014 as part of the Inter-Sectoral Impact Model 

Intercomparison Project (ISI-MIP), and this method was published just 

after the IPCC 5th Assessment Report.  Figure 7.9 shows the difference 

in clarity between the IPCC and the ISI-MIP techniques. Whilst the 

stippling and hatching in the IPCC map in Figure 7.9a gives additional 

information to the ISI-MIP saturation map, the hatching and the stippling 
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indicate degrees of uncertainty and confidence respectively (by 

assessing the multi-model mean change in relation to internal 

variability). The saturation map is much easier to read and the results 

are apparent even without the need to consult the caption. In the 

saturation map, the areas of colour with the deepest saturation stand 

out, such as the increase in runoff that can be seen in arctic regions 

and the decrease in runoff in the Mediterranean, whilst the areas that 

are less certain are shown in paler colours, which give the immediate 

impression of uncertainty. Another advantage of the saturation 

technique is that small localised areas of certainty can still be displayed, 

where a single dot using the stippling approach might be missed by the 

reader.   

 

Figure 7.6 Fan Chart of GDP projections from the Bank of England (taken 

from Bank of England, 2015). The distribution to the left of the vertical dashed 
line reflects the likelihood of revisions to the data over the past. Over the 
forecast period, the distribution reflects the uncertainty over the evolution of 
GDP growth. If economic circumstances identical to today’s were to prevail on 
100 occasions, the MPC’s best collective judgement is that the GDP growth 
would lie within the darkest central band on only 10 of those occasions. In any 
particular quarter of the forecast period, GDP growth are expected to lie 
somewhere within the fan on 90 out of 100 occasions. And on the remaining 
10 out of 100 occasions they can fall anywhere outside the coloured area of 
the fan chart. This has been depicted by the light grey background. 
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Figure 7.7 Fan and bar charts combined: Global temperature changes and 

uncertainty (taken from Knutti and Sedlacek, 2013). Global temperature 
change (mean and one standard deviation as shading) relative to 1986-2005 
for the RCP scenarios run by CMIP5. The number of models is given in 
bracket. The box plots (mean, one standard deviation, and minimum to 
maximum range) are given for 2080-2099 for CMIP5 (colours) and for the 
MAGICC model calibrated to 19 CMIP3 models (black), both running the RCP 
scenarios. Copyright licence granted. 

 

 

Figure 7.8 An alternative to error bars (Krusz, 2013). a) Normally distributed 

uncertainty with high variance. b) Normally distributed uncertainty with lower 
variance. c) Uniformly distributed uncertainty. 

a b 

c 
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Figure 7.9 Presenting uncertainty in maps: stippling to saturation. a) Change 
in annual mean runoff relative to the reference period 1986-2005 projected for 
2081-2100 from the CMIP5 ensemble for RCP8.5. Hatching indicated regions 
where the multi-model mean change is less than one standard deviation of 
internal variability. Stippling indicates regions where the multi-model mean 
change is greater than two standard deviations of internal variability and 
where at least 90% of the models agree on the sign of change. (Collins et al., 
2013) b) Relative change in annual discharge at 2oC compared with present 
day (1980-2010 average), under RCP8.5. Colour hues show the multi-model 
mean change, and saturation shows the agreement on the sign of change 
across all GHM-GCM combinations (percentage of model runs agreeing on 
the sign of change) (Schewe et al., 2014).  

a 

b 
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One final consideration in the presentation of scientific data that is re-

entering discussions is that of colour itself. Colour blindness affects 

between 5 and 10% of men and 0.5% of women, and red-green colour 

blindness (deuteranopia) is the most common (Hawkins, 2015) (see 

Figure 7.10).  Discussions of colour blindness in science have been 

ongoing for more than a decade, and Light and Bartlein (2004) 

highlighted the perception of rainbow scales by viewers with protanopic 

vision (see Figure 7.11).  

Presenting uncertainty is both an important challenge, and an 

opportunity for scientists. It is essential to be able to present information 

on the uncertainties inherent in modelling studies, whilst avoiding 

undermining the message of the research results. Producing a quickly 

interpretable graphic is often required in science communication with 

both peers and public, and it can be incredibly rewarding. Yet the 

complexity of many scientific studies make producing such graphics a 

significant challenge. 

 

Figure 7.10 Simulation of deuteranopic vision of a colour wheel (taken from 

Hawkins, 2015). 
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Figure 7.11 Simulation of protanopic vision of a rainbow scaled map. Air 

temperature anomalies (1971-2000 mean) for January 1998, during an El Niño 
event (taken from Light and Bartlein, 2004). 

7.10 Deeper into the Roots of Uncertainty 

Presenting uncertainty becomes more complex when different sources 

of uncertainty are taken into account. The cascade of uncertainties in 

the CMIP5 project presentation (see Figure 7.5) is a good start towards 

making the full range of model uncertainty clear, and helping the reader 

determine what levels of uncertainty are associated with each part of 

the modelling process. There are many more aspects of uncertainty that 

need to be addressed in modelling studies though, before it can be said 

that we have a full understanding of uncertainty in hydrological 

modelling. A few examples of these include the choice of climate model 

to use as climate input, the choice of potential evapotranspiration 

equation used, climate modelling techniques (e.g. downscaling 

methods, boundary conditions etc.), the choice and integrity of 

abstraction data if it is used, and routing methods that may be 

employed to simulate the translation of runoff to river discharge.  

To return to the analogy of the tree of uncertainty, as presented in 

Chapter 1.5, these options and decisions along the path of a modelling 
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study can be seen as an incredibly dense network of roots at the base 

of a tree, where each choice and subsequent combination leads to a 

different leaf at the top of the tree. The huge variety of models available 

for both climate input and hydrology modelling, alongside the plethora 

of techniques of analysis and evaluation, provide hydrological scientists 

with a veritable forest of possibilities. Whilst all combinations cannot 

possibly be explored, comparative studies such as parameter 

experiments and multi-model ensembles help us understand the 

impacts of the choices that are made in scientific investigations.  



 

 
 

 

 

 

8 Chapter Eight: 

Conclusions 
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8.1 Introduction 

Global hydrology modelling has advanced rapidly over the last two 

decades since its inception. Emerging into a research field of their own, 

global hydrology models offer large scale simulations of water 

resources that have not previously been possible. Many global 

hydrology models are now in widespread use, and whilst a few studies 

have investigated aspects of model uncertainty by comparing these 

models, the uncertainties within global hydrology models have 

remained un-investigated. This study aimed to “address the issue of 

uncertainties within a global hydrology model by analysing parameter 

uncertainties”. This was carried out using the Mac-PDM global 

hydrology model for a set of 21 large river catchments across the globe. 

Mac-PDM.09 was updated using recent land cover mapping products, 

and a more comprehensive classification of soil texture. The model 

update was renamed Mac-PDM.14, and this model was taken forward 

for use in addressing the aim of this thesis. 

8.2 Research Questions 

The three main research questions posed are reviewed here. 

Research Question 1: How can uncertainties within global 

hydrology models be assessed and quantified? 

Methods of investigating parameter uncertainty within global hydrology 

models were reviewed (Chapter 3). Simple techniques such as One-At-

a-Time (OAT) sensitivity analysis were considered alongside more 

rigorous methods such as Generalised Likelihood Uncertainty 

Estimation (GLUE), and Bayesian Recursive Estimation (BaRE) which 

vary several parameters simultaneously. There are numerous 

techniques available, but all centre on the same principal steps:  

1.  choosing parameters to investigate,  

2.  sampling defined ranges of the parameters,  
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3.  running the model with the sampled parameters,  

4.  comparing the model output(s) with the observed record, and 

5.  determining whether the set(s) of parameters is/are either 

acceptable or optimal 

Some of the uncertainty analysis techniques are recursive, using ‘hill 

climbing’ methods to seek a better set of parameters using the 

knowledge gained from the previous model run(s) (e.g. Shuffled 

Complex Evolution Metropolis Algorithm). Others, such as GLUE, use 

random or near-random sampling techniques to run samples of the 

entire parameter space simultaneously, assess the model performance 

once all simulations have been completed, and then determine which, if 

any, of the parameter sets are acceptable. There remains debate in the 

literature between these techniques, as GLUE theorists suggest that 

there is unlikely to be only one optimal solution, and therefore hill 

climbing techniques may lead to a perceived optimal parameter set that 

may actually be matched, or indeed exceeded, elsewhere in the 

parameter space.   

Three uncertainty techniques were employed in this study using the 

Mac-PDM model: OAT sensitivity analysis, GLUE, and Approximate 

Bayesian Rejection. The One-At-a-Time sensitivity analysis cannot 

quantify the parameter uncertainty of the model as a whole, as it cannot 

account for parameter interactions from non-independent parameters. 

However, sensitivity analysis can inform the modeller about the relative 

importance of a parameter within a model. In the Mac-PDM model, it 

was found that the soil parameters were the most sensitive, whilst the 

routing parameters were the least sensitive. This does provide some 

information on model uncertainty though, as it shows that in this case 

the soil parameters are the most uncertain, and therefore need to be 

carefully considered in the model calibration process. 

The Generalised Likelihood Uncertainty Estimation experiment carried 

out on Mac-PDM.14, used a few alternative methods to the original 
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GLUE technique. 100,000 parameter perturbations were sampled using 

a Latin Hypercube Sampling technique. This sampling technique is 

more efficient than the Monte-Carlo random sampling that is 

traditionally used in GLUE analysis, and so allowed for fewer 

simulations to be run. This was important, as all 123 of Mac-PDM.14’s 

parameters were included in this GLUE experiment. The parameters 

were sampled from prior distributions which were determined from the 

literature using the @RISK software package. The Mean Absolute 

Relative Error (MARE) measure was used to assess the models 

performance with each parameter set.  

From the 100,000 model runs, the best parameter set gave a MARE of 

0.9, or an average error of 90% over all 21 catchments, but when the 

Murray Darling and Nile catchment were excluded, where the model 

performed particularly badly, the best model parameterisation had a 

MARE of 0.47 or 47%. The previous version of Mac-PDM, before the 

GLUE experiment, and before the update of the land cover and soil 

maps (Mac-PDM.09) scored a MARE of 1.04 (104%) over the 19 study 

catchments excluding the Murray Darling and the Nile. This shows that 

not only can a GLUE experiment assess and quantify the uncertainty of 

a model, it can also significantly improve the models performance.  

Of the 100,000 model runs, 2 parameterisations scored a MARE <0.5, 

1,238 scored a MARE <0.75, and 25,532 scored a MARE <1. The 

ranges of the model outputs from these parameterisations were plotted 

against the model results from 9 Global Hydrology Models (GHMs) from 

a multi-model ensemble (MME) - the EU-WATCH project. This 

demonstrated that the range of model outputs with a MARE <0.75 was 

comparable to the range from the choice of GHM, demonstrating that 

parameter uncertainty can easily be as large as structural uncertainty, 

but that it depends on the limits of acceptability adopted by the modeller 

(if only models with a MARE<0.5 were determined as acceptable, then 

the range of model output is much smaller than that of the MME). An 
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additional important result here, was that the MARE of the top 

performing Mac-PDM.14 model parameterisation was lower than that of 

all of the GHMs that participated in the EU-WATCH project, whilst the 

previous version of the model (Mac-PDM.09) ranked 6th out of 9 in the 

MARE scores of the GHMs. 

The Approximate Bayesian Rejection method was used to determine 

whether any trends could be found in the parameter values of the top 

ranking model runs. The top 1,000 of the 100,000 model 

parameterisations (the top 1%) were used in this investigation. The prior 

distribution of the parameters were compared to the posterior 

distribution of the 1,000 top model parameterisations. 

This technique was applied to determine whether any trends could be 

seen in the catchment specific results, and to ascertain whether there 

were groups of climatically similar catchments showing trends towards 

similar parameter values. Some differences between catchments were 

identified for a few of the model parameters, but the results could not 

easily be attributed to climatic regime, latitude or hydrological 

characteristics. Many of the parameters appeared to be insensitive to 

perturbations, which suggested that the Mac-PDM model is over-

parameterised.  

Mac-PDM.14 was then validated using an alternative input dataset from 

another MME experiment (ISI-MIP). This was an important exercise, 

because it would conclude whether the extensive uncertainty estimation 

experiment, and subsequent calibration of the model, would remain an 

improvement on the model performance when applied to a different 

modelling exercise. The results showed that the top performing model 

parameterisation from the 100,000 GLUE simulations scored better 

when run with the alternative (ISI-MIP) input data than the calibration 

(WATCH) input data, with MARE scores of 0.45 and 0.47 respectively. 

Again, Mac-PDM.14 scored better than all of the other models in the 
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ISI-MIP ensemble, when Mac-PDM.09 came 6th out of the 10 MMEs in 

a ranking of MARE scores.   

These findings showed that alongside uncertainty assessment and 

quantification, significant improvements in model performance can be 

made. However, there remains more work to be done on understanding 

how and why these sets of identified parameter values improve the 

models performance so significantly. 

The potential improvement in a models outputs from an exercise such 

as the one carried out in this thesis provides a great incentive for 

modellers to consider this type of assessment when employing their 

models.  

Research Question 2: What is the feasibility of including rigorous 

uncertainty estimation experiments in the global hydrology model 

calibration process? 

This research question was addressed (in Chapter 4.6) using a set of 

GLUE experiments of different sizes. Due to the large number (123) of 

model parameters being considered in this study, 100,000 model 

parameterisations were run in the main GLUE experiment that was 

used in the various analyses for the main aim of this thesis. However, 

this required significant computational resources. GLUE ensembles of 

10,000, 5,000, and 1,000 model parameterisations were also 

undertaken. The same sampling method was employed for each, and 

MARE was used to assess the model outputs over the 19 study 

catchments.  

The distribution of the MARE scores across the range of 

parameterisations was very similar between the different sample sized 

experiments, which demonstrated that with a smaller sample size, the 

modeller is not less likely to obtain a ‘good’ model parameterisation, but 

he may obtain fewer ‘good’ model parameterisations. For example, in 

the 100,000 sample experiment, 1,238 model parameterisations scored 
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a MARE <=0.7, whilst for the 1,000 sample experiment, only 6 

parameterisations scored <=0.7. This indicates that if a modeller were 

happy with a model with a MARE of 0.7, then perhaps only 1,000 model 

parameter perturbations might suffice to achieve a good model. 

However, for a MARE <=0.5, 2 models parameterisations from the 

100,000 sample ensemble achieved this score, whilst no 

parameterisations from the 10,000, 5,000 or 1,000 sample experiments 

could. Furthermore, if a modeller was trying to consider the uncertainty 

in their model parameters, the ranges of model outputs from the models 

scoring a MARE less than a certain threshold is significantly affected by 

the experiment sample size. Whilst the top ranking model output is very 

similar, the range of outputs from models scoring <0.75 is much larger 

from a sample size of 100,000, than it is for a sample size of 1,000. This 

might give modellers that use a small sample sized experiment false 

hope that the range of their uncertainty is smaller than a modelling 

experiment that used a larger sample size. 

The implication of this is that a modeller should carry out as many 

parameter perturbations as they can afford, in order to get as good a 

grasp on the true range of the parameter uncertainty of their model. 

Valuable further research could be carried out (ideally using a model 

with fewer parameters), to determine whether the range of model 

outputs converges with increasing sample size.  

Access to high performance computing is rapidly increasing, so 

investigations such as this, should be accessible to most modellers 

globally. 

Research Question 3: To what extent are “global” hydrology 

models fit for purpose? 

Global hydrology models have been available since 1989, with an 

increase in focus and complexity during the 21st century. Model 
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evaluations that have been carried out on catchment models have not 

yet been widely applied to global models.  

How can models be evaluated and validated? 

Evaluation of the uncertainty in global hydrology models was 

considered above. In order to be calibrated, observed data is usually 

required, and in this thesis observed discharge records for the chosen 

study sights were obtained from the Global Runoff Data Centre, the 

Bangladesh Water Development Board, and the United States 

Geological Survey. This data allowed the model to be calibrated 

‘globally’ using an average of the Mean Absolute Error of the models 

outputs across these catchments. However, data is not available for all 

catchments worldwide, so the model’s performance in other catchments 

may not be optimal. A global calibration of the model (see chapter 5) 

also requires a trade-off in the results of each catchment, and it was 

found in this model that the Amazon catchment performed badly as a 

result of the model calibration. Model validation can be carried out by 

examining the models performance over a different time period, or, as 

here, by applying the model using a different input climate dataset. In 

this study, Mac-PDM.14 was found to perform very well with an 

alternate input dataset, thus endorsing the results of the model 

calibration. 

How do global hydrology models perform in a catchment context? 

Global calibrations of Mac-PDM.14 have been evaluated in a catchment 

context (chapter 4), whilst the potential application of catchment specific 

calibrations of the model have been considered (chapters 5-6). The top 

20 global model calibrations from the 100,000 model parameterisation 

experiment were compared to the top 20 catchment specific 

calibrations. The catchment specific calibrations were shown to provide 

significant improvement in the model performance in all study 

catchments. In several catchments where the global model calibrations 
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performed well, the range of the top 20 calibrations was significantly 

reduced from the catchment calibrations compared to the range of the 

global calibrations, which shows a reduction in uncertainty in catchment 

calibrated model simulations. The natural variability of the catchments 

was taken into account using the observed record, which further 

confirmed the merits of employing catchment calibrations of the model. 

This is a novel concept in global hydrology modelling, as the aim of a 

global model is to enable the model to be employed worldwide without 

the need to recalibrate to each catchment. However, global models are 

regularly applied to catchment scale research problems, particularly in 

large ‘global scale’ catchments, and the significant improvement in the 

model performance with catchment specific calibration demonstrates 

the potential merit of this approach. In this study, just 21 catchments 

were considered, however the 100,000 model runs used in this 

experiment were run at the global scale and the catchment average 

runoff was extracted. Therefore, with the retention of the model outputs 

from the 100,000 parameterisation ensemble, any catchment where 

observed data can be obtained, can be calibrated very quickly indeed. 

This would be significantly faster than calibrating a catchment model, 

and the results would be better than the globally calibrated model 

realisation. Where observed data cannot be found however, the global 

calibration can be applied, and from this experiment, the global 

calibration of Mac-PDM.14 is known to perform significantly better than 

the previous version of the model (Mac-PDM.09), which is due to the 

rigorous calibration procedure employed. This global calibration could 

also be iteratively updated as more catchments are added to the 

repertoire of the models applications, covering more areas of the globe. 

Where truly global scale applications of the model are required, there 

could be the potential to ‘stitch together’ the catchment calibrations of 

the model, where they are available, and the global calibration of the 

model where it is not. This would alleviate the issue of the reduced 

model performance in catchments such as the Amazon under the global 



Conclusions 277 

 

 

calibration of the model due to the trade-off involved between 

catchments in the global model calibration process. 

Are the uncertainties in global hydrology models acceptable? 

Whether the uncertainties in global hydrology models are acceptable 

depends upon how the models are used. Currently, the results of global 

hydrology models are mostly used within the research community, 

investigating global water resources and potential implications on 

society. GHMs are featured in the significant governmental reports of 

the IPCC, and uncertainty is carefully considered in these reports. 

However, the uncertainty that is presented to date is established from 

multi-model ensembles, and does not consider the uncertainty within a 

GHM, as has been addressed in this thesis. This study has shown that 

parameter uncertainty can be as significant as model uncertainty, so 

this is an important issue in GHM presentation. There is no definition of 

what level of uncertainty is acceptable, though having several different 

GHMs agree on a model result increases confidence. Some definition of 

level of confidence within each model included in a multi-model 

ensemble needs to be considered. The graphs in this thesis, that 

compared a parameter ensemble with the models from the WATCH and 

the ISI-MIP MMEs, is a step towards this. They highlight that following 

the rigorous uncertainty experiment and subsequent calibration of the 

Mac-PDM model, the model performs significantly better than any other 

model in each of the ensembles. If each of the participating GHMs 

carried out this sort of experiment, the results of the MME as a whole 

could be dramatically improved. 

8.3 Further Research 

The findings of this study propose that global hydrology models 

undergo much more rigorous calibration and uncertainty estimation 

before they are employed in multi-model ensembles. It is important to 

first understand the uncertainties within a model before the 
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uncertainties between models are evaluated. However, even this level 

of uncertainty analysis could not address all of the issues that arose in 

the study. The cause of the improvements in model performance with 

certain model parameterisations was not clear, which could have been 

the result of over-parameterisation of the model. Further research in this 

area in the form of model emulation would be valuable. Employing a 

catchment calibration of a global hydrology model has been suggested, 

however it would be an important investigation to compare the 

performance of a catchment model with a catchment calibrated global 

model. Presenting uncertainty is also an important issue in all scientific 

fields, and discussions with the end users of hydrological models over 

the understanding and application of uncertainties in decision making 

exercises would be extremely valuable. 

This study has demonstrated the benefits of carrying out an uncertainty 

experiment and calibration of global hydrology models to a level that 

has not been previously considered. This process has improved the 

Mac-PDM model, from performing centrally within the range of current 

GHMs, to performing significantly better than the others. The cascade 

of uncertainty (see chapter 7) is currently missing one of the levels in 

the cascade in its application to global hydrological science. Research 

methods surrounding the progression of uncertainty analyses in 

catchment hydrological research could be explored to bridge this gap in 

the cascade. The uncertainties in global hydrological models need to be 

better understood, and the methods of assessing uncertainties applied 

here have potential to improve the integrity of global hydrological 

models. 
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Tables A.1-A.9 Mac-PDM.14 Parameter values for the top model calibration 

for each catchment, including a global model calibration. 
Catchment abbreviations are detailed in figure 3.3, land cover classification codes are 
detailed under table 4.5. Soil classifications read as follows: Sa=Sand, LoSa=Loamy 
Sand, SaLo=Sandy Loam, Lo=Loam, SiLo=Silt Loam, Si=Silt, ClLo=Clay Loam, 
SaClLo=Sandy Clay Loam, SiClLo=Silty Clay Loam, SaCl=Sandy Clay, SiCl=Silty 
Clay, Cl=Clay, Li=Lithosols, and Hi=Histosols (Organic). 

T A.1 b delta grout srout xmelt 

Glob 0.14016 0.45757 0.44591 0.78633 2.90955 

Ama 1.68783 0.33573 63.48982 0.01869 3.21013 

AmuD 0.52899 0.01592 203.38471 0.01941 0.06829 

Brah 0.10751 0.00414 0.04708 2.53721 2.74085 

Con 0.90732 0.84094 82.71066 0.00022 4.61507 

Dan 0.11255 0.28031 9.62159 2.86746 2.16181 

Euph 1.80536 0.47914 136.14668 0.00608 3.24252 

Gan 0.11821 0.36105 7.72376 0.12504 0.70960 

Koly 2.27161 0.02000 5.59315 2.31960 1.90494 

LaPla 0.53914 0.42641 185.79728 0.01029 5.01949 

Lena 0.16351 0.01748 5.19359 2.00554 0.50530 

Mek 0.14863 0.72693 0.17829 1.89923 2.81414 

Miss 0.24322 0.134522 110.3278 0.04895 5.96656 

MurD 0.15243 0.53826 42.48102 0.00012 2.65001 

Nig 0.11975 0.49909 0.94046 0.79454 4.44280 

Nile 0.10190 0.42713 45.78040 2.70914 1.01223 

Ob 0.36829 0.59693 107.19559 0.00907 0.13351 

Oka 0.13597 0.38871 13.53619 2.02728 3.68800 

Yang 0.14146 0.07034 179.85346 0.03053 3.09886 

Yell 0.11964 1.15314 0.99580 2.40614 3.69460 

Yen 1.69586 0.05561 18.46418 0.00270 3.00990 

Yuk 3.58583 0.01590 180.39943 0.03065 1.16364 
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