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ABSTRACT

Finding landmarks on objects like faces is a challenging

computer vision problem, especially in real life conditions

(or in-the-wild) and Active Appearance Models have been

widely used to solve it. State-of-the-art algorithms for fitting

an AAM to a new image are based on Gauss-Newton (GN)

optimization. Recently fast GN algorithms have been pro-

posed for both forward additive and inverse compositional

fitting frameworks. In this paper, we propose a fast and exact

bi-directional (Fast-Bd) approach to AAM fitting by combin-

ing both approaches. Although such a method might appear

to increase computational burden, we show that by capital-

izing on results from optimization theory, an exact solution,

as computationally efficient as the original forward or inverse

formulation, can be derived. Our proposed bi-directional

approach achieves state-of-the-art performance and superior

convergence properties. These findings are validated on two

challenging, in-the-wild data sets, LFPW and Helen, and

comparison is provided to the state-of-the art methods for

Active Appearance Models fitting.

Index Terms— Active Appearance Models, Gauss-

Newton, forward additive, inverse compositional, bi-directional

fitting.

1. INTRODUCTION

Active Appearance Models are generative deformable mod-

els of shape and appearance widely used in computer vision

and in particular for face and medical image analysis [1]. Fit-

ting an AAM to a new image is usually formulated as a non-

linear least-squares problem which is typically solved using

iterative methods. State-of-the-art methods for AAM fitting

are based on analytic gradient descent and, in particular, on

Gauss-Newton (GN) optimization [2]. The problem can also

be solved efficiently using fast full-Newton method as pre-

sented in [3].

GN optimization in computer vision goes back to the

classical Lukas-Kanade image alignment algorithm [4] and

the appearance-based tracking framework of Hager and Bel-

humeur [5]. In the context of AAM fitting, GN optimization

was introduced in the seminal work of Matthews and Baker

Fig. 1. Examples of images taken from the LFPW dataset and

fitted with our proposed bi-directional method.

[2]. In this work, the authors proposed a very efficient GN

algorithm for AAM fitting which was coined project-out in-

verse compositional algorithm (POIC). POIC has two main

features: (a) it decouples shape from appearance by pro-

jecting out appearance variations and (b) applies the so-called

inverse composition by computing a warp update in the model

coordinate frame which is then composed to the current warp

estimate. This is in contrast to the standard LK algorithm in

which the warp parameters are updated in a forward additive

fashion. Although being an approximate algorithm, owing

to its efficiency, POIC has become the standard approach for

fitting person specific AAMs.

Following the seminal work of [6], inverse algorithms

have gained increased popularity. Note however that not

all inverse algorithms are computationally efficient. This is

particularly true for the simultaneous inverse compositional

(SIC) algorithm which, albeit exact and very robust, has

a computational cost which is almost prohibitive for most

current systems [7, 8].

Recently, the authors of [9] proposed Fast-SIC, an effi-

cient algorithm for solving the original SIC problem without

resorting to any approximations at all. In the same work, the

authors have shown that one can actually devise a GN for-

ward additive algorithm, called Fast-Forward, which is also

very computationally efficient. In this work, we build upon



[9] to propose an algorithm which simultaneously solves

the forward and inverse problems, and hence is called ”bi-

directional”. Although such an approach might appear to

increase computational burden, we show that one can come

up with an exact solution which is as computationally ef-

ficient as the original forward or inverse formulation. At

the same time, the proposed Fast Bi-Directional approach

achieves state-of-the art performance and superior conver-

gence properties. We verify these findings on two in-the-wild

data sets, namely LFPW [10] and Helen [11]. Finally, we

emphasize that although a somewhat similar Bi-Directional

approach was proposed in [12], our method capitalizes on

optimization theory to provide a both exact and computation-

ally efficient solution. In contrast, the method in [12] is both

inexact and slower.

2. ACTIVE APPEARANCE MODELS

Models. Active Appearance Models are generative models

of shape and appearance. The shape model is obtained by

first annotating the location of u landmarks across a training

set of objects belonging to the same class (e.g. faces in our

case) before normalizing the resulting annotated shapes us-

ing Procrustes Analysis. This step removes variations due to

translation, scaling and rotation. PCA is then performed on

these normalized shapes and the first n shape eigenvectors are

kept as the column of S ∈ R
2u,n to define the shape model,

along with the mean shape s0 ∈ R
2u. A shape can then be

generated from ŝ = s0 + Sp, where p ∈ R
n is a vector

representing the shape parameters. Similarly, the appearance

model is obtained from the texture of the training images,

after appearance variation due to shape deformation has been

removed by warping each texture into the mean shape s0
using the motion model W, which in this work is assumed to

be a piecewise affine warp. After PCA has been applied to all

training shape-free textures, the resulting texture eigenvectors

are stacked as columns of A ∈ R
N,m and the mean texture

is noted A0 ∈ R
N . This constitutes the appearance model

which can be used to generate a texture from Î = A0 +Ac,

where c ∈ R
m is a vector representing the texture parame-

ters. Finally, a model instance is synthesized to represent a

test object by warping a texture instance from the mean shape

s0 to a shape instance s using the piecewise affine warp W

defined by s0 and s. Please see [2] for more details on AAMs.

Objective function. Given the shape and appearance

models, the problem of finding facial landmarks in a new

image can be formulated as finding the shape and appearance

parameters such that a model instance is “close” to the given

image usually in a least-squares sense. This is equivalent to

solving the following non-linear least-squares problem:

argmin
p,c
‖I[p]−A0 −Ac‖2. (1)

We vectorise the computation over all N pixels x of the

image and denote I[p] the warped image I(W(x,p)) rear-

ranged as a vector of size N . The above cost function can be

optimized iteratively using Gauss-Newton in two coordinate

frames. In the forward algorithm, the image I is linearized

around p, an update ∆p is found using least-squares, and p

is updated from p ← p + ∆p. In the inverse algorithm, the

model {A0,A} is linearized around p = 0 using the fact that

W(x;p) is the identity for p = 0. An update ∆p is then

found using least-squares and p is updated in a compositional

fashion p ← p ◦ ∆p−1. Please see [6] for more details on

AAMs.

SIC. At each iteration SIC (Simultaneous Inverse Com-

positional) linearizes (1) with respect to both c and p = 0.

This is equivalent to solving, at each iteration, the following

optimization problem:

arg min
∆p,∆c

‖I−A0 −Ac−A∆c− JT∆p‖2, (2)

where JT ∈ R
N,n is the Jacobian matrix of the template,

JT = J0 +
∑m

i=1 ciJi, with Ji = [Ai,x Ai,y]
∂W(x;p)

∂p
.

Ai,x and Ai,y ∈ R
1,N are the x and y gradients of Ai and

∂W(x;p)
∂p

∈ R
2,n is the Jacobian matrix of the piecewise affine

warp. All of these are defined in the model coordinate frame

for p = 0 and can be pre-computed. One can show that the

cost per iteration for SIC is O((n + m)2N) and hence this

algorithm is very slow [7]. For more detail refer to [9].

POIC. POIC (Project Out Inverse Compositional) re-

duces the cost of SIC by solving (2) in the subspace or-

thogonal to A. Let us define the projection operator P =
E−AAT , where E is the identity matrix. Then, ‖I−A0 −
Ac‖2P = ‖I − A0‖

2
P, where we write ‖x‖2P to denote the

weighted ℓ2-norm xTPx. Based on this, POIC computes an

update for ∆p by optimizing

argmin
∆p
‖I−A0 − J0∆p‖2P. (3)

One can show that solving the above optimization problem

has a cost of O(nN) only [6].

Fast-SIC. Fast-SIC capitalizes on optimization theory

[13]

min
x,y

f(x, y) = min
x

[min
y

f(x, y)] (4)

to solve (2) in a computationally efficient way. Using (4), we

can firstly optimize (2) with respect to ∆c:

∆c = AT (I−A0 −Ac− JT∆p). (5)

Plugging the above into (2), we get

argmin
∆p
‖I−A0 − JT∆p‖2P. (6)

One can show that solving the above optimization prob-

lem has a cost O(nmN + n2N) which is much less than



O((n+m)2N) for the original SIC algorithm [9].

Fast-Forward. Fast-Forward capitalizes on (4) to solve

problem (1) efficiently by linearizing the test image rather

than the model:

arg min
{∆p,c}

‖I+ JI∆p−A0 −Ac‖2, (7)

where p ∈ R
n and JI is the Jacobian matrix of the image I,

JI =
∂I[p]

∂p
∈ R

N,n.

At each iteration, the optimal c is given by

c = AT (I+ JI∆p−A0). (8)

Plugging the above into (7), we get

argmin
∆p
‖I+ JI∆p−A0‖

2
P. (9)

Similarly, one can show that solving the above optimization

problem has a cost O(nmN + n2N) [9].

Bi-directional. In [12], an approximate bi-bidirectional

approach is presented where the similarity parameters are up-

dated in a forward additive fashion while the appearance and

shape parameters are optimised jointly in an inverse compo-

sitional fashion. However, the solution proposed does not use

the structure of the problem resulting in a computationally

complex algorithm in O(N(m + n)2). In addition, the solu-

tion presented is approximate as second order terms are ne-

glected.

3. FAST AND EXACT BI-DIRECTIONAL FITTING

OF ACTIVE APPEARANCE MODELS

In this paper, we propose a fast and exact bi-directional

Gauss-Newton algorithm for AAM fitting by deforming at

each iteration both the image and the template while also

optimising the appearance parameters. To achieve this, we

linearize both the image as in (7) and the template as in (2)

and optimize jointly over all three parameters ∆q,∆p and

∆c:

arg min
∆q,∆p,∆c

‖I+ JI∆q−A0 −Ac−A∆c− JT∆p‖2.

(10)

To solve (10) in a computationally efficient way, we addition-

ally propose to capitalize on

min
x,y,z

f(x, y, z) = min
x

[min
y

[min
z

f(x, y, z)]]. (11)

In particular, we can firstly optimize (10) with respect to ∆c

which yields

∆c = AT (I+ JI∆q−A0 −Ac− JT∆p). (12)

Plugging the result back into (10) gives the following opti-

mization problem:

arg min
∆q,∆p

‖I+ JI∆q−A0 − JT∆p‖2P, (13)

using the projection operator P = E − AAT , where E is

the identity matrix (as specified in the introduction, we write

‖x‖2P to denote the weighted ℓ2-norm xTPx). We go on by

optimizing (13) with respect to ∆q. This gives

∆q = −H−1
q JT

q (I−A0 − JT∆p), (14)

where the projected-out Jacobian and Hessian matrices are

given by Jq = PJI ∈ R
N,n and Hq = JT

q Jq ∈ R
n,n, re-

spectively. Next, we plug (14) into (13), to get the following

optimization problem

argmin
∆p
‖I−A0 − JT∆p‖2R, (15)

where R = P(E−Q) and Q = JqH
−1
q JT

q . The final step is

to optimize (15) with respect to ∆p. This gives:

∆p = H−1
p JT

p (I−A0), (16)

where the projected-out Jacobian and Hessian matrices are

given by Jp = RJT ∈ R
N,n and Hp = JT

p Jp ∈ R
n,n,

respectively. Finally the shape and appearance parameters are

updated as q← q ◦∆p−1 +∆q and c← c+∆c.

The complexity of computing the above updates per iter-

ation is readily given by O(nmN + n2N).

4. EXPERIMENTS

We tested the proposed Fast-Bd algorithm on two very chal-

lenging data sets and compared it to the state of the art for

AAM fitting (Fast SIC and Fast Forward), as well as to [12]

which we implemented. For training, we used the training

set of LFPW data set [10]. For testing, we used the test set

of LFPW and also verified our findings on Helen [11]. For

both data sets, we used the 68-point landmark annotations

provided in [14, 15]. In all cases, fitting was initialized by

the face detector recently proposed in [16]. Finally, we fitted

AAMs in two scales with 7 and 14 shape eigenvectors and 50

and 400 texture eigenvectors, respectively.

We measured fitting accuracy by producing the familiar

cumulative curve corresponding to the percentage of test im-

ages for which the error between the ground truth landmarks

and the fitted shape was less than a specific value. As er-

ror metric, we used the point-to-point error normalized by the

face size [16]. To measure speed of convergence, we consid-

ered that an algorithm converged when

∣

∣

∣

ek−ek+1

ek

∣

∣

∣
< ǫ, with

ǫ ∈ R
∗
+ a convergence threshold and ek the value of the ob-

jective function (‖I−A0 −Ac‖2) at iteration k.



(a) error

(b) convergence

Fig. 2. Results on the LFPW dataset.

Fig.2 shows the obtained results on LFPW. Our bi-

directional version (Fast Bd) performs the same as the Fast-

SIC and better than the Fast-Forward and [12] while converg-

ing much faster. The same can be observed on Helen (Fig.3),

although this time our method performs slightly worse than

the Fast-SIC, but still better than the Fast-Forward and [12].

Again, our method has the fastest convergence rate by far.

5. CONCLUSION

We introduced a new fast and exact way of solving bi-

directionally the AAM problem. We tested our method on

two challenging datasets, compared it to state of the art al-

gorithms for AAM fitting and provided the derivation of

the update rule, as well as the algorithmic complexity. Our

method yields state-of-the-art results while converging much

faster and offering the same computational complexity as the

(a) error

(b) convergence

Fig. 3. Results on the Helen dataset.

Fast-SIC. In the future we aim to combine our Fast-Bd fitting

approach with the generative deformable part model of [17],

explore the use of robust features [18, 19, 20], and try to

apply bidirectional fitting to regression-based methods [21].
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