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Online Learning and Fusion of Orientation Appearance Models for

Robust Rigid Object Tracking

Ioannis Marras, Joan Alabort Medina, Georgios Tzimiropoulos, Stefanos Zafeiriou and Maja Pantic

Abstract— We present a robust framework for learning
and fusing different modalities for rigid object tracking. Our
method fuses data obtained from a standard visual camera
and dense depth maps obtained by low-cost consumer depths
cameras such as the Kinect. To combine these two completely
different modalities, we propose to use features that do not
depend on the data representation: angles. More specifically,
our method combines image gradient orientations as extracted
from intensity images with the directions of surface normals
computed from dense depth fields provided by the Kinect. To
incorporate these features in a learning framework, we use
a robust kernel based on the Euler representation of angles.
This kernel enables us to cope with gross measurement errors,
missing data as well as typical problems in visual tracking
such as illumination changes and occlusions. Additionally, the
employed kernel can be efficiently implemented online. Finally,
we propose to capture the correlations between the obtained
orientation appearance models using a fusion approach moti-
vated by the original AAM. Thus the proposed learning and
fusing framework is robust, exact, computationally efficient and
does not require off-line training. By combining the proposed
models with a particle filter, the proposed tracking framework
achieved robust performance in very difficult tracking scenarios
including extreme pose variations.

I. INTRODUCTION

Visual tracking aims to accurately estimate the location

and possibly the orientation in 3D space of one or more

objects of interests in video. Most existing methods are

capable of tracking objects in well-controlled environments.

However, tracking in unconstrained environments is still an

unsolved problem. The definition of “unconstrained” varies

with the application. For example, in unconstrained real-word

face analysis, the term refers to robustness against appear-

ance changes caused by illumination changes, occlusions,

non-rigid deformations, abrupt head movements, and pose

variations. The approach to be followed is also imposed by

the application as well as the assumed setting. For example,

in surveillance from a static camera, the aim is to roughly lo-

cate and maintain the position of humans usually in crowded

environments; For this purpose, tracking-by-detection with

data association (see for example [5] and the references

therein) has been quite a successful approach for coping

with similar appearances and complicated interactions which
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often result in identity switches. However the usefulness of

such methods for problems such as face tracking in human

computer interaction where accuracy is as significant as

robustness is yet to be fully appraised.

In this work, we are interested in accurately and ro-

bustly tracking large rigid head motions. We focus on the

appearance-based approach to visual tracking which has

been the de-facto choice for this purpose. Popular examples

include subspace-based techniques [4], [9], gradient descent

[22], mixture models [19], [35], discriminative models for

regression and classification [1], [2], [17], [28], and combi-

nations of the above [3], [8], [18], [23], [24], [27].

Our main aim in this work is how to incorporate 3D

information provided by commercial depth cameras such

as the Kinect within subspace-based methods for online

appearance-based face tracking.

Both texture and depth information have advantages and

disadvantages. For example, in contrary to the texture infor-

mation, the depth information is more robust to illumination

changes, while in contrary to the depth information the

texture information is more robust when an object is moving

far from the camera. The depth information can also help to

remove the background information in a scene. Thus, it is

more powerful if those two different kind of information

are combined in a unified framework. In addition, this

combination appears to be very beneficial because on one

hand subspace methods have been remarkably successful for

maintaining a compact representation of the target object

[4], [9], [18], [23] which in many cases can be efficiently

implemented online [8], [21], [24], [27], on the other hand

they appear to be susceptible to large pose variations. The

main reason for this is that, in most cases, object motion is

described by very simple parametric motion models such

as similarity or affine warps while pose variation is in-

corporated into the object appearance. Clearly, it is very

difficult to learn and maintain an updated model for both

pose and appearance. 1 By using 3D information and a

more accurate 3D motion model as proposed in this paper,

pose and appearance are decoupled, and therefore learning

and maintaining an updated model for appearance only is

feasible by using efficient online subspace learning schemes

[21]. Finally, once this subspace is learned, robust track-

ing can be performed by a “recognition-by-minimizing-the-

reconstruction-error” approach, which has been very recently

1One of the ways to work around this problem is to generate a dense
set of object instances in different poses just before the tracking is about to
start; this obviously turns out to be a very tedious process.



shown to be extremely discriminative [26].

The main problem now is how the appearance subspace

can be efficiently and robustly learned and updated when

data is corrupted by outliers. Outliers are common not only

because of illumination changes, occlusions or cast shadows

but also because the depth measurements provided by the

Kinect could be very noisy and the obtained depth maps

usually contain “holes”. Note that subspace learning for

visual tracking requires robustness, efficiency and online

adaptation. This combined problem has been vary rarely

studied in literature. For example, in [27], the subspace is

efficiently learned online using incremental ℓ2 norm PCA

[21]. Nevertheless, the ℓ2 norm enjoys optimality properties

only when image noise is independent and identically dis-

tributed (i.i.d.) Gaussian; for data corrupted by outliers, the

estimated subspace can be arbitrarily skewed. On the other

hand, robust reformulations of PCA [7], [11], [20] typically

cannot be extended for efficient online learning.

Previous methods for face tracking based on 3D informa-

tion require an off-line training process for creating object-

specific models [25], [32]–[34], do not explicitly deal with

outliers [33], do not cope with fast head movements [6],

or require the face to be already detected [13]. Finally,

the question of how to fuse intensity with depth has been

rarely addressed in literature. Although there are attempts

in literature to use both modalities [6], [25], no particular

fusion strategies have been proposed.

Our main contribution in this work is an approach for

learning and fusing appearance models computed from these

different modalities for robust rigid object tracking. To

achieve this task, we propose:

1) to use features that do not depend on the data repre-

sentation: angles. More specifically, our method learns

orientation appearance models from image gradient

orientations as extracted from intensity images and the

directions of surface normals computed from dense

depth fields provided by the Kinect.

2) to incorporate these features in a robust learning frame-

work, by using the recently proposed robust Kernel

PCA method based on the Euler representation of

angles [30], [31]. The employed kernel enables us

to cope with gross measurement errors, missing data

as well as other typical problems in visual tracking

such as illumination changes and occlusions. As it was

shown also in [31], the kernel can be also efficiently

implemented online.

3) to capture the correlations between the learned ori-

entation appearance models using a fusion approach

motivated by the original Active Appearance Model

of [9].

Thus, the proposed learning and fusing framework is

robust, exact, computationally efficient and does not require

off-line training. By combining the proposed models with

a particle filter, the proposed tracking framework achieved

robust and accurate performance in videos with non-uniform

illumination, cast shadows, occlusions and most importantly

large pose variations. Furthermore, during the tracking pro-

cedure the proposed framework, based on the 3D shape

information, can estimate the 3D object pose something

very important for numerous applications. To the best of

our knowledge, this is the first time that subspace methods

are employed successfully to cope with such cumbersome

conditions.

II. ONLINE LEARNING AND FUSION OF ROBUST

ORIENTATION APPEARANCE MODELS

A. Object representations

We are interested in the problem of rigid object tracking

given measurements of the object’s shape and texture. The

shape of the object S is represented by a 3D triangulated

mesh of n points sk = [x y z]T ∈ ℜ3, i.e. S = [s1| · · · |sn] ∈
ℜ3×n. Along with its shape, the object is represented by

an intensity image I(u), where u = [u v]T denotes pixel

locations defined within a 2D texture-map. In this texture

map, there is a 2D triangulated mesh each point of which is

associated with a vertex of the 3D shape.

B. Appearance models

Assume that we are given a data population of m shapes

and textures Si and Ii, i = 1, . . . ,m. A compact way to

jointly represent this data is to use the approach proposed

in the original AAM of [9]: Principal Component Analysis

(PCA) is used twice to obtain one subspace for the shapes

and one for the textures. For each data sample, the embed-

ding of its shape and texture are computed, appropriately

weighted and then concatenated in a single vector. Next,

a third PCA is applied to the concatenated vectors so that

possible correlations between the shape and the texture are

captured. In this work, we follow a similar approach but use

different features and a different computational mechanism

for PCA. Another difference is that we use dense depth

measurements.

There are two problems related to the above approach.

First, it seems unnatural to combine the two subspaces

because shape and texture are measured in different units

although a heuristic to work around the problem is proposed

in [9]. Second, it is assumed that data samples are outlier-

free which justifies the use of standard ℓ2-norm PCA. While

this assumption is absolutely valid when building an AAM

offline, it seems to be completely inappropriate for online

learning when no control over the training data exists at all.

To alleviate both problems, we propose to learn and

fuse orientation appearance models. The key features of our

method are summarized in the next sections.
1) Orientation Features: Azimuth Angle of Surface

Normals. We used the azimuth angle of surface normals.

Mathematically, given a continuous surface z = f(x) defined

on a lattice or a real space x = (x, y), normals n(x) are

defined as

n(x) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

(
−∂f

∂x
,−∂f

∂y
, 1

)T

. (1)

Normals n ∈ ℜ3 do not lie on a Euclidean space but on

a spherical manifold η ∈ S2, where S2 is the unit 2-sphere.



On the unit sphere, the surface normal n(x) at x has azimuth

angle defined as

Φa(x) = arctan
ny(x)

nx(x)
= arctan

∂f
∂y

∂f
∂x

. (2)

Methods for computing the normals of surfaces can be found

in [16].

Image Gradient Orientations. Given the texture I of an

object, we extract image gradient orientation from

Φg(u) = arctan
Gy(u)

Gx(u)
, (3)

where Gx = Hx ⋆ I, Gy = Hy ⋆ I and Hx,Hy are

the differentiation filters along the horizontal and vertical

image axis respectively. Possible choices for Hx,Hy include

central difference estimators and discrete approximations to

the first derivative of the Gaussian.

2) Orientation Appearance Models: Let us denote by

φi the n−dimensional vector obtained by writing either

Φa
i or Φ

g
i (the orientation maps computed from Si, Ii) in

lexicographic ordering. Vectors φi are difficult to use directly

in optimization problems for learning. For example, writing

such a vector as a linear combination of a dictionary of angles

seems to be meaningless. To use angular data, we first map

them onto the unit sphere by using the Euler representation

of complex numbers [31]

e(φi) =
1√
n
[cos(φi)

T + j sin(φi)
T ]T , (4)

where cos(φi) = [cos(φi(1)), . . . , cos(φi(n))]
T and

sin(φi) = [sin(φi(1)), . . . , sin(φi(n))]
T . Note that similar

features have been proposed in [10], but here we avoid the

normalization based on gradient magnitude suggested in [10]

because it makes them more sensitive to outliers and removes

the kernel properties as described in [31]. Using ei ≡ e(φi),
correlation can be measured using the real part of the familiar

inner product [15], [29], [31]

c(ei, ej) , ℜ{eHi ej}

=
1

n

n∑

k=1

cos[∆φ(k)], (5)

where ∆φ , φi − φj . As it can be observed, the effect of

using the Euler representation is that correlation is measured

by applying the cosine kernel to angle differences. From (5),

we observe that if Si ≃ Sj or Ii ≃ Ij , then ∀k ∆φ(k) ≃ 0,

and therefore c → 1.

Assume now that either ei or ej is partially corrupted by

outliers. Let us denote by Po the region of corruption. Then,

as it was shown in [31] it holds
∑

k∈Po

cos[∆φ(k)] ≃ 0, (6)

which in turn shows that (unlike other image correlation

measures such as correlation of pixel intensities) outliers

vanish and do not bias arbitrarily the value of c. We refer

the reader to [31] for a detailed justification of the above

result for the case of image gradient orientations. We assume

here that similar arguments can be made for the case of the

azimuth angles of the surface normals.

A kernel PCA based on the cosine of orientation differ-

ences for the robust estimation of orientation subspaces is

obtained by using the mapping of (5) and then by applying

linear complex PCA to the transformed data [31]. More

specifically, we look for a set of p < m orthonormal bases

U = [u1| · · · |up] ∈ C
n×p by solving

Uo = argmaxU tr
[
UHEEHU

]

subject to (s.t.) UHU = I.
(7)

where E = [e1| · · · |em] ∈ C
n×m. The solution is given by

the p eigenvectors of EEH corresponding to the p largest

eigenvalues. Finally, the p−dimensional embedding C =
[c1| · · · |cn] ∈ C

p×n of E are given by C = UHE.

Finally, we propose to apply the above kernel PCA to

learn orientation appearance models for both azimuth angles

of surface normals and image gradient orientations. More

specifically, we denote by Ea ∈ C
n×m and Eg ∈ C

n×m

the Euler representation of these two angular representations.

Then, we denote the learned subspaces by Ua ∈ C
n×pa and

Ug ∈ C
n×pg and the corresponding embeddings by Ca ∈

C
pa×m and Cg ∈ C

pg×m respectively.

3) Fusion of Orientation Appearance Models: Because

Ua and Ug are learned from data (angles) measured in

the same units (radians), we can capture further correlations

between shapes and textures by concatenating

C = [(Ca)H (Cg)H ]H , ∈ C
(pa+pg)×m (8)

and then apply a further linear complex PCA on C to obtain

a set of pf bases V = [v1| · · · |vpf
] ∈ C

(pa+pg)×pf . Then,

these bases can used to compute pf -dimensional embeddings

B = VHC ∈ C
pf×m controlling the appearance of both

orientation models. To better illustrate this fusing process,

let us consider how the orientations of a test shape Sy and

texture Iy denoted by y = [(eay)
H (egy)

H ]H are reconstructed

by the subspace. Let us first write V = [(Va)H (Vg)H ]H .

Then, the reconstruction is given by

ỹ ≈
[

UaVa

UgVg

]
by, (9)

where

by = VHcy = VH

[
cay
cgy

]
= VH

[
(Ua)Heay
(Ug)Hegy

]
. (10)

Thus, the coefficients by used for the reconstruction in (II-

B.3), are computed from the fused subspace V and are

common for both orientation appearance models as can be

easily seen from (10). Finally, note that, in contrast to [9],

no feature weighting is used in the proposed scheme.

4) Online learning: A key feature of the proposed algo-

rithm is that it continually updates the learned orientation

appearance models using newly processed (tracked) frames.

It is evident that the batch version of PCA is not suitable

for this purpose because, each time, it requires to process

all frames (up to the current one) in order to generate



the updated subspace. For this purpose, prior work [27]

efficiently updates the subspace using the incremental ℓ2
norm PCA proposed in [21]. The kernel-based extension to

[21] has been proposed in [8], however the method is inexact

because it requires the calculation of pre-images and, for the

same reason, it is significantly slower. Fortunately, because

the kernel PCA described above is direct, i.e. it employs the

explicit mapping of (4), an exact and efficient solution is

feasible. The proposed algorithm is summarized as follows

[31].

Let us assume that, given m shapes {S1, . . . ,Sm} or tex-

tures {I1, . . . , Im}, we have already computed the principal

subspace Um and Σm = Λ
1/2
m . Then, given l new data sam-

ples our target is to obtain Um+l and Σm+l corresponding to

{I1, . . . , Im+l} or {S1, . . . ,Sm+l} efficiently. The steps of

the proposed incremental learning algorithm are summarized

in Algorithm 1.

Algorithm 1. Online learning of orientation appearance

model

Inputs: The principal subspace Um and Σm = Λ
1/2
m , a set

of new orientation maps {Φm+1, . . . ,Φm+l} and the number

p of principal components.

Step 1. Using (4) compute the matrix of the transformed

data Em = [em+1| . . . |em+l].
Step 2. Compute Ẽ = orth(E−QQHE) and

R =

[
Σm QHE

0 ẼH(E−QQHE)

]
(where orth performs

orthogonalization).

Step 3. Compute R
svd
= ŨΣm+lỸ

H (where Σm+l are new

singular values).

Step 4. Compute the new principal subspace Um+l =
[Um Ẽ]Ũ.

Finally, for the fusion of the orientation appearance mod-

els, we used the incremental ℓ2 norm PCA proposed in [21].

Overall, the algorithm proceeds as follows. Initially and for

a reasonably small number of frames, all eigenspaces are

generated using the batch mode of the kernel PCA of [31]

and standard ℓ2-norm PCA for the fusion step. When the

algorithm switches to the online mode, then for each newly

tracked frame, algorithm 1 is used to update the orientation

appearance models. The embedding of the new sample is

also calculated which is then used to update the eigenspace

V using the method in [21].

III. MOTION MODEL

The provided 3D shape information enables us to use

3D motion models. In this way, pose and appearance are

decoupled, which we believe that it is crucial for the robust-

ness of subspace-based tracking methods. Given a set of 3D

parameters the shape is first warped by

SW = RφRθRϕS+ tw, (11)

where tw is a 3D translation and Rφ,Rθ,Rϕ are rotation

matrices. The warped shape SW is then used for extracting

surface normals and the corresponding azimuth angles. Fi-

nally, SW is projected using a scale orthographic projection

P to obtain the mapped 2D points u. Overall, given a set

of motion parameters, each vertex sk = [x y z]T of the

object’s shape S is projected to a 2D vertex. Finally, in the

usual way, the texture is generated from the piecewise affine

warp defined by the original 2D triangulated mesh and the

one obtained after the projection. Then, this texture is used

to calculate the image gradient orientations.

When a 3D motion model is used, then during the tracking

procedure the 3D pose of an object can be estimated in each

frame. The 3D pose of the object can be well estimated

if and only if the tracking procedure performs well. Thus,

a good object pose estimation is an indication of a good

tracking procedure. Among the others, in our experiments

we show that our approach can handle real data presenting

large 3D object pose changes, partial occlusions, and facial

expressions without calculation or a-priori knowledge of the

camera calibration parameters. We have thoroughly evaluated

our system on a publicly available database on which we

achieve state-of-the-art performance.

IV. TRACKING WITH ORIENTATION APPEARANCE

MODELS

We combine the proposed fused orientation appearance

models with the 3D motion model earlier described and

standard particle filter methods for rigid object tracking [27].

In general, a particle filter calculates the posterior distribution

of a system’s states based on a transition model and an

observation model. In our tracking framework, the transition

model is described as a Gaussian Mixture Model around

an approximation of the state posterior distribution of the

previous time step:

p(M i
t ,M

1:P
t−1) =

P∑

i=1

wi
t−1N (Mt;M

i
t−1,Ξ) (12)

where M i
t is the 3D motion defined by particle i at time t,

M1:P
t−1 is the set of P transformations of the previous time

step, the weights of which are denoted by w1:P
t−1, and Ξ is a

diagonal covariance matrix. In the first phase, P particles are

drawn. In the second phase, the observation model is applied

to estimate the weighting for the next iteration (the weights

are normalized to ensure
∑P

i=1 w
i
t = 1). Furthermore, the

most probable sample is selected as the state M best
t at time

t. Thus, the estimation of the posterior distribution is an

incremental process and utilizes a hidden Markov model

which only relies on the previous time step.

Finally, our observation model computes the probability of

a sample being generated by the learned orientation appear-

ance model. More specifically, we follow a “recognition-by-

minimizing-the-reconstruction-error” approach, which has

been very recently shown to be extremely discriminative for

the application of face recognition in [26], and model this

probability as

p(yi
t|Mi

t) ∝ e
||yi

t−ỹ
i
t||

2

f
σ , (13)

where ỹi
t is given by (10).



V. RESULTS

Evaluating and comparing different tracking approaches

is a rather tedious task. A fair comparison requires not

only a faithful reproduction of the original implementation

but also tweaking of the related parameters and training on

similar data. In this work, we chose to evaluate the proposed

algorithm and compare it with (a) similar subspace-based

techniques and (b) the state-of-the-art method of [13]. For

the purposes of (a), we used the following variants of the

proposed scheme:

1) 3D motion model + image gradient orientations only.

We call this tracker 3D+IGO.

2) 3D motion model + azimuth angles only. We coin this

tracker 3D+AA.

3) 3D motion model + fusion of image gradient ori-

entations with azimuth angles. This is basically the

tracker proposed in this work. We call this tracker

3D+IGO+AA.

4) 2D motion model + image gradient orientations only.

We call this tracker 2D+IGO.

We additionally used 3D motion model + fusion of pixel

intensities with depth. We coin this tracker 3D+I+D. This

tracker is particularly included for performing comparison

with standard ℓ2-norm PCA methods. A simplified version

of this tracker which uses 2D motion and pixel intensities

only has been proposed in [27].

To compare all above variants of subspace-based track-

ing techniques, we used 3 representative videos. The first

video contains face expressions, the second one contains

extreme face pose variations and illumination variations,

while the third video contains face occlusions with extreme

pose variations. All parameters related to the generation of

particles remained constant for all methods and videos. In

this way, we attempted to isolate only the motion model

and the appearance model used, so that concrete conclusions

can be drawn. Finally, we evaluated all trackers using a

2D bounding box surrounding the face region. This is the

standard approach used in 2D tracking; we followed a similar

approach because of its ease to generate ground truth data

and in order to be able to compare with trackers using

2D motion models. We measure tracking accuracy from

S = 1− #{D∩G}
#{D∪G} , where D and G denote the detected and

manually annotated bounding boxes and respectively, and

#{} is the number of pixels in the set (the smallest S is the

more overlap we have). Table II shows the mean (median)

values of S for al trackers and videos respectively. Fig. 4,5

and 6 plots S for all methods and videos as a function of

the frame number. Finally, Figs. 1,2 and 3 illustrates the

performance of the proposed tracker for some cumbersome

tracking conditions.

By exploiting the 3D motion model, the proposed frame-

work was used to estimate, during the tracking procedure, the

center and the rotation angles of the tracked object in the 3D

space. In order to assess the performance of our algorithm,

we used the Biwi Kinect Head Pose Database [12], [14]. The

dataset contains over 15K images of 20 people (6 females

and 14 males - 4 people were recorded twice) recorded

while sitting about 1 meter away from the sensor. For each

frame, a depth image, the corresponding texture image (both

640x480 pixels), and the annotation is provided. The head

pose range covers about ±75 degrees yaw and ±60 degrees

pitch. The subjects were asked to rotate their heads trying

to span all possible ranges of angles their head is capable

of. Ground truth is provided in the form of the 3D location

of the head and its rotation. In this database, the texture

data are not aligned with the depth data, while in many

videos the problem of the frame dropping exists. Because

of that, we were able to test our method only on 10 videos

in which the misalignment difference in pixels was almost

constant and the number of the dropped frames was quite

small. The best configuration of our method (3D+IGO+AA)

was compared to the state-of-the art method presented in

[13] which is based on discriminative random regression

forests: ensembles of random trees trained by splitting each

node so as to simultaneously reduce the entropy of the class

labels distribution and the variance of the head position and

orientation. The results are given in Table I, where mean and

standard deviations of the angular errors are shown together.

The last column shows the percentage of images where the

angular error was below 10 degrees.

From our results, we verify some of our speculations in

the introduction section. More specifically, from our results

below it is evident that:

1) 3D motion models + subspace learning outperforms 2D

motion models + subspace learning, especially for the

case of large pose variations. This proves our argument

that decoupling pose from appearance greatly benefits

appearance-based tracking.

2) 3D motion models + subspace learning works par-

ticularly well when only learning is performed in a

robust manner. This is illustrated by the performance

of the proposed combinations: 3D+IGO, 3D+AA,

3D+IGO+AA.

3) The proposed fusion scheme 3D+IGO+AA performs

the best among all subspace-based methods and out-

performs even the state-of-the-art method [13]. This

justifies the motivation behind the proposed scheme.

3D+IGO 3D+AA 3D+IGO+AA 3D+I+D 2D+IGO

Video 1 0.1822 0.2645 0.1598 0.8644 0.9221

Video 2 0.1827 0.1572 0.1127 0.2760 0.3912

Video 3 0.2884 0.4254 0.2531 0.9081 0.9001

TABLE II

MEAN (MEDIAN) S VALUES FOR ALL TRACKERS AND VIDEOS. THE

PROPOSED TRACKER IS COINED 3D+IGO+AA.

VI. CONCLUSION

We proposed a learning and fusing framework for multi-

modal visual tracking that is robust, exact, computationally

efficient and does not require off-line training. Our method

learns orientation appearance models from image gradient

orientations and the directions of surface normals. These



TABLE I

EXPERIMENTAL RESULTS FOR THE BIWI KINECT HEAD POSE DATABASE. MEAN AND STANDARD DEVIATIONS OF THE ANGULAR ERRORS ARE

SHOWN TOGETHER. THE LAST COLUMN SHOWS THE PERCENTAGE OF IMAGES WHERE THE ANGULAR ERROR WAS BELOW 10 DEGREES.

Methods Yaw error Pitch error Roll error Direction estimation accuracy

Method proposed in [13] 11±12.1o 9.9±10.8o 9.1±10.1o 81.0%

Our approach 3D+IGO+AA 9.2±13.0o 9.0±11.1o 8.0±10.3o 89.9%

Fig. 1. Tracking examples from the first video. First row: 3D+I+D. Second
row: 3D+AA. Third row: 3D+IGO. Fourth row: 3D+IGO+AA

features are incorporated in a robust learning framework,

by using a robust Kernel PCA method based on the Euler

representation of angles which enables an efficient online

implementation. Finally, our method captures the correlations

between the learned orientation appearance models using

a fusion approach motivated by the original AAM. By

combining the proposed models with a particle filter, the

proposed tracking framework achieved robust and accurate

performance in videos with non-uniform illumination, cast

shadows, significant pose variation and occlusions. To the

best of our knowledge, this is the first time that subspace

Fig. 2. Tracking examples for the second video. First Row: First image:
3D+I+D. Second image: 3D+AA. Second row: First image: 3D+IGO.
Second image: 3D+IGO+AA.

methods are employed successfully to cope with such cum-

bersome conditions.

VII. ACKNOWLEDGEMENTS

The research presented in this paper has been funded

by the European Communitys 7th Framework Programme

[FP7/2007-2013] under grant agreement no. 288235 (FROG).

The work by Maja Pantic is funded by the European Re-

search Council under the ERC Starting Grant agreement no.

ERC-2007- StG-203143 (MAHNOB). The work by Stefanos

Zafeiriou is partially funded by the Junior Research Fellow-

ship of Imperial College London.

REFERENCES

[1] S. Avidan. Support vector tracking. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 26:1064 – 1072, 2004.
[2] B. Babenko, M. Yang, and S. Belongie. Visual Tracking with

Online Multiple Instance Learning. In Computer Vision and Pattern

Recognition (CVPR), pages 983 – 990, 2009.
[3] S. Baker and I. Matthews. Equivalence and Efficiency of Image

Alignment Algorithms. In Computer Vision and Pattern Recognition

(CVPR), pages 1090 – 1097, 2001.
[4] M. Black and A. Jepson. Eigentracking: Robust matching and tracking

of articulated objects using a view-based representation. International

Journal of computer Vision (IJCV), 26:63 – 84, 1998.
[5] M. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and

L. Van Gool. Online multiperson tracking-by-detection from a single,
uncalibrated camera. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 33(9):1820–1833, 2011.
[6] Q. Cai, D. Gallup, C. Zhang, and Z. Zhang. 3d deformable face

tracking with a commodity depth camera. In European Conference on

Computer Vision (ECCV), pages 229–242, 2010.



Fig. 3. Tracking examples for the third video. First row: 3D+I+D. Second
row: 3D+IGO. Third row: 3D+AA. Fourth row: 3D+IGO+AA.

Fig. 4. S value vs the number of frames for the first video. First Row:
First image: 3D+I+D. Second image: 3D+AA. Second row: First image:
3D+IGO. Second image: 3D+IGO+AA.

[7] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component
analysis&quest. Journal of The ACM (JACM), 58(3):11, 2011.

[8] T.-J. Chin and D. Suter. Incremental Kernel Principal Component
Analysis. IEEE Transactions on Image Processing (TIP), 16:1662 –
1674, 2007.

[9] T. Cootes, G. Edwards, and C. Taylor. Active Appearance Models.
IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 23:681 – 685, 2001.
[10] T. Cootes and C. Taylor. On representing edge structure for model

matching. In Computer Vision and Pattern Recognition (CVPR). IEEE,
2001.

[11] F. de la Torre and M. Black. A Framework for Robust Subspace
Learning. International Journal of computer Vision (IJCV), 54:117 –
142, 2003.

[12] G. Fanelli, M. Dantone, A. Fossati, J. Gall, and L. V. Gool. Random
forests for real time 3d face analysis. International Journal of

computer Vision (IJCV), 2012.
[13] G. Fanelli, J. Gall, and L. V. Gool. Real time head pose estimation

with random regression forests. In Computer Vision and Pattern

Fig. 5. S value vs the number of frames for the second video. First Row:
First image: 3D+I+D. Second image: 3D+AA. Second row: First image:
3D+IGO. Second image: 3D+IGO+AA.

Fig. 6. S value vs the number of frames for the third video. First Row:
First image: 3D+I+D. Second image: 3D+AA. Second row: First image:
3D+IGO. Second image: 3D+IGO+AA.

Recognition (CVPR), pages 617–624, June 2011.
[14] G. Fanelli, T. Weise, J. Gall, and L. V. Gool. Real time head pose es-

timation from consumer depth cameras. In 33rd Annual Symposium of

the German Association for Pattern Recognition (DAGM), September
2011.

[15] A. Fitch, A. Kadyrov, W. Christmas, and J. Kittler. Orientation
correlation. In British Machine Vision Conference (BMVC), pages
133–142, 2002.

[16] J. Foley. Computer graphics: principles and practice. Addison-Wesley
Professional, 1996.

[17] H. Grabner, M. Grabner, and H. Bischof. Real-time tracking via on-
line boosting. In British Machine Vision Conference (BMVC), pages
47–56, 2006.

[18] G. Hager and P. Belhumeur. Efficient Region Tracking with Parametric
Models of Geometry and Illumination. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 20:1025, 1998.
[19] A. Jepson, D. Fleet, and T. El-Maraghi. Robust Online Appearance

Models for Visual Tracking. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), pages 1296 – 1311, 2003.
[20] N. Kwak. Principal Component Analysis Based on L1-Norm Max-



imization. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 30:1672 – 1680, 2008.
[21] A. Levy and M. Lindenbaum. Squential Karhunen-Loeve Basis

Extraction and its Application to Images. IEEE Transactions on Image

Processing (TIP), 9:1371 – 1374, 2000.
[22] B. Lucas and T. Kanade. An iterative image registration technique

with an application to stereo vision. In International Joint Conference

on Artificial Intelligence (IJCAI), volume 3, pages 674 – 679, 1981.
[23] I. Matthews and S. Baker. Active Appearance Models Revisited.

International Journal of computer Vision (IJCV), 60:135 – 164, 2004.
[24] I. Matthews, T. Ishikawa, and S. Baker. The Template Update Problem.

IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 26:810 – 815, 2004.
[25] L. Morency, P. Sundberg, and T. Darrell. Pose estimation using 3d

view-based eigenspaces. In Faces & Gesture, pages 45–52, 2003.
[26] I. Naseem, R. Togneri, and M. Bennamoun. Linear regression for

face recognition. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 32(11):2106–2112, 2010.
[27] D. Ross, J. Lim, R.-S. Lin, and M.-H. Yang. Incremental Learning

for Robust Visual Tracking. International Journal of computer Vision

(IJCV), 77:125 – 141, 2008.
[28] A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof. Online

multi-class lpboost. In Computer Vision and Pattern Recognition

(CVPR), pages 3570–3577, 2010.
[29] G. Tzimiropoulos, V. Argyriou, S. Zafeiriou, and T. Stathaki. Robust

FFT-Based Scale-Invariant Image Registration with Image Gradients.
IEEE Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 32:1899 – 1906, 2010.
[30] G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Principal component

analysis of image gradient orientations for face recognition. In Face

& Gesture, pages 553–558, 2011.
[31] G. Tzimiropoulos, S. Zafeiriou, and M. Pantic. Subspace learning from

image gradient orientations. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI), 2012.
[32] T. Weise, S. Bouaziz, H. Li, and M. Pauly. Realtime performance-

based facial animation. ACM Transactions on Graphics, 30(4), 2011.
[33] T. Weise, H. Li, L. Van Gool, and M. Pauly. Face/off: Live facial

puppetry. In SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 7–16, 2009.
[34] R. Yang and Z. Zhang. Model-based head pose tracking with

stereovision. In Face & Gesture Recognition, pages 255–260, 2002.
[35] S. Zhou, R. Chellappa, and B. Moghaddam. Visual Tracking and

Recognition Using Appearance-Adaptive Models in Particle Filters.
IEEE Transactions on Image Processing (TIP), 13:1491 – 1506, 2004.


