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ABSTRACT

In this paper we revise the penalty term of the Bayesian Information

Criterion (BIC). Based on our previous approach to penalize each

cluster only with its corresponding effective sample size - which

we called the Segmental-BIC - we examine a new formula of the

penalty term. The criterion we derive has the appealing property

of the Segmental-BIC, that is it approximates the evidence of over-

all partitions while leading to an autonomous pairwise dissimilarity

measure. We tested our new criterion on two speaker diarization

benchmarks and we report significant increase in accuracy.

Index Terms— Bayesian Information Criterion, Cluster Analy-

sis, Speaker Diarization

1. INTRODUCTION

We concern the problem of text-independent Speaker Diarization

(SD), i.e. the problem of automatically grouping an audio document

(broadcast news, meetings, etc.) into speakers, without knowing a

priori the identities and the number of the participants or using the

transcript. The task is of great importance in many areas of speech

processing, including speaker - adaptive speech recognition, speaker

recognition in broadcast news (BN), enrichment of the transcription

with speaker-level information and others.

Like many other areas in speech processing, the use of Bayesian

Statistics provides us with a solid paradigm for formulating our

prior beliefs and draw inference about the quantities of interest. The

Bayesian Information Criterion (BIC) [1] is an elegant reference

test for model comparison and hypothesis testing and as such it

has been adopted from the SD community as a fundamental cri-

terion for estimating the partition and the number of speakers. A

fundamental property of the BIC is its capacity to approximate the

evidence of overall partitions, using a specific type of priors - the

unit-information priors, [2]. For many inferential tasks, such a prior

is a reasonable choice. For instance, in density estimation using

finite mixture models, the BIC given good results with respect to the

generalization performance [3].

However, the introduction of the Local-BIC and the significant

increase in the SD accuracy it achieved, showed that the original for-

mulation of the BIC in [4], (i.e. the Global-BIC) was far from being

optimal for the SD task. The Local-BIC is an autonomous pair-

wise dissimilarity measure, i.e. the corresponding ∆BIC formula

is completely defined by the sufficient statistics of the two clusters

being examined and their sizes. Nevertheless, the Local-BIC ex-

ists only in ∆BIC formula, meaning that it cannot approximate the

evidence of overall partitions. One can only utilize it to obtain a

point-estimate for the partition, using algorithms that are based on

pairwise distances. As a result, it cannot be regarded as a means to

draw inference about the partition.

To conbine the strengths of the two approaches, the authors proposed

in [5] a new variant, the Segmental-BIC. The idea is to redefine the

priors of the BIC, so that the corresponding ∆BIC becomes au-

tonomous. The results show that the Segmental-BIC is at least

comparable to the Local-BIC and superior to the Global-BIC, espe-

cially in cases where the purity of the clusters counts more that their

coverage. However, the results we demonstrate in this paper show

that even with the baseline formulation of the SD, i.e. change-point

detection followed by the Agglomerative Hierarchical Clustering

(AHC) stage with single-Gaussian densities (see [6]), much better

performance can be attained. The proposed criterion is a new variant

of the Segmental-BIC and is based on the analysis pioneered by Sin

and White in [7] about the properties that a criterion should meet in

order to be consistent.

The outline of the paper has as follows. In Section 2, a brief review

of the BIC is given, and the use of the BIC in SD is discussed. The

Segmental-BIC is presented in Section 3, where the refinement of

the penalty term is introduced. Finally, the criteria are tested against

two benchmark tests and the results are given in Section 4, followed

by some future work directions.

2. BIC, UNIT INFORMATION PRIORS AND SPEAKER

DIARIZATION

2.1. Information Criteria and the rationale for the BIC

Suppose we are given a sample of N observation vectors X =

[x(1), . . . ,x(N)]T , x
(i) ∈ ℜd and we want to infer the true under-

lying model from a predefined set Mj : θ ∈ Θj ⊆ ℜPj , where Pj

denotes the number of free parameters under Mj . If none of them is

the true one (i.e. we are dealing with misspecified models) the analy-

sis is still valid; we should choose the one that has asymptotically the

minimum Kullback-Leibler divergence between the Data Generat-

ing Process and the model. If two or more have the same divergence

asymptotically, we should choose the most parsimonious. The ratio-

nale for the BIC is to approximate the integrated-likelihood (or the

evidence) of the model p(X|Mj) =
R

Θj
p(X|θ,Mj)π(θ|Mj)dθ



by expanding it as a quadratic around its MAP-mode θ̃, a technique

known as the Laplace approximation, [2]. The approximation of

S = log p(X|Mj) yields

S ≈ Pj

2
log 2π − 1

2
log |H̃θ(θ̃)| + l(θ̃|X ) + log π(θ̃|Mj) (1)

where H̃θ(θ̃) is the Hessian of − log p(X|θ,Mj)π(θ|Mj) with re-

spect to θ, evaluated at θ̃. As N grows, the MAP-mode attains the

ML-mode θ̂, assuming some regularity conditions with respect to the

prior. By separating the terms that scale with N from the ones that

do not, the above yields S ≈ SIC + T , where

SIC = l(θ̂|X ) − Pj

2
log N (2)

and

T =
Pj

2
log 2π − 1

2
log |Jθ(θ̂)| + log π(θ̂|Mj) (3)

where we used the decomposition of the observed information with

the expected information Jθ(θ̂) as |Ĥθ(θ̂)| = NPj |Jθ(θ̂)|

(Jθ(θ̂))ij =

Z

p(x|θ̂)
 

−∂2 log p(x|θ̂)
∂θi∂θj

!

dx (4)

has been utilized. The term SIC stands for the Schwarz Information

Criterion. Formally, the BIC is defined as twice the SIC.

2.2. Unit information priors and the tuning parameter

When the prior is not specified, the approximation of S is O(1). If

however the unit-information priors are assumed,

θ ∼ N (θ̂,J−1
θ (θ̂)) (5)

the approximation becomes S = SIC + O(N−1/2), [2]. The in-

terpretation is to form a data-dependent prior utilizing the amount

of information contained in a single observation. Note, also that the

centering of the prior at the ML estimate is rather inadequate for

small sample sizes. In the SD task, a better approach would be to

center the prior of the parameters of each cluster at a (possibly pre-

trained) model that corresponds to a representative speaker of the

same macro-class (i.e. of the same gender - bandwidth - acoustic

environment) with the clusters in question.

Furthermore, note that if N1−λ observations are utilized, the penalty

term of the SIC becomes
λPj

2
log N . Hence, the tuning parameter

can be interpreted as a hyperparameter that controls the variance of

the sample size dependent prior. By placing λ > 1, we stretch the

variance of the prior as N grows so that the observations overwrite

the prior more quickly. For small sample sizes, the prior is more

informative (i.e. of lower variance) because the ML estimate is in

general a poor estimator for the true value of the parameters. In such

cases, a more informative prior may prevent the MAP-estimate from

attaining unrealistic values, due to the small coverage of the range

of phonemes and/or the speech abnormalities. As we show next,

the new version of the Segmental-BIC assumes a prior that becomes

nearly flat as N grows with a much higher rate, yet it always remains

proper, i.e. it integrates to one.

2.3. Speaker Diarization and the use of the BIC

The Global-BIC (7) is a form of BIC suited to cluster analysis. It is

based on the classification integrated log-likelihood (see [3])

l(ϕ̂; s|X ) =

N
X

i=1

log f(x(i)|ϕ̂
s
(i)) (6)

that is the log-likelihood conditioned on a single partition s.

BICG = 2l(ϕ̂; s|X ) − λPin
j log N (7)

We use the notation ϕk = (µk, Σk), k = 1, . . . , K, K = max(s)

to denote the space of the internal parameters ϕ ∈ Φ ⊆ ℜPin
j .

The external parameters α ∈ A ⊆ ℜPex
j correspond to the state

transition probabilities if a HMM topology is assumed. They do not

appear in the formula due to the conditioning on s and the use of flat

priors over the space of allowed partitions, i.e. all the partitions that

comply with the minimum state occupancy duration constrains and

have ascending ordering of the labels for each new speaker entry (i.e.

baseform labeling). Note finally that Pj = Pin
j +Pex

j , Pin
j = KP

and P = d + d(d + 1)/2 if single-Gaussians are used.

From the corresponding ∆BIC of the Global-BIC,

∆BICG = 2 log GLRab − λP log N (8)

where

GLRab =
p(Xa|ϕ̂a)p(Xb|ϕ̂b)

p(Xa∪b|ϕ̂a∪b)
(9)

denotes the Generalized Likelihood Ratio between two utterances

Xa and Xb, one may observe that despite the hard clustering scheme,

its orientation remains the density estimation, i.e. infer K that gen-

eralizes best to unseen data. The dissimilarity measure between

two fixed clusters decreases with the overall sample N , which is

a typical behaviour of complexity criteria that aim to favour com-

pact and robust representations of a data set. However, the task

we are concerned with is rather different. We want to estimate the

speaker-oriented partition; the true number of speakers is estimated

indirectly. Note also that the maximization of the classification

integrated likelihood instead of the posterior of the partition is a

Bayesian procedure that implies uninformative priors over the space

of partitions and not over K. Multiple experiments (e.g. [8]) have

shown that an autonomous dissimilarity measure over the space of

internal parameters, like the Local-BIC,

∆BICL = 2 log GLRab − λP log(na + nb) (10)

is far more accurate in terms of Diarization Error Rate (DER).

The Local-BIC, however, suffers from several limitations explained

above and in [5]. Hence, it cannot be considered as optimal.

3. THE SEGMENTAL-BIC APPROACH

3.1. The key-idea of the Segmental-BIC

As described in [5], a way to merge the two variants is to attach the

following prior to the parameters of the kth cluster

ϕk ∼ N
“

ϕ̂k, nλ−1
k J−1

ϕk
(ϕ̂k)

”

(11)



where

(Jϕk
(ϕ̂k))ij =

Z

p(x|ϕ̂k)

 

−∂2 log p(x|ϕ̂k)

∂ϕi
k∂ϕj

k

!

dx (12)

The above prior leads to the following criterion

BICS = 2l(ϕ̂; s|X ) − λP
K
X

k=1

log nk (13)

This principle of the Segmental-BIC is to utilize the same amount

of information (i.e. n1−λ
k observations) to form the prior for clus-

ters of fixed size, instead of documents of fixed-size. Doing so, the

corresponding ∆BIC formula

∆BICS = 2 log GLRab − λP log
nanb

na + nb
(14)

becomes independent from N . Hence, the Segmental-BIC is a com-

plexity criterion that approximates the evidence of overall partitions

(like the global one), while preserving the pairwise distances (like

the local one).

3.2. The refinement of the Segmental-BIC

We now refine the above penalty term. The analysis is based on [7]

where the consistency of the information criteria is examined. Let

us denote by cn the penalty term of the ∆BIC formula. Let H0

be the null hypothesis that Xa and Xb belong to the same speaker.

Under H0, the most general requirement for weak consistency is

P (n−1/2cn → ∞) = 1, where n = na + nb, i.e. the penalty

term should grow faster than
√

n. Under the alternative hypothesis,

it should grow slower that linearly, so that the difference between

the likelihoods dominates the results. In order to accomplish these

requirements, while retaining the properties of the Segmental-BIC,

we propose the following criterion

BICS
SR = 2l(ϕ̂; s|X ) − λP

K
X

k=1

√
nk log nk (15)

which we name it the Segmental Square Root-BIC. Using straight-

forward calculations, one may verify that the corresponding ∆BIC

formula meets the demands discussed above.

The implied priors have as follows

ϕk ∼ N
“

ϕ̂k, n
λ
√

nk−1

k J−1

ϕk
(ϕ̂k)

”

(16)

meaning that the prior becomes nearly flat very quickly, yet it re-

mains proper. Hence, the inherent in the BIC strategy of centering

the prior at the ML estimate instead of the parameters of a pre-trained

model becomes less important. The rate that the variance of the prior

grows with nk is what counts, at least for moderate sample sizes.

4. EXPERIMENTAL RESULTS

The experiments are based on the 2002 NIST Rich Transcription set

(NIST-02) and the ESTER SD benchmark. The algorithm we use

is the step-by-step approach described in [9]. All the criteria are

provided with the same segmentation file in order to focus on the

AHC stage. Note that the results are better compared to those we

reported in [5] due to a more precise tuning of the parameters of

the segmentation stage. No Viterbi re-alignment is applied. We use

18-dimensional static mfcc augmented by the log-energy. The im-

plementation is based on the open-source software provided by the

LIUM Laboratory, [9].

To compare the criteria, we use the Overall Speaker Diarization Er-

ror Rate (DER, %) as well as the average cluster purity (acp) vs. av-

erage speaker purity (asp) trade-off. For details about these metrics

we refer to [10]. The formula of the Segmental-BIC with Jeffreys’

priors (denoted by Segmental-BICc) can be found in [5].

We first examine the NIST-02 set. It consists of 6 shows, of 10 min-

utes each and the acp-asp curves are illustrated in Fig. 1. The next

experiment is based on the ESTER Speaker Diarization Benchmark.

The benchmark consists of 32 shows from various France Radio

Channels. The shows are divided to development (14 shows, about

8 hours total duration, denoted by ESTER-D) and test set (18 shows,

about 10 hours total duration, denoted by ESTER-T). The acp-asp

curves on the ESTER-D set are illustrated in Fig. 2.

Fig. 1. acp vs. asp on the 2002 NIST BN shows. Solid with dots:

Global-BIC, Dotted: Local-BIC, Dash & dots: Segmental-BIC with

normal priors, Dashed: Segmental-BIC with Jeffreys’ priors, Solid:

Segmental-SR-BIC

The range of λ for the criteria examined was [0.9, 11.0] apart

from the Segmental-SR-BIC, which scales in [0.015, 0.200]. The

minimum overall diarization error rates for each set separately are

shown in Table 1. Clearly, the new penalty term outperformed the

other approaches.

In order to examine the repeatability of the results, we used the λ

that gave the best results on the ESTER-D for each criterion. The

results are shown in Table 2, where the optimum value of λ is also

given. All the experiments demonstrate the superiority of the modi-

fied penalty term and justify the analysis of Sin and White about the

rate the penalty should grow.

We should also mention that the operational points at which the min-

imum DER is attained differ across the criteria. The Local-BIC



Fig. 2. acp vs. asp on the ESTER development data. Solid with dots:

Global-BIC, Dotted: Local-BIC, Dash & dots: Segmental-BIC with

normal priors, Dashed: Segmental-BIC with Jeffreys’ priors, Solid:

Segmental-SR-BIC

reaches its minimum DER usually by underestimating the true num-

ber of speakers, while the Segmental-SR-BIC by overestimating it.

Hence, the Segmental-SR-BIC results are improvable, possibly by

appending the MAP-adapted GMM-UBM scheme described in [8]

or other approaches. On the contrary, the minimum DER of the

Local-BIC is reached at operational points of low acp, meaning that

it cannot be improved using further bottom-up clustering schemes.

Table 1. Minimum Overall Speaker Diarization Error Rate (%) for

the three sets

NIST-02 ESTER-D ESTER-T

Global-BIC 13.07 18.84 22.46

Local-BIC 12.99 17.37 17.47

Segmental-BIC 12.88 17.53 20.05

Segmental-BICc 12.71 17.25 19.46

Segmental-SR-BIC 11.09 13.80 14.17

Table 2. Overall Speaker Diarization Error Rate (%) based on the

tuning derived from the ESTER-D set

NIST-02 ESTER-T λ

Global-BIC 16.41 23.02 4.68

Local-BIC 14.03 18.21 5.05

Segmental-BIC 14.28 20.89 6.89

Segmental-BICc 13.89 20.11 5.78

Segmental-SR-BIC 12.36 14.17 0.139

5. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a new penalty term of the BIC. After pro-

viding some intuition about the Segmental-BIC, we investigated the

use of a penalty term that grows faster that logarithmically with the

number of observation. The motivation was to retain the main prin-

ciple of the Segmental-BIC and comply with the general constrains

for consistency proposed by Sin and White. The experiments prove

the superiority of the new criterion, both in terms of average clus-

ter/speaker purity and Diarization Error Rate.

As a future work, we plan of incorporating the temporal information

by attaching informative priors over the space of partitions, as well

as testing it on SD-for-meetings benchmarks, too.
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