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Abstract

The Workforce Scheduling and Routing Problem (WSRP) is concerned with planning visits of qual-

ified workers to different locations to perform a set of tasks, while satisfying each task time-window

plus additional requirements such as customer/workers preferences. This type of mobile workforce

scheduling problem arises in many real-world operational scenarios. We investigate a set of genetic

operators including problem-specific and well-known generic operators used in related problems.

The aim is to conduct an in-depth analysis on their performance on this very constrained scheduling

problem. In particular, we want to identify genetic operators that could help to minimise the vio-

lation of customer/workers preferences. We also develop two cost-based genetic operators tailored

to the WSRP. A Steady State Genetic Algorithm (SSGA) is used in the study and experiments are

conducted on a set of problem instances from a real-world Home Health Care scenario (HHC). The

experimental analysis allows us to better understand how we can more effectively employ genetic

operators to tackle WSRPs.

1 Introduction

The Workforce Scheduling and Routing Problem (WSRP) involves the scheduling of employees in an

organization to travel across different locations to complete a set of tasks or activities. The problem

arises in real-world scenarios such as Home Health Care, Home Care, Scheduling Technicians, Secu-

rity Personnel Routing and Rostering and Manpower Allocation [3]. The WRSP is a combination of

personnel scheduling and routing problems, hence it shares many aspects with these problems many of

which are known to be NP-Hard [12]. The scheduling part allocates staff to tasks in order to fulfill work

demand and customer/workers satisfaction. The routing part requires generating routes for mobile staff

to service customers across various locations and within given time-windows. Real-world instances of

the WSRP are large and very difficult to solve. It is necessary to develop efficient algorithms because

manual planning involves a large effort and may produce low-quality plans.

Different approaches have been applied to WSRP, such as exact, heuristic and metaheuristic methods.

A survey and a mathematical model were presented in [3]. In that work it was shown that a modern

solver still takes considerable computational time to find solutions for instances with around 50 tasks

and more. Therefore, a greedy heuristic for WSRP with time-dependent activities constraints was pro-

posed more recently in [2]. That heuristic obtained better results in less computational time compared

to the solver, especially in larger instances. Evolutionary Algorithms (EAs) are known to be capable

of generating good-quality solutions in practical computational time. Genetic Algorithms (GAs) have

been effective in finding good solutions relatively quickly to real-world scheduling problems like airline

crew scheduling [10]. So far, few works have applied EAs to problems where scheduling and routing

are combined. Examples include a multi-objective genetic algorithm (MOGA) [5], constructive search

with variable neighbourhood search [17], particle swarm optimisation [1, 8, 13] and recently a group GA

[15]. However, in those works attention was given to developing an algorithm to produce better solutions

without explicitly investigating the genetic operators involved. Also, repair heuristics have been used to

deal with infeasible solutions in such problems [1, 8]. The recent work in [15] shows that combining

genetic and repair operators benefits the performance of EAs when tackling an example of WSRP.
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In this paper we conduct a study of several genetic operators when applied to a WSRP using a Steady

State Genetic Algorithm (SSGA) [19]. For this study we use a set of instances from a real-world home

health care scenario provided by our industrial partner. Home health care involves providing services

such as nursing, home life aids, physical therapy and house cleaning to patients at their homes. Section 2

describes the WSRP, model and instances used in this study. Section 3 gives details of the implemented

genetic operators and GA. Section 4 describes the experimental study while Section 5 presents and

discusses results. The paper is then concluded in Section 6.

2 Workforce Scheduling and Routing Problem (WSRP)

Each problem instance contains a set of locations L = {l1, l2, . . . , l|L|} and each location l ∈ L has a

set of required tasks. Each task t ∈ T has a time-window [wL
t , w

U
t ] within which task must be serviced.

A group of locations are assembled as a geographical area a ∈ A. Also, a problem instance has a set of

workers C = {c1, c2, . . . , c|C|}. A worker c ∈ C has a set of skills Sc ⊆ S where S = {s1, s2, . . . , s|S|}
represents a set of all available skills. A worker c ∈ C has to travel between locations in a graph

G = (V,E) [11] where the set of vertices V is the union of task locations, departure locations D, and

destination locations D′, that is V = D ∪ L ∪ D′. Then, the set of edges E is a set of routes between

vertices in V . We have a number of instances from a real-world WSRP, specifically home health care

scenario in the UK. The main features of the seven instances used in this work are shown in Table 1.

Instance B-01 B-02 B-03 B-04 B-05 B-06 B-07

|C| 25 25 34 34 32 32 32

|L| 27 11 43 14 38 38 38

|T | 36 12 69 30 61 57 61

|A| 5 4 6 4 7 7 6

Table 1: Main Features of the WSRP Instances Used Here. |C| is the number of workers, |T | is the

number of tasks, |L| is the number of locations grouped in |A| geographical areas.

Assigning tasks only according to workers’ skills, satisfying time-windows and not exceeding weekly

working hours are usually considered as hard constraints. Additional workers’ requirements such as

preferable areas to work or customers’ requirements such as preference for certain workers to do the

tasks are considered preferences hence tackled as soft constraints. The violation of soft constraints is

penalized according to some established priority. In this study, the problem objectives and the set of

constraints to be tackled are shown in Table 2. For more details on the MIP model please refer to

[11]. In general, a WSRP solution is to assign each task to a worker while satisfying the constraints

and minimizing distance travelled and cost. Hence, the objective function in equation (1) includes the

Assignment Cost and the Penalty Cost. The Assignment Cost includes Payment Cost and Travelling

Cost, i.e. wages plus the journeys cost for each worker. The Penalty Cost is the accumulated penalty for

the violations of the soft constraints listed in Table 2.

Objectives Hard constraints Soft constraints

Distance Travelled Skills Requirements Unassigned Tasks

Payment Costs Time Conflicts Area Availability

Maximum Hours Violations Time Availability

Preferences ( Skills, Workers, Area)

Table 2: Objectives and Constraints in the WSRP.

Agadir, June 7-10, 2015



MIC 2015: The XI Metaheuristics International Conference id–3

Min
∑

c∈C

∑

i∈D∪T

∑

j∈D′∪T

(

di,j + pcj
)

xci,j +
∑

c∈C

∑

i∈D∪T

∑

j∈D′∪T

ρcjx
c
i,j+

∑

j∈T

M1yj +M2(ωj + ψj) (1)

where:

• Binary decision variable xci,j = 1 if worker c ∈ C is assigned to task j ∈ T after servicing task i ∈ T ,

xci,j = 0 otherwise.

• yj is a binary decision variable indicates that a task j ∈ T is assigned to a dummy worker. An assignment

only takes place when the task j cannot be assigned to a real worker due to the problem restrictions.

• M1 and M2 are penalty costs applied to unassigned tasks and constraints violation penalties. The values are

provided along with data instances.

• The Payment Cost is denoted by pcj for worker c ∈ C to perform task j ∈ T

• The Travelling Cost is denoted by di,j from location of task i ∈ T to the location of task j ∈ T .

• The Penalty Cost due to the violation of soft constraints is denoted by ρcj .

Priority among the six soft constraints is as follows. The Unassigned Tasks constraint has the highest

priority so a violation of this constraint costs more than a violation of any of the other five constraints.

Both Time Availability and Area Availability constraints have the same priority. Note that there are

two constraints associated to the area in which workers are assigned to tasks. If a worker is assigned

outside his/her Area Availability then this involves a constraint penalty cost. Likewise, if a worker is

not assigned to one of his/her Preferred Area then this involves a preference penalty cost. Also, The

worker’s and client’s preferences ρcj is a penalty cost that varies according to the preference required.

We introduce three preference requirement levels for each preference constraints in the problem. The

first requirement level is the preferred worker qualifications RLs , then the preferred area to work RLa ,

and finally the preferred worker RLc . Such preference satisfaction level is in the range [0, 1] depending

on the level of preference achieved.

3 Genetic Algorithm, Conflict Reduction Heuristic and Genetic Opera-

tors

This work aims to study the effect of various genetic operators within a Steady State Genetic Algorithms

(SSGA) for the WSRP. Such relatively not elaborate genetic algorithm [19] was selected for our study in

order to analyse the emergent behaviour and performance of the genetic operators working on a relatively

straightforward GA implementation. Using a straightforward solution representation allows to apply the

genetic operators directly on the phenotype [18]. Thus, a simple direct representation scheme is used

for chromosome encoding. A vector of integers of length |T | tasks represents a day plan and each

integer holds the information of a worker assigned to the corresponding task. To increase the chance

of generating an initial feasible solution, integers in the chromosome vector are sorted in increasing

order according to the task start times so that we can determine which task is served first [15]. Of

course the same worker can be assigned to more than one task and not all workers might be used in

the day plan. An initial population of m individuals is randomly generated each representing a daily

plan. We aim to generate new feasible offspring that have lower total cost per worker. Often a random

population contains daily plan with overlapping time-windows for different tasks per worker, called

time-conflicts. Hence, we require a heuristic to re-assign tasks and hence reduce such time-conflicts.

A Time-window Conflict Reduction Heuristic (TCRH) is applied to the random generated individuals.
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This TCRH aims to seed the GA with better initial solutions by reducing the number of time-conflicts

generated with the random process. Basically, the heuristic re-assigns time-conflicting tasks to a different

random worker. Tournament selection and elitism is used at the end of each generation so that 33.3% of

the best individuals are copied to the new population. Individuals are ranked according to their fitness

given by the minimization objective function.

Operator RSM IM SM 1-point 2-point UX HX PMX OX CX

Reference [4] [7] [4] [14] [9] [14] [6] [21] [20] [16]

Table 3: Operators considered in the study and adopted from the literature.

Various genetic operators, including crossover and mutation, are applied to the chromosomes in order to

obtain better offspring. In this study, there are three different types of operators: ten well-known generic

operators (shown in Table 3), two cost-based problem specific operators designed to obtain offspring with

fewer violations, and a repair operator. These operators were selected after a literature survey conducted

to identify genetic operators that have been applied to WSRP and related problems. By studying the

overall performance of these operators we seek to identify the best combination of operators for tackling

the WSRP constraints. Each operator allows feasible solutions only. As a result, the operators always

create offspring with fewer constraint violations regardless of the total cost. The operators used in the

study are as follows:

• Well-known Generic Operators

– Crossover These well-known generic crossovers are divided in two groups:

1. Scheduling crossovers such as: Single Point (1-point), Two Point (2-point), Uniform

(UX) and Half Uniform (HX).

2. Routing crossovers such as: Order crossover (OX), Cycle crossover (CX) and partially

matched crossover (PMX).

– Mutation Applied mutation operators are: Random Swap Mutation (RSM), Inversion Muta-

tion (IM) and Scramble Mutation (SM).

Algorithm 1 Cost-Based Uniform Crossover (CBUX).

Selects k in Individual iParent

if Worker c is Available to work in Task tk area in iParent then

Worker c is Inserted into the kth gene in iChild

end if

Evaluate the Cost Value iChild

if iChild has more Violation than Parent iParent then

iChild := iParent

end if

• Cost-Based Operators

These are problem-specific operators that are specifically designed for WSRP to maximize the

customer/workers preferences satisfaction.

– Cost-Based Uniform Crossover (CBUX).

In the study on the real-world airline crew scheduling problem [10], the proposed cost-based

crossover produced good results by restricting the mating pool to feasible solutions only and

limiting the search to the nearest task available for each worker at his current location. Hence,

we developed a Cost-Based Uniform Crossover (CBUX) operator that selects a gene based

on the preferred time availability of a worker to work on a task as illustrated in Algorithm

1. Genes are selected according to a cost instead of using a uniform mask by maintaining a
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stream of workers in an offspring provided that it does not make the chromosome infeasible.

Therefore, the selected gene has lower cost.

– Cost-Based Mutation (CBM).

This operator is designed to target each gene in an individual by maintaining the maximum

number of preferred workers for each task as shown in Algorithm 2. Each Task ti ∈ T

has a list of preferred workers C = [c1, c2 . . . , cM ] where M is the number of workers

in the preferred list. The CBM operator checks the preferred workers and alters the genes

accordingly.

• Repair Operator

The feasibility of an individual is gone if a hard constraint is violated. Therefore, the repair opera-

tor is designed to maintain feasible solutions while maintaining the least possible cost value. The

operator checks the feasibility of each worker assigned to a task and alters the genes accordingly.

This procedure is designed to reach a good area in the search space in a fast computation time.

At every generation, the repair operator is utilized after the mutation. A random swap occurs if a

worker is not suitable for a task, provided that the alteration does not create infeasible solutions.

Algorithm 2 Cost-Cased Uniform Mutation (CBM).

for all Gene k in Individual iParent do

if Worker c is in a Preferred Worker for Task tk in iParent then

Worker c is Inserted into the kth gene in iChild

end if

end for

Evaluate the Cost Value iChild

if iChild has more Violation than Parent iParent then

iChild := iParent

end if

4 Experimental Study

The aim of the experiments was to investigate the effect of the set of genetic operators listed above on the

worker’s and customer’s preferences satisfaction. The experiments were conducted on 3.60 GHz Intel (R)

core (TM) i7 CPU and the implementation was in Java under Windows 7. The experimental setting was

as follows. The population of a size 100 was generated randomly with initial seed yet initial individuals

were improved with the TCRH. The crossover probability pc was alternated between 100% , 50% and

10%. Similarly the mutation probability pm 30% , 10% and 0.1%, i.e. we tried two different values

for crossover and mutation probabilities. Each GA setting was executed using different combinations

of genetic operators on each of the seven problem instances mentioned in Table 1. In total we had 32

combination with 9 different settings of the GA alternately and each one was executed 15 times with the

same initial population. Each run stops at the generation stagnation (with a maximum number of 200

iterations). For each GA setting, we kept the objectives value for the best solution obtained in each of

the 15 runs and the average of those best values is used to measure the quality of the GA setting. Also,

a repair operator was executed to reduce the number of soft constraints violations while maintaining a

flow of feasible solutions. Consequently, we grouped each run by the mutation operators where RSM,

IM, SM and CBM. Each mutation operator was combined with one crossover operator (1-point, 2-point,

UX, HX, PMX, OX, CX, CBUX) at a time. However, to investigate the behaviour of the repair operator,

the approach was tested with two additional settings. If a combination was not combined with a repair

operator, then the combinations were denoted asX∗. Then the combinations with the repair operator and

probabilities of pc= 0.1% and pm = 0.01% (i.e. practically no crossover and no mutation). These values

represent the combinations that test very low genetic operator probabilities.
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5 Results and Discussion

Having time-conflicts in the generated solutions, i.e. the violation of time-windows, was a problematic

issue in this study. TCRH was implemented to reduce the number of such time-conflicts. The quality

of the random initial population and the TCRH methods are compared in Figure 1. TCRH performance

is directly measured by two elements: the number of time-conflicts and the initial population quality.

Hence, in in Figure 1, each bar presents the average value of the time-window conflicts occurrences for

each problem instance before and after applying TCRH. It can be seen that after applying TCRH there

is a clear reduce in time-window conflicts for all instances. The second measurement method is the

population quality. This measurement is reflected by the population diversity and the computation time.

As shown in Table 4, the computation time increases when TCRH is applied. However, instances such

as B-01 and B-02 required less time while using TCRH and B-04 required similar computation time to

the random initialisation. This outcome was a result of few time-window conflicts primarily even with

the random initialization. Furthermore, the population diversity is equally the same in all instances for

both initialisation methods. Thus, population diversity is maintained while TCRH is used with the GA.

In general, we observed that TCRH reduced the number of workers with time-conflict occurrences in

each problem instance with the utilization of the repair operator.

Figure 1: The Average Number of Conflicts in the Initial Population P (Random / TCRH).

Random TCRH

Problem B 01 02 03 04 05 06 07 01 02 03 04 05 06 07

time(ms) 83 12 1 0 16 34 18 31 0 62 0 31 15 27

Diversity(%) 24 24 31 31 30 30 30 24 24 31 32 30 30 30

Table 4: Effects of the TCRH on the initial Population P .

For the effect of studying the performance of the various genetic operators on maximizing customer’s

and workers preferences is stated in Table 5. The table shows the wilcoxon sign rank test for the mean

preference satisfaction values for each problem instance. The wilcoxon sign rank test is non-parametric

statistical hypothesis test used to compare the average of two groups of values of the preferences sat-

isfaction to evaluate whether their population mean ranks differ. The statistical comparison is applied

two crossover operators at a time to provide an overall evaluation of the method. We can see crossover

operators such as CX and PMX were the least effective. Generally, CBUX performed the best on in-

stances B-01, B-05, B-06 and B-07. Another observation that we made from our detailed experimental

results is that CBUX obtained less constraint violations in 35% over all the experiments. Nevertheless,

k-point crossover operators obtained 14% of all the minimum cost values. This shows that these generic

k-point crossover operators are not always the best to be used in the WSRP. Table 5 reports for each

problem instance, results from using different probabilities crossover and mutation probabilities (δ, γ)

with the different combination of genetic operators. The columns of the Table give the mean cost value
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B-01 B-02

1Point 2Point UX PMX OX HX CX CBUX 1Point 2Point UX PMX OX HX CX CBUX

1Point - < < > < > < < - > > > > > > >

2Point > - > > > > > < < - > > > > < <

UX > < - > < > < < < < - < < > < <

PMX < < < - < > < < < < > - < < < <

OX > < > > - > > < < < > > - > < <

HX < < < < < - < < < < < > < - < <

CX > < > > < > - < < > > > > > - <

CBUX > < > > > > > - < > > > > > > -

B-03 B-04

1Point 2Point UX PMX OX HX CX CBUX 1Point 2Point UX PMX OX HX CX CBUX

1Point - < ≤ ≤ ≤ ≤ ≤ ≤ - < < < > < > <

2Point > - < > > < < < > - < > > > > >

UX ≥ > - > > > < < > > - > ≥ > > >

PMX ≥ < < - < < ≤ ≤ > < < - > < > <

OX ≥ < < > - < < < < < ≤ < - < < <

HX ≥ > < > > - < < > < < > > - > >

CX ≥ > > ≥ > > - < < < < < > < - <

CBUX ≥ > > ≥ > > > - > < < > > < > -

B-05 B-06

1Point 2Point UX PMX OX HX CX CBUX 1Point 2Point UX PMX OX HX CX CBUX

1Point - < < < < < < ≤ - < < < < > > <

2Point > - < < > > < ≤ > - > > > > > <

UX > > - > > > < < > < - < < > > <

PMX > > < - < > < < > < > - > > > <

OX > < < > - > > < > < > < - > > <

HX > < < < > - < < < < < < > - > <

CX > > > > > > - < < < < < > < - <

CBUX ≥ ≥ > > < > > - > > > > > > > -

B-07

1Point 2Point UX PMX OX HX CX CBUX

1Point - < < < > > > <

2Point > - > < > > > <

UX > < - < > > > <

PMX > > > - > > > <

OX < < < < - > > <

HX < < < < > - < <

CX < < < < > > - <

CBUX > > > > < > > -

Table 5: Wilcoxon sign rank test of the Average Preferences Satisfaction Values Grouped by the

Crossover Operators where >(<) means that Crossover i is significantly better (worse) than Crossover

j within a confidence interval of 95%. Similarly, ≥ (≤) shows that Crossover i performs slightly better

than Crossover j (with no statistical significance). The sign = refers to equal performance.

µ, standard deviation σ, the best values obtained are highlighted in bold and the average computation

time in seconds used by the GA. It is apparent that the combinations X∗ were not affected by the ge-

netic operators for all instances. They sustained similar outcomes throughout the trials with a near to

random offspring. Overall, CBM had less spread out values with lower σ values in association to the

other combinations. Additionally, CBM have succeeded to obtain the best cost values in B-01 and B-7.

RSM achieved best cost values as well in both B-02 and B-03. Both obtained less σ values throughout all

the instances. On the contrary, IM obtained best cost values in B-04, B-05 and B-06. Yet IM had more

computation time and spread out values overall the instances as well. For the most part, lower Pc, Pm

values have obtained good solutions in less computation time in comparison with other combinations

settings for all instances excluding B-05. In the cases of B-01 and B-02, best obtained value is achieved

when high Pm is used. However, low probability preformed worse in B-05 with Rsm and IM in particular

while and best obtained values when high Pc is used. On the other hand, the optimal cost values for each

datasets by mathematical programming solver are 1.7, 1.8, 1.7, 2.07, 1.8, 1.6 and 1.79 constitutively with

a computation time 21, 2, 6003, 25, 585, 184 and 300 in seconds. Despite that the cost values are better

than the GA, it is clear that GA obtained good results in less computation time throughout all the setting

tested. Mainly, the experiments goal is to evaluate suitable combinations of operators that can perform

well under a GA for WSRP and later embedded in a more efficient approach.

Agadir, June 7-10, 2015



id
–
8

M
IC

2
0
1
5
:

T
h
e

X
I

M
et

ah
eu

ri
st

ic
s

In
te

rn
at

io
n
al

C
o
n
fe

re
n
ce

RSM IM SM CBM

Instance δ γ σ µ min time(s) σ µ min time(s) σ µ min time(s) σ µ min time(s)

B-01 X∗ 25.39 74.37 40.96 9.72 25.39 74.37 40.96 9.72 25.39 74.37 40.96 9.72 25.39 74.37 40.96 9.72

1.0 0.001 0.02 2.4 2.35 18.75 0.04 2.42 2.35 15.38 0.04 2.42 2.35 15.65 0.03 2.41 2.35 12

1.0 0.01 0.08 2.44 2.34 17.38 0.08 2.44 2.34 16.75 0.1 2.45 2.34 14.25 0.05 2.4 2.34 13.43

1.0 0.1 0.08 2.39 2.28 18.63 0.07 2.39 2.28 24.5 0.06 2.36 2.28 18.75 0.07 2.36 2.28 16.43

1.0 0.3 0.05 2.45 2.37 15.63 0.07 2.45 2.37 26.75 0.05 2.4 2.31 17.25 56.7 25.61 2.38 16.29

0.5 0.001 0.05 2.42 2.32 16.63 0.06 2.43 2.31 19.75 0.04 2.44 2.39 17.13 0.03 2.44 2.39 15.14

0.5 0.01 0.06 2.4 2.3 17.63 0.07 2.44 2.33 19.63 0.06 2.49 2.38 17 0.06 2.41 2.31 14

0.5 0.1 0.04 2.41 2.35 21 0.06 2.46 2.39 29.25 0.07 2.41 2.3 20.88 0.05 2.44 2.35 20.14

0.5 0.3 0.08 2.44 2.34 20.88 0.05 2.39 2.31 30 0.03 2.42 2.35 21.5 0.05 2.42 2.35 18.14

0.1 0.001 0.05 2.43 2.38 9.38 0.05 2.44 2.38 9.63 53.55 22.65 2.36 9.38 0.05 2.42 2.35 7.86

0.1 0.01 0.07 2.43 2.31 11 0.08 2.4 2.3 14.5 0.08 2.41 2.27 10.63 0.08 2.41 2.29 8.71

0.1 0.1 0.06 2.44 2.35 12 0.07 2.42 2.32 23.88 0.07 2.45 2.32 15.38 0.07 2.4 2.3 10.43

0.1 0.3 0.07 2.43 2.34 12.88 0.05 2.41 2.34 24.88 0.05 2.43 2.38 12.88 0.04 2.42 2.38 11.43

0.01 0.001 0.05 2.44 2.36 0.13 0.04 2.43 2.36 0.13 0.07 2.42 2.32 0.13 0.05 2.46 2.36 0.43

0.01 0.01 0.08 2.45 2.32 0.38 162.13 83.49 2.37 2.38 0.06 2.37 2.24 0.5 0.08 2.4 2.28 0.57

0.01 0.1 0.05 2.4 2.34 0.38 53.59 22.71 2.4 23 214.26 83.45 2.41 0.38 0.12 2.38 2.15 0.14

0.01 0.3 0.04 2.42 2.36 0.38 53.57 22.69 2.38 25.63 0.07 2.42 2.32 0.38 0.06 2.43 2.34 0.57

B-02 X∗ 0.46 4.11 3.31 3.72 4.19 9.38 2.67 7.24 0.62 3.9 2.82 2.43 0.47 4.13 3.08 2.29

1.0 0.001 0.12 2.46 2.26 2.63 0.12 2.41 2.25 3 0.05 2.44 2.37 2.75 0.14 2.43 2.18 1.25

1.0 0.01 0.08 2.4 2.28 2.5 0.12 2.41 2.23 3.25 0.16 2.45 2.13 2.63 0.13 2.47 2.2 3

1.0 0.1 0.09 2.53 2.35 2.75 0.16 2.48 2.22 7.88 0.16 2.38 2.19 2.5 0.1 2.49 2.39 3

1.0 0.3 0.09 2.4 2.27 2.38 0.09 2.43 2.27 8.75 0.12 2.41 2.17 3.13 0.1 2.4 2.17 3

0.5 0.001 0.11 2.43 2.29 2.88 0.13 2.52 2.31 2.75 0.16 2.43 2.25 2.63 0.05 2.49 2.42 1.86

0.5 0.01 0.08 2.51 2.39 2.88 0.15 2.42 2.22 4.13 0.14 2.49 2.29 2.75 0.1 2.52 2.3 3

0.5 0.1 0.12 2.48 2.2 2.75 0.06 2.49 2.41 8.88 0.15 2.46 2.26 2.63 0.14 2.39 2.16 2.71

0.5 0.3 0.12 2.47 2.23 2.63 0.13 2.54 2.35 9 0.09 2.48 2.3 2.75 0.06 2.49 2.42 2.86

0.1 0.001 0.12 2.4 2.16 1.63 0.14 2.42 2.19 1.75 0.2 2.51 2.13 1.63 0.1 2.44 2.24 1

0.1 0.01 0.11 2.46 2.33 1.63 0.11 2.52 2.34 2.75 0.1 2.46 2.26 1.63 0.07 2.47 2.33 1.86

0.1 0.1 0.08 2.43 2.34 1.63 0.15 2.48 2.24 8.13 0.13 2.46 2.23 1.63 0.14 2.49 2.34 1.86

0.1 0.3 0.08 2.48 2.37 1.63 0.09 2.44 2.3 8.13 0.16 2.45 2.14 1.63 0.08 2.49 2.37 1.86

0.01 0.001 0.14 2.4 2.13 0 5.9 4.85 2.44 0 6.16 4.77 2.38 0 0.13 2.44 2.25 0

0.01 0.01 0.41 2.58 2.3 0 5.87 4.99 2.4 0.25 0.11 2.45 2.22 0 0.16 2.45 2.14 0

0.01 0.1 0.11 2.5 2.27 0.75 0.15 2.43 2.23 5.88 0.1 2.42 2.33 0 0.04 2.51 2.45 0

0.01 0.3 0.12 2.37 2.12 0.75 0.13 2.43 2.15 6.13 6.26 4.87 2.4 0 0.13 2.42 2.22 0

B-03 X∗ 1261.05 1753.87 17.38 435.88 1261.05 1753.87 17.38 435.88 471.08 1148.68 20.26 31.38 499.67 1073.95 19.34 291.63

1.0 0.001 795.28 380 2.53 43.38 95.28 380 2.53 43.38 292.36 229.06 2.48 42.13 584.67 455.46 2.56 42.88

1.0 0.01 523.16 304.62 2.48 49.75 523.16 304.62 2.48 49.75 795.26 380.01 2.55 43.25 261.59 153.65 2.51 43.63

1.0 0.1 420.4 229.09 2.52 80.38 420.4 229.09 2.52 80.38 199.65 78.14 2.56 40.25 399.53 455.55 2.54 51.63

1.0 0.3 292.37 229.06 2.51 86.63 292.37 229.06 2.51 86.63 795.42 380.09 2.6 43 420.38 229.1 2.52 91.88

0.5 0.001 0.05 2.42 2.32 16.63 199.68 78.07 2.54 53 199.7 78.06 2.52 54.63 199.68 78.07 2.54 48

0.5 0.01 798.86 304.55 2.55 60.38 798.86 304.55 2.55 60.38 0.06 2.57 2.46 53.5 0.04 2.59 2.55 51.25

0.5 0.1 766.3 531.19 2.56 85.63 766.3 531.19 2.56 85.63 0.04 2.57 2.54 54.13 0.04 2.58 2.52 52.75

0.5 0.3 798.89 606.67 2.58 85.63 798.89 606.67 2.58 85.63 0.05 2.6 2.51 49.75 0.16 2.63 2.51 55.88

0.1 0.001 0.05 2.43 2.38 9.38 584.86 455.61 2.5 27.38 261.59 153.62 2.55 26.13 261.5 455.47 2.54 28.63

0.1 0.01 823.5 531.05 2.57 42.5 823.5 531.05 2.57 42.5 199.85 78.15 2.56 27.13 877.2 682.05 2.56 28.13

0.1 0.1 675.21 606.79 2.59 80.63 675.21 606.79 2.59 80.63 427.14 304.67 2.55 27.75 399.42 153.57 2.56 26.63

0.1 0.3 1119.87 1059.57 2.56 82 1119.87 1059.57 2.56 82 604.2 304.71 2.53 27.5 658.18 455.54 2.54 29.63

0.01 0.001 784.87 455.75 2.55 8.25 784.87 455.75 2.55 8.25 854.16 606.68 2.55 2.88 724.18 757.61 2.57 11.38

0.01 0.01 420.28 379.98 2.48 11.5 1279.47 1588.46 2.59 11.5 840.72 757.71 2.54 9.38 302.14 304.75 2.59 4

0.01 0.1 471.74 531.24 2.59 47.63 517.4 833.26 2.65 47.63 798.84 606.9 2.55 3.38 292.52 229.21 2.55 7.13

0.01 0.3 658.69 455.87 2.53 49.63 517.57 380.1 2.58 49.63 795.39 380.19 2.53 3.5 500.82 455.56 2.54 9

B-04 X∗ 0.9 9.85 8.57 9 96.14 79.95 6.7 9.13 1.49 10.01 6.67 398.25 1.56 9.71 6.78 9.13

1.0 0.001 0.07 2.65 2.6 12.63 0.06 2.69 2.57 11.88 0.06 2.71 2.61 12.38 0.09 2.72 2.56 12.38

1.0 0.01 0.18 2.75 2.59 12 0.07 2.65 2.55 12.5 37.22 16.74 2.56 10.72 0.08 2.7 2.57 11.5

1.0 0.1 0.07 2.71 2.59 11.5 0.04 2.7 2.63 24.25 0.08 2.69 2.54 13.89 0.1 2.7 2.53 11.75

1.0 0.3 0.07 2.7 2.56 11.75 0.07 2.65 2.54 26.63 0.22 2.74 2.59 14.7 0.07 2.69 2.59 11.63

0.5 0.001 0.05 2.73 2.64 14.13 0.1 2.67 2.49 14.63 0.04 2.75 2.68 14.63 0.09 2.68 2.53 13.5

0.5 0.01 0.07 2.69 2.61 13.25 0.07 2.72 2.57 17.75 0.08 2.74 2.57 11.69 0.1 2.74 2.55 14.25

0.5 0.1 0.12 2.71 2.55 14.25 0.04 2.68 2.59 26.13 0.05 2.73 2.65 15.45 0.07 2.71 2.53 13.88

0.5 0.3 0.08 2.68 2.52 11.88 0.08 2.68 2.57 26.63 0.06 2.71 2.59 15 0.09 2.72 2.58 13.38

0.1 0.001 0.08 2.7 2.6 5.75 0.06 2.68 2.55 6.13 0.07 2.71 2.61 5.38 0.06 2.71 2.6 5.88

0.1 0.01 0.09 2.69 2.53 6 0.18 2.73 2.51 14.5 0.1 2.75 2.6 7.24 0.08 2.69 2.58 5.38

0.1 0.1 0.1 2.73 2.54 5.38 37.68 16.96 2.57 24.5 0.07 2.7 2.56 10.41 0.11 2.73 2.53 5.63

0.1 0.3 0.06 2.7 2.64 5.25 48.94 30.92 2.52 24.88 0.08 2.7 2.53 10.65 0.23 2.78 2.55 5.5

0.01 0.001 0.07 2.73 2.63 0.38 74.72 31.02 2.64 0.63 0.07 2.68 2.59 0.5 0.07 2.72 2.63 0.25

0.01 0.01 0.07 2.66 2.56 0.25 54.91 45.31 2.6 1.25 0.095 2.70 2.6 0.38 0.06 2.72 2.64 0.38

0.01 0.1 0.43 2.95 2.59 0.25 0.21 2.73 2.51 18.25 0.06 2.71 2.61 0.25 0.2 2.8 2.61 0.5

0.01 0.3 0.08 2.72 2.59 0.25 74.61 31.21 2.57 20.38 0.07 2.71 2.59 0.25 0.07 2.69 2.58 0.25
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Instance δ γ σ µ min time(s) σ µ min time(s) σ µ min time(s) σ µ min time(s)

B-05 X∗ 464.53 378.66 17.59 27.25 623.89 1100.34 499.06 66 158.9 558.29 496.08 26.13 374.43 440.43 19.06 25.88

1.0 0.001 788.19 844.22 2.53 47.13 1457.02 1564.95 2.5 57.5 1163.74 1384.96 2.52 54.38 1040.78 603.67 2.52 46.75

1.0 0.01 1236.16 1505.26 2.43 56 677.68 663.79 2.39 407.75 1235.58 903.71 2.55 88.57 1018.17 1625.29 2.58 339

1.0 0.1 1266.35 1084.26 2.53 70.63 1127.71 1204.99 2.48 557.13 1333.23 844.25 2.52 640.88 923.2 603.52 2.55 804

1.0 0.3 1401.34 1925.45 2.59 397.13 858.21 1565.55 484.6 441.63 1421.77 1445.07 2.6 223.75 698.11 904.72 2.57 260.88

0.5 0.001 560.35 543.2 2.5 49 1219.89 1084.32 2.55 53.38 813.22 543.88 2.51 59.5 795.24 784.01 2.54 53.38

0.5 0.01 983.47 603.33 2.49 67.63 1125.49 663.47 2.54 253.5 1188.21 903.97 2.577 77.13 1068.01 603.77 2.47 73.75

0.5 0.1 1177.05 723.36 2.46 265.13 830.48 1145.31 2.6 70.75 588.77 723.75 2.45 50.38 1482.08 1204.68 2.49 441.75

0.5 0.3 1113.03 904.1 2.56 937 1225.69 1685.7 2.48 70.75 847.82 904.11 2.51 619.38 991.04 964.29 2.57 62.88

0.1 0.001 1099.79 1264.73 2.57 14.63 1120.91 1565.03 2.6 24.38 823.94 603.53 2.54 22.25 610.09 904.27 2.52 25.25

0.1 0.01 1611.86 1925.75 2.67 26.63 1195.87 1324.63 2.5 41.25 1019.74 1204.51 2.48 26.38 506.73 904.44 2.58 283

0.1 0.1 1437.37 1324.76 2.55 25.13 944.14 1865.99 2.64 281.38 824.3 1084.88 2.47 61 585.65 663.65 2.48 26.63

0.1 0.3 922.8 1325.15 2.62 105 1368.63 2346.65 2.51 243.25 1325.71 1384.72 2.59 24.13 718.31 784.03 2.66 82.5

0.01 0.001 824.17 2046.45 964.6 14.25 721.71 2406.84 963.95 11.13 1046.61 1265 2.58 7.25 1139.1 1505.33 2.56 3.5

0.01 0.01 1048.11 1685.95 2.67 9.25 797.12 1925.83 2.55 6.13 1593.04 2106.07 2.47 4.5 1534.56 2046.4 2.64 4.25

0.01 0.1 1113.04 1985.92 2.59 2.88 1175.73 2226.28 483.55 49.88 1294.12 1685.39 2.6 7.5 1068.26 1564.97 2.62 5.63

0.01 0.3 1020.05 1926.13 2.53 3.13 711.14 2286.73 1444.57 53.5 1127.85 1445.65 2.59 3.38 1032.38 1865.69 483.56 13.63

B-06 X∗ 186.09 254.79 12.37 60 694.44 593.74 14.85 60 166.8 110.6 12.95 23.75 254.87 303.08 12 24.38

1.0 0.001 166.78 98.8 2.46 28.5 127.48 50.81 2.41 28.88 254.74 98.79 2.43 28.88 268.05 146.98 2.5 29.25

1.0 0.01 280.65 222.62 2.5 34.75 385.43 195.23 2.45 34.38 319.52 291.47 2.5 28.7 536.12 291.4 2.4 30

1.0 0.1 134.95 57.6 2.39 28.88 127.37 50.68 2.5 5 8.63 127.54 50.71 2.39 34.88 268.17 147.02 2.47 29.38

1.0 0.3 673.81 497.66 2.45 36.13 0.36 2.62 2.44 64 651.14 435.89 2.45 38.52 166.86 98.89 2.47 36

0.5 0.001 0.06 2.49 2.4 34.5 0.04 2.52 2.43 34.13 0.07 2.49 2.44 32.5 0.04 2.49 2.45 33.5

0.5 0.01 0.05 2.54 2.48 36.5 0.05 2.54 2.48 43.88 0.05 2.55 2.48 32.79 0.03 2.52 2.48 36.25

0.5 0.1 134.78 57.58 2.5 33 127.41 50.66 2.36 63.38 127.38 50.7 2.5 37.82 0.04 2.53 2.48 36.75

0.5 0.3 134.75 57.53 2.46 35.88 638.83 387.77 2.47 64.25 127.36 50.64 2.39 39.3 0.04 2.54 2.45 37.25

0.1 0.001 167.04 98.99 2.41 18.75 427.95 243.47 2.45 19.5 0.05 2.58 2.51 16.25 127.35 50.67 2.4 18.13

0.1 0.01 0.06 2.54 2.48 19 255.42 99.02 2.43 36.75 0.06 2.54 2.48 20.59 268.21 147.07 2.49 20.13

0.1 0.1 0.36 2.67 2.45 19.88 419.91 484.4 2.49 60.13 0.34 2.65 2.45 29.11 419.96 291.56 2.46 19.63

0.1 0.3 0.04 2.51 2.44 18.88 631.47 869.63 2.46 61 0.04 2.52 2.44 29.08 0.05 2.51 2.41 18.88

0.01 0.001 254.75 98.87 2.46 5.75 764.52 291.55 2.45 4.63 268.31 147.09 2.49 1.88 1046.61 1265 2.58 7.25

0.01 0.01 254.71 98.79 2.44 2 384.67 630.56 2.53 4.75 651.74 339.77 2.47 1.5 509.88 387.89 2.43 1.88

0.01 0.1 255.22 98.99 2.41 1.75 427.94 1014.01 2.54 43.5 757.09 339.76 2.44 2.13 300.86 339.88 2.53 2.5

0.01 0.3 166.98 98.93 2.45 5.5 607.01 629.02 2.5 47.38 536.33 291.47 2.48 5.25 509.81 195.22 2.49 1.5

B-07 X∗ 220.19 239.28 15.93 25.75 1082.15 1178.87 16.22 65.13 221.68 238.82 14.89 24.88 214.03 293.52 14.49 24.5

1.0 0.001 308.06 168.57 2.55 32.38 732.1 279.32 2.58 32 146.41 57.93 2.56 33 0.05 2.58 2.5 31.38

1.0 0.01 0.03 2.59 2.55 34 146.39 57.92 2.55 39.5 191.7 113.3 2.58 33.4 146.4 57.93 2.51 29.14

1.0 0.1 191.67 113.27 2.51 32.63 146.7 58.05 2.52 63.38 1146.4 57.92 2.47 33.25 0.03 2.67 2.54 28

1.0 0.3 0.06 2.56 2.49 34.75 492.13 279.48 2.5 69 146.40 57.90 2.51 35.625 439.17 279.28 2.52 35.43

0.5 0.001 0.08 2.58 2.46 42.5 0.03 2.57 2.54 44.25 0.03 2.57 2.52 41.38 0.04 2.57 2.51 47

0.5 0.01 0.04 2.59 2.53 41.63 0.06 2.58 2.49 50.38 0.053 2.63 2.55 44.5 0.04 2.6 2.54 34.57

0.5 0.1 146.35 57.97 2.54 42.5 292.91 113.28 2.52 68.38 0.042 2.57 2.50 43.75 146.38 57.88 2.5 33.86

0.5 0.3 0.03 2.56 2.51 37.38 313.09 223.94 2.51 69 0.046 2.59 2.5 41 0.317 2.7 2.46 36.29

0.1 0.001 0.04 2.56 2.51 20 439.31 168.61 2.51 20.38 0.03 2.59 2.56 20 0.04 2.59 2.5 23.29

0.1 0.01 293.07 113.43 2.51 20.88 870.04 390.05 2.54 26.5 491.98 279.47 2.51 20.5 0.16 2.67 2.53 17.29

0.1 0.1 0.29 2.69 2.53 21 292.76 113.26 2.53 64.88 313.2 224.01 2.51 20.875 585.72 223.95 2.48 17.14

0.1 0.3 439.27 168.66 2.56 22.63 643.45 500.99 2.57 65.75 0.026 2.60 2.55 20.875 0.05 2.56 2.49 16.86

0.01 0.001 850.24 556.09 2.48 1.88 192 113.42 2.54 3.63 308.5 168.76 2.54 2.75 146.28 58.13 2.58 2

0.01 0.01 443.18 224.18 2.5 3.13 691.59 556.44 2.53 5.88 0.17 2.63 2.5 2.38 586.01 224.07 2.51 2.29

0.01 0.1 0.05 2.57 2.48 3 367.23 334.94 2.56 46.63 575.5 334.87 2.56 2.75 308.43 168.85 2.58 2.29

0.01 0.3 575.26 334.67 2.52 2 880.28 556.87 2.52 51.75 146.38 57.98 2.51 2.38 0.18 2.67 2.57 2

Table 6: Results (mean σ and standard deviation µ) Produced by Different Combinations of Genetic Operators, Crossover Probabilities Pc = δ and Mutation

Probabilities Pm = γ for each WSRP Instance Running the SSGA For 200 Generations With a Population Size of 100.

A
g
ad

ir,
Ju

n
e

7
-1

0
,
2
0
1
5



id–10 MIC 2015: The XI Metaheuristics International Conference

6 Conclusion

Reducing the number of soft constraint violations is one of the challenges when applying evolutionary

methods to workforce scheduling and routing problems (WSRP), which are difficult and very constrained

real-world scheduling problems. Constraints in these problems include those related to workers skill

qualifications, time availability and time-conflicts. In this study we investigated the performance of

various generic and problem-specific genetic operators in their ability to reduce the number of constraint

violations. It is apparent that not using a repair operator results in many constraint violations regardless

of the combination of genetic operators used. The different combinations of genetic operators are co-

dependent on the use of a repair heuristic that uses problem domain knowledge. A simple time-conflict

repair heuristic (TCRH) was used here for improving the initial solutions quality. The simple Steady

State Genetic Algorithm (SSGA) used here converged earlier to local minima when using TCRC than

when using completely random initial solutions. However, not reducing time-conflict occurrences results

in far worse outcome on the quality of solutions over the algorithm generations. Therefore, TCRH

might give worse solutions in terms of cost (but with less time-conflicts) in the initial population but

will help to obtain less time-conflicts in the longer run. Well-known generic operators, three mutation

operators and seven crossover operators that have performed well on related problems were investigated

here on their performance on the WSRP. Additionally, two cost-based genetic operators were developed

with some problem domain knowledge. According to our experiments, all considered operators are

suitable for the WSRP. However, some of the generic operators such as IM, PMX, HX and CX exhibited

poorer performance. The SSGA provided solutions that can be improved further using problem-specific

operators aided by the repair operator. In this paper we were only interested in exploring relative strengths

and weaknesses of various genetic operators on the WSRP. We did not aim to design the most competitive

algorithm for the problem. Consequently, we have restricted ourselves to using a simple evolutionary

processes with no improvements such as local search. We believe that this study gives us guidelines for

the future development of more effective algorithms incorporating genetic operators to tackle the WSRP.
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