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Abstract

The major spreading and trapping mechanisms of carbon dioxide in geological

media are subject to spatial variability due to heterogeneity of the physical and

chemical properties of the medium. For modelling to make a useful contribution

to the understanding of carbon dioxide sequestration and its associated risk as-

sessment, the impact of heterogeneity on flow, transport and reaction processes

and their uncertainties must be identified, characterised, and its consequences

quantified. Complex computer simulation models based on systems of partial

differential equations with random inputs are often used to describe the flow of

groundwater through this heterogeneous media.

The Monte Carlo method is a widely used and effective approach to quantify

uncertainty in such systems of partial differential equations with random inputs.

In this method, the relevant parameter values (the properties of the medium) are

drawn from their probability distributions, the governing equations are solved,

and this is repeated for many such samples. This gives a set of samples of the

output variables, from which various statistical quantities of interest, such as

mean values, variances, and estimates of cumulative distributions functions, can

be calculated.

This thesis investigates two alternatives to Monte Carlo for solving the equa-

tions with random inputs; the first of these are techniques developed for improving

the computational performance of Monte Carlo, namely methods such as, multi-

level Monte Carlo, quasi Monte Carlo, multilevel quasi Monte Carlo. The second

alternative is an approach based on Bayesian non parametric modelling, in which

we build statistical approximations of the simulator, called emulators. In this

latter approach, the relationship between the inputs and outputs of the simulator



ii

is modelled using Gaussian processes that are conditioned on the output of the

simulator at carefully chosen inputs, called training points. The emulator is then

used as a surrogate for the full simulator in a classical Monte Carlo calculation.

The advantage of this approach is that the emulator is much faster than the

original simulator, so it is feasible to run it many times in order to perform the

desired analysis. The idea behind Gaussian process emulation methodology, is

that assuming the simulator is a smoothing varying function of the input param-

eters, then information can be obtained from a relatively small number of runs

of the model. This information can then be used to make inferences about the

output of the model given any other input.

Numerical calculations carried out in this thesis have demonstrated the ef-

fectiveness of the proposed alternatives to the Monte Carlo method for solving

two-dimensional model problems arising in groundwater flow and Carbon cap-

ture and storage processes. Multilevel quasi Monte Carlo has been proven to

be the more efficient method, in terms of computational resources used, among

Monte Carlo, multilevel Monte Carlo and quasi Monte Carlo. Gaussian process

emulation has been proven to be a reliable surrogate for these simulators and

it has been concluded that the use of Gaussian process emulation is a powerful

tool which can be satisfactorily used when the physical processes are modelled

through computationally expensive simulators.
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Chapter 1

Introduction

The quality of the Earth’s water resources has been declining since the beginning

of the industrial revolution. Water resources are composed of ground and surface

water, and keeping these clean of pollution is of vital importance. Contamination

of groundwater can occur in numerous ways, including accidental spills, spent

nuclear fuel repositories, and from industrial processes such as carbon capture and

storage (CCS) and fracking. The use of aquifers as a potable water supply and the

potential adverse effects that contamination can pose to users, necessitates the

development of methods for predicting the transport of contaminants in aquifers.

Scientific contributions to this problem include the use of mathematical and

computational tools to predict the physical behaviour of the fluids or solutes that

occur deeply underground. Solute transport in groundwater occurs mainly under

convection and dispersion effects. Path lines of solute particles and their arrival

times at receptors (e.g., canals or rivers), broadly known as particle tracking, are

important in practice, for instance, the leakage of radionuclides which are trans-

ported through groundwater flow and which has direct impact on water resources.

Convection models by themselves cannot be used to compute solute particles in

groundwater flow because they do not consider the effect of mixing by disper-

sion. On the other hand, convection models represent a valuable intermediate

step between groundwater flow models and convection-dispersion-reaction solute

transport models. In the first part of this thesis we analyse this phenomenon by

applying some of the current numerical techniques for solving the mathematical

models used to predict this physical process. The fact that we deal with a small-
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scale problem provide us with an excellent opportunity for deeply analysing the

methodologies proposed, and thus, help us to succeed when attempting to solve

real large-scale problems occurring in CCS technology.

Climate change concerns governments and people around the world (IPCC,

AR5). There is a drive for all countries to reduce their carbon dioxide (CO2)

emissions. CO2 emissions arising from the utilization of fossil fuels are expected

to provoke climate change over the next century (IPCC, AR5), and thus, research

has been done on methods to reduce greenhouse gas emissions. CCS is an at-

tractive technology because it provides the chance of maintaining access to fossil

fuel energy, while cutting CO2 emissions into the atmosphere. Therefore, CCS is

presented as a global warming mitigation strategy and will be a practical method

if the sequestrated CO2 can be retained and trapped safely underground. CO2

can be trapped in saline geological formations by three mechanisms: firstly, it

can be trapped as a residual phase (residual phase trapping). Secondly, it can

be dissolved into the formations brine (solubility trapping). This enhances the

acidity of the brine and increases the solubility of many minerals composed of the

host rock matrix. And thirdly, CO2 may dissolve and dissociate into ionic species

and react with minerals in the geologic formation, leading to the precipitation of

secondary carbonate minerals (mineral trapping). In this thesis we are interested

in investigating the latter mechanism.

The major spreading and trapping mechanisms of carbon dioxide in geolog-

ical media are subject to spatial variability due to heterogeneity of the physical

and chemical properties of the medium. Heterogeneity acts on the multi-phase

flow properties of the carbon dioxide-brine system and can lead to trapping of

brine behind the carbon dioxide phase and increased spread of the CO2 -brine

interface (Bolster et al., 2009). These heterogeneity-induced processes increase

the CO2 -brine contact area and thus can increase the dissolution efficiency of

CO2. The mixing of the resulting denser carbon dioxide rich water and the reser-

voir water is due to diffusion and the interaction with spatial heterogeneity and

buoyancy effects. The efficiency of chemical reactions due to the mass transfer

limitations and interaction with the medium is again subject to spatial hetero-

geneity in the physical and chemical medium properties (Dentz et al., 2011a).

While heterogeneity can lead to increased spreading and mixing of waters with
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different chemical compositions, chemical reaction rates for heterogeneous media

can be much smaller than the ones obtained in a homogeneous laboratory set-

tings (Dentz et al., 2011b). This behavior can be traced back to mass transfer

limitations as a consequence of spatial variability. These effects, along with the

influence of capillarity are in general disregarded in large-scale reservoir models.

The impact of these heterogeneity and capillarity related processes may be disre-

garded in petroleum applications, but is critical for assessing the long-term fate

of the geological storage of CO2 .

Quantifying the reaction and transport behavior in effective large scale flow,

reaction and transport equations is a major challenge. Spatio-temporal fluctua-

tions induce not only scale effects in the major spreading and trapping processes,

but cause (due to limited knowledge about the precise medium structure and

driving forces) uncertainty about the predicted large scale behavior. Thus, actual

predictability of the relevant processes on the large scale requires quantification of

the mean behavior and quantification of the fluctuations about it. There are two

main approaches to quantifying uncertainty that can be categorised as determin-

istic and probabilistic. In the deterministic approach, the best possible model is

constructed and the impact of uncertainties is considered by running variants of

the model. The main difficulty is in deciding which variants to study and making

sure that a sufficiently wide range of alternatives have been considered. In the

probabilistic approach, the uncertainties are characterised by random variables

and the results are presented as the stochastic laws for the outputs. There are a

number of difficulties with this approach. Firstly, determining the stochastic laws

for the input random variables may be difficult especially if they are correlated.

Secondly, there may be a very large number of random input variables. This is

particularly so if some of the inputs are spatially distributed, in which case there

will essentially be an infinite number of input random variables. Of course, these

random fields will be approximated by a finite number of such variables, but this

number may be large. Thirdly, this approach is very computationally demanding

since many simulations of the basic model have to be run with different param-

eter values. Finally, it is difficult to treat conceptual model uncertainty in this

way because it is not clear how to assign a probability measure to the set of all

models (Bannör and Scherer, 2014).
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The Monte Carlo (MC) method is a widely used and effective approach to

solving systems of partial differential equations with random inputs. In this

method the relevant parameter values are drawn from their probability distribu-

tions and the governing equations are solved for many such samples. This gives

a set of samples of the output variables, from which various statistical quantities

of interest, such as mean values, variances, estimates of cumulative distributions

functions, can be calculated. The implementation of the classical MC method is

straightforward, and it can be applied to any type of problem including non-linear

problems, it does not suffer from the so called “curse of dimensionality” (Hadley,

2013) and it is possible to compute an estimate of the error as part of the solu-

tion process. The main difficulty with the method is its slow rate of convergence:

the error decreases as the inverse of the square root of the number of samples

(Cliffe et al., 2011). An alternative to MC methods is provided by probability

density function (PDF) approaches (Tartakovsky et al. (2007) and Dentz and

Tartakovsky (2010)). This approach derives dynamical equations for the PDFs

of the state variables (pressure, concentration, saturation, reaction rates) based

on the stochastic partial differential equations governing the phenomenon under

consideration (flow, transport, reaction) and allow for a map of the uncertainty

of the medium heterogeneity (physical and chemical) and the driving forces on

the uncertainty of the system state.

Current multi-phase flow and reactive transport models do not take into ac-

count the impact of heterogeneity on front spreading and mass transfer between

high and low permeability zones of the heterogeneous medium and the impact of

physical and chemical heterogeneity on chemical reactions. To date, the quantifi-

cation of uncertainty arising from heterogeneities in rock properties and temporal

fluctuations in modelling large scale of CO2 sequestration has not received much

attention. The few calculations that have been done have used classical MC meth-

ods and have required enormous computational resources. The work proposed

in this thesis extends the state of the art by applying the latest developments

in the solution of equations with random inputs to the problem of uncertainty

quantification (UQ), first in a simple convection model, and second in a large

scale CO2 sequestration model.

The reason UQ becomes important in the analysis of computer models lies
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in the fact that some uncertainties may have limited impact on the outcome of

performance assessment, and if this can be established, then it is not necessary

to explicitly deal with them. Those sources of uncertainty that cannot be treated

in this way must be dealt with explicitly. This is a challenging problem. For the

large-scale, time-dependent simulations that must be carried out as part of an

investigation of a storage site for CO2 classical MC simulation will be impracti-

cal unless considerable computing resources are available. Even if such resources

are available, they could be better deployed if more efficient methods are avail-

able to solve the equations with random inputs, such as investigating alternative

conceptual models and better models of the basic physics.

The work proposed here aims to investigate alternative methods to MC for

solving the equations with random inputs. The main source of uncertainty that

will be considered is the physico-chemical heterogeneity of the rock formation.

Suitable stochastic models for these heterogeneities will be analysed in Chapter

2. Such models have an infinite number of stochastic degrees of freedom and

will be approximated by a finite number of degrees of freedom using Karhunen-

Loéve (KL) decompositions. To solve the resulting problem two techniques will

be investigated. The first methodology consists in the implementation of some

of the numerical methods currently used to increase the rate of convergence of

MC, namely, multilevel Monte Carlo (MLMC), quasi Monte Carlo (QMC) and

multilevel quasi Monte Carlo (MLQMC). These methods have been proven (see

e.g., Cliffe et al. (2011) and Giles (2008)) to reduce significantly the asymptotic

cost of solving the stochastic problem with the standard MC method. In many

applications, the quantity of interest is the expected value of a functional of the

solution of the model. Multilevel methods exploits the linearity of expectation,

by expressing the quantity of interest on the finest spatial grid in terms of the

same quantity on a relatively coarse grid and correction terms. The dramatic

reduction in cost associated with the MLMC method over standard MC is due

to the fact that most of the uncertainty can be captured on the coarse grids and

so the number of realisations needed on the finest grid is greatly reduced. The

second approach will be to use statistical approximations of the simulator called

emulators. In this approach the relationship between the inputs and outputs of

the simulator is modelled as a Gaussian process (GP) that is conditioned on the
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output of the simulator for appropriately chosen inputs called training points.

The emulator is then run as a surrogate for the full simulator in a classical MC

calculation. The advantage of this approach is that the emulator is much faster

than the original simulator, so it is feasible to run it many times to achieve the

accuracy required.

So far, we have broadly introduced the physical problems and the current

methodologies used by scientists to tackle those problems. We have talked about

the need to analyse the uncertainties that occur in computer models, but we have

not made clear what uncertainty analysis (UA) is.

1.1 Uncertainty analysis of computer models

Throughout this thesis we will call the simulator the combination of the sys-

tem of PDEs used to model a physical phenomenon and the numerical method

used to obtain a solution of the given mathematical problem. Henceforth, such a

simulator can be regarded as a mathematical function f(·), that takes a vector x

of inputs and produces an output scalar1 y = f(x). The outputs of a simulator

are a prediction of the real-world phenomena that are simulated by the model,

but as such will inevitably be imperfect. There may be many uncertainties when

using a computer model to determine the outcome of physical processes. Kennedy

and O’Hagan (2001) give a detailed list of these uncertainties and Stone (2011)

summarises these uncertainties as follows:

1. There may be uncertainty about the values of the inputs of the computer

code. These inputs can be thought of as unknown parameters of the model,

and the uncertainty about them is therefore called parameter uncertainty.

2. As the mathematical model may be a simplification of the process, the

model will inadequately predict the value of the true process, even if the

inputs are known. This is known as structural uncertainty, and is the

1We will firstly consider the simple case where a simulator output is a scalar. Later on this
thesis we will extend this concept to two dimensional field outputs (see 2.11.2).
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difference between the true process and the code output at the best values

of the input.

3. The model predicts the process under conditions specified by the inputs.

However, the process itself may not give the same value under repeated

conditions. This residual variability is due to conditions that are not recog-

nised in the mathematical model on which the computer model is based,

i.e. structural uncertainty.

4. If any observations of the process are used to calibrate the code, these may

include errors. The observation errors add to the uncertainty in the model.

5. The output of the code can also be uncertain. Even though it is a mathe-

matical function of the inputs, it may not be practical to know the output

of the code for any set of inputs if the code is complex and takes a long

time to run. However, if it is only required to know the output for a small

number of inputs code uncertainty would not be a problem.

To above list, we can add the error arisen from the discretization of the physi-

cal domain used by the simulator to produce the output, this is sometimes known

as bias.

Various types of analysis have been used to address some of these uncer-

tainties, for example, uncertainty analysis, sensitivity analysis, calibration and

validation. Stone (2011) defines these terms as follows: UA as the process of

quantifying the uncertainties in that output due to uncertainties in the inputs.

Sensitivity analysis examines how the code output varies in response to changes

in inputs, particularly finding out which inputs have the most impact on the

output. Calibration relates to changing the parameters of the model, so that the

code output fits the observed data, in the sense that the difference between the

observed outcome and the model output is small. Validation assesses how well

the code predicts reality. In this thesis we are interested in analysing the output

of groundwater flow models due to the uncertainties in the inputs. We therefore

concentrate on uncertainty analysis.

In the following sections of this introduction we describe, in a more detailed

manner, the state of the art of the computational tools that will be used in the
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following chapters of this thesis to perform uncertainty quantification for flow

and transport in the porous media models proposed.

1.2 Classical Monte Carlo, quasi Monte Carlo

and multilevel methods for solving partial

differential equations with random inputs

There is a broad family of simulation methods which extend classical Monte

Carlo methods. These methods can be used to quantify uncertainty in ground-

water flow models arising from solving numerically elliptic partial differential

equations with random coefficients.

In this section we give a brief description of the different approaches available

for solving PDEs with random coefficients. For a further description of the MC

and MLMC methods see Cliffe et al. (2011) and Giles (2008); Graham et al.

(2011) and Giles and Waterhouse (2009) for QMC and MLQMC.

1.2.1 Monte Carlo simulation methods

Let (Ω,F,P) be a probability space, where Ω denotes the set of all possible

outcomes for a given experiment and it is called the sample space, F is a set

of events where each event is a set containing zero or more outcomes, and P is

the assignment of probabilities to the events; that is, a function P from events

to probabilities. Let XM be a random vector that takes values in R
M and let

TM = f(XM) be some linear or nonlinear functional1 of XM .

We assume that the expected value E[TM ] → E[T], for some (inaccessible) ran-

dom variable T : Ω → R, asM → ∞, and that (in mean) the order of convergence

is α > 0 (see Cliffe et al. (2011) and Giles (2008)), i.e.,

|E[TM − T]| ≤ M−α. (1.1)

1Note that this is what we called earlier the simulator.
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We are interested in estimating E[T]. Thus, given M ∈ N sufficiently large, we

compute approximations (or estimators) T̂M of E[TM ] and quantify the accuracy

of our approximations via the root mean square error (RMSE)

e(T̂M) :=
(

E[(T̂M − E[T])2]
)

1

2

. (1.2)

In terms of solving systems of PDEs, a computer model needs to retain all the

important features of the physical domain (a continuum medium) of the problem

and reduce them into a simplified form, called the computational domain (a

discrete set of points). Throughout this thesis we will call grid the structured

distribution of points, called nodes, that form the computational domain used

by the computer model to solve the equations, and M will denote the number of

nodes which form the corresponding grid. According to this, given two grids Mi

and Mj, with i, j ∈ N, and i < j, we will say that Mi is a subgrid of Mj, and we

will write Mi < Mj, if all the nodes contained in Mi are also contained in Mj.

We will then say that Mi is coarser than Mj and conversely that Mj is finer

than Mi. For solving efficiently systems of PDEs, choosing M sufficiently large

corresponds to choosing a fine enough grid that guarantees that the computer

model is providing an accurate approximation of the true solution of the problem.

Figure 1.1 shows an example of two grids for the same physical domain used by

a computer model.

The random variable T is, in this case, a functional of the solution of our PDE

system, and TM will be the same functional of the discretised solution. We will

define, and denote by, Cε, the computational ε-cost used to achieve a RMSE of

e(T̂M) ≤ ε. This ε-cost is quantified by the number of floating point operations

that are needed to achieve a RMSE of e(T̂M) ≤ ε.

1.2.2 Standard Monte Carlo simulation

We define the standard MC estimator for estimating E(TM) as follows,

T̂MC
M,N :=

1

N

N
∑

i=1

T
(i)
M , (1.3)
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(a) Grid with 25 nodes, M0, for the domain
D.

(b) Grid with 81 nodes, M1, for the domain
D.

(c) Two grids, M0 (circles) and M1 (dots), for the same domain D. M0

is considered a subgrid of M1, i.e, M0 < M1.

Figure 1.1: Example of two grids M0 and M1 for the domain D = [0, 1]× [0, 1].

where T
(i)
M is the ith sample of TM and N independent samples are computed in

total. Note that E[T̂MC
M,N ] = E[TM ], i.e., T̂MC

M,N is an unbiased estimator of E[TM ].

We assume that the cost to compute one sample T
(i)
M of TM is

C(T
(i)
M ) ≤ Mγ, for some γ > 0, (1.4)
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and so the total cost of MC estimator satisfies,

C(T̂MC
M,N) ≤ NMγ. (1.5)

Thus, there are two sources of error in the estimator T̂MC
M,N :

• the approximation of T by TM , which is related to the spatial discretisation

of our PDE’s, referred earlier as bias.

• the sampling error (or statistical error) due to replacing the expected value

by a finite sample average.

Let us expand the mean square error (MSE) to see clearly both contributions:

e(T̂MC
M,N)

2 = E

[

(

T̂MC
M,N − E[T̂MC

M,N ] + E[T̂MC
M,N ]− E[T]

)2
]

= E

[

(T̂MC
M,N − E[T̂MC

M,N ])
2
]

+
(

E[T̂MC
M,N ]− E[T]

)2

= V[T̂MC
M,N ]+

(

E[T̂MC
M,N ]− E[T]

)2

,

where E and V denote expectation and variance respectively.

Since

E[T̂MC
M,N ] = E[TM ] and V[T̂MC

M,N ] = N−1
V[TM ],

we get

e(T̂MC
M,N)

2 =
V[TM ]

N
+ (E[TM − T])2 , (1.6)

and so the first term in the MSE is the variance of the MC estimator, which

represents the sampling error and decays inversely with the number of samples.

The second term is the square of the error in mean between TM and T, i.e., the

discretisation error.

Hence, a sufficient condition to achieve a RMSE of ε with this estimator is

that both of the terms are less than ε2/2. Under the assumption that V[TM ]

is a constant independent of M , this can be achieved by choosing N ≥ ε−2 and

M ≥ ε−1/α, where the convergence rate, α, defined in (1.1) is problem dependent.
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In other words, we need to take a large enough number of samples N , as well as a

large enough value for M , so that T̂MC
M,N is a sufficiently accurate approximation

of our quantity of interest E[T].

1.2.3 Multilevel Monte Carlo simulation

The main idea of MLMC simulation is to sample not just from one approxi-

mation TM of T, but from several.

Let {Mℓ : ℓ = 0, ..., L} be an increasing sequence in N called levels, i.e.

M0 < M1 < ... < ML =: M .

As for multi-grid methods applied to discretised (deterministic) PDEs, the

key is to avoid estimating E[TMℓ
] directly on level ℓ, but instead to estimate the

correction with respect to the next lower level, i.e., E[Yℓ] where Yℓ := TMℓ
−TMℓ−1

.

Setting for simplicity Y0 := TM0
and using the linearity of the expectation

operator we have,

E[TM ] = E[TM0
] +

L
∑

ℓ=1

E[TMℓ
− TMℓ−1

] =
L
∑

ℓ=0

E[Yℓ]. (1.7)

Hence, the expectation on the finest level is equal to the expectation on the

coarsest level, plus a sum of corrections adding the difference in expectation

between simulations on consecutive levels. The multilevel idea is now to inde-

pendently estimate each of these expectations, so that the overall variance is

minimised for any given fixed level of computational cost.

Let Ŷℓ be an unbiased estimator for E[Yℓ], e.g., the standard MC estimator

with Nℓ samples

Ŷ MC
ℓ,Nℓ

:=
1

Nℓ

Nℓ
∑

i=1

(

T
(i)
Mℓ

− T
(i)
Mℓ−1

)

, (1.8)

then the multilevel estimator is defined as

T̂ML
M :=

L
∑

ℓ=0

Ŷℓ. (1.9)
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If the individual terms are estimated using standard MC, Ŷ MC
ℓ,Nℓ

, with Nℓ sam-

ples on level ℓ, this is the multilevel Monte Carlo estimator and we denote it by

T̂MLMC
M,{Nℓ} .

Note that the quantity T
(i)
Mℓ

−T
(i)
Mℓ−1

must be calculated from the same random

sample ω(i) ∈ Ω, i.e.,we use a coarsened version of the same input used for T
(i)
Mℓ

in calculating T
(i)
Mℓ−1

. The physical meaning of this is showed in Figure 1.2.

(a) Sample of random permeability field in level
ℓ +1.

(b) Same sample of random permeability field in
level ℓ.

Figure 1.2: Two samples of the same random permeability field in two consecutive
levels to be used as input in the MLMC method.

Since all the expectations E[Ŷℓ] are estimated independently, the variance of

the MLMC estimator is V[T̂ML
M ] =

∑L
ℓ=0 N

−1
ℓ V[Yℓ], and so the MSE is

e(T̂ML
M )2 := E

[

(T̂ML
M − E[T])2

]

=
L
∑

ℓ=0

V[Yℓ]

Nℓ

+ (E[TM − T])2 . (1.10)

As in the standard MC case before, we see that the MSE consists of two terms,

the variance of the estimator and the approximation error. To bound the RMSE

by ε, we can again seek to bound each term above by ε/2. Note that the second

term is exactly the same as in Equation (1.6) and so it is sufficient to choose

M = ML ≥ ε−1/α again. And therefore, to then achieve an overall RMSE of ε,
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the first term of e(T̂ML
M )2 has to be less than ε2/2 as well.

The computational cost of the MLMC estimator is

C(T̂ML
M ) =

L
∑

ℓ=0

NℓCℓ. (1.11)

where Cℓ := C(Y
(i)
ℓ ) represents the cost of a single sample of Yℓ.

The variance of MLMC estimator can be minimised (Cliffe et al., 2011) for a

fixed computational cost by choosing

Nℓ ≃
√

V[Yℓ]Cℓ, (1.12)

with the constant of proportionality chosen so that the overall variance is ε2/2.

So, the total cost on level ℓ is proportional to
√

V[Yℓ]Cℓ and hence

C(T̂ML
M ) ≤

L
∑

ℓ=0

√

V[Yℓ]Cℓ. (1.13)

• If the variance V[Yℓ] decays faster with ℓ than Cℓ increases, the dominant

term will be on level 0. Since N0 ≃ ε−2, the cost savings compared to

standard MC will in this case be approximately C0

CL

≃
(

M0

ML

)γ

≃ εγ/α,

reflecting the ratio of the costs of samples on level 0 compared to samples

on level L.

• If the variance V[Yℓ] decays slower than the cost Cℓ increases, the dominant

term will be on the finest level L, and the cost savings compared to standard

MC will be approximately V[YL]/V[Y0] which is O(ε2), if we have truncated

the telescoping sum E[TM ] = E[TM0
] +
∑L

ℓ=1 E[TMℓ
−TMℓ−1

] =
∑L

ℓ=0 E[Yℓ]

with M0 such that V[Y0] ≃ V[T0].

Hence, in both cases we have a significant gain.

The optimal values of L and {Nℓ}Lℓ=0 referred earlier can be computed from

the sample averages and the unbiased sample variances of Yℓ.

If we assume that |E[TM − T]| ≃ M−α, then it follows that |E[Yℓ]| ≃ M−α

and |E[ŶL]| ≃ M−α for NL sufficiently large providing us with a computable error
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estimator to determine whether M is sufficiently large or whether the number of

levels L needs to be increased.

The above assumptions and statements are formally presented in the following

Theorem (Cliffe et al., 2011):

Theorem 1.2.1 Let Ŷℓ:=Ŷ MC
ℓ,Nℓ

and suppose that there are positive constants α, β,

γ, Cα, Cβ, Cγ > 0 such that α ≥ 1
2
min(β, γ) and

1. |E[TMℓ
− T]| ≤ CαM

−α
ℓ

2. V[Yℓ] ≤ CβM
−β
ℓ

3. Cℓ ≤ CγM
−γ
ℓ ,

Then, for any ε < e−1, there exist a positive constant CML, a value L (and

corresponding M ≡ ML) and a sequence {Nℓ}Lℓ=0 such that

e(T̂ML
M )2 := E

[

(

T̂ML
M − E[T]

)2
]

< ε2,

and

C(T̂ML
M ) =































CML ε−2, if β > γ,

CML ε−2(log ε)2, if β = γ,

CML ε−2−(γ−β)/α, if β < γ.

Whereas

C(T̂
MC

M ) = CMCe−2−γ/α,

for some positive constant CMC.

Proof The proof is given in (Cliffe et al., 2011), Appendix A.
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The MLMC algorithm can be implemented in practice as follows:

1. Start at the coarsest level (L=0).

2. Estimate V[YL] by the sample variance of an initial number of NL samples.

Remember that Y0 := TM0
, i.e, quantity of interest in level 0 (coarsest level)

and Yℓ := TMℓ
− TMℓ−1

.

3. Calculate the optimal Nℓ, ℓ = 0, ..., L, using (1.12), Remember that Cℓ :=

C(Y
(i)
ℓ ) represents the cost of a single sample of Yℓ.

This step aims to make the variance of the MLMC estimator (1.9) less than
1
2
ε2.

4. Evaluate extra samples at each level as needed for the new Nℓ.

5. If L ≥ 1, test for convergence using ŶL ≃ M−α.

Remember that Ŷℓ = Ŷ MC
ℓ,Nℓ

:= 1
Nℓ

∑Nℓ

i=1

(

T
(i)
Mℓ

− T
(i)
Mℓ−1

)

This step tries to ensure that the remaining bias (E[TM − T]) is less than
1√
2
ε.

6. If not converged, set L = L+ 1 and go back to 2.

The parameters, α, β and γ that can be estimated empirically as follows:

For γ, we assume that the number of operations to compute one sample on

level ℓ is Cℓ = cMγ
ℓ for some constant c independent of ℓ. For β, we can use as

an approximation the slope of the line for V[Yℓ], mβ, because V[Yℓ] ≃ M
−mβ

ℓ . For

α, we can use as an approximation the slope of the line for E[Tℓ − Tℓ−1], mα,

because E[Tℓ − Tℓ−1] ≃ M−mα

ℓ .

1.2.4 Quasi Monte Carlo simulation

The MC method used to solve the system of PDEs with random coefficients

is based on pseudo-random number sampling algorithms. So in this case, dur-

ing the process, uniformly distributed pseudo-random numbers are generated and
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transformed into M-dimensional points that are distributed according to a certain

probability distribution. These points are used to form the inputs (e.g., random

coefficients representing the permeability fields) required by the simulator in or-

der to compute the corresponding output (e.g. pressure field, travel time etc.).

Sometimes, two input values are very close together, and, in this case, it might

not be necessary to run the simulator at both inputs since the output will be

practically the same (note that we are dealing with a deterministic simulator).

Let us see an illustrative example: Suppose we wish to compute I =
∫

[0,1]M
f(x)dx

with the MC method. Let f : [0, 1]M → R, and Y = f(X), where X is uniformly

distributed in [0, 1]M . Let p denote the uniform probability density function and

letting x be uniformly distributed in [0, 1]M , we can apply MC quadrature to

approximate I, for a given N ∈ N, in the following way,

I =

∫

[0,1]M
f(x)dx =

∫

[0,1]M
f(x)p(x)dx = E[f(x)] ≃ 1

N

N
∑

j=1

f(x(ωj)) = IN

where the values x(ωj) are independent and identically distributed (iid) random

variables sampled uniformly in the cube [0, 1]d by sampling the components xi(ωj)

independently and uniformly on the interval [0, 1].

QMC aims to choose adequate locations of the previous pseudo-random num-

bers (ωj in the previous example) in a deterministic manner, in such a way,

to guarantee that the points are uniformly spaced in the random space in or-

der to obtain the maximum possible information about the quantity of interest

with the minimum number of simulator runs, and therefore optimizing the MC

method. The generation of these pseudo-random numbers can be done by using,

for instance, digital nets (J.Dick and F.Pillichshammer, 2010), rank-1 lattice rule

(J.Hickernell and H.Niederreiter, 2003) or Sobol sequences (Sobol, 1967). We will

use Sobol sequences in this work to be consistent with the method used to build

the design of our Gaussian process emulator.

In practical terms, to apply the QMC method we first generate a Sobol se-

quence which is space filling on [0, 1]M , where M is the required dimension of

each of the points. Then, those points are pushed through the inverse cumulative

distribution function of a random variable. These new random vectors are used
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as the inputs for our simulator.

The biggest difference to pseudo-random numbers is that the sample values

are chosen under consideration of the previously sampled points, thus avoiding

the occurrence of clusters and gaps, as we can observe in the plots below. Figure

1.3(g) shows 100 pseudo-random numbers generated from a uniform distribution

and Figure 1.3(h) same number of points generated by Sobol sequences; we can

observe some more gaps (white spaces) in 1.3(g) than in 1.3(h) where it seems

that the sampling space is filled in a more uniformly manner. Figure 1.3(a) and

1.3(b) show the distribution of 2000 points with the two approaches; we can

appreciate bigger gaps and some clusters (dark blue stains) of points in Figure

1.3(a) than in 1.3(b).

The QMC estimator used for estimating E(TM) in this case is defined as,

T̂QMC
M,N :=

1

N

N
∑

i=1

T
(i)
Q,M , (1.14)

where T
(i)
Q,M is the ith sample of TM generated from QMC inputs, and N inde-

pendent samples are computed in total.

1.2.5 Multilevel Quasi Monte Carlo simulation

This method is a straightforward consequence of applying the MLMC algo-

rithm with a QMC estimator for each of the levels instead of MC estimator.

Thus, if we now let Ŷℓ be the unbiased QMC estimator for E[Yℓ] with Nℓ

samples

Ŷ QMC
ℓ,Nℓ

:=
1

Nℓ

Nℓ
∑

i=1

(

T
(i)
Mℓ

− T
(i)
Mℓ−1

)

, (1.15)

then use the multilevel estimator defined in (1.9),

T̂ML
M :=

L
∑

ℓ=0

Ŷℓ. (1.16)

If the individual terms are estimated using QMC, Ŷ QMC
ℓ,Nℓ

, with Nℓ samples on
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level ℓ, this is the multilevel Quasi Monte Carlo estimator and we denote it by

T̂MLQMC
M,{Nℓ} .

The MLQMC algorithm can be implemented in practice by following the next

steps:

1. Start L=0.

2. Estimate V[YL] by the sample variance of an initial number of NL samples.

3. Calculate the optimal Nℓ, ℓ = 0, ..., L, using (1.12)

4. Evaluate extra samples at each level as needed for the new Nℓ.

Note that in this step, special care has to be taken when evaluating extra

samples since QMC estimator is built in a deterministic manner and the

purpose here is to add new information to reduce the sample variance.

5. If L ≥ 1, test for convergence using ŶL ≃ M−α.

6. If not converged, set L = L+ 1 and go back to 2.

Complex simulators based on mechanistic and physical processes are often

computationally expensive, and full UA becomes extremely time consuming, if

not unfeasible. One solution to this is to create an statistic surrogate model for

the simulator. This surrogate is typically modelled as a GP and its aim is to

obtain an accurate approximation of the simulator by just using a finite number

of simulator runs. The proposed emulation methodology will focus on emulating

two statistics of the the model: the mean and the distribution function of the

quantity of interest. The mean is a straightforward statistic to emulate and

provides some information about how the output changes due to changes in each

input. The distribution function is more complex to estimate, however, it is an

important statistic since it contains information about the entire distribution of

the outputs.
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(a) 100 two-dimensional pseudo-
random numbers generated uni-
formly over the unit square.

(b) 100 two-dimensional numbers
generated by Sobol sequences over
the unit square.

(c) 500 two-dimensional pseudo-
random numbers generated uni-
formly over the unit square.

(d) 500 two-dimensional numbers
generated by Sobol sequences over
the unit square.

(e) 1000 two-dimensional pseudo-
random numbers generated uni-
formly over the unit square.

(f) 1000 two-dimensional numbers
generated by Sobol sequences over
the unit square.

(g) 2000 two-dimensional pseudo-
random numbers generated uni-
formly over the unit square.

(h) 2000 two-dimensional num-
bers generated by Sobol sequences
over the unit square.

Figure 1.3: Pseudo-random and Sobol sequences based sampling comparison over
the unit square.
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1.3 GP emulation of computer models

We now introduce an alternative approach to MC simulation methods. This

consists of building a statistical approximation of the simulator, which we will call

the emulator. We use Bayesian methodology to build the emulator, specifying a

prior belief about the functional form of the model, that is updated in the light

of the training data, in order to give the posterior distribution for the function.

In general, a posterior distribution can be obtained from the prior distribution

and the likelihood by applying Bayes rule in the form,

Posterior =
Likelihood × Prior

Normalizing constant
.

We can then say that the posterior is the prior conditioned on the observations

provided. The observations are called the training set, and will be denoted by

D = {(xi, yi); i = 1, ..., d.}, where each xi denotes an input vector of dimension

D and yi = f(xi) denotes a scalar output (sometimes called the target).

Because we have previously considered the simulator as a function f(·) that maps

inputs x into an output y = f(x), we could imagine using an approximation f̂(·)
instead of f(·), e.g., for the UA calculations. If the approximation is good enough,

then the uncertainty measure produced by the analysis will be sufficiently close

to those that would have been obtained using the original simulator f(·).
In general, an emulator, also called a meta-model, only requires a small

number of runs of the expensive simulator in order to achieve a desired per-

formance, making the process computationally cheaper than carrying out the full

Monte Carlo analysis. These runs are called the training runs of the model, in

which y1 = f(x1), y2 = f(x2), ..., yd = f(xd) are observed and used to estimate

f(x). Due to the computational cost, we wish to carefully choose the points,

{x1,x2, ...,xd}, called the design points, and for them compute the correspond-

ing values {y1 = f(x1), y2 = f(x2), ..., yd = f(xd)} to form the training data used

to update the prior. We will discuss the choice of design points further in Section

2.1.

In order to build a successful emulator it is useful to consider what O’Hagan

(2004) presents as two natural criteria that the emulator should satisfy: First, at



Chapter 1. Introduction 22

a design point xi, the emulator should reflect the fact that we know the true value

of the simulator output, so it should return f̂(xi) = yi with no uncertainty. And

second, at other points, the distribution for f(x) should give a mean value f̂(x)

that represents a plausible interpolation or extrapolation of the training data, and

the probability distribution around this mean should be a realistic expression of

uncertainty about how the simulator might interpolate/extrapolate.

To finish with this introduction, where we have described all theoretical as-

pects of the mathematical tools which we will be used later in this thesis, in the

following section we will give an overview of GP regression models.

1.3.1 GP regression

A GP is a collection of random variables, any finite number of which have

a joint Gaussian distribution. There are two equivalent ways to interpret GP

regression models, the weight-space view and the function-space view (Rasmussen

and Williams, 2006). In this thesis we will follow the second approach, i.e., we

will think of a Gaussian process as defining a distribution over functions, and

inference taking place directly in the space of functions.

A Gaussian process is completely specified by its mean function and covariance

function. This is a natural generalization of the Gaussian distribution whose mean

and covariance is a vector and matrix, respectively. The Gaussian distribution is

over vectors, whereas the Gaussian process is over functions. We define the mean

function, m(x), and the covariance function, k(x, x’), of a real process f(x) in

terms of its expectation as:

m(x) = E[f(x)],

and

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))],
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and denote the Gaussian process as:

f(x) ∼ GP(m(x), k(x,x′)). (1.17)

Given any set of s points, {x1,x2, ...,xs}, the vector {f(x1), f(x2), ..., f(xs)} has

a multivariate Gaussian distribution with mean vector, µ, and covariance matrix,

Σ, where,

µi = m(xi), i = 1, ..., s,

and

Σij = k(xi,xj), i, j = 1, ..., s,

If we denote the vector, f , where fi = f(xi), then

f ∼ N(µ,Σ).

We will show next how we can use GP regression to approximate our simulator.

1.3.2 Building the GP emulator

As discussed in Section 1.3, given a GP, it can be used as a prior specification

for Bayesian inference. The specification of the prior fixes the properties of the

functions considered for inference and, in this case, our prior specification for the

emulator is that we model f as a Gaussian process with mean function m, and

covariance function k, as stated in expression (1.17).

A key property of GPs that makes them so successful as modelling tools, is

that their posterior distribution, after training them on the training ensemble D,

is still a GP, in this case, given a prior as in expression (1.17) and a training set

D, we have:

f(x)|D ∼ GP(mD(x), kD(x,x
′)), (1.18)
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with updated mean and covariance functions, mD and kD.

So, if we pass to the GP our beliefs of a suitable prior distribution by providing

it with the mean, covariance, likelihood functions and adequate training set to

update that prior, we can then use the GP emulator to make predictions. In the

regression setting the outputs are real values. More formally, we are interested

in making inferences about the relationship between inputs and outputs, i.e., the

conditional distribution of the outputs given the inputs as we will see in detail

next in Section 1.3.3.

1.3.3 Prediction using the GP emulator

Given a set of points x = {x1, ...,xn} we can run our simulator, f , at these

locations in order to obtain the corresponding outputs yi = f(xi). It is typical for

more realistic modelling situations that we do not have access to function values

themselves, but only noisy versions in the form1,

y = f(x) + ǫ,

where ǫ is an i.i.d Gaussian noise with variance σ2
n, i.e., ǫ ∼ N(0, σ2

nI). This

noise can be due, for instance, to some truncation error made by the simulator

or just because of the rounding error of some parameter of the model. So, with

these considerations about the outputs, and following the notation for the mean

and covariance established in Section 1.3.1, the prior on the noisy observations

now becomes,

µi = m(xi),

and

cov(yi, yj) = k(xi,xj) + σ2
nδij,

where cov is the covariance and δij is the Kronecker delta (δij = 1 iff i = j and 0

1Given a set of points x = {x1, ...,xn} and a realisation of ǫ ∼ N(0, σ2
nI), ǫ = {ǫ1, ..., ǫn},

we can take y = {y1, ..., yn} as the noisy observations, where yi = f(xi) + ǫi for i = 1, ..., n.
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otherwise). In matrix form we have,

cov(y) = Σ(X,X) + σ2
nI,

where Σ(X,X) denotes the (d×d) matrix of the covariances evaluated at all pairs

of training, x. If we consider a training set D = {(xi, yi); xi ∈ R
D, yi ∈ R, i =

1, ..., d}, we can form now the D×d design matrix, X, and write the training set

as D = {(X, y)}. We can write now the joint distribution of the noisy output

values, y, and the predicted values, f∗, at the test locations, x∗, under the prior

as,
[

y

f∗

]

∼ N

([

µ

µ∗

]

,

[

Σ(X,X) + σ2
nI Σ(X,X∗)

Σ(X∗,X) Σ(X∗,X∗)

])

, (1.19)

where µ∗ is a vector formed by the test means, and, since there are d training

points, if we let d∗ be the number of test points {x∗1 ,x∗2 , ...,x∗d∗}, then Σ(X,X∗)

denotes the (d × d∗) matrix of the covariances evaluated at all pairs of training,

x, and test points, x∗, and similarly for the other entries Σ(X,X), Σ(X∗,X∗)

and Σ(X∗,X∗). Deriving the corresponding conditional distribution1 we arrive

at the key predictive equations for Gaussian process regression (Rasmussen and

Williams, 2006),

f∗|X,y,X∗ ∼ N
(

f̄∗, cov(f∗)
)

,

where

f̄∗ := E [f∗|X,y,X∗] = µ+ Σ(X∗,X)
[

Σ(X,X) + σ2
nI
]−1

y, (1.20)

and

cov(f∗) = Σ(X∗,X∗)− Σ(X∗,X)
[

Σ(X,X) + σ2
nI
]−1

Σ(X,X∗). (1.21)

If we now consider a single test input, x∗i , and we let k∗ be the vector of covari-

ances between the test point and the d training points, {x1,x2, ...,xd}, we can

reduce the equations for predictions (1.20) and (1.21) to a single test case in the

1See Rasmussen and Williams (2006), Appendix A for further details of Gaussian identities.
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form,

f̄∗i = µ∗i + k⊺

∗
[

Σ(X,X) + σ2
nI
]−1

y, (1.22)

and

Var(f∗i) = k∗i − k⊺

∗
[

Σ(X,X) + σ2
nI
]−1

k∗, (1.23)

where µ∗i = m(x∗i), k∗i = k(x∗i ,x∗i), and Var is the variance.

Let us finish this introductory chapter with an illustrative example where

we show how we use GP regression to approximate a simple one dimensional

deterministic function.

1.3.4 An Illustrative one dimensional example

Let us consider the deterministic function f(x) = 1 + 3
2
sin x + x2, for x ∈

[−4, 4]. The goal is to use GP regression to approximate f .

First, we consider the GP given by:

f(x) ∼ GP(m(x), k(x, x′)), wherem(x) =
1

4
x2, and k(x, x′) = exp

(

−1

2
(x− x′)2

)

.

This means, in other words, that we want to model f as a GP with these explicit

mean and covariance function m and k. Samples12 from the prior distribution of

the the function f are shown in Figure 1.4(a). As we want to work only with finite

quantities, we request only the value of f at a distinct finite number of locations

(therefore dotted lines) within the interval [−4, 4]. Now we provide a training

set of 6 pairs of points, Figure 1.4(b), and update the prior in the light of this

training set, Figure 1.4(c). The whole picture with the difference between prior

and posterior samples is presented in Figure 1.4(d). Note in this later case the

1For simulating samples, fi, from a Gaussian process we use the following formula fi(x) =
m(x)+chol(k(x,x)) u, where chol represents the Cholesky factorization of the matrix associated
to the covariance function k evaluated at a set of points x ∈ [−4, 4], and u is an i.i.d. random
vector N(0, I).

2The dots in Figure 1.4(a) are the values generated from the prior distribution, the other
curves representing the posterior samples in Figure 1.4(c) have (less correctly) been drawn by
connecting sampled points.
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difference between our prior assumption (prior samples) of the functional form

of f and the final model (posterior samples) obtained in the light of the 6 ob-

served points supplied. We can derive and use the posterior mean and variance

to represent the uncertainty we have with respect to the true f , Figure 1.5(a), in

this case corresponding to 95% confidence intervals. Now we can increase the size

of the training set and provide more observations and see how the uncertainty

region is reduced, Figure 1.5(b).

(a) Samples from prior distribution. (b) Observed data.

(c) Samples from posterior.
(d) Samples from the prior, data and samples
from the posterior.

Figure 1.4: Gaussian process regression example. (a) Samples drawn from the GP
prior distribution with mean m(x) = 1

4
x2 and covariance k(x, x′) =

exp
(

−1
2
(x− x′)2

)

. (b) A training set of 6 points. (c) Samples drawn
from the posterior distribution. (d) Differences between prior samples
and the updated posterior in the light of the training set.
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(a) Emulator mean (blue line) and uncertainty
region for a 6 points training set.

(b) Emulator mean (blue line) and uncertainty
region for a 10 points training set.

Figure 1.5: Emulator approximation to f(x) = 1 + 3
2
sin x + x2, and uncertainty

region corresponding to 95% confidence intervals for different train-
ing sets. We notice how the uncertainty region is negligible around
training points and it is reduced when including more points to the
training set.

1.4 Outline of the thesis

The aim of this thesis is to study and analyse current computational tools

for performing uncertainty quantification in groundwater flow and convectively-

enhanced dissolution (C-ED) processes. Within this scope, this work focuses

on accelerating the modelling and simulation process by substituting simpler,

dynamically generated, computationally cheap surrogate models in place of the

full evaluation of the computational model. Our goal is to build a competitive

surrogate model, the GP emulator, that work well not only for simple simulators

but for more complex industry problems. The election of the first model, the

single Darcy’s flow model, is due to the fact that this model has been studied

deeply by the scientific community (see e.g., Cliffe et al. (2011)) and therefore

this provides us with a benchmark in order to test the efficiency and accuracy of

our GP emulator. So far, we have broadly introduced all the methodologies that

are being used by the scientific community for doing uncertainty quantification
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in computer models. In the following chapters of this thesis we will put all these

methodologies into practice.

In Chapter 2 we introduce the deterministic simulator used for the single

Darcy’s flow model. Then we convert the deterministic simulator in a system of

PDEs with random coefficients by modelling one of the simulator input param-

eters, the permeability, as a lognormal random field. We describe how we build

our GP emulator for the new simulator and show how we use cross-validation

methods to test the emulator performance. We use the GP emulator to approxi-

mate the cumulative distribution function (CDF) of the simulator scalar output

and compare the results with the ones obtained by applying the standard Monte

Carlo simulation method. We conclude the chapter by describing and applying

a novel methodology, based in the use of GP emulation and singular value de-

composition (SVD) algorithms, for approximating field outputs instead of scalar

outputs.

In Chapter 3 we use the GP emulator, MC, MLMC, QMC and MLQMC

methods to approximate and compare the results for the average travel time of a

particle travelling from the centre of a given physical domain to get to the domain

boundary. A series of experiments based on several numerical discretisations of

the physical domain are conducted. For each of these discretisations we apply all

the methodologies proposed in the introduction of this thesis, namely, GP emu-

lator, MC, MLMC, QMC and MLQMC and compare the outcomes. The results

obtained with the GP emulator are given in terms of confidence intervals (CI).

The performance of the MC methods is tested by comparing their computational

ε-cost, i.e. the number of floating point operations that are needed to achieve the

desired MSE.

In Chapter 4 we describe the deterministic simulator for the C-ED process.

This is a more physical and computational complex real problem than the pre-

vious one discussed in Chapter 2, and therefore, the search of solutions for the

deterministic model is not straightforward. In order to find numerical solutions for

this problem we present a novel method based of the finite element (FE) method

and arclength continuation techniques. In this model, the uncertain input of the

simulator is again permeability, and so we use the same method to model the

permeability as in chapter 2. We describe how we build our GP emulator for the
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simulator with random inputs. We use the GP emulator to approximate the CDF

of the simulator scalar output and compare the results with the ones obtained by

applying the standard Monte Carlo simulation method. We conclude the chapter

by applying the same methodology introduced in chapter 2 to approximate field

outputs instead of scalar outputs.

In Chapter 5 we discuss conclusions that have arisen from the application of

the broad range of methodologies to groundwater flow and C-ED problems, and

draw lines of potential areas of future research.

Finally, after Chapter 5, we show a list of all the abbreviations and a list of

all the symbols used throughout this thesis.



Chapter 2

Gaussian process emulation for

uncertainty quantification in

groundwater flow models

We start this chapter by describing how we build the GP emulator for a

general simulator and how we test it by following cross-validation methods. We

then introduce the simulator used in this thesis to solve a particular groundwater

flow model. We detail how we model the uncertain input parameter of this model

and show how the emulator can be used to quantify the uncertainty distribution of

the simulator scalar output. We finish the chapter with the description of a novel

technique, based on the combination of GP emulation and SVD methodologies,

for emulating two dimensional outputs instead of scalar outputs, and compare

this approach with the standard direct emulation over scalar outputs.
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The GP emulator presented in this thesis has been built upon the Matlab1

code GPML developed by Rasmussen and Williams (2006). As discussed in Sec-

tion 1.3, the Bayesian methodology is based on a prior belief about the functional

form of the model, that is updated in the light of the training data in order to

give the posterior distribution for the function to approximate. Thus, another key

point for a GP emulator to be successful is an adequate selection of the training

data used to update the prior assumptions. Next, we are going to describe, first,

how we choose our design, and second, the type of mean and covariance functions

that we will use in our GP emulator.

2.1 Generation of the design points

As we need a reduced number of simulator runs providing the maximum pos-

sible information about the output, we need to choose a design which covers the

full range of uncertainty about the input values. For instance, if two input values

are very close together, there may be some issues when building the emulator, as

within the process, some of the covariance matrices involved may become singular

and therefore cannot be inverted. The design points do not need to be random.

The objective is to learn about the function f(·), and well spaced points that

cover the region of interest are much better than random points. Sampling is

the process of exploring the domain of interest. A random sample can be gener-

ated by a pseudo-random number generator. A sample is randomly distributed

in a defined interval according to some distribution. There are several methods

of sampling the input values as the Latin Hypercube Sampling (LHS) (McKay

et al., 1979) described by Pebesma and Heuvelink (1999) or Sobol sequence based

method (Sobol, 1967). We will use the second to build our design by generating

the pseudo-random numbers with a method based on Sobol sequences. Sobol

sequences belong to the family of quasi-random sequences which are designed to

generate samples of multiple parameters as uniformly as possible over the multi-

dimensional parameter space (Saltelli et al., 2010). The biggest difference to

1Matlab is a trademark of The MathWorks Inc.
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pseudo-random numbers is that the sample values are chosen under considera-

tion of the previously sampled points and thus avoiding the occurrence of clusters

and gaps (Burhenne et al., 2011).

In practical terms, first we use Sobol sequence to generate the space filling

design on [0, 1]D, where D is the dimension of each of the design points xi,

i = 1, ..., d. Then, those design points are pushed through the inverse cumulative

distribution function of a N(0, σ2
d) random variable (σ2

d > 1). We use σ2
d > 1

to ensure that the design points are slightly more spread out than the random

variables ξi (which have a N(0, 1) distribution) and thus we assure that we cover

the tiles of the distribution we want to model. Once a design is chosen, we need

to run the simulator once for each design point in order to built our training set,

D = {(xi, yi = f(xi)), i = 1, ..., d}. (2.1)

The election of the covariance function is crucial in a GP predictor, as it

encodes our assumptions about the function which we wish to learn (Rasmussen

and Williams, 2006). It is the covariance function that defines the concept of

nearness, i.e. two points x1 and x2 which are close in distance are likely to have

close target values y1 = f(x1) and y2 = f(x2), and so arbitrary functions will not,

in general, be a valid covariance function for our model. Throughout this section

we will present examples of some commonly used covariance functions with the

purpose of analyzing and testing the performance of our GP emulator. In order

for a model to be a practical tool, we needs to make decisions about the details

of its specification. Some properties may be easy to specify from the context

of the problem, while we typically have only vague information available about

other aspects, e.g., length-scales or process variances. In order to learn suitable

functional forms for our covariance functions we express them explicitly in terms

of some continuous parameters, which we call hyperparameters, and so any given

covariance function will have a number of hyperparameters whose values also

need to be determined (or inferred). The process of learning suitable values for

any given set of hyperparameters is called to train the model (see section 2.5 for

details about how to train the model).
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2.2 The prior covariance function

For our GP emulator we have chosen three different families of covariance

functions. The first one is called the squared exponential (SE) covariance func-

tion. This covariance function is infinitely differentiable, which means that the

GP with this covariance function has mean square derivatives1 of all orders, and

is thus very smooth (MS differentiability). Although the SE is probably the most

widely used covariance function, Stein (1999) argues that this strong smoothness

assumptions is unrealistic for modelling many physical processes, and recom-

mends the Matérn class (Matérn, 1960), used also by Cornford et al. (2002), and

so, that will be our second choice2. The third covariance function, chosen to give

alternative view from the previous two choices, will be the rational quadratic (RQ)

which was presented as an alternative to the Matérn class by Matérn (1960).

The expressions for the squared-exponential (2.2), Matérn class (2.3) and (2.4),

and rational quadratic (2.5) covariance functions in one dimension in terms of

their corresponding hyperparameters have the following form:

kSE(xi, xj) = σ2
f exp

(

−|xi − xj|2
2ℓ

)

+ σ2
nI, (2.2)

k 3

2

(xi, xj) = σ2
f

(

1 +

√
3|xi − xj|

ℓ

)

exp

(

−
√
3|xi − xj|

ℓ

)

+ σ2
nI, (2.3)

k 5

2

(xi, xj) = σ2
f

(

1 +

√
5|xi − xj|

ℓ
+

5|xi − xj|2
3ℓ2

)

exp

(

−
√
5|xi − xj|

ℓ

)

+ σ2
nI,

(2.4)

1Following section 4.1.1 in Rasmussen and Williams (2006) we describe mean square conti-
nuity and differentiability of stochastic process (like GP) as follows: Let x1,x2, ... a sequence of
points and x’ be a fixed point in R

n, n ∈ N, such that |xk−x′| → 0 as k → ∞. Then Then a pro-
cess f(x) is continuous in mean square (MS) at x’ if E[|f(xk)−f(x′)|2] → 0 as k → ∞. The mean

square derivative of f(x) in the ith direction is then defined as ∂f(x)
∂xi

= limh→0
f(x+hei)−f(x)

h
,

when this limit exists , where this limits denotes limit in mean square and ei is the unit vector
in the ith direction.

2There are a whole family of Matérn class functions and in this work we will use only two
representatives, the Matérn 3

2

and Matérn 5

2

.
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kRQ(xi, xj) = σ2
f

(

1 +
|xi − xj|2

2αℓ2

)−α

+ σ2
nI, (2.5)

where ℓ is the characteristic length-scale, σ2
f is the variance of the process, α > 0,

σ2
n is the variance of the induced Gaussian noise.

For simplicity, we have presented only one dimensional covariance functions,

but in general, a multi-dimensional treatment has to be given to the covariance

functions in order to obtain a realistic model. This is done by introducing multi-

dimensional characteristic length scales in the form ℓℓℓ = (ℓ1, ..., ℓD), where D is

the dimension of the inputs for our model (the dimension of the training points).

The idea is, roughly, how far do you need to move (along a particular axis) in

input space for the function values to become uncorrelated. Such a covariance

function implements automatic relevance determination (ARD) (Neal, 1996) since

the inverse of the length-scale determines how relevant an input is: if the length-

scale has a very large value, the covariance will become almost independent of

that input, effectively removing it from the inference (Rasmussen and Williams,

2006).

Anisotropic versions of these covariance functions can be created by setting

(xi−xj)
2 = (xi−xj)

⊤M(xi−xj) in (2.2), (2.3), (2.4) and (2.5), for some positive

semi-definite matrix M. If we choose M to be diagonal, this will implement

the use of different length-scales on different dimensions. So, we will set M =

diag( 1
ℓ2i
), with i = 1, ..., D. So, anisotropic versions of the covariance functions

parameterized in terms of hyperparameters are explicitly given by,

kSEard(xi,xj) = σ2
f exp

(

−1

2
(xi − xj)

⊤M(xi − xj)

)

+ σ2
nδij, (2.6)

k 3

2
ard(xi,xj) = σ2

f s 3

2

(r 3

2

(xi,xj)) exp(−r 3

2

(xi,xj)) + σ2
nδij, (2.7)

k 5

2
ard(xi,xj) = σ2

f s 5

2

(r 5

2

(xi,xj)) exp(−r 5

2

(xi,xj)) + σ2
nδij, (2.8)

with

s 3

2

(t) = 1 + t, s 5

2

(t) = 1 + t+
t2

3
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and

r 3

2

(xi,xj) = (3(xi −xj)
⊤M(xi −xj))

1

2 , r 5

2

(xi,xj) = (5(xi −xj)
⊤M(xi −xj))

1

2 ,

kRQard(xi,xj) = σ2
f

(

1 +
1

2α
(xi − xj)

⊤M(xi − xj)

)−α

+ σ2
nδij, (2.9)

where δij is the Kronecker delta. Explicitly, the corresponding hyperparameters

for each case are, respectively,

θθθSE = (σ2
f , ℓ, σ

2
n), (2.10)

θθθMatern = (σ2
f , ℓ, σ

2
n), (2.11)

θθθRQ = (σ2
f , ℓ, α, σ

2
n). (2.12)

2.3 The prior mean function

It is common but by no means necessary to consider GPs with a zero mean

function. This is not necessarily a drastic limitation, since the mean of the poste-

rior process is not confined to be zero (Rasmussen and Williams, 2006). Constant

and linear mean functions have been tested for the models studied in this thesis

and proved to give similar results to a zero mean, while the computational cost

was bigger. Thus, in this thesis we will only show the results obtained by using

a zero mean function in all our GP models.

2.4 The likelihood function

For our Bayesian regression model we will consider the likelihood function as

Gaussian. This election is due to the fact that a Gaussian process prior combined
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with a Gaussian likelihood gives rise to a posterior Gaussian process over functions

(Rasmussen and Williams, 2006), and thus, all the process remains analytically

tractable for our purpose.

2.5 Training our Gaussian process model

Once we have the prior functions in terms of their hyperparameters we want

to be able to make inferences about all of them in the light of the data. In order

to do this we compute the probability of the data given the hyperparameters, i.e.,

p(y|X) =

∫

p(y|X,θθθ)p(θθθ)dθθθ. (2.13)

We can now find the values of the hyperparameters which optimizes the

marginal likelihood (ML) (2.13) or equivalently, find the values of the hyper-

parameters which optimizes the negative log marginal likelihood (NLML). As

we let y ∼ N(0,Σ + σ2
nI) (see 1.19), the negative log marginal likelihood can be

expressed by (Rasmussen and Williams, 2006),

NLML = − log p(y|X) = −1

2
y⊺(Σ+σ2

nI)
−1y− 1

2
log |Σ+σ2

nI|−
n

2
log 2π. (2.14)

For doing this we will use a routine implemented within the code GPML which

approximates the optima values using a local expansion around the maximum

(the Laplace approximation) (see Rasmussen and Williams (2006), Section 5.2

for details). Once we have obtained estimates of the hyperparameters, we can

use the expressions established for prediction (1.22) and (1.23).

So far we have introduced all necessary material to build a GP emulator, but

sometimes (most of the cases for real-world problems), we do not have access to

either the analytical solution of a mathematical problem or experimental data to

validate our model. In this case, in order to be confidence on the performance

of the GP emulator, we test our emulator by comparing our predictions with

the observed values available in our training set. We will refer to this process
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as cross-validation (CV) and we will discuss how to use CV for testing our GP

emulator in the following section.

2.6 Cross-validation

In this section we consider how to use methods of CV for model testing and

selection. The basic idea is to split the training set into two disjoint sets, one of

which is used for training, and the other, the validation set, is used to monitor

performance. The performance on the validation set is used to estimate the pre-

diction error and model testing and selection are carried out using this measure.

We will use an extreme case of the k-fold cross-validation known as leave-one-out

cross-validation (LOO-CV). During LOO-CV, we fit a model using all but a sin-

gle data point, and then we compute the model prediction error on the left out

point. We then repeat this for all points. Cross-validation can be used with any

loss function1 although the squared error loss is the most common for regression,

for probabilistic models such as GP it is natural to consider also cross-validation

using the negative log probability loss (Rasmussen and Williams, 2006). Another

possibility (Wilkinson et al., 2011) is to use the Dawid score introduced by Dawid

and Sebastiani (1999). To compute those quantities we have followed the formu-

lae proposed in Wilkinson et al. (2011). Suppose that we call mj our predicted

expected value, and s2j its corresponding variance, and we call ŷj our observed

(true) value, then, we define the mean squared error (MSE) and Dawid score

(DS) as,

MSE =
1

N

N
∑

j=1

(ŷj −mj)
2, (2.15)

DS =
1

N

N
∑

j=1

(

(ŷj −mj)
2

s2j
+ log s2j

)

. (2.16)

We will show how we use LOO-CV to test our particular GP model and to se-

lect adequate model specifications in Section 2.9.1. Let us put all these concepts

1A loss function is a function which specifies the loss or penalty incurred by guessing a value
that does not correspond to the true value (Rasmussen and Williams, 2006).
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and tools in practice through an application example. In this application we test

the GP emulator with a prior zero-mean function and the four covariance func-

tions introduced in Section 2.2, namely, SE (2.6), Matérn 3

2

(2.7), Matérn 5

2

(2.8)

and RQ (2.9). The properties of the Sobol sequences require a sample size of 2j

where j ∈ N (Burhenne et al., 2011) in order to exploit the way that the points

are spread when filling the space, and thus, the number of design points for each

training set to be considered throughout this thesis will be 256 (28) points.

2.7 Travel time of a convected particle in ground-

water flow.

Modelling adequately groundwater systems is essential for the safety of ge-

ological disposal facilities, for instance, the leakage of radionuclides which are

transported through groundwater flow and which has direct impact on water

resources. Nowadays, computer simulations have become an indispensable mod-

eling tool for the groundwater research. Normally, the simulation of groundwater

flow involves intrinsic uncertainties due to the lack of knowledge of the porous

medium where the particles are flowing through. Thus, this uncertainty propa-

gates throughout the calculations, and quantification of its impact on results of

computer simulations is the core issue of ongoing research in this field.

In the following, we introduce the physical problem we wish to study, the

quantities of interest, and provide details of the mathematical model we propose

to quantify the uncertainty in those quantities of interest.

2.8 Mathematical model

The study of groundwater flow is well established and there is general sci-

entific consensus that in many situations Darcy’s law can be expected to lead

to an accurate description of the flow (Cliffe et al., 2011). The main parameter

appearing in Darcy’s law is the hydraulic conductivity, which characterises how
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easily the fluid can flow through the rock under a given pressure gradient.

Stone (2011) gives a detailed description of the parameters involved in ground-

water flow models. We will introduce here only the relevant parameters for our

model. These parameters are, the porosity, φ (dimensionless), which is the ratio

of void volume in a rock to total volume, it indicates how much fluid a rock can

hold, the permeability (of a rock), K (m2), which measures the ability of the

rock to transmit fluid through its pores. The driving force behind the movement

of groundwater is head gradient. Head, h (m), is the height, above an arbitrary

given level, that a fluid in a rock can reach due to the fluid pressure, P (kg m−1

s−2). The density of the fluid is denoted by ρ (kg m−3). The head gradient is the

difference in head between two points in a region over the distance between those

two points. Note that the fluid will always flow from areas of high head to areas

of low head. q (m s−1), is the filtration velocity (or Darcy’s flux), and b (m) is

the thickness of a layer of rock.

2.8.1 Governing equations

Noting the given notation for the parameters involved in our model, the clas-

sical equations governing (steady-state) single phase subsurface flow consist of

Darcy’s law (2.17) coupled with an incompressibility condition (2.18) (see e.g.,

de Marsily (1986); Cliffe et al. (2000b); Stone (2011)), i.e.,:

q+K∇P = gs, (2.17)

∇ · q = 0, (2.18)

where gs are the source terms. These equations are subject to the following

boundary conditions:
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2.8.2 Domain and boundary conditions

The convection process is considered to occur in a horizontal section of porous

material represented by a cartesian system with domain D = [0, L]× [0, H] ⊂ R
2.

The boundary conditions are:

Dirichlet:

P (x = 0, y) = Pin, P (x = L, y) = Pout, (2.19)

where Pin and Pout denote the pressure at left boundary and right boundary

respectively.

Neumann:

∂P

∂y
(x, y = 0) = 0,

∂P

∂y
(x, y = H) = 0. (2.20)

In the next section we consider an example of a particle convected in the fluid,

passing through a horizontal layer of porous rock confined from above and below

as stated in (2.20). The quantity of interest will be the averaged travel time that

the convected particles released from the middle of the rock last to reach the end

of the porous rock.

2.8.3 Quantity of interest

We are interested in estimating the averaged travel time of convected particles

in groundwater flow. For doing this, the equations (2.17) and (2.18) can be

coupled and solved for the pressure. After the pressure is calculated, the travel

time that a convected particle initially located at the center, (x0 =
L
2
, y0 =

H
2
), of

the domain, D, last to reach the right boundary, z(τ) = (L, y), can be computed

by integrating the transport equation (Stone (2011); Bear (1972)),

dz(t)

dt
=

q(x)

bφ
= −K(x)

bφ
∇P (x), (2.21)
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i.e.,

z(t) = z(0) +

∫ t

0

−K(z(ζ))

bφ
∇P (z(ζ))dζ (2.22)

and therefore we can compute the time, τ , for which x(τ) = L, i.e.,

L = z(τ) = z(0) +

∫ τ

0

−K(z(ζ))

bφ
∇P (z(ζ))dζ. (2.23)

To solve the equation (2.23) we use a simulator1 which receives as input the

permeability and returns as scalar output the corresponding travel time, τ .

To test the precision of the simulator we solve an example problem for which

we know that there is an analytical solution and thus we can obtain a direct

comparison. The problem to solve is:

∇2P = 0, (x, y) ∈ D = [0, 1]× [0, 1], (2.24)

with boundary conditions,

P (x, 0) = P (x, 1) = 10(1− x), (2.25)

P (0, y) = 10,

P (1, y) = 0.

Note that for simplicity we have considered k = 1 in D. This problem has the

analytical solution P (x, y) = 10− 10x. To compute the travel time, we consider

a particle released at the centre, z = (0.5, 0.5), of the domain D and solve

dz(t)

dt
= −∇P (x), (x, y) ∈ [0, 1]× [0, 1], (2.26)

with

z(0) = (0.5, 0.5).

1This simulator, implemented in Matlab, was developed by Dr. Marco Iglesias (School of
Mathematics, University of Nottingham) and is based on the standard cell-centred finite volume
method described in detail in Cliffe et al. (2011).
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Thus, the travel time can be derived from the following equation:

dz(t)

dt
= −∇(10− 10x) = (10, 0), (2.27)

which by integration and application of the initial condition, z(0) = (0.5, 0.5)

leads to the explicit solution

z(t) = (0.5 + 10t, 0.5). (2.28)

As the velocity of the particle in the x-direction, ∂z
∂x
, is positive, we can anticipate

that the particle will leave the region by the east boundary, and thus, by solving

1 = 0.5 + 10t we obtain t = 0.05.

The numerical solution given by our simulator was exactly the same t = 0.05

for this example problem. The simulation of the corresponding trajectory is

shown in Figure 2.1.

Figure 2.1: Simulated trajectory of the convected particle initially released at
the center of the domain for the problem (2.24) with the boundary
conditions given in (3.1).

In the previous example we have considered the parameter K to be constant

in all the domain, but this is not an accurate representation of the reality. Bear
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(1972) provides some empirical data for the permeability and classify several sce-

narios (Figure 2.2). Farthing et al. (2012) shows some results obtained when deal-

ing with different porous media scenarios by using different sort of sands. It has

been shown (Byers and Stephens (1983); Hoeksema and Kitanidis (1985); Russo

and Bouton (1992)) that although the permeability values can show large spatial

variations, these variations are not entirely random but spatially correlated, and,

these porous media samples have been previously modelled as log-normal fields

(Mondal et al., 2010).

Throughout this thesis we will use a log-normal distribution to model the

parameter K, i.e., in the two dimensional case we replace the conductivity tensor

by a scalar valued field whose log is Gaussian. In the next section we describe

how we model the permeability as a log normal random field and how the model

presented in Section 2.8.1 yields to a system of PDEs with random coefficients.

Figure 2.2: Typical empirical values of hydraulic conductivity and permeability.
(Image extracted from Bear (1972)).
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2.8.4 Generation of random permeability fields

Let (Ω,F,P) be a probability space. We will call random field (RF) and write

{Z(x) : x ∈ D} or just Z(x, ω) to a set of real-valued random variables on the

probability space (Ω,F,P). So, for each x ∈ D, Z(x, ·) : Ω → R is a random

variable. For a given RF, Z(x, ω), we define the mean function m : D → R by:

m(x) = E[Z(x, ω)] =

∫

Ω

Z(x, ω) dP(ω), x ∈ D,

and the covariance function c : D x D → R, by:

c(x,x′) = E[(Z(x, ω)−m(x))(Z(x′, ω)−m(x′)), x,x′ ∈ D. (2.29)

For a fixed ω ∈ Ω, we will call the associated realisation of the RF, Z(x, ω),

to the deterministic function Z(·, ω) : D → R. Taking one realisation of each of

the random variables Z(x), we get a discretised function of x. This realisation

then gives a possible representation of the true field for use in a computer model.

The simulator described in Section 2.8.3 only requires as inputs the values of the

permeability at certain locations of the domain, D, rendering the initial contin-

uous domain to a finite computational domain. We will refer to these locations

at which the permeability is evaluated as nodes, and we will denote the set of

nodes by ΩM , where M denotes the number of nodes required by the simulator

in order to return an output. If we now let Z(x) be a Gaussian RF, we can take

K = exp(Z(x)) which is then a log Gaussian random field (Lord et al., 2014). In

this case, our simulator will receive as inputs a log Gaussian random field, K,

and will return a scalar output, the corresponding travel time, τ . Henceforth, we

can refer to the simulator as a function, f , as follows:

f : K ∈ R
M → τ ∈ R. (2.30)

One possibility to generate a Gaussian RF, Z, is to use the matrix decom-

position of the covariance matrix associated to the covariance function given in
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(2.29), such as Cholesky1 decomposition. One inconvenience is that even for a

few hundreds of the sampling points the round-off error is very significant due

to the fact that the associated covariance matrix is likely to become extremely

ill-conditioned Dietrich and Newsam (1989). Other alternative method for simu-

lating Gaussian RF is the circular embedding algorithm (Dietrich and Newsam,

1997) described in Lord et al. (2014). This method provides an exact simula-

tion of Gaussian RF, but it requires extensive use of the theory of the functional

analysis to be implemented. In this thesis, we will opt for the KL decomposition

method (Ghanem and Spanos, 1991), described next in Section 2.8.5, to generate

the random permeability fields. This method could be inappropriate for problems

where the simulator necessitates of a very fine discretization of the computational

domain in order to provide accurate outputs, but this does not apply to our sim-

ulator. Conversely, the advantage of this approach is that it only requires one

eigen-decomposition of the covariance matrix associated to the covariance func-

tion given in (2.29) and then that structure is stored and used to generate fast

new realisations of the permeability field.

2.8.5 KL decomposition

Let Z(x, ω) be a RF with mean m(x) and covariance c(x,x′) associated with

(Ω,F,P). Given the set of points {xi ∈ D : i = 1, ...,M}, the vector Z :=

[Z(x1, ω), ..., Z(xM , ω)]⊺ is a discrete random field. In fact, Z : Ω → R
M is a

multivariate random variable with mean vector m = E[Z] ∈ R
M and covariance

matrix C = E[(Z − m)(Z − m)⊺] ∈ R
M×M , where, for i, j = 1, ...,M , mi :=

E[Z(xi, ω)] = m(xi), and Cij := c(xi,xj). We now can take K := exp(Z) as a

discrete log Gaussian permeability field representing our parameter k.

In order to generate realisations of K which can be introduced as inputs in

our simulator we need to first generate samples of Z ∼ N(m,C). A covariance

function that has been extensively used in the literature (e.g., Hoeksema and

Kitanidis (1985); Stone (2011); Collier et al. (2014); Cliffe et al. (2011)) for

1The Cholesky decomposition of a Hermitian positive-definite matrix, A, is a decomposition
of the form, A = LL∗,where L is a lower triangular matrix with real and positive diagonal
entries, and L∗ denotes the conjugate transpose of L (see e.g., Strang (2003)).
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modelling the correlation length scale for k is the following exponential two-point

covariance function

c(xi,xj) = σ2 exp

(−||xi − xj||2
λ

)

xi,xj ∈ D, (2.31)

where || · ||2 represent the ℓ2-norm in R
2, the parameter λ represents the corre-

lation length and σ2 represents the variance, and in subsurface flow applications

typically only σ ≥ 1 and λ ≤ diam D = 1 will be of interest (Cliffe et al., 2011).

We denote by C to the positive semi-definite covariance matrix associated to the

function c, i.e. Cij = c(xi,xj). As this covariance matrix C is real-valued and

symmetric, by the eigen-decomposition theorem (see e.g., Strang (2003)) we can

express C by:

C = ΦΛΦ⊺, or, C = ΦΛ
1

2Λ
1

2Φ⊺ = (ΦΛ
1

2 )(ΦΛ
1

2 )⊺,

where Λ is the MxM diagonal matrix of ordered decreasing eigenvalues λ1 ≥
λ2 ≥ . . . ≥ λM ≥ 0, and Φ is the MxM matrix whose columns φi i = 1, ...,M ,

are the eigenvectors of C.

If we now let ξ = [ξ1, ..., ξM ]⊺ ∼ N(0, I), and consider Z = m + ΦΛ
1

2ξ, we

can write (Lord et al., 2014),

Z = m+ ΦΛ
1

2ξ = m+
M
∑

i=1

√

λiφiξi, ξi ∼ N(0, 1) i.i.d.,

and consequently the discrete log-Gaussian random field,

K = exp

(

m+
M
∑

i=1

√

λiφiξi

)

. (2.32)

The random variables ξi will be called KL coefficients. Sometimes and de-

pending on the computational resources, the number M can be very large. So

we can use the mean-square error (MSE) to approximate our discrete RF with a

desired level of accuracy or tolerance.

If we let Ẑ = m+
∑HM

i=1

√
λiφiξi be the truncated sum of Z after HM terms,

we can compute the MSE between Z and Ẑ as follows (see Lord et al. (2014) for
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details),

E

[

||Z− Ẑ||22
]

= E

[

M
∑

i=H+1

M
∑

j=H+1

√

λi

√

λjφiφ
⊺

jξiξj

]

(2.33)

=
M
∑

i=H+1

M
∑

j=H+1

√

λi

√

λjφiφ
⊺

jE [ξiξj] =
M
∑

j=H+1

λj.

Note that we have used the linearity of the expectation and the orthogonality of

the eigenvectors in (2.33), i.e., φiφ
⊺

j = 0 for i = j, and φiφ
⊺

j = 0 for i 6= j. Now

we can calculate the relative error of approximating Z with Ẑ, E =
E[||Z−Ẑ||2

2

E[||Z||22]
, and

choose a desired tolerance, βtol ∈ (0, 1), to compute the corresponding number of

terms HM for the approximation, i.e.,

0 ≤ E ≤ βtol < 1. (2.34)

Note that E = 0 when HM = M .

Once modelled the permeability parameter, K, as a log Gaussian random

field, K = K(x, ω) on D × Ω, the equations (2.17) and (2.18) become a system

of PDEs with random coefficients (Cliffe et al., 2011), which can be written in

second order form as

−∇ · (K(x, ω)∇P (x, ω) = hs(x), in D, (2.35)

with hs := −∇ · gs.

In the following, we will focus on the problem given by equation (2.35) and

the boundary conditions,

P (0, y) = 100, P (1, y) = 0,

∂P

∂y
(x, 0) = 0,

∂P

∂y
(x, 1) = 0,
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where the sources gs are known (and thus deterministic), and restrict ourselves

to the case D = [0, 1]× [0, 1] ⊂ R
2 (i.e., L = H = 1) and h ≡ 0.

A single random permeability field, K, could represent possible sets of perme-

abilities values in a slice of rock, across which we would like to study a fluid flow.

In this case, we will refer to them as heterogeneous permeability field. Note, for

instance, that in the example (2.24) we assumed that the permeability field was

homogeneous by setting K = 1 in D. We will study this concept of heterogeneity

further in Chapter 4.

Examples of heterogeneous permeability fields, pressure fields and trajectories

for convected particles obtained by solving the problem (2.35) are showed in

Figures 2.3 and 2.4.

In the following section we will show how we build the GP emulator and how

we use it to make predictions.
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(a) Simulated heterogeneous permeability field
in domain D.

(b) Simulated pressure field contours for the
given permeability.

(c) Simulated trajectory of a convected particle
released at the center of the domain.

Figure 2.3: Example of a heterogeneous permeability field (top) generated with
the KL decomposition method described in Section 2.8.5. Simulated
pressure field (bottom left) for the given permeability from equation
(2.35). Simulated trajectory (bottom right) of a convected particle
released at the center of the domain. The travel time spent for the
particle in reaching the right boundary is 0.59 seconds.
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(a) Simulated heterogeneous permeability field
in domain D.

(b) Simulated pressure field contours for the
given permeability.

(c) Simulated trajectory of a convected particle
released at the center of the domain.

Figure 2.4: Example of heterogeneous permeability field (top) generated with
the KL decomposition method described in Section 2.8.5. Simulated
pressure field (bottom left) for the given permeability from equation
(2.35). Simulated trajectory (bottom right) of a convected particle
released at the center of the domain. The travel time spent for the
particle in reaching the right boundary is 1.09 seconds.
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2.9 Using the GP emulator for making predic-

tions

Let f(·) represent the simulator described in (2.30), which takes as input a

random permeability field and returns the corresponding travel time, τ , as dis-

cussed in the previous section. A general methodology for building a GP emulator

for the simulator f(·), as illustrated in Figure 2.5, can be summarised as:

1. Choose the appropriate set of design points, ξi, where to run the simulator.

2. Form the corresponding random permeability fields, Ki, associated with the

design points ξi.

3. Run the simulator, f(·), at those Ki and obtain the corresponding τi in

order to form the training set D.

4. Use GP regression described in Section 1.3.3 to approximate the entire

function f(·) with f̂(·).

ξi ∈ R
M kl

//

trunc
&&

Ki ∈ R
M f

// τi ∈ R

ξi ∈ R
D

f̂

99

Figure 2.5: Emulation diagram. Above, the set of design points, ξi, used to gen-
erate the log Gaussian RF, Ki, with a KL decomposition. These Ki

are then used to compute the corresponding travel times τi with the
simulator f . These τi are then used as observed values in the training
set. Below, the set of truncated design points, ξi = (ξ1, ξ2, ..., ξD),
to form the training set along with the observed travel times, τi. f̂
represents the GP emulator which is able to predict the travel time,
τ ∗i ∈ R, for a given test case ξ∗i ∈ R

D.

In the following section we will use the LOO-CV methodology described in

Section 2.6 to help us to decide which of the covariance functions, SE (2.6),
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Matérn 3

2

(2.7), Matérn 5

2

(2.8) or RQ (2.9) would be appropriate to approximate

our simulator.

2.9.1 GP emulator test and selection

To select the GP model that more accurately approximates our emulator,

f(·), we apply the LOO-CV method to a training set of 256 points. For a well

calibrated GP emulator, the data will lie within the 95% CI 95% of the time

(Henderson et al., 2009). Figures 2.6, 2.7, 2.8 and 2.9 show the predicted values

(red) and 95% confidence intervals (black vertical bars) for each of the predictions,

along with the observed values (blue) for each of the GP models. To give sense

to the plots we use for the X-axis the first components of the corresponding 256

design points. Note that ξi = (ξ1, ξ2, ..., ξD). The percentage of points out of the

range for the SE model is 4.98% and so, 95.02% of the predictions are within

the 95% acceptance interval. These results point us out that the appropriate GP

emulator for this simulator, from the initial four selected, is the one built up on

a mean-zero function and the SE covariance function. Throughout this section

we will use this GP emulator and will try to refine it by optimising the number

of KL coefficients retained and the number of design points used in the training

set.

To select the optimal number of KL coefficients to be retained in each design

points, we compute the NLML(2.14), MSE (2.15) and DS (2.16) for the chosen

GP model. Figure 2.10 shows the different scores plotted against the number of

KL coefficients retained. In this case, all the scores follow the same decreasing

tendency when increasing the number of KL coefficients used. The plots show

that after around 18 KL coefficients, the scores are not changing significantly.

Therefore, it seems sensible to build our training set based on 18-dimensional

design points, i.e., D = 18 in the emulation diagram 2.5.

Another intuitive and qualitative way of measuring how close our GP pre-

dictions are to the observed values is to plot the pairs (predicted τ, observed τ)

along with the line y = x and check that the points are not far away from the

straight line (see e.g., Figure 2.11). These plots are also called scatterplots. In
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Figure 2.6: Predicted values (red) and their 95% bounds (black bars) given by
the emulator against observed values (blue) for the LOO-CV from
a design of 256 points and using a mean-zero function and a SE
covariance function. 4.98% of the observed values out of range.

this case, given the set of design points, {ξi, i = 1, ...256}, we use as observed the

travel time values, τi = f(Ki), their corresponding predicted values for the same

input, τ ∗i = f̂(ξi). The fact that none of the points are away from the straight

line could be interpreted as a good sign before doing a proper analysis of the data.

This results corresponds to a design of 256 points but it is reasonable to ask

what happens if we use fewer points in our design. For answer that we have

computed the relative error1 between a sample of 1000 observed travel times

and the corresponding predictions by using our GP emulator with 1, 2, ..., 256

design points. Figure 2.12 suggests that the adequate number of design points

for this problem could be around 64 (power of 2), as taking more points would

not improve significantly the GP emulator performance (measured in terms of

the RE). The election of the number of design points to keep will depend on

1The error considered for comparisons between two vectors throughout this thesis will be
the L2-norm relative error unless stated otherwise. For two vector x = (x1, ..., xn) and y =

(y1, ..., yn), we define the L2-norm relative error between x and y as: RE(x,y) =
||x−y||2
||x||2 ,

where ||x||2 is Euclidean norm.
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Figure 2.7: Predicted values (red) and their 95% bounds (black bars) given
by the emulator against observed values (blue) for the LOO-CV
from a design of 256 points and using a mean-zero function and a
Matérn 3

2

covariance function. 6.64% of the observed values out of
range.

the accuracy desired for each problem, for instance, with this (computationally

cheap) simulator we can afford to run the model 256 times and therefore keep

the whole training set. In others (computationally expensive) simulators, like the

one that will be discussed in Chapter 4, a single run could last even a day, and

therefore, this consideration about the number of design points to retain becomes

extremely important.
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Figure 2.8: Predicted values (red) and their 95% bounds (black bars) given
by the emulator against observed values (blue) for the LOO-CV
from a design of 256 points and using a mean-zero function and a
Matérn 5

2

covariance function. 6.25% of the observed values out of
range.

Figure 2.9: Predicted values (red) and their 95% bounds (black bars) given by
the emulator against observed values (blue) for the LOO-CV from
a design of 256 points and using a mean-zero function and a RQ
covariance function. 6.25% of the observed values out of range.
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(a) Negative log marginal likelihood. (b) Mean square error.

(c) Dawid score.

Figure 2.10: Different scores for a GP emulator built with a mean-zero function,
SE covariance function and 256 design points. The x-axis represents
the number of KL coefficients retained for each score.
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Figure 2.11: Observed and predicted travel times for a design of 256 points,
mean-zero function, and Matérn 3

2

covariance function. The solid
line shows observed τ = predicted τ .

Figure 2.12: Relative error curve between observed and predicted surface fluxes
for 256 different designs using SE covariance function. The curve
shows a smooth decreasing tendency although after around 64 design
points retained there is no much improvement in the relative error
meanwhile it becomes more computationally expensive.
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2.10 Uncertainty quantification of the travel time

of a convected particle in groundwater flow

In previous sections we described the mathematical model and numerical code,

what we called the simulator, used to simulate the travel time of a convected

particle in groundwater flow. In this section, such a simulator will be regarded

as a function f(·), that takes a vector x of inputs and produces an output scalar

y = f(x). We will treat our simulator as deterministic, i.e., it produces the same

outputs every time if it is given the same inputs.

The outputs y of a simulator are a prediction of the real-world phenomena

that are simulated by the model, but as such will inevitably be imperfect. There

will be uncertainty about how close the true real-world quantities that are being

approximated by the simulator will be to the outputs y. This uncertainty arises

from many sources, particularly uncertainty in the correct values to give the

inputs x and uncertainty about the correctness of the model f(·) in representing

the real-world system (O’Hagan, 2004).

Sometimes the values of the inputs are unknown, typically because it is im-

practicable to measure them. We will consider X, the input configuration to be

a random variable with distribution G(x). Consequently the output Y = f(X)

is a random variable, and it is the distribution of Y , known as the uncertainty

distribution (Oakley and O’Hagan, 2002), that will be of interest. In particular,

we are interested in finding the uncertainty distribution of the travel time of a

convected particle in groundwater flow induced by the uncertainty distribution

of the permeability fields.

To find this distribution, sometimes the complexity of the simulator necessi-

tates the use of approximation methods such as MC as we cannot do the inte-

gration analytically. However, the simulator computational complexity limits the

number of simulations that can be run, and GP emulation is introduced to help

to avoid this computational expense. In the following we will compute the un-

certainty distribution of the travel time with the MC method and GP emulation

and will compare the results.
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2.10.1 Using Monte Carlo method to estimate the cumu-

lative distribution function of the travel time

Suppose we are interested in calculating the cumulative distribution function

(CDF) of the quantity of interest, τ , described in Section 2.8.3. We use the MC

method described in Section 1.2.2 to approximate that CDF. To do that, we take

T = τ and XM = K, then T
(i)
M = τi. We can now approximate the CDF by the

empirical cumulative distribution function (ECDF) of a large sample of τi. To

compute the ECDF of τi we follow these steps:

1. For i = 1, .., n, simulate a discrete random permeability field Ki.

2. Use the simulator to compute the corresponding τi for each Ki.

Finally, compute the empirical cumulative distribution function, F̂ , of the set of

values {τi, i = 1, ..., n},

F̂ (s) =
1

n

n
∑

i=1

I{τi≤s},

where I is the indicator function,

I{τi≤s} =

{

1 if τi ≤ s,

0 if τi > s.

Figure 2.13 shows the MC uncertainty analysis for a sample of n = 50000 ran-

dom permeability fields. The blue line is the estimation of the CDF of τ and the

dashed lines the 95% uncertainty bounds for this empirical distribution. Unfortu-

nately, for complex simulators, the Monte Carlo approach is too computationally

expensive to be applied as the accuracy of F̂ depends on the sample size1 n.

In the following section we will use the GP emulator to perform a full UA of

the distribution of the travel time.
1In this case, the simulator described is computationally cheap enough that sufficient com-

putation can be done within a day. However, this simulator is relatively simple and allows us
to develop methodology that could be used for more complex simulators, like the one discussed
next in Chapter 4.
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Figure 2.13: Monte Carlo ECDF (black line) based on 50000 travel times. The
dashed lines show the 95% uncertainty bounds.

2.10.2 Using Gaussian process emulation to predict the

cumulative distribution function of the travel time

To conduct an UA of the travel time with our GP emulator we will follow the

methodology proposed by Oakley and O’Hagan (2002). Suppose there is some

particular value s of the output (τ) which is considered critical in some sense. It

is natural to ask what the probability is that the true output, Y = f(X), will

exceed s. This motivates us to consider inference about the distribution function

of Y, which we write as

F (s) = p(Y ≤ s) =

∫

Ω

I{f(x) ≤ s}dG(x), (2.36)

where Ω is the sample space of any input x and I denotes the indicator function.

For computational reasons instead of (2.36) we will use the simulation approach

described in Oakley and O’Hagan (2002) to derive the posterior moments of F (·).
We need first to simulate draws F(i)(·) from the posterior distribution of F (·); To
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do this we need to obtain first a realisation of f(i)(·). We do that by drawing a

large random sample of inputs x∗
1, ...,x

∗
M from G(·), for some integer M . Finally,

we take as an approximation for the realisation f(i)(·) its posterior mean, m∗
(i)(·),

and finally, we approximate F(i)(·) by using the empirical cumulative distribution

function

F(i)(s) =
1

M

M
∑

j=1

I{m∗
(i)(x

∗
j) ≤ s}. (2.37)

We obtain LF realisations F(1)(·), ...,F(LF )(·), and from this sample of random dis-

tribution functions we can obtain any required inference about F (·), for instance
the sample mean1, which is an alternative to (2.36) and it is given by

F̄ (s) =
1

LF

LF
∑

j=1

F(j)(s). (2.38)

Now to find our uncertainty bounds we consider the corresponding quantile func-

tion. If we call pαs
the 100αs percentile, such that F (pαs

) = αs, the distribution

of pαs
is given by

p(pαs
≤ t) = p{F (t) ≥ αs},

where p{F (t) ≥ αs} can be estimated using the method just described. And then,

we can estimate pαs
by its sample mean by finding p(i)αs

, the 100αs percentile for

realisation i, for i = 1, ..., LF .

Next we will apply the procedure just described to quantify the uncertainty

distribution of the travel time, τ , by using our GP emulator and we will show

some of the results obtained.

The procedure followed to perform the GP UA of τ is described next:

1. Generate a large sample of test points xi
∗ ∼ N(0, I), i = 1, ...,M. (M large).

2. Evaluate the emulator (eq. (1.18)) at those xi
∗, i.e. fi = f̂(xi

∗).

1Oakley and O’Hagan (2002) remarks that since F(s) is constrained to take values between
zero and one, the distribution of F (s) may be skewed for low and high values of s. Hence the
mean of this distribution may be a poor location summary; it may overestimate F (s) at low
values of s and underestimate F (s) at high values of s. Consequently, the sample median might
be preferred as a location summary.
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3. Store the quantiles for this fi and form its corresponding ECDF, Fi.

Repeat the process a large number of times, j, and form a family of j

distribution functions, F j
i . Then Compute the lower, upper and mean or

median quantiles from this distribution of ECDFs as an approximation of

the true CDF of the travel time, τ .

Results of the GP emulation UA are showed in Figures 2.14 and 2.15. Figure

2.14 shows the ECDF (black) based on 50,000 samples of the travel time com-

puted with the MC method and GP posterior samples (green) which cover the

travel time ECDF. Figure 2.15 shows the 2.5th and 97.5th percentiles (dashed

magenta), the GP posterior mean (red) of the cumulative distribution function,

and MC ECDF (black line).

Figure 2.14: GP Posterior ECDFs samples, Fi, approximating the MC estimation
of the CDF of the travel time of a convected particle in groundwater
flow. The GP emulator prior specifications are: mean-zero function,
SE covariance function, 256 design points and 16 KL coefficients
retained.
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Figure 2.15: GP uncertainty analysis of the CDF of the travel time of a convected
particle in groundwater flow. The GP emulator prior specifications
are: mean-zero function, SE covariance function, 256 design points
and 16 KL coefficients retained.

So far, we have been using our GP emulator as a tool for predicting scalar

values for different collections of discrete random permeability fields, in other

words, we have built the GP emulator as a map from R
d to R. In the last part

of this chapter we present a different technique for estimating the travel time τ .

In this technique we build a GP to emulate the pressure field first, and then we

obtain τ from that emulated field by using equation (2.23). We will show the

comparison between this method and the standard scalar emulation presented

previously in order to see which method is more efficient.
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2.11 Gaussian process emulation of two-dimensional

fields

Suppose we have a simulator that takes input x, i.e. the coefficients {ξ1, ..., ξM},
of the KL decomposition (2.32), and returns an output y, where y is a 2-

dimensional field, for instance, a pressure field solution of (2.35). The goal is

to build an emulator from x to y, but the high dimension of y means that stan-

dard approaches, as used in Section 1.3.2, will not work. So, the idea is to obtain

a reduced rank approximation, using a matrix decomposition of the output. One

way to do this is with principal component analysis (PCA) (Wilkinson (2011),

chapter 10), or with the singular value decomposition (SVD) (Holden et al., 2015).

In this thesis we will use the later approach.

2.11.1 The singular value decomposition method

Let us describe how we apply the SVD method to our simulator-emulator:

1. Let y1, ...,yn be n pressure fields obtained from running the simulator n

times. Assume each of these is a vector of length M (if the pressure field is

a matrix, stack the columns to form a vector).

2. Let Y be the M × n matrix with column j being yj.

3. Let Ỹ = ỹ1, ..., ỹn be the row centered1 version of Y .

4. Compute the SVD of Ỹ

Ỹ = LDR⊤

where L is a M ×n matrix containing the left singular vectors, D is a n×n

matrix containing the singular values, and R is an n× n matrix containing

the right singular vectors.

1The row centered version of a matrix Y is obtained by subtracting the mean of row i from
every element in row i, so that the mean of Ỹi is equal to zero.
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Note that L = (l1, ..., ln), where lj ∈ R
M is the jth eigenvector of Ỹ Ỹ ⊤,

D∗ = (d1, ...,dn), where dj ∈ R
n, and R = (r1, ..., rn), where rj ∈ R

n is the

jth eigenvector of Ỹ ⊤Ỹ .

5. We can form a reduced rank approximation to Ỹ by ignoring all but the

first k (k < n) eigenvectors, i.e, let:

L∗ = (l1, ..., ln), D∗ = (d1, ...,dk), R∗ = (r1, ..., rk)

so that

Ỹ ≈ L∗D∗R
⊤
∗ .

If we consider R⊤
∗ = (t1, ..., tn), where each tj is a vector of length k, then we can

approximate the jth centered field of Ỹ , ỹj, with

ỹj ≈ ỹ∗
j = L∗D∗tj. (2.39)

To quantify the accuracy of the reduced rank approximation according to the

number of eigenvectors k retained, we can use the RE between the initial centered

field ỹj and its reduced rank approximation ỹ∗
j , for any given j ∈ N. Suppose

we want to find number of eigenvectors k to retain which guarantees1 an overall

RE for all the reduced rank approximations, i.e, for a fixed desired tolerance,

TOL, we can compute the number of k needed to assure,

RE (ỹ1, ỹ
∗
1) < TOL, RE (ỹ2, ỹ

∗
2) < TOL, , ......., RE (ỹn, ỹ

∗
n) < TOL,

and so, keep this k to form the desired reduced rank approximation with the SVD

method. Let us see an example.

2.11.2 Reduced rank emulation of pressure fields

For this example we will consider the set of 256 pressure fields, {P1, P2, ..., P256},
obtained by running the simulator at the 256 design points used in Section 2.9.1,

1Note that this is always possible since we could take k = n which guarantees a RE =0.
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i.e., we let y1 = P1, y2 = P2, ..., yn = Pn, and n = 256. We apply the method just

described in Section 2.11.1 and compute two approximations. Figures 2.16(a) and

2.17(a) show the true pressure fields, P1 and P2, and Figures 2.16(b) and 2.17(b)

the corresponding reduced rank approximations, P̃1 and P̃2. The RE for P1 and

P̃1 is 0.00042 by retaining k = 12 eigenvectors and 0.00581 for P2 and P̃2 by

retaining k = 16.

(a) True pressure field, P1, obtained from the
simulator.

(b) Reduced rank approximation, P̃1, of the
pressure field P1 by using 16 eigenvectors.

Figure 2.16: True pressure field, P1, and corresponding reduced rank approxima-

tion, P̃1. Number of eigenvectors used is k = 12. The RE between
P1 and P̃1 is 0.00042.

Figure 2.18 shows the RE between all the 256 pressure fields and their corre-

sponding reduced rank approximations (Y-axis) and the number of eigenvectors

retained (X-axis). Note that after 130 eigenvectors retained the RE is almost

zero.

We will show in the following section how we combine the SVD method with

GP emulation to make pressure field predictions.
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(a) True pressure field, P2, obtained from the
simulator.

(b) Reduced rank approximation, P̃2, of the
pressure field P2 by using 16 eigenvectors.

Figure 2.17: True pressure field, P2, and corresponding reduced rank approxima-

tion, P̃2. Number of eigenvectors used is k = 16. The RE between
P2 and P̃2 is 0.00581.

Figure 2.18: RE (Y axis) between each of the true pressure fields and their cor-
responding reduced rank approximations along the number of eigen-
vectors retained (X axis).
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2.11.3 Building the Gaussian process field emulator

Let f(·) be now the pressure field simulator1, i.e., the simulator which takes

an input x, and returns an output y, where y is a 2-dimensional pressure field

solution of (2.35). Suppose we have a reduced rank approximation of n fields,

y1, ...,yn, given by expression

ỹj ≈ L∗D∗tj, for i = 1, ..., n, (2.40)

where L∗ = (l1, ..., ln) and D∗ = (d1, ...,dk), for some k < n, and tj is a vector

of length k (as discussed in Section 2.11.1). To build an emulator, f ∗, for the

simulator, we can build an emulator by using x and the n vectors tj as a training

set. To do so, we build k separate emulators, f ∗
j , for j = 1, ..., k, with their

respective training sets formed by x and each of the elements of the rows of the

matrix R⊤
∗ = (t1, ..., tn). For a new given input x∗ we can compute f ∗

j (x
∗) :=

t∗j , for j = 1, ..., k, and form f ∗(x∗) := (f ∗
1 (x

∗), ..., f ∗
k (x

∗)) = t∗, where t∗ :=

(t∗1, ..., t
∗
k). So, given t∗, the estimated centered field will be given by,

ỹ∗ = f ∗(x∗) = L∗D∗x
∗. (2.41)

Figure 2.19 shows one example of a predicted pressure field with the GP field

emulator. We can see the differences2 among the observed pressure field, P , the

corresponding reduced rank approximation, P̃ , and the predicted pressure field,

P ∗. The number of eigenvectors used for this example is k = 40 and the number

of KL coefficients retained is 16. The L2-norm relative error between P and P̃

is 0.00042 and the L2-norm relative error between P and P ∗ is 0.01594.

We will finish this chapter with a comparison between the two approaches

1So far, we have been using the term simulator to the numerical code which takes an input
(permeability field) and returns a scalar output, the travel time. We will call field simulator

the numerical code which takes as input a permeability field and returns as output the pressure
field solution of equation (2.35).

2Note that although the relative errors are measured always between the true and the
predicted field, the prediction cannot be ever better that the reduced rank approximation
since the GP emulator is built by using the training set given by actually the reduced rank
approximation.
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(a) Observed pressure field, P , obtained from
the simulator for the elliptic problem.

(b) Reduced rank approximation, P̃ , of the ob-
served pressure field P by using 40 eigenvec-
tors.

(c) Predicted pressure field, P ∗, of the concen-
tration field P by using 40 eigenvectors and 16
KL coefficients.

Figure 2.19: Observed pressure field, P , and corresponding reduced rank approx-

imation, P̃ , and predicted pressure field, P ∗. Number of eigenvec-
tors used is k = 40. Number of KL coefficients for prediction is 16.
The L2-norm relative error between P and P̃ is 0.00042 and the
L2-norm relative error between P and P ∗ is 0.01594.
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described for making predictions on the travel time of a convected particle in

groundwater flow, namely, the GP scalar emulator and the GP field emulator.

2.12 Comparison between direct travel time em-

ulation and travel time obtained from pres-

sure field emulation

The GP prior specifications for all the emulators will be the same used through-

out this chapter, i.e., zero-mean function, SE covariance function, a training set

formed by 256 points, and 16 KL coefficients retained. The number of eigenvec-

tors used for this comparison is k = 40.

For this comparison we generate 500 permeability fields, Ki, and use the

simulator to compute the corresponding 500, τi, outputs from problem (2.35)

which will be considered the true values. Then, we use the GP scalar emulator

and the GP field emulator to predict the the corresponding 500 travel times. With

these specifications the RE for the scalar GP when compared with the simulator

was 0.0182 meanwhile the RE for the field GP emulator was 0.0201.

The conclusion for this experiment is that scalar GP emulation seems to be

more efficient than field GP emulation, although both of them seem to be a

powerful tool for making predictions for problem (2.35). Figures 2.20(a) and

2.20(b) show visual comparison of both results. One of the possible reasons

why those differences between the results occur, might be that field emulation

is loosing accuracy along with the increment of the degrees of freedom (i.e., the

number of eigenvector retained) in the SVD process. Other possibility, although

it has not measure properly in this thesis, might be that the relative error in field

emulation increases along with the number of scalar emulations required (one per

each degree of freedom).

From this above we can conclude that scalar emulation is recommended when

looking for accuracy in predicting scalar outputs, whereas field emulation is clearly

needed when attempting to predict the physical process for a given problem.
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(a) Comparison of 500 Observed and directly
predicted τ . The RE between the observed
and predicted was 0.0182.

(b) Comparison of 500 Observed τ and τ from
emulated pressure field. The number of eigen-
vectors used during the reduced rank approxi-
mation was 40. The RE between the observed
and predicted was 0.0201.

Figure 2.20: Observed τ vs directly predicted SF and Observed τ vs τ from pre-
dicted pressure field plots obtained from the simulator. The design
was formed by 256 points. A zero-mean and SE covariance func-
tion were used as prior GP model specifications and the number
of KL coefficients used for prediction was 16. The solid line shows
observed τ = predicted τ .



Chapter 3

Comparison of GP emulation

with other methods for UQ in

groundwater flow problems

In this chapter we will use the methodologies introduced in Section 1.2.1, namely,

MC, MLMC, QMC and MLQMCmethods, and GP emulation, discussed in Chap-

ter 2, to estimate the average travel time of a particle convected in groundwater

flow. We will show some comparisons of the estimates obtained with the above

methods based on different discretisations of the physical domain. The perfor-

mance of the MC methods will be tested by comparing their computational ε2-

cost, i.e., the number of floating point operations that are needed to achieve the

desired MSE. The results obtained with the GP emulator will be given in terms

of 95% confidence intervals (CI).
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3.1 Comparison among Monte Carlo methods

for solving PDEs with random inputs

The aim of this study is to analyse alternatives to the standard MC method

for solving PDEs with random inputs. We will use all the methods described

in Section 1.2.1 to compute the average travel time of a particle convected in

groundwater flow. For this purpose, we use the travel time simulator (2.8.3) for

the model problem (2.35) in D = [0, 1] × [0, 1] ⊂ R
2, with h ≡ 0, and boundary

conditions,

p(0, y) = 250, p(1, y) = 0,

∂p

∂y
(x, 0) = 0,

∂p

∂y
(x, 1) = 0.

The permeability fields are generated as discussed in Section 2.8.5 with pa-

rameters, λ = 0.3 and σ = 1.0 (as suggested in (Cliffe et al., 2011)).

The sequence of levels (see Section 1.2.3) will start with M0 = 64, this enables

to get a minimal level of resolution of the problem (Giles (2008) and Cliffe et al.

(2011)). The maximum level considered will be M5 = 65536 grid points.

Cliffe et al. (2011) states that the particular choice of spatial discretisation

scheme is not essential to the MLMC approach. However, many quantities of

interest in subsurface flow depend on an accurate and mass-conservative repre-

sentation of the flux, and so in this context finite volume (FV) or mixed finite

elements (FEs) are usually preferred over other methods. In this thesis, due to the

simplicity of the computational domain (square and with equally spaced nodes),

the travel time simulator will use a standard cell-centred FV method (for details

about the discretisation scheme, see (Cliffe et al., 2011)).

The assumptions of Theorem 1.2.1 for the mean and the variance of the MLMC

(1.9) and MLQMC (1.16) estimators will be numerically confirmed for each of the

cases. The estimates of the parameters α and β will be computed “on the fly”

from sample averages. For simplicity, we will assume that γ = 1 in all the
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simulations1. To quantify the cost of the algorithms, we will assume that the

number of operations to compute one sample on level ℓ is Cℓ = cMγ
ℓ for some

fixed constant c, as discussed in Section 1.2.5, and thus, in the results presented

in this thesis, we will show the standardised costs, scaled by 1/c.

In the following sections we show a series of comparisons between the above

methods according to different tolerances measured by the MSE. The average

travel times estimated with MC, MLMC, QMC and MLQMC methods will be

denoted by TMC , TMLMC , TQMC and TMLQMC respectively.

3.1.1 Comparison between classical MC and MLMC

In this section we compare the performance of MC and MLMC methods for

the following MSEs: 0.01, 0.0064 and 0.0025.

Tables 3.1, 3.2, 3.3 show the number of samples, Nℓ, used by the MLMC

method in each level, ℓ, for the given MSE, ε2, the value of the average travel time,

TMLMC , the corresponding bounds for the estimation, (TMLMC − ε,TMLMC + ε),

and the final computational ε2-Cost spent for each tolerance.

Figure 3.1 shows the expected value of Tℓ and Yℓ = Tℓ−Tℓ−1 and how the slope

of the line for E[Tℓ −Tℓ−1] has a decreasing tendency. It also shows how E[Tℓ] is

approximately constant on all levels, numerically verifying the assumption made

in Theorem 1.2.1.

Figure 3.2 shows the behaviour of the variance of Tℓ and Yℓ = Tℓ − Tℓ−1

for each level ℓ, and how it is numerically satisfied the assumption of a constant

variance on all levels.

1Note that for this simulator, applied to a 2D problem and implemented in Matlab, a value
of γ = 1.5 could be more appropriate (Cliffe et al., 2011), although it is not relevant for our
comparison purpose.
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Level

ℓ

Number of

Samples

Nℓ

ε2 - Cost

(ε2 = 0.01)
TMLMC

MLMC

bounds

0 704
1 93
2 19
3 9 86,784 1.3520 (1.2520, 1.4520)

Table 3.1: MLMC estimation with bounds of the average travel time according
to a given MSE= 0.01. The last number of the first column shows the
level at which the code stops.

Level

ℓ

Number of

Samples

Nℓ

ε2 - Cost

(ε2 = 0.0064)
TMLMC

MLMC

bounds

0 1,103
1 147
2 26
3 12
4 6 222,223 1.3615 (1.2815, 1.4415)

Table 3.2: MLMC estimation with bounds of the average travel time according
to a given MSE= 0.0064. The last number of the first column shows
the level at which the code stops.

Level

ℓ

Number of

Samples

Nℓ

ε2 - Cost

(ε2 = 0.0025)
TMLMC

MLMC

bounds

0 3,458
1 613
2 104
3 27
4 10
5 5 908,226 1.3696 (1.3196, 1.4196)

Table 3.3: MLMC estimation with bounds of the average travel time according
to a given MSE= 0.0025. The last number of the first column shows
the level at which the code stops.
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(a) Expected value of Tℓ and Yℓ = Tℓ − Tℓ−1

for MSE=0.01.

(b) Expected value of Tℓ and Yℓ = Tℓ − Tℓ−1

for MSE=0.0064.
(c) Expected value of Tℓ and Yℓ = Tℓ − Tℓ−1

for MSE=0.0025.

Figure 3.1: Performance plots for the expectation in the MLMC method. The
plots show the numerical verification of the asymptotic behaviour of
the expectation of T and the convergence of E[Yℓ].

3.1.2 Comparison between QMC and MLQMC

In this section we compare the performance of QMC and MLQMC methods

for the same MSEs than above. We illustrate next the same tables and figures

showed in the previous section for MC and MLMC methods.

Tables 3.4, 3.5, 3.6 show the number of samples, Nℓ, used by the MLQMC

method in each level, ℓ, for the given MSE, ε2, the value of the average travel time,

TMLQMC , the corresponding bounds for the estimation, (TMLQMC−ε,TMLQMC+
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(a) Variance of Tℓ and Yℓ = Tℓ − Tℓ−1 for
MSE=0.01.

(b) Variance of Tℓ and Yℓ = Tℓ − Tℓ−1 for
MSE=0.0064.

(c) Variance of Tℓ and Yℓ = Tℓ − Tℓ−1 for
MSE=0.0025.

Figure 3.2: Performance plots for the variance in the MLMC method. The plots
show the numerical verification of the asymptotic behaviour of the
variance of T and the convergence of V[Yℓ].

ε), and the final computational ε2-Cost spent for each tolerance.

Figure 3.3 shows the expected value of Tℓ and Yℓ = Tℓ − Tℓ−1 and how the

slope of the line for E[Tℓ − Tℓ−1] has a decreasing tendency. It also shows how

E[Tℓ] is approximately constant on all levels.

Figure 3.4 shows the behaviour of the variance of Tℓ and Yℓ = Tℓ − Tℓ−1

for each level ℓ, and how it is numerically satisfied the assumption of a constant

variance on all levels.
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Level

ℓ

Number of

Samples

Nℓ

ε2 - Cost

(ε = 0.01)
TMLQMC

MLQMC

bounds

0 488
1 60
2 11
3 10 71,912 1.2985 (1.1985, 1.3985)

Table 3.4: MLQMC estimation with bounds of the average travel time according
to a given MSE= 0.01. The last number of the first column shows the
level at which the code stops.

Level

ℓ

Number of

Samples

Nℓ

ε2 - Cost

(ε = 0.005)
TMLQMC

MLQMC

bounds

0 824
1 109
2 11
3 9
4 4 149,368 1.3427 (1.2627, 1.4227)

Table 3.5: MLQMC estimation with bounds of the average travel time according
to a given MSE= 0.0064. The last number of the first column shows
the level at which the code stops.

Level

ℓ

Number of

Samples

Nℓ

ε2 - Cost

(ε = 0.0025)
TMLQMC

MLQMC

bounds

0 2,740
1 389
2 57
3 10
4 10
5 5 718,068 1.3550 (1.3005, 1.4050)

Table 3.6: MLQMC estimation with bounds of the average travel time according
to a given MSE= 0.0025. The last number of the first column shows
the level at which the code stops.
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(a) Expected value of Tℓ and Yℓ = Tℓ − Tℓ−1

for MSE=0.01.

(b) Expected value of Tℓ and Yℓ = Tℓ − Tℓ−1

for MSE=0.0064.
(c) Expected value of Tℓ and Yℓ = Tℓ − Tℓ−1

for MSE=0.0025.

Figure 3.3: Performance plots for the expectation in the MLQMC method. The
plots show the numerical verification of the asymptotic behaviour of
the expectation of T and the convergence of E[Yℓ].

3.1.3 Comparison between MC and QMC

In this section we compare the performance of MC and QMC methods for the

same tolerances used in the previous sections.

Table 3.7 shows the comparison of the computational ε2-Cost for MC and

QMC methods obtained previously in the corresponding MLMC and MLQMC

simulations. To calculate the costs for MC and QMC methods we use the esti-
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(a) Variance of Tℓ and Yℓ = Tℓ − Tℓ−1 for
MSE=0.01.

(b) Variance of Tℓ and Yℓ = Tℓ − Tℓ−1 for
MSE=0.0064.

(c) Variance of Tℓ and Yℓ = Tℓ − Tℓ−1 for
MSE=0.0025.

Figure 3.4: Performance plots for the variance in the MLQMC method. The
plots show the numerical verification of the asymptotic behaviour of
the variance of T and the convergence of V[Yℓ].

mator provided in (Giles, 2008), namely,

C∗ =
L
∑

ℓ=0

N∗
ℓ Mℓ, (3.1)

where N∗
ℓ = 2ε−2

V[Tℓ], so that the variance of the MC (1.3) and QMC (1.15)

estimators is 1
2
ε2 as with the corresponding MLMC and MLQMC methods.

In addition to this ε2-Cost comparison, we will analyse the convergence of MC

and QMC methods at each of the levels where the multilevel methods converged.

Figure 3.5 shows the convergence of MC and QMC methods for the average travel
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time at levels 3, 4 and 5.

Level

ℓ
MSE

(ε2)
ε2 -Cost

MC

ε2 -Cost

QMC

3 0.01 1,746,850 582,980
4 0.0064 18,090,227 1,907,358
5 0.0025 23,650,623 13,299,654

Table 3.7: MC and QMC ε2-Cost, obtained from the MLMC and MLQMC sim-
ulations respectively, according to the given MSE.

Level

ℓ

T MC

40,000

samples

T QMC

40,000

samples

3 1.3255 1.3305
4 1.3312 1.3299
5 1.3253 1.3262

Table 3.8: Comparison of the travel time estimations obtained with MC and
QMC methods at each level based on 25,000 travel time samples.

3.1.4 Comparison of MC, QMC, MLMC and MLQMC

The overall picture with the performance of all the methods is showed in Figure

3.6. We can see how MLQMC method produce the lower computational costs

for all the tolerances. MLMC is performing better that MC and QMC, and in

conclusion, MC seems to be the less efficient method.

In the last part of this chapter, we will use the GP emulator built in Chapter

2 to predict the average travel time for the same three levels where the other

methods converged.
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(a) MC and QMC convergence at level 3.

(b) MC and QMC convergence at level 4. (c) MC and QMC convergence at level 5.

Figure 3.5: Analysis of the convergence of MC and QMC methods for the average
travel time at levels 3, 4 and 5. The convergence is calculated over a
sample of 25,000 travel times.

3.1.5 Comparison of MC and GP emulation

In this section we will show the predictions for the travel time given by the

GP emulator with a zero-mean function and three different covariance functions,

namely, SE, Matérn 3

2

and RQ. The corresponding predictions values with those

specifications will be denoted, respectively, by TSE
GP , T

3/2
GP and TRQ

GP . We will also

show the 95% CI for those values. For all the models we have used 256 design

points and retained 18 KL coefficients.

Tables 3.9, 3.10 and 3.11 show the predictions for the average travel time and
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Figure 3.6: ε2-Cost for MC, QMC, MLMC and MLQMC methods for MSE: 0.01,
0.0064 and 0.0025.

confidence interval for the three GP models.

To finish this chapter we will show in Figure 3.7 a general picture of the con-

vergence of the MC method for the previous tolerances, and the corresponding

estimations of the average travel time for the three GP emulators at each level.

We see how all the predictions lie within the RMSE bars.
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Level

ℓ
TSE

GP 95% CI

3 1.3294 (1.3210, 1.3378)
4 1.3336 (1.3247, 1.3425)
5 1.3482 (1.3394, 1.3569)

Table 3.9: Prediction of the average travel time with the GP emulator for levels 2,
3, 4 and 5. A zero-mean and SE covariance functions are used in this
model. The training set is formed by 256 points, and the number of
KL coefficients retained is 18. The respective 95% confidence intervals
for each of the predictions are shown in right column.

Level

ℓ
T

3/2
GP 95% CI

3 1.3302 (1.3216, 1.3388)
4 1.3036 (1.2948, 1.3124)
5 1.3301 (1.3215, 1.3388)

Table 3.10: Prediction of the average travel time with the GP emulator for levels
2, 3, 4 and 5. A zero-mean and Matérn 3

2

covariance functions are
used in this model. The training set is formed by 256 points, and
the number of KL coefficients retained is 18. The respective 95%
confidence intervals for each of the predictions are shown in right
column.

Level

ℓ
T

RQ
GP 95% CI

3 1.3174 (1.3091, 1.3258)
4 1.2956 (1.2868, 1.3045)
5 1.3329 (1.3242, 1.3416)

Table 3.11: Prediction of the average travel time with the GP emulator for levels
2, 3, 4 and 5. A zero-mean and RQ covariance functions are used in
this model. The training set is formed by 256 points, and the num-
ber of KL coefficients retained is 18. The respective 95% confidence
intervals for each of the predictions are shown in right column.
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Figure 3.7: MC converge analysis (blue line) based of 105 travel time samples at
each level (1-5). RMSE tolerances (black vertical bars) for levels 3-5:

RMSE=0.1, RMSE= 0.08 and RMSE=0.05 respectively. TSE
GP , T

3/2
GP

and TRQ
GP are the predicted average travel time for each of the GP

emulators.



Chapter 4

Application of GP emulation to

the convectively-enhanced

dissolution model

In previous chapters we presented some of the methodologies available to

conduct UA in computer models. The simplicity of the model introduced in

chapter 2 provided us with a deep understanding of the techniques used in terms

of model implementation, testing and refinement. The goal of this chapter is to

apply those modelling techniques to a more physical and computational complex

real problem, namely, the convectively-enhanced dissolution process. In this case,

the complexity of the simulator makes unfeasible to perform a full Monte Carlo

UA and this strengthens the use of alternative methods as GP emulation.

The structure of this chapter will be analogous to the one followed in Chapter

2. We will start describing the proposed mathematical model for the physical

problem, the parameters of interest, and the procedures followed to find and

characterise numerical solutions, in other words, how we build a reliable simulator.

Then, we will test and select the GP emulation model, use the GP emulator to

make some predictions, and compare these results with approximations given by

the MC method. In the final part of the chapter, we will conduct a full UA

with the GP emulator and we will end this chapter with a comparison between
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direct scalar GP emulation of the quantity of interest and GP field emulation

plus simulation from the emulated field, as we did in Chapter 2.

4.1 The convectively-enhanced dissolution pro-

cess

During CCS processes, the CO2 is trapped in saline geological formations lo-

cated deep underground. Once there, it reacts with minerals in the geologic

formation, leading to the precipitation of secondary carbonate mineral (Ghesmat

et al., 2011). When the CO2 is dissolved into the brine, the density of the re-

sulting solution is denser than the brine and this density difference from the new

solute can result in instabilities, which one consequence may be plumes of CO2 to

grow downwards and form finger structures. The descending mixed fluid along

the fingers will induce recirculation cells of brine fluid with an associated fluid

entrainment into the fingers. The entrained brine reduces the density difference

and the CO2 concentration at the interface diffusive boundary layer, resulting in

enhancement of the dissolution process (see e.g., Neufeld et al. (2010) and Ward

et al. (2014)).

The dissolution flux will be characterized by a generalization of the Sherwood

number (see, e.g., Ranganathan et al. (2012) and Ward et al. (2014)), which is

a dimensionless measure of the convective flux across the upper boundary of the

domain, and will be called the surface flux (SF ). We will consider the effect of

the rock heterogeneity on the C-ED process in a porous medium, in which the

solute undergoes a first order chemical reaction, by looking at how the SF is

affected by rock heterogeneities. Thus, the main goal of this chapter will be to

quantify the uncertainty we have in the amount of CO2 dissolution flux that goes

into the brine due to heterogeneity (or uncertainty) of the rock formation.
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4.2 Mathematical model

We consider the dissolution of a solute (CO2 ) in a fluid (brine) flowing in a

two-dimensional heterogeneous, isotropic porous medium, with dimensions and

orientation as shown in Figure 4.1. The solute locally increases the solution

density but undergoes a first order reaction and turn into an inert product with

no effect on the solution density.

The complex microscopic flow in a porous medium leads to an apparent macro-

scopic dispersive transport, adding to the molecular diffusion. We model this phe-

nomenon by an apparent dispersion tensor, D, depending on the local Darcy’s

velocity of the fluid u (see e.g., Saffman (1959) or Scheidegger (1961)) as follows,

D = DmI+ βT ||u||I+ (βL − βT )
u⊗ u

||u|| ,

where ⊗ represents the tensor product, I is the unit (identity) tensor, Dm is the

molecular diffusion coefficient of the solute in the considered fluid and βL and βT

are respectively the longitudinal and transverse dispersion coefficient such that

βL ≥ βT ≥ 0.

The governing equations defining the problem are described in the following

section.

4.2.1 Governing equations

The equations used in this thesis to describe mathematically the C-ED pro-

cess, are, the continuity equation (4.1), the Darcy’s law1 (4.2) and the convection-

diffusion-reaction equation (4.3) (see, e.g., Ranganathan et al. (2012), Ward et al.

(2014) and Xie et al. (2012)),

∂ρ

∂t
+∇ · ρu = 0, (4.1)

1Note that in this chapter, Darcy’s law is given in its general form and then, with further
assumptions, we simplify it to ∇ · u = 0, while in Chapter 2, we considered initially an incom-
pressible flow and therefore the density ρ was constant and the continuity equation presented
by ∇ · q = 0.
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u = −K

µ
(∇P − ρg), (4.2)

φ
∂C

∂t
+ u · ∇C = φ∇ · (D∇C)− γcC, (4.3)

where the variables C, u = (ux, uz) and P are the concentration of dissolved

CO2, the velocity in the x and z directions and the pressure respectively. The

parameters K, µ, φ, γc and g are the medium permeability field, fluid viscosity,

rock porosity, reaction rate and acceleration due to gravity.

The density of the fluid is considered linear in the form, ρ = ρ0 + βcC, where

ρ0 and βc are density of pure fluid and the volumetric expansion coefficient, and

the change in density is assumed to be small, this later enables us to use the

Boussinesq approximation (see e.g., Ward et al. (2014)), in which the density

of the fluid is considered constant except in momentum source term, and the

continuity equation is therefore reduced to the statement of a solenoidal velocity

field that is satisfied by introducing a streamfunction formulation. With this

consideration Equation (4.1) becomes:

∇ · u = 0. (4.4)

4.2.2 Coordinates system

We will consider a Cartesian coordinate system in two dimension where it is

important to remark that the z-coordinate decreases in the same direction that

gravity acts. Therefore (4.2) becomes:

u = −K

µ
(∇P + ρgez), (4.5)

where ez is the unitary vector corresponding to the ordinate axis.
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4.2.3 Domain and boundary conditions

The dissolution process is considered in a porous material of depth 2H and

length L (see Figure 4.1).

Figure 4.1: Two dimensional domain with horizontal length L and vertical depth
2H, i.e., D = [0, L]× [−H,H]. Gravity g acts downwards along with
the Z-axis.

The boundary conditions are:

Dirichlet:

C(x, z = H) = C0

ux(x = 0, z) = 0

ux(x = L, z) = 0

uz(x, z = ±H) = 0
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Neumann:

∂C

∂z
(x, z = −H) = 0

∂C

∂x
(x = 0, z) = 0

∂C

∂x
(x = L, z) = 0

4.2.4 Streamfunction formulation

Equation (4.4) allows us to introduce the streamfunction, Ψ, where:

ux =
∂Ψ

∂z
, uz = −∂Ψ

∂x

and therefore,

∂Ψ

∂z
= −K

µ

∂P

∂x
, (4.6)

and

−∂Ψ

∂x
= −K

µ

(

∂P

∂z
− (ρ0 + βcC)g

)

(4.7)

So that, by differentiating (4.6) with respect to x, (4.7) with respect to z, and

adding up both equations, the governing equations, (4.1), (4.2), (4.3), may be

re-written in terms of the new unknowns, Ψ and C, as follows:

∂

∂x

(

1

K

∂Ψ

∂x

)

+
∂

∂z

(

1

K

∂Ψ

∂z

)

+
βcg

µ

∂C

∂x
= 0, (4.8)

φ
∂C

∂t
− ∂Ψ

∂z

∂C

∂x
+

∂Ψ

∂x

∂C

∂z
− φ∇ · (D∇C) + γcC = 0, (4.9)
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with boundary conditions:

Dirichlet:

C(x, z = H) = C0

Ψ(x, z = ±H) = 0

Ψ(x = 0, z) = 0

Ψ(x = L, z) = 0

Neumann:

∂C

∂z
(x, z = −H) = 0

∂C

∂x
(x = 0, z) = 0

∂C

∂x
(x = L, z) = 0

4.2.5 Non-dimensional formulation

Equations (4.8) and (4.9) are non-dimensionalized using the following scalings:

Dimensionless variables:

(x′, z′) =
(x, z)

H
, Ψ′ =

Ψµ

HC0K0βcg
, C ′ =

C

C0

, t′ =
tC0K0βcρ

µφH
,

Dimensionless parameters:

(β′
L, β

′
T ) =

(βL, βT )C0K0βcg

D0µ
, K ′ =

K

K0

, L =
L

H
,

Dimensionless numbers:

Ra =
K0C0gβcH

φµD0

, Da =
γcµH

K0C0gβc

,
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where βT and βL are respectively the longitudinal and transverse dispersion co-

efficient (see, e.g., Xie et al. (2012) and Hidalgo and Carrera (2009)), L is the

aspect ratio of the domain, and, Ra and Da, are respectively, the Rayleigh and

Damköler numbers, related to the buoyancy driven flow and the ratio of the

chemical reaction rate to the mass transfer rate (see, e.g., Ward et al. (2014)).

Substituting the new dimensionless variables, parameters and numbers in the

equations (4.8) and (4.9), and dropping the primes for convenience, the governing

equations and their boundary conditions stay as:

∂

∂x

(

1

K

∂Ψ

∂x

)

+
∂

∂z

(

1

K

∂Ψ

∂z

)

+
∂C

∂x
= 0, (4.10)

∂C

∂t
− ∂Ψ

∂z

∂C

∂x
+

∂Ψ

∂x

∂C

∂z
− 1

Ra

(

∂Jx
∂x

+
∂Jz
∂z

)

+ DaC = 0, (4.11)

where J=(Jx, Jz) is Fickian mass flux governed by Scheidegger-Bear’s dispersion

approach (Xie et al., 2012) corresponding to the term, J=D∇C, and the expres-

sions for Jx and Jz are:

Jx = (1 + βT ||∇Ψ||2)
∂C

∂x
+

(βL − βT )

||∇Ψ||2

(

(

∂Ψ

∂z

)2
∂C

∂x
− ∂Ψ

∂x

∂Ψ

∂z

∂C

∂z

)

(4.12)

Jz = (1 + βT ||∇Ψ||2)
∂C

∂z
+

(βL − βT )

||∇Ψ||2

(

(

∂Ψ

∂x

)2
∂C

∂z
− ∂Ψ

∂x

∂Ψ

∂z

∂C

∂x

)

(4.13)

and

||∇Ψ||2 =
(

(

∂Ψ

∂x

)2

+

(

∂Ψ

∂z

)2
)1/2

with boundary conditions:
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Dirichlet:

C(x, z = 1) = 1

Ψ(x, z = ±1) = 0

Ψ(x = 0, z) = 0

Ψ(x = L, z) = 0

Neumann:

∂C

∂z
(x, z = −1) = 0

∂C

∂x
(x = 0, z) = 0

∂C

∂x
(x = L, z) = 0

4.2.6 Quantity of interest

The quantity of interest for the C-ED problem will be the SF 1 introduced in

Section 4.1. This quantity can be computed mathematically as follows:

If we integrate (4.11) over the domain D we have,

∫

D

(

∂C

∂t
− ∂Ψ

∂z

∂C

∂x
+

∂Ψ

∂x

∂C

∂z
− 1

Ra

(

∂Jx
∂x

+
∂Jz
∂z

)

+ DaC

)

ds = 0, (4.14)

if we now let Mass =
∫

D
Cds, we can write,

d

dt
Mass−

∫

D

(

∂Ψ

∂z

∂C

∂x
− ∂Ψ

∂x

∂C

∂z

)

ds =
SF

Ra
− Da Mass, (4.15)

Since the second integral in the left hand side of the equation is zero2 we can

1SF is defined here as a generalization of the Sherwood number since not only dispersion
but also dispersivity is considered within the model (Ranganathan et al., 2012).

2Green’s theorem states that if we let ∂D be a positively oriented, piecewise smooth, simple
closed curve in a plane, and let D be the region bounded by ∂D. If P and Q are functions
of (x, z) defined on an open region containing D and have continuous partial derivatives there,
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re-write (4.15) as,
d

dt
Mass =

SF

Ra
− Da Mass, (4.16)

with

SF =

∫

D

(

∂Jx
∂x

+
∂Jz
∂z

)

ds. (4.17)

Applying now the Divergence theorem to above integral and removing zero terms,

we can finally write1 SF as,

SF = −
∫ L

0

(

1 + βT

∣

∣

∣

∣

∂Ψ

∂z

∣

∣

∣

∣

z=1

)(

∂C

∂z

)

z=1

dx. (4.18)

It can be observed from equation (4.16), that the total mass of solute in

the domain increases through solute injection across the upper boundary and

decreases through the first order reaction. Note also that, in this particular

problem, the more CO2 is absorbed through the upper boundary, the more the

process is considered to be efficient.

Although the mathematical formulation of the problem was described in terms

of its transient formulation, in this thesis we are interested in the long term

behaviour of the evolution of the problem and consequently we will consider only

non-trivial solutions of the corresponding steady state condition. Under this

then the following equality holds,
∫

∂D
(Pdx + Qdz) =

∫

D

(

∂Q
∂x

− ∂P
∂z

)

dxdz. Thus, by taking

P = ∂Ψ
∂x

C and Q = ∂Ψ
∂z

C and applying Green’s theorem it follows that,
∫

D

(

∂Q
∂x

− ∂P
∂z

)

dxdz =
∫

D

(

∂Ψ
∂z

∂C
∂x

− ∂Ψ
∂x

∂C
∂z

)

, and so,
∫

∂D
(Pdx + Qdz) =

∫ L

0
Pdx +

∫H

−H
Qdz −

∫ 0

L
Pdx +

∫ −H

H
Qdz =

∫ L

0
∂Ψ
∂x

Cdx +
∫H

−H
∂Ψ
∂z

Cdz −
∫ 0

L
∂Ψ
∂x

Cdx +
∫ −H

H
∂Ψ
∂z

Cdz = 0 (as the four latter integrals are all
equal to zero).

1Let J = (Jx, Jz), with Jx and Jz as described in (4.12) and (4.13) respectively. By
Divergence theorem the follow equality holds,

∫

D
(∇ · J)dA =

∫

∂D
J · nds, where n is the

outward normal unitary vector to the boundary ∂D. By taking nds = (dz,−dx), it follows

that,
∫

∂D
J · nds =

∫

∂D
Jxdz − Jzdx, and thus,

∫

∂D
Jxdz − Jzdx = −

∫ L

0
Jzdx +

∫H

−H
Jxdz +

∫ 0

L
Jzdx −

∫ −H

H
Jxdz. Applying boundary conditions,

∫

∂D
Jxdz − Jzdx = −

∫ L

0
Jzdx =

−
∫ L

0

(

1 + βT

∣

∣

∂Ψ
∂z

∣

∣

z=1

) (

∂C
∂z

)

z=1
dx. Note that dx = 0 on left and right boundaries and dz = 0

on bottom and top boundaries.
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condition equation (4.16) reduces to:

SF = RaDa Mass, (4.19)

As Ra and Da are parameters of the model, and recalling that Mass =
∫

D
Cds, (4.19) shows that the SF is directly proportional to Mass, and therefore,

for computing SF , it is enough with solving the equations (4.10) and (4.11) for

Ψ and C, and then compute the corresponding integral for C. In the following

section we will show how we find numerical solutions for the problem defined by

equations (4.10) and (4.11).

4.2.7 Search of numerical solutions for the C-ED model

To solve the C-ED problem described in the previous section we use the finite

element method (FEM) (see, e.g., Brenner and Scott (2002)). For the numerical

implementation of the FEM we used the package AptoFEM1.

The C-ED problem depends on several scalar parameters that need to be

specified before attempting to find a numerical solution, namely, Ra, Da, βL and

βT . The equations depend also on the permeability, K, which modeled as a

random permeability field in the same way we showed in Section 2.8.4. Once

these five parameters are specified, the equations (4.10) and (4.11) are solved for

the unknown, namely, the streamfunction, Ψ, and the concentration, C. And

finally, from C, we can compute the quantity of interest, the SF . Henceforth,

throughout this chapter, we will refer to the simulator as a function, f , as follows:

f : K ∈ R
M → SF ∈ R. (4.20)

The non-linearity of the system of equations leads to a multiple solutions

problem, in other words, there exists more that one streamfunction and concen-

tration scenarios, and therefore more than one SF , for a given permeability field.

For instance, Ward et al. (2014) investigated a particular case of our problem,

1AptoFEM is an in-house finite element (FE) code developed in the School of Mathematics
at the University of Nottingham (Houston)
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namely, K=1, βL=βT=0, and showed different types of solutions obtained by

solving the equations with the same input parameters, Ra and Da.

The existence of multiple solutions (outputs) adds an additional challenge

to the search of numerical solutions others than the trivial solution (which is

called the no-flow solution). The FEM code is only able to find one solution

(the no-flow) for the problem, and thus, to overcome this, it is necessary to

use other techniques in conjunction with the FEM. In this thesis we use the

Arclength continuation theory described in Cliffe et al. (2000a) as a tool for

finding numerical solutions others than the no-flow solution. Figure 4.2 shows a

representation of all the solutions found1 with our scheme for the homogeneous C-

ED problem and the respective scenario for the corresponding selection of different

Ra. The reference value to characterise each computed solution represented in the

Y-axis was the value of the streamfunction (velocity) at the center of the domain,

according the corresponding Ra (X-axis). Note that before around2 Ra=42.5, the

bifurcation point, all the solutions found have constant concentration, we have

called them no-flow solutions, and for Ra greater than around Ra=42.5 there are

three different solutions. (For more details about bifurcation problems, see, e.g.,

Cliffe et al. (2000a) and Ward et al. (2014)).

To test and validate the simulator, for the no-flow solution comparison, we

used the analytical solution for the homogeneous case, K = 1, provided in Ward

et al. (2014), namely,

C0(x, z) =
cosh(

√
RaDa(1− z))

cosh(2
√
RaDa)

, Ψ0(x, z) = 0. (4.21)

For the non-trivial solutions, we compared our results with the results reported

in Ward et al. (2014) for the cases of homogeneous porous medium (K = 1 in

this case), which were obtained with a different numerical approach (the spectral

method). We used the RE to compare the results and all the comparisons showed

a RE of at least 10−5.

1It is important to remark that these correspond to numerical solutions we found but it
does not mean that they are the only solutions for those inputs.

2We do not have an exact value for the bifurcation point. The fact that we found different
branches of solutions around that value shows us its existence.
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Figure 4.2: Bifurcation diagram with respect to Ra. Blue lines shows steady-
state solutions projected on the streamfunction value at the center
of the domain, Cc. The other model parameters are K = 1, Da=0.1
and βT = βL = 0.

4.2.7.1 Arclength continuation for finding numerical solutions

The steps followed to find numerical solutions of the C-ED model with Ar-

clength continuation approach are,

1. Perturb equation (4.10) with small ε > 0 leading to:

∂

∂x

(

1

K

∂Ψ

∂x

)

+
∂

∂z

(

1

K

∂Ψ

∂z

)

+
∂C

∂x
+ ε = 0, (4.22)

2. Consider the redefined system of equations formed by (4.22) and (4.11),

and solve for different1 Ra.

The sketch of the solutions for continuation paths (Cliffe et al., 2000a) with

1Suppose we want to find a numerical approximation of Ψ and C for Ra = 21 following
Arclength continuation approach, then, if for instance we use Newton’s method as numerical
scheme, we need the increments of the new desired Ra to be small enough to guarantee that
the new continuation solution is within the same path (see red line in figure 4.3). This can be
obtained by using the solution obtained for Ra = 20 as initial guess in Newton’s method.
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respect to Ra are showed in figure 4.3 (blue and red lines).

3. Once reached the desired Ra, start reducing1 the perturbation ε > 0 till

set ε = 0 which corresponds to the non-trivial (solutions distinct of no-flow

solution, i.e. Ψ = 0) solution for the original problem for the desired Ra.

Figure 4.3 shows representation of the solutions (red lines) for the perturbed

problem and the numerical solutions corresponding to the original problem (blue

lines).

Figure 4.3: Bifurcation diagram with respect to Ra and ε > 0. Blue lines shows
steady-state solutions projected on the concentration value at the
center of the domain, Cc. The other parameters of the model are
Da=0.1, βL= π/2 and βT=βL/10.

As we showed in Section 2.8.5, the equations (4.10) and (4.11) becomes a new

system of PDEs with random inputs, K(x, z, ω), which is solved for the stream-

function, Ψ(x, z, ω), and the concentration, C(x, z, ω), which become also random

fields. For simplicity, in the following we will omit the random term ω.

1This is done exactly in the same way that we do for Ra , i.e., in Point 2 we do continuation
on Ra and in Point 3 we do continuation on ε.
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Once introduced the C-ED problem and the simulator, we will show next

some examples of the streamfunction and concentration fields obtained for given

a heterogeneous permeability fields.

4.2.8 Solutions for the C-ED problem

In this section we show some examples of the numerical solutions found with

the simulator for the C-ED problem with parameters Ra=60, Da=0.1, βL= π/2

and βT=βL/10. The permeability fields used as inputs in the simulator are gen-

erated in the same way we discussed in Section 2.8.5.

Figures 4.5 and 4.6 show the two non-trivial solutions, i.e., the solution at

the upper branch and the solution at the lower branch, represented through red

circles in figure 4.4. The figures show the contours of streamfunction, Ψ, and

concentration, C, for the same permeability field, K.

Figure 4.4: Illustrative representation of the bifurcation scenery against the
Ra for a given heterogeneous permeability field. The red circles rep-
resents three different numerical solutions of the C-ED problem with
parameters: Ra=60, Da=0.1, βL= π/2 and βT=βL/10. The blue
horizontal line represents the no-flow solutions branch.
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To finish with the analysis of particular numerical solutions of the C-ED

problem, we will investigate how spacial variations of the permeability field affect

the SF .

4.2.9 Impact of the rock heterogeneity on the SF

In order to investigate how the heterogeneity affects the SF , for a given dis-

crete heterogeneous permeability field, Ki ∈ R
M , we find the average value of the

field, K̄i, and compute the corresponding SF for this homogeneous case.

We have selected four cases in which the heterogeneity of the permeability

affects drastically the values of the SF when compared with the homogeneous

case. The dimensionless domain for these example will be D = [0, π
2
] × [−1, 1].

The rest of the parameters in equations (4.10) and (4.11) will be: Ra = 100,

Da = 0.1, βL = π
2
and βT = βL

10
. Under this conditions, the SF for the no-flow

solution, SF 0, which is independent of the value of the permeability field, has a

value of SF 0 = 4.97, which is used as a reference value in the results.

Figure 4.7 shows an averaged permeability of K̄1 = 0.86, with relatively low

values of the permeability around all the boundary, and high values of the perme-

ability at the central region. Under this condition, the SF for the heterogeneous

field, SFK1
= 5.17, is lower than the one obtained for the homogeneous case,

SF K̄1
= 5.42. Although in this case a clear region of relative larger permeability

is observed along one of the main diagonals of the domain, the heterogeneity

structure of the permeability field affects the one cell solution of the problem

resulting in a reduction of the surface flux.

Figure 4.8 shows an averaged permeability of K̄2 = 0.61, and the correspond-

ing solution of the homogeneous case is given by the no-flow solution, SF 0 = 4.97.

In contrast with the previous case, here the permeability shows larger permeabil-

ity values at the bottom left and top right corners, and lower values at the central

region where the we have almost a constant permeability. In this case, the exis-

tence of this lower permeability values channel leads to the formation of a weak

plume flow, not present in the homogeneous case, this fact increases the flux,

SF K̄2
= 4.97, up to SFK2

= 5.01. Figure 4.8(e) shows the existence of two cells
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in the streamfunction contours, a dominant cell along the main diagonal region

with lower permeability values and a secondary small recirculation cell at the top

left corner region with larger permeability values.

Figure 4.9 presents an averaged permeability of K̄3 = 0.78. In this case, there

is a dominant region with low permeability values in the right half of the domain,

which leads to the original two cells solution, corresponding to the homogeneous

case, to pass into a single cell solution (occupying this low permeability region)

and a resulting reduction in the SF from 5.58 (homogeneous case) to 5.00 (het-

erogeneous case), which is very close to the value of the no-flow solution.

Finally in Figure 4.10 an example with an averaged permeability of K̄4 = 0.66

is considered. Figure 4.10(a) shows isolated pokes of low and high permeability

values with larger values at the top boundary layer of the domain. In this exam-

ple, the two cases, homogeneous and heterogeneous, reveal the existence of two

recirculation zones moving in opposite direction, although the resulting dissolu-

tion fluxes, SF K̄4
= 5.03 and SFK4

= 5.00, are very similar.

From these results, we can deduce that the magnitude of the local values of

the permeability does not affect drastically the changes in the SF , whereas the

existence of “channels” of constant permeability values connecting different re-

gions of the domain seems to impact on the magnitude of the resulting surface

flux.

In the following section we will use all the tools learnt in Chapter 2 in order

to build the GP emulator for the C-ED simulator.
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(a) Heterogeneous permeability field.

(b) Concentration at upper branch. (c) Streamfunction at upper branch.

(d) Concentration at no-flow branch. (e) Streamfunction at no-flow branch.

(f) Concentration at lower branch. (g) Streamfunction at lower branch.

Figure 4.5: Contours of the concentration (left) and streamfunction (right) for a
given permeability field (top) for the C-ED problem with parameters:
Ra=60, Da=0.1, βL= π/2 and βT=βL/10.
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(a) Heterogeneous permeability field.

(b) Concentration at upper branch. (c) Streamfunction at upper branch.

(d) Concentration at no-flow branch. (e) Streamfunction at no-flow branch.

(f) Concentration at lower branch. (g) Streamfunction at lower branch.

Figure 4.6: Contours of the concentration (left) and streamfunction (right) for a
given permeability field (top) for the C-ED problem with parameters:
Ra=60, Da=0.1, βL= π/2 and βT=βL/10.
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(a) Heterogeneous permeability field, K1, with
K̄1 = 0.86.

(b) Concentration for the homogeneous case,
K̄1 = 0.86.

(c) Concentration for the heterogeneous case,
K1.

(d) Streamfunction for the homogeneous case,
K̄1 = 0.86.

(e) Streamfunction for the heterogeneous case,
K1.

Figure 4.7: Concentration and Streamfunction contours for the homogeneous,
K̄1 = 0.86, and heterogeneous, K1, permeability fields for the C-
ED problem with parameters: Ra=100, Da=0.1, βL= π/2 and
βT=βL/10. The corresponding SF s for the homogeneous and het-
erogeneous cases, respectively, are SF = 5.42 and SF = 5.17.
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(a) Heterogeneous permeability field, K2, with
K̄2 = 0.61.

(b) Concentration for the homogeneous case,
K̄2 = 0.61.

(c) Concentration for the heterogeneous case,
K2.

(d) Streamfunction for the homogeneous case,
K̄2 = 0.61.

(e) Streamfunction for the heterogeneous case,
K2.

Figure 4.8: Concentration and Streamfunction contours for the homogeneous,
K̄2 = 0.61, and heterogeneous, K2, permeability fields for the C-
ED problem with parameters: Ra=100, Da=0.1, βL= π/2 and
βT=βL/10. The corresponding SF s for the homogeneous and het-
erogeneous cases, respectively, are SF = 4.97 and SF = 5.01.
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(a) Heterogeneous permeability field, K3, with
K̄3 = 0.78.

(b) Concentration for the homogeneous case,
K̄3 = 0.78.

(c) Concentration for the heterogeneous case,
K3.

(d) Streamfunction for the homogeneous case,
K̄3 = 0.78.

(e) Streamfunction for the heterogeneous case,
K3.

Figure 4.9: Concentration and Streamfunction contours for the homogeneous,
K̄3 = 0.78, and heterogeneous, K3, permeability fields for the C-
ED problem with parameters: Ra=100, Da=0.1, βL= π/2 and
βT=βL/10. The corresponding SF s for the homogeneous and het-
erogeneous cases, respectively, are SF = 5.58 and SF = 5.00.
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(a) Heterogeneous permeability field, K4, with
K̄4 = 0.66.

(b) Concentration for the homogeneous case,
K̄4 = 0.66.

(c) Concentration for the heterogeneous case,
K4.

(d) Streamfunction for the homogeneous case,
K̄4 = 0.66.

(e) Streamfunction for the heterogeneous case,
K4.

Figure 4.10: Concentration and Streamfunction contours for the homogeneous,
K̄4 = 0.66, and heterogeneous, K4, permeability fields for the C-
ED problem with parameters: Ra=100, Da=0.1, βL= π/2 and
βT=βL/10. The corresponding SF s for the homogeneous and het-
erogeneous cases, respectively, are SF = 5.03 and SF = 5.00.
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4.3 GP emulator for the C-ED problem

As we discussed in the previous section, the C-ED model depends on several

parameters, namely, Ra, Da, βL and βT , which have to be chosen before run-

ning the simulator to compute the corresponding SF . In this thesis we will be

interested in analysing two scenarios, first, what happens “close” to a bifurcation

point? and second, what happens “far” from a bifurcation point?. As the bifur-

cation point for the homogeneous case (see Figure 4.2) is located in the vicinity of

Ra = 42.5, we have selected two cases of study, Ra = 60 (close to the bifurcation)

and Ra=100 (far from the bifurcation). The rest of the parameters will remain

fixed as, Da = 0.1, βL = π/2, and βT = βL/10.

In both cases, Ra = 60 and Ra = 100, for a given permeability field, the

simulator returns an output (SF ) that can be either a trivial (no-flow solution)

or a non-trivial solution. The SF arisen from a no-flow solution will be denoted

by SF0. In the following sections, we will restrict ourselves to the study of

non-trivial solutions, and later in the chapter, we will consider the whole set of

possibilities. For doing this, we run the simulator for the usual 256 design points,

ξi, and compute the corresponding observed SF i to form the training set. Then,

we remove all the pairs, (ξi, f(ξi) = SF0), and consider the rest of the set as the

new training set for the GP emulator.

Let f(·) represent the simulator described in (4.20), which takes as input a

random permeability field and return the corresponding surface flux, SF . For

building a GP emulator for the simulator f(·), we will follow these steps:

1. Choose the appropriate set of design points, ξi, where to run the simulator.

2. Form the corresponding random permeability fields, Ki, associated with the

design points ξi.

3. Run the simulator, f(·), at those Ki and obtain the corresponding SF i in

order to form the training set D.

4. Remove all trivial solutions from the training set.
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5. Use GP regression described in Section 1.3.3 to approximate the entire

function f(·) with f̂(·).

ξi ∈ R
M kl

//

trunc
&&

Ki ∈ R
M f

// SFi ∈ R

ξi ∈ R
D

f̂

88

Figure 4.11: Emulation diagram. Above, the set of design points, ξi =
(ξ1, ..., ξD, ..., ξM), used to generate the log Gaussian RF, Ki, with a
KL decomposition. These Ki are then used to compute the corre-
sponding surface fluxes, SF i, with the simulator f . These SF i are
then be used as observed values in the training set. Below, the set
of truncated design points, ξi = (ξ1, ξ2, ..., ξD), to form the training
set along with the observed surface fluxes, SF i. f̂ represents the GP
emulator which is able to predict the surface flux, SF ∗

i ∈ R, for a
given test case ξ∗i ∈ R

D.

Let us now apply the LOO-CV methodology described in Section 2.6, and

used in Section 2.9.1 for the travel time simulator, to decide the structure of our

C-ED GP emulator, and proceed with the UQ of the CDF of the SF for each of

the two cases, Ra = 60 and Ra = 100.

Case Ra=60

Following the same strategy used in Chapter 2, we apply the LOO-CV method

to a training set of 174 points (number of points after removing trivial solutions),

and look for the GP emulator which its predicted data lie within the 95% CI 95%

of the time. In forthcoming sections, we will only show plots of the selected GP

model.

After testing our GP emulator with a zero-mean function and the four covari-

ance functions proposed in Section 2.2, we obtained the following results: The

percentage of points out of the range given by the LOO-CV method for the models

using the SE, Matérn 3

2

, Matérn 5

2

, and RQ covariance functions is, respectively,
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5.04, 4.02, 4.64 and 4.80. According to this results, we will build our GP emulator

based upon a zero-mean and Matérn 3

2

covariance functions.

Figure 4.12 shows the predicted values (red) and 95% confidence intervals

(black vertical bars) for each of the predictions, along with the observed values

(blue) for each of the GP models. The percentage of points out of the range for

the Matérn 3

2

model is 4.02% and so, 95.98% of the predictions are within the

95% acceptance interval.

Figure 4.12: Predicted values (red) and their 95% bounds (black bars) given
by the emulator against observed values (blue) for the LOO-CV
from a design of 174 points and using a mean-zero function and a
Matérn 3

2

covariance function. 4.02% of the observed values out off
range.

To choose the the optimum number of KL coefficients retained in this model,

we will use the NLML (2.14), DS (2.15) and MSE (2.16).

Figure 4.13 shows the different scores plotted against the number of KL coef-

ficients retained. In this case, all the scores follow the same decreasing tendency

when increasing the number of KL coefficients used. The plots show that after

around 14 KL coefficients, the scores are not changing significantly. Therefore,

it seems sensible to build our training set based on 14-dimensional design points,

i.e., D = 14 in the emulation diagram 4.11.
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(a) Negative log marginal likelihood. (b) Mean square error.

(c) Dawid score.

Figure 4.13: Different scores for a GP emulator built with a mean-zero function,
Matérn 3

2

covariance function and 174 design points. The parameters

of the C-ED simulator are: Ra = 60, Da = 0.1, βL = π/2, and
βT = βL/10. The x-axis represents the number of KL coefficients
retained for each score.
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As in Section 2.6, we show in Figure 4.14 the scatterplot between observed

SF= predicted SF for this GP emulator. We also compute the relative error be-

tween 1000 observed surface fluxes and the corresponding predictions by running

our GP emulator with {1}, {1, 2} ... {1, 2, ..., 174} design points (i.e., we run the

emulator 174 times). Figure 4.15 suggests that the adequate number of design

points for this problem could be around 32 (power of 2), as taking more points

would not improve significantly the GP emulator performance (measured in terms

of the RE). This latter, becomes extremely important for this simulator since

a single run for one point of the training set can last up to 20 minutes. Thus,

in the following, and for this case, Ra = 60, we will use only the first 32 design

points in our training set.

Figure 4.14: Observed and predicted surface fluxes for a design of 174 points,
mean-zero function, and Matérn 3

2

covariance function. The solid
line shows observed SF= predicted SF .
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Figure 4.15: Relative error between 1000 observed and predicted surface fluxes
against the number of design points retained using the Matérn 3

2

co-
variance function. The curve shows a decreasing tendency and it
shows that after around 32 design points retained there is no varia-
tion in the relative error.

4.4 Uncertainty distribution of the SF . Case

Ra=60

Due to the computational complexity of the C-ED simulator, it is not feasible1

to use MC method to find the uncertainty distribution of the SF , and this,

precisely enhances the use of GP emulation as an alternative to MC.

Before predicting the CDF of the SF with our GP emulator, we will use the

MC method, based on 1000 samples, to show an estimation of the CDF of the

1Actually, it takes 8 full days to run this simulator 1000 times. So, a full MC UA, which
requires around 105 runs, would take approximately 800 days.
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SF , and thus, have an idea of what type of CDF we expect. As in Chapter 2,

we use the MC method described in Section 1.2.2 to approximate that CDF. To

do that, we take T = SF and XM = K, then T
(i)
M = SF i. We approximate the

CDF by the ECDF with a sample of 1000 SF i. To compute the ECDF of SF i we

follow the same procedure discussed in Section 2.10.1.

Figure 4.16 shows the ECDF of the SF based on the MC method with a

sample of size 1000. The blue line is the estimation of the CDF of SF and the

dashed lines the 95% uncertainty bounds for this empirical distribution.

Figure 4.16: Monte Carlo ECDF (black line) based on 1000 surface fluxes for the
case Ra=60. The dashed lines show the 95% uncertainty bounds.

In the following section we will use the GP emulator to perform a full UA of

the distribution of the surface flux.
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4.4.1 Using Gaussian process emulation to predict the cu-

mulative distribution function of the surface flux

In this section, we will apply the same procedure described in Section 2.10.1

to quantify the uncertainty distribution of the surface flux for the case Ra = 60.

Figure 4.17 shows the ECDF (black) based on 1,000 samples of the surface

flux computed with the MC method and GP posterior samples (green). Figure

4.18 shows the 2.5th and 97.5th percentiles (dashed magenta), the GP posterior

mean (red) of the cumulative distribution function, and MC ECDF (black line).

Figure 4.17: GP Posterior ECDFs samples, Fi, approximating the MC estimation
of the CDF of the travel time of a convected particle in groundwater
flow. The GP emulator prior specifications are: mean-zero function,
SE covariance function, 174 design points and 14 KL coefficients
retained.
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Figure 4.18: GP uncertainty analysis of the CDF of the travel time of a convected
particle in groundwater flow. The GP emulator prior specifications
are: mean-zero function, SE covariance function, 174 design points
and 14 KL coefficients retained.

Case Ra=100

In this case, the number of design points removed from the initial training set

of 256 points is 64, and thus, the training set for this GP emulator is formed by

192 points.

The percentage of points out of the range given by the LOO-CV methodology

for the models using the SE, Matérn 3

2

, Matérn 5

2

, and RQ covariance functions

is, respectively, 5.32, 4.22, 4.42 and 4.06. According to this results, we will build

our GP emulator based upon a zero-mean and RQ covariance functions.

Figure 4.19 shows the predicted values (red) and 95% confidence intervals

(black vertical bars) for each of the predictions, along with the observed values

(blue) for each of the GP models. The percentage of points out of the range for

the Matérn 3

2

model is 4.06% and so, 95.94% of the predictions are within the

95% acceptance interval.
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Figure 4.19: Predicted values (red) and their 95% bounds (black bars) given
by the emulator against observed values (blue) for the LOO-CV
from a design of 192 points and using a mean-zero function and a
Matérn 3

2

covariance function. 4.06% of the observed values out off
range.

The different scores against the number of KL coefficients retained are shown

in Figure 4.20. In this case, all the scores follow the same decreasing tendency

when increasing the number of KL coefficients used. The plots show that after

around 18 KL coefficients, the scores are not changing significantly. Therefore,

it seems sensible to build our training set based on 18-dimensional design points,

i.e., D = 18 in the emulation diagram 4.11.

Figure 4.21 shows the scatterplot between observed SF= predicted SF for

this case. The relative error between 1000 observed and predicted surface fluxes

according to the number of design points retained is showed in Figure 4.22
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(a) Negative log marginal likelihood. (b) Mean square error.

(c) Dawid score.

Figure 4.20: Different scores for a GP emulator built with a mean-zero function,
RQ covariance function and 192 design points. The parameters of
the C-ED simulator are: Ra = 100, Da = 0.1, βL = π/2, and
βT = βL/10. The x-axis represents the number of KL coefficients
retained for each score.



Chapter 4. Application of GP emulation to the convectively-enhanced

dissolution model 121

Figure 4.21: Observed and predicted surface fluxes for a design of 174 points,
mean-zero function, and Matérn 3

2

covariance function. The solid
line shows observed SF= predicted SF .

Figure 4.22: Relative error between 1000 observed and predicted surface fluxes
against the number of design points retained using the RQ covari-
ance function. The curve shows a decreasing tendency and it shows
that after around 20 design points retained there is no variation in
the relative error.
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4.4.2 Uncertainty distribution of the SF . Case Ra=100

Figure (4.23) shows the MC UA for a sample of 1000 random permeability

fields. The blue line is the estimation of the CDF of the SF and the dotted lines

the 95% confidence interval for this empirical distribution.

Figure 4.23: Monte Carlo ECDF (blue line) based on 1000 samples for the C-
ED simulator. The dotted lines shows uncertainty bounds (95%
confidence intervals).

In Figure 4.24 we show the difference between the results obtained by retaining

1 and 8 KL coefficients in the model. From this figure we see (graphically) how

the more we increase the number of KL coefficients the more the uncertainty is

reduced. Figures 4.24(a) and 4.24(c) show the ECDF (black) of the SF based

on 1000 samples computed with the MC method, and GP posterior samples

(green) for the GP emulator retaining 1 KL coefficient and 8 KL coefficients

respectively. Figures 4.24(b) and 4.24(d) show the 2.5th and 97.5th percentiles

(dashed magenta), the GP posterior mean (red) of the cumulative distribution

function, and MC ECDF (black line) for 1 and 8 KL coefficients respectively.
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(a) ECDFs of the SFobtained with the simu-
lator (black) and posterior samples (green) for
UA by using 1 KL coefficient.

(b) ECDFs of the SFobtained with the simu-
lator (black) and posterior samples (green) for
UA by using 1 KL coefficient and 95% confi-
dence interval bounds (magenta).

(c) ECDFs of the SFobtained with the simu-
lator (black) and posterior samples (green) for
UA by using 8 KL coefficients.

(d) ECDFs of the SFobtained with the simu-
lator (black) and posterior samples (green) for
UA by using 8 KL coefficients and 95% confi-
dence interval bounds (magenta).

Figure 4.24: Uncertainty analysis for ECDF when considering 1 KL coefficients
(a) and (b), and 8 KL coefficients (c) and (d).
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To finish with the analysis of the C-ED problem, we will build a GP emulator

for the whole problem without discarding any of the solutions. This is a big

challenge for the GP emulator since it will have to predict the different scenarios

(trivial or non-trivial solutions) for any given permeability. For being successful

in this, GP regression is not sufficient, and we will have to complement GP

regression with GP classification.

4.5 Gaussian process emulation for multiple so-

lutions problems

The C-ED problem described with equations (4.10) and (4.11) is solved for

the concentration, C, and the streamfunction, Ψ, as detailed in section 4.2.5.

To be able to build a GP emulator without constraints on the different types

of solutions, we need to label all possible outputs. By examining the solutions

that we found numerically, discussed in Section 4.2.8, we clearly identify two

different families of solutions, namely, solutions leading to a constant SF0 and

solutions leading to a SF 6= SF 0. Due to this singularity of the solutions we

need to introduce an additional tool to our GP emulator, which we will call the

classifier. The classifier will allow us to predict the class of the solution is likely

to be, given the input. Once the solution is classified, we can then use the same

approach followed in section 1.3.3 to estimate the value of the SF by using GP

regression. In this section we will focus only in the case Ra = 100 (Note that

the same methodology could be apply to Ra = 60). We will denote by SF 0 to

the surface flux obtained from a no-flow solution and which value is 4.9707 in the

case Ra = 100.

Let ξM ∼ N(0, I) a random vector formed by M KL coefficients, and let K ∈
R

M be the corresponding RF generated from that ξM . Let D = [X, Y = f(X)]

be the training set for our model. If we now split the set X in two disjoint sets,

X1 and X2, where X1 = {x ∈ X : f(x) = SF 0} and X2 = {x ∈ X : f(x) 6= SF 0},
and we call D2 = [X2; Y2], where Y2 = f(X2), we can consider a GP (regression)

emulator (as described so far), named GP2, based on the training set D2. Thus,
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for any given input ξ we run the classifier at first instance and if the classifier

labels the output as a constant SF 0 we take the emulator output as f̂(ξ) = SF 0,

and if the output is labeled as a non-constant SF then we use GP2 for making

predictions, and we will take as predicted SF value, f̂2(ξ) = SF (see Figure 4.25

for clarification).

Run Classifier

Is p(f̂(ξ) 6= SFo) > U?
where U ∼ U(0, 1)

ξ
Return

f̂(ξ) = SFo

Apply GP2

f̂2(ξ) = SF

Return

f̂(ξ) = SF

no

yes

Figure 4.25: Algorithm followed for predicting the SF for any input given by us-
ing a Gaussian process classifier. U ∼ U(0, 1) is an uniform random
variable between 0 and 1 which gives randomness to the classification
process.
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4.5.1 Gaussian process classification

So far we have considered regression problems, where the targets were real

valued. With the classification approach we wish to assign an input pattern x to

one of C classes, C1, ..., CC . As mentioned earlier we are only interested at this

time in two-class problem, C1 : SF = SFo and C2 : SF 6= SFo. For creating a

classifier we have followed the methodology described in Rasmussen and Williams

(2006), chapter 3. We will use our GP classifier as probabilistic classifier, where

test predictions probabilistic take the form of class probabilities. If we use the

labels y = +1 and y = −1 to distinguish the two classes C1 and C2, we will try

to predict, for instance, π(x) = p(y = +1|x), the probability that an input x is

y = +1. As a GP prior over functions does not restrict the output to lie in the

interval [0,1], we need to ”squash” the prior function1 f . A common choice for this

”squashing function” is the function λ(z) = (1 + exp(−z))−1, called the logistic

function. So, the GP prior over f induces a prior over probabilistic classifications

π. And then we can apply the methodology described in Section 1.3.3 to obtain

the posterior mean for that π(x). Thus, the difference between regression and

classification is not of fundamental nature and actually we use a Gaussian process

in essentially the same way, it is just that the Gaussian likelihood function often

used for regression is inappropriate for classification. The likelihood function

considered for our classification model will be the error-function2 (or cumulative

Gaussian), and does not take any hyperparameters.

Since exact inference is only possible for Gaussian likelihood we need an al-

ternative approximation inference method. We will use the Expected Propaga-

tion (EP) algorithm (Minka, 2001) described in Rasmussen and Williams (2006),

Section 3.6, for this purpose. The mean and covariance functions for the GP

classification model are chosen to be a zero-mean function and the SE covariance

function.

Let us see next some of the results after performing the GP emulator UA.

1In practical terms, what we squash are the samples, fi, drawn from the prior distribution
of f .

2The error function, Erf , of a Gaussian distribution is defined as Erf(x) = 1√
π

∫ x

−x
e−t2dt.
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4.5.2 UA of the ECDF of the SF for the C-ED problem

The final results after performing a full UA of the CDF of the SF for the

C-ED model with parameters Ra=100, Da=0.1, βL = π/2 and βT = βL/10 are

showed next. Figure 4.26(a) illustrates how GP regression is unable to predict

the true distribution around the bifurcation point. Figure 4.26(b) shows how pos-

terior samples from the improved method are now able to predict the bifurcation

around SF 0 = 4.9707. Finally, Figure 4.27 shows the 2.5th and 97.5th percentiles

(dashed), the median of the predicted distribution (red), and MC ECDF (black

line).

(a) Posterior samples of predicted ECDFs
(green) and true SF ECDF (black) based on
1000 samples. Predictions computed without
using GP classification.

(b) Posterior samples of predicted ECDFs
(green) and true SF ECDF (black) based on
1000 samples. Predictions computed using GP
classification.

Figure 4.26: Difference between posterior samples of predicted ECDFs (green)
and true SF ECDF (black) based on 1000 samples with and without
using GP classification. The number of design points were 256 and
the number of KL coefficients were 18. The parameters for the E-CD
problem were chosen to be Ra=100, Da=0.1, βL = π/2 and βT =
βL/10. Priors mean-zero, SE covariance, Erf likelihood functions
and EP method for inference were chosen for the GP classifier. Priors
mean-zero, RQ covariance, Gaussian likelihood functions and exact
inference method were chosen for GP regression model.
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Figure 4.27: UA of predicted SF ECDFs based on 1000 samples using GP clas-
sification. True ECDF (black), predicted ECDF (red), 2.5th and
97.5th percentiles (dashed magenta). The number of design points
were 256 and the number of KL coefficients were 18. The param-
eters for the E-CD problem were chosen to be Ra=100, Da=0.1,
βL = π/2 and βT = βL/10. Priors mean-zero, SE covariance, Erf
likelihood functions and EP method for inference were chosen for the
GP classifier. Priors mean-zero, RQ covariance, Gaussian likelihood
functions and exact inference method were chosen for GP regression
model.

The last analysis of this thesis will be related to the comparison between the

direct scalar emulation of the SF and the estimation of the SF from emulated

concentration fields with the methodology described and used in Chapter 2 for

the travel time and the pressure field.
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4.6 Gaussian process emulation of concentra-

tion and streamfunction fields

Let f(·) be the concentration (or streamfunction) field simulator, i.e., the

simulator which takes inputs x and returns an output y, where y is now (either)

a 2-dimensional concentration (or streamfunction) field solution of our C-ED

problem. If we use the SVD method described in Section 2.11.1 to build an

emulator from x to y, we can then compute the SF by using formula (4.19).

In the following, we show some examples of the reduced rank approximations

obtained when applying the SVD method to a set of observed concentration fields,

as well as the RE achieved in the approximations.

We consider two of the concentration fields, C1 and C2, obtained by solving

equations (4.10) and (4.11) with parameters: Ra = 100, Da = 0.1, βL = π
2
and

βT = βL

10
. Figures 4.28(a) and 4.29(a) show the true concentration fields, and

Figures 4.28(b) and 4.29(b) the corresponding reduced rank approximations, C̃1

and C̃2. The RE for C1 and C̃1 is 0.0014 and the RE for C2 and C̃2 is 0.0013.

We also show the results obtained when applying the method to the stream-

function fields. Figures 4.30(a) and 4.31(a) are the true streamfunction fields, P1

and P2, and Figures 4.30(b) and 4.33(b) the corresponding reduced rank approx-

imations, P̃1 and P̃2. The RE for P1 and P̃1 is 0.0097 and the RE for P2 and P̃2

is 0.0037.

In the following section, we build the GP field emulator for the CE-D model

and we show some illustrative results.



Chapter 4. Application of GP emulation to the convectively-enhanced

dissolution model 130

(a) True concentration field, C1, obtained
from the simulator for the E-CD problem for
Ra=100, Da=0.1, βL = π/2 and βT = βL/10.

(b) Reduced rank approximation, C̃1, of the
concentration field C1 by using 15 eigenvectors.

Figure 4.28: True concentration field, C1, and corresponding reduced rank ap-

proximation, C̃1. Number of eigenvectors used is k = 15. The
L2-norm relative error between C1 and C̃1 is 0.0014.

(a) True concentration field, C2, obtained
from the simulator for the E-CD problem for
Ra=100, Da=0.1, βL = π/2 and βT = βL/10.

(b) Reduced rank approximation, C̃2, of the
concentration field C2 by using 15 eigenvectors.

Figure 4.29: True concentration field, C2, and corresponding reduced rank ap-

proximation, C̃2. Number of eigenvectors used is k = 15. The
L2-norm relative error between C2 and C̃2 is 0.0013.



Chapter 4. Application of GP emulation to the convectively-enhanced

dissolution model 131

(a) True concentration field, P1, obtained
from the simulator for the E-CD problem for
Ra=100, Da=0.1, βL = π/2 and βT = βL/10.

(b) Reduced rank approximation, P̃1, of the
concentration field P1 by using 15 eigenvectors.

Figure 4.30: True concentration field, P1, and corresponding reduced rank ap-

proximation, P̃1. Number of eigenvectors used is k = 15. The
L2-norm relative error between P1 and P̃1 is 0.0097.

(a) True concentration field, P2, obtained
from the simulator for the E-CD problem for
Ra=100, Da=0.1, βL = π/2 and βT = βL/10.

(b) Reduced rank approximation, P̃2, of the
concentration field P2 by using 15 eigenvectors.

Figure 4.31: True concentration field, P2, and corresponding reduced rank ap-

proximation, P̃2. Number of eigenvectors used is k = 15. The
L2-norm relative error between P2 and P̃2 is 0.0037.
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4.7 Building the Gaussian process field emula-

tor for the C-ED problem

Let f be the previous concentration field simulator, which takes an input x,

and returns an output y, where y is a concentration field. Suppose we have

a reduced rank approximation of n concentration fields, y1, ...,yn, given by the

following expression:

ỹj ≈ L∗D∗tj, for i = 1, ..., n, (4.23)

where L∗ = (l1, ..., ln) and D∗ = (d1, ...,dk), for some k < n, and tj is a vector of

length k (as discussed in Section 2.11.1).

To build an emulator, f ∗, for the simulator, we can build an emulator by using

x and the n vectors tj as a training set. Then, we build k separate emulators,

f ∗
j , for j = 1, ..., k, with their respective training sets formed by x and each

of the elements of the rows of the matrix R⊤
∗ = (t1, ..., tn). For a new given

input x∗ we can compute f ∗
j (x

∗) := t∗j , for j = 1, ..., k, and form f ∗(x∗) :=

(f ∗
1 (x

∗), ..., f ∗
k (x

∗)) = t∗, where t∗ := (t∗1, ..., t
∗
k). So, given t∗, the estimated

centered field will be given by,

ỹ∗ = f ∗(x∗) = L∗D∗x
∗. (4.24)

Figures 4.32 and 4.33 show some examples containing the true, reduced rank

and predicted concentration and streamfunction fields. Figures 4.34 shows how

the GP field emulator is even able to predict the existence of two cells stream-

functions.

We finish this chapter by presenting the results obtained when using the two

proposed methods for predicting the SF value for our C-ED problem, GP scalar

and field emulation.
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(a) Observed concentration field, C, obtained
from the simulator for the E-CD problem for
Ra=100, Da=0.1, βL = π/2 and βT = βL/10.

(b) Reduced rank approximation, C̃, of the ob-
served concentration field C by using 40 eigen-
vectors.

(c) Predicted concentration field, C∗, of the
concentration field C by using 40 eigenvectors
and 16 KL coefficients.

Figure 4.32: Observed concentration field, C, and corresponding reduced rank

approximation, C̃, and predicted concentration field, C∗. Number of
eigenvectors used is k = 40. Number of KL coefficients for prediction
is 16. The L2-norm relative error between C and C̃ is 0.0031 and
the L2-norm relative error between C and C∗ is 0.0370.
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(a) Observed streamfunction field, Ψ, obtained
from the simulator for the E-CD problem for
Ra=100, Da=0.1, βL = π/2 and βT = βL/10.

(b) Reduced rank approximation, Ψ̃, of the ob-
served concentration field Ψ by using 40 eigen-
vectors.

(c) Predicted streamfunction field, Ψ∗, of the
concentration field Ψ by using 40 eigenvectors
and 16 KL coefficients.

Figure 4.33: Observed streamfunction field, Ψ, and corresponding reduced rank

approximation, Ψ̃, and predicted streamfunction field, Ψ∗. Number
of eigenvectors used is k = 40. Number of KL coefficients for predic-
tion is 16. The L2-norm relative error between Ψ and Ψ̃ is 0.0111
and the L2-norm relative error between Ψ and Ψ∗ is 0.1887.
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(a) Observed two cells streamfunction field ob-
tained from the simulator for the E-CD prob-
lem for Ra=100, Da=0.1, βL = π/2 and βT =
βL/10.

(b) Reduced rank approximation by using 40
eigenvectors.

(c) Predicted streamfunction field by using 40
eigenvectors and 16 KL coefficients.

Figure 4.34: Observed, reduced rank approximation and predicted streamfunc-
tion fields. Number of eigenvectors used is k = 40. Number of KL
coefficients for prediction is 16. The L2-norm relative error between
the observed field and reduced rank approximation is 0.0031 and the
L2-norm relative error between the observed field and the predicted
is 0.1521.
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4.8 Comparison between directly predicted sur-

face flux and estimated surface flux from

emulated concentration field

For this comparison we used 500 SF outputs of the C-ED simulator with param-

eters: Ra=100, Da=0.1, βL = π/2 and βT = βL/10. The training set chosen

for the Gaussian processes was formed by 123 concentration fields1. The prior

specifications for both Gaussian processes where: zero-mean, rational quadratic

covariance and Gaussian likelihood functions. The number of KL coefficients re-

tained was 16. And finally, the number of eigenvectors used for the SVD rank

reduction was 40.

With these specifications the RE for the scalar GP was 0.0182 meanwhile the

RE for the field GP was 0.0201. Thus, the conclusion for this experiment is that

scalar GP emulation seems to be more efficient than field GP emulation, although

both of them seem to be a powerful tool for making predictions. Figures (4.36(a)

and 4.36(b)) show visual comparison of both results.

Figure 4.35: RE (Y axis) between each of the observed concentration field and
its corresponding reduced rank approximation along the number of
eigenvectors used (X axis).

1This number of 123 fields correspond to the remaining number of concentration fields, from
the original set of 256 design points, that did not lead to a constant SF .
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(a) Comparison of 500 Observed and directly
predicted SF . The RE between the observed
and predicted was 0.0182.

(b) Comparison of 500 Observed SF and SF

from emulated concentration field. The num-
ber of eigenvectors used during the reduced
rank approximation was 40. The RE between
the observed and predicted was 0.0201.

Figure 4.36: Observed SF vs directly predicted SF and Observed SF vs SF from
predicted concentration field plots obtained from the simulator for
the E-CD problem for Ra=100, Da=0.1, βL = π/2 and βT = βL/10.
The design was formed by 123 points (one cell solutions only). A
zero-mean and RQ covariance function were used as prior GP model
specifications and the number of KL coefficients used for prediction
was 16. The solid line shows observed SF = predicted SF .



Chapter 5

Conclusions and further work

The contribution of this thesis can be classified in three main blocks: first, the

search and implementation of computational tools for performing uncertainty

quantification in groundwater flow problems. In particular, this thesis has anal-

ysed and compared the efficiency of four methods, namely, MC, MLMC, QMC

and MLQMC for computing the average travel time of a convected particle in

groundwater flow. Second, the study and analysis of a more computationally

complex real problem, the C-ED process occurring in CO2 geological storage.

Here, we have been more interested in understanding the physical meaning and

behaviour of the solutions, and how these solutions change for different inputs.

And third, the development of an alternative method to the four above for doing

uncertainty quantification, the GP emulator. In this thesis we aimed to quan-

tify how the uncertainty (or heterogeneity when studied as an individual case) in

the permeability field, modelled as a log Gaussian random field, affect to either

the travel time, in the groundwater flow model, or the surface flux in the C-ED

process, when it is propagated through the model equations. In the following,

we will discuss each of these three blocks in more detail and give indication of

further lines of research.
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5.1 Computational techniques for UQ

In Chapter 3 we used four approaches, namely, MC, MLMC, QMC and MLQMC

to approximate the average travel time that a convected particle released at the

centre of a given physical domain lasts to get the domain boundary. A series

of experiments based on several numerical discretisations of the physical domain

were conducted and the four above approaches compared. Numerical results

demonstrated that a number of improvements to the standard MC simulation

are possible, these include, for instance, the QMC method, where the parameter

values are chosen in a deterministic way to speed up the rate of convergence of

the MC method. Another improvement, the MLMC method, based on the lin-

earity of the expectation and inspired by the multi-grid approach in numerical

PDEs, exploits the structure of the PDEs in order to reduce the amount of com-

putational work required. MLMC can be seen as a variance reduction technique

for the standard Monte Carlo method (Cliffe et al., 2011). The accuracy of the

approximations and the efficiency of the four methods were expressed in terms of

the ε2-cost for different predefined tolerances, specified through the MSE.

Numerical results showed that all the proposed alternatives to the standard

MC simulation, namely, QMC, MLMC and MLQMC, applied to the groundwater

flow model described in Chapter 2, improved significantly the standard MC simu-

lation, providing the same order of accuracy with a lower computational cost. The

overall picture with the performance of all the methods was shown in Figure 3.6.

The plot showed how the MLQMC method produces the lowest computational

cost for all the tolerances. MLMC was found to perform better that MC and

QMC, and in conclusion, MC was proven to be the least efficient method for this

model. However, both multilevel based methods, MLMC and MLQMC, require

the complete rewriting of the simulator’s numerical code in order to carry out

the corresponding multi-grid approaches, this may be a handicap for end-users

working in commercial environments where the use of engineering commercial

packages, sometimes used as ’black boxes’, makes the use of this accelerators

unfeasible. Another historical constraint of multilevel methods has been1 that

1A recent publication (Giles et al., 2015) describes a technique to use MLMC to approximate
distribution functions and densities of solutions of PDEs.
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these methods do not produce the density or cumulative distribution functions

of the uncertain output and therefore they only can be used to approximate the

expected value of a functional of the PDEs solution. On the other hand, MC

and QMC can be used to find out the entire distribution function of the quantity

of interest although this sometimes for complex simulator would be impractical.

This latter strengthen the use of computationally cheap surrogates instead, like

GP emulators, for complex simulators as the one proposed in Chapter 4 to model

the C-ED process.

Following above considerations, further research can be done by trying to

apply the recent technique described in Giles et al. (2015) to the models described

in this thesis, and do the comparisons done in Sections 2.10.2 and 4.5.2 with

MLMC, and also extend this technique to the MLQMC method.

Due to the deterministic way in which the QMC and MLQMC methods are

designed, it seems sensible to think that it is possible to improve these methods

in order to minimize (or control) the number of samples to run at each level

for reducing the statistical error, instead of using just an exceeding estimation

provided by expression (1.12). It is also interesting to try with an alternative

sampling technique to Sobol sequences when building QMC estimator, and by

analogy, the GP emulator design which is also built upon Sobol sequences.

5.2 Analysis of the C-ED process in CO2 geo-

logical storage

In Chapter 4, we searched for numerical solutions of the C-ED problem in

terms of the streamfunction and concentration for different permeability fields and

investigated how spacial variations (or heterogeneity) of the permeability fields

affected the SF . The existence of multiple solutions added additional challenges

to the search of numerical solutions others than the trivial solution (called the no-

flow solution). The FEM code was only able to find one solution (the no-flow) for

the problem, and thus, to overcome this, it was necessary to use other techniques
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in conjunction with the FEM, the arclength continuation methodology as a tool

for finding numerical solutions others than the no-flow solution. In Figure 4.2 we

showed a representation of all the solutions found. This technique allowed us to

discover the existence of many branches of solutions dependent of one parameter,

in this case, the Ra. We analysed some of the possible solution scenarios arisen for

different heterogeneous input permeability fields and measured the impact that

the heterogeneity had on the SF by comparing the results with the homogeneous

case, i.e., considering the permeability constant in all the domain. The value

of that constant was chosen to be the average of the values representing the

heterogeneous permeability field to compare.

Numerical results presented in Chapter 4 showed that the magnitude of the

local values in the permeability field is not as important as the existence of

interconnected regions with similar permeability value. These interconnected

regions which cross the problem domain from one edge to the other, even if they

are either narrow or regions with low permeability values, provoke directly the

changes on the magnitude of the resulting surface flux.

Further work can be done along this line of research by investigating if these

bifurcation scenarios found for low values of Ra (Ra=60 and Ra=100) are re-

peated again for larger values of Ra, i.e., attempting to reproduce the bifurcation

diagrams presented in Ward et al. (2014).

5.3 Gaussian process emulation for UQ

One of the goals of this thesis has been to quantify the uncertainty on the

CO2 dissolution flux that goes into the brine during CO2 geological storage

induced by the uncertainty on the permeability fields. For that purpose, a fi-

nite element computer simulator of two-dimensional convection in a finite-depth

porous medium was developed and described in Chapter 4. The uncertain input

permeability field for this simulator was modelled as a log Gaussian random field.

We examined the C-ED process by looking at the expected distribution of the dis-

solution flux. In this model the uncertainty in the permeability is propagated to
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the solution of the system of PDEs modelling the process, and thus makes us un-

certain about the expected dissolution flux. The proven impracticability (it took

us approximately 14 full days to run 1000 times the C-ED simulator described

in Chapter 4) of the MC method for computing the expected distribution of the

dissolution flux led us to search for an alternative methodology, namely, Gaussian

process emulation. This alternative method for doing UQ, based around the use

of emulators (sometimes known as meta models), was proven to be a cheap and

efficient statistical surrogate for the CE-D simulator model. The emulator offered

the possibility of being run as many times as necessary in order to perform any

analysis we were interested in doing with the simulator, for instance UQ.

Before building the GP emulator for the C-ED model, we showed how to

build a GP emulator for a simpler model, the groundwater flow model, and

demonstrated that accurate UQ can be carried out at considerably reduced cost

compared to the Monte Carlo analysis. To build the emulator we used Gaussian

process regression methodologies consisting in establishing a prior specification of

the functional form of the model which was updated in the light of data provided

(the observed values). This prior specification for the GP emulator consists in

providing the model with a mean and covariance structure and a set of observed

values for some given inputs. In this thesis we have used a mean-zero function

and four different covariance structures, namely, SE, Matérn 3

2

, Matérn 5

2

, and

RQ. To test the performance of our GP emulator as statistical surrogate of the

groundwater flow model simulator, we used the GP emulator to estimate the

average travel time of a convected particle in the same way we did with MC,

this time reporting the emulator’s predictions in terms of 95% CI. These results

were showed in Figure 3.7 where a general picture of the convergence of the MC

method for various tolerances was given, as well as the corresponding estimations

of the average travel time for the four prior specifications discussed above. All

the predictions given by the emulator were within the RMSE bars, and therefore

we concluded that the GP performance was satisfactory.

Once the emulation technique was satisfactorily applied to the groundwater

flow model described in Chapter 2, we built the same GP emulator for the C-ED

process. Figure 4.26(a) showed that an emulator built only upon GP regres-

sion was not enough to produce satisfactory results as it was unable to predict



Chapter 5. Conclusions and further work 143

the model bifurcation adequately. Thus, it was necessary to extend the previ-

ous methodology to the use of GP classification in addition to GP regression.

Figure 4.26(b) shows the improvement and how the new emulator, built now by

using jointly GP regression and classification, was able to predict the uncertainty

around the bifurcation.

Further work can be done in terms of reducing the uncertainty provided by

the GP emulator presented in this thesis by trying with different prior model,

likelihood function or inference methods. These alternatives are gathered in Ras-

mussen and Williams (2006).

One of the main challenges of using GP emulators found during this thesis

was to estimate correctly the hyperparameters. For high dimensional hyperpa-

rameters (around 20 KL coefficients retained) the GPML optimizer routine used

to estimate the value of the hyperparameters did not perform well and made the

GP emulator to give bad estimations of the quantity of interest. In this thesis, it

was not necessary to employ more that 18 KL coefficients to build a satisfactory

GP emulator but it is convenient to have this fact in mind when dealing with

other models or quantities of interest that may require further refinement of the

model parameters.

It is also worth to mention that our GP emulator once it had reached a

certain level of accuracy with respect to the observed values it did not improve

performance when increasing the number of design points used, i.e., the number

of observed values considered in the training set. Normally, the performance kept

improving along with the number of design points used in the training set until

a certain number, normally, between 30 and 50 design points, after this number,

the model did not improve performance in terms of the MSE when compared

with a set of observed values (see Figure 2.12). This could indicate that there is

not much variation on the observed values for the inputs given, and that a small

number of points is enough to infer the pattern of the rest of the points for this

model. Said that, it could be useful for other models, which may need a higher

number of design points, to use alternative schemes for building the training set,

for instance, the Latin Hypercube Sampling (McKay et al., 1979) described by

Pebesma and Heuvelink (1999).

Other technique that we did not have time to investigate in this thesis, and
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may reduce considerably the computational cost of the GP emulators, is the

extension of the concept of multilevel techniques to the GP emulator, i.e., attempt

to build a multilevel GP emulator for the models presented in this thesis. This

approaches were discussed in Cumming and Goldstein (2009) for instance.

A novel methodology, based upon the use of GP emulation and singular value

decomposition algorithms, for predicting field outputs (like pressure, concentra-

tion or streamfunction fields for instance) instead of scalar outputs (like travel

time or surface flux) for a given model was also introduced in Chapters 2 and

4. An experiment was conducted to investigate which of the two methods, direct

scalar emulation or field emulation, was more efficient. The experiment consisted

in computing the quantity of interest with both approaches and compare the

resulting quantities with those given by the simulator. Numerical calculations

showed that direct scalar emulation produce a lower MSE when compared with

true observed solutions. Besides this method was proven to be less efficient than

direct scalar emulation in terms of computing average values of the solutions, it

offers an invaluable tool to recover, through the prediction of the output field for

a given input, the physical meaning of the process which direct emulation cannot

provide. Along this latter, a possible and challenging line of future research arises

on the investigation of the extension of this methodology to three dimensional

computationally complex models.



Abbreviations

ARD Automatic relevance determination

C-ED convectively-enhanced dissolution

CDF cumulative distribution function

CI confidence interval

CCS Carbon capture and storage

CO2 Carbon dioxide

CV cross validation

DS Dawid score

ECDF empirical cumulative distribution function

FE finite element

FEM finite element method

FV finite volume

GP Gaussian process

GPML Gaussian process for machine learning (code)
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KL Karhunen-Loéve

LHS Latin hypercube sampling

LOO-CV leave one out-cross validation

MSE mean squared error

MC Monte Carlo

MLMC multilevel Monte Carlo

QMC quasi Monte Carlo

MLQMC multilevel quasi Monte Carlo

NLML negative log marginal likelihood

PCA principal components analysis

PDE partial differential equation

PDF probability density function

RF random field

RQ rational quadratic

RMSE root mean squared error

SE squared exponential

SVD singular value decomposition

UA uncertainty analysis

UQ uncertainty quantification



Symbols and notation

Matrices are capitalized and vectors are in bold type. A subscript asterisk, such

as in x∗ or X∗, indicates reference to a test set quantity.

Symbol Meaning

|A| determinant of matrix A

||x||2 Euclidean norm of vector x, i.e. (
∑

i x
2
i )

1/2

||x− x′||2 Euclidean distance between two points x and x′, i.e.

(
∑

i(xi − x′
i)
2)

1/2

x⊺ the transpose of vector x

∼ distributed according to; example x ∼ N(m, σ2)

∇ gradient or partial derivatives

α order of convergence for the MC method

αs value for the 100αs percentile, pαs
, s.t. F (pαs

) = αs

b thickness of a layer of rock

β order of convergence of the variance of Yℓ

βtol tolerance for KL decomposition truncation error

βc volumetric expansion coefficient

βT transverse dispersion length

βL longitudinal dispersion length

c covariance function in KL decomposition

C concentration

C covariance matrix in KL decomposition

Cij components of the covariance matrix in KL decomposi-

tion
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cosh hyperbolic cosine

cov covariance of the noisy observations y

cov(f∗) Gaussian process posterior covariance

Cε computational ε-cost for a RMSE of e(T̂M) ≤ ε

Cℓ cost of a single sample of Yℓ

C(T
(i)
M ) cost to compute one sample T

(i)
M

C(T̂MC
M,N) cost of MC estimator

C0 concentration at top boundary and characteristic unit

for C

Cj concentration field j

C̃j reduced rank approximation of concentration field Cj

C∗ emulated concentration field

d number of training cases or design points

d∗ number of test cases

D dimension of input space (or dimension of design points).

Also referred to the model domain in Chapters 2 and 4.

Also referred to the matrix of singular values in the SVD

method

D∗ reduced rank approximation od matrix D

Da Damköler number

D dispersion tensor

D0 characteristic unit for D

D training set

D matrix form of the training set

δij Kronecker delta, δij = 1 iff i = j and 0 otherwise

E relative error in the truncation of the KL decomposition

ez unitary vector (ordinate axis)

E expectation

e(T̂M) RMSE of T̂M

F set of events (σ-algebra)

f(·) simulator

f̂ emulator mean posterior

f(x) GP latent function values

f(x)|D general GP posterior, prior updated in the light of D

f Gaussian vector of latent function values,

f = (f(x1), ..., f(xn))
⊺

f∗ Gaussian posterior distribution of the predictions at test

locations
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f∗|X,y,X∗ conditional posterior distribution for test inputs X∗

f(i) random functions (samples) from posterior distribution

f̄∗ Gaussian posterior prediction for a single test point

f̄∗ Gaussian posterior distribution mean

F CDF of a random variable

F̂ ECDF of a random sample

G probability distribution of the random input variable

γ order of convergence of one sample T
(i)
M

γc reaction rate

g acceleration due to gravity

gs source terms

GP Gaussian process: f ∼ GP (m(x), k(x,x′)), the function

f is distributed as a Gaussian process with mean func-

tion m(x) and covariance function k(x,x′)

h hydraulic head

H depth of the model domain D in Chapter 2 and half of

depth of the domain D in Chapter 4

HM number of terms after truncating the KL decomposition

I Indicator function or unit (identity) tensor

J Fickian mass flux

Jx first component of J

Jz second component of J

K parameter permeability

K0 characteristic unit for K

K discrete log-Gaussian permeability field

K̄j homogeneous permeability field with constant values

equal to the averaged value of the discrete log-Gaussian

permeability field Kj

k(x,x′) prior covariance function evaluated at x and x′

kD the posterior covariance function of the Gaussian process

kSE squared exponential covariance function

k 3

2

Matérn class 3/2 covariance function

k 5

2

Matérn class 5/2 covariance function

kRQ rational quadratic covariance function

L length of the domain Ω

L left singular matrix in the SVD method

L∗ reduced rank approximation od matrix L
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LF number of realisations for obtaining any inference about

F (·)
L aspect ratio

log natural logarithm (base e)

ℓ characteristic length scale

ℓ d-dimensional characteristic length scale

ℓi ith component of ℓ

λ isotropic length scale in the correlation function for the

KL decomposition

λi eigenvalues in covariance eigen-decomposition

Λ matrix of eigenvalues in covariance eigen-decomposition

M number of points of a computational domain

M ARD diagonal matrix of length scales

Mℓ grid at level ℓ

Mass integral of the concentration in the domain D

m(x) the prior mean function of the Gaussian process

mD the posterior mean function of the Gaussian process

mj predicted expected value

m∗
(i) the posterior mean function for each random function

f(i)

m mean vector in KL decomposition, E[Z]

µ fluid viscosity

µ mean vector for the Normal distribution

µi ith component of vector µ, µi = m(xi)

N number of samples

N(µ,Σ) Gaussian (Normal) distribution with mean vector µ and

covariance matrix Σ

N the natural numbers

Nℓ number of samples at level ℓ

⊗ tensor product operator

Ω sample space, set of all outcomes for a given experiment

ΩM computational domain, set of nodes
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P probability measure

p probability

P fluid pressure

Pin pressure at left boundary

Pout pressure at right boundary

Pj pressure field j

P̃j reduced rank approximation of pressure field Pj

P ∗ emulated pressure field

φ rock porosity

φi eigenvector i in covariance eigen-decomposition

Φ matrix of eigenvectors in covariance eigen-

decomposition

Ψ streamfunction

Ψj streamfunction field j

Ψ̃j reduced rank approximation of streamfunction field Ψj

Ψ∗ emulated streamfunction field

π(·) class probability function

q Darcy’s flux

R right singular matrix in the SVD method

R∗ reduced rank approximation od matrix R

Ra Rayleigh number

R the set of real numbers

ρ fluid density

RE relative error

s2j variance of the predicted expected value

σ2 variance in the correlation function for the KL decom-

position

σ2
d design points variance

σ2
f signal variance

σ2
n noise variance

Σ(X,X) d× d covariance matrix

Σ(X,X∗) d×d∗ covariance matrix between training and test cases

Σ prior covariance matrix of a GP

Σij entries of the matrix Σ, Σij = k(xi,xj)

SF surface flux

SFo surface flux value for no-flow solution

SFj surface flux value for permeability field Kj, f(Kj)
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θ general vector of hyperparameters

θSE vector of hyperparameters for SE covariance function

θMatern vector of hyperparameters for Matern covariance func-

tion

θRQ vector of hyperparameters for RQ covariance function

tj column j of matrix R⊺

∗

τi observed travel time for permeability field Ki, f(Ki)

τ ∗i predicted travel time for permeability field Ki, f̂(ξi)

T (inaccesible) random variable

T̂M general estimator of E(TM)

T̂MC
M,N MC estimator

T
(i)
M ith sample of TM

TM functional of XM , f(XM)

TMℓ
functional of XMℓ, f(XMℓ

)

T
(i)
Mℓ

functional of sample i at level Mℓ, f(X
(i)
Mℓ

)

T̂ML
M general multilevel estimator

T̂MLMC
M,{Nℓ} multilevel estimator for the MC level estimator with Nℓ

samples

T̂QMC
M,N QMC estimator for E[TM ]

T̂MLQMC
M,{Nℓ} MLQMC estimator for the QMC level estimator with

Nℓ samples

TMC estimated averaged travel time with the MC method

TMLMC estimated averaged travel time with the MLMC method

TQMC estimated averaged travel time with the QMC method

TMLQMC estimated averaged travel time with the MLQMC

method

TSE
GP averaged travel time prediction with SE covariance

function

T
3/2
GP averaged travel time prediction with Matérn 3

2

covari-

ance function

T
5/2
GP averaged travel time prediction with Matérn 5

2

covari-

ance function

TRQ
GP averaged travel time prediction with RQ covariance

function

TOL tolerance for optimum number of eigenvector in the re-

duced rank approximation
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U uniform random variable

u Darcy’s velocity

ux and uz velocity in the x and z directions

V variance of a random variable

ω(i) realisation for sample i

ξi independent and identically distributed (i.i.d.) random

variables N(0, 1) (or KL coefficients)

ξi design point i

ξ∗i test input i for the emulator

X D × d matrix of the training inputs {xi}di=1, the design

matrix

X∗ matrix of test inputs

xi the ith training input

x∗i the ith test input

XM random vector that takes values in R
M

XMℓ
random vector at grid Mℓ

y noisy observations

y|x and p(y|x) conditional random variable y given x and its probability

(density)

Y M ×n matrix of observed fields used for field emulation

Ỹ row centered version of matrix Y

ỹj column j of matrix Ỹ

ỹ∗
j reduced rank approximation of ỹj

Yℓ corrections at level ℓ, Yℓ= TMℓ
- TMℓ−1

Ŷℓ estimator for the corrections E[Yℓ]

Ŷ MC
ℓ,Nℓ

MC estimator for the corrections at level ℓ with Nℓ sam-

ples

Ŷ QMC
ℓ,Nℓ

QMC estimator for E[Yℓ]

0 vector of all 0’s

z(t) position of a particle at time t

Z(x, ω) realisation of a random field
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