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MDP ALGORITHMS FOR WEALTH ALLOCATION PROBLEMS WITH DE-

FAULTABLE BONDS

Iker Perez, David Hodge and Huiling Le

University of Nottingham

Abstract

This paper is concerned with analysing optimal wealth allocation techniques within a

defaultable financial market similar to Bielecki and Jang (2007). It studies a portfolio

optimization problem combining a continuous-time jump market and a defaultable security;

and presents numerical solutions through the conversion into a Markov decision process

and characterization of its value function as a unique fixed point to a contracting operator.

This work analyses allocation strategies under several families of utilities functions, and

highlights significant portfolio selection differences with previously reported results.
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1. Introduction

Let T be a finite time horizon and denote by X = (Xt)t≥0 a continuous-time stochastic process

defined on a filtered probability space (Ω,F , {Ft}t≥0,P). Assume that X describes the evolution of a

wealth process dependent on an allocation strategy or policy, taking values on a set Π. This paper is

concerned with the study of a variation of a portfolio optimization problem of the form

V (t, x) = sup
π∈Π

E[U(Xπ
T )|Xπ

t = x] , (1)

for all (t, x) ∈ [0, T ] × R+. Here, the supremum is taken over all admissible policies in Π and function

U is the utility determining a certain performance criterion.

Research within the field of portfolio optimization was triggered during the late 60s with the work of

Merton [16], who made use of stochastic control techniques to maximize expected discounted utilities
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of consumption. Later, his work was extended to different default-free frameworks where market

uncertainty was mainly modelled by continuous processes with Brownian components, such work includes

those of Fleming and Pang [11], Karatzas and Shreve [13] and Pham [17], among others. In the last

decade, however, it is the optimal investment linked to defaultable claims that has attracted major

attention. High yield corporate bonds offer attractive risk-return profiles and have become popular in

comparison to stocks or default-free bonds; recent work in this area includes those of Bielecki and Jang

[6], Bo et. al. [8], Lakner and Liang [15] and Capponi and Figueroa-Lopez [9].

Bielecki and Jang [6] first considered a market including a defaultable bond, a risk-free account and

a stock driven by Brownian dynamics, and analysed optimal asset allocations for a variation of problem

(1) with a risk averse CRRA utility, given by

V (t, x, h) = sup
π∈Π

E

[ (Xπ
T )

γ

γ

∣

∣

∣
Xπ

t = x,Ht = h
]

, with 0 < γ < 1,

for all (t, x, h) ∈ [0, T ]×R+ × {0, 1}; here h denotes the current value of a default process H = (Ht)t≥0

that models the state of the defaultable bond under the intensity based approach to credit risk (see

Bielecki and Rutkowski [7]). For this matter, the authors assumed constant parameters governing the

system and default intensity, and derived closed form solutions for the optimal allocations, pointing out

that investments on the defaultable security are only justified under the presence of reasonable interest

premiums. In addition, the results allocated a constant fraction of wealth in the Brownian asset, in a

similar fashion to Merton [16].

Bo et. al. [8] approached a perpetual allocation problem for an investor with logarithmic utility,

considering a defaultable perpetual bond along with a traditional stock and a risk-free account in

a similar manner to Bielecki and Jang [6]. Their work modelled stochastically the intensities and

premium process including a common Brownian factor, and made use of heuristic arguments in order to

postulate the price dynamics of the defaultable bond, instead of arbitrage-free arguments. Their results

established, in the same fashion to that of Bielecki and Jang [6], monotonicity conditions on the optimal

investment on defaultable bonds with respect to the risk premium and recovery of wealth at default.

Lakner and Liang [15] employed duality theory to obtain similar optimal allocation strategies in a 2-

way market, including a continuous-time money market account and a defaultable bond whose prices can

jump; and Capponi and Figueroa-Lopez [9] extended the work in Bielecki and Jang [6] to a defaultable

market with different economical regimes, where a defaultable bond, a money market and a stock are all

dependent on a finite state continuous-time Markov process Y = (Yt)t≥0; in their work they obtained
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the explicit solution to the optimization problem

V (t, x, h; y) = sup
π∈Π

E[U(Xπ
T )|Xπ

t = x,Ht = h, Yt = y]

with logarithmic and risk averse CRRA utilities, for all (t, x, h) ∈ [0, T ]×R+×{0, 1} and market regimes

y ∈ {y1, ...yN}, with N > 0. Their numerical economic analysis highlighted the preference of investors to

buy defaultable bonds when the macroeconomic regimes yields high expected returns and the planning

horizon is large.

Results in the literature do however primarily relate to markets incorporating Brownian-driven assets

and are limited with regards to the choices of utility functions that they provide solutions for. This

work incorporates the presence of a defaultable bond in a finite horizon market with a bank account

and a continuous-time jump asset driven by a piecewise deterministic Markov process as introduced in

Almudevar [1]. In this circumstance, it is possible to build a bridge between a problem formulated

in continuous-time and the theory of discrete-time Markov decision processes (MDPs), reducing the

optimization problem to a discrete-time model by considering an embedded state process. Similar

financial markets, in absence of the defaultable claim, have previously been explored by Kirch and

Runggaldier [14] and Bäuerle and Rieder [2]. Kirch and Runggaldier [14] presented an algorithm for the

evaluation of hedging strategies for European claims, addressing the optimization problem

V (t, x, s) = min
π∈Π

E[l(F (ST )− x−
∫ T

t

πsdSs)|Xπ
t = x, St = s] ,

which aims to minimize the expected value of a convex loss function l of the hedging error of a claim

with payoff F , for all (t, x, s) ∈ [0, T ]×R2
+. Here, S is an asset whose dynamics are driven by a geometric

Poisson process and Xπ is the available capital under π. Strategies in Π are given by units held in the

risky asset at different times.

On the other hand, Bäuerle and Rieder [2] considered the general portfolio utility maximization

problem (1). In their case, the wealth process X reflects the evolution of wealth in a portfolio mixing

a bank account and a generalized family of pure jump models; in addition, utility U is any increasing

concave function. The authors make use of the embedding procedure previously explored by Almudevar

[1] in order to convert the problem into a discrete-time MDP, and offer a proof for the validity of value

iteration and policy improvement algorithms to approximate optimal allocation policies.

This paper makes use of the results on credit risk presented in Bielecki and Rutkowski [7] along

with the theory for MDPs reviewed in Putterman [18] and Bäuerle and Rieder [4]; and extends the

work of Bäuerle and Rieder [2, 3] to the context of defaultable markets explored by Bielecki and Jang,
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Bo et. al., Lakner and Liang, Capponi and Figueroa-Lopez [6, 8, 15, 9] and references therein. By

means of a conversion of the optimization problem into a MDP, its value function is characterized as the

unique fixed point to a dynamic programming operator and optimal wealth allocations are numerically

approximated through value iteration. This enables us to present a computational methodology which

overcomes the need to assume any particular form for the utility function on the above mentioned classic

optimization problems. Furthermore, this provides means of analyzing portfolio strategies incorporating

illiquid markets. Thus, it allows for us to undertake a numerical analysis exploring the dependence of

portfolio selections on the risk premium and different parameters describing the system. In doing so, we

are able to examine extensions of the work in [6, 8, 15, 9] to more general families of logarithmic and

exponential utility functions. The results highlight the nature of the significantly different allocation

procedures under an exponential family of utilities, and the existence of a dependency on optimal

stock allocation to default event, in a model with short selling restrictions. In order for the presented

procedure to hold, default intensities and interest rates are assumed constant in a similar manner to

that in Bielecki and Jang [6]. However, an extension to Markov modulated regimes similar to Capponi

and Figueroa-Lopez [9] is discussed in the closing section.

The paper is organised as follows. Section 2 provides an introduction to the market analysed and

presents the problem of interest. Sections 3 derives the infinitesimal dynamics of the financial products in

the market and characterizes the evolution of the joint wealth process within the optimization problem.

Sections 4 and 5 are concerned with validating a procedure in order to introduce an equivalent MDP

to our optimization problem, and present the main technical results in the paper. Sections 6 and 7 will

provide the proof for our results and justify the use of value iteration techniques in order to approximate

optimal solutions. Finally, Sections 8 and 9 present a numerical analysis and make comments on optimal

portfolio strategies, drawing comparisons with previous results that lead to the key contributions of this

work. In addition, possible extensions of the model and drawbacks of this approach are discussed.

2. Introduction to the Market and Formulation of the Problem

Let (Ω,G,P) denote a complete probability space equipped with a filtration {Gt}t≥0. Here P refers to

the real world (also called historical) probability measure and {Gt}t≥0 is the enlargement of a reference

filtration {Ft}t≥0 denoted Gt = Ft ∨ Ht and satisfying the usual assumptions of completeness and

right continuity; Ht will be introduced later. We consider a frictionless financial market consisting of

a risk-free bank account B = (Bt)0≤t≤T , a pure-jump asset S = (St)0≤t≤T and a defaultable bond
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P = (Pt)0≤t≤T . The dynamics of each of the components of the market are given as follows.

Risk free bank account. Let B0 = 1 and r > 0 denote the market fixed-interest rate. The

deterministic dynamics of B are given by

dBt = rBtdt .

Pure jump asset. Let C = (Ct)0≤t≤T be a compound Poisson process defined on (Ω,G, {Ft}t≥0,P),

given by

Ct =

Nt
∑

n=1

Yn , (2)

where N = (Nt)0≤t≤T denotes a Poisson process with intensity ν > 0 and (Yn)n∈N is a sequence of

independent and identically distributed random variables, with E[Yn] < ∞, Yn ≥ −1 and distribution

γ(dy). Here {Ft}t≥0 is a suitable complete and right-continuous filtration.

Asset S is a piecewise deterministic Markov process (cf. Almudevar [1]) adapted to Ft and is given

by

dSt = St−(µdt+ dCt) ,

where µ is the constant appreciation rate of the asset and S0 > 1. Figure 1 illustrates some sample

realisations of the process S.

Figure 1: Sample realisations of the piecewise deterministic Markov process S, with varying parameters. On

the left hand side ν = 2, T = 10, µ = 0.025; on the right hand side ν = 40, T = 10, µ = 0.05. Jumps Y follow

truncated normal distributions.

Defaultable bond. We consider a tradeable zero coupon bond with face value of one unit and recovery

at default. Let τ > 0 be an exponentially distributed random variable defined on (Ω,G, {Ht}t≥0,P)
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with intensity λP; we make use of the intensity-based approach for modelling credit risk as introduced in

Bielecki and Rutkowski [7] and let the τ model the default time of the bond P . Here Ht = σ(Hs : s ≤ t)

is the filtration generated by the one-jump process Ht = 1{τ≤t}, after completion and regularization on

the right; Ct and Ht, as well as Ft and Ht, are assumed to be independent and λP denotes the hazard

rate of τ , so that the compensated process

dMt = dHt − λPd(t ∧ τ) (3)

with M0 = 0 is a (Gt,P)-martingale, with Gt = Ft ∨ Ht. Lastly, we denote by Z = (Zt)0≤t≤T the

Ft-adapted recovery process of P , i.e. the process determining the wealth recovery upon default.

Then, the time-t price of this defaultable bond P with maturity at T is given by

Pt = BtEQ

[

B−1
T (1−HT ) +

∫ T

t

B−1
u ZudHu

∣

∣

∣
Gt

]

, (4)

where Q is a martingale measure equivalent to P. Intuitively, Pt models the discounted Q-expected

value of the pay-off (1 −HT ) +HTZτ . The existence of such an equivalent measure on (Ω,G) follows

from the results on change of measures presented in Bielecki and Rutkowski [7] (Chapter 4).

Consider now an investor wishing to invest in this market. Denote by πB
t the percentage of total

wealth at time t invested on the risk-less bond; analogously πS
t and πP

t denote the time-t proportions on

the asset and defaultable bond. The portfolio process π = (πB
t , πS

t , π
P
t )0≤t≤T is a Gt-predictable process

taking values in

U = {(u1, u2, u3) ∈ R3
+ :

3
∑

i=1

ui = 1} , (5)

so that short selling is not allowed and wealth is fully invested at all times and remains positive; in

addition, note that πP
t = 0 for t > τ is a must.

Denote by Xπ = (Xπ
t )0≤t≤T the wealth process associated to a strategy π ∈ U ; its infinitesimal

dynamics and explicit form are derived later. Also, let Π denote the family of all measurable portfolio

processes π taking values in U . In view of (1), for a given increasing and concave utility function

U : (0,∞) → R+, let

Vπ(t, x, h) = Et,x,h[U(Xπ
T )] (6)

denote the expected terminal reward associated to a portfolio strategy π ∈ Π, at time t and with values

Xπ
t = x and Ht = h. Here, Et,x,h denotes the expectation under the conditional probability measure

P|(Xπ
t
=x,Ht=h). This paper is concerned with identifying the optimal policy π∗ ∈ Π maximizing rewards
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(6), so that

Vπ∗(t, x, h) = sup
π∈Π

Vπ(t, x, h) , (7)

for all (t, x, h) ∈ [0, T ] × R+ × {0, 1}. Note that Vπ∗(T, x, h) = U(x) for all (x, h) ∈ R+ × {0, 1} and

problem Vπ∗ is tractable since E[Yn] < ∞.

3. The P-Dynamics of the Defaultable Bond and Wealth Evolution

Following the results in Bielecki and Rutkowski [7] (Section 4.4) and Jeanblanc et. al. [12] (Section

8.6), let η = η(τ) = φe−λP(φ−1)τ be a random variable satisfying η > 0 and EP[η] = 1, where φ is a

strictly positive constant. Then, the change of measure with Radon-Nikodým density process

ηt =
dQ

dP

∣

∣

∣

Gt

= EP[η(τ)|Gt] = EP[η(τ)|Ht] , (8)

is such that τ is an exponentially distributed random variable under Q, with intensity λQ = φλP. In

practice, default intensities are independently estimated, using credit ratings and company data for the

real world intensity λP and derivatives prices (including CDS and Options) for λQ; their underlying ratio

φ is named the ‘Risk Premium’ and represents the reward investors claim for bearing the risk of default

in P .

Proposition 1. The stochastic process ηt defined by (8) is a (Gt,P)-martingale with η0 = 1 and

dηt = ηt−(φ− 1)dMt ,

where Mt is defined by (3).

Proof. Expanding the conditional expectation in (8) we get

ηt = EP[η(τ)|Ht] = Htφe
−λP(φ−1)τ + (1−Ht)

∫ ∞

t

φe−λP(φ−1)xλPe
−λP(x−t)dx

= Htφe
−λP(φ−1)τ + (1−Ht)e

−λP(φ−1)t = φHte−λP(φ−1)(τ∧t) .

Then, direct application of Itô’s formula for non-continuous semi-martingales to ηt yields

dηt = ηt−(φ− 1)[dHt − (1−Ht)λPdt]

= ηt−(φ− 1)[dHt − λPd(t ∧ τ)]

proving the result.
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In order to obtain the P-dynamics of P defined by (4) we make use of the models for valuation of

contingent claims subject to default risk in Duffie and Singleton [10]. We first define the concept of a

gain process; we denote by G = (Gt)0≤t≤T the wealth gain process resulting from holding one defaultable

bond P , given by

dGt = dPt + ZtdHt , (9)

with G0 = P0. Note that P and G differ in the sense that G incorporates the wealth recovered in case

of default in P , so that Gt = Zτ for t ≥ τ . In addition, we make the following assumption.

Assumption 1. (Recovery of Market.) The wealth recovery upon default in P is given by a fraction of

its current market value, i.e. Zt = (1− L)Pt− for all t < T , with 0 ≤ L ≤ 1 constant.

Lemma 1. The price dynamics of the defaultable bond P in (4), under Assumption 1 and real world

probability measure P, are given by

dPt =











Pt− [(r + φλPL)dt− dHt] if t ≤ T ∧ τ,

0 if τ < t ≤ T,

(10)

with P0 = e−(r+φλPL)T .

Proof. The derivation of these equations follows from the application of Theorem 1 in Duffie and

Singleton [10]. We use arbitrage-free arguments to obtain a pricing expression for Pt; the key observation

is that its future expected gain G in (9), up to time τ ∧ T , must match the attainable risk-less reward

under measure Q. That is, the discounted gain e−rtGt, given by

e−rtGt = e−rtPt + (1− L)

∫ t

0

e−rsPs−dHs (11)

for t ∈ [0, τ ∧ T ], must be a Q-martingale. Noting that P(τ = T ) = 0 a.s., we may assume that default

does not occur at maturity time. Recall from (4) that P is discontinuous only at the default time and

that Pt = 0 for t ≥ τ , we may denote Pt = (1−Ht)Ut, where Ut is a continuous process. Plugging this

expression for P into (11) above and applying Itô’s formula we obtain

d(e−rtGt) = e−rt
[

(1−Ht−)dUt − r(1−Ht−)Ut−dt− LUt−dHt

]

for t ∈ [0, τ ∧ T ]. It is possible to rewrite the above equation in terms of a compensated jump process

through the inclusion and subsequent subtraction of a compensator in the jump differential term dHt,

so that

d(e−rtGt) = e−rt
[

(1−Ht−)(dUt − (r + λQL)Ut−dt)− LUt−dM
Q
t

]

,
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where

dMQ
t = dHt − λQd(t ∧ τ)

with MQ
0 = 0 is a (Gt,Q)-martingale. Therefore, for e−rtGt to be a Q-martingale the following must

hold

dUt = (r + φλPL)Utdt ,

since we recall that λQ = φλP. Finally, note that dPt = dUt −Ut−dHt and Pt = Ut for t < τ , the result

follows.

We note that the price of P in (10) drops to zero at default; however, for portfolio optimization

purposes we must account for the gain derived from its recovery value, so that we consider the P-

dynamics of the gain process G = (Gt)0≤t≤T in (9) for this purpose. We observe in (10) that the

dynamics of G are determined by

dGt = Gt− [(r + φλPL)dt− LdHt] for t ≤ T ∧ τ, and

dGt = 0 for τ < t ≤ T ,

with G0 = P0. Thus, the time-t infinitesimal gain of a wealth process associated to a strategy π ∈ U ,
denoted by Xπ = (Xπ

t )0≤t≤T in (6), is given by

dXπ
t = Xπ

t− ·
[

(1− πP
t − πS

t )
dBt

Bt

+ πS
t

dSt

St−
+ πP

t

dGt

Gt−

]

.

The explicit form of X is derived using Itô calculus and is given by

Xπ
t = X0e

∫
t

0
(r+πS

s
(µ−r)+πP

s
φλPL)ds(1− πP

τ L)
Ht

Nt
∏

n=1

(1 + πS
Tn

Yn) , (12)

where X0 stands for the initial wealth.

4. A Discrete-Time Markov Decision Process

We follow a similar approach to that in Bäuerle and Rieder [2, 3] in order to first reduce problem

(7) to a discrete-time MDP. This will allow for Vπ∗ to be computationally identified as the unique fixed

point to a maximal reward operator.

Let Ψ = (Ψn)n≥0 denote the increasing sequence of joint jump times in N and H, given by

Ψn = Tn1{Tn<τ} + τ1{Tn−1<τ<Tn} + Tn−11{τ<Tn−1} , (13)
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with Ψ0 = 0. Intuitively, Ψ represents an ordered discrete counting process incorporating default time

τ to jump times (Tn)n≥0 in asset S. In addition, we refer to the counting steps n ≥ 0 of Ψ as decision

epochs. We define the MDP composed by the following 4-tuple (E,A, Q,R), an explanatory diagram is

presented in Figure 2.

Figure 2: Explanatory diagram of the structure of the MDP (E,A, Q,R); variables Ξn and Ξn+1 refer to the

states of the system at epochs n and n+ 1 subsequently. We observe that each decision epoch n takes place at

time Ψn.

The state space E is given by E = [0, T ]×R+×{0, 1} and supports times Ψn, with associated wealth

XΨn
and states of default process HΨn

, immediately after each jump. We use the notation Ξn to denote

the n-th state of the system, given by

Ξn =











(Ψn, XΨn
, HΨn

) ∈ E if Ψn ≤ T ,

∆ otherwise ,

for n ≥ 0. ∆ /∈ E is an external absorption state and allows for us to set up an infinite horizon

optimization problem as described in Putterman [18] and Bäuerle and Rieder [4].

The action space A stands for the set of deterministic control actions

A = {α : R+ → U measurable} , (14)

where U is given by (5). A control α ∈ A is a function of time and α(t) ∈ U determines the allocation

of wealth at time t after a jump in Ψ. We note that for a given state Ξn ∈ E ∪ {∆} only a subclass of

actions Dn(Ξn) ⊆ A may be admissible (for example, if bond P defaulted).

In addition to A, we denote by F the set of all deterministic policies or decision rules given by

F = {f : E ∪ {∆} → A measurable} . (15)
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At any decision epoch n, a policy fn ∈ F maps a state Ξn to an admissible control action in Dn(Ξn);

we denote the resulting control by fΞn

n . The policy determines, as a function of the system state, the

control chosen at epoch n. This, therefore results in a function fΞn

n : R+ → U that models the time

evolving allocation of wealth in our portfolio π, so that

πt = fΞn

n (t−Ψn) for t ∈ [Ψn,Ψn+1) . (16)

A portfolio process π ∈ Π is called a Markov portfolio strategy if it is defined by a Markov policy, i.e.

a sequence of functions (fn)n≥0 with fn ∈ F . If policies fn ≡ f for all n ≥ 0, the Markov policy is

called stationary, implying that decisions are independent of the epoch number and only dependent on

the system state. Figure 3 illustrates the characterization of such a Markovian portfolio strategy in a

diagram. It is key to note that for a specified Markov policy, the controls to take at each epoch are

random, since they depend on the system states to be observed.

Figure 3: Characterization of a Markovian portfolio strategy π ∈ Π defined by a Markov policy (fn)n≥0, with

fn ∈ F .

The transition probability Q. For current state Ξn ∈ E and control fΞn

n ∈ Dn(Ξn), the transition

probability describes the probability for the system to adopt a specific state in epoch n + 1 (or time

Ψn+1). Let fΞn

n (t) = (αB
t , α

S
t , α

P
t ) ∈ U denote the proportions of wealth allocated to each financial

instrument at t time units after jump time Ψn, according to control fΞn

n ; we note from (16) that this is

equivalent to the global portfolio wealth allocation πt+Ψn
at time t+Ψn. Analogously, let Γ

fΞn
n

t denote

the associated wealth at t time units after Ψn; this is equivalent to the global wealth Xπ
t+Ψn

at time

t+Ψn. Note from (12) that Γ
fΞn
n

t is a deterministic function of the last system state, given by

Γ
fΞn
n

t (XΨn
, HΨn

) = XΨn
e
∫

t

0
(r+αS

s
(µ−r))ds[HΨn

+ (1−HΨn
)e

∫
t

0
αP

s
λPLφds] . (17)

For an arbitrary Ξn = (t′, x, h), Lemma 7 in the Appendix shows that the transition probability Q is
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given by

Q(B|Ξn, f
Ξn

n ) = P(Ξn+1 ∈ B|GΨn
, fΞn

n )

= ν

∫ T−t′

0

e−(ν+(1−h)λP)s

∫ ∞

−1

1B(t
′ + s,Γ

fΞn
n

s (x, h)(1 + αS
s y), h)γ(dy)ds

+ (1− h)λP

∫ T−t′

0

e−(ν+λP)s1B(t
′ + s,Γ

fΞn
n

s (x, 0)(1− αP
s L), 1)ds , (18)

for B ⊆ E; in addition

Q({∆}|Ξn, f
Ξn

n ) = 1−Q(E|Ξn, f
Ξn

n ) .

Since ∆ is an absorbing state we define Q({∆}|∆, α) = 1 for all controls α ∈ A. Intuitively, formula

(18) gives the probability for the system state at epoch n+1 to fall within a subset B of the state space,

given all information in GΨn
.

The reward function R is a function R : E ×A → R given by

R(t, x, h, α) = e−(ν+(1−h)λP)(T−t)U(Γα
T−t(x, h)) . (19)

The adoption of such a non-negative reward function ensures the reducibility of optimization problem

(7) to an infinite horizon discrete-time Markov decision process, as it will be shown in Lemma 2 below.

We note that the term e−(ν+(1−h)λP)(T−t) defines the likelihood of no jumps in a Poisson process with

rate ν + (1− h)λP over a period of time T − t, this will be a key observation in the proof of Lemma 2.

In addition, we define R(∆, α) = 0 for all α ∈ A.

For an arbitrary state (t, x, h) ∈ E, we let v(t, x, h) denote the optimal total expected reward over all

Markov policies (fn)n≥0 with fn ∈ F , given by

v(t, x, h) = sup
(fn)

Et,x,h

[

∞
∑

k=0

R(Ξk, f
Ξk

k )
]

. (20)

5. Main Results

We now present the result on the equivalence between the portfolio optimization problem (7) and the

MDP(E,A, Q,R).

Lemma 2. For any (t, x, h) ∈ E, we have Vπ∗(t, x, h) = v(t, x, h), where v(t, x, h) is defined by (20).

Proof. We treat the case t = 0. The result at arbitrary time points can be proved similarly upon

redefinition of terminal time T ′ = T−t and adjustment of notation as pointed out in Bäuerle and Rieder
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[4] (Chapter 8). Denote by ΠM the set of all Markovian portfolio strategies and note that ΠM ⊆ Π.

Due to the Markovian structure of the state process the optimal strategy in (7) must be Markovian (cf.

Bertsekas and Shreve [5]), so that

Vπ∗(0, x, h) = sup
π∈Π

Vπ(0, x, h) = sup
π∈ΠM

Ex,h[U(Xπ
T )] ,

i.e. the supremum is attained in the set ΠM . Any π ∈ ΠM is defined by a sequence of decision rules

fn ∈ F forming a Markov policy (fn)n≥0 as described in (16). Therefore, for such a policy we need to

show that

Ex,h[U(Xπ
T )] = Ex,h

[

∞
∑

k=0

R(Ξk, f
Ξk

k )
]

.

For this, we note that

Ex,h[U(Xπ
T )] = Ex,h

[

∞
∑

k=0

U(Xπ
T )1{Ψk≤T<Ψk+1}

]

=
∞
∑

k=0

Ex,h

[

Ex,h

[

U(Xπ
T )1{Ψk≤T<Ψk+1}

∣

∣

∣
GΨk

]]

,

where Ψ is the non-decreasing counting process in (13) incorporating default time in Ht to jump times

in Nt; we recall that these are Gt-adapted processes with exponentially distributed jumps of intensities

λP and ν. In view of (16) and (17) we note that wealth Xπ can be expressed as a deterministic function

of the previous system state, i.e.

Xπ
t = Γ

f
Ξk

k

t−Ψk
(XΨk

, HΨk
) ,

for t ∈ [Ψk,Ψk+1), with Xπ
0 = x. Therefore

Ex,h[U(Xπ
T )] =

∞
∑

k=0

Ex,h

[

Ex,h

[

U(Γ
f
Ξk

k

T−Ψk
(XΨk

, HΨk
))1{Ψk≤T<Ψk+1}

∣

∣

∣
GΨk

]]

=

∞
∑

k=0

Ex,h

[

U(Γ
f
Ξk

k

T−Ψk
(XΨk

, HΨk
))P(Ψk+1 > T ≥ Ψk|GΨk

)
]

.

In addition, we note that

P(Ψk+1 > T ≥ Ψk|GΨk
) = 1{T≥Ψk}P(Ψk+1 > T |GΨk

)

= 1{T≥Ψk}e
−(ν+(1−HΨk

)λP)(T−Ψk) .

Thus,

Ex,h[U(Xπ
T )] =

∞
∑

k=0

Ex,h

[

1{T≥Ψk}e
−(ν+(1−HΨk

)λP)(T−Ψk)U(Γ
f
Ξk

k

T−Ψk
(XΨk

, HΨk
))
]

=

∞
∑

k=0

Ex,h

[

R(Ξk, f
Ξk

k )
]

,
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completing the proof.

It has been shown that value function Vπ∗ in (7) can be derived as the sum of expected rewards v in

(20). In what follows, we make use of the theory of MDPs exposed in Putterman [18] and Bäuerle and

Rieder [4] and present results confirming the usefulness of iterative methods in order to approximate

optimal portfolio strategies for our problem. The efforts are directed towards the construction of a

complete metric space with a reward operator in a similar manner to Bäuerle and Rieder [2, 3], where

Vπ∗ is identified as its fixed point.

Let M(E) define the set of measurable functions mapping the state space E into the positive subset

of the real line, i.e.

M(E) = {g : E → R+ : g measurable} .

We note that the maximal reward operator T for the MDP(E,A, Q,R) is a dynamic programming

operator acting on M(E), such that

(T g)(t, x, h) = sup
α∈A

{

R(t, x, h, α) +
∑

k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, α)
}

,

for all g ∈ M(E) and (t, x, h) ∈ E. Additionally, we denote by (Lg)(t, x, h|α) the term within brackets,

i.e.

(Lg)(t, x, h|α) = R(t, x, h, α) +
∑

k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, α) , (21)

and refer to it as the reward operator, so that

(T g)(t, x, h) = sup
α∈A

(Lg)(t, x, h|α) . (22)

Now, let Cϑ(E) be the function space defined by

Cϑ(E) = {g ∈ M(E) : g continuous and concave in x and ‖g‖ϑ < ∞} , (23)

where

‖g‖ϑ = sup
(t,x,h)∈E

g(t, x, h)

(1 + x)eϑ(T−t)
, (24)

for fixed ϑ ≥ 0 satisfying conditions in Lemma 3 given in the next Section.

Theorem 1. Operator T is a contraction mapping on the metric space (Cϑ(E), ‖ · ‖ϑ).

Theorem 2. There exists an optimal stationary portfolio strategy π∗ ∈ Π, defined by a Markov policy

(f)n≥0 with f ∈ F as shown in (16), so that Vπ∗ in (7) is the unique fixed point of T in Cϑ(E).
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Theorem 2 implies that a single decision rule f : Ξn → A is optimal for all epochs n ≥ 0, and

the control chosen after each jump in Ψ is only dependent on the state of the system Ξ; we note

that this incorporates information on time left to deadline, current wealth and event of default in P .

Moreover, since Vπ∗ is characterized as a unique fixed point to a dynamic programming operator the

use of computational approaches to approximate its value is justified.

6. Proof of Theorem 1

We begin with the presentation of a contraction result for later use. Let Mϑ(E) define the function

space given by

Mϑ(E) = {g ∈ M(E) : ‖g‖ϑ < ∞} ,

where the norm ‖·‖ϑ is as in (24). We note from the theory in Putterman [18] (Chapter 7) that ‖·‖ϑ is a

weighted supremum norm and thus Mw(E) is a Banach space, since every Cauchy sequence of elements

converges to an element in the set.

Lemma 3. For sufficiently large ϑ ∈ R+, ‖T g1 − T g2‖ϑ < ‖g1 − g2‖ϑ, for all g1, g2 ∈ Mϑ(E) .

Proof. For all g1, g2 ∈ Mϑ(E),

(T g1 − T g2)(t, x, h) ≤ sup
α∈A

{(Lg1)(t, x, h|α)− (Lg2)(t, x, h|α)}

= sup
α∈A

{

∑

k

∫

(g1 − g2)(s, y, k)Q(ds, dy, k|t, x, h, α)
}

≤ ‖g1 − g2‖ϑ sup
α∈A

{

∑

k

∫

(1 + y)eϑ(T−s)Q(ds, dy, k|t, x, h, α)
}

.

Denote by I the expression within brackets on the right hand side. In view of (18), it reads

I = ν

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

(1 + Γα
s (x, h)(1 + αSy))eϑ(T−t−s)γ(dy)ds

+ (1− h)λP

∫ T−t

0

e−(ν+λP)s(1 + Γα
s (x, 0)(1− αPL))eϑ(T−t−s)ds .

Note that for all (t, x, h, α) ∈ E ×A we have

1 + Γα
s (x, h) < 1 + xe(2r+µ)t+λPLφ ≤ k(1 + x) ,

for some k ∈ R+. Therefore there exists a constant c ∈ R+ such that

1 + Γα
s (x, h)(1− αPL) ≤ c(1 + x) ,
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and
∫ ∞

−1

(1 + Γα
s (x, 0)(1 + αSy))γ(dy) = 1 + Γα

s (x, 0)(1 + αS ȳ) ≤ c(1 + x) ,

for all x ∈ R+, since ȳ = E[Y ] < ∞. Thus,

I ≤ c(1 + x)eϑ(T−t) ·
{

ν

∫ T−t

0

e−(ν+(1−h)λP+ϑ)sds+ (1− h)λP

∫ T−t

0

e−(ν+λP+ϑ)sds
}

≤ c(1 + x)eϑ(T−t)(1− e−(ϑ+ν+λP)(T−t))
( ν

ν + ϑ
+

λP

ν + λP + ϑ

)

.

We note that there exists a constant ϑ ∈ R+ sufficiently large such that

cϑ = c(1− e−(ϑ+ν+λP)(T−t))
( ν

ν + ϑ
+

λP

ν + λP + ϑ

)

< 1 .

Thus,

‖T g1 − T g2‖ϑ = sup
(t,x,h)∈E

(T g1 − T g2)(t, x, h)

(1 + x)eϑ(T−t)
≤ ‖g1 − g2‖ϑcϑ < ‖g1 − g2‖ϑ ,

completing the proof.

Note that for all (t, x, h, α) ∈ E ×A

R(t, x, h, α) ≤ µ(1 + x)eϑ(T−t) for some µ > 0.

In addition, it follows from the proof of Lemma 3 that

∫

E

(1 + y)eϑ(T−t)Q(dy|t, x, h, α) < (1 + x)eϑ(T−t) .

In view of these properties, (1+ x)eϑ(T−t) is referred to as a bounding function of the MDP(E,A, Q,R)

(cf. Bäuerle and Rieder [4]); this ensures that the optimal total expected reward v in (20) is well-defined,

i.e. v < ∞.

Now, since Cϑ(E) in (23) is a closed subset of Mϑ(E), the contracting property of T in Theorem

1 follows. However, we must provide proof for the concavity of the mapping x 7→ (T g)(t, x, h), along

with the continuity of (t, x, h) 7→ (T g)(t, x, h), so that (T g) ∈ Cϑ(E) for all g ∈ Cϑ(E); here, we do so

separately.

6.1. The Proof of Concavity

Lemma 4. For all g ∈ Cϑ(E), the mapping x 7→ (T g)(t, x, h) is concave.
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Proof. We begin introducing the concept of invested amounts. In view of (17), at t time units after

a last decision epoch in E with wealth x and default state h, a control action α ∈ A with fractions

α(t) ∈ U for all t ≥ 0 yields the wealth amounts a(t) = α(t)Γα
t (x, h). It is therefore possible to define

an alternative convex action space of invested amounts, given by

Ax,h = {a : R+ → R3
+ :

3
∑

i=1

ai(t) = Γα
t (x, h) for some α ∈ A} .

We denote by Γa
t (x, h) the deterministic wealth evolution in time for a control a ∈ Ax,h; in addition, we

refer to controls a and α as being equivalent if Γa
t (x, h) = Γα

t (x, h).

The dynamics of Γa
t (x, h) are expressed in terms of invested amounts and given by

dΓa
t (x, h)

dt
= Γa

t (x, h)r + aSt (µ− r) + (1− h)aPt λPLφ .

This is a first order linear differential equation and its general form solution is given by

Γa
t (x, h) = ert

(

x+

∫ t

0

e−rs[aSt (µ− r) + (1− h)aPt λPLφ]dt
)

,

which is a linear function on (x, a). For an arbitrary fixed t′ ≥ 0 and h ∈ {0, 1}, fix wealths x1, x2 ≥ 0

with x1 6= x2 and set controls α1, α2 ∈ A so that for i ∈ {1, 2}

(T g)(t′, xi, h) = (Lg)(t′, xi, h|αi) ,

where operators L and T are given by (21) and (22) respectively. Now, choose equivalent controls

a1 ∈ Ax1,h and a2 ∈ Ax2,h so that

a1(t) = α1(t)Γ
α1

t (x1, h) and a2(t) = α2(t)Γ
α2

t (x2, h) ,

for t ≥ 0. Fix κ ∈ (0, 1) and let

x3 = κx1 + (1− κ)x2 and a3 = κa1 + (1− κ)a2 .

Note that a3 ∈ Ax3,h since
∑3

i=1 a3,i(0) = x3. Hence,

(T g)(t′, x3, h) = sup
α∈A

(Lg)(t, x3, h|α) = sup
a∈A

(Lg)(t, x3, h|a) ≥ (Lg)(t, x3, h|a3) ,

with

(Lg)(t′, x3, h|a3) = e−(ν+λP(1−h))(T−t′)U(Γa3

T−t′(x3, h))

+ (1− h)λP

∫ T−t′

0

e−(ν+λP)sg(t+ s,Γa3

t′ (x3, h)− LaP3,s, 1)ds

+ ν

∫ T−t′

0

e−(ν+(1−h)λP)s

∫ ∞

−1

g(t+ s,Γa3

t′ (x3, h) + yaS3,s, 1)γ(dy)ds ,
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where aP3,s and aS3,s denote the wealth amounts invested in the defaultable bond P and stock S respec-

tively s ≥ 0 time units after t′, according to control a3 ∈ Ax3,h. We recall that (x, a) 7→ Γa
t (x, h) is a

linear mapping, utility U is a concave function and g is concave on its second argument, so that

(T g)(t′, x3, h) ≥ κ(Lg)(t′, x1, h|a1) + (1− κ)(Lg)(t′, x2, h|a2)

= κ(T g)(t′, x1, h) + (1− κ)(T g)(t′, x2, h),

completing the proof.

6.2. Enlargement of the Action Space

In order to show the continuity of the mapping (t, x, h) 7→ (T g)(t, x, h), we will make use of the

enlargement of the action space A in (14) to the set of randomized controls given by

R = {ρ : R+ → P(U) measurable} ,

where P(U) defines the set of probability measures on the Borel subsets B(U) of the compact set U in

(5). Such an enlargement of the action space is common in these circumstances as seen in Putterman

[18], Bertsekas and Shreve [5] and Bäuerle and Rieder [4], and it will provide us with tools to obtain

the desired result. We note that A ⊆ R, since all deterministic controls are attainable in R through

the adoption of measures with single mass points. Also, we endow R with the Young Topology as

proposed in Bäuerle and Rieder [2, 3]. This is the coarsest topology such that for a sequence of controls

(ρn)n≥1 ⊂ R and fixed control ρ ∈ R, limn→∞ ρn = ρ if and only if

lim
n→∞

∫ T

0

∫

U

g(t, u)ρn,t(du)dt =

∫ T

0

∫

U

g(t, u)ρt(du)dt (25)

for all functions g : [0,∞] × U → R which are measurable in the first argument and continuous in the

second, and satisfy
∫ ∞

0

max
u∈U

|g(t, u)|dt < ∞ . (26)

Under the Young topology, R is a separable, metric and compact Borel space.

As a standard procedure, the functions given by (17) and (18) and defined on the set of deterministic

Markovian controls A need to be extended to R. For ρ ∈ R, we define the infinitesimal wealth dynamics

between jump times in (17) by

dΓρ
t (x, h) =

∫

U

Γρ
t (x, h)[r + uS(µ− r) + (1− h)uPλPLφ]ρt(du)dt ,
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for all (x, h) ∈ R+ × {0, 1}, so that the randomized allocation of wealth is accounted for. We note that

the above wealth evolution can be expressed in terms of a deterministic allocation

Γρ
t (x, h) = Γρ̄

t (x, h) ,

with ρ̄ ∈ A defined by mean-average allocations according to control ρ, i.e ρ̄t =
∫

U
uρt(du). On the

other hand the transition probability Q in (18) extends to

Q(B|t, x, h, ρ) =

ν

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U

1B(t+ s,Γρ
s(x, h)(1 + uSy), h)ρs(du)γ(dy)ds

+ (1− h)λP

∫ T−t

0

e−(ν+λP)s

∫

U

1B(t+ s,Γρ
s(x, 0)(1− uPL), 1)ρs(du)ds , (27)

where we recall γ(·) defines the density distribution of jumps Y in asset S. We note that, by definition,

deterministic controls can perform no better than relaxed ones. Here, we introduce a result showing

that, in fact, deterministic controls in A do perform as well as randomized ones in R.

Lemma 5. For all g ∈ Cϑ(E),

(T g)(t, x, h) = sup
α∈A

(Lg)(t, x, h|α) = sup
ρ∈R

(Lg)(t, x, h|ρ),

for all (t, x, h) ∈ E.

Proof. We recall that A ⊆ R, so that for all g ∈ Cϑ(E)

sup
α∈A

(Lg)(t, x, h|α) ≤ sup
ρ∈R

(Lg)(t, x, h|ρ) ,

for all (t, x, h) ∈ E. In addition, recall that for all ρ ∈ R we have ρ̄ ∈ A, so that the result will follow

from

(Lg)(t, x, h|ρ) ≤ (Lg)(t, x, h|ρ̄) ,

for all ρ ∈ R. Now, note by (19) that R(t, x, h, ρ) = R(t, x, h, ρ̄), since Γρ
t (x, h) = Γρ̄

t (x, h) by definition.

In addition, any function g ∈ Cϑ is concave on its second argument, so that by Jensen’s inequality we

have
∫

U

g(t+ s,Γρ
s(x, h)(1 + uSy), h)ρs(du) ≤ g(t+ s,Γρ

s(x, h)(1 + ρ̄Sy), h) ,

and
∫

U

g(t+ s,Γρ
s(x, 0)(1− uPL), 1)ρs(du) ≤ g(t+ s,Γρ

s(x, 0)(1− ρ̄PL), 1) ,
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for all (t, x, h) ∈ E. Hence,

(Lg)(t, x, h|ρ) = R(t, x, h, ρ) +
∑

k

∫

g(s, y, k)Q(ds, dy, du, k|t, x, h, ρ)

≤ R(t, x, h, ρ̄) +
∑

k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, ρ̄)

= (Lg)(t, x, h|ρ̄) ,

completing the proof.

6.3. The Proof of Continuity

Lemma 6. The mapping (t, x, h) 7→ (T g)(t, x, h) is continuous, for all g ∈ Cϑ(E).

Proof. Note that all sets in {0, 1} are open and therefore it suffices to prove that (t, x) 7→ (T g)(t, x, h)

is continuous. In view of Lemma 5, we can make use of relaxed controls within R, since

(T g)(t, x, h) = sup
ρ∈R

(Lg)(t, x, h|ρ).

We recall that R is a compact Borel space with respect to the Young topology. In view of the definition

of L in (21) the proof follows from the continuity of the mappings E ×R → R given by

(t, x, ρ) 7→ e−(ν+(1−h)λP)(T−t)U(Γρ
T−t(x, h)) = R(t, x, h, ρ) , (28)

and

(t, x, ρ) 7→
∑

k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, ρ) , (29)

for fixed h ∈ {0, 1}. Since utility U is a continuous function and the exponential term in (28) is

continuous in time, continuity of mapping (28) reduces to showing that

(t, x, ρ) 7→ Γρ
T−t(x, h)

is continuous. From the definition of Γ in (17), it is sufficient to show that

∫ t

0

∫

U

uS(µ− r)ρs(du)ds and

∫ t

0

∫

U

uPλPLφρs(du)ds (30)

are continuous in (t, ρ). Following the approach in Bäuerle and Rieder [2] (Prop. 4.3) we provide proof for

the first integral expression in (30), the second is proved in a similar fashion. Let (tn, ρn)n≥1 ⊂ [0, T ]×R
be a sequence with (tn, ρn) → (t, ρ) and, in order to ease notation let ǫn,s and ǫs denote

ǫn,s =

∫

U

uS(µ− r)ρn,s(du) and ǫs =

∫

U

uS(µ− r)ρs(du) .
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Then,

∣

∣

∣

∫ tn

0

ǫn,sds−
∫ t

0

ǫsds
∣

∣

∣
≤

∣

∣

∣

∫ tn

0

ǫn,sds−
∫ t

0

ǫn,sds
∣

∣

∣
+
∣

∣

∣

∫ t

0

ǫn,sds−
∫ t

0

ǫsds
∣

∣

∣

≤ (µ− r)|tn − t|+
∣

∣

∣

∫ t

0

ǫn,sds−
∫ t

0

ǫsds
∣

∣

∣
.

Noting that function u 7→ g(t, u) = g(u) = uS(µ− r) satisfies (26), it follows from the characterization

of convergence in R of (25) that

(µ− r)|tn − t|+
∣

∣

∣

∫ t

0

ǫn,sds−
∫ t

0

ǫsds
∣

∣

∣

n→∞−−−−→ 0 .

We now turn our attention to the mapping (29), we note from the definition of Q in (27) its continuity

follows from that of functions

W1(t, x, ρ) =

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U

g(t+ s,Γρ
s(x, h)(1 + uSy), h)ρs(du)γ(dy)ds (31)

and

W2(t, x, ρ) =

∫ T−t

0

e−(ν+λP)s

∫

U

g(t+ s,Γρ
s(x, 0)(1− uPL), 1)ρs(du)ds , (32)

for a fixed h ∈ {0, 1}. The following procedure proves the continuity of equation (31), that of (32)

is proved in a similar fashion. We begin assuming that g ∈ Cϑ(E) is a bounded function and let

(tn, xn, ρn)n≥0 ⊂ [0, T ] × R+ ×R be a sequence with (tn, xn, ρn) → (t, x, ρ). In order to ease notation

let g′n and g′ denote functions defined by

g′n(s, u) = g(tn + s,Γρn

s (xn, h)(1 + uSy), h) and g′(s, u) = g(t+ s,Γρ
s(x, h)(1 + uSy), h) .

Then

|W1(tn, xn, ρn)−W1(t, x, ρ)|

≤
∣

∣

∣

∫ T−tn

T−t

e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U

g′n(s, u)ρn,s(du)γ(dy)ds
∣

∣

∣

+

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U

|g′n(s, u)− g′(s, u)|ρn,s(du)γ(dy)ds

+
∣

∣

∣

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U

g′(s, u)(ρn,s(du)− ρs(du))γ(dy)ds
∣

∣

∣
.

Since g is a bounded function, the first term converges to 0 as n → ∞. By the dominated convergence

Theorem and the continuity of Γ and g, the second term also converges to 0 as n → ∞. Finally, the

third term converges to 0 due to the characterization of convergence in R in (25).
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Now, we recall from (24) that for each g ∈ Cϑ there exists some constant cg ∈ R+ satisfying g(t, x, h) ≤
cg(1+x)eϑ(T−t). Let w(t, x, h) = g(t, x, h)− cg(1+x)eϑ(T−t) define a negative and continuous function.

Then, there exists (cf. Bertsekas and Shreve [5], Lemma 7.14) a decreasing sequence of bounded functions

(wn)n≥1 with wn → w pointwisely. Therefore

W ′
n(t, x, ρ) =

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

∫

U

wn(t+ s,Γρ
s(x, h)(1 + uSy), h)ρs(du)γ(dy)ds

defines a bounded and decreasing sequence of continuous functions with

W ′
n(t, x, ρ) → (33)

W1(t, x, ρ)− cg

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

(1 + Γρ
s(x, h)(1 + ρ̄Ss y))e

ϑ(T−t)γ(dy)ds .

as n → ∞. Since the pointwise limit of non-increasing sequences of continuous functions is upper

semicontinuous, it follows that the function on the right hand side of (33) is upper semicontinuous. In

addition, the term

cg

∫ T−t

0

e−(ν+(1−h)λP)s

∫ ∞

−1

(1 + Γρ
s(x, h)(1 + ρ̄Ss y))e

ϑ(T−t)γ(dy)ds

is continuous. Therefore W1 is upper semicontinuous. Taking w(t, x, h) = −g(t, x, h) + cg(1 + x)eϑ(T−t)

lower semicontinuity of W1 is achieved, proving the result on continuity for W1 and completing the

proof.

7. Proof of Theorem 2

We recall from Lemma 2 that the value of the original portfolio optimization problem (7) can be

derived as the sum of expected rewards v in (20). Theorem 2 implies that, in addition, the value

function Vπ∗ is characterized as a unique fixed point to a dynamic programming operator, so that the

use of computational methods to approximate its value is justified. The main line of the proof is directed

towards the use of Theorem 7.3.5 in Bäuerle and Rieder [4].

Proof. Proof of Theorem 2. We recall that the MDP(E,A, Q,R) is contracting and it holds that

v = Vπ∗ . In addition, the Banach space Cϑ(E) is a closed subset of Mϑ(E) satisfying

i) 0 ∈ Cϑ(E),

ii) T : Cϑ(E) → Cϑ(E).
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Thus, according to the Theorem 7.3.5 in Bäuerle and Rieder [4], the proof would follow from the

existence, for all g ∈ Cϑ(E), of a deterministic policy f ∈ F such that T g = Tfg, where

(Tfg)(t, x, h) = R(t, x, h, f (t,x,h)) +
∑

k

∫

g(s, y, k)Q(ds, dy, k|t, x, h, f (t,x,h)) ,

for all (t, x, h) ∈ E.

It is known from a result in Bertsekas and Shreve [5] (Chapter 7) that there exists a randomized

policy f : E → R such that T g = Tfg for all functions g ∈ Cϑ(E). Then, from Lemma 5 we see that

the deterministic policy f̄ : E 7→ A, given by

f̄ (t,x,h)
s =

∫

U

uf (t,x,h)
s (du) ∈ U

for all (t, x, h) ∈ E, is measurable and satisfies T g = Tf̄g, therefore completing the proof.

8. Numerical Analysis

Making use of the main results obtained in Section 5, we now present and analyse computational

results to our discrete-time infinite-horizon optimization problem (E,A, Q,R) defined in (13)-(20), for

different measures of risk aversion. Numerical approximations to optimal allocation strategies π∗ ∈ Π,

along with optimal values Vπ∗ , are obtained through the method of value iteration and justified by the

result of Theorem 2. For this, we have made use of an homogeneous space discretization as introduced

in Bäuerle and Rieder [2] (Section 5.3).

The equivalence result of Lemma 2 warrants the optimality of these strategies in the original portfolio

optimization problem (7), where alterations on wealth allocations are only decided at times of jumps in

the market (a jump in asset S or a default in P ) and span as time-dependent allocation functions until

the next market jump; these jumps are referred to as epochs within the context of the MDP. Thus, we

take advantage of the flexibility of the method regarding the choice of utility function and, in view of

the original problem, determine characteristics of optimal wealth allocation strategies under different

families of utilities, as well as the impact of generalizing utilities towards risky investments. Additionally,

we assess the influence on allocation strategies of the different parameters defining the model and, more

importantly, the effect of the short selling restriction imposed on the original definition of the problem.

Numerical calculations in this section are undertaken with a set interest rate of r = 0.05. In addition,

values such as jump intensities λ and ν, risk premium φ, loss at default L and appreciation rate of the

stock µ are, unless otherwise stated, fixed to sensible positive values within a financial context. This
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is done using parameter choices for numerical simulations in Bielecki and Jang [6] and Cappini and

Figueroa-Lopez [9] as a reference, therefore allowing for direct comparisons of our results with recent

work on portfolio management with defaultable bonds, and establishing general properties on optimal

strategies with respect to variations on utility functions and time, wealth and default state values.

The focus is on popular power, logarithmic and exponential utility measures of risk aversion. The

constant relative risk aversion (CRRA) family of power utility functions is given by

U(x) =
x1−c

1− c
for 0 < c < 1,

so that the level of relative risk aversion is constant and given by R(x) = −xU ′′(x)
U ′(x) = c. The logarithmic

family of utility functions is on the other hand given by

U(x) = log(x+ c) for c ∈ R+,

and its level of risk aversion is R(x) = x
x+c

, so that it is a CRRA utility measure only if c = 0; if c > 0

this is an increasing relative risk aversion (IRRA) measure. Finally, the exponential family of measures

is a popular constant absolute risk aversion (CARA) family given by

U(x) = 1− e−cx

c
for c ∈ R+,

so that the absolute risk aversion level is constant and given by A(x) = −U ′′(x)
U ′(x) = c.

Figure 4 presents pre-default value functions under different choices of measures. We note that

these are increasing in wealth and decreasing in time. In these cases, the optimal allocation strategies

correspond to varying fractional distributions of wealth between the defaultable bond and the bank

account; and the convergences in the grid have been in all cases achieved under 10 iterations, using an

initial candidate V according to the strategy of investing all wealth in bond B.

8.1. Performance Analysis of Utility Functions

Optimal allocations under different utilities vary on time, wealth values and level of aversion towards

risky investments. Under an exponential measure of constant absolute risk aversion, the level of optimal

risky investments is highly dependent on wealth values; in this case, both πP and πS are decreasing

functions of wealth for x > κ, with κ ∈ R+ small as observed in the case of a defaultable bond in Figure

5. In addition, the optimal allocation in P slightly increases as t → T ; this is opposed to previously

reported optimal strategies under power and logarithmic utilities, where a mild increase of aversion

towards the exposure to risky bonds is observed as time approaches deadline. Here, we also observe
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Figure 4: Approximation to pre-default V for different utility functions U . Results obtained through the

method of value iteration with convergence in 10 iterations. T = 1, r = µ = 0.05, λ = 0.25 φ = 1.3, L = 0.5 and

ν = 10.

such aversion at times close to the deadline under power and logarithmic utilities, while remaining

nearly time-invariant when the planning horizon is large. Additionally, the optimal wealth distribution

remains invariant with regards to changes in wealth under these utilities. Certainly, as time approaches

the deadline (and maturity in P under definition (4)) there exists an increase on the value of P and a

decrease on the likelihood of default, implying that the defaultable bond gets relatively cheap only when

the planning horizon is large.

Stock investments remain time-invariant under both power and logarithmic measures, consistent with

the previous result. However, the short-selling restriction imposed to the portfolio optimization problem

causes allocations πS to remain invariant to a default event only if pre-default bond allocations πB are

strictly positive; if πB = 0 at default time, both bond and stock percentage investments may increase

following a default event in P . Figure 6 presents varying levels of the optimal percentage allocation πS

for varying values of the difference between the appreciation rate of the stock µ and the interest rate r

under power utility functions U(x) = x1−c

1−c
, showing that this is a linearly increasing function on µ− r
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Figure 5: Optimal πP , for U(x) = 1 − e−x and varying values of t ∈ [0, T ] and x ≥ 0. Parameters r = 0.05,

ν = 10 and λ = 0.25

and a decreasing function on the level of constant relative risk aversion R(x) = c.

Moreover, we note in Figure 7 that for fixed t ∈ [0, T ] and wealth x ∈ R+, the value function V is such

that V (t, x, 0) ≥ V (t, x, 1) for all (t, x) ∈ [0, t] × R+. In addition, V (t, x, 0) − V (t, x, 1) is decreasing in

time and equal to 0 at t = T , a common feature under all utilities. Certainly, a default event decreases

the dimensionality of the problem through a reduction in the choices of investment opportunities. Under

exponential utilities and for x > κ, the losses in value are decreasing functions on wealth.

Finally, utilities analysed present common properties with regards to alterations on the values of

several parameters defining the model. Optimal allocations πP are increasing functions of the risk

premium φ and decreasing functions of the loss value L at default, as illustrated in Figure 8 for a

given pre-default state (t, x, 0) ∈ E and utility U(x) = 2
√
x in a two-bond market. A higher incentive

for bearing risk in P motivates a higher investment; on the contrary, the opposite effect is caused by

decreasing the return on recovery, despite the fact that it increases the yield on the bond. It is also never

optimal to invest in a defaultable bond provided φ ≤ 1. In addition, optimal risky investments present

a similar dependency on the level of aversion under different utilities; these are decreasing functions of

the level of relative/absolute risk aversion, as observed in Figure 9 for a defaultable bond under power

and exponential utilities.
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Figure 6: Optimal πS after default, as a function of the distance between the appreciation and interest rate

and for different power utility measures U(x) = x
1−c

1−c
. Maximum allocation equals 1, since no short-selling is

allowed. Here, λ = 0.25 φ = 1.3, L = 0.5 and ν = 10.

9. Discussion

We have presented an extension of results in Bäuerle and Rieder [2, 3] to the context of a defaultable

market, in order to study optimal wealth allocation strategies for risk adverse investors, allowing for the

use of broad families of utility functions. The original continuous-time portfolio optimization problem

has been transformed into a discrete-time Markov decision process and its value function has been

characterized as the unique fixed point to a dynamic programming operator, justifying the use of value

iteration algorithms to provide the approximations of results of our interest.

The numerical analysis has been focused on the dependence of optimal portfolio selections on the

risk premium, recovery of market value and several other parameters defining the model, and it has

extended the scope of the results in [6, 8, 15, 9] to broader families of utility functions, highlighting

relevant divergences on optimal strategies with respect to variations and generalizations in choices of

utilities. In addition, the work has examined the impact of a short selling restriction within the market,

identifying a dependency on optimal stock allocations with respect to default event on a corporate bond.

The analysis in Section 8 suggests that, similarly to [6, 8, 9], investments on defaultable bonds are

only justified when the associated risk is correctly priced, measured in terms of risk premium coefficients

φ. Also, similar monotonicity properties on optimal defaultable bond allocations have been identified

in comparison to those presented in Bielecki and Jang [6] and Capponi and Figueroa-Lopez [9], under

power and logarithmic utilities, so that these are decreasing on φ, increasing on L and there exists

a reduction of the risk aversion as time approaches maturity; this work suggests that such properties
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Figure 7: Approximation of the loss in V at default. Here T = 1, r = µ = 0.05, λ = 0.25 φ = 1.3, L = 0.5 and

ν = 10. On the left hand side U(x) =
√
x

2
, on the right hand side U(x) = 1− e−x.

Figure 8: Approximation of pre-default πB in a two-Bond market, for different risk premium φ and loss on

default L. Parameters r = 0.05, ν = 10, λ = 0.25 and utility U(x) = 2
√
x.

extend to generalizations of logarithmic utility functions. On the contrary, under exponential measures,

there exists a slight increase in the risk aversion towards P in time, and optimal defaultable bond

allocations are highly dependent on the wealth value and decreasing for x > κ, for some small κ ∈ R+.

Additionally, we observed that in this case V (t, x, 0)− V (t, x, 1) is decreasing on x for x ≥ κ.

Furthermore, we have shown that the investment in the risky bond and stock is always prioritized as

the levels of constant relative or absolute risk aversion are diminished. Also, optimal stock investments
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Figure 9: Optimal allocation πP for utilities U(x) = x
1−c

1−c
, U(x) = 1 − e

−cx

c
and varying values of c ≥ 0 in a

two-Bond market with fixed (x, t, 0) ∈ E. Parameters r = 0.05, ν = 10 and λ = 0.25

have been identified as linear functions of the appreciation rate of the stock and interest rate, similarly to

Merton [16]. However, unlike results reported in Bielecki and Jang [6] and Capponi and Figueroa-Lopez

[9], a short-selling restriction has been identified to trigger a dependency on the allocation with respect

to default event in P .

Finally, we note that the problem of considering a diversified portfolio involving multiple assets

and defaultable bonds is a natural extension to this work, but it is not addressed in here to avoid

technicalities part of extensive models. Other natural extensions of the model under the reduction to

an MDP approach were pointed out in Bäuerle and Rieder [2]. These include the introduction of regime

switching markets, where the different economical regimes are modelled by a continuous-time Markov

chain (It)t≥0 in a similar manner to Capponi and Figueroa-Lopez [9], so that parameters and coefficients

defining the bank account, asset and defaultable bond vary according to the different states of I. In this

scenario, the state space within the formulation of the MDP gains a degree of dimensionality, but the

embedding procedure remains similar. In addition, models with partial information can be considered

upon assuming that I is a hidden process and making use of filtering theory. Also, we note that this

work has made rather strong assumptions regarding most parameters defining the model. The interest

rate, stock appreciation rate, default intensities and loss on default rate have all considered constant. An

extension to Brownian models for such parameters would not be tractable under the approach presented.

However, the inclusion of different economical regimes as discussed above could present a more realistic

case of study.
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Appendix A. Transition probability Q

Let fΞn

n (t) = (αB
t , α

S
t , α

P
t ) ∈ U denote the proportions of wealth allocated to each financial instrument

at t time units after jump time Ψn, according to control fΞn

n . Analogously, let Γ
fΞn
n

t in (12) denote the

associated wealth t time units after Ψn.

Lemma 7. For an arbitrary Ξn = (t′, x, h), the transition probability Q for the MDP (E,A, Q,R) in

Section 4 is given by

Q(B|Ξn, f
Ξn

n ) = P(Ξn+1 ∈ B|GΨn
, fΞn

n )

= ν

∫ T−t′

0

e−(ν+(1−h)λP)s

∫ ∞

−1

1B(t
′ + s,Γ

fΞn
n

s (x, h)(1 + αS
s y), h)γ(dy)ds

+ (1− h)λP

∫ T−t′

0

e−(ν+λP)s1B(t
′ + s,Γ

fΞn
n

s (x, 0)(1− αP
s L), 1)ds ,

for B ⊆ E. In addition

Q({∆}|Ξn, f
Ξn

n ) = 1−Q(E|Ξn, f
Ξn

n ) .

Proof. For an arbitrary Ξn = (t′, x, h) at epoch n, the transition probability to a new state Ξn+1 ∈
E ∪ {∆} at epoch n+ 1 is given by

Q(B|Ξn, f
Ξn

n ) = P(Ξn+1 ∈ B|GΨn
, fΞn

n ) = P(Ξn+1 ∈ B|Gt′ , f
Ξn

n ) , (34)

where Gt′ intuitively denotes all the information in the system up to time t′. For B ⊆ E, the next epoch

comes at the time of the first jump in either the asset S or the default process H (and always before

the deadline T ). We note that cases h = 0 and h = 1 need to be treated separately since in the latter

there are no more jumps in H. Due to the Markovian structure of the problem, we rewrite (34) as

Q(B|Ξn, f
Ξn

n ) = P(Ξn+1 ∈ B|Ξn = (t′, x, 1), fΞn

n ) · h

+P(Ξn+1 ∈ B|Ξn = (t′, x, 0), fΞn

n ) · (1− h) , (35)

The first term on the right hand side of (35) is derived upon noting that the intensity of the poisson jump

process N in (2) is ν, and that the distribution of the jumps Y ≥ −1 is given by γ(dy). Under control

fΞn

n , the percentage of wealth invested in asset S at any time t after t′ is given by αS
t . Analogously, the

total wealth is given by Γ
fΞn
n

t (x, 1), so that

P(Ξn+1 ∈ B|Ξn = (t′, x, 1), fΞn

n )

=

∫ T−t′

0

νe−νs

∫ ∞

−1

1B(t
′ + s,Γ

fΞn
n

s (x, 1)(1 + αS
s y), 1)γ(dy)ds . (36)
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For the second term in (35) we consider the events

• C1 =“Next jump in Asset S arrives before jump in Default process H” , and

• C2 =“Jump in Default process H arrives before next jump in Asset S” ,

so that we can extend the above expression according to the laws of conditional probabilities, yielding

P(Ξn+1 ∈ B|Ξn = (t′, x, 0), fΞn

n ) = P(Ξn+1 ∈ B|Ξn = (t′, x, 0), fΞn

n , C1)P(C1)

+P(Ξn+1 ∈ B|Ξn = (t′, x, 0), fΞn

n , C2)P(C2) .

The jump intensity of H is given by λP. Thus,

P(C1) =
∫ ∞

0

νe−νs

∫ ∞

s

λPe
−λPrdrds =

ν

ν + λP

,

and analogously P(C2) = λP

ν+λP

. In addition, we denote that φS and φH are the next jump times of S

and H respectively, so that their conditional probability density functions fφS |C1
(·|C1) and fφH |C1

(·|C1)
are given by

fφS |C1
(·|C1) =

d

ds

P(S ≤ s, C1)
P(C1)

= (λP + ν)e−(ν+λP)s = fφH |C1
(·|C1) .

Then, in a similar manner to (36), we have

P(Ξn+1 ∈ B|Ξn = (t′, x, 0), fΞn

n , C1)P(C1)

=

∫ T−t′

0

νe−(ν+λP)s

∫ ∞

−1

1B(t
′ + s,Γ

fΞn
n

s (x, 0)(1 + αS
s y), 0)γ(dy)ds , (37)

and

P(Ξn+1 ∈ B|Ξn = (t′, x, 0), fΞn

n , C2)P(C2)

=

∫ T−t′

0

λPe
−(ν+λP)s1B(t

′ + s,Γ
fΞn
n

s (x, 0)(1− αP
s L), 0)ds . (38)

Finally, plugging equations (36), (37) and (38) in expression (35) completes the first part of the proof.

The additional result

Q({∆}|Ξn, f
Ξn

n ) = 1−Q(E|Ξn, f
Ξn

n )

is trivial.
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